
Oxygen XML Editor Eclipse Plugin 18.0

Contents

Chapter 1: Introduction..15

Chapter 2: Getting Started...17
What is Oxygen XML Editor plugin...18

Getting Familiar with the Layout..18

Resources to Help You Get Started Using Oxygen XML Editor plugin ..18

Your First Document or Project...20

Your First XML Document...20

Your First DITA Topic...23

Creating a New Project..28

Getting Help..29

Help Menu...29

Chapter 3: Installation..31
Installation Options...32

Windows Installation...32

Mac OS X Installation...33

Linux Installation..34

Site-wide deployment..35

Licensing...36

Choosing a License Type...36

Obtaining a License...36

Register a Named-User License..37

Registering a Floating License..37

Setting up a License Server...39

Setting up an HTTP Floating License Server..39

Setting up a TCP Floating License Server Using a 32-bit Windows Installer..43

Setting up a TCP Floating License Server Using an All-Platforms Distribution....................................45

Transferring or Releasing a License..46

Upgrading..47

Uninstalling...48

Chapter 4: Configuration...49
Preferences..50

Oxygen XML Editor plugin License...51

Archive Preferences...51

CSS Validator Preferences...52

Oxygen XML Editor plugin | Contents | iii

Custom Editor Variables Preferences..52

Data Sources Preferences..53

DITA Preferences..57

Document Type Association Preferences..58

Editor Preferences...72

Fonts Preferences..105

Network Connection Settings Preferences..105

Scenarios Management Preferences..107

View Preferences...107

XML Preferences..108

XML Structure Outline Preferences..131

Configuring Options..131

Customizing Default Options..132

Importing / Exporting Global Options..133

Reset Global Options...133

Associating a File Extension with Oxygen XML Editor plugin...133

Scenarios Management..134

Editor Variables...134

Custom Editor Variables..139

Localizing of the User Interface..139

Chapter 5: Perspectives..141
oXygen XML Perspective...142

Supported Document Types..143

XSLT Debugger Perspective...144

XQuery Debugger Perspective ...144

Oxygen XML Editor plugin Database Perspective ...145

Chapter 6: Editing Modes..149
Text Editing Mode...150

Text Mode Editor...150

Text Mode Views...151

Syntax Highlight Depending on Namespace Prefix..162

Presenting Validation Errors in Text Mode...163

Grid Editing Mode...164

Grid Mode Editor..164

Layouts: Grid and Tree..165

Grid Mode Navigation...166

Bidirectional Text Support in Grid Mode..167

Author Editing Mode...168

Author Mode Editor..168

Author Mode Views...173

Bidirectional Text Support in Author Mode..188

Oxygen XML Editor plugin | Contents | iv

Design Editing Mode...190

XML Schema Diagram Editor (Design Mode)...190

Navigation in the XML Schema Design Mode...191

XML Schema Outline View..192

XML Schema Attributes View...194

XML Schema Facets View..195

XML Schema Palette View...196

Chapter 7: Editing Documents..199
Working with Unicode..200

Opening and Saving Unicode Documents...200

Inserting Symbols..200

Unicode Fallback Font Support...202

Creating and Working with Documents..203

Creating New Documents and Templates...203

Saving Documents...210

Opening and Saving Remote Documents via FTP/SFTP/WebDAV ..210

Closing Documents...215

Contextual Menu of the Current Editor Tab..215

Viewing File Properties...215

Using Projects to Group Documents...215

Creating a New Project..215

Navigator View..216

Defining Master Files at Project Level..221

Editing XML Documents..223

Editing XML Documents in Text Mode..223

Editing XML Documents in Grid Mode...251

Editing XML Documents in Author Mode..254

Validating XML Documents...355

Finding and Replacing Text in the Current File..371

Search and Refactor Actions for IDs and IDREFS...373

Search and Refactor Operations Scope...374

Associate a Schema to a Document..374

Working with Modular XML Files in the Master Files Context...378

XML Resource Hierarchy/Dependencies View...378

Working with XML Catalogs..380

Editing Large XML Documents with DTD Entities or XInclude...382

Viewing Status Information...385

Editor Highlights...385

XML Quick Fixes..386

Refactoring XML Documents...388

Editing XSLT Stylesheets..404

Editing XSLT Stylesheets in the Master Files Context...404

Validating XSLT Stylesheets...404

Oxygen XML Editor plugin | Contents | v

Content Completion in XSLT Stylesheets...406

Syntax Highlight...411

XSLT Outline View...411

XSLT/XQuery Input View...414

XSLT Resource Hierarchy/Dependencies View..415

XSLT Component Dependencies View...417

Highlight Component Occurrences...419

Finding XSLT References and Declarations...419

XSLT Stylesheet Documentation Support...419

Generating Documentation for an XSLT Stylesheet...420

XSLT Quick Assist Support..427

XSLT Quick Fix Support ..429

XSLT Refactoring Actions..430

XSLT Unit Test (XSpec)...433

Editing XML Schemas..434

XML Schema Diagram Editor (Design Mode)...434

Editing XML Schema in Text Editing Mode..465

Editing XML Schema in the Master Files Context...466

Validating XML Schema Documents..466

Content Completion in XML Schema...466

XML Schema Outline View..467

XML Schema Attributes View...468

XML Schema Resource Hierarchy / Dependencies View...470

Component Dependencies View for XML Schema...472

Highlight Component Occurrences...474

Searching and Refactoring Actions in XML Schemas..474

XML Schema Quick Assist Support...475

Generating Sample XML Files..476

Generating Documentation for an XML Schema..480

Converting Schema to Another Schema Language...488

Converting Database to XML Schema..490

Flatten an XML Schema..491

XML Schema Regular Expressions Builder...493

XML Schema 1.1..494

Setting the XML Schema Version...495

Editing XQuery Documents..496

XQuery Outline View..496

Folding in XQuery Documents...498

Formatting and Indenting XQuery Documents...498

Generating HTML Documentation for an XQuery Document...498

Editing WSDL Documents..499

Editing WSDL Documents in the Master Files Context...500

Validating WSDL Documents...500

Content Completion Assistance in WSDL Documents...501

WSDL Outline View...501

Oxygen XML Editor plugin | Contents | vi

WSDL Resource Hierarchy/Dependencies View in WSDL Documents...504

Component Dependencies View in WSDL Documents..507

Highlight Component Occurrences in WSDL Documents...508

Searching and Refactoring Operations in WSDL Documents..508

Searching and Refactoring Operations Scope in WSDL Documents...509

Quick Assist Support in WSDL Documents...509

Generating Documentation for WSDL Documents..510

WSDL SOAP Analyzer...514

Editing CSS Stylesheets..517

Validating CSS Stylesheets...518

Content Completion in CSS Stylesheets...518

CSS Outline View..519

Folding in CSS Stylesheets...519

Formatting and Indenting CSS Stylesheets (Pretty Print)...520

Minifying CSS Stylesheets..520

Editing LESS CSS Stylesheets..520

Validating LESS Stylesheets...520

Content Completion in LESS Stylesheets...521

Compiling LESS Stylesheets to CSS..521

Editing Relax NG Schemas...521

Editing Relax NG Schema in the Master Files Context..522

Relax NG Schema Diagram Editor...522

Validating Relax NG Schema Documents...525

Relax NG Outline View...526

RNG Resource Hierarchy/Dependencies View...527

Component Dependencies View for RelaxNG Schemas...530

Searching and Refactoring Actions in RNG Schemas..531

RNG Quick Assist Support...532

Configuring a Custom Datatype Library for a RELAX NG Schema..533

Editing NVDL Schemas..533

NVDL Schema Diagram...533

Validating NVDL Schema Documents..535

Component Dependencies View for NVDL Schemas...535

Searching and Refactoring Actions in NVDL Schemas..536

Editing JSON Documents...537

Editing JSON Documents in Text Mode...537

Editing JSON Documents in Grid Mode...539

Validating JSON Documents...540

JSON Outline View...540

XML to JSON Converter...540

Editing StratML Documents...542

Editing XLIFF Documents..542

Editing JavaScript Documents..542

JavaScript Editor Text Mode...542

Validating JavaScript Files..544

Oxygen XML Editor plugin | Contents | vii

Content Completion in JavaScript Files..544

JavaScript Outline View..545

Editing XProc Scripts..546

Editing Schematron Schemas..547

Editing Schematron Schema in the Master Files Context...548

Validating Schematron Documents...548

Content Completion in Schematron Documents...548

RELAX NG/XML Schema with Embedded Schematron Rules...549

Schematron Outline View..550

Schematron Resource Hierarchy/Dependencies View..551

Highlight Component Occurrences in Schematron Documents..552

Searching and Refactoring Operations in Schematron Documents..553

Searching and Refactoring Operations Scope in Schematron Documents..554

Quick Assist Support in Schematron Documents..554

Editing Schematron Quick Fixes...555

Customizing Schematron Quick Fixes..555

Validating Schematron Quick Fixes..560

Content Completion in SQF..560

Highlight Quick Fix Occurrences in SQF...560

Searching and Refactoring Operations in SQF...560

Embed Schematron Quick Fixes in Relax NG or XML Schema..561

Editing XHTML Documents...561

Spell Checking..562

Spell Checking Dictionaries..563

Learned Words...564

Ignored Words (Elements)...565

Automatic Spell Check..565

Spell Checking in Multiple Files...566

AutoCorrect Misspelled Words...568

Add Dictionaries for the AutoCorrect Feature..569

Handling Read-Only Files...569

XML Digital Signatures..569

Digital Signatures Overview...569

Certificates...571

Canonicalizing Files..571

Signing Files..572

Verifying Signature..574

Example of How to Digitally Sign XML Files or Content...574

Chapter 8: Publishing...577
Transformation Scenarios..578

Built-in Transformation Scenarios..578

Creating New Transformation Scenarios..602

Editing a Transformation Scenario..638

Oxygen XML Editor plugin | Contents | viii

Duplicating a Transformation Scenario...639

Configure Transformation Scenario(s) Dialog Box..640

Apply Batch Transformations...642

Sharing the Transformation Scenarios..642

Transformation Scenarios View...642

Debugging PDF Transformations..645

Configuring Calabash with XEP ..645

Integration of an External XProc Engine..645

XSLT Processors...646

XSL-FO Processors...648

WebHelp System Output...652

WebHelp Responsive System ...652

WebHelp Classic System...684

WebHelp Classic Mobile System..709

Context-Sensitive WebHelp System..710

Using the Oxygen XML WebHelp Plugin to Automate Output..711

Chapter 9: Querying Documents...719
Running XPath Expressions..720

What is XPath..720

XPath/XQuery Builder View...720

XPath Expression Results...722

Catalogs...723

XPath Prefix Mapping...724

Working with XQuery...724

What is XQuery...724

Syntax Highlight and Content Completion...724

XQuery Outline View..725

XSLT/XQuery Input View...726

XQuery Validation...728

Transforming XML Documents Using XQuery..728

Chapter 10: Working with Archives..733
Browsing and Modifying Archives..734

Working with EPUB..734

Create an EPUB...735

Publish to EPUB..736

Editing Files From Archives..736

Chapter 11: Databases and CMS...737
Working with Databases..738

Data Source Explorer View...738

Table Explorer View..739

Oxygen XML Editor plugin | Contents | ix

Database Connection Support...741

WebDAV Connections...778

SQL Execution Support...780

XQuery and Databases..782

Content Management System (CMS) Integration...786

Integration with Documentum (CMS) (deprecated)...786

Integration with Microsoft SharePoint..791

Chapter 12: Importing Data..795
Import from Text Files...796

Import from MS Excel Files..797

Import Data from MS Excel 2007 or Newer...799

Import Database Data as an XML Document...799

Import from HTML Files..802

Import Content Dynamically...802

Chapter 13: XSLT and XQuery...805
Layout..807

Control Toolbar...807

Debugging Information Views..809

Multiple Output Documents in XSLT 2.0 and XSLT 3.0..818

Working with the XSLT / XQuery Debugger..818

Steps in a Typical Debugging Process...819

Using Breakpoints...819

Determining What XSLT / XQuery Expression Generated Particular Output......................................820

Debugging Java Extensions...821

Supported Processors for XSLT / XQuery Debugging...822

Performance Profiling of XSLT Stylesheets and XQuery Documents...822

XSLT/XQuery Performance Profiling Overview..822

Viewing Profiling Information..822

Working with XSLT/XQuery Profiler...824

Chapter 14: Predefined Document Types...827
Predefined Document Types (Frameworks)..828

DocBook 4 Document Type..829

DocBook 5 Document Type..841

DITA Topics Document Type..854

DITA Map Document Type...863

XHTML Document Type..868

TEI ODD Document Type...872

TEI P4 Document Type...876

TEI P5 Document Type...881

JATS Document Type..885

Oxygen XML Editor plugin | Contents | x

EPUB Document Type..887

DocBook Targetset Document Type..888

Chapter 15: Author Mode Customization..889
Author Mode Customization Guide..890

Simple Customization Tutorial..890

Advanced Customization Tutorial - Document Type Associations...896

Example Files for a Custom Framework...976

CSS Support in Author Mode..982

Handling CSS Imports..982

Selecting and Combining Multiple CSS Styles...982

oxygen Media Type ...985

CSS At-Rules...986

Standard W3C CSS Supported Features...987

Oxygen XML Editor plugin CSS Extensions...999

Debugging CSS Stylesheets..1036

Creating and Running Automated Tests..1037

API Frequently Asked Questions (API FAQ)..1038

Difference Between a Document Type (Framework) and a Plugin Extension....................................1039

Dynamically Modify the Content Inserted by the Author...1039

Split Paragraph on Enter (Instead of Showing Content Completion List)..1040

Impose Custom Options for Authors...1041

Highlight Content..1041

How Do I Add My Custom Actions to the Contextual Menu?..1041

Adding Custom Callouts...1042

Change the DOCTYPE of an Opened XML Document...1045

Customize the Default Application Icons for Toolbars/Menus...1046

Disable Context-Sensitive Menu Items for Custom Author Actions...1046

Dynamic Open File in Oxygen XML Editor plugin Distributed via JavaWebStart............................1047

Change the Default Track Changes (Review) Author Name...1047

Multiple Rendering Modes for the Same Document in Author Mode..1048

Obtain a DOM Element from an AuthorNode or AuthorElement..1048

Print Document Within the Oxygen XML Author Component..1049

Running XSLT or XQuery Transformations...1049

Use Custom Rendering Styles for Entity References, Comments, or Processing Instructions...........1049

Insert an Element with all the Required Content..1051

Obtain the Current Selected Element Using the Author API..1052

Debugging a Plugin Using the Eclipse Workbench...1052

Debugging an Oxygen SDK Extension Using the Eclipse Workbench..1053

Extending the Java Functionality of an Existing Framework (Document Type)................................1054

Controlling XML Serialization in the Oxygen XML Author Component..1054

How do I add a Customized Outline View for Editing XML Documents in Text Mode?..................1055

Dynamically Adding Form Controls Using a StylesFilter...1058

Modifying the XML Content on Open..1058

Oxygen XML Editor plugin | Contents | xi

Modifying the XML Content on Save...1059

Save a New Document with a Predefined File Name Pattern...1060

Auto-Generate an ID When a Document is Opened or Created...1061

Use a Custom View with the Oxygen XML Editor plugin Distribution...1062

Chapter 16: Extending Oxygen XML Editor plugin Using the SDK.............1063
Extension points for Oxygen XML Editor plugin...1064

Chapter 17: Tools..1065
XML Refactoring..1066

Predefined Refactoring Operations...1069

Custom Refactoring Operations..1072

Storing and Sharing Refactoring Operations...1080

Localizing XML Refactoring Operations..1081

Generating Sample XML Files..1082

Schema Tab (Generate Sample XML Files Tool)..1082

Options Tab (Generate Sample XML Files Tool)..1083

Advanced Tab (Generate Sample XML Files Tool)..1085

Generate/Convert Schema...1085

Convert DB Structure to XML Schema..1087

XML to JSON...1088

Generate Documentation...1089

XML Schema Documentation...1089

XSLT Stylesheet Documentation..1092

XQuery Documentation..1095

WSDL Documentation..1096

Canonicalize..1098

Sign..1100

Verify Signature...1101

WSDL SOAP Analyzer...1101

Composing a SOAP Request...1101

Testing Remote WSDL Files...1103

UDDI Registry Browser..1103

XML Schema Regular Expressions Builder...1104

Chapter 18: Common Problems..1107
Performance Problems..1108

Performance Issues with Large Documents..1108

External Processes...1108

Common Problems and Solutions...1108

Details to Submit in a Request for Technical Support Using the Online Form..................................1108

Oxygen XML Editor plugin Takes Several Minutes to Start..1109

XSLT Debugger Is Very Slow...1109

Oxygen XML Editor plugin | Contents | xii

Syntax Highlight Not Available in Eclipse Plugin..1109

Damaged File Associations on OS X..1109

Signature Verification Failed Error on Open or Edit a Resource from Documentum.........................1110

Compatibility Issue Between Java and Certain Graphics Card Drivers..1110

Image Appears Stretched Out in the PDF Output...1110

DITA PDF Transformation Fails...1111

DITA to CHM Transformation Fails..1111

DITA Map Transformation Fails (Cannot Connect to External Location)..1112

Topic References Outside the Main DITA Map Folder..1112

PDF Processing Fails to Use the DITA OT and Apache FOP...1112

TocJS Transformation Does not Generate All Files for a Tree-Like TOC..1113

Navigation to the web page was canceled when viewing CHM on a Network Drive.........................1113

Alignment Issues of the Main Menu on Linux Systems Based on Gnome 3.x...................................1113

JPEG CMYK Color Space Issues...1114

SVG 1.2 Rendering Issues...1114

MSXML 4.0 Transformation Issues..1114

Increasing the Memory for the Ant Process..1114

'Address Family Not Supported by Protocol Family; Connect' Error..1114

Chapter 19: DITA Authoring and Publishing...1117
Working with DITA Maps...1118

DITA Maps Manager...1118

Creating a Map..1126

Managing DITA Maps...1127

Chunking DITA Topics...1143

DITA Map Validation and Completeness Check...1143

Working with DITA Topics...1145

Creating a New DITA Topic..1147

Editing DITA Topics...1148

Adding Images in DITA Topics...1150

Image Maps in DITA...1152

Adding Tables in DITA Topics..1155

Adding MathML Equations in DITA Topics...1164

Working with Keys..1165

Reusing DITA Content..1166

Reusing DITA Topics in Multiple Maps...1166

Working with Content References..1167

Working with the Conref Push Mechanism..1175

Working with Reusable Components..1177

Working with Variable Text in DITA...1178

Linking in DITA..1179

Hierarchical Linking in DITA Maps...1180

Linking in DITA Topics..1180

Linking with Relationship Tables in DITA...1184

Oxygen XML Editor plugin | Contents | xiii

Publishing DITA Output..1186

Transforming DITA Content...1186

DITA Profiling / Conditional Text...1202

Profiling DITA Content...1204

Profiling with a Subject Scheme Map...1206

Profiling Markers..1207

Publishing Profiled DITA Content..1208

DITA Open Toolkit Support..1208

Creating a DITA OT Customization Plugin..1208

Installing a Plugin in the DITA Open Toolkit...1210

Use an External DITA Open Toolkit in Oxygen XML Editor plugin...1211

Third-Party DITA Open Toolkit Plugins...1212

DITA Specialization Support..1212

Integration of a DITA Specialization...1212

Editing DITA Map Specializations...1213

Editing DITA Topic Specializations..1213

Metadata..1213

Creating an Index in DITA..1214

DITA 1.3 Support..1214

Chapter 20: Glossary..1217

Copyright...mccxxi

Index..1223

Chapter

1

Introduction

Welcome to the User Manual of Oxygen XML Editor plugin 18.0.

Oxygen XML Editor plugin is a cross-platform application designed to
accommodate all of your XML editing, authoring, developing, and publishing
needs. It is the best XML editor available for document development using
structured mark-up languages such as XML, XSD, Relax NG, XSL, DTD. It is
a comprehensive solution for authors who want to edit XML documents visually,
with or without extensive knowledge about XML and XML-related technologies.
The WYSIWYG-like editor is driven by CSS stylesheets associated with the
XML documents and offers many innovative, user-friendly authoring features
that make XML authoring easy and powerful.

It offers developers and authors a powerful Integrated Development Environment
and the intuitive Graphical User Interface of Oxygen XML Editor plugin is
easy to use and provides robust functionality for content editing, project
management, and validation of structured mark-up sources. Coupled with XSLT
and FOP transformation technologies, Oxygen XML Editor plugin offers support
for generating output to multiple target formats, including: PDF, PS, TXT,
HTML, JavaHelp, WebHelp, and XML.

This user guide is focused on describing features, functionality, the application
interface, and to help you quickly get started. It also includes a vast amount of
advanced technical information and instructional topics that are designed to
teach you how to use Oxygen XML Editor plugin to accomplish your tasks. It
is assumed that you are familiar with the use of your operating system and the
concepts related to XML technologies and structured mark-up.

Chapter

2

Getting Started

This chapter is designed to help you get started using Oxygen XML Editor
plugin as quickly as possible.

Topics:

• What is Oxygen XML Editor
plugin This chapter provides you with a variety of resources to help you get the most

out of the application. Typically, the first step of getting started with Oxygen
• Getting Familiar with the Layout XML Editor plugin would be to install the software. For detailed information

about that process, see the Installation on page 31 chapter.• Resources to Help You Get
Started Using Oxygen XML Editor
plugin After installation, when you launch Oxygen XML Editor plugin for the first

time, you are greeted with a Welcome dialog box. It presents upcoming events,
• Your First Document or Project

useful video demonstrations, helpful resources, the tip of the day, and also gives
you easy access to recently used files and projects and to create new ones.• Getting Help

Figure 1: Welcome Dialog Box

If you do not want it to be displayed every time you launch Oxygen XML Editor
plugin, disable the Show at startup option. To display it any time, go to Help >
Welcome.

What is Oxygen XML Editor plugin
Oxygen XML Editor plugin is the best XML editor available and is a complete XML development and authoring solution.
It is designed to accommodate a large number of users, ranging from beginners to XML experts. It is the only XML tool
that supports all of the XML schema languages and provides a large variety of powerful tools for editing and publishing
XML documents.

You can use Oxygen XML Editor plugin to work with most XML-based standards and technologies. It is a cross-platform
application available on all the major operating systems (Windows, Mac OS X, Linux, Solaris) and can be used either
as a standalone application or as an Eclipse plugin.

For a list of many of the features and technologies that are included in Oxygen XML Editor plugin, see the oXygen
Website.

Getting Familiar with the Layout
Oxygen XML Editor plugin includes several perspectives and editing modes to help you accomplish a wide range of
tasks. Each perspective and editing mode also includes a large variety of helper view, menu actions, toolbars, and
contextual menu functions.

Regardless of the perspective or editing mode that you are working with, the default layout is comprised of the following
areas:

Menu driven access to all the features and functions available in Oxygen XML Editor plugin. Most
of the menus are common for all types of documents, but Oxygen XML Editor plugin also includes

Menus

some context-sensitive and framework-specific menus and actions that are only available for a specific
context or type of document.

Easy access to common and frequently used functions. Each icon is a button that acts as a shortcut to
a related function. Some of the toolbars are common for all perspectives, editing modes, and types

Toolbars

of documents, while others are specific to the particular perspective or mode. Some toolbars are also
framework-specific, depending on the type of document that is being edited.

Oxygen XML Editor plugin includes a large variety of views to assist you with editing, viewing,
searching, validating, transforming, and organizing your documents. Many of the views also contain

Helper Views

useful contextual menu actions, toolbar buttons, or menus. The most commonly used views for each
perspective and editing mode are displayed by default and you can choose to display others to suit
your specific needs.

The main editing area in the center of the application. Each editing mode provides a main editor pane
where you spend most of your time reading, editing, applying markup, and validating your documents.

Editor Pane

The editor pane in each editing mode also includes a variety of contextual menu actions and other
features to help streamline your editing tasks.

Oxygen XML Editor plugin includes several different perspectives that you can use to work with
your documents. The <oXygen/> XML perspective is the most commonly used perspective used for

Perspectives

displaying and editing the content of your XML documents, and it is the default perspective when
you start Oxygen XML Editor plugin for the first time. Oxygen XML Editor plugin also includes a
Database perspective that allows you to manage databases and their connections and a few debugging
perspectives that allow you to detect problems in XSLT or XQuery transformations.

Resources to Help You Get Started Using Oxygen XML Editor plugin

Configuring Oxygen XML Editor plugin
There are numerous ways that you can configure Oxygen XML Editor plugin to accommodate your specific needs.

Oxygen XML Editor plugin | Getting Started | 18

http://www.oxygenxml.com/#features
http://www.oxygenxml.com/#features

• See the Configuring Oxygen XML Editor plugin on page 49 section for details on the various ways that you can
configure the application and its features.

Video Tutorials
The Oxygen XML Editor plugin website includes numerous video demonstrations and webinars that present many of
the features that are available in Oxygen XML Editor plugin and show you how to complete specific tasks or how to
use the various features.

• Go to the Oxygen XML Editor plugin Videos Page to see the list of video tutorials and webinars.

Oxygen XML Editor plugin Documentation
The Oxygen XML Editor plugin documentation includes a plethora of sections and topics to provide you with a variety
of information, ranging from basic authoring tasks to advanced developer techniques. You can, of course, search through
the documentation using standard search mechanisms, but you can also place the cursor in any particular position in the
interface and use the F1 key to open a dialog box that presents a section in the documentation that is appropriate for the
context of the current cursor position. Aside from the other topics in this Getting Started section, the following are links
to other sections of the documentation that might be helpful for your specific needs:

• Text Editing Mode on page 150 Section - Provides information about the Text editor.
• Author Editing Mode on page 168 Section - Provides information about the visual WYSIWYG-like Author editing

mode.
• Editing Documents on page 199 Section - Includes information about editing numerous different types of documents.
• DITA Authoring and Publishing on page 1117 Section - Provides information about using DITA to edit and structure

your content.
• WebHelp System Output on page 652 Section - Provides information about the WebHelp system that can be used

for publishing content.
• Importing Data on page 795 Section - Provides information about importing data from text files, MS Excel files,

database data, and HTML files.

Sample Documents
Your installation of Oxygen XML Editor plugin includes a large variety of sample documents and projects that you can
use as templates to get started and to experiment with the various features and technologies. They are located in the
samples folder that is located in the installation directory of Oxygen XML Editor plugin. You will find files and folders
for various types of documents, including the following:

• sample.xpr file - A sample project file that will allow you to experiment with how projects can be structured and
used. When you open this project file, you will be able to see all the sample files and folders in the Navigator view.

• personal files - A collection of interrelated sample files that will allow you to experiment with the structure and
relationship between XML files, stylesheets, and schemas.

• Various document type folders - The various folders contain sample files for numerous document types, such as
CSS, DITA, DocBook, ePub, TEI, XHTML, and many others.

Other Resources
The following list includes links to various other resources that will help you get started using the features of Oxygen
XML Editor plugin:

• See the Oxygen XML Editor plugin Blog Site for a large variety of current and archived blogs in regards to numerous
features, requests, and instructional topics.

• Take advantage of the Oxygen XML Editor plugin Forum to see various announcements and learn more about specific
issues that other users have experienced.

• If you are using DITA, see the incredibly helpful DITA Style Guide Best Practices for Authors.
• To learn about the WebHelp features in Oxygen XML Editor plugin, see the Publishing DITA and DocBook to

WebHelp section of the website.
• For more information about various additional tools that are integrated into Oxygen XML Editor plugin, see the

Tools section.

Oxygen XML Editor plugin | Getting Started | 19

http://www.oxygenxml.com/videos.html
http://blog.oxygenxml.com/
http://www.oxygenxml.com/forum/
http://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html
http://www.oxygenxml.com/xml_webhelp.html
http://www.oxygenxml.com/xml_webhelp.html

• See the External Resource Page for links to various other helpful resources, such as discussion lists, external tutorials,
and more.

• See the oXygen SDK section for details about the SDK that allows you to extend and develop Oxygen XML Editor
plugin frameworks and plugins, and to integrate Eclipse plugins.

• For a list of new features that were implemented in the latest version of Oxygen XML Editor plugin, see the What's
New Section of the Website

• You can select the Tip of the Day action in the Help menu to display a dialog box that includes a variety of tips for
using Oxygen XML Editor plugin.

Your First Document or Project
This section includes several topics that will help you get started with your first document or project.

Your First XML Document

To create your first XML document, select File > New > Other > oXygen or click the New button on the toolbar.
The New document wizard is displayed:

You can either create a new XML document from scratch by choosing one of the available types in the wizard. You can
also create one from a template by selecting File > New > New from Templates and choosing a template from the
Global templates or Framework templates folders. If you are looking for a common document type, such as DITA
or DocBook, you can find templates for these document types in the Framework templates folder. If your company
has created its own templates, you can also find them there.

For some document types, you may find a lot of different templates. For example, there are numerous templates for
DocBook documents, and DITA topic types and maps. Choose the template that best meets your needs.

Writing Your First Document

Depending on the type of document you choose, the Oxygen XML Editor plugin interface changes to support editing
that document type. This may include new menus, toolbar buttons, and items in the contextual menus.

Also, depending on the type of document you choose, Oxygen XML Editor plugin may open your document in Text or
Author mode. Text mode shows the raw XML source file, while Author mode shows a graphical view of the document.

The availability of Author mode for your document type depends on the type you choose and if there is a CSS stylesheet
available to create the Author mode. Oxygen XML Editor plugin includes default Author mode views for most of the
document types it supports. If your company has created its own document types, Author mode stylesheets may have
also been created for that type. However, if you create a plain XML file, or one based on a schema that is not included
in the Oxygen XML Editor plugin built-in support, you need to edit it in Text mode or create your own Author mode
style sheet for it.

You can switch back and forth between Author mode and Text mode at any time by clicking the buttons at the bottom
left of the editor window. You do not lose any formatting when switching from Author to Text mode. Text and Author
modes are just different views for the same XML document. There is also a Grid mode available, which is useful for
certain kinds of documents, particularly those that are structured like databases. You can also use it to sort things such
as list items and table rows.

If you use Author mode, you might find that it is similar to word processors that you are used to. Likewise, the Text
mode is similar to many typical text editors. If you are new to XML, the biggest difference is that XML documents have
a particular structure that you have to follow. Oxygen XML Editor plugin assists you with a continuous validation of
the XML markup.

Structuring Your First Document

Each XML document type has a particular structure that you have to follow as you write and edit the document. Some
document types give you a lot of choices, while others give you very few. In either case, you need to make sure that
your document follows the particular structure for the document type you are creating. This means:

Oxygen XML Editor plugin | Getting Started | 20

http://www.oxygenxml.com/external_resources.html
http://www.oxygenxml.com/oxygen_sdk.html
http://www.oxygenxml.com/xml_editor/whats_new.html
http://www.oxygenxml.com/xml_editor/whats_new.html

• At any given location in the document, there are only certain XML elements allowed. Oxygen XML Editor plugin
helps you determine which elements are allowed. In Author mode, when you press Enter, Oxygen XML Editor
plugin assumes that you want to enter a new element and shows you a list of elements that can be created in this
location. Keep typing until the element you want is highlighted and press Enter to insert the element. If you want
to view the overall structure of a document and see what is allowed (and where), you can use the Model view
(Window > Show View > Model).

• When you create certain elements, you may find that your text gets a jagged red underline and you get a warning
that your content is invalid. This is usually because the element you have just created requires certain other elements
inside of it. Your document will be invalid until you create those elements. Oxygen XML Editor plugin does its best
to help you with this. If there is only one possible element that can go inside the element you just created, Oxygen
XML Editor plugin creates it for you. However, if there is more than one possibility, you have to create the appropriate
elements yourself. In many cases, Oxygen XML Editor plugin presents XML Quick Fixes that help you resolve errors
by offering proposals to quickly fix problems such as missing required attributes or invalid elements.

Editing Your First Document

Once you have completed the first draft of your document, you may need to edit it. As with any editor, Oxygen XML
Editor plugin provides the normal cut, copy, and paste options as well as drag and drop editing. However, when you are
editing an XML document, you have to make sure that your edits respect the structure of the XML document type. In
fact, you are often editing the structure as well as the content of your document.

Oxygen XML Editor plugin provides many tools to help you edit your structure and to keep your structure valid while
editing text.

Across the top of the editor window (in Text mode), there is a set of breadcrumbs that shows you
exactly were the insertion point is in the structure of the document. You can click any element in the
breadcrumbs to select that entire element in the document.

The
Document
Breadcrumbs

To see exactly where you are in the structure of the document, you can show the tags graphically in
the Author view. There are several levels of tag visibility that you can choose using the Display

Showing Tags

tags mode drop-down menu on the toolbar (the button may look a little different than this, as it changes
to reflect the level of tags currently displayed).

The Outline view shows you the structure of your document in outline format. You can use it to select
elements, or to move elements around in the document.

Figure 2: Outline View

Outline View

Oxygen XML Editor plugin | Getting Started | 21

You can configure the Outline view to determine what is shown, such as element names, attributes,
and comments. Certain choices may work better for particular document types. You can also filter the
Outline view to show only elements with a certain name.

Figure 3: Outline View Filtered to only Show Element Names

You can cut and paste or drag and drop text, just as you would in any other editor. However, when
you do this in Author view, it is important to remember that you are actually moving blocks of XML.

Cut and Paste,
Drag and
Drop When you cut and paste or drag and drop a block of XML, the result has to be valid both where the

content is inserted, and where it is removed from.

A big part of doing this correctly is to make sure that you pick up the right block of text in the first
place. Using the breadcrumbs or Outline view, or showing tags and using them to select content, can
help ensure that you are selecting the right chunk of XML.

If you do try to paste or drop a chunk of XML somewhere that is not valid, Oxygen XML Editor plugin
warns you and tries to suggest actions that make it valid (such as by removing surrounding elements
from the chunk you are moving, by creating a new element at the destination, or by inserting it in a
nearby location).

If you are using Author mode, you can also switch to Text mode to see exactly which bits of XML
you are selecting and moving.

You can perform many common structure edits, such as renaming an element or wrapping text in an
element, using the actions in the Refactoring menu of the contextual menu. More advanced refactoring

Refactoring
actions

operations are also available using the XML Refactoring tool that is available in the XML Tools
menu.

Validating Your First Document

Validation is the process of making sure that an XML document abides by the rules of its schema. If Oxygen XML
Editor plugin knows how to find the schema, it validates the document for you as you type. Oxygen XML Editor plugin
finds the schema automatically for most of the document types created from templates. However, in some cases you
may have to tell it how to find the schema.

When Oxygen XML Editor plugin validates as you type, there is a small bar at the right edge of the editor that shows
you if the document is invalid and where errors are found. If the indicator at the top of that bar is green, your document
is valid. If the document is invalid, the indicator turns red and a red flag shows you where the errors are found. Click
that flag to jump to the error. Remember that sometimes your document is invalid simply because the structure you are
creating is not yet complete.

In addition to problems with the validity of the XML document itself, Oxygen XML Editor plugin also reports warnings
for a number of conditions, such as if your document contains a cross reference that cannot be resolved, or if Oxygen
XML Editor plugin cannot find the schema specified by the document. The location of these warnings is marked in
yellow on the validation bar. If the document contains warnings, but no errors, the validity indicator turns yellow.

You can also validate your document at any time by selecting the Validate action from the Validation toolbar
drop-down menu or the XML menu.. When you validate in this manner, if errors are found, the validation result opens

Oxygen XML Editor plugin | Getting Started | 22

in a new pane at the bottom of the editor that shows each validation error on a separate line. Clicking the error takes you
to the location in your document where the error was detected.

Note: Be aware that the problem is sometimes in a different location from where the validator detects the error.
To get more information about a validation error, right-click a validation error message, and select Show Message.

Proofing Your First Document

Oxygen XML Editor plugin includes an automatic (as-you-type) spell checking feature, as well as a manual spell checking

action. To check the spelling of your document manually, use the Check Spelling action on the toolbar.

Transforming Your First Document

An XML document must be transformed to be published. Transformations are specific to the particular type of document
you have created. For example, a DITA transformation cannot be used on a DocBook file, or vice versa. A single
document type may have many multiple transformations that produce different kinds of outputs. For some document
types, such a DITA, many different content files may be combined together by a transformation. You need to locate and
launch a transformation that is appropriate for your document type and the kind of output you want to generate.

Oxygen XML Editor plugin uses transformation scenarios to control the transformation process. Depending on the
document type you have created, there may be several transformation scenarios already configured for your use. This
may include the default transformation scenarios supplied by Oxygen XML Editor plugin or ones created by your
organization.

To see the list of transformations available for your document, select the Apply Transformation Scenario(s) action
from the toolbar or the XML menu. A list of available transformation scenarios are displayed. Choose one or more
scenarios to apply, and click Apply associated. Exactly how your transformed content appears depends on how the
transformation scenario is configured.

Your First DITA Topic

To create your first DITA topic, select File > New > Other > Oxygen XML Editor plugin, or click the New button
on the toolbar, and select New from Templates. The New from Templates Wizard is displayed:

Oxygen XML Editor plugin | Getting Started | 23

Figure 4: New from Templates Wizard

Go to Framework templates > DITA > topic and select the type of topic that you want to create.

Note: If your organization has created DITA customizations, the appropriate template files may be in another
location, and various types of topics may be provided for your use. Check with the person who manages your
DITA system to see if you should be using templates from another directory.

Your DITA topic is an XML document, thus all the editing features that Oxygen XML Editor plugin provides for editing
XML documents also apply to DITA topics. Oxygen XML Editor plugin also provides extensive additional support for
editing DITA topics, their associated DITA maps, and for creating DITA output.

Understanding DITA Topics

It is important to understand the role that a DITA topic plays in a DITA project. A DITA topic is not associated with a
single published document. It is a separate entity that can potentially be included in many different books, help systems,
or websites. Therefore, when you write a DITA topic you are not writing a book, a help system, or a website. You are
writing an individual piece of content. This affects how you approach the writing task and how Oxygen XML Editor
plugin works to support you as you write.

Most of your topics are actually related to other topics, and those relationships can affect how you write and handle
things such as links and content reuse. Oxygen XML Editor plugin helps you manage those relationships. Depending
on how your topics are related, you can use the tools provided in Oxygen XML Editor plugin, along with the features
of DITA, in a variety of ways.

Oxygen XML Editor plugin | Getting Started | 24

Role of Maps

The basic method that DITA uses to express the relationship between topics is through a DITA map. Other relationships
between topics, such as cross references, generally need to be made between topics in the same map. DITA uses maps
to determine which topics are part of any output that you create. While customized DITA solutions can use other
mechanisms, generally DITA is not used as a way to publish individual topics. Output is created from a map and includes
all the topics referenced by the map.

A publication is not always represented by a single map. For instance, if you are writing a book, you might use a map
to create each chapter and then organize the chapters in another map to create the book. If you are writing help topics,
you might use a map to combine several DITA topics to create a single help topic and then create another map to organize
your help topics in a help system. This allows you to reuse the content of a map in multiple projects.

Creating a Map

To add topics to a map, you must first create the map. A map is an XML document, similar to a topic. To create a map,

select File > New > Other > Oxygen XML Editor plugin, or click the New button on the toolbar, select New from
Templates, go to Framework templates > DITA Map > map and select the type of map you want to create. Oxygen
XML Editor plugin asks if you want to open your map in the editor or in the DITA Maps Manager. Usually, opening
it in the DITA Maps Manager is the best choice, but you can also open the map in the editor from the DITA Maps
Manager. The DITA Maps Manager presents a view of the DITA map that is similar to a table of contents.

Figure 5: DITA Maps Manager View

Adding Topics to a Map

To add a topic to a map, add a topic reference to the map using a topicref element. The easiest way to do this is to
open the topic in the editor, then right-click the DITA map in the DITA Maps Manager view and choose Reference
to the currently edited file from the Append child or Insert After submenus. This opens the Insert Reference dialog
box with all of the required fields already filled in for you. You can fill in additional information in the various tabs in
this dialog box or add it to the map later. When you select Insert and close, a reference to your topic is added to the
map.

Oxygen XML Editor plugin | Getting Started | 25

Figure 6: Insert Reference Dialog Box

If you want to see what the resulting map looks like in XML, save your map and then double-click the DITA map in
the DITA Maps Manager view. The XML version of the map opens in the editor.

As you add topics to your map, you may want to make a topic the child or sibling of another topic. This is usually done
at the map level. To create a child topic reference, right-click the parent topic in the DITA Maps Manager view and
choose Append child. To create a sibling topic reference, right-click a topic in the DITA Maps Manager view and
choose Insert After. From either of these submenus you can then choose one of the following options:

• New - Opens the New file wizard for creating a new topic.

• Reference - Opens the Insert Reference dialog box that allows you to create a reference to an existing topic.

• Reference to the currently edited file - Opens the Insert Reference dialog box that helps you to easily create a
reference to the file that is currently opened in the editor.

You can also change the order and nesting of topics in the DITA Maps Manager view by doing either of the following:

• Select the topic to move while holding down the Alt key and use the arrow keys to move it around.
• Use the mouse to drag and drop the topic to the desired location.

The way your parent and child topics are organized in any particular output depends on both the configuration of those
topics in the map and the rules of the output transformation that is applied to them. Do not assume that your topics must
have the same organization for all output types. The map defines the organization of the topics, not the topics themselves.
It is possible to create a variety of maps, each with different organization and configuration options to produce a variety
of outputs.

Child Maps

If you have a large set of information, such as a long book or extensive help system, a single map can become long and
difficult to manage. To make it easier to manage, you can break up the content into smaller submaps. A submap might
represent a chapter of a book, a section of a user manual, or a page on a website.

Oxygen XML Editor plugin | Getting Started | 26

To build a publication out of these smaller maps, you must add them to a map that represents the overall publication.
To add a child map to the current map, right-click the parent DITA map and choose Append child > Map reference.

Validating a Map

Just as it is with your individual topics, it is important to validate your maps. Oxygen XML Editor plugin provides a
validation function for DITA maps that does more than simply validating that the XML is well formed. It also does the
following:

• Validates all of the relationships defined in the maps.
• Validates all of the files that are included in the map.
• Validates all of the links that are expressed in the files.

Validating the map that describes your entire publication validates all the files that make up the publication and all of

the relationships between them. To validate a map, click the Validate and Check for Completeness button in the
DITA Maps Manager view.

Publishing Your Topics

As noted previously, in DITA standards you usually do not publish output from an individual topic. Instead, you create
published output by running a DITA transformation on a map. This collects all the topics that are referenced in the map,
organizes them, and produces output in a particular format. By default, Oxygen XML Editor plugin uses the
transformations provided by the DITA Open Toolkit for publishing to various output formats (such as PDF, WebHelp
or EPUB). Your organization may have created various custom transformations or modified the built-in DITA Open
Toolkit transformations. In either case, Oxygen XML Editor plugin manages them by using transformation scenarios.

To publish output for a map, select the transformation scenario you want to run and set any of the parameters it requires.

To select a transformation, click the Configure Transformation Scenario(s) button in the DITA Maps Manager
view. This opens the Configure Transformation Scenario(s) dialog box.

Oxygen XML Editor plugin | Getting Started | 27

Figure 7: Configure Transformation Scenarios Dialog Box

Choose the transformation scenarios you want to apply and click Apply associated. Depending on the configuration of
the transformation scenario, when the transformation is finished, your output may automatically be opened in the
appropriate application. To change or view the configuration or storage options for a transformation scenario, select the
transformation and click Edit.

Related information
DITA Authoring and Publishing on page 1117

Creating a New Project

Oxygen XML Editor plugin allows you to organize your XML-related files into projects. This helps you manage and
organize your files and also allows you to perform batch operations (such as validation and transformation) over multiple
files. Use the Navigator view to manage projects, and the files and folders contained within.

Creating a New Project
To create a new project, select New > XML Project or New > Sample XML Project from the contextual menu or File
menu. This opens a dialog box that allows you to create and customize a new project and adds it to the structure of the
project in the Navigator view.

Adding Items to the Project
To add items to the project, select the desired document type or folder from the New menu of the contextual menu, when
invoked from the Navigator view (or from the File menu). You can also create a document from a template by selecting
New > New from Templates from the contextual menu.

Oxygen XML Editor plugin | Getting Started | 28

Using Linked Folders (Shortcuts)
Another easy way to organize your XML working files is to place them in a directory and then to create a corresponding

linked folder in you project. If you add new files to that folder, you can simply use the Refresh (F5) action from the
toolbar or contextual menu and the Navigator view will display the existing files and subdirectories. If your files are
scattered amongst several folders, but represent the same class of files, you might find it useful to combine them in a
logical folder.

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer (Mac OS X
Finder) to the project tree, or by using the contextual menu from the location in the project tree where you want it added
and selecting New > Folder > Advanced. The linked folders presented in the Navigator view are marked with a special
icon. To create a file inside a linked folder, use the contextual menu and select New > File (you can use the Advanced
button to link to a file in the local file system).

Note: Files may have multiple instances within the folder system, but cannot appear twice within the same
folder.

For much more information on managing projects and their content, see the Navigator View on page 151 section.

Related information
Using Projects to Group Documents on page 215

Getting Help
If you run into specific problems while using Oxygen XML Editor plugin you can take advantage of a variety of support
related resources. Those resources include the following:

• The Oxygen XML Editor plugin Support Section of the Website
• The Oxygen XML Editor plugin Forum
• The Oxygen XML Editor plugin Video Tutorials
• The Common Problems and Solutions Section of the User Manual
• The Online Technical Support Form

The application also includes various specific help-related resources in the Help menu.

Help Menu

The Oxygen XML Editor plugin Help menu provides various resources to assist you with your tasks.

This menu includes the following actions or options:

This option opens the Welcome screen that includes some resources to assist you with using
Oxygen XML Editor plugin.

Welcome

Use this action to open a dialog box that presents Eclipse help topics and it includes a section that
is specific to Oxygen XML Editor plugin. Also, you can use the F1 key to open a Help view that

Help Contents

presents a section in the User Manual that is appropriate for the context of the current cursor
position.

Use this action to open a dynamic view that automatically loads the relevant help section of the
User Manual for the focused editor, view, or dialog box.

Dynamic Help

You can use this option to open a dialog box that allows you to write the description of a problem
that was encountered while using the application. You can also select additional information to
be sent to the technical support team in the five tabs:

Report <oXygen/>
problem

• General info - You can edit your contact details in case you want to be contacted for further
details or to be notified of a resolution.

• Class Loader URLs - You can choose whether or not to include the listed Class Loader URLs
with your report.

Oxygen XML Editor plugin | Getting Started | 29

http://www.oxygenxml.com/support.html
http://www.oxygenxml.com/forum/
http://www.oxygenxml.com/videos.html
http://www.oxygenxml.com/techSupport.html

• System properties - You can choose whether or not to include the listed system property
details with your report.

Tip: You are able to change the URL where the reported problem is sent by using
the com.oxygenxml.report.problems.url system property. The report is sent in XML
format through the report parameter of the POST HTTP method.

• Plugins - You can choose whether or not to include details about your installed plugins with
your report.

• Frameworks - You can choose whether or not to include details about your installed
frameworks with your report.

Use this option and then click the Oxygen XML Editor plugin icon to open a dialog box that
contains information about Oxygen XML Editor plugin and the installed version.

About Eclipse

Chapter

3

Installation

The platform requirements and installation instructions are presented in this
chapter.

Topics:

• Installation Options for Oxygen
XML Editor plugin

• Install Oxygen XML Editor plugin
on Windows

• Install Oxygen XML Editor plugin
on Mac OS X

• Install Oxygen XML Editor plugin
on Linux

• Site-wide Deployment
• Obtaining and Registering a

License Key for Oxygen XML
Editor plugin

• Setting Up a Floating License
Server

• Transferring or Releasing a
License Key

• Upgrading Oxygen XML Editor
plugin

• Uninstalling Oxygen XML Editor
plugin

Installation Options for Oxygen XML Editor plugin

Choosing an installer

You have a choice of installers;

• The Update Site installer

• The Zip archive installer

The installation packages were checked before publication with an antivirus program to make sure they are not infected
with viruses, trojan horses, or other malicious software.

Choosing a license option

You must obtain and register a license key to run Oxygen XML Editor plugin.

You can choose from two kinds of license:

• A named-person license, which can be used by a single person on multiple computers.
• A floating license, which can be used by different people at different times. Only one person can use a floating license

at a time.

Upgrading, transferring, and uninstalling.

You can also upgrade Oxygen XML Editor plugin, transfer a license, or uninstall Oxygen XML Editor plugin.

Getting help with installation

If you need help at any point during these procedures, please send us an email at support@oxygenxml.com.

Install Oxygen XML Editor plugin on Windows

Choosing an Installer

You can install Oxygen XML Editor plugin on Windows using one of the following methods:

• Install using the Update Site method.
• Install using the Zip archive method.

System Requirements
System requirements for a Windows install:

Windows Vista, Windows 7, Windows 8, Windows 10, Windows Server 2008, Windows
Server 2012

Operating systems

CPU • Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
• Recommended - Dual Core class processor

Memory • Minimum - 2 GB of RAM
• Recommended - 4 GB of RAM

Storage • Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

On Eclipse, Oxygen XML Editor plugin uses the same Java Virtual Machine as the copy
of Eclipse it is running in.

Java

Oxygen XML Editor plugin | Installation | 32

Eclipse Plugin Installation - Update Site Method

The following Eclipse versions are officially supported: 3.6-3.8, 4.2-4.5. The steps for installing the Eclipse plugin with
the Update Site method are as follows:

1. Start Eclipse.

2. Go to Help > Install New Software > Available Software.

3. Click Add in the Available Software dialog box.

4. Enter http://www.oxygenxml.com/InstData/Editor/Eclipse/site.xml into the Location field
of the Add Site dialog box.

5. Click OK.

6. Select the Oxygen XML Editor plugin checkbox.

7. Click Next > and continue with the rest of the installation wizard.

8. Restart Eclipse when prompted.

9. Verify that Oxygen XML Editor plugin is installed correctly by creating a new XML Project. Go to File > New >
Other and choose Oxygen XML Editor plugin > XML Project.

10. When prompted for a license key, enter the license information received in the registration email.

Note that if you already have a native version of Oxygen XML Editor plugin installed on your computer, you will
not be prompted for a license key for the Eclipse version. The existing license key will be used automatically.

Eclipse Plugin Installation - Zip Archive Method

The following Eclipse versions are officially supported: 3.6-3.8, 4.2-4.5. The steps for installing the Eclipse plugin with
the Zip Archive method are as follows:

1. Download the zip archive with the Eclipse plugin.

2. Unzip the downloaded zip archive in the dropins subdirectory of the Eclipse install directory.

3. Restart Eclipse.

4. Verify that Oxygen XML Editor plugin is installed correctly by creating a new XML Project. Go to File > New >
Other and choose Oxygen XML Editor plugin > XML Project.

5. When prompted for a license key, enter the license information received in the registration email.

Note that if you already have a native version of Oxygen XML Editor plugin installed on your computer, you will
not be prompted for a license key for the Eclipse version. The existing license key will be used automatically.

Install Oxygen XML Editor plugin on Mac OS X

Choosing an Installer

You can install Oxygen XML Editor plugin on Mac OS X using one of the following methods:

• Install using the Update Site method.
• Install using the Zip archive method.

System Requirements
System requirements for a Mac OS X install:

OS X version 10.6 64-bit or laterOperating system

CPU • Minimum - Intel-based Mac, 1 GHz
• Recommended - Dual Core class processor

Memory • Minimum - 2 GB of RAM
• Recommended - 4 GB of RAM

Oxygen XML Editor plugin | Installation | 33

http://www.oxygenxml.com/download.html

Storage • Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

On Eclipse, Oxygen XML Editor plugin uses the same Java Virtual Machine as the
copy of Eclipse it is running in.

Java

Eclipse Plugin Installation - Update Site Method

The following Eclipse versions are officially supported: 3.6-3.8, 4.2-4.5. The steps for installing the Eclipse plugin with
the Update Site method are as follows:

1. Start Eclipse.

2. Go to Help > Install New Software > Available Software.

3. Click Add in the Available Software dialog box.

4. Enter http://www.oxygenxml.com/InstData/Editor/Eclipse/site.xml into the Location field
of the Add Site dialog box.

5. Click OK.

6. Select the Oxygen XML Editor plugin checkbox.

7. Click Next > and continue with the rest of the installation wizard.

8. Restart Eclipse when prompted.

9. Verify that Oxygen XML Editor plugin is installed correctly by creating a new XML Project. Go to File > New >
Other and choose Oxygen XML Editor plugin > XML Project.

10. When prompted for a license key, enter the license information received in the registration email.

Note that if you already have a native version of Oxygen XML Editor plugin installed on your computer, you will
not be prompted for a license key for the Eclipse version. The existing license key will be used automatically.

Eclipse Plugin Installation - Zip Archive Method

The following Eclipse versions are officially supported: 3.6-3.8, 4.2-4.5. The steps for installing the Eclipse plugin with
the Zip Archive method are as follows:

1. Download the zip archive with the Eclipse plugin.

2. Unzip the downloaded zip archive in the dropins subdirectory of the Eclipse install directory.

3. Restart Eclipse.

4. Verify that Oxygen XML Editor plugin is installed correctly by creating a new XML Project. Go to File > New >
Other and choose Oxygen XML Editor plugin > XML Project.

5. When prompted for a license key, enter the license information received in the registration email.

Note that if you already have a native version of Oxygen XML Editor plugin installed on your computer, you will
not be prompted for a license key for the Eclipse version. The existing license key will be used automatically.

Install Oxygen XML Editor plugin on Linux

Choosing an Installer

You can install Oxygen XML Editor plugin on Linux using any of the following methods:

• Install using the Update Site method.
• Install using the Zip archive method.

System Requirements
System requirements for a Linux install:

Oxygen XML Editor plugin | Installation | 34

http://www.oxygenxml.com/download.html

Any Unix/Linux distribution with an available Java SE Runtime Environment version
1.6.0 or later from Oracle

Operating system

CPU • Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
• Recommended - Dual Core class processor

Memory • Minimum - 2 GB of RAM
• Recommended - 4 GB of RAM

Storage • Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

On Eclipse, Oxygen XML Editor plugin uses the same Java Virtual Machine as the copy
of Eclipse it is running in.

Java

Eclipse Plugin Installation - Update Site Method

The following Eclipse versions are officially supported: 3.6-3.8, 4.2-4.5. The steps for installing the Eclipse plugin with
the Update Site method are as follows:

1. Start Eclipse.

2. Go to Help > Install New Software > Available Software.

3. Click Add in the Available Software dialog box.

4. Enter http://www.oxygenxml.com/InstData/Editor/Eclipse/site.xml into the Location field
of the Add Site dialog box.

5. Click OK.

6. Select the Oxygen XML Editor plugin checkbox.

7. Click Next > and continue with the rest of the installation wizard.

8. Restart Eclipse when prompted.

9. Verify that Oxygen XML Editor plugin is installed correctly by creating a new XML Project. Go to File > New >
Other and choose Oxygen XML Editor plugin > XML Project.

10. When prompted for a license key, enter the license information received in the registration email.

Note that if you already have a native version of Oxygen XML Editor plugin installed on your computer, you will
not be prompted for a license key for the Eclipse version. The existing license key will be used automatically.

Eclipse Plugin Installation - Zip Archive Method

The following Eclipse versions are officially supported: 3.6-3.8, 4.2-4.5. The steps for installing the Eclipse plugin with
the Zip Archive method are as follows:

1. Download the zip archive with the Eclipse plugin.

2. Unzip the downloaded zip archive in the dropins subdirectory of the Eclipse install directory.

3. Restart Eclipse.

4. Verify that Oxygen XML Editor plugin is installed correctly by creating a new XML Project. Go to File > New >
Other and choose Oxygen XML Editor plugin > XML Project.

5. When prompted for a license key, enter the license information received in the registration email.

Note that if you already have a native version of Oxygen XML Editor plugin installed on your computer, you will
not be prompted for a license key for the Eclipse version. The existing license key will be used automatically.

Site-wide Deployment
If you are deploying Oxygen XML Editor plugin for a group, there are a number of things you can do to customize
Oxygen XML Editor plugin for your users and to make the deployment more efficient.

Oxygen XML Editor plugin | Installation | 35

http://www.oxygenxml.com/download.html

You can create a custom set of default options for Oxygen XML Editor plugin. These
will become the default options for each of your users, replacing the normal default

Creating custom default
options

settings. Users can still set options to suit themselves in their own copies of Oxygen
XML Editor plugin, but if they choose to reset their options to defaults, the custom
defaults that you set will be used.

Oxygen XML Editor plugin project files are used to configure a project. You can create
and deploy default project files for your projects so that your users will have a
preconfigured project file to begin work with.

Creating default project
files

Rather than each user having their own project file, you can create and deploy shared
project files so that all users share the same project configuration and settings and
automatically inherit all project changes.

Shared project files

If you have a number of people using Oxygen XML Editor plugin on a part-time basis
or in different time zones, you can use a floating license so that multiple people can share
a license.

Using floating licenses

Obtaining and Registering a License Key for Oxygen XML Editor plugin
Oxygen XML Editor plugin is not free software. To enable and use Oxygen XML Editor plugin, you need a license.

For demonstration and evaluation purposes, a time limited license is available upon request at
http://www.oxygenxml.com/register.html. This license is supplied at no cost for a period of 30 days from the date of
issue. During this period, the software is fully functional, enabling you to test all its functionality. To continue using the
software after the trial period, you must purchase a permanent license. If a trial period greater than 30 days is required,
please contact support@oxygenxml.com.

Choosing a License Type

You can use one of the following license types with Oxygen XML Editor plugin:

1. A named-user license may be used by a single Named User on one or more computers. Named-user licenses are not
transferable to a new Named User. If you order multiple named-user licenses, you will receive a single license key
good for a specified number of named users. It is your responsibility to keep track of the named users that each
license is assigned to.

2. A floating license may be used by any user on any machine. However, the total number of copies of Oxygen XML
Editor plugin in use at one time must not be more than the number of floating licenses available. A user who runs
two different distributions of Oxygen XML Editor plugin (for example, Standalone and Eclipse Plugin) at the same
time on the same computer, consumes a single floating license.

3. A special academic license (classroom, department or site license) may be used by students and teachers in academic
institutions. These licenses provide a cost effective way of getting access to Oxygen XML Editor plugin for learning
purposes.

For definitions and legal details of the license types, consult the End User License Agreement available at
http://www.oxygenxml.com/eula.html.

Obtaining a License

You can obtain a license for Oxygen XML Editor plugin in one of the following ways:

• You can purchase one or more licenses from the Oxygen XML Editor plugin website at
http://www.oxygenxml.com/buy.html. A license key will be sent to you by email.

• If your company or organization has purchased licenses please contact your license administrator to obtain a license
key.

• If you purchased a subscription and you received a registration code, you can use it to obtain a license key from
http://www.oxygenxml.com/registerCode.html. A license key will be sent to you by email.

Oxygen XML Editor plugin | Installation | 36

http://www.oxygenxml.com/register.html
http://www.oxygenxml.com/eula.html
http://www.oxygenxml.com/buy.html
http://www.oxygenxml.com/registerCode.html

• If you want to evaluate the product you can obtain a trial license key for 30 days from the Oxygen XML Editor
plugin website at http://www.oxygenxml.com/register.html.

Register a Named-User License

To register a named-user license on a machine owned by the Named User:

1. Save a backup copy of the message containing the new license key.

2. Open an XML document in the Oxygen XML Editor plugin.
If this is a new install of Oxygen XML Editor plugin, the registration dialog box is displayed. If the registration
dialog box is not displayed, go to Window (Eclipse on Mac OSX) and choose Preferences > Oxygen XML Editor
plugin and click the Register button.

Figure 8: License Registration Dialog Box

3. Select Use a license key as licensing method.

4. Paste the license text into the registration dialog box.

5. Press OK.

Registering a Floating License

How you register to use a floating license will depend on how floating licenses are managed in your organization.

• If all the machines sharing a pool of floating licenses are on the same network segment, you will register your licence
the same way you register a named-user licence. Oxygen XML Editor plugin will use your connection to a local
area network, without additional notice, to automatically connect to other running instances of Oxygen XML Editor
plugin. These connections may transmit your IP address to the local network.

Note: [For System Administrators] Multiple running instances of Oxygen XML Editor plugin communicate
with each other using UDP broadcast on the 59153 port, to the 239.255.255.255 group.

Warning: This mechanism was deprecated starting with version 17.0 and it is scheduled for removal in a
future version. It is recommended to switch to the license server licensing mechanism.

Oxygen XML Editor plugin | Installation | 37

http://www.oxygenxml.com/register.html

• If the machines sharing the pool of floating licenses are on multiple network segments, someone in your company
will need to set up a license server. Consult that person to determine if they have set up a license server as a TCP or
HTTP server as the registration process is different for each.

Request a Floating License from a TCP License Server

Use this procedure if your company uses a TCP license server:

1. Contact your server administrator to get network address and login details for the license server.

2. Start the Eclipse platform.

3. Open the Preferences dialog box and click the Register button.
The license registration dialog box is displayed.

4. Choose Use a license server as licensing method.

5. Select TCP server as server type.

6. In the Host field enter the host name or IP address of the license server.

7. In the Port field enter the port number used to communicate with the license server.

8. Click the OK button.

If a floating license is available, it is registered in Oxygen XML Editor plugin. To display the license details, open the
Preferences dialog box . If a floating license is not available, you will get a message listing the users currently using
floating licenses.

Request a Floating License from an HTTP License Server

1. Contact your server administrator to get network address and login details for the license server.

2. Start the Eclipse platform.

3. Open the Preferences dialog box and click the Register button.
The license registration dialog box is displayed.

4. Choose Use a license server as licensing method.

5. Select HTTP/HTTPS Server as server type.

6. In the URL field enter the address of the license server.
The URL address has the following format:
http://hostName:port/oXygenLicenseServlet/license-servlet

7. Complete the User and Password fields.

8. Click the OK button.

If a floating license is available, it is registered in Oxygen XML Editor plugin. To display the license details, open the
Preferences dialog box . If a floating license is not available, you will get a message listing the users currently using
floating licenses.

Release a Floating License

The floating license you are using will be released and returned to the pool if any of the following occur:

• The connection with the license server is lost.

• You exit the application running on your machine, and no other copies of Oxygen XML Editor plugin running on
your machine are using your floating license.

• You register a Named User license with your copy of Oxygen XML Editor plugin, and no other copies of Oxygen
XML Editor plugin running on your machine are using your floating license.

Register a Floating License for Multiple Users

If you are an administrator registering floating licenses for multiple users, you can avoid having to open Oxygen XML
Editor plugin on each machine and configuring the registration details by using the following procedure:

Oxygen XML Editor plugin | Installation | 38

1. Reset the registration details:

a. Select Register from the Help menu.
b. Click OK without entering any information in this dialog box.
c. Click Reset and restart the application.

2. Register the license using one of the floating license registration procedures.
3. Copy the license.xml file from the Oxygen XML Editor plugin preferences directory to the lib sub-folder of

the installation folder on each installation to be registered.

Setting Up a Floating License Server

Installing a License Server to Manage Floating Licenses

If you are using floating licenses for Oxygen XML Editor plugin, you must set up an Oxygen XML Editor plugin floating
license server. A floating license server can be installed as one of the following:

• An HTTP server. This is the recommended method.
• A TCP server (deprecated).

Note: Oxygen XML Editor plugin version 17 or higher requires a license server version 17 or higher. License
servers version 17 or higher can be used with any version of a floating license key.

Activating Floating License Keys

To help you comply with the Oxygen XML Editor plugin EULA (terms of licensing), all floating licenses require
activation. This means that the license key will be locked to a particular license server deployment and no multiple uses
of the same license key are possible.

During the activation process, a code that uniquely identifies your license server deployment is sent to the Oxygen XML
Editor plugin servers, which in turn will sign the license key.

Split or Combine License Keys to Work with Your License Servers

A license server can only manage one license key (which can cover any number of floating licenses). If you have multiple
license keys for the same Oxygen XML Editor plugin version and you want to have all of them managed by the same
server, or if you have a multiple-user floating license and you want to split it between two or more license servers, please
contact support@oxygenxml.com and ask for a new license key.

Setting up an HTTP Floating License Server
Setting up the floating license server as an HTTP server.

Oxygen XML Editor plugin | Installation | 39

Figure 9: Floating License Server (HTTP Server)

The Oxygen XML Editor plugin license server is available in several distributions, tailored for covering a variety of
deployment configurations:

• Windows installer - Easy-to-use Windows installation wizard. Requires elevated permissions to run it.
• All-platform distribution - Script-based deployment that does not require elevated permissions to run it. Provides

scripts for Windows, Mac, and Linux.
• Web Archive (WAR) distribution - Provides more flexibility in your deployment configuration, but it requires an

existing HTTP server (such as Apache Tomcat).

Installation Steps for the HTTP License Server Installer Distribution for Windows

1. Download the HTTP license server installer from the Oxygen XML Editor plugin website.
2. Run the installer and follow the on-screen instructions.
3. You need to configure two sets of credentials:

a. Administrator credentials - used for accessing the Oxygen XML Editor plugin license server administrative
interface. Optionally you can choose to change the standard 8080 port.

b. Standard user credentials - used by an Oxygen XML Editor plugin application to connect to the license server.

4. Optionally you can choose to install the server as a Windows service. In this case, you can choose the name of the
Windows service.

Installation Steps for the HTTP License Server All-Platform Distribution

1. Download the HTTP license server all-platform archive from the Oxygen XML Editor plugin website.
2. Unpack the archive.
3. Run the license server scripts suitable for your operating system (licenseServer.bat for Windows or

licenseServer.sh for Linux and Mac).

Note: To specify a different port (other than the default 8080), you can pass the new port number as an
argument to the scripts (for example, licenseServer.bat 8082).

4. On the first run, you will be prompted to set two sets of credentials:

a. Administrator credentials - used for accessing the Oxygen XML Editor plugin license server administrative
interface.

b. Standard user credentials - used by an Oxygen XML Editor plugin application to connect to the license server.

Oxygen XML Editor plugin | Installation | 40

http://www.oxygenxml.com/license_server.html
http://www.oxygenxml.com/license_server.html

Installation Steps for the HTTP License Server WAR Distribution

1. Make sure that Apache Tomcat 5.5 or higher is running on the machine you have selected to be the license server.
To get it, go to http://tomcat.apache.org.

2. Download the HTTP license server Web ARchive (.war) from the Oxygen XML Editor plugin website.
3. Configure two Tomcat users:

a. One user with the role user, used by an Oxygen XML Editor plugin application to connect to the license server.
In the subsequent example, this user name is John.

b. Another user with the roles admin and manager-gui, used for accessing the Oxygen XML Editor plugin license
server administrative interface and the Tomcat management interface. In the subsequent example, this user name
is Mary.

A typical way to achieve this is to edit the tomcat-users.xml file from your Tomcat installation (if using a
Tomcat zip/tar.gz distribution, by default this configuration file is found in the /TomcatInstallFolder/conf/
directory). After adding the two users, the configuration file might look like this:

<tomcat-users xmlns="http://tomcat.apache.org/xml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd"
version="1.0">

<!-- ... other user and role definitions ... -->
<role rolename="user"/>
<role rolename="admin"/>
<role rolename="manager-gui"/>
<user username="John" password="user_pass" roles="user"/>
<user username="Mary" password="admin_pass" roles="admin,manager-gui"/>

</tomcat-users>

4. Go to the Tomcat Web Application Manager page and log-in with the user you configured with the manager-gui
role (Mary in the example above). In the WAR file to deploy section, choose the WAR file and click the Deploy
button. The oXygenLicenseServlet application is now up and running, but the license key is not yet registered.

5. Go to the oXygen license server administration page by clicking the oXygenLicenseServlet link in the manager
page. You will need to authenticate with the user configured with the admin role (Mary in our example).

6. Activate the floating license key. This process involves binding your license key to your license server deployment.
Once the process is completed you cannot activate the floating license with another license server. Follow these steps
to activate the license:

a. Access the HTTP license server by following the link provided by the Tomcat Web Application Manager page.
If prompted for authentication, use the credentials configured for the admin or manager users.

Result: A page is displayed that prompts for a license key.

b. Paste your floating license key into the form and press Submit. The browser used in the activation process needs
to have Internet access.

Result: You will be redirected to an online form hosted on the Oxygen XML Editor plugin website. This form
is pre-filled with an activation code that uniquely identifies your license server deployment, and your license
key.

Note: If, for some reason, your browser does not take you to this activation form, refer to the Manual
Activation Procedure.

c. Press Activate.

If the activation process is successfully completed, your license server is running. Follow the on-screen instructions
to configure the Oxygen XML Editor plugin client applications.

7. By default, the license server logs its activity in the
TomcatInstallDir/logs/oxygenLicenseServlet.log file. To change the log file location, edit the
log4j.appender.R2.File property from the
TomcatInstallDir/webapps/oXygenLicenseServlet/WEB-INF/lib/log4j.properties
configuration file.

Oxygen XML Editor plugin | Installation | 41

http://tomcat.apache.org
http://www.oxygenxml.com/license_server.html

Manual License Activation Procedure

1. Access the HTTP license server by following the link provided by the Tomcat Web Application Manager page. You
will be taken to the license registration page.

2. Copy the license server activation code.
3. Go to the activation page at http://www.oxygenxml.com/activation/.
4. Paste the license server activation code and floating license key in the displayed form, then click Activate.
5. The activated license key is displayed on-screen. Copy the activated license key and paste it in the license registration

page of the HTTP server.

Upgrading Your HTTP Floating License Server

The goal of the following procedure is to help you minimize the downtime when you upgrade the Oxygen XML Editor
plugin HTTP floating license server to its latest version.

Follow this procedure:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page. If prompted
for authentication, use the admin or manager credentials.

2. Click the View license key link and copy the displayed license key to a file for later use.
3. Go to the Tomcat Web Application Manager page, log in with the user you configured with the manager role, and

Undeploy the floating license server.
4. Go to Oxygen XML Editor plugin website and download the HTTP license server.
5. Deploy the downloaded license server.
6. Access the license server by following the link provided by the Tomcat Web Application Manager page. If prompted

for authentication, use the credentials configured for the admin or manager users.
7. Paste the license key into the form and register it.

Replacing a Floating License Key in an HTTP Floating License Server

The following procedure assumes that your Oxygen XML Editor plugin HTTP floating license server contains a previously
activated license key and provides instructions for replacing it with another one. The goal of the procedure is to allow
you to activate and configure the new license key without any downtime.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a new
license key that accommodates a different number of users.

To replace a floating license key that is activated on your HTTP floating license server with a new one, follow these
steps:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page.
2. Click the Replace license key link. This will open a page that contains details about the license currently in use.
3. Click the Yes button to begin the replacement procedure.
4. Paste the new floating license key in the displayed form, then click Submit. The browser used in the process needs

to have Internet access.

You will be redirected to an online form hosted on the Oxygen XML Editor plugin website. This form is pre-filled
with an activation code that uniquely identifies your license server deployment and your license key.

Note: If for some reason your browser does not take you to this activation form, refer to the Manual Activation
Procedure.

5. Press Activate.

If the activation process is completed successfully, your license server is now running using the new license key.
You can click View license key to inspect the key currently used by the license server.

Oxygen XML Editor plugin | Installation | 42

http://www.oxygenxml.com/license_server.html#floating_license_servlet

Getting More Information From the Report Page

You can access a license server activity report at
http://hostName:port/oXygenLicenseServlet/license-servlet/report.

It displays the following real time information:

• License load - A graphical indicator that shows how many licenses are available. When the indicator turns red, there
are no more licenses available.

• Floating license server status - General information about the license server status, including the following
information:

• server start time
• license count
• rejected and acknowledged requests
• average usage time
• license refresh and timeout intervals
• location of the license key
• server version

• License key information - License key data, including the following information:

• licensed product
• registration name
• company name
• license category
• number of floating users
• Maintenance Pack validity

• Current license usage - Lists all currently acknowledged users, including the following information:

• user name
• date and time when the license was granted
• name and IP address of the computer where Oxygen XML Editor plugin runs
• MAC address of the computer where Oxygen XML Editor plugin runs

Note: The report is also available in XML format at
http://hostName:port/oXygenLicenseServlet/license-servlet/report-xml.

Setting up a TCP Floating License Server Using a 32-bit Windows Installer
Setting up the TCP floating license server as a Windows process.

Figure 10:TCP Floating License Server (Process in Windows)

Installation Steps

Oxygen XML Editor plugin | Installation | 43

1. Download the license server installation kit for Windows from the Oxygen XML Editor plugin website.

2. Run the downloaded installer and follow the on-screen instructions.

By default, the installer installs the license server as a Windows service. Optionally, you have the ability to start the
Windows service automatically at Windows startup or create shortcuts on the Start menu for starting and stopping
the Windows service manually. If you want to manually install, start, stop, or uninstall the server as a Windows
service, run the following scripts from a command line as an Administrator:

• installWindowsService.bat [serviceName] - Installs the server as a Windows service with the
name serviceName. The parameters for the license key folder and the server port can be set in the
oXygenLicenseServer.vmoptions file.

• startWindowsService.bat [serviceName] - Starts the Windows service.
• stopWindowsService.bat [serviceName] - Stops the Windows service.
• uninstallWindowsService.bat [serviceName] - Uninstalls the Windows service.

Note: If you do not provide the serviceName argument, the default name oXygenLicenseServer is used.

If the license server is installed as a Windows service, the output and error messages are automatically
redirected to the following log files that are created in the install folder:

• outLicenseServer.log - Standard output stream of the server.
• errLicenseServer.log - Standard error stream of the server.

3. Manually add the oXygenLicenseServer.exe file in the Windows Firewall list of exceptions. Go to Control Panel >
System and Security > Windows Firewall > Allow a program or feature through Windows Firewall > Allow
another program and browse for oXygenLicenseServer.exe from the Oxygen XML Editor plugin License Server
installation folder.

4. Floating licenses require activation prior to use. More details are available either on-screen (if the license server is
started in a command line interface) or in the outLicenseServer.log log file.

Note: A license server can only manage one license key (which can cover any number of floating licenses).
If you have multiple license keys for the same Oxygen XML Editor plugin version and you want to have all
of them managed by the same server, or if you have a multiple-user floating license and you want to split it
between two or more license servers, please contact support@oxygenxml.com and ask for a new license key.

Upgrading Your TCP Floating License Server

The goal of the following procedure is to help you minimize the downtime generated when you upgrade the Oxygen
XML Editor plugin floating license server to its newest version.

Follow this procedure:

1. Go to the Oxygen XML Editor plugin website and download the latest floating license server.
2. Run the installation kit.
3. Leave the default Update the existing installation option enabled. This will ensure that some options set in the

previous version (namely the installation folder, port number, and the floating license key in use) of the license server
will be preserved.

4. Follow the on-screen instructions to complete the installation process.

Replacing a Floating License Key in a TCP Floating License Server

The following procedure assumes that your Oxygen XML Editor plugin TCP floating license server contains a previously
activated license key and provides instructions for replacing the activated license key with another one. The goal of the
procedure is to minimize the license server downtime during the activation step of the new license key.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a new
license key that accommodates a different number of users.

To replace a floating license key that is activated on your floating license server with a new one, follow these steps:

Oxygen XML Editor plugin | Installation | 44

http://www.oxygenxml.com/license_server.html
http://www.oxygenxml.com/license_server.html#floating_license_server

1. Stop the service that runs the floating license server.
2. Locate the folder that holds the previous activated license key (by default, it is named license and it is located in

the installation directory of the license server).
3. Remove the license.txt file and try to restart the server. Since the file that stores the license key is missing, the

server will fail to start.
4. Find the license activation procedure in the on-screen instructions (if the license server is started in a command line

interface) or in the outLicenseServer.log log file.
5. After you copy the activated license key in the license.txt file, restart the license server.

Common Problems

This section includes some common problems that may appear when setting up a TCP floating license server.

Windows Service Reports 'Incorrect Function When Started'

The "Incorrect Function" error message when starting the Windows service usually appears because the Windows service
launcher cannot locate a Java virtual machine on your system.

Make sure that you have installed a 32-bit Java SE from Oracle (or Sun) on the system:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Windows Service Reports 'Error 1067: Process Terminated Unexpectedly'

This error message appears if the Windows service launcher quits immediately after being started.

This problem usually happens because the license key has not been correctly deployed (license.txt file in the
license folder). For more information, see the Setting up a Floating License Server section.

Setting up a TCP Floating License Server Using an All-Platforms Distribution
This installation method can be used for running the TCP license server on any platform where a Java virtual machine
can run (OS X, Linux/Unix, Windows).

Figure 11:TCP Floating License Server (All-Platforms Distribution)

Installation Steps

1. Ensure that a Java runtime version 6 or later is installed on the server machine.

2. Download the license server installation kit for your platform from the Oxygen XML Editor plugin website.

3. Unzip the installation kit into a new folder.

4. Start the server using the startup script from a command line console.

The startup script is called licenseServer.sh for OS X and Unix/Linux or licenseServer.bat for
Windows. The following parameters are accepted:

• licenseDir - The path of the directory where the license files will be placed. The default value is license.
• port - The TCP port number used to communicate with Oxygen XML Editor plugin instances. The default

value is 12346.

Oxygen XML Editor plugin | Installation | 45

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oxygenxml.com/license_server.html

The following is an example of the command line for starting the license server on Unix/Linux and OS X:

sh licenseServer.sh myLicenseDir 54321

5. Floating licenses require activation prior to use. Follow the on-screen instruction to complete the license activation
process.

Upgrading Your TCP Floating License Server

The goal of the following procedure is to help you minimize the downtime generated when you upgrade the Oxygen
XML Editor plugin TCP floating license server to its newest version.

Follow this procedure:

1. Stop the current license server process.
2. Locate and open the floating server startup script. It should look like this:

sh licenseServer.sh pathToLicenseDir 54321

3. Make a note of the path to the license directory (in our example is pathToLicenseDir) and the port number (in
our example is 54321).

4. Go to the license directory and copy the license key file (license.txt) for later use.
5. Go to the Oxygen XML Editor plugin website and download the all-platforms floating license server installation

kit.
6. Unzip the archive and overwrite the content of your current floating license server installation.
7. Copy the license key file (license.txt) saved in step 4 to license directory of the floating license server

installation.
8. Edit the floating server startup script and configure with the info you made note of in step 3.
9. Start the floating license server process.

Replacing a Floating License Key in a TCP Floating License Server

The following procedure assumes that your Oxygen XML Editor plugin TCP floating license server contains a previously
activated license key and provides instructions for replacing the activated license key with another one. The goal of the
procedure is to minimize the HTTP license server downtime during the activation step of the new license key.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a new
license key that accommodates a different number of users.

To replace a floating license key that is activated on your floating license server with a new one, follow these steps:

1. Stop the process that runs the floating license server.
2. Locate the folder that holds the previous activated license key (by default, it is named license and it is located in

the installation directory of the license server).
3. Remove the license.txt file and try to restart the server. Since the file that stores the license key is missing, the

server will fail to start.
4. Find the license activation procedure in the on-screen instructions.
5. After you copy the activated license key in the license.txt file, restart the license server.

Transferring or Releasing a License Key
If you want to transfer your Oxygen XML Editor plugin license key to another computer (for example, if you are
disposing of your old computer or transferring it to another person), or release a floating license so that someone else
can use it, you must first unregister your license. You can then register your license on the new computer in the normal
way.

1. Open the Preferences dialog box and click Register.
The license registration dialog box is displayed.

2. The license key field should be empty (this is normal). If it is not empty, delete any text in the field.

Oxygen XML Editor plugin | Installation | 46

http://www.oxygenxml.com/license_server.html#floating_license_server
http://www.oxygenxml.com/license_server.html#floating_license_server

3. Make sure the Use a license key option is selected.

4. Click OK.
A dialog box is displayed asking if you want to reset your license key.

5. Select between:

• Use the last one - Falls back to your previous license key (for the case of releasing a floating license and reverting
to a Named User license).

• Reset - Removes your license key from your user account on the current computer.

The Reset button erases all the licensing information. To complete the reset operation, close and restart Oxygen
XML Editor plugin.

Upgrading Oxygen XML Editor plugin
From time to time, upgrade and patch versions of Oxygen XML Editor plugin are released to provide enhancements
that fix problems, and add new features.

Checking for New Versions of Oxygen XML Editor plugin

Oxygen XML Editor plugin checks for new versions automatically at start up. To disable this check, open the Preferences
dialog box , go to Global, and uncheck Automatic Version Checking.

To check for new versions manually, go to Help > Check for New Versions.

What is Preserved During an Upgrade?

When you install a new version of Oxygen XML Editor plugin, some data is preserved and some is overwritten. If there
is a previous version of Oxygen XML Editor plugin already installed on your computer, it can coexist with the new one,
which means you do not have to uninstall it.

If you install over a previously installed version:

• All the files from its install directory will be removed, including any modification in document type (framework)
files, XSLT stylesheets, XML catalogs, and templates.

• All global user preferences are preserved in the new version.
• All project preferences will be preserved in their project files.
• Any custom frameworks that were stored outside the installation directory (as configured in Document type

associations > Locations) will be preserved and will be found by the new installation.

If you install in a new directory.

• All the files from the old install directory will be preserved, including any modification in document type (framework)
files, XSLT stylesheets, XML catalogs, and templates. However, these modifications will not be automatically
imported into the new installation.

• All global user preferences are preserved in the new version.
• All project preferences will be preserved in their project files.
• Any custom frameworks that were stored outside the installation directory (as configured in Document type

associations > Locations) will be preserved and will be found by the new installation.

Upgrading the Eclipse Plugin

1. Uninstall the current version of Oxygen XML Editor plugin.

2. Download and install the new version using the appropriate instructions for your platform and the installation method
you chose.

3. Restart the Eclipse platform.

4. Start the Oxygen XML Editor plugin to ensure that the application can start and that your license is recognized by
the upgrade installation.

Oxygen XML Editor plugin | Installation | 47

5. If you are upgrading from a minor version to a major version (for example, from 16.1 to 17.0) and you did not
purchase a Maintenance Pack that covers the new major version (17.0), you will need to enter a new license for the
new version (17) into the registration dialog box that is displayed when the plugin is started.

Uninstalling Oxygen XML Editor plugin

Uninstalling the Eclipse plugin

CAUTION:

The following procedure will remove Oxygen XML Editor plugin from your system. It will not remove the
Eclipse platform. If you want to uninstall Eclipse, refer to its uninstall instructions.

1. Choose the menu option Help > About > Installation Details.

2. Select Oxygen XML Editor plugin from the list of plugins.

3. Choose Uninstall.

4. Accept the Eclipse restart.

5. If you also want to remove the user preferences you must remove the folder %APPDATA%\com.oxygenxml on
Windows (usually %APPDATA% has the value [user-home-dir]\Application Data) / the subfolder
.com.oxygenxml of the user home directory on Linux / the subfolder
Library/Preferences/com.oxygenxml of the user home folder on Mac OS X.

Chapter

4

Configuring Oxygen XML Editor plugin

A description of all of the options that allow you to configure Oxygen XML
Editor plugin.

Topics:

• Preferences
This chapter presents all the user preferences and options that allow you to
configure various features, or the application itself, and the editor variables that
are available for customizing the user-defined commands.

• Configuring Options
• Associating a File Extension with

Oxygen XML Editor plugin
• Scenarios Management
• Editor Variables
• Localizing of the User Interface

Preferences
You can configure Oxygen XML Editor plugin options using the Preferences dialog box.

To open the preferences dialog box, go to go to Window (Eclipse on Mac OSX) and choose Preferences > Oxygen
XML Editor plugin.

Figure 12: Eclipse Preferences Dialog Box

You can restore options to their default values by pressing the Restore Defaults button, available in each preferences
page.

Press or F1 for help on any preferences page.

A filtered version of the Preferences dialog box is available by selecting Options from the contextual menu in the
editor. It displays an appropriate preferences page according to the context where the action was invoked and filters the
tree on the left according to where the preference page is located in the hierarchy.

Figure 13: Eclipse Preferences Dialog Box - Filtered Version

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 50

Preferences Directory Location

A variety of resources (such as global options, license information, and history files) are stored in a preferences directory
(com.oxygenxml) that is in the following locations:

• Windows (Vista, 7, 8, 10) - [user_home_directory]\AppData\Roaming\com.oxygenxml
• Windows XP - [user_home_directory]\Application Data\com.oxygenxml
• Mac OS X - [user_home_directory]/Library/Preferences/com.oxygenxml
• Linux/Unix - [user_home_directory]/.com.oxygenxml

Oxygen XML Editor plugin License

To configure the license options, open the Preferences dialog box . This preferences page presents the details of the
license key that enables the Oxygen XML Editor plugin plugin, such as registration name, category and number of
purchased licenses, encrypted signature of the license key. Clicking the Register button opens the Oxygen XML Editor
plugin License dialog box that allows you to insert a new license key.

Archive Preferences

To configure Archive preferences, open the Preferences dialog box and go to Archive.

The following options are available in the Archive preferences page:

Controls if the application makes backup copies of the modified archives. The following options
are available:

Archive backup
options

• Always create backup copies of modified archives - When you modify an archive, its
content is backed up.

• Never create backup copies of modified archives - No backup copy is created.
• Ask for each archive once per session - Once per application session for each modified

archive, user confirmation is required to create the backup. This is the default setting.

Note: Backup files have the name originalArchiveFileName.bak and are
located in the same folder as the original archive.

Select this option if you want to be notified for backup when modifying in archives. The last
backup option you chose will always be used as the default one.

Show archive
backup dialog box

This table contains all known archive extensions mapped to known archive formats. Each row
maps a list of extensions to an archive type supported in Oxygen XML Editor plugin. You can

Archive types

use the Edit button at the bottom of the table to edit an existing mapping or the New button
to create a new one and associate your own list of extensions to an archive format.

Figure 14: Edit Archive Extension Mappings

Important: You have to restart Oxygen XML Editor plugin after removing an extension
from the table for that extension to not be recognized as an archive extension.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 51

Use this option when you archive files that contain international (non-English) characters in file
names or file comments. If this option is selected and an archive is modified in any way, UTF-8
characters are used in the names of all files in the archive.

Store Unicode file
names in Zip
archives

CSS Validator Preferences

To configure the CSS Validator preferences, open the Preferences dialog box and go to CSS Validator.

You can configure the following options for the built-in CSS Validator of Oxygen XML Editor plugin:

• Profile - Selects one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3, CSS 3 with Oxygen
extensions, SVG, SVG Basic, SVG Tiny, Mobile, TV Profile, ATSC TV Profile. The CSS 3 with Oxygen
extensions profile includes all the CSS 3 standard properties plus the CSS extensions specific for Oxygen that can
be used in Author mode. That means all Oxygen specific extensions are accepted in a CSS stylesheet by the built-in
CSS validator when this profile is selected.

• Media type - Selects one of the available mediums: all, aural, braille, embossed, handheld, print, projection,
screen, tty, tv, presentation, oxygen.

• Warning level - Sets the minimum severity level for reported validation warnings. Can be one of: All, Normal,
Most Important, No Warnings.

• Ignore properties - You can type comma separated patterns that match the names of CSS properties that will be
ignored at validation. As wildcards you can use:

• * to match any string.
• ? to match any character.

• Recognize browser CSS extensions (applies also to content completion) - If checked, Oxygen XML Editor plugin
recognizes (no validation is performed) browser-specific CSS properties. The Content Completion Assistant lists
these properties at the end of its list, prefixed with the following particles:

• -moz- for Mozilla.
• -ms- for Internet Explorer.
• -o- for Opera.
• -webkit- for Safari/Webkit.

Custom Editor Variables Preferences

An editor variable is useful for making a transformation scenario, validation scenario, or other tool independent of its
file path. An editor variable is specified as a parameter in a transformation scenario, validation scenario, or command
line of an external tool. Such a variable is defined by a name, a string value, and a text description. A custom editor
variable is defined by the user and can be used in the same expressions as the built-in editor variables.

Custom editor variables are created and configured in the Custom Editor Variables preferences page. To access this
page, open the Preferences dialog box and go to Custom Editor Variables.

This preferences page displays a table of all the custom editor variables that have been defined. The table includes three

columns for the editor variable Name, its Value, and its Description. The create a new variable, click the New button
at the bottom of the table and define your custom editor variable in the subsequent dialog box. To edit an existing custom

editor variable, click the Edit button and configure the variable in the subsequent dialog box. You can also use the
Delete button to remove custom editor variables that are no longer needed.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 52

Figure 15: Custom Editor Variables Table

Data Sources Preferences

To configure the Data Sources preferences, open the Preferences dialog box and go to Data Sources. This preferences
page allows you to configure data sources and connections to relational and native XML databases. For a list of drivers
that are available for the major database servers, see Download Links for Database Drivers on page 56.

Connection Wizards Section

Click this link to open the dedicated Create eXist-db XML connection dialog
box that provides a quick way to create an eXist connection.

Create eXist-db XML connection

Data Sources Section
This section allows you to add and configure data sources.

Figure 16: Data Sources Preferences Panel

The following buttons are available at the bottom of the Data Sources panel:

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 53

Opens the Data Sources Drivers dialog box that allows you to configure a new database driver.

Figure 17: Data Sources Drivers Dialog Box

New

The following options are available in the Data Source Drivers dialog box:

• Name - The name of the new data source driver that will be used for creating connections to the
database.

• Type - Selects the data source type from the supported driver types.

• Help button - Opens the User Manual at the list of the sections where the configuration of
supported data sources is explained and the URLs for downloading the database drivers are
specified.

• Driver files (JAR, ZIP) - Lists download links for database drivers that are necessary for accessing
databases in Oxygen XML Editor plugin.

• Add Files - Adds the driver class library.
• Add Recursively - Adds driver files recursively.
• Remove - Removes the selected driver class library from the list.
• Detect - Detects driver file candidates.
• Stop - Stops the detection of the driver candidates.
• Driver class - Specifies the driver class for the data source driver.

Opens the Data Sources Drivers dialog box for editing the selected driver. See above the specifications
for the Data Sources Drivers dialog box. To edit a data source, there must be no connections using that
data source driver.

Edit

Creates a copy of the selected data source.Duplicate

Deletes the selected driver. To delete a data source, there must be no connections using that data source
driver.

Delete

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 54

Connections Section
This section allows you to add and configure data source connections.

Figure 18: Connections Preferences Panel

The following buttons and options are available at the bottom of the Connections panel:

Opens the Connection dialog box that allows you to configure a new database connection.

Figure 19: Connection Dialog Box

New

The following options are available in the Connection dialog box:

• Name - The name of the new connection that will be used in transformation scenarios and
validation scenarios.

• Data Source - Allows selecting a data source defined in the Data Source Drivers dialog box.

Depending upon the selected data source, you can set some of the following parameters in the
Connection details area:

• URL - The URL for connecting to the database server.
• User - The user name for connecting to the database server.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 55

• Password - The password of the specified user name.
• Host - The host address of the server.
• Port - The port where the server accepts the connection.
• XML DB URI - The database URI.
• Database - The initial database name.
• Collection - One of the available collections for the specified data source.
• Environment home directory - Specifies the home directory (only for a Berkeley database).
• Verbosity - Sets the verbosity level for output messages (only for a Berkeley database).
• Use a secure HTTPS connection (SSL) - Allows you to establish a secure connection to an

eXist database through the SSL protocol.

Opens the Connection dialog box, allowing you to edit the selected connection. See above the
specifications for the Connection dialog box.

Edit

Creates a copy of the selected connection.Duplicate

Deletes the selected connection.Delete

Moves the selected connection up one row in the list.Move Up

Moves the selected connection down one row in the list.Move Down

For performance issues, you can set the maximum number of cells that will be displayed in the
Table Explorer view for a database table. Leave this field empty if you want the entire content

Limit the number
of cells

of the table to be displayed. By default, this field is set to 2000. If a table that has more cells than
the value set here is displayed in the Table Explorer view, a warning dialog box will inform you
that the table is only partially shown.

In Oracle XML, a container can hold millions of resources. If the node corresponding to such a
container in the Data Source Explorer view would display all the contained resources at the same

Maximum
number of

time, the performance of the view would be very slow. To prevent this, only a limited number ofchildren for
container nodes the contained resources is displayed as child nodes of the container node. Navigation to other

contained resources from the same container is enabled by the Up and Down buttons in the Data
Source Explorer view. This limited number is set in the field. The default value is 200 nodes.

Controls if a warning message will be displayed when expanding another database schema and
there are tables selected in the current expanded one. This applies to the Select database table

Show warning
when expanding

dialog box in the Import Database Data wizard and the Select database table section of the
Convert DB Structure to XML Schema dialog box.

other database
schema

Table Filters Preferences

The Table Filters preferences page allows you to choose the types of tables to be shown in the Data Source Explorer
view. To open this preferences page, open the Preferences dialog box and go to Data Sources > Table Filters.

You can choose to display the following types of tables:

• Alias
• Global Temporary
• Local Temporary
• Synonym
• System Table
• Table
• View

Download Links for Database Drivers

For a list of major relational databases and the drivers that are available for them, see
http://www.oxygenxml.com/database_drivers.html.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 56

http://www.oxygenxml.com/database_drivers.html

In addition, the following is a list of other popular databases along with instructions for getting the drivers that are
necessary to access the databases in Oxygen XML Editor plugin:

• Berkeley DB XML database - Copy the jar files from the Berkeley database install directory into the Oxygen XML
Editor plugin install directory as described in the procedure for configuring a Berkeley DB data source.

• IBM DB2 Pure XML database - Go to the IBM website and in the DB2 Clients and Development Tools category
select the DB2 Driver for JDBC and SQLJ download link. Fill out the download form and download the zip file.
Unzip the zip file and use the db2jcc.jar and db2jcc_license_cu.jar files in Oxygen XML Editor plugin
for configuring a DB2 data source.

• eXist database - Copy the jar files from the eXist database install directory to the Oxygen XML Editor plugin install
directory as described in the procedure for configuring an eXist data source.

• MarkLogic database - Download the MarkLogic driver from MarkLogic Community site.
• Microsoft SQL Server 2005 / 2008 database - Download the appropriate MS SQL JDBC driver from the Microsoft

website. For SQL Server 2008 R2 and older go to http://www.microsoft.com/en-us/download/details.aspx?id=21599.
For SQL Server 2012 and 2014 go to http://www.microsoft.com/en-us/download/details.aspx?id=11774.

• Oracle 11g database - Go to
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html and download the Oracle
11g JDBC driver called ojdbc6.jar.

• PostgreSQL 8.3 database - Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3
JDBC3 driver.

• Documentum xDB (X-Hive/DB) 10 XML database - Copy the jar files from the Documentum xDB (X-Hive/DB)
10 database install directory to the Oxygen XML Editor plugin install directory as described in the procedure for
configuring a Documentum xDB (X-Hive/DB) 10 data source.

DITA Preferences

To access the DITA Preferences page, open the Preferences dialog box and go to DITA. This preferences page includes
the following sections and options:

This section allows you to specify the default directory of the DITA Open Toolkit distribution (bundled
with the Oxygen XML Editor plugin installation) to be used for validating and publishing DITA content.
You can select from the following:

DITA
Open
Toolkit
section If this is set, all defined DITA transformation scenarios will run with

DITA-OT 1.8. The builtin DITA OT 1.8 directory is:
[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT.

Built-in DITA-OT 1.8

Starting with Oxygen 18.0, this is the default setting. All defined DITA
transformation scenarios will run with DITA-OT 2.x. This also gives you

Built-in DITA-OT 2.x
(with support for DITA

access to DITA 1.3 file templates when you create new documents from1.3 and Lightweight
DITA) templates. The default DITA OT directory is:

[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT2.x.

Allows you to specify a custom directory for your DITA OT distribution.Custom

You can either provide a new file path for the specific DITA
OT that you want to use or select a previously used one from

Location

the drop-down list. You can specify the path by using the text

field, the Insert Editor Variables button, or the Browse
button.

If enabled and there is a navtitle attribute set on a topicref, then the navtitle is used to render
the title of the topic in the DITA Maps Manager.

Prefer
navigation
title for
topicref
rendering

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 57

http://www-306.ibm.com/software/data/db2/express/download.html
http://community.marklogic.com/download
http://www.microsoft.com/en-us/download/details.aspx?id=21599
http://www.microsoft.com/en-us/download/details.aspx?id=11774
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://jdbc.postgresql.org/download.html

Allows you to specify that when inserting a topic reference (using the Insert Reference dialog box and
Edit Properties dialog box), the values for certain attributes will always be automatically populated with

Insert topic
reference
section a detected value (based on the specifications), even if it is the same as the default value. You can choose

to always populate the values for the following attributes:

• Format - If enabled, the format attribute will always be automatically populated with a detected
value.

• Scope - If enabled, the scope attribute will always be automatically populated with a detected value.
• Type - If enabled, the type attribute will always be automatically populated with a detected value.
• Navigation title - If enabled, the navtitle attribute will always be automatically populated with

a detected value.

Allows you to specify that when a link reference is inserted (using actions in the Link drop-down
menu), the values for certain attributes will always be automatically populated with a detected value

Insert link
section

(based on the specifications), even if it is the same as the default value. You can choose to always populate
the values for the following attributes:

• Format - If enabled, the format attribute will always be automatically populated with a detected
value.

• Scope - If enabled, the scope attribute will always be automatically populated with a detected value.
• Type - If enabled, the type attribute will always be automatically populated with a detected value.

When addressing a non-topic element within the topic that contains the URI reference, the URI
reference can use an abbreviated fragment-identifier syntax that replaces the topic ID with "."

Use
'.'
instead (#./elementId). For more information, see

https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html.of the
ID of
the
parent
topic
(DITA
1.3)

Allows you to specify when to display the console output log. The following options are available:Show
console
output

• When build fails - displays the console output log if the build fails.
• Always - displays the console output log, regardless of whether or not the build fails.

Link to the Profiling Attributes preferences page, where you can configure how profiling and conditional
text is displayed in Author mode.

Profiling
Attributes
link

Document Type Association Preferences

Oxygen XML Editor plugin uses document type associations to associate a document type with a set of functionality
provided by a framework. To configure the Document Type Association options, open the Preferences dialog box
and go to Document Type Association.

The following actions are available in this preferences page:

Click on this link to specify URLs for framework add-on update sites.Discover more
frameworks by using
add-ons update sites

This table presents the currently defined document type associations (frameworks), sorted
by priority and alphabetically. Each edited document type has a set of association rules

Document Type Table

(used by the application to detect the proper document type association to use for an opened
XML document). A rule is described by:

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 58

https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html

• Namespace - Specifies the namespace of the root element from the association rules
set (* (any) by default). If you want to apply the rule only when the root element has
no namespace, leave this field empty (remove the ANY_VALUE string).

• Root local name - Specifies the local name of the root element (* (any) by default).
• File name - Specifies the name of the file (* (any) by default).
• Public ID - Represents the Public ID of the matched document.
• Java class - Presents the name of the Java class, which is used to determine if a document

matches the rule. This Java class should implement the
ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher
interface.

Opens a Document type configuration dialog box that allows you to add a new association.New

Opens a Document type configuration dialog box that allows you to edit an existing
association.

Edit

Note: If you try to edit an existing association type when you do not have write
permissions to its store location, a dialog box will be shown asking if you want to
extend the document type.

Opens a Document type configuration dialog box that allows you to duplicate the
configuration of an existing document type association.

Duplicate

Opens a Document type configuration dialog box that allows you to extend an existing
document type. You can add or remove functionality starting from a base document type.

Extend

All of these changes will be saved as a patch. When the base document type is modified
and evolves (for example, from one application version to another) the extension will evolve
along with the base document type, allowing it to use the new actions added in the base
document type.

Deletes the selected document type associations.Delete

When this option is enabled (default value), the matching process also examines the
DTD/XML Schema associated with the document. For example, the fixed attributes declared

Enable DTD/XML
Schema processing in
document type detection in the DTD for the root element are also analyzed, if this is specified in the association

rules. This is especially useful if you are writing DITA customizations. DITA topics and
maps are also matched by looking for the DITAArchVersion attribute of the root element.
This attribute is specified as default in the DTD and it is detected in the root element,
helping Oxygen XML Editor plugin to correctly match the DITA customization.

When this option is enabled (default value), only the local DTDs / XML Schemas will be
processed.

Only for local
DTDs/XML Schemas

When this option is enabled (default value), the associated DTDs or XML Schema are
cached when parsed for the first time, improving performance when opening new documents
with similar schema associations.

Enable DTD/XML
Schema caching

Locations Preferences

Oxygen XML Editor plugin allows you to change the location where document types (frameworks) are stored, and to
specify additional framework directories. The Locations preferences page allows you to specify the main frameworks
folder location. You can choose between the Default directory ([OXYGEN_INSTALL_DIR]/frameworks) or a
Custom specified directory. You can also change the current frameworks folder location value using the
com.oxygenxml.editor.frameworks.url system property.

A list of additional frameworks directories can also be specified. The application will look in each of those folders
for additional document type configurations to load. Use the Add, Edit and Delete buttons to manage the list of folders.

A document type (configuration) can be loaded from the following locations:

• Internal preferences - The document type configuration is stored in the application Internal preferences.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 59

• Additional frameworks directories - The document type configuration is loaded from one of the specified Additional
frameworks directories list.

• The frameworks folder - The main folder containing framework configurations.

All loaded document type configurations are first sorted by priority, then by document type name and then by load
location (in the exact order specified above). When an XML document is opened, the application chooses the first
document type configuration from the sorted list that matches the specific document.

All loaded document type configurations are first sorted by priority, then by document type.

Document Type Configuration Dialog Box

The Document type configuration dialog box allows you to create or edit a Document Type Association (framework).
It is displayed when you use the New, Edit, Duplicate, or Extend buttons in the Document Type Association preferences
page (open the Preferences dialog box and go to Document Type Association).

The configuration dialog box includes the following fields and sections:

• Name - The name of the Document Type Association.
• Priority - Depending on the priority level, Oxygen XML Editor plugin establishes the order in which the existing

document type associations are evaluated to determine the type of a document you are opening. It can be one of the
following: Lowest, Low, Normal, High, or Highest. You can set a higher priority to Document Type Associations
you want to be evaluated first.

• Description - A detailed description of the framework.
• Storage - Displays the type of location where the framework configuration file is stored. Can be one of: External

(framework configuration is saved in a file) or Internal (framework configuration is stored in the application's
internal options).

Note: If you set the Storage to Internal and the document type association settings are already stored in a
framework file, the file content is saved in the application's internal options and the file is removed.

• Initial edit mode - Sets the default edit mode when you open a document for the first time.

• Configuration Tabs - The bottom section of the dialog box includes various tabs where you can configure numerous
options for the framework.

Related information
Document Type Sharing on page 965

Association Rules Tab

By combining multiple association rules you can instruct Oxygen XML Editor plugin to identify the type of a document.
An Oxygen XML Editor plugin association rule holds information about Namespace, Root local name, File name,
Public ID, Attribute, and Java class. Oxygen XML Editor plugin identifies the type of a document when the document
matches at least one of the association rules. This tab give you access to a Document type rule dialog box that you can
use to create association rules that activate on any document matching all the criteria defined in the dialog box.

To open the Association Rules tab of the Document type configuration dialog box, open the Preferences dialog box
, go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Association
Rules tab.

In the Association rules tab you can perform the following actions:

Opens the Document type rule dialog box allowing you to create association rules.New

Opens the Document type rule dialog box allowing you to edit the properties of the
currently selected association rule.

Edit

Deletes the currently selected association rules from the list.Delete

Moves the selected association rule up one spot in the list.Move Up

Moves the selected association rule down one spot in the list.Move Down

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 60

Schema Tab

In the Schema tab, you can specify a schema that Oxygen XML Editor plugin uses if an XML document does not contain
a schema declaration and no default validation scenario is associated with it.

To open the Schema tab of the Document type configuration dialog box, open the Preferences dialog box , go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Schema tab.

This tab includes the following options for defining a schema to be used if no schema is detected in the XML file:

Use this drop-down list to select the type of schema.Schema type

You can specify the URI of the schema file. You can specify the path by using the text field, the
Insert Editor Variables button, or the browsing tools in the Browse drop-down list.

Schema URI

Tip: It is a good practice to store all resources in the framework directory and use the
${framework} editor variable to reference them. This is a recommended approach
to designing a self-contained document type that can be easily maintained and shared
between multiple users.

Classpath Tab

The Classpath tab displays a list of folders and JAR libraries that hold implementations for API extensions,
implementations for custom Author mode operations, various resources (such as stylesheets), and framework translation
files. Oxygen XML Editor plugin loads the resources looking in the folders in the order they appear in the list.

To open the Classpath tab of the Document type configuration dialog box, open the Preferences dialog box , go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Classpath tab.

The Classpath tab includes the following actions:

Opens a dialog box that allows you to add a resource to the table in the Classpath tab. You
can specify the path by using the text field, the Insert Editor Variables button, or the
browsing tools in the Browse drop-down list.

New

Tip: The path can also contain wildcards (for example,
${framework}/lib/*.jar).

Opens a dialog box that allows you to edit a resource in the Classpath tab. You can specify
the path by using the text field, the Insert Editor Variables button, or the browsing tools
in the Browse drop-down list.

Edit

Tip: The path can also contain wildcards (for example,
${framework}/lib/*.jar).

Deletes the currently selected resource from the list.Delete

Moves the selected resource up one spot in the list.Move Up

Moves the selected resource down one spot in the list.Move Down

Related information
Extensions Tab on page 71

Author Tab on page 61

Localizing Frameworks on page 924

Author Tab

The Author tab is a container that holds information regarding the CSS file used to render a document in the Author
mode, and regarding framework-specific actions, menus, contextual menus, toolbars, and content completion list of
proposals.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 61

To open the Author tab of the Document type configuration dialog box, open the Preferences dialog box , go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Author tab.

The options that you configure in the Author tab are grouped in subtabs.

CSS Subtab

The CSS subtab contains the CSS files that Oxygen XML Editor plugin uses to render a document in the Author mode.
In this subtab, you can set main and alternate CSS files. When you are editing a document in the Author mode, you
can switch between these CSS files from the Styles drop-down menu on the Author Styles toolbar.

To open the CSS subtab, open the Preferences dialog box , go to Document Type Association, use the New, Edit,
Duplicate, or Extend button, click on the Author tab, and then the CSS subtab.

The following actions are available in the CSS subtab:

Opens a dialog box that allows you to add a CSS file. You can specify the
path by using the text field, the Insert Editor Variables button, or the
browsing tools in the Browse drop-down list.

New

Opens a dialog box that allows you to edit the current selection.Edit

Deletes the currently selected CSS file.Delete

Moves the selected CSS file up in the list.Move Up

Moves the selected CSS file down in the list.Move Down

Allows users to apply multiple alternate styles, as layers, over the main CSS
style. This option is enabled by default for DITA document types.

Enable multiple selection of alternate
CSSs

The CSS files set in the CSS tab are overwritten by the CSS files specified
in the document itself.

ignore CSSs from the associated
document type

The CSS files set in the CSS tab are merged with the CSS files specified in
the document itself.

merge them with CSSs from the
associated document type

Related concepts
CSS Stylesheet on page 891
A set of rules must be defined for describing how the XML document is to be rendered in Author mode. This is done
using Cascading Style Sheets (CSS). CSS is a language used to describe how an HTML or XML document should be
formatted by a browser. CSS is widely used in the majority of websites.

Related information
Selecting and Combining Multiple CSS Styles on page 982

Actions Subtab

The Actions subtab contains a sortable table that includes all the framework-specific actions. Each action has a unique
ID, a name, a description, and a shortcut key.

To open the Actions subtab, open the Preferences dialog box , go to Document Type Association, use the New, Edit,
Duplicate, or Extend button, click on the Author tab, and then the Actions subtab.

The following actions are available in this subtab:

Opens the Action dialog box that allows you to add an action.New

Duplicates the currently selected action.Duplicate

Opens a dialog box that allows you to edit an existing action.Edit

Deletes the currently selected action.Delete

Action Dialog Box

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 62

To edit an existing document type action or create a new one, open the Preferences dialog box , go to Document Type
Association, use the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the Actions subtab. At

the bottom of this subtab, click New to create a new action, or Edit to modify an existing one.

Figure 20: Action Dialog Box

The following options are available in the Action dialog box:

Specifies a unique action identifier.ID

Specifies the name of the action. This name is displayed as a tooltip or as a menu item.Name

Tip: You can use the ${i18n('key')} editor variable to allow for multiple translations of
the name.

In Windows, you can access menus by holding down Alt and pressing the keyboard key that
corresponds to the Letter that is underlined in the name of the menu. Then, while still holding

Menu access key

down Alt, you can select submenus and menu action the same way by pressing subsequent
corresponding keys. You can use this option to specify the Letter in the name of the action that
can be used to access the action.

A description of the action. This description is displayed as a tooltip when hovering over the
action.

Description

Tip: You can use the ${i18n('key')} editor variable to allow for multiple translations of
the description.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 63

Allows you to select an image for the icon that Oxygen XML Editor plugin uses for the toolbar
action.

Large icon

Tip: A good practice is to store the image files inside the framework directory and use
the ${frameworks} editor variable to make the image relative to the framework
location. If the images are bundled in a jar archive (for instance, along with some Java
operations implementation), it is convenient to reference the images by their relative path
location in the class-path.

Allows you to select an image for the icon that Oxygen XML Editor plugin uses for the contextual
menu action.

Small icon

Note: If you are using a Retina or HiDPI display, Oxygen XML Editor plugin
automatically searches for higher resolution icons in the path specified in both the Large
icon and Small icon options. For more information, see the Adding Retina/HiDPI Icons
in a Framework section.

This field allows you to configure a shortcut key for the action that you are editing. The + character
separates the keys.

Shortcut key

If this checkbox is enabled, the shortcut that you specify in this field is
platform-independent and the following modifiers are used:

Enable
platform-independent
shortcut keys

• M1 represents the Command key on MacOS X, and the Ctrl key
on other platforms.

• M2 represents the Shift key.
• M3 represents the Option key on MacOS X, and the Alt key on other

platforms.
• M4 represents the Ctrl key on MacOS X, and is undefined on other

platforms.

In this section of the Action dialog box, you configure the functionality of the action that you are
editing. An action has one or more operation modes. The evaluation of an XPath expression

Operations section

activates an operation mode. The first enabled operation mode is activated when you trigger the
action. The scope of the XPath expression must consist only of element nodes and attribute nodes
of the edited document. Otherwise, the XPath expression does not return a match and does not
fire the action. For more details see: Activation of Multiple Functions for Actions using XPath
Expressions on page 65.

The following options are available in this section:

An XPath 2.0 expression that applies to elements and attributes. For
more details see:Activation of Multiple Functions for Actions using
XPath Expressions on page 65.

When this XPath
expression is true

Specifies the invoked operation.invoke the operation

Specifies the arguments of the invoked operation.with the arguments

Allows you to edit the arguments of the operation.Edit

Increases or decreases the priority of an operation. The operations
are invoked in the order of their priority. If multiple XPath

Operation priority

expressions are true, the operation with the highest priority is
invoked.

• Add - Adds an operation.

• Remove - Removes an operation.

• Duplicate - Duplicates an operation.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 64

If this checkbox is enabled, the action can be invoked even when the cursor is placed in a read-only
location.

Evaluate
activation XPath
expressions even
in read-only
cotnexts

Activation of Multiple Functions for Actions using XPath Expressions

An Author mode action can have multiple functions, each function invoking an Author mode operation with certain
configured parameters. Each function of an action has an XPath 2.0 expression for activating it.

For each function of an action, the application will check if the XPath expression is fulfilled (when it returns a not empty
nodes set or a true result). If it is fulfilled, the operation defined in the function will be executed.

Two special XPath extension functions are provided: the oxy:allows-child-element() function that you can
use to check whether or not an element is valid in the current context, considering the associated schema and the
oxy:current-selected-element() function that you can use to get the currently selected element.

oxy:allows-child-element() Function
This extension function allows author actions to be available in a context only if the associated schema permits it.

The oxy:allows-child-element() is evaluated at the cursor position and has the following signature:
oxy:allows-child-element($childName, ($attributeName, $defaultAttributeValue,
$contains?)?).

The following parameters are supported:
childName

The name of the element that you want to check if it is valid in the current context. Its value is a string
that supports the following forms:

• The child element with the specified local name that belongs to the default namespace.

oxy:allows-child-element("para")

The above example verifies if the para element (of the default namespace) is allowed in the current
context.

• The child element with the local name specified by any namespace.

oxy:allows-child-element("*:para")

The above example verifies if the para element (of any namespace) is allowed in the current context.
• A prefix-qualified name of an element.

oxy:allows-child-element("prefix:para")

The prefix is resolved in the context of the element where the cursor is located. The function
matches on the element with the para local name from the previous resolved namespace. If the
prefix is not resolved to a namespace, the function returns a value of false.

• A specified namespace-URI-qualified name of an element.

oxy:allows-child-element("{namespaceURI}para")

The namespaceURI is the namespace of the element. The above example verifies if the para
element (of the specified namespace) is allowed in the current context.

• Any element.

oxy:allows-child-element("*")

The above function verifies if any element is allowed in the current context.

Note: A common use case of oxy:allows-child-element("*") is in
combination with the attributeName parameter.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 65

attributeName

The attribute of an element that you want to check if it is valid in the current context. Its value is a
string that supports the following forms:

• The attribute with the specified name from no namespace.

oxy:allows-child-element("*", "class", " topic/topic ")

The above example verifies if an element with the class attribute and the default value of this
attribute (that contains the topic/topic string) is allowed in the current context.

• The attribute with the local name specified by any namespace.

oxy:allows-child-element("*", "*:localname", " topic/topic ")

• A qualified name of an attribute.

oxy:allows-child-element("*", "prefix:localname", " topic/topic ")

The prefix is resolved in the context of the element where the cursor is located. If the prefix is not
resolved to a namespace, the function returns a value of false.

defaultAttributeValue

A string that represents the default value of the attribute. Depending on the value of the next parameter,
the default value of the attribute must either contain this value or be equal with it.

contains

An optional boolean. The default value is true. For the true value, the default value of the attribute
must contain the defaultAttributeValue parameter. If the value is false, the two values
must be the same.

oxy:current-selected-element() Function

This function returns the fully selected element. If no element is selected, the function returns an empty sequence.

oxy:current-selected-element()[self::p]/b

This example returns the b elements that are children of the currently selected p element.

Menu Subtab

In the Menu subtab, you can configure which actions will appear in the framework-specific menu. The subtab is divided
in two sections: Available actions and Current actions.

To open the Menu subtab, open the Preferences dialog box , go to Document Type Association, use the New, Edit,
Duplicate, or Extend button, click on the Author tab, and then the Menu subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with their
icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen XML Editor plugin

menu. To add an action in this section as a sibling of the currently selected action, use the Add as sibling button.

To add an image in this section as a child of the currently selected action use the Add as child button.

The following actions are available in the Current actions section:

Edits an item.Edit

Removes an item.Remove

Moves an item up.Move Up

Moves an item down.Move Down

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 66

Contextual Menu Subtab

In the Contextual menu subtab you configure what framework-specific action the Content Completion Assistant
proposes. The subtab is divided in two sections: Available actions and Current actions.

To open the Contextual Menu subtab, open the Preferences dialog box , go to Document Type Association, use the
New, Edit, Duplicate, or Extend button, click on the Author tab, and then the Contextual Menu subtab.

Figure 21: Contextual Menu Subtab

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with their
icon, ID, and name. The Current actions section contains the actions that are displayed in the contextual menu for
documents that belong to the edited framework.

The following actions are available in this subtab:

Adds the selected action or submenu from the Available actions section to the Current actions
section as a sibling of the selected action.

Add as
sibling

Adds the selected action or submenu from the Available actions section to the Current actions
section as a child of the selected action.

Add as child

This option is available for container (submenu) items that are listed in the Current actions section.
It opens a configuration dialog box that allows you to edit the selected container (submenu).

Figure 22: Menu Action Configuration Dialog Box

Edit

The following options are available in this dialog box:

Specifies the name of the action. This name is displayed as a tooltip or as a
menu item.

Name

Tip: You can use the ${i18n('key')} editor variable to allow for
multiple translations of the name.

In Windows, you can access menus by holding down Alt and pressing the
keyboard key that corresponds to the Letter that is underlined in the name of

Menu access key

the menu. Then, while still holding down Alt, you can select submenus and
menu action the same way by pressing subsequent corresponding keys. You

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 67

can use this option to specify the Letter in the name of the action that can be
used to access the action.

Allows you to select an image for the icon that Oxygen XML Editor plugin
uses for the container (submenu).

Menu icon

If this option is enabled, when invoking the contextual menu from within a
table, all the actions in this container (submenu) will be promoted to the main

Promote items
when in a table
context level in the contextual menu. Actions and submenus that are not promoted

are still available in the Other actions submenu when invoking the contextual
menu within a table.

Removes the selected action or submenu from the Current actions section.Remove

Moves the selected item up in the list.Move Up

Moves the selected item down in the list.Move Down

Toolbar Subtab

In the Toolbar subtab you configure what framework-specific action the Oxygen XML Editor plugin toolbar holds. The
subtab is divided in two sections: Available actions and Current actions.

To open the Toolbar subtab, open the Preferences dialog box , go to Document Type Association, use the New, Edit,
Duplicate, or Extend button, click on the Author tab, and then the Toolbar subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with their
icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen XML Editor plugin
toolbar when you work with a document belonging to the edited framework. To add an action in this section as a sibling

of the currently selected action, use the Add as sibling button. To add an action in this section as a child of the

currently selected action use the Add as child button.

The following actions are available in the Current actions section:

Edits an item.Edit

Removes an item.Remove

Moves an item up.Move Up

Moves an item down.Move Down

Content Completion Subtab

In the Content Completion subtab you configure what framework-specific the Content Completion Assistant proposes.
The subtab is divided in two sections: Available actions and Current actions.

To open the Content Completion subtab, open the Preferences dialog box , go to Document Type Association, use
the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the Content Completion subtab.

Available and Current Actions

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with their
icon, ID, and name. The Current actions section holds the actions that the Content Completion Assistant proposes
when you work with a document belonging to the edited framework. To add an action in this section as a sibling of the

currently selected action, use the Add as sibling button. To add an action in this section as a child of the currently

selected action use the Add as child button.

The following actions are available in the Current actions section:

Edits an item.Edit

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 68

Removes an item.Remove

Moves an item up.Move Up

Moves an item down.Move Down

Filter Table

The Filter section presents a table that allows you to add elements to be filtered from the Content Completion Assistant

or from some specific helper views or menus. Use the Add button to add more filters to the table, the Edit button

to modify an existing item in the table, or the Remove button to remove a filtered item. The Add and Edit
buttons open a Remove item dialog box.

Figure 23: Remove Item Dialog Box

Use this dialog box to add or configure the elements that will be filtered:

Use this text field to enter the name of the element to be filtered. The drop-down list also includes
a few special content completion actions that can be filtered (<SPLIT> and <ENTER>).

Item name

You can choose to filter the element from any of the following:Remove item from

• Content Completion Window - The element will not appear in the Content Completion
Assistant.

• Elements View - The element will not appear in the Elements view.
• Element Insert Menus - The element will not appear in the Append Child, Insert Before,

or Insert After menus that are available in certain contextual menus (for example, the contextual
menu of the Outline view).

• Entities View - The element will not appear in the Entities view.

Related information
Customizing the Content Completion Assistant on page 968

Templates Tab

The Templates tab specifies a list of directories where new file templates are located. These file templates are gathered
from all the document types and presented in the various folders inside the Framework templates folder in the New
from templates wizard.

To open the Templates tab of the Document type configuration dialog box, open the Preferences dialog box , go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Templates tab.

The Templates tab includes the following actions:

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 69

Opens a dialog box that allows you to specify the path to the directory of the template. You can
specify the path by using the text field, the Insert Editor Variables button, or the browsing
tools in the Browse drop-down list.

New

Tip: The path can also contain wildcards. For example, using
${frameworkDir}/templates/* would add all the template folders found inside
the templates directory.

Opens a dialog box that allows you to edit the path of the selected template. You can specify
the path by using the text field, the Insert Editor Variables button, or the browsing tools in
the Browse drop-down list.

Edit

Tip: The path can also contain wildcards. For example, using
${frameworkDir}/templates/* would add all the template folders found inside
the templates directory.

Deletes the currently selected template from the list.Delete

Moves the selected template up one spot in the list.Move Up

Moves the selected template down one spot in the list.Move Down

Catalogs Tab

The Catalogs tab specifies a list of XML catalogs, specifically for the edited framework, that are added to list of catalogs
that Oxygen XML Editor plugin uses to resolve resources.

To open the Catalogs tab of the Document type configuration dialog box, open the Preferences dialog box , go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Catalogs tab.

You can perform the following actions:

Opens a dialog box that allows you to add a catalog to the list. You can specify the path
by using the text field, the Insert Editor Variables button, or the browsing tools in
the Browse drop-down list.

Add

Opens a dialog box that allows you to edit the path of an existing catalog.Edit

Deletes the currently selected catalog from the list.Delete

Moves the selected catalog up one spot in the list.Move Up

Moves the selected catalog down one spot in the list.Move Down

Transformation Tab

In the Transformation tab, you can configure the transformation scenarios associated with the particular framework
you are editing. These transformation scenarios are presented in the Configure Transformation Scenarios dialog box
when transforming a document and you can specify which scenarios will be used by default for a particular document
type.

To open the Transformation tab of the Document type configuration dialog box, open the Preferences dialog box ,
go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Transformation
tab.

The Transformation tab offers the following options:

You can set one or more of the scenarios listed in this tab to be used as the default
transformation scenario when another specific scenario is not specified. The scenarios

Default checkbox

that are set as default are rendered bold in the Configure Transformation Scenarios
dialog box.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 70

Opens the New scenario dialog box allowing you to create a new transformation
scenario for the particular document type. For more information, see the Creating New
Transformation Scenarios on page 602 section.

New

Opens the Edit scenario dialog box allowing you to edit the properties of the currently
selected transformation scenario. For more information, see the Creating New
Transformation Scenarios on page 602 section.

Edit

Deletes the currently selected transformation scenario.Delete

Imports transformation scenarios.Import scenarios

Export transformation scenarios.Export selected scenarios

Moves the selection to the previous scenario.Move Up

Moves the selection to the next scenario.Move Down

Validation Tab

In the Validation tab, you can configure the validation scenarios associated with the particular framework you are
editing. These validation scenarios are presented in the Configure Validation Scenarios dialog box when validating a
document and you can specify which scenarios will be used by default for a particular document type.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file are
used and take precedence over the default scenarios defined for the particular framework. For more information
on master files, see the Defining Master Files at Project Level on page 221 section or Working with Modular
XML Files in the Master Files Context on page 378.

To open the Validation tab of the Document type configuration dialog box, open the Preferences dialog box , go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Validation tab.

The Validation tab offers the following options:

You can set one or more of the scenarios listed in this tab to be used as the default
validation scenario when another specific scenario is not specified in the validation

Default checkbox

process. The scenarios that are set as default are rendered bold in the Configure
Validation Scenarios dialog box.

Opens the New scenario dialog box allowing you to create a new validation
scenario.

New

Opens the Edit scenario dialog box allowing you to edit the properties of the
currently selected validation scenario.

Edit

Deletes the currently selected validation scenario.Delete

Imports validation scenarios.Import scenarios

Export validation scenarios.Export selected scenarios

Moves the selected scenario up one spot in the list.Move Up

Moves the selected scenario down one spot in the list.Move Down

Extensions Tab

The Extensions tab specifies implementations of Java interfaces used to provide advanced functionality to the document
type.

To open the Extensions tab of the Document type configuration dialog box, open the Preferences dialog box , go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, and click on the Extensions tab.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 71

Libraries containing the implementations must be present in the classpath of your document type. The Javadoc available
at http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ contains details about how each API implementation
functions.

Editor Preferences

Oxygen XML Editor plugin lets you configure the appearance of various components and features of the main editor.
To access these options, open the Preferences dialog box and go to Editor (or right-click in the editor window and
choose Preferences).

The following options are available:

Allows you to set the background color for text editors.Editor background

Allows you to set the background color of the Content Completion Assistant.Completion proposal background

Allows you to set the color of the text in the Content Completion Assistant.Completion proposal foreground

Allows you to set the background color of the documentation of elements
suggested by the Content Completion Assistant.

Documentation window
background

Allows you to set the color of the text for the documentation of elements suggested
by the Content Completion Assistant.

Documentation window
foreground

If enabled, long lines are automatically wrapped in edited documents. The line
wrap does not alter the document content since the application does not use
newline characters to break long lines.

Line wrap

If enabled (default value), the vertical stripe that holds the folding markers is
displayed in Text mode.

Enable folding when opening a
new editor

Oxygen XML Editor plugin emits a short beep when a validation, check
well-formedness, or transformation action has ended.

Beep on operation finished

Note: When the validation or the transformation process of a document
is successful, the beep signal has a higher audio frequency, as opposed
to when the validation fails, and the beep signal has a lower audio
frequency. On the Windows platform, for other operations, the default
system sound (Asterisk) is used. You can configure it by changing
the sound theme.

Displays the Quick Assist icon () and Quick Fix icon () in the line number
stripe on the left side of the editor.

Display quick-assist and quick-fix
side hints

If you place the cursor on a start or end tag, Oxygen XML Editor plugin highlights
the corresponding member of the pair.

Highlight matching tag

You can specify the minimum number of lines in a block for which the folding
support becomes active. If you modify this value, the change takes effect next
time you open the editor.

Minimum fold range

Edit Modes Preferences

Oxygen XML Editor plugin lets you configure which edit mode a file is opened in the first time it is opened. This setting
only applies the first time a file is opened. The current editing mode of each file is saved when the file is closed and
restored the next time it is opened. To configure the options for editing modes, open the Preferences dialog box and
go to Editor > Edit modes .

If Allow Document Type specific edit mode setting to override the general mode setting is selected, the initial edit
mode setting set in the Document Type configuration dialog box overrides the general edit mode setting from the table
below.

The initial edit mode can be one of the following:

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 72

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/

• Text
• Author
• Grid
• Design (available only for the W3C XML Schema editor).

Figure 24: Edit Modes Preferences Page

Grid Preferences

Oxygen XML Editor plugin provides a Grid view of an XML document. To configure the Grid options, open the
Preferences dialog box and go to Editor > Edit modes > Grid.

The following options are available:

If selected, the compact representation of the grid is used: a child element is displayed
beside the parent element. In the non-compact representation, a child element is nested
below the parent.

Compact representation

If selected, the content of the document is formatted and indented each time you switch
from the Grid view to the Text view.

Format and indent when
passing from grid to text or
on save

Sets the default width (in characters) of a table column of the grid. A column may contain
the following:

Default column width
(characters)

• Element names
• Element text content
• Attribute names
• Attribute values

If the total width of the grid structure is too large you can resize any column by dragging
the column margins with the mouse pointer, but the change is not persistent. To make
it persistent, set the new column width with this option.

Allows you to set the background color for the active cell of the grid. There is only one
active cell at a time. The keyboard input always goes to the active cell and the selection
always contains it.

Active cell color

Allows you to set the background color for the selected cells of the grid except the active
cell.

Selection color

Allows you to set the color used for the lines that separate the grid cells.Border color

Allows you to set the background color of grid cells that are not selected.Background color

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 73

Allows you to set the text color of the information displayed in the grid cells.Foreground color

Row header colors Allows you to set the background color of row headers that
are not selected.

Background color

Allows you to set the background color of the row header
cell that is currently active.

Active cell color

Allows you to set the background color of the header cells
corresponding to the currently selected rows.

Selection color

The column headers are painted with two color gradients, one for the upper 1/3 part of
the header and the other for the lower 2/3 part. The start and end colors of the first

Column header colors

gradient are set with the first two color buttons. The start and end colors of the second
gradient are set with the last two color buttons.

Allows you to set the background color of column headers
that are not selected.

Background color

Allows you to set the background color of the column header
cell that is currently active.

Active cell color

Allows you to set the background color of the header cells
corresponding to the currently selected columns.

Selection color

Author Preferences

Oxygen XML Editor plugin provides an Author editor mode that provides a configurable graphical interface for editing
XML documents. To configure the options for the Author mode, open the Preferences dialog box and go to Editor >
Edit modes > Author.

The following options are available:

Sets the default background color of the Author editing mode. The
background-color property set in the CSS file associated with the currently
edited document overwrites this option.

Author default background color

Sets the default foreground color of the Author editing mode. The color
property set in the CSS file associated with the current edited document
overwrites this option.

Author default foreground color

When this option is selected, XML comments are displayed in Author mode.
Otherwise, they are hidden.

Show XML comments

When this option is selected, XML processing instructions are displayed in
Author mode. Otherwise they are hidden.

Show processing instructions

When this option is selected, the doctype declaration is displayed in Author
mode. Otherwise it is hidden.

Show doctype

When this option is selected, placeholders are displayed for elements with no
content to make them clearly visible. The placeholder is rendered as a light gray
box and displays the element name.

Show placeholders for empty
elements

When this option is selected, all errors reported while rendering the document
in Author mode are presented in the Errors view at the bottom of the editor.

Show Author layout messages

When enabled, the references (such as entities, XInclude, DITA conrefs) also
display the content of the resources they reference. If you toggle this option
while editing, you need to reload the file for the modification to take effect.

Display referenced content (entities,
XInclude, DITA conref, etc.)

The following options in regards to images in Author mode are available in this section:Images
Section Sets the maximum width that an image will be displayed. Wider images

will be scaled to fit.
Auto-scale images wider
than (pixels)

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 74

When this option is selected, images larger than 6 megapixels are displayed
in Author mode. Otherwise, they are not displayed.

Show very large images

Important: If you enable this option and your document contains
many such images, Oxygen XML Editor plugin may consume
all available memory, throwing an OutOfMemory error. To
resolve this, increase the available memory limit. and restart the
application.

In this section you can configure the following options in regards to tags that are displayed in
Author mode:

Tags Section

Sets the default display mode for element tags presented in Author mode.
You can choose between the following:

Tags display mode

• Full Tags with Attributes - All XML tags are displayed, with attribute
names and values, making it easier to transition from a Text-based editing
to Author mode editing.

• Full Tags - All XML tags are displayed, but without attributes.
• Block Tags - The XML tags that enclose block elements are displayed

in full. Compact tags (no element names) are displayed for inline
elements.

• Inline Tags - The XML tags that enclose inline elements are displayed
in full. Block tags are not displayed.

• Partial Tags - Partial tags (no names) are displayed for all elements.
• No Tags - No tags are displayed. This representation is as close as

possible to a word-processor view.

Sets the Author mode tags background color.Tags background
color

Sets the Author mode tags foreground color.Tags foreground
color

Allows you to change the font used to display tags text in the Author visual
editing mode. The [Default] font is computed based on the setting of the
Author default font option.

Tags font

When you deselect this option, the Author mode displays the tags in a more
decompressed layout, where block tags are displayed on separate lines.

Compact tag layout

The following option is available in this section:Whitespaces
Section Sets the foreground color of the white spaces in the Author mode. To

enable this option, open the Preferences dialog box , go to Text Editors
and select Show whitespaces characters.

Foreground color

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 75

In this section you can configure options in regards to the formatting and indenting that is applied
when a document is saved in Author mode, or when switching the editing mode from Author to
Text. The following options are available:

Serialization
Section

Use this option to specify what should be formatted and indented when you save
a document (or switch from Author to Text mode). You can choose between the
following two options:

Format and
indent

The Save operation only formats the nodes that were modified
in the Author mode. The rest of the document preserves its
original formatting.

Only the
modified
content

Note: This option also applies to the DITA maps
opened in the DITA Maps Manager.

The Save operation applies the formatting to the entire document
regardless of the nodes that were modified in Author mode.

The entire
document

If this option is enabled, the content of
the document is formatted by applying

Also apply
'Format and

the Format and Indent rules from theIndent' action as
Editor/Format/XML option page. In thisin 'Text' edit

mode case, the result of the Format and indent
operation will be the same as when it is
applied in Text editing mode.

Use this option to control how line breaks are handled when a document is
serialized. This will help to obtain better compatibility with other tools. You can
choose one of the following:

Compatibility
with other
tools

• None - Choose this option if compatibility with other tools can be ignored.
• Do not break lines, do not indent - Choose this option to avoid breaking lines

after element start or end tags and indenting will not be used.

Note: New lines that are added by the user in elements where the
xml:space attribute is set to preserve (such as pre elements in
HTML, or codeblock elements in DITA) are still inserted. Also,
selecting this option automatically disables the Also apply 'Format
and Indent' action as in 'Text' edit mode option, since the formatting
from Text mode does not take the CSS styles into account.

• Break lines only after elements displayed as blocks, do not indent - Choose
this option to instruct Oxygen XML Editor plugin to insert new lines only after
elements that have a CSS display property set to anything other than inline
or none (for example, block, list-item, table, etc.) and indenting will
not be used. When selecting this option, the formatting is dictated by the CSS.

Note: New lines that are added by the user in elements where the
xml:space attribute is set to preserve (such as pre elements in
HTML, or codeblock elements in DITA) are still inserted. Also,
selecting this option automatically disables the Also apply 'Format
and Indent' action as in 'Text' edit mode option, since the formatting
from Text mode does not take the CSS styles into account.

Click this link to open the Annotations Preferences on page 93 page.Configure
annotation
tooltip

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 76

Click this link to open the Document Type Association preferences page.For advanced
Author
configuration see
the Document
Type Association
settings

Cursor Navigation Preferences

Oxygen XML Editor plugin allows you to configure the appearance and behavior of the cursor in the Author mode
editor. To set cursor navigation preferences, open the Preferences dialog box and go to Author > Cursor Navigation.

The following options are available:

When this option is enabled, the element containing the cursor is highlighted. You can
use the color picker to choose the color of the highlight.

Highlight elements near
cursor

Oxygen XML Editor plugin uses tool tips in Author mode to indicate the position of the
cursor in the element structure of the underlying document. Depending on context, the

Show cursor position
tooltip

tool tips may show the current element name or the names of the elements before and
after the current cursor position.

When this option is enabled, Oxygen XML Editor plugin displays Location Tooltips
when you are editing the document in certain tags display modes (Inline Tags, Partial
Tags, No Tags) or when the mouse pointer is moved between block elements.

Show location tooltip on
mouse move

This option is disabled by default and this means that when you navigate using the up
and down arrow keys in Author mode, the cursor is placed within each of the underlying

Quick up/down navigation

XML elements between two blocks of text (the cursor changes to a horizontal line when
it is between blocks of text). This allows you to easily insert elements and manage the
structure of your XML content. However, if this option is enabled, the cursor ignores the
XML structure and jumps from one line of text to another, similar to how the cursor
behaves in a word processor.

This option is enabled by default and this means that when navigating between table cells
with the arrow keys, the cursor jumps from one cell to another. If this option is disabled,

Quick navigation in tables

the cursor navigates between XML nodes when navigating between table cells with the
arrow keys.

This setting determines how the left and right arrow keys behave in Author mode for
bidirectional (BIDI) text. When this option is enabled (default value), the right arrow

Arrow keys move the
cursor in the writing
direction key advances the cursor in the reading direction and the left arrow moves it in the opposite

direction. When this option is disabled, pressing the right arrow will simply move the
cursor to the right (and the left arrow moves it to the left), regardless of the text direction.

Schema-Aware Preferences

Oxygen XML Editor plugin can use the schema of your XML language to improve the way the Author mode editor
handles your content. To configure the Schema Aware options, open the Preferences dialog box and go to Editor >
Edit modes > Author > Schema aware.

The following options are available:

When you open or save a document in Author mode, white space is normalized using the display
property of the current CSS stylesheet and the values of the settings for Preserve space elements,

Schema aware
normalization,
format, and
indent

Default space elements, and Mixed content elements. When this option is selected, the schema
will also be used to normalize white space, based on the content model (element-only,
simple-content, or mixed) . Note that the schema information takes precedence.

To avoid accidentally introducing inappropriate white space around inline elements, Oxygen XML
Editor plugin does not normally apply indenting to the source of an element with mixed content.

Indent
blocks-only
content If this option is selected, Oxygen XML Editor plugin will apply indenting to the source of mixed

content elements that only contain block elements.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 77

The options in this section determine how Oxygen XML Editor plugin will use the schema of a
document to control the behavior of the Author mode.

Schema Aware
Editing section

• On - Enables all schema-aware editing options.
• Off - Disables all schema-aware editing options.
• Custom - Allows you to select custom schema-aware editing options from the following:

Controls what happens when you attempt to delete an element tag. The two
options are:

Delete element
tags with
backspace and
delete

• Smart delete - If deleting the tag would make the document invalid,
Oxygen XML Editor plugin will attempt to make the document valid by
unwrapping the current element or by appending it to an adjacent element
where the result would be valid. For instance, if you delete a bold tag,
the content can be unwrapped and become part of the surrounding
paragraph, but if you delete a list item tag, the list item content cannot
become part of the list container. However, the content could be appended
to a preceding list items.

• Reject action when its result is invalid - A deletion that would leave
the document in an invalid state is rejected.

Controls the behavior for paste and drag and drop actions. Available options
are:

Paste and
Drag and Drop

• Smart paste and drag and drop - If the content inserted by a paste or
drop action is not valid at the cursor position, according to the schema,
Oxygen XML Editor plugin tries to find an appropriate insert position.
The possibilities include:

• Creating a sibling element that can accept the content (for example,
if you tried to paste a paragraph into an existing paragraph).

• Inserting the content into a parent or child element (for example, if
you tried to paste a list item into an existing list item, or into the
space above or below and existing list).

• Inserting the content into an ancestor element where it would be
valid.

• Reject action when its result is invalid - If enabled, Oxygen XML
Editor plugin will not let you paste content into a position where it would
be invalid.

Controls the behavior that takes place when typing. Available options are:Typing

• Smart typing - If typed characters are not allowed in the element at the
cursor position, but the previous element does allow text, then a similar
element will be inserted, along with your content.

• Reject action when its result is invalid - If checked, and the result of
the typing action is invalid, the action will not be performed.

Controls the behavior that takes place when inserting elements using content
completion. Available options are:

Content
Completion

• Allow only insertion of valid elements and attributes - If selected, the
content completion list shows only the elements that can be inserted at
the current position and will not allow you to enter any other element.

• Show all possible elements in the content completion list - If selected,
the content completion list will show all the elements in the schema,
even those that cannot be entered validly at the current position. If you
select an element that is not valid at the current position, Oxygen XML

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 78

Editor plugin will attempt to find a valid location to insert it and may
present you with several options.

A warning message will be displayed when performing an action that will
result in invalid content. Available options are:

Warn on
invalid content
when

• Delete Element Tags - If selected, a warning message will be displayed
if the Delete Element Tags action will result in an invalid document.
You will be asked to confirm the deletion.

performing
action

• Join Elements - If selected, a warning message will be displayed if the
Join Elements action will result in an invalid document. You will be
asked to confirm the join.

If enabled, Oxygen XML Editor plugin automatically uses what it considers to be the best insertion
solution, when there is an attempt to insert content that is not valid in a specific context. If disabled,
Oxygen XML Editor plugin will ask the user to choose from a list of proposed solutions.

Automatically
apply the best
schema-aware
insertion
operation

If selected, the smart paste feature is enabled when external content is pasted in Author mode.Convert external
content on paste If enabled, the smart paste feature will be used even when

external content is pasted inside a space-preserve element
(such as a codeblock).

Convert even when pasting inside
space-preserve elements

Related information
Smart Paste Support on page 264

Customizing Smart Paste Support on page 941

Review Preferences

Oxygen XML Editor plugin lets you enter review comments and track changes in your documents. The Review preferences
page allows you to control how the Oxygen XML Editor plugin review features work. To configure these options, open
the Preferences dialog box and go to Editor > Edit modes > Author > Review.

The available options are as follows:

Specifies the name to be attached to all comments and to changes made while Track Changes is
active. By default, Oxygen XML Editor plugin uses the system user name.

Author

Track Changes
section (applies
for all authors)

Specifies whether or not Track Changes is enabled when you open a document. You
may have the Track Changes feature enabled in some documents and disabled in
others, or you can choose to always enable or disable the feature for all documents.
You can choose between the following options:

Initial State

• Stored in document - The current state of track changed is stored in the document
itself, meaning that track changes are on or off depending on the state the last time
the document was saved. This is the recommended setting when multiple authors
work on the same set of documents as it will make it obvious to other authors that
changes have been made in the document.

• Always On - The Track Changes feature is always on when you open a document.
You can turn it off for an opened document, but it will be turned on for the next
document you open.

• Always Off - The Track Changes feature is always off when you open a document.
You can turn it on for an opened document, but it will be turned off for the next
document you open.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 79

A changed line maker is a vertical line on the left side of the editor window indicating
where changes have been made in the document. To hide the changed lines marker,
disable this option.

Display
changed
lines
marker

When Track Changes option is on, the newly inserted content is highlighted with an
insertion marker that uses a color to adjust the following display properties of the

Inserted
content
color inserted content: foreground, background, and underline. This section allows you to

customize the following color options:

• Automatic - If this option is selected, Oxygen XML Editor plugin automatically
assigns a color to each user who inserted content in the current document. The
colors are picked from the Colors for automatic assignment list, the priority being
established by the type of change (deletion, insertion, or comment) and in the order
that you see in the list.

• Fixed - If this option is selected, Oxygen XML Editor plugin uses the specified
color for all insertion markers, regardless of who the author is.

• Use same color for text foreground - If enabled, Oxygen XML Editor plugin
uses the color defined above (Automatic or Fixed) to render the foreground of
the inserted content.

• Use same color for background - If enabled, Oxygen XML Editor plugin uses
the color defined above (Automatic or Fixed) to render the background of the
inserted content. A slider control allows you to set the transparency level of the
background.

When Track Changes option is on, the deleted content is highlighted with a deletion
marker that uses a color to adjust the following display properties of the deleted

Deleted
content
color content: foreground, background, and strikethrough. This section allows you to

customize the following color options:

• Automatic - If this option is selected, Oxygen XML Editor plugin automatically
assigns a color to each user who deleted content in the current document. The
colors are picked from the Colors for automatic assignment list, the priority being
established by the type of change (deletion, insertion, or comment) and in the order
that you see in the list.

• Fixed - If this option is selected, Oxygen XML Editor plugin uses the specified
color for all deletion markers, regardless of who the author is.

• Use same color for text foreground - If enabled, Oxygen XML Editor plugin
uses the color defined above (Automatic or Fixed) to render the foreground of
the deleted content.

• Use same color for background - If enabled, Oxygen XML Editor plugin uses
the color defined above (Automatic or Fixed) to render the background of the
deleted content. A slider control allows you to set the transparency level of the
background.

Sets the background color of the text that is commented on. The options are:Comments
color section

• Automatic - If this option is selected, Oxygen XML Editor plugin automatically assigns a color
to each user who adds a comment in the current document. The colors are picked from the Colors

(applies for all
authors)

for automatic assignment list, the priority being established by the type of change (deletion,
insertion, or comment) and in the order that you see in the list.

• Fixed - If this option is selected, Oxygen XML Editor plugin uses the specified color for all
changes, regardless of who the author is. A slider control allows you to set the transparency level
of the background.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 80

These are the colors that will be automatically assigned for tracked insertion changes, tracked deletion
changes, and comments if the Automatic option is selected in any of the sections in this preferences

Colors for
automatic
assignment list page. The colors are assigned in the order that you see in this list. You can use the Add, Edit,

or Remove buttons to modify the list of colors.

Related information
Reviewing Documents on page 278

Tracking Document Changes

Callouts Preferences

Oxygen XML Editor plugin can display callouts for review items such as comments and tracked changes. To customize
options for review callouts, open the Preferences dialog box and go to Editor > Edit modes > Author > Review >
Callouts.

The available options are as follows:

Show review
callouts for:

If enabled, callouts are displayed for comments, including comments that
are added to tracked changes. This option is enabled by default.

Comments

If enabled, callouts are displayed for tracked change deletions and the
following additional option becomes available:

Track Changes
deletions

If enabled, the deleted content is also
displayed in the callout.

Show deleted content in
callout

If enabled, callouts are displayed for tracked change insertions and the
following additional option becomes available:

Track Changes
insertions

If enabled, the inserted content is also
displayed in the callout.

Show inserted content in
callout

Rendering
section

When enabled, timestamp information is displayed in callouts.Show review time

When enabled, lines are shown that connect the callout to the location
of the change.

Show all connecting lines

Specifies the initial width of the callouts each time the document is
opened. The default is 250 pixels.

Initial width (px)

Specifies the maximum number of lines to be shown in the callouts.
The default is 5 lines. Note that this does not limit the number of lines

Text lines count limit

in the actual comment. It only limits the number of lines shown without
opening or editing it. To see the full comment, right-click on the callout

and select Edit Comment or Show Comment.

Profiling / Conditional Text Preferences

Oxygen XML Editor plugin lets you configure how profiling and conditional text is displayed in Author mode. It has
built-in support for the standard conditional text features of DITA and DocBook that you can customize for your own
projects. You can also add conditional support for other XML vocabularies, including your custom vocabularies.

To configure Profiling/Conditional Text options, open the Preferences dialog box and go to Editor > Edit modes >
Author > Profiling/Conditional Text.

Note: Note the following when configuring these settings:

• This preferences page is used to define how profiled elements are treated in Author mode. It does not create
profiling or conditional text attributes or values in the underlying XML vocabulary. It just changes how the
editor displays them.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 81

• This preferences page should be used for profiling / conditional text elements only. To change how other
types of attributes are displayed in the text, use a CSS file.

• If you are using the DITA XML vocabulary and a DITA Subject Scheme Map is defined in the root map of
your document, it will be used in place of anything defined using this dialog box.

This preferences page contains the following options and sections:

This button allows you to import profiling attributes from .ditaval files. You can merge
these new profiling attributes with the existing ones, or replace them completely. If the imported

Import from
DITAVAL

attributes conflict with the existing ones, Oxygen XML Editor plugin displays a dialog box
that contains two tables. The first one previews the imported attributes and the second one
previews the already defined attributes. You can choose to either keep the existing attributes
or replace them with the imported ones.

Note: When importing profiling attributes from DITAVAL files, Oxygen XML
Editor plugin automatically creates condition sets based on these files.

Allows you to specify a set of allowable values for each profiling or conditional attribute.

You can use the New button at the bottom of the table to add profiling attributes, the

Profiling Attributes
section

Edit button to edit existing ones, or the Delete button to delete entries from the table.
Use the Up and Down buttons to change the priority of the entries. If you have multiple
entries with identical names that match the same document type, Oxygen XML Editor plugin
uses the one that is positioned highest in the table.

This option is enabled by default, which means that users are allowed to add values that are
not defined in preferences to profiling attributes. If a user inserts such a value, when invoking

Allow additional
profiling attribute

the Edit Profiling Attributes action from the contextual menu in Author mode (or for DITAvalues collected from
the document topics, the Edit Properties action in the DITA Maps Manager), the Profiling Values

Conflict dialog box will appear and it includes an Add these values to the configuration
action that will automatically add the new value to the particular profiling attribute.

If this option is disabled, it means the following:

• The Profiling Values Conflict dialog box will never be displayed and the current
conditional text configuration is preserved. Therefore, users will not be allowed to easily
add new values to profiling attributes.

• In DITA, the automatic validation will display a warning that the value is not defined.

• In the DITA Validate and Check for Completeness dialog box, the Report attributes
and values that conflict with profiling preferences option is not displayed. This means
that the validation will behave the same as if that option was enabled and it will always
report such values.

Use this link to open the profiling Colors and Styles preference page.Configure profiling
colors and styles link

Allows you to specify a specific set of profiling attributes to be used to specify a particular

build configuration for your content. You can use the New button at the bottom of the table

Profiling Condition
Sets section

to add condition sets, the Edit button to edit existing ones, or the Delete button to delete
entries from the table. Use the Up and Down buttons to change the priority of the entries.
If you have multiple entries with identical names that match the same document type, Oxygen
XML Editor plugin uses the one that is positioned highest in the table.

Colors and Styles Preferences

Oxygen XML Editor plugin lets you set the colors and styles used to display profiling / conditional text in the Author
mode editor. To set Colors and Styles preferences, open the Preferences dialog box and go to Editor > Edit modes >
Author > Profiling/Conditional Text > Colors and Styles.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 82

The preference page includes the following options and sections:

Allows you to import profiling styles from .ditaval files. You can merge these new profiling
styles with the existing ones, or replace them completely. If the imported styles conflict with

Import from
DITAVAL

the existing ones, Oxygen XML Editor plugin displays a dialog box containing two tables: the
first one previews the imported styles and the second one previews the already defined styles.
You can choose to either keep the existing styles or replace them with the imported ones.

You can use this table to set specific colors and styles for profiling attribute values. The table
includes two categories:

Profiling Colors and
Styles Table

• Defined attributes values - Contains the styles for profiling attribute values defined in the
Profiling / Conditional Text preferences page. Each profiling attribute value has an associated
style. To ease the process of customizing styles, the Defined attributes values category
contains by default the list of empty styles. All you have to do is to adjust the colors and
decorations, thus skipping the process of manually defining the association rules (document
type, attribute name and value). This is the reason why a style from this category can only
be reset, not deleted.

• Other - This category contains styles for attribute values that are not marked as profiling
values, in the Profiling / Conditional Text preferences page. In this category are listed:

• All the styles that were defined in other projects (with other profiling attribute value
sets).

• All the styles set for the profiling attributes defined in a subject scheme map.

If you click this button, Oxygen XML Editor plugin will apply automatic styling to the profiling
attribute values that do not have a style defined.

Automatic styling
button

Opens the Add Profiling Style dialog box that allows you to associate a set of coloring and
styling properties to a profiling value.

New button

Note: You can define a default style for a specific attribute by setting the Attribute
value field to <ANY>. This style is applied for attribute values that do not have a
specific style associated with it.

Open the Edit Profiling Style dialog box that allows you to edit the colors or style for an
existing profiling value. You can also double-click the value to open this dialog box.

Edit button

Resets the style for the selected value to its default setting (no color or decoration).Clear style button

Delete the selected style from the Other category.Delete button

Attributes Rendering Preferences

Oxygen XML Editor plugin lets you display the profiling attributes applied to your content in the Author mode editor.
To configure how the profiling attributes appear, open the Preferences dialog box and go to Editor > Edit modes >
Author > Profiling/Conditional Text > Attributes Rendering. When the Show Profiling Attributes option is enabled,
the Author mode displays conditional text markers at the end of conditional text blocks. Use the options in this page to
customize the rendering of these text markers.

The following options are available:

If checked, the names of the profiling attributes are displayed with their
values. If unchecked, only the values are displayed.

Show profiling attribute name

Sets the background color used to display the profiling attributes.Background color

Sets the foreground color used to display the names of the profiling
attributes.

Attribute name foreground color

Sets the foreground color used to display values of the profiling attributes.Attribute values foreground color

Sets the color of the border of the block that displays the profiling attributes.Border color

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 83

MathML Preferences

Oxygen XML Editor plugin allows you to edit MathML equations and displays the results in a preview window. For a
more specialized MathML editor, you can install Design Science MathFlow, which is a commercial product that requires
a separate license.

To configure the MathML editor or to enter your MathFlow license information, open the Preferences dialog box and
go to Editor > Edit Modes / Pages > Author > MathML.

You can configure the following options:

The minimum size of the font used for rendering mathematical symbols when editing in
the Author mode.

Equation minimum font
size

The installation folder for the MathFlow components product (MathFlow SDK).MathFlow installation
directory

The license file for the MathFlow components product (MathFlow SDK).MathFlow license file

A MathML formula can be edited in one of three editors of MathFlow components product
(MathFlow SDK).

MathFlow preferred editor

• Structure Editor (default selection) - Targets professional XML workflow users.
• Style Editor - Tailored to the needs of content authors.
• Simple Editor - Designed for applications where end-users can enter mathematical

equations without prior training and only the meaning of the math matters.

Specifies how special characters are saved in the XML file.Save special characters

• As entity names - Saves the characters in &name; format. It refers to a character
by the name of the entity that has the desired character as its replacement text. For
example, the Greek Omega character is saved as Ω.

• As character entities (default selection) - Saves the characters in a hexadecimal
value, using the &#xNNN format. For example, the Greek Omega character is saved
as Ω.

• As character values - Saves the characters as the actual symbol. For example, the
Greek Omega character is saved as .

More documentation is available on the Design Science MathFlow website.

AutoCorrect Preferences

Oxygen XML Editor plugin includes an option to automatically correct misspelled words as you type in Author mode.
To enable and configure this feature, open the Preferences dialog box and go to Editor > Edit Modes > Author >
AutoCorrect.

The following options are available:

This option is enabled by default. When enabled, while editing in Author mode, if you type
anything that is listed in the Replace column of the Replacements table displayed in this

Enable AutoCorrect

preferences page, Oxygen XML Editor plugin will automatically replace it with the value
listed in the With column.

If enabled, in addition to anything listed in the Replacements table displayed in this preferences
page, Oxygen XML Editor plugin will also use suggestions from the Spell Checker to

Use additional
suggestions from the
spell checker automatically correct misspelled words. Suggestions from the Spell Checker will only be used

if the misspelled word is not found in the Replacements table.

Note: The AutoCorrect feature shares the same options configured in the Language
options and Ignore elements sections in the Spell Check preferences page.

Use this link to navigate to the Spell Check Preferences page.Spell Check options
link

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 84

http://www.dessci.com/en/products/mathflow/

The AutoCorrect feature uses the Replacements table to automatically replace anything that
is listed in the Replace column with the value listed in the With column for each language.

Replacements Table
section

You can specify the language for the Replacements table, and for
each language, you can configure the items listed in the table. The

Replacements for
language drop-down
menu language selected in this page is not the language that will be used

by the AutoCorrect feature. It is simply the language for the
Replacements table.

You can double-click on cells in either column to edit the listed items.
Use the Add button to insert new items and the Remove button to
delete rows from the table.

Replacements Table

Note: Any changes, additions, or deletions you make to
this table are saved to a path that is specified in the
AutoCorrect Dictionaries preferences page.

You can also choose to automatically convert double and single quotes to a quotation characters
of your choice by using the following options in the Smart quotes section:

Smart quotes section

• Replace "Single quotes" - Replaces single quotes with the quotation symbols you select
with the Start quote and End quote buttons.

• Replace "Double quotes" - Replaces double quotes with the quotation symbols you select
with the Start quote and End quote buttons.

If this option is selected, the options are stored on your local computer, in a folder that is not
accessible to other users.

Global Options

If this option is selected, the options are stored in the project file and can be shared with other
users. Selecting Project Options will only save your selections in Enable AutoCorrect, Use

Project Options

additional suggestions from the spell checker, and the options in the Smart quotes section.
Changes to the Replacements table are not saved in this page. To save changes to the
Replacements table at project level you need to specify a custom location in the User-defined
replacements section of the AutoCorrect Dictionaries preferences page and select Project
Options from that preferences page instead.

Restores the options in this preferences page to their default values and also deletes any
changes you have made to the Replacements table.

Restore Defaults

AutoCorrect Dictionaries Preferences

To set the Dictionaries preferences for the AutoCorrect feature, open the Preferences dialog box and go to Editor >
Edit Modes > Author > AutoCorrect > Dictionaries. This page allows you to specify the location of the dictionaries
that Oxygen XML Editor plugin uses for the AutoCorrect feature and the location for saving user-defined replacements.

The following options are available in this preferences page:

Displays the default location where the dictionaries that Oxygen XML Editor plugin uses
for the AutoCorrect feature are stored.

Dictionaries default
folder

Enable this option if you want to specify an additional location for the dictionaries that
Oxygen XML Editor plugin will use for the AutoCorrect feature.

Include dictionaries
from

Note: The AutoCorrect feature takes into account dictionaries collected both from
the default and custom locations and multiple dictionaries from the same language
are merged into a generic dictionary (for example, en_UK.dat from the default
location is merged with en_US.dat from a custom location, and the result is that
a third file is created for a generic dictionary called en.dat). However, if there
is already a generic dictionary (for example, en.dat) saved in either the default
or custom location, the other specific dictionaries (for example, en_UK.dat and
en_US.dat) will not be merged and the existing generic dictionary will simply

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 85

be used. Also, if the additional location contains a file with the same name as one
from the default location, the file in the additional location takes precedence over
the file from the default location. The user-defined replacements are never merged.

Use this link to open a topic in the Oxygen XML Editor plugin User Guide that explains
how to add dictionaries for the AutoCorrect feature.

How to add more
dictionaries link

Specifies the target where added, edited, or deleted replacements are saved. By default, the
target is the application preferences folder, but you can also choose a custom location.

Save user-defined
replacements in the
following location

Tip: To save changes to the Replacement table (in the AutoCorrect preferences
page) at project level, select a custom location for the User-defined replacements
and select Project Options at the bottom of the page.

Schema Design Preferences

Oxygen XML Editor plugin provides a graphical schema design editor to make editing XML Schema easier. To configure
the Schema Design options, open the Preferences dialog box and go to Editor > Edit modes > Schema Design.

The following options are available in the Schema Design preferences page:

When selected, Oxygen XML Editor plugin displays the content of
xs:documentation elements in schema diagrams.

Show annotation in the
diagram

The schema diagram editor will combine schemas imported by the current schema file
into a single schema diagram. You can choose what happens if you try to edit a
component from an imported schema. The options are:

When trying to edit
components from another
schema

• Always go to its definition - Oxygen XML Editor plugin opens the imported
schema file so that you can edit it.

• Never go to its definition - The imported schema file is not opened and the
component cannot be edited in place.

• Always ask - Oxygen XML Editor plugin asks if you want to open the imported
schema file.

Properties

Oxygen XML Editor plugin lets you control which properties to display for XML Schema components in the XML
Schema Design view. To configure the schema design properties displayed, open the Preferences dialog box and go to
Editor > Edit modes > Schema Design > Properties.

This preferences page contains the following:

If this option is selected, the properties selected in the property table are shown in
the XML Schema Design mode. This option is selected by default.

Show additional properties in
the diagram

Show - Use this column in the table to select the properties that you want to be
displayed in the XML Schema Design mode.

Properties Table

Only if specified - Use this column to select if you want the property to be displayed
only if it is defined in the schema.

Text Diagram Preferences

For certain XML languages, Oxygen XML Editor plugin provides a diagram view as part of the text mode editor. To
configure the Diagram preferences, open the Preferences dialog box and go to Editor > Edit modes / Pages > Text
Diagram.

The following options are available in this preference page:

When this option is selected, the Text mode editor for XML Schemas includes a split
screen view that shows a diagram of the schema structure. This is useful for seeing

Show Full Model XML
Schema diagram

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 86

the effects of schema changes you make. For editing a the schema using a diagram
instead of text, use the schema Design view.

Note: When handling very large schemas, displaying the schema diagram
might affect the performance of your system. In such cases, disabling the
schema diagram view improves the speed of navigation through the edited
schema.

Enables the Relax NG schema diagram and synchronization with the related views
(Attributes, Model, Elements, Outline).

Enable Relax NG diagram and
related views

Displays the Relax NG schema diagram in the split
screen views (Full Model View and Logical Model
View).

Show Relax NG diagram

Enables the NVDL schema diagram and synchronization with the related views
(Attributes, Model, Elements, Outline).

Enable NVDL diagram and
related views

Displays the NVDL schema diagram in the split screen
views (Full Model View and Logical Model View).

Show NVDL diagram

Allows you to specify the location of the schema diagram panel relative to the diagram
Text editor.

Location relative to editor

Use this link to navigate to the Schema Design preferences page where you can
choose to show or hide annotations in schema diagrams.

Show/Hide Annotations link

Format Preferences

This preferences page contains various formatting options that influence editing and formatting in both the Text and
Author editing modes. To control additional options specifically for the Author mode editor, see Whitespace Handling
in Author Mode on page 173.

Note: These settings apply to the formatting of source documents. The formatting of output documents is
determined by the transformation scenarios that create them.

To configure the Format options, open the Preferences dialog box and go to Editor > Format.

The following options are available:

If selected, Oxygen XML Editor plugin detects how a document is indented when it is
opened. Oxygen XML Editor plugin uses a heuristic method of detection by computing a

Detect indent on open

weighted average indent value from the initial document content. You can disable this setting
if the detected value does not work for your particular case and you want to use a fixed-size
indent for all the edited documents. If this option is enabled, Oxygen XML Editor plugin
detects the following:

• When TAB characters are used to indent content, the size of the TAB characters is used
for the indent size.

• Otherwise, the detected size of SPACE characters is used for the indent size.

Tip: If you want to minimize the formatting differences created by the Format
and Indent operation in a document edited in the Text edited mode, make sure
that both the Detect indent on open and Detect line width on open options are
enabled.

By default, if no indent was detected in the document, the fixed-size indent is used. Enable
this option if all your document have no indentation and you want to keep them that way.

Use zero-indent, if
detected

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 87

If selected, indents are created using TAB characters. If unchecked, lines are indented using
space characters. Selecting this option automatically disables the Detect indent on open
option.

Indent with tabs

The meaning of this setting depends on the following:Indent size

• If the Detect indent on open option is enabled and TAB characters are detected at the
beginning of the line, the indent size is the width of a TAB character. Otherwise, the
indent size value is ignored and Oxygen XML Editor plugin uses the number of detected
SPACE characters.

• If the Indent with tabs option is selected, the indent size is the width of a TAB character.
• If neither of these options are enabled, the indent size is the number of SPACE characters

used for indenting the text lines.

For additional information about changing the indent size, see the Setting an Indent Size to
Zero on page 243 topic.

For information about when this setting is used, see the When Indent Size and Line Width
Settings are Used in Oxygen XML Editor plugin on page 88 section.

If enabled, when typing content in the Text editing mode and the maximum line width is
reached, a line break is automatically inserted.

Hard line wrap (Limit
to "Line width - Format
and Indent")

If disabled, when you press the Enter key to insert a line break in the Textediting mode,
no indentation will be added to the new line.

Indent on enter

If selected, when you press the Enter key between a start and an end XML tag in the Text
editing mode, the cursor is placed in an indented position on the empty line formed between
the start and end tag.

Enable smart enter

If enabled, Oxygen XML Editor plugin automatically detects the line width when the
document is opened.

Detect line width on
open

If enabled, an XML document is formatted and indented before opening it in Oxygen XML
Editor plugin.

Format and indent the
document on open

Defines the number of characters after which the Format and Indent (pretty-print) action
performs hard line-wrapping. For example, if set to 100, after a Format and Indent action,
the longest line will have a maximum of 100 characters.

Line width - Format
and Indent

Note: To avoid having an indent that is longer than the line width setting and
without having sufficient space available for the text content, the indent limit is
actually set at half the value of the Line width - Format and Indent setting. The
remaining space is reserved for text.

For information about when this setting is used, see the When Indent Size and Line Width
Settings are Used in Oxygen XML Editor plugin on page 88 section.

The Format and Indent operation can be undone, but if used intensively, a considerable
amount of the memory allocated for Oxygen XML Editor plugin will be used for storing

Clear undo buffer
before Format and
Indent the undo states. If this option is selected, Oxygen XML Editor plugin empties the undo

buffer before doing a Format and Indent operation. This means you will not be able to
undo any changes you made before the format and indent operation. Select this option if
you encounter out of memory problems (OutOfMemoryError) when performing the
Format and Indent operation.

When Indent Size and Line Width Settings are Used in Oxygen XML Editor plugin

The values set in the Indent Size and Line Width - Format and Indent options are used in various places in the
application, including the following:

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 88

• When the Format and Indent action is used in the Text editing mode.
• When you press ENTER to break a line in the Text editing mode.
• When the Hard line wrap (Limit to "Line width - Format and Indent") option is enabled and the maximum line

width is reached while editing in the Text mode.
• When the XML is serialized by saving content in the Author editing mode.

To watch our video demonstration about the formatting options offered by Oxygen XML Editor plugin, go to
http://oxygenxml.com/demo/Autodetect_Formating.html.

XML Formatting Preferences

To configure the XML Formatting options, open the Preferences dialog box and go to Editor > Format > XML.

The following options are available:

This section includes the following drop-down boxes:Format
Section The Format and Indent operation preserves all empty lines found

in the document.
Preserve empty lines

The Format and Indent operation preserves text content as it is,
without removing or adding any white space.

Preserve text as it is

Line breaks found in attribute values are preserved.Preserve line breaks in
attributes

Note: When this option is enabled, the Break long attributes
option is automatically disabled.

The Format and Indent operation breaks long attribute values.Break long attributes

The inline elements are indented on separate lines if they are preceded
by white spaces and they follow another element start or end tag. For
example:

Original XML:

<root>
 text <parent> <child></child> </parent>
</root>

Indent inline elements

Indent inline elements enabled:

<root> text <parent>
<child/>

</parent>
</root>

Indent inline elements disabled:

<root> text <parent> <child/> </parent> </root>

The Format and Indent operation outputs empty elements with a
separate closing tag (for example, <a atr1="v1">). When

Expand empty elements

not enabled, the same operation represents an empty element in a
more compact form (<a atr1="v1"/>).

The Format and Indent operation sorts the attributes of an element
lexicographically.

Sort attributes

Inserts a space character before the trailing / and > of empty elements.Add space before slash in
empty elements

The Format and Indent operation breaks the line before the attribute
name.

Break line before an
attribute name

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 89

http://oxygenxml.com/demo/Autodetect_Formating.html

This section controls how the application handles whitespaces found in XML content. You can Add
or Remove element names or simplified XPath expressions in the various tabs.

Element
Spacing
Section

Note: The XPath expressions can accept one of the following attribute conditions (default
attribute values are not taken into account):

• element[@attr] - Matches all instances of the specified element that include the specified
attribute.

• element[not(@attr)] - Matches all instances of the specified element that do not include
the specified attribute.

• element[@attr = "value"] - Matches all instances of the specified element that include the
specified attribute with the given value.

• element[@attr != "value"] - Matches all instances of the specified element that include
the specified attribute and its value is different than the one given.

The following are just examples of how simplified XPath expressions might look like:

• elementName

• //elementName

• /elementName1/elementName2/elementName3

• //xs:localName

Note: The namespace prefixes (such as xs) are treated as part of the element
name without taking its binding to a namespace into account.

• //xs:documentation[@lang="en"]

The tabs are as follows:

List of elements for which the Format and Indent operation preserves the
whitespaces (such as blanks, tabs, and newlines).

Preserve space

List of elements for which the content is normalized (multiple contiguous
whitespaces are replaced by a single space), before applying the Format and
Indent operation.

Default space

The elements from this list are treated as mixed content when applying the
Format and Indent operation. The lines are split only when whitespaces are
encountered.

Mixed content

List of elements for which line breaks will be inserted, regardless of their
content. You can choose to break the line before the element, after, or both.

Line break

The Format and Indent operation takes the schema information into account with regards to the space
preserve, mixed, or element only properties of an element.

Schema
aware format
and indent

Includes the following options:Indent
Section Normally, the Preserve space elements (identified by the

xml:space attribute set to preserve or by their presence in the
Indent (when typing) in
preserve space elements

Preserve space tab of the Element Spacing list) are ignored by the
Format and Indent operation. When this option is enabled and you
edit one of these elements, its content is formatted.

When you paste a chunk of text that has fewer than 300 lines, the
inserted content is indented. To keep the original indent style of the
document you copy content from, disable this option.

Indent on paste - sections with
number of lines less than 300

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 90

Whitespaces Preferences

When Oxygen XML Editor plugin formats and indents XML documents, a whitespace normalization process is applied,
thus replacing whitespace sequences with single space characters. Oxygen XML Editor plugin allows you to configure
which Unicode characters are treated as spaces during the normalization process.

To configure the Whitespace preferences, open the Preferences dialog box and go to Editor > Format > XML >
Whitespaces.

This table lists the Unicode whitespace characters. Check any that you want to have treated as whitespace when formatting
and indenting an XML document.

The whitespaces are normalized when:

• The Format and Indent action is applied on an XML document.
• You switch from Text mode to Author mode.
• You switch from Author mode to Text mode.

Note: The whitespace normalization process replaces any sequence of characters declared as whitespaces in
the Whitespaces table with a single space character (U+0020). If you want to be sure that a certain whitespace
character will not be removed in the normalization process, deselect it in the Whitespaces table.

Important: The characters with the codes U+0009 (TAB), U+000A (LF), U+000D (CR) and U+0020 (SPACE)
are always considered to be whitespace characters and cannot be deselected.

XQuery Formatting Preferences

To configure the XQuery Formatting options, open the Preferences dialog box and go to Editor > Format > XQuery.

The following options are available:

• Preserve line breaks - All initial line breaks are preserved.
• Break line before an attribute name - Each attribute of an XML element is written on a new line and properly

indented.

XPath Formatting Preferences

To configure the XPath Formatting options, open the Preferences dialog box and go to Editor > Format > XPath.

The following option is available:

• Format XPath code embedded in XSLT, XSD and Schematron files - If enabled, the Format and Indent action
applied on an XSD, XSLT, or Schematron document will perform an XPath-specific formatting on the values of the
attributes that accept XPath expressions.

Note: For XSLT documents, the formatting is not applied to attribute value templates.

CSS Properties Formatting Preferences

Oxygen XML Editor plugin can format and indent your CSS files. To configure the CSS formatting options, open the
Preferences dialog box and go to Editor > Format > CSS.

The following options control how your CSS files are formatted and indented:

If enabled, the class body (including the curly brackets) is placed on a new
line. Disabled by default.

Class body on new line

When enabled, the class content is indented. Enabled by default.Indent class content

When enabled, whitespaces are added between the : (colon) and the value
of a style property. Enabled by default.

Add space before the value of a CSS
property

If enabled, an empty line is added between two classes. Disabled by default.Add new line between classes

When enabled, the empty lines from the CSS content are preserved. Enabled
by default.

Preserve empty lines

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 91

When enabled, CSS content that is embedded in XML is also formatted
when the XML content is formatted. Enabled by default.

Allow formatting embedded CSS

JavaScript Properties Formatting Preferences

To configure the JavaScript format options, open the Preferences dialog box and go to Editor > Format > JavaScript.

The following options control the behavior of the Format and Indent action:

• Start curly brace on new line - Opening curly braces start on a new line.
• Preserve empty lines - Empty lines in the JavaScript code are preserved. This option is enabled by default.
• Allow formatting embedded JavaScript - Applied only to XHTML documents, this option allows Oxygen XML

Editor plugin to format embedded JavaScript code, taking precedence over the Schema aware format and indent
option. This option is enabled by default.

Content Completion Preferences

Oxygen XML Editor plugin provides a Content Completion Assistant that provides a list of available options at any
point in a document and can auto-complete structures, elements, and attributes. To configure the Content Completion
preferences, open the Preferences dialog box and go to Editor > Content Completion. These options control how the
Content Completion Assistant works.

The following options are available:

When enabled, Oxygen XML Editor plugin automatically closes the last open tag
when you type </.

Auto close the last opened tag

If you rename, delete, or comment out a start tag, Oxygen XML Editor plugin
automatically renames, deletes, or comments out the matching end tag.

Automatically
rename/delete/comment
matching tags

Note: If you select Toggle comment for multiple starting tags and the
matching end tags are on the same line as other start tags, the end tags are
not commented.

Toggles the content completion feature on or off.Enable content completion

When you choose an entry from the Content Completion Assistant list of proposals,
Oxygen XML Editor plugin inserts both start and end tags. The following additional
options are available in regards to closing the element:

Close the inserted element

• If it has no matching tag - The end tag of the inserted element is automatically
added only if it is not already present in the document.

• Add element content - Oxygen XML Editor plugin inserts the required elements
specified in the DTD, XML Schema, or RELAX NG schema that is associated
with the edited XML document.

• Add optional content - If enabled, Oxygen XML Editor plugin inserts the
optional elements specified in the DTD, XML Schema, or RELAX NG schema.

• Add first Choice particle - If enabled, Oxygen XML Editor plugin inserts the
first choice particle specified in the DTD, XML Schema, or RELAX NG
schema.

When enabled, the search in the Content Completion Assistant is case-sensitive
when you type a character ('a' and 'A' are different characters).

Case sensitive search

Note: This option is ignored when the current language itself is not case
sensitive. For example, the case is ignored in the CSS language.

When enabled, Oxygen XML Editor plugin automatically moves the cursor between
the start and end tag after inserting the element. This only applies to:

Position cursor between tags

• Elements with only optional attributes or no attributes at all.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 92

• Elements with required attributes, but only when the Insert the required attributes
option is disabled.

Oxygen XML Editor plugin displays a list with all the internal and external entities
declared in the current document when you type the start character of an entity reference
(for example, &).

Show all entities

Oxygen XML Editor plugin inserts automatically the required attributes taken from
the DTD or XML Schema.

Insert the required attributes

If enabled, Oxygen XML Editor plugin automatically inserts any FIXED attributes
from the DTD or XML Schema for an element inserted with the help of the Content
Completion Assistant.

Insert the fixed attributes

When enabled, Oxygen XML Editor plugin remembers the last inserted items from
the Content Completion Assistant window. The number of items to be remembered

Show recently used items

is limited by the Maximum number of recent items shown list box. These most
frequently used items are displayed on the top of the content completion window and
their icons are decorated with a small red square..

Specifies the limit for the number of recently used
items presented at the top of the Content
Completion Assistant window.

Maximum number of recent
items shown

When enabled, Oxygen XML Editor plugin learns the attribute values used in a
document.

Learn attributes values

Oxygen XML Editor plugin automatically learns the document structure when the
document is opened.

Learn on open document

When enabled, Oxygen XML Editor plugin learns the typed words and makes them
available in a content completion fashion by pressing Ctrl + Space (Command +
Space on OS X) on your keyboard;

Learn words (Dynamic
Abbreviations, available on
CTRL-SPACE
(COMMAND-SPACE on OS
X))

Note: In order to be learned, the words need to be separated by space
characters.

Delay in milliseconds from last key press until the Content Completion Assistant
is displayed.

Activation delay of the
proposals window (ms)

Related information
Configuring the List of Attribute and Element Values on page 968

Annotations Preferences

Certain types of schemas (XML Schema, DTDs, Relax NG) can include annotations that document the various elements
and attributes that they define. Oxygen XML Editor plugin can display these annotations when offering content completion
suggestions. To configure the Annotations preferences, open the Preferences dialog box and go to Editor > Content
Completion > Annotations.

The following options are available:

Oxygen XML Editor plugin displays the schema annotations of an element, attribute,
or attribute value currently selected in the Content Completion Assistant proposals
list.

Show annotations in Content
Completion Assistant

Oxygen XML Editor plugin displays the annotation of elements and attributes as a
tooltip when you hover over them with the cursor in the editing area or in the Elements
view.

Show annotations in tooltip

This option allows you to view the annotations associated with an element or attribute
in HTML format. It is available when editing XML documents that have associated

Show annotation in HTML
format, if possible

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 93

an XML Schema or Relax NG schema. When this option is disabled the annotations
are converted and displayed as plain text.

To address the lack of dedicated annotation support in DTD documents, Oxygen XML
Editor plugin recommends prefixing with the doc: particle all comments intended to
be shown to the developer who writes an XML validated against a DTD schema.

When this option is enabled, Oxygen XML Editor plugin uses the following mechanism
to collect annotations:

Prefer DTD comments that
start with "doc:" as
annotations

• If at least one doc: comment is found in the entire DTD, only comments of this
type are displayed as annotations.

• If no doc: comment is found in the entire DTD, all comments are considered
annotations and displayed as such.

When the option is disabled, all comments, regardless of their type, are considered
annotations and displayed as such.

When this option is selected, any element outside the Relax NG namespace, that is
http://relaxng.org/ns/structure/1.0, is considered annotation and is

Use all Relax NG annotations
as documentation

displayed in the annotation window next to the Content Completion Assistant window
and in the Model view. When this option is not selected, only elements from the Relax
NG annotations namespace, that is
http://relaxng.org/ns/compatibility/annotations/1.0 are
considered annotations.

Related information
Schema Annotations in Text Mode on page 232

XSL Preferences

XSL stylesheets are often used to create output in XHTML or XSL-FO. In addition to suggesting content completion
options for XSLT stylesheet elements, Oxygen XML Editor plugin can suggest elements from these vocabularies. To
configure the XSL content completion options, open the Preferences dialog box and go to Editor > Content
Completion > XSL.

The following options are available:

This section includes options in regards to detecting elements from the declared schema.Include elements
declared in the
schema section

Detects if the output being generated is HTML or FO and
provides content completion for those vocabularies. Oxygen

Automatically detect HTML
or Formatting Objects

XML Editor plugin analyzes the namespaces declared in the
root element to find an appropriate schema.

If the detection fails, Oxygen XML Editor plugin uses one of the following options:

• None - The Content Completion Assistant suggests only XSLT elements.
• HTML - The Content Completion Assistant includes HTML elements, including HTML5

elements (such as video, canvas, etc.).
• Formatting objects - The Content Completion Assistant includes Formatting Objects

(XSL-FO) elements as substitutes for xsl:element.
• Custom schema - If you want content completion hints for another output vocabulary, you

can use this option to specify the path to the schema for that vocabulary. The supported
schema types are DTD, XML Schema, RNG schema, or NVDL schema for inserting elements
from the target language of the stylesheet.

This section specifies an additional schema that will be used for documenting XSL stylesheets.
You can choose between the following:

Documentation
schema section

• Build-in schema - Uses the built-in schema for documentation.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 94

• Custom schema - Allows you to specify a custom schema for documentation. The supported
schema types are XSD, RNG, RNC, DTD, and NVDL.

XPath Preferences

Oxygen XML Editor plugin provides content-completion support for XPath expressions. To configure the options for
the content completion in XPath expressions, open the Preferences dialog box and go to Editor > Content Completion >
XPath.

The following options are available:

• Enable content completion for XPath expressions - Enables the Content Completion Assistant in XPath expressions
that you enter in the match, select, and test XSL attributes and also in the XPath toolbar.

• Include XPath functions - When this option is selected, XPath functions are included in the content completion
suggestions.

• Include XSLT functions - When this option is selected, XSLT functions are included in the content completion
suggestions.

• Include axes - When this option is selected, XSLT axes are included in the content completion suggestions.

• Show signatures of XSLT / XPath functions - Makes the editor indicate the signature of the XPath function located
at the cursor position in a tooltip. See the XPath Tooltip Helper section for more information.

XSD Preferences

Oxygen XML Editor plugin provides content completion assistance when you are writing an XML Schema (XSD). To
configure XSD preferences, open the Preferences dialog box and go to Editor > Content Completion > XSD. The
options in this preferences page define what elements are suggested by the Content Completion Assistant, in addition
to the ones from the XML Schema (defined by the xs:annotation/xs:appinfo elements).

The following options are available:

• None - The Content Completion Assistant offers only the XML Schema schema information.
• ISO Schematron - The Content Completion Assistant includes ISO Schematron elements in xs:appinfo.
• Schematron 1.5 - The Content Completion Assistant includes Schematron 1.5 elements in xs:appinfo.
• Other - The Content Completion Assistant includes in xs:appinfo elements from an XML Schema identified

by a URL.

Syntax Highlight Preferences

Oxygen XML Editor plugin supports syntax highlighting of XML in the Text mode editor, DTD, Relax NG (XML and
Compact Syntax), Java, JavaScript / JSON, PHP, CSS, XQuery, C++, C, Perl, Properties, SQL, Shell and Batch documents.

To configure syntax highlighting, open the Preferences dialog box and go to Editor > Syntax Highlight.

To set syntax colors for a language, expand the listing for that language in the top panel to show the list of syntax items
for that language. Use the color and style selectors to change how each syntax item is displayed. The results of your
changes are displayed in the preview panel. If you do not know the name of the syntax token that you want to configure,
click that token in the Preview area to select it.

Note: All default color sets come with a high-contrast variant that is automatically used when you switch to a
black-background or white-background high-contrast theme in your Windows operating system settings. The
high-contrast theme will not overwrite any default color you set in Editor > Syntax Highlight preferences page.

The settings for XML documents are used also in XSD, XSL, RNG documents. The Preview area has separate tabs for
XML, XSD, XSL, RNG.

The Enable nested syntax highlight option controls whether or not content types that are nested in the same file (such
as PHP, JS, or CSS scripts inside an HTML file) are highlighted according to the color schemes defined for each content
type.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 95

Elements / Attributes by Prefix Preferences

Oxygen XML Editor plugin allows you to specify syntax highlighting colors for XML elements and attributes with
specific namespace prefixes. To configure the Elements / Attributes by Prefix preferences, open the Preferences dialog
box and go to Editor > Syntax Highlight > Elements / Attributes by Prefix.

To change the syntax coloring for a specific namespace prefix, choose the prefix from the list, or add a new one using
the New button, and use the color and style selectors to set the syntax highlighting style for that namespace prefix.

Note: Syntax highlighting is based on the literal namespace prefix, not the namespace that the prefix is bound
to in the document.

If you only want the prefix, and not the whole element or attribute name, to be styled with a particular color, enable the
Draw only the prefix with a separate color option.

Open / Save Preferences

Oxygen XML Editor plugin lets you control how files are opened and saved. To configure the options for opening and
saving documents, open the Preferences dialog box and go to Editor > Open / Save.

The following options are available:

Open section Oxygen XML Editor plugin will create line breaks if the
characters in a line exceed the specified value. You can choose
one of the following:

Format document when
longest line exceeds

• Always format
• Never format
• Always ask

Save section Saves all opened files before validating or transforming an
XML document. This ensures that any dependencies are

Save all files before
transformation or validation

resolved when modifying the XML document and its XML
Schema.

If enabled, Oxygen XML Editor plugin runs a validation that
checks your document for errors before saving it.

Check errors on save

Performance section If selected, Oxygen XML Editor plugin clears its undo buffer when
you save a document. Thus, modifications made prior to saving the

Clear undo buffer on
save

document cannot be undone. Select this option if you frequently
encounter out of memory errors when editing large documents.

Save Hooks Preferences

Oxygen XML Editor plugin includes an option for automatically compiling LESS stylesheets. To set this option, open
the Preferences dialog box and go to Editor > Open / Save > Save hooks.

The following option can be enabled or disabled:

If enabled, when you save a LESS file it will automatically be compiled to CSS
(disabled by default).

Automatically compile LESS
to CSS when saving

Important: If this option is enabled, when you save a LESS file, the CSS
file that has the same name as the LESS file is overwritten without warning.
Make sure all your changes are made in the LESS file. Do not edit the CSS
file directly, as your changes might be lost.

Templates Preferences

This page simply allows you to navigate to the preference pages for code templates or document templates.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 96

Code Templates Preferences

Code templates are code fragments that can be inserted at the current editing position. Oxygen XML Editor plugin
includes a set of built-in templates for CSS, LESS, Schematron, XSL, XQuery, and XML Schema document types. You
can also define your own code templates and share them with your colleagues using the template export and import
functions.

To configure Code Templates, open the Preferences dialog box and go to Editor > Templates > Code Templates.

This preferences page contains a list of all the available code templates (both built-in and custom created ones) and a
code preview area. You can disable any code template by deselecting it.

The following actions are available:

Opens the Code template dialog box that allows you to define a new code template. You can define the
following fields:

New

• Name - The name of the code template.
• Description - The description of the code template that will appear in the Code Templates preferences

page and in the tooltip message when selecting it from the Content Completion Assistant. HTML
markup can be used for better rendering.

• Associate with - You can choose to set the code template to be associated with a specific type of
editor or for all editor types.

• Shortcut key - Allows you to configure a shortcut key that can be used to insert the code template.
The + character separates keys. If the Enable platform-independent shortcut keys checkbox is
enabled, the shortcut is platform-independent and the following modifiers are used:

• M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
• M2 represents the Shift key.
• M3 represents the Option key on MacOS X, and the Alt key on other platforms.
• M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.

• Content - Text box where you define the content that is used when the code template is inserted.

Opens the Code template dialog box and allows you to edit an existing code template. You can edit the
following fields:

Edit

• Description - The description of the code template that will appear in the Code Templates preferences
page and in the tooltip message when selecting it from the Content Completion Assistant. HTML
markup can be used for better rendering.

• Shortcut key - Allows you to configure a shortcut key that can be used to insert the code template.
The + character separates keys. If the Enable platform-independent shortcut keys checkbox is
enabled, the shortcut is platform-independent and the following modifiers are used:

• M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
• M2 represents the Shift key.
• M3 represents the Option key on MacOS X, and the Alt key on other platforms.
• M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.

• Content - Text box where you define the content that is used when the code template is inserted.

Creates a duplicate of the currently selected code template.Duplicate

Deletes the currently selected code template. This action is disabled for the built-in code templates.Delete

Exports a file with code templates.Export

Imports a file with code templates that was created by the Export action.Import

You can use the following editor variables when you define a code template in the Content text box:

• ${caret} - The position where the cursor is located. This variable can be used in a code template, in Author mode
operations, or in a selection plugin.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 97

• ${selection} - The current selected text content in the current edited document. This variable can be used in a code
template, in Author mode operations, or in a selection plugin.

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default_value')} - To
prompt for values at runtime, use the ask('message', type, ('real_value1':'rendered_value1';
'real_value2':'rendered_value2'; ...), 'default-value'') editor variable. You can set the following parameters:

• 'message' - The displayed message. Note the quotes that enclose the message.
• type - Optional parameter, with one of the following values:

Parameter

Format: ${ask('message', url, 'default_value')}url

Description: Input is considered a URL. Oxygen XML Editor plugin checks that the
provided URL is valid.

Example:

• ${ask('Input URL', url)} - The displayed dialog box has the name Input
URL. The expected input type is URL.

• ${ask('Input URL', url, 'http://www.example.com')} - The
displayed dialog box has the name Input URL. The expected input type is URL.
The input field displays the default value http://www.example.com.

Format: ${ask('message', password, 'default')}password

Description: The input is hidden with bullet characters.

Example:

• ${ask('Input password', password)} - The displayed dialog box has
the name 'Input password' and the input is hidden with bullet symbols.

• ${ask('Input password', password, 'abcd')} - The displayed
dialog box has the name 'Input password' and the input hidden with bullet
symbols. The input field already contains the default abcd value.

Format: ${ask('message', generic, 'default')}generic

Description: The input is considered to be generic text that requires no special handling.

Example:

• ${ask('Hello world!')} - The dialog box has a Hello world! message
displayed.

• ${ask('Hello world!', generic, 'Hello again!')} - The dialog
box has a Hello world! message displayed and the value displayed in the input
box is 'Hello again!'.

Format: ${ask('message', relative_url, 'default')}relative_url

Description: Input is considered a URL. Oxygen XML Editor plugin tries to make the
URL relative to that of the document you are editing.

Note: If the $ask editor variable is expanded in content that is not yet saved
(such as an untitled file, whose path cannot be determined), then Oxygen XML
Editor plugin will transform it into an absolute URL.

Example:

• ${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has the name
'File location'. The URL inserted in the input box is made relative to the
current edited document location.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 98

Parameter

Format: ${ask('message', combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

combobox

Description: Displays a dialog box that offers a drop-down menu. The drop-down menu
is populated with the given rendered_value values. Choosing such a value will
return its associated value (real_value).

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} -
The dialog box has the name 'Operating System'. The drop-down menu
displays the three given operating systems. The associated value will be returned
based upon your selection.

Note: In this example, the default value is indicated by the osx key.
However, the same result could be obtained if the default value is indicated
by Mac OS X, as in the following example: ${ask('Operating
System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'Mac
OS X')}

• ${ask('Mobile OS', combobox, ('win':'Windows
Mobile';'ios':'iOS';'and':'Android'), 'Android')}

Format: ${ask('message', editable_combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

editable_combobox

Description: Displays a dialog box that offers a drop-down menu with editable elements.
The drop-down menu is populated with the given rendered_value values. Choosing
such a value will return its associated real value (real_value) or the value inserted
when you edit a list entry.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', editable_combobox,
('win':'Microsoft Windows';'osx':'Mac OS
X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has the name
'Operating System'. The drop-down menu displays the three given operating
systems and also allows you to edit the entry. The associated value will be returned
based upon your selection or the text you input.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 99

Parameter

Format: ${ask('message', radio,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

radio

Description: Displays a dialog box that offers a series of radio buttons. Each radio
button displays a 'rendered_value and will return an associated real_value.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', radio, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} -
The dialog box has the name 'Operating System'. The radio button group
allows you to choose between the three operating systems.

Note: In this example Mac OS X is the default selected value and if
selected it would return osx for the output.

• 'default-value' - optional parameter. Provides a default value.

• ${timeStamp} - Time stamp, that is the current time in Unix format. For example, it can be used to save transformation
results in multiple output files on each transformation.

• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID
class.

• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not guaranteed to
be universally unique.

• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently opened
and selected.

• ${cfne} - Current file name with extension. The current file is the one currently opened and selected.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent

folder.
• ${frameworksDir} - The path (as file path) of the [OXYGEN_INSTALL_DIR]/frameworksdirectory.
• ${pd} - Current project folder as file path. Usually the current folder selected in the Project View.
• ${oxygenInstallDir} - Oxygen XML Editor plugin installation folder as file path.
• ${homeDir} - The path (as file path) of the user home folder.
• ${pn} - Current project name.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed by

the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor variable.
• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified

in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for operating
system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat class.
Example: yyyy-MM-dd;

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to
http://www.w3.org/TR/xmlschema-2/#dateTime.

Related information
Code Templates on page 237

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 100

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime

Document Templates Preferences

Oxygen XML Editor plugin provides a selection of document templates that make it easier to create new documents in
a variety of formats. The list of available templates is presented when you create a new document. You can also create
your own templates and share them with others. You can store your custom file templates in the existing templates
folder in the Oxygen XML Editor plugin installation directory or store them in a custom directory. If you store them in
a custom direction, you need to add that directory to the list of template directories that Oxygen XML Editor plugin
uses.

To add a template directory, follow these steps:

1. open the Preferences dialog box and go to Editor > Templates > Document Templates.

2. Use the New button to select a location of the new document template folder.

This will add the folder to the list in this preferences page and it will now appear in the New from templates wizard.

Note: For DITA templates, they will also appear in the dialog box for creating new DITA topics from the DITA
Maps Manager, but if you create a corresponding properties file, you need to set the type property to dita.

You can also use the Edit or Delete buttons to manage folders in the list, and you can alter the order in which Oxygen
XML Editor plugin looks in these directories by using the Up and Down buttons.

Spell Check Preferences

Oxygen XML Editor plugin provides support for spell checking in the text and author editing modes. To configure the
Spell Check options, open the Preferences dialog box and go to Editor > Spell Check.

The following options are available:

Oxygen XML Editor plugin includes two spell check engines, Hunspell and Java spell checker.
The two engines come with different dictionaries. When you select an engine here, the list of

Spell checking
engine

languages in the Default language option changes based on the available dictionaries for the
chosen engine.

This option is disabled by default. When enabled, Oxygen XML Editor plugin automatically
checks the spelling as you type and highlights misspelled words in the document.

Automatic spell
check

• Select editors - You can select which editors (and therefore which file types) will be
automatically spelled checked. File types (such as CSS and DTD), in which automatic spell
checking is not usually helpful, are excluded by default.

This section includes the following language options:Language options
section The default language list allows you to choose the language used by the

spell check engine when the language is not specified in the source file.
You can add additional dictionaries to the spell check engines.

Default language

When this option is selected, the contents of an element with one of the
lang or xml:lang attributes is checked in that language. Choose

Use "lang" and
"xml:lang"
attributes between the following two options for instances when these attributes are

missing:

• Use the default language - If the lang and xml:lang attributes
are missing, the selection in the Default language list is used.

• Do not check - If the lang and xml:lang attributes are missing,
the element is not checked.

You can choose to check the spelling inside the following XML items:XML spell
checking in section

• Comments
• Attribute values
• Text

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 101

• CDATA

This section includes the following other options:Options section

When selected, the spell checker reports capitalization errors (for
example, a word that starts with lowercase after etc. or i.e.).

Check capitalization

When selected, the spell checker checks punctuation. Misplaced
white space and unusual sequences, such as a period following a
comma, are highlighted as errors.

Check punctuation

When selected, the spell checker does not check words containing
mixed case characters (for example, SpellChecker).

Ignore mixed case words

Available only for the Hunspell spell checker. When selected,
acronyms are not reported as errors.

Ignore acronyms

When selected, the spell checker does not check words containing
digits (for example, b2b).

Ignore words with digits

When selected, the spell checker does not signal two successive
identical words as an error.

Ignore duplicates

When selected, the spell checker ignores words recognized as URLs
or file names (for example, www.oxygenxml.com or c:\boot.ini).

Ignore URL

When selected, all words formed by concatenating two legal words
with a hyphen (hyphenated compounds) are accepted. If recognized

Allow compounds words

by the language, two words concatenated without hyphen (closed
compounds) are also accepted.

Available only for the Java spell checker. When selected, a word
formed by concatenating a recognized prefix and a legal word is

Allow general prefixes

accepted. For example if mini- is a registered prefix, the spell check
engine accepts the word mini-computer.

When selected, the spell checker accepts any word ending with
recognized file extensions (for example, myfile.txt or index.html).

Allow file extensions

You can use the Add and Remove buttons to configure a list of element names or XPath
expressions to be ignored by the spell checker. The following restricted set of XPath expressions
are supported:

Ignore elements
section

• '/' and '//' separators
• '*' wildcard

An example of an allowed XPath expression is: /a/*/b.

Use this link to navigate to the AutoCorrect preferences page.AutoCorrect
options link

To change the color used by the spell check engine to highlight spelling errors, go to Window (Eclipse on Mac OSX)
and choose Preferences. Then go to General > Editors > Text Editors > Annotations and change the color in the
Spell Check Annotation option.

Spell Check Dictionaries Preferences

To set the Dictionaries preferences, open the Preferences dialog box and go to Editor > Spell Check > Dictionaries.
This page allows you to configure the dictionaries and term lists (.tdi files) that Oxygen XML Editor plugin uses and
to choose where to save new learned words.

The following options are valid when Oxygen XML Editor plugin uses the Hunspell spell checking engine:

Displays the default location where the dictionaries and term lists that Oxygen XML
Editor plugin uses are stored.

Dictionaries and term lists
default folder

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 102

Selecting this option allows you to specify a location where you have stored dictionaries
and term lists that you want to include, along with the default ones.

Include dictionaries and
term list from

Note: The spell checker takes into account dictionaries and term lists collected
both from the default and custom locations and multiple dictionaries and term
lists from the same language are merged into generic ones (for example,
en_UK.dic from the default location is merged with en_US.dic from a
custom location, and the result is that a third file is created for a generic
dictionary called en.dic). However, if there is already a generic dictionary
(for example, en.dic) saved in either the default or custom location, the
other specific dictionaries (for example, en_UK.dic and en_US.dic) will
not be merged and the existing generic dictionary will simply be used. Also,
if the additional location contains a file with the same name as one from the
default location, the file in the additional location takes precedence over the
file from the default location.

Use this link to open a topic in the Oxygen XML Editor plugin User Guide that explains
how to add more dictionaries and term lists.

How to add more
dictionaries and term lists
link

Specifies the target where the newly learned words are saved. By default, the target is
the application preferences folder, but you can also choose a custom location.

Save learned words in the
following location

Opens the list of learned words, allowing you to select the items you want to remove,
without deleting the dictionaries and term lists.

Delete learned words

Related tasks
Add Dictionaries for the Hunspell Checker on page 563

Related information
Adding Term Lists on page 564

Document Checking Preferences

To configure the Document Checking (validation) options, open the Preferences dialog box and go to Editor >
Document Checking. This preferences page contains preferences for configuring how a document is checked for both
well-formedness and validation errors.

The following options are available:

If a validation generates more errors than the number specified in this option,
only the errors up to this number are highlighted in editor panel and on the stripe

Maximum number of validation
highlights

that is displayed at the right side of editor panel. This option applies to both
automatic validation and manual validation.

If this option is enabled, all the error markers added in the Problems view for
that document are removed when the Oxygen XML Editor plugin plugin is
closed.

Clear validation markers on close

This causes the validation to be automatically executed in the background as the
document is modified in Oxygen XML Editor plugin.

Enable automatic validation

The period of keyboard inactivity before starting a new validation (in seconds).Delay after the last key event (s)

Mark Occurrences Preferences

To configure the Mark Occurrences options, open the Preferences dialog box and go to Editor > Mark Occurrences:

The following preferences are available in this preferences page:

• XML files - Activates the Highlight IDs Occurrences feature in XML files.
• XSLT files - Activates the Highlight Component Occurrences feature in XSLT files.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 103

• XML Schema files and WSDL files - Activates the Highlight Component Occurrences feature in XSD and WSDL
files.

• RNG files - Activates the highlight component occurrences feature in RNG files.
• Schematron files - Activates the Highlight Component Occurrences feature in Schematron files.
• Declaration highlight color - Color used to highlight the component declaration.
• Reference highlight color - Color used to highlight component references.

Custom Validation Engines Preferences

As the name implies, the Custom Validation Engines preferences page displays the list of custom validation engines
than can be associated to a particular editor and used for validating documents. To access this page, open the Preferences
dialog box and go to Editor > Custom Validation Engines.

If you want to add a new custom validation tool or edit the properties of an exiting one, you can use the Custom Validator

dialog box displayed by pressing the New or Edit button.

Figure 25: Custom Validator Dialog Box

The Custom Validator dialog box allows you to configure the following parameters:

Name of the custom validation engine that will be displayed in the Validation toolbar
drop-down menu.

Name

Path to the executable file of the custom validation tool. You can specify the path by using

the text field, the Insert Editor Variables button, or the Browse button.

Executable path

The working directory of the custom validation tool. You can specify the path by using the

text field, the Insert Editor Variables button, or the Browse button.

Working directory

The editors that can perform validation with the external tool (XML editor, XSL editor,
XSD editor, etc.)

Associated editors

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 104

Command line arguments used in the commands that validate the currently edited file
against various types of schema (W3C XML Schema, Relax NG full syntax, Relax NG

Command line
arguments for detected
schemas compact syntax, NVDL, Schematron, DTD, etc.) The arguments can include any custom

switch (such as -rng) and the following editor variables:

• ${cf} - Current file as file path, that is the absolute file path of the current edited
document.

• ${currentFileURL} - Current file as URL, that is the absolute file path of the current
edited document represented as URL.

• ${ds} - The path of the detected schema as a local file path for the current validated
XML document.

• ${dsu} - The path of the detected schema as a URL for the current validated XML
document.

Related information
Editor Variables on page 134

Increasing the stack size for validation engines

To prevent the appearance of a StackOverflowException, use one of the following methods:

• Use the com.oxygenxml.stack.size.validation.threads property to increase the size of the stack for validation
engines. The value of this property is specified in bytes. For example, to set a value of one megabyte specify
1x1024x1024=1048576.

• Increase the value of the -Xss parameter.

Note: Increasing the value of the -Xss parameter affects all the threads of the application.

Fonts Preferences

Oxygen XML Editor plugin allows you to choose the fonts to be used in the Text, Design, and Grid editor modes, and
fonts for the Author mode that are not specified in the associated CSS stylesheet. To configure the font options, open
the Preferences dialog box and go to Fonts.

The following options are available:

This option allows you to choose the font used in Text mode. There are two options
available:

Text mode default font

• Map to text font - Uses the same font for the basic text editor as the one set in
General > Appearance > Colors and Fonts.

• Customize - Allows you to choose a specific font.

This option allows you to choose the default font that will be used in Author mode. The
default font will be overridden by the fonts specified in any CSS file associated with the
opened document.

Author mode default font

This option allows you to choose the font to be used in:Schema default font

• The Design mode of the XML Schema editor.
• Images with schema diagram fragments that are included in the HTML documentation

generated from an XML Schema.

Note: You must restart the application for your changes to be applied.

Network Connection Settings Preferences

This section presents the options available in the Network Connection Settings preferences pages.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 105

HTTP(S)/WebDAV Preferences

To set the HTTP(S)/WebDAV preferences, open the Preferences dialog box and go to Network Connection Settings >
HTTP(S)/WebDAV. The following options are available:

Activates the HTTP(S)/WebDAV protocols bundled with Oxygen XML Editor
plugin. Any adjustment to this option requires a restart of the application.

Enable the HTTP(S)/WebDAV
Protocols

Oxygen XML Editor plugin uses the Apache HttpClient to establish connections to
HTTP servers. For Oxygen XML Editor plugin to benefit from particular sets of
features provided by different versions, you may choose between v3 and v4.

Internal Apache HttpClient
Version

Note: For a full list of features, go to http://hc.apache.org/httpclient-3.x/
and http://hc.apache.org/httpcomponents-client-ga/.

The period (in seconds) after which the application considers that an HTTP server
is unreachable if it does not receive any response from that server.

Read Timeout (seconds)

When enabled, the HTTPS connections that Oxygen XML Editor plugin attempts
to establish with will accept all security certificates, even if they are invalid.

Automatically accept a security
certificate, even if invalid

Important: By accepting an invalid certificate, you accept (at your own
risk) a potential security threat, since you cannot verify the integrity of the
certificate's issuer.

If checked, the files opened through WebDAV are locked on the server so that they
cannot be edited by other users while the lock placed by the current user still exists
on the server.

Lock WebDAV files on open

(S)FTP Preferences

To configure the (S)FTP options, open the Preferences dialog box and go to Network Connection Settings > (S)FTP.
You can customize the following options:

Figure 26: (S)FTP Configuration Preferences Panel

• Encoding for FTP control connection - The encoding used to communicate with FTP servers: either ISO-8859-1
or UTF-8. If the server supports the UTF-8 encoding Oxygen XML Editor plugin will use it for communication.
Otherwise, it will use ISO-8859-1.

• Public known hosts file - File containing the list of all SSH server host keys that you have determined are accurate.
The default value is ${homeDir}/.ssh/known_hosts.

• Private key file - The path to the file containing the private key used for the private key method of authentication
of the secure FTP (SFTP) protocol.

• Passphrase - The passphrase used for the private key method of authentication of the secure FTP (SFTP) protocol.
• Show SFTP certificate warning dialog - If checked, a warning dialog box will be displayed each time when the

authenticity of the host cannot be established.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 106

http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpcomponents-client-ga/

Trusted Hosts Preferences

This preferences page contains a list of domains that have been identified as trusted. You can add or remove domains
from the list and Oxygen XML Editor plugin will allow connections to the listed hosts without requesting user
confirmation.

To configure the Trusted Hosts options, open the Preferences dialog box and go to Network Connection Settings >
Trusted Hosts. The following options are available:

• New - Allows you to manually add a new entry to the list of trusted hosts.

Tip: You can specify a specific port at the end of the URL (for instance, www.example.com:8080).
Otherwise, if no port is specified,connections will be allowed on all ports for the particular host.

• Delete - Allows you to remove an entry from the list of trusted hosts.

Scenarios Management Preferences

To configure Scenarios Management options, open the Preferences dialog box and go to Scenarios Management.
This allows you to share the global transformation scenarios with other users by exporting them to an external file that
can also be imported in this preferences panel.

Figure 27: Scenarios Management Preferences Panel

The actions available in this panel are as follows:

• Import Global Transformation Scenarios - Allows you to import all global-level transformation scenarios from
a file created with the export scenario action. The names of the imported scenarios will appear in the Configure
Transformation Scenario dialog box followed by (import). This way there are no scenario name conflicts.

• Export Global Transformation Scenarios - Allows you to export all global transformation scenarios available in
the Configure Transformation Scenario dialog box.

• Import Global Validation Scenarios - Allows you to import all global-level scenarios from a file created with the
export scenario action. The names of the imported scenarios will appear in the Configure Validation Scenario
dialog box followed by (import). This way there are no scenario name conflicts.

• Export Global Validation Scenarios - Allows you to export all global validation scenarios available in the Configure
Validation Scenario dialog box.

View Preferences

The View preferences page allows you to configure some options in regards to certain views. To edit these options,
open the Preferences dialog box and go to View.

The following options are available:

Console section If enabled, various messages will be contributed to the Console view
when certain events are triggered (such as schema detection, validation,
or transformation events).

Enable <oXygen/>
consoles

If enabled, a line in the Console view will be hard wrapped after the
specified maximum numbers of characters allowed on a line is reached.

Fixed width console

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 107

If enabled, the content of the Console view will be limited to a
configurable number of characters.

Limit console output

If the Limit console output option is enabled, this
specifies the maximum number of characters that
can be written in the Console view.

Console buffer

Specifies the number of spaces used for depicting a tab character.Tab width

Elements view
section

If enabled, when editing in Author mode, only the elements that are
allowed at the current cursor position will be listed in the Elements view.
If disabled, two additional tabs (Before and After) will be displayed at

Show only items
allowed at cursor
position

the bottom of the view (in Author mode only). These tabs list the
elements that are allowed before or after the element at the current cursor
position.

XML Preferences

This section describes the panels that contain the user preferences related with XML.

XML Catalog Preferences

To configure the XML Catalog options, open the Preferences dialog box and go to XML > XML Catalog.

The following options are available:

Determines whether public identifiers specified in the catalog are used in favor of system
identifiers supplied in the document. Suppose you have an entity in your document for which

Prefer

both a public identifier and a system identifier has been specified, and the catalog only contains
a mapping for the public identifier (for example, a matching public catalog entry). You can
choose between the following:

• system - If selected, the system identifier in the document is used.
• public - If selected, the URI supplied in the matching public catalog entry is used. Generally,

the purpose of catalogs is to override the system identifiers in XML documents, so public
should usually be used for your catalogs.

Note: If the catalog contains a matching system catalog entry giving a mapping for the
system identifier, that mapping would have been used, the public identifier would never
have been considered, and this setting would be irrelevant.

When using catalogs it is sometimes useful to see what catalog files are parsed, if they are valid
or not, and what identifiers are resolved by the catalogs. This option selects the detail level of

Verbosity

such logging messages of the XML catalog resolver that will be displayed in the Catalogs table
at the bottom of the window. You can choose between the following:

• None - No message is displayed by the catalog resolver when it tries to resolve a URI
reference, a SYSTEM one or a PUBLIC one with the XML catalogs specified in this panel.

• Unresolved entities - Only the logging messages that track the failed attempts to resolve
references are displayed.

• All messages - The messages of both failed attempts and successful ones are displayed.

If enabled, Oxygen XML Editor plugin analyzes both uri and system mappings to resolve the
location of schema.

Resolve schema
locations also
through system
mappings

Note: This option is not applicable for DTD schemas since the public and system catalog
mappings are always considered.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 108

If selected, the target namespace of the imported XML Schemas is resolved through the uri
mappings. The namespace is taken into account only when the schema specified in the
schemaLocation attribute was not resolved successfully.

Process namespaces
through URI
mappings for XML
Schema

If this option is enabled and Oxygen XML Editor plugin cannot resolve the catalog mapping
with any other means, the default global catalog (listed below this checkbox) is used. For more
information, see How Oxygen XML Editor plugin Determines which Catalog to Use on page 382.

Use default catalog

You can use this table to add or manage global user-defined catalogs. The following actions are
available at the bottom of the table:

Catalogs table

Opens a dialog box that allows you to add a catalog to the list. You can
specify the path by using the text field, the Insert Editor Variables
button, or the browsing tools in the Browse drop-down list.

Add

Opens a dialog box that allows you to edit an existing catalog. You can
specify the path by using the text field, the Insert Editor Variables
button, or the browsing tools in the Browse drop-down list.

Edit

Deletes the currently selected catalog from the list.Delete

Moves the selection to the previous resource.Up

Moves the selection to the following resource.Down

Note: When you add, delete, or edit catalog in this table, you need to reopen the currently
edited files that use the modified catalog or run a manual Validate action so that the
XML catalog changes take full effect.

You can also add or configure catalogs at framework level from the Catalogs tab in the Document
Type configuration dialog box.

Related information
http://xerces.apache.org/xml-commons/components/resolver/resolver-article.html#ctrlresolver

Working with XML Catalogs on page 380

XML Parser Preferences

To configure the XML Parser options, open the Preferences dialog box and go to XML > XML Parser.

The configurable options of the built-in XML parser are as follows:

Enables re-use of internal models when validating and provides content completion in
opened XML files that reference the same schemas (grammars) such as DTD, XML Schema,
or RelaxNG.

Enable parser caching
(validation and content
completion)

Forces validation against a referenced schema (W3C XML Schema, Relax NG schema)
even if the document includes also a DTD DOCTYPE declaration. This option is useful

Ignore the DTD for
validation if a schema is
specified when the DTD declaration is used only to declare DTD entities and the schema reference

is used for validation against a W3C XML Schema or a Relax NG schema.

Note: Schematron schemas are treated as additional schemas. The validation of
a document associated with a DTD and referencing a Schematron schema is
executed against both the DTD and the Schematron schema, regardless of the
value of the Ignore the DTD for validation if a schema is specified option.

Enables XInclude processing. If checked, the XInclude support in Oxygen XML Editor
plugin is turned on for validation, rendering in Author mode and transformation of XML
documents.

Enable XInclude
processing

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 109

http://xerces.apache.org/xml-commons/components/resolver/resolver-article.html#ctrlresolver

According to the specification for XInclude, processors must add an xml:base attribute
to elements included from locations with a different base URI. Without these attributes,
the resulting infoset information would be incorrect.

Unfortunately, these attributes make XInclude processing to not be transparent to Schema
validation. One solution to this is to modify your schema to allow xml:base attributes
to appear on elements that might be included from different base URIs.

Base URI fix-up

If the addition of xml:base and / or xml:lang is not desired by your application, you
can disable this option.

The processor will preserve language information on a top-level included element by adding
an xml:lang attribute if its include parent has a different [language] property. If the

Language fix-up

addition of xml:lang is undesired by your application, you can disable the language
fix-up.

Enable this option to validate an XML file against the associated DTD, after all the content
merged to the current XML file using XInclude was resolved. If you disable this option,

DTD post-validation

the current XML file is validated against the associated DTD before all the content merged
to the current XML file using XInclude is resolved.

XML Schema Preferences

To configure options in regards to XML Schema, open the Preferences dialog box and go to XML > XML Parser >
XML Schema.

This preferences page allows you to configure the following options:

Allows you to select the version of W3C XML Schema to be used as the default. You can choose XML Schema 1.0 or XML Schema 1.1.Default
XML

Note: You are also able to set the XML Schema version using the Customize option in the New document wizard.
Schema
version

Allows you to select the default validation engine to be used for XML Schema. You can choose Xerces or Saxon EE.Default
XML
Schema
validation
engine

Xerces
validation

Sets the
schema-full-checking

Enable full schema constraint checking
(http://apache.org/xml/features/validation/schema-full-checking)

features
section

feature to true. This
enables a validation of the
parsed XML document
against a schema (W3C
XML Schema or DTD)
while the document is
parsed.

Sets the
honour-all-schema-location

Enable honour all schema location feature
(http://apache.org/xml/features/honour-all-schema-location)

feature to true. All the
files that declare W3C
XML Schema components
from the same namespace
are used to compose the
validation model. In case
this option is disabled, only
the first W3C XML
Schema file that is
encountered in the XML

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 110

https://xerces.apache.org/xerces2-j/features.html#validation.schema-full-checking
https://xerces.apache.org/xerces2-j/features.html#honour-all-schemaLocations

Schema import tree is
taken into account.

When enabled (default
value), you can use the full

Enable full XPath 2.0 in assertions and alternative types
(http://apache.org/xml/features/validation/cta-full-xpath-checking)

XPath support in assertions
and alternative types.
Otherwise, only the XPath
support offered by the
Xerces engine is available.

Controls whether or not
comments and processing

Assertions can see comments and processing instructions
(http://apache.org/xml/features/validation/assert-comments-and-pi-checking)

instructions are visible to
the XPath expression used
for defining an assertion in
XSD 1.1.

Saxon
EE

Forces xs:import to fetch the referenced schema document. By default, the xs:import
fetches the document only if no schema document for the given namespace has already been

Multiple schema imports

validation loaded. With this option in effect, the referenced schema document is loaded unless the absolute
URI is the same as a schema document already loaded.features

section
Controls whether or not comments and processing instructions are visible to the XPath expression
used to define an assertion. By default, they are not made visible (unlike Saxon 9.3).

Assertions can see comments and
processing instructions

Relax NG Preferences

To configure options in regards to Relax NG, open the Preferences dialog box and go to XML > XML Parser > Relax
NG.

The following options are available in this page:

Checks if Relax NG documents can be transformed into valid documents by inserting
any number of attributes and child elements anywhere in the tree.

Check feasibly valid

Note: Enabling this option disables the Check ID/IDREF option.

Checks the ID/IDREF matches when a Relax NG document is validated.Check ID/IDREF

Default values are given to the attributes of documents validated using Relax NG.
These values are defined in the Relax NG schema.

Add default attribute values

Schematron Preferences

To configure options in regards to Schematron, open the Preferences dialog box and go to XML > XML Parser >
Schematron.

The following options are available in this preferences page:

ISO
Schematron
Section

If your ISO Schematron assertion tests do not contain the attributes axis,
you should check this option for faster ISO Schematron validation.

Optimize
(visit-no-attributes)

Enables support for allow-foreign on ISO Schematron. This option
is used to pass non-Schematron elements to the generated stylesheet.

Allow foreign elements
(allow-foreign)

When enabled, Saxon EE is used for xslt2/xslt3 query binding. If this
option is disabled, Saxon PE is used.

Use Saxon EE (schema
aware) for xslt2/xslt3
query language binding

Allows you to enable or disable the support for quick fixes in Schematron
files. This option is enabled by default.

Enable Schematron
Quick Fixes (SQF)
support

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 111

https://xerces.apache.org/xerces2-j/features.html
https://xerces.apache.org/xerces2-j/features.html

You can control the query language binding used by the ISO Schematron
embedded rules. You can choose between: xslt1, xslt2, or xslt3.

Embedded rules query
language binding

Note: To control the query language binding for standalone ISO
Schematron, you need to set the query language to be used with a
queryBinding attribute on the schema root element.

This option allows you to specify the language to be used in Schematron
validation messages. You can choose between the following:

Message language

• Use the language defined in the application - The language that is
specified in the application will be used and only the validation
messages that match that language will be presented. You can use the
Change application language link to navigate to the preferences page
where you can specify the language to be used in the application.

• Use the "xml:lang" attribute set on the Schematron root - The
language specified in the xml:lang attribute from the Schematron
root will be used and only the validation message that match that
language will be presented.

• Ignore the language and show all message - All messages are
displayed in whatever language they are defined within the Schematron
schema.

• Custom - Use this option to specify a custom language to be used and
only the messages that match the specified language will be presented.

Note: In all cases, if the selected language is not available for a
validation error or warning, all messages will be displayed in
whatever language they are defined with in the Schematron
schema.

Schematron
1.5 Section

Allows you to select the version of XPath for the expressions that are allowed in
Schematron assertion tests. You can choose between: 1.0, 2.0, or 3.0. This option
is applied in both standalone Schematron 1.5 schemas and embedded Schematron
1.5 rules.

XPath Version

Sample XML Files Generator Preferences

The Generate Sample XML Files tool (available on the XML Tools menu) allows you to generate XML instance
documents based on a W3C XML Schema. There are various options that can be configured within the tool and these
options are also available in the Sample XML Files Generator preferences page. This allows you to set default values
for these options. To configure the options for generating the XML files, open the Preferences dialog box and go to
XML > Sample XML Files Generator.

The following options are available:

When checked, all elements are generated, including the optional ones (having the
minOccurs attribute set to 0 in the schema).

Generate optional elements

When checked, all attributes are generated, including the optional ones (having the use
attribute set to optional in the schema).

Generate optional
attributes

Controls the content of generated attribute and element values. The following choices
are available:

Values of elements and
attributes

• None - No content is inserted.
• Default - Inserts a default value depending of data type descriptor of the particular

element or attribute. The default value can be either the data type name or an
incremental name of the attribute or element (according to the global option from

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 112

the XML Instances Generator preferences page). Note that type restrictions are
ignored when this option is enabled. For example, if an element is of a type that
restricts an xs:string with the xs:maxLength facet to allow strings with a maximum
length of 3, the XML instance generator tool may generate string element values
longer than 3 characters.

• Random - Inserts a random value depending of data type descriptor of the particular
element or attribute.

Important: If all of the following are true, the XML Instances Generator
outputs invalid values:

• At least one of the restrictions is a regexp.
• The value generated after applying the regexp does not match the

restrictions imposed by one of the facets.

Allows you to set the preferred number of repeating elements related to minOccurs
and maxOccurs facets defined in the XML Schema.

Preferred number of
repetitions

• If the value set here is between minOccurs and maxOccurs, then that value is
used.

• If the value set here is less than minOccurs, then the minOccurs value is used.
• If the value set here is greater than maxOccurs, then maxOccurs is used.

If a recursion is found, this option controls the maximum allowed depth of the same
element.

Maximum recursion level

Used for the xs:alternative element from XML Schema 1.1. The possible strategies
are:

Type alternative strategy

• First - The first valid alternative type is always used.
• Random - A random alternative type is used.

Used for xs:choice or substitutionGroup elements. The possible strategies
are:

Choice strategy

• First - The first branch of xs:choice or the head element of
substitutionGroup is always used.

• Random - A random branch of xs:choice or a substitute element or the head
element of a substitutionGroup is used.

If enabled, generates the other possible choices or substitutions (for xs:choice and
substitutionGroup). These alternatives are generated inside comments groups so

Generate the other options
as comments

you can uncomment and use them later. Use this option with care (for example, on a
restricted namespace and element) as it may generate large result files.

If checked, the value of an element or attribute starts with the name of that element or
attribute. For example, for an a element the generated values are: a1, a2, a3, and so

Use incremental attribute /
element names as default

on. If not checked, the value is the name of the type of that element / attribute (for
example: string, decimal, etc.)

The maximum length of string values generated for elements and attributes.Maximum length

The optional elements that exceed the specified nested level are discarded. This option
is useful for limiting deeply nested element definitions that can quickly result in very
large XML documents.

Discard optional elements
after nested level

Related information
Generating Sample XML Files on page 476

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 113

XProc Engines Preferences

Oxygen XML Editor plugin includes a built-in XProc engine called Calabash. You can add or configure external XProc
engines by using the XProc Engines preferences page. Open the Preferences dialog box and go to XML > XProc.

When Show XProc messages is selected all messages emitted by the XProc processor during a transformation will be
presented in the results view.

To add an external engine click the New button. To configure an existing engine, click the Edit button. This opens the
Custom Engine dialog box that allows you to configure an external engine.

Figure 28: Creating an XProc external engine

The following options can be configure in this dialog box:

• Name - The value of this field will be displayed in the XProc transformation scenario and in the command line that
will start it.

• Description - A textual description that will appear as a tooltip where the XProc engine will be used.
• Working directory - The working directory for resolving relative paths. You can specify the path by using the text

field, the Insert Editor Variables button, or the Browse button.
• Command line - The command line that will run the XProc engine as an external process. You can specify the path

by using the text field, the Insert Editor Variables button, or the Browse button.
• Output encoding - The encoding for the output stream of the XProc engine, used for reading and displaying the

output messages.
• Error encoding - The encoding for the error stream of the XProc engine, used for reading and displaying the messages

from the error stream.

Note: You can configure the built-in Saxon processor using the saxon.config file. For further details about
configuring this file go to
http://www.saxonica.com/documentation9.5/index.html#!configuration/configuration-file. You can configure
the built-in Calabash processor by using the calabash.config file. These files are located in
[OXYGEN_INSTALL_DIR]\lib\xproc\calabash\lib. If they do not exist, you have to create them.

XSLT-FO-XQuery Preferences

To configure the XSLT/FO/XQuery options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery.
This panel contains only the most generic options for working with XSLT / XSL-FO / XQuery processors. The more
specific options are grouped in other panels linked as child nodes of this panel in the tree of this Preferences page.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 114

http://www.saxonica.com/documentation9.5/index.html#!configuration/configuration-file

There is only one generic option available:

It should be selected only when the temporary files necessary for performing
transformations are created in the same folder as the source of the transformation (the

Create transformation
temporary files in system
temporary directory default behavior when this option is not selected) and this breaks the transformation.

An example of breaking the transformation is when the transformation processes all
the files located in the same folder as the source of the transformation (including the
temporary files) and the result is incorrect or the transformation fails because of this.

XSLT Preferences

To configure the XSLT options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XSLT.

Oxygen XML Editor plugin offers the possibility of using an XSLT transformer implemented in Java (other than the
XSLT transformers that come bundled with Oxygen XML Editor plugin). To use another XSLT transformer, specify
the name of the transformer factory class. Oxygen XML Editor plugin sets this transformer factory class as the value of
the Java property: javax.xml.transform.TransformerFactory.

The XSLT preferences page allows you to customize the following options:

Allows you to set the value of the TransformerFactory Java class.JAXP XSLT Transformer -
Value

Allows you to select the XSLT engine to be used for validation of XSLT 1.0
documents.

Validation engine - XSLT 1.0

Allows you to select the XSLT engine to be used for validation of XSLT 2.0
documents.

Validation engine - XSLT 2.0

Allows you to select the XSLT engine to be used for validation of XSLT 3.0
documents.

Validation engine - XSLT 3.0

Note: Saxon-HE does not implement any XSLT 3.0 features. Saxon-PE
implements a selection of XSLT 3.0 (and XPath 3.0) features, with the
exception of schema-awareness and streaming. Saxon-EE implements
additional features relating to streaming (processing of a source document
without constructing a tree in memory. For further details about XSLT 3.0
conformance, go to
http://www.saxonica.com/documentation/index.html#!conformance/xslt30.

Saxon6 Preferences

To configure the Saxon 6 options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XSLT >
Saxon > Saxon 6.

Figure 29: Saxon 6 XSLT Preferences Panel

The built-in Saxon 6 XSLT processor can be configured with the following options:

• Line numbering - Specifies whether or not line numbers are maintained and reported in error messages for the XML
source document.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 115

http://www.saxonica.com/documentation/index.html#!conformance/xslt30

• Disable calls on extension functions - If enabled, external function calls are not allowed. Checking this is
recommended in an environment where untrusted stylesheets may be executed. It also disables user-defined extension
elements and the writing of multiple output files, since they carry similar security risks.

• Handling of recoverable stylesheet errors - Allows you to choose how dynamic errors are handled. One of the
following options can be selected:

• recover silently - Continue processing without reporting the error.
• recover with warnings - Issue a warning but continue processing.
• signal the error and do not attempt recovery - Issue an error and stop processing.

Saxon-HE/PE/EE Preferences

To configure global options for XSLT transformation and validation scenarios that use the Saxon HE/PE/EE engine,
open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XSLT > Saxon > Saxon HE/PE/EE.

Oxygen XML Editor plugin allows you to configure the following XSLT options for the Saxon 9.6.0.7 Home Edition
(HE), Professional Edition (PE), and Enterprise Edition (EE):

Sets a Saxon 9.6.0.7 configuration file that is executed for XSLT transformation and
validation processes.

Use a configuration file
("-config")

Warns you when the transformation is applied to an XSLT 1.0 stylesheet.Version warnings
("-versmsg")

Line numbers where errors occur are included in the output messages.Line numbering ("-l")

Instructs the XSLT Debugger to step into XPath expressions.Debugger trace into XPath
expressions (applies to
debugging sessions)

Specifies whether or not the attributes defined in the associated DTD or XML Schema
are expanded in the output of the transformation you are executing.

Expand attributes defaults
("-expand")

Specifies whether or not the source document will be validated against their associated
DTD. You can choose from the following:

DTD validation of the source
("-dtd")

• On - Requests DTD validation of the source file and of any files read using the
document() function.

• Off - (default setting) Suppresses DTD validation.
• Recover - Performs DTD validation but treats the errors as non-fatal.

Note: Any external DTD is likely to be read even if not used for
validation, since DTDs can contain definitions of entities.

Allows you to choose how dynamic errors are handled. The following options can
be selected:

Recoverable errors
("-warnings")

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and

stops processing.

Allows you to choose how the strip whitespaces operation is handled. You can choose
one of the following values:

Strip whitespaces ("-strip")

• All ("all") - Strips all whitespace text nodes from source documents before any
further processing, regardless of any xml:space attributes in the source
document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source
documents before any further processing, regardless of any xml:space attributes

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 116

in the source document. Whitespace text nodes are ignorable if they appear in
elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Allows you to set the optimization level. It is the value is an integer in the range of
0 (no optimization) to 10 (full optimization). This option allows optimization to be

Optimization level ("-opt")

suppressed when reducing the compiling time is important, optimization conflicts
with debugging, or optimization causes extension functions with side-effects to behave
unpredictably.

The following options are available for Saxon 9.6.0.7 Professional Edition (PE) and Enterprise Edition (EE) only:

If checked, the stylesheet is allowed to call external Java functions. This does not affect
calls on integrated extension functions, including Saxon and EXSLT extension functions.

Allow calls on extension
functions ("-ext")

This option is useful when loading an untrusted stylesheet (such as from a remote site
using http://[URL]). It ensures that the stylesheet cannot call arbitrary Java methods
and thus gain privileged access to resources on your machine.

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet
using the Saxon 9.6.0.7 processors.

Register Saxon-CE
extension functions and
instructions

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web
browser. This means that you will use Oxygen XML Editor plugin only for
developing the Saxon-CE stylesheet, leaving the execution part to a web
browser. See more details about executing such a stylesheet on Saxonica's
website.

The options available specifically for Saxon 9.6.0.7 Enterprise Edition (EE) are as follows:

Requests schema-based validation of the source file and of any files read using
document() or similar functions. It can have the following values:

Validation of the source file
("-val")

• Schema validation ("strict") - This mode requires an XML Schema and enables
parsing the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode
enables parsing the source documents with schema-validation enabled but the
validation will not fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should
be parsed with schema-validation disabled.

Normally, if validation of result documents is requested, a validation error is fatal.
Enabling this option causes such validation failures to be treated as warnings.

Validation errors in the result
tree treated as warnings
("-outval") The validation messages for non-fatal errors

are written (wherever possible) as a comment
in the result document itself.

Write comments for non-fatal
validation errors of the result
document

If you enable this option, Saxon-EE attempts to generate Java bytecode for evaluation
of parts of a query or stylesheet that are amenable to such an action. For further

Generate bytecode
("--generateByteCode:(on|off)")

details regarding this option, go to
http://www.saxonica.com/documentation9.5/index.html#!javadoc.

Saxon HE/PE/EE Advanced Preferences

To configure the Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box and go to XML >
XSLT/FO/XQuery > XSLT > Saxon > Saxon HE/PE/EE > Advanced.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 117

http://www.saxonica.com/ce/index.xml
http://www.saxonica.com/ce/index.xml
http://www.saxonica.com/documentation9.5/index.html#!javadoc

Figure 30: Saxon HE/PE/EE XSLT Advanced Preferences Panel

You can configure the following advanced XSLT options for the Saxon 9.6.0.7 transformer (all three editions: Home
Edition, Professional Edition, Enterprise Edition):

• URI Resolver class name ("-r") - Specifies a custom implementation for the URI resolver used by the XSLT Saxon
9.6.0.7 transformer (the -r option when run from the command line). The class name must be fully specified and the
corresponding jar or class extension must be configured from the dialog box for configuring the XSLT extension
for the particular transformation scenario.

• Collection URI Resolver class name ("-cr") - Specifies a custom implementation for the Collection URI resolver
used by the XSLT Saxon 9.6.0.7 transformer (the -cr option when run from the command line). The class name must
be fully specified and the corresponding jar or class extension must be configured from the dialog box for
configuring the XSLT extension for the particular transformation scenario.

XSLTProc Preferences

To configure XSLTProc options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XSLT >
XSLTProc.

The options of the XSLTProc processor are the same as the ones available in the command line:

• Enable XInclude processing - If checked, XInclude references will be resolved when XSLTProc is used as transformer
in XSLT transformation scenarios.

• Skip loading the document's DTD - If checked, the DTD specified in the DOCTYPE declaration will not be loaded.
• Do not apply default attributes from document's DTD - If checked, the default attributes declared in the DTD

and not specified in the document are not included in the transformed document.
• Do not use Internet to fetch DTD's, entities or docs - If checked, the remote references to DTD's and entities are

not followed.
• Maximum depth in templates stack - If this limit of maximum templates depth is reached the transformation ends

with an error.
• Verbosity - If checked, the transformation will output detailed status messages about the transformation process in

the Warnings view.
• Show version of libxml and libxslt used - If checked, Oxygen XML Editor plugin will display in the Warnings

view the version of the libxml and libxslt libraries invoked by XSLTProc.
• Show time information - If checked, the Warnings view will display the time necessary for running the

transformation.
• Show debug information - If checked, the Warnings view will display debug information about what templates

are matched, parameter values, and so on.
• Show all documents loaded during processing - If checked, Oxygen XML Editor plugin will display in the

Warnings view the URL of all the files loaded during transformation.
• Show profile information - If checked, Oxygen XML Editor plugin will display in the Warnings view a table with

all the matched templates, and for each template will display: the match XPath expression, the template name, the
number of template modes, the number of calls, the execution time.

• Show the list of registered extensions - If checked, Oxygen XML Editor plugin will display in the Warnings view
a list with all the registered extension functions, extension elements and extension modules.

• Refuses to write to any file or resource - If checked, the XSLTProc processor will not write any part of the
transformation result to an external file on disk. If such an operation is requested by the processed XSLT stylesheet
the transformation ends with a runtime error.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 118

• Refuses to create directories - If checked, the XSLTProc processor will not create any directory during the
transformation process. If such an operation is requested by the processed XSLT stylesheet the transformation ends
with a runtime error.

MSXML Preferences

To configure the MSXML options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XSLT >
MSXML.

The options in this preferences page for the MSXML 3.0 and 4.0 processors are as follows:

If checked, and either the source or stylesheet document has a DTD or schema that
its content can be checked against, validation is performed.

Validate documents during
parse phase

By default, MSXML instructs the parser to resolve external definitions such as
document type definition (DTD), external subsets or external entity references when

Do not resolve external
definitions during parse phase

parsing the source and style sheet documents. If this option is checked, the resolution
is disabled.

If checked, strips non-significant white space from the input XML document during
the load phase. Enabling this option can lower memory usage and improve
transformation performance while, in most cases, creating equivalent output.

Strip non-significant
whitespaces

If checked, the relative speed of various transformation steps can be measured,
including:

Show time information

• The time to load, parse, and build the input document.
• The time to load, parse, and build the stylesheet document.
• The time to compile the stylesheet in preparation for the transformation.
• The time to execute the stylesheet.

Although stylesheet execution usually begins in the empty mode, this default behavior
may be changed by specifying another mode. Changing the start mode allows
execution to jump directly to an alternate group of templates.

Start transformation in this
mode

MSXML.NET Preferences

To configure the MSXML.NET options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery >
XSLT > MSXML.NET.

The options in this preferences page for the MSXML.NET processor are as follows:

If checked, XInclude references will be resolved when MSXML.NET is used as the
transformer in the XSLT transformation scenario.

Enable XInclude processing

If checked, and either the source or stylesheet document has a DTD or schema that its
content can be checked against, validation is performed.

Validate documents during
parse phase

By default, MSXML instructs the parser to resolve external definitions such as
document type definition (DTD), external subsets or external entity references when

Do not resolve external
definitions during parse
phase parsing the source and style sheet documents. If this option is checked, the resolution

is disabled.

If checked, strips non-significant white space from the input XML document during
the load phase. Enabling this option can lower memory usage and improve
transformation performance while, in most cases, creating equivalent output.

Strip non-significant
whitespaces

If checked, the relative speed of various transformation steps can be measured,
including:

Show time information

• The time to load, parse, and build the input document.
• The time to load, parse, and build the stylesheet document.
• The time to compile the stylesheet in preparation for the transformation.
• The time to execute the stylesheet.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 119

There is a known problem with the .NET 1.X XSLT processor
(System.Xml.Xsl.XslTransform class). It does not support escaping of

Forces ASCII output
encoding

characters as XML character references when they cannot be represented in the output
encoding. This means that it will be outputted as '?'. Usually this happens when
output encoding is set to ASCII. If this option checked, the output is forced to be ASCII
encoded and all non-ASCII characters get escaped as XML character references
(&#nnnn; form).

This option allows you to create multiple result documents using the exsl:document
extension element.

Allow multiple output
documents

This option allows you to specify a custom URI resolver class to resolve URI references
in xsl:import and xsl:include instructions (during XSLT stylesheet loading
phase) and in document() functions (during XSL transformation phase).

Use named URI resolver class

This option specifies a file name of the assembly where the specified resolver class
can be found. The Use named URI resolver class option specifies a partially or fully

Assembly file name for URI
resolver class

qualified URI resolver class name (for example,
Acme.Resolvers.CacheResolver). Such a name requires additional assembly
specification using this option or the Assembly GAC name for URI resolver class
option, but fully qualified class name (which always includes an assembly specifier)
is all-sufficient. See MSDN for more info about fully qualified class names.

This option specifies partially or fully qualified name of the assembly in the global
assembly cache (GAC) where the specified resolver class can be found. See MSDN
for more info about partial assembly names.

Assembly GAC name for URI
resolver class

This option allows to specify extension object classes, whose public methods then can
be used as extension functions in an XSLT stylesheet. It is a comma-separated list of

List of extension object class
names

namespace-qualified extension object class names. Each class name must be bound
to a namespace URI using prefixes, similar to providing XSLT parameters.

MSXML.NET supports a rich library of the EXSLT and EXSLT.NET extension functions
embedded or in a plugged-in EXSLT.NET library. EXSLT support is enabled by

Use specified EXSLT
assembly

default and cannot be disabled in this version. Use this option if you want to use an
external EXSLT.NET implementation instead of a built-in one.

This option allows you to specify user credentials to be used when loading XML source
documents. The credentials should be provided in the username:password@domain
format (all parts are optional).

Credential loading source
xml

This option allows you to specify user credentials to be used when loading XSLT
stylesheet documents. The credentials should be provided in the
username:password@domain format (all parts are optional).

Credential loading stylesheet

XQuery Preferences

To configure the XQuery options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XQuery.

The following generic XQuery preferences are available:

Allows you to select the processor that will be used to validate XQuery documents. If you
are validating an XQuery file that has an associated validation scenario, Oxygen XML

Validation engine

Editor plugin uses the processor specified in the scenario. If no validation scenario is
associated, but the file has an associated transformation scenario, the processor specified
in the scenario is used. If the processor does not support validation or if no scenario is
associated, then the value from this combo box will be used as validation processor.

When the result of an XQuery transformation is set as a sequence (Present as a sequence
option) in the transformation scenario, the size of one chunk of the result that is fetched

Size limit of Sequence
view (MB)

from the database in lazy mode in one step is set in this option. If this limit is exceeded, go

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 120

http://exslt.org/exsl/elements/document/index.html
http://exslt.org/exsl/elements/document/index.html
http://msdn.microsoft.com/en-us/library/dfb3cx8s%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx
http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx
http://msdn.microsoft.com/en-us/library/0a7zy9z5%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa382408%28v=vs.85%29.aspx
http://www.exslt.org/
http://www.exslt.org/func/elements/function/

to the Sequence view and click More results available to extract more data from the
database.

Specifies whether or not the output of the transformer is formatted and indented (pretty
print).

Format transformer
output

Note: This option is ignored if you choose Present as a sequence (lazy extract
data from a database) from the associated transformation scenario.

If enabled, Oxygen XML Editor plugin takes the results of a query and creates an XML
document containing copies of all items in the sequence, suitably wrapped.

Create structure
indicating the type nodes

Note: This option is ignored if you choose Present as a sequence (lazy extract
data from a database) from the associated transformation scenario.

Saxon HE/PE/EE Preferences

To configure global options for XQuery transformation and validation scenarios that use the Saxon HE/PE/EE engine,
open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XQuery > Saxon HE/PE/EE.

Oxygen XML Editor plugin allows you to configure the following XQuery options for the Saxon 9.6.0.7 Home Edition
(HE), Professional Edition (PE), and Enterprise Edition (EE):

Sets a Saxon 9.6.0.7 configuration file that is used for XQuery transformation and
validation scenarios.

Use a configuration file
("-config")

Allows you to choose how dynamic errors are handled. The following options can be
selected:

Recoverable errors
("-warnings")

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and

stops processing.

Allows you to choose how the strip whitespaces operation is handled. You can choose
one of the following values:

Strip whitespaces ("-strip")

• All ("all") - Strips all whitespace text nodes from source documents before any
further processing, regardless of any xml:space attributes in the source
document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source
documents before any further processing, regardless of any xml:space attributes
in the source document. Whitespace text nodes are ignorable if they appear in
elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Allows you to set the optimization level. It is the value is an integer in the range of 0
(no optimization) to 10 (full optimization). This option allows optimization to be

Optimization level ("-opt")

suppressed when reducing the compiling time is important, optimization conflicts
with debugging, or optimization causes extension functions with side-effects to behave
unpredictably.

This option activates the linked tree model.Use linked tree model
("-tree:linked")

If enabled (default value), Saxon runs the XQuery transformation with the XQuery
3.0 support.

Enable XQuery 3.0 support
("-qversion:(1.0|3.0)")

The following option is available for Saxon 9.6.0.7 Professional Edition (PE) and Enterprise Edition (EE) only:

If checked, calls on external functions are allowed. Checking this option is
recommended in an environment where untrusted stylesheets may be executed. It

Allow calls on extension
functions ("-ext")

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 121

also disables user-defined extension elements and the writing of multiple output files,
both of which carry similar security risks.

The options available specifically for Saxon 9.6.0.7 Enterprise Edition (EE) are as follows:

Requests schema-based validation of the source file and of any files read using
document() or similar functions. It can have the following values:

Validation of the source file
("-val")

• Schema validation ("strict") - This mode requires an XML Schema and enables
parsing the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode
enables parsing the source documents with schema-validation enabled but the
validation will not fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should
be parsed with schema-validation disabled.

Normally, if validation of result documents is requested, a validation error is fatal.
Enabling this option causes such validation failures to be treated as warnings.

Validation errors in the result
tree treated as warnings
("-outval") The validation messages for non-fatal errors

are written (wherever possible) as a comment
in the result document itself.

Write comments for non-fatal
validation errors of the result
document

If you enable this option, Saxon-EE attempts to generate Java bytecode for evaluation
of parts of a query or stylesheet that are amenable to such an action. For further

Generate bytecode
("--generateByteCode:(on|off)")

details regarding this option, go to
http://www.saxonica.com/documentation9.5/index.html#!javadoc.

This option controls whether or not XQuery update syntax is accepted. The default
value is off.

Enable XQuery update
("-update:(on|off)")

If checked, backup versions for any XML files
updated with an XQuery Update are generated. This

Backup files updated by
XQuery
("-backup:(on|off)") option is available when the Enable XQuery

update option is enabled.

Saxon HE/PE/EE Advanced Preferences

To configure Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box and go to XML >
XSLT/FO/XQuery > XQuery > Saxon HE/PE/EE > Advanced.

Figure 31: Saxon HE/PE/EE XQuery Advanced Preferences Panel

The advanced XQuery options that can be configured for the Saxon 9.6.0.7 XQuery transformer (all editions: Home
Edition, Professional Edition, Enterprise Edition) are as follows:

• URI Resolver class name - Allows you to specify a custom implementation for the URI resolver used by the XQuery
Saxon 9.6.0.7 transformer (the -r option when run from the command line). The class name must be fully specified
and the corresponding jar or class extension must be configured from the dialog box for configuring the XQuery
extension for the particular transformation scenario.

Note: If your URIResolver implementation does not recognize the given resource, the resolve(String
href, String base) method should return a null value. Otherwise, the given resource will not be
resolved through the XML catalog.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 122

http://www.saxonica.com/documentation9.5/index.html#!javadoc

• Collection URI Resolver class name - Allows you to specify a custom implementation for the Collection URI
resolver used by the XQuery Saxon 9.6.0.7 transformer (the -cr option when run from the command line). The class
name must be fully specified and the corresponding jar or class extension must be configured from the dialog box
for configuring the XQuery extension for the particular transformation scenario.

Debugger Preferences

To configure the Debugger preferences, open the Preferences dialog box and go to XML > XSLT/FO/XQuery >
Debugger.

The following options are available:

If checked, the debugger presents the output of xsl:result-document instructions
into the debugger output view.

Show xsl:result-document
output

Enable this option to receive notifications when an infinite loop occurs during
transformation.

Infinite loop detection

This option is disabled by default and this means that the optimization level for the
debugging process is set to zero. If it is enabled, the debugging process will use the
optimization level from one of the following:

Enable Saxon optimizations

• The value specified in the Optimization level option in an associated XSLT
transformation (or the same option in an associated XQuery transformation), if a
transformation scenario is used in the debugging process.

• Otherwise, the value specified in the Optimization level option in the XSLT
Saxon-HE/PE/EE preferences page (or the same option in the XQuery Saxon
HE/PE/EE preferences page).

Allows you to set how many xsl:template instructions can appear on the current
stack. This setting is used by the infinite loop detection.

Maximum depth in
templates stack

If you select the Horizontal layout, the stack of XML editors is presented on the left
half of the editing area while the stack of XSL editors is on the right half. If you select

Debugger layout

the Vertical layout, the stack of XML editors is presented on the upper half of the
editing area while the stack of XSL editors is on the lower half.

Allows you to specify the maximum time that Oxygen XML Editor plugin allocates to
the evaluation of XPath expressions while debugging.

XWatch evaluation timeout
(seconds)

Annotations Preferences

To configure the Annotations options, go to Window (Eclipse on Mac OSX) and choose Preferences. Then go to
General > Editors > Text Editors > Annotations.

The following Oxygen XML Editor plugin preferences are available:

• XSLT/XQuery Debug Current Instruction Pointer - Controls the background color of the current execution node,
both in the document (XML) and XSL/XQuery views.

Profiler Preferences

This section explains the settings available for the XSLT Profiler. To access and modify these settings, open the
Preferences dialog box and go to XML > XSLT/FO/XQuery > Profiler (see Debugger Preferences on page 123).

The following profiler settings are available:

Shows the total time that was spent in the call.Show time

Shows the inherent time that was spent in the call. The inherent time is defined as
the total time of a call minus the time of its child calls.

Show inherent time

Shows how many times the call was called in this particular call sequence.Show invocation count

Determines the unit of time measurement. You can choose between milliseconds or
microseconds.

Time scale

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 123

Hotspots are ignored below this specified amount (in milliseconds). For more
information, see Hotspots View on page 823.

Hotspot threshold

Invocations are ignored below this specified amount (in microseconds). For more
information, see Invocation Tree View on page 822.

Ignore invocation less than

The percentage base that determines what time span percentages are calculated
against. You can choose between the following:

Percentage calculation

• Absolute - Percentage values show the contribution to the total time.
• Relative - Percentage values show the contribution to the calling call.

FO Processors Preferences

Oxygen XML Editor plugin includes a built-in formatting objects processor (Apache FOP), but you can also configure
other external processors and use them in the transformation scenarios for processing XSL-FO documents.

Oxygen XML Editor plugin provides an easy way to add two of the most commonly used commercial FO processors:
RenderX XEP and Antenna House Formatter. You can easily add RenderX XEP as an external FO processor if you have
the XEP installed. Also, if you have the Antenna House Formatter, Oxygen XML Editor plugin uses the environment
variables set by the XSL formatter installation to detect and use it for XSL-FO transformations. If the environment
variables are not set for the XSL formatter installation, you can browse and choose the executable file just as you would
for XEP. You can use these two external FO processors for DITA OT transformations scenarios and XML with XSLT
transformation scenarios.

To configure the options for the FO Processors, open the Preferences dialog box and go to XML > XSLT/FO/XQuery >
FO Processors. The FO Processors preferences page is displayed.

Figure 32: FO Processors Preferences Page

Apache FOP Section

In this section you can configure options for the built-in Apache processor. The following options are available:

Instructs Oxygen XML Editor plugin to use the built-in Apache FO processor.Use built-in Apache FOP

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 124

Instructs Oxygen XML Editor plugin to use another Apache FO processor that is
installed on your computer. You can specify the path by using the text field, the

Insert Editor Variables button, or the Browse button.

Use other Apache FOP

All Apache FOP output is displayed in a results pane at the bottom of the Oxygen
XML Editor plugin window, including warning messages about FO instructions not
supported by Apache FOP.

Enable the output of the
built-in FOP

If your Apache FOP transformations fail with an Out of Memory error
(OutOfMemoryError), use this combo box to select a bigger value for the amount
of memory reserved for FOP transformations.

Memory available to the
built-in FOP

Use this option to specify the path to an Apache FOP configuration file (for example,
to render to PDF a document containing Unicode content using a special true type

Configuration file for the
built-in FOP

font). You can specify the path by using the text field, the Insert Editor Variables

button, or the Browse button.

When selected, PDF/A-1b output is generated.Generates PDF/A-1b output

Note: All fonts have to be embedded, even the implicit ones. More
information about configuring metrics files for the embedded fonts can be
found in Add a font to the built-in FOP.

Note: You cannot use the <filterList> key in the configuration file
since the FOP would generate the following error: The Filter key is prohibited
when PDF/A-1 is active.

External FO Processors Section

In this section you can manage the external FO processors you want to use in transformation scenarios. You can use the
two options at the bottom of the section to use the RenderX XEP or Antenna House Formatter commercial FO processors.

If RenderX XEP is already installed on your computer, you can use this button to choose
the XEP executable script (xep.bat for Windows, xep for Linux).

Add 'XEP' FO processor
(executable file is needed)

If Antenna House Formatter is already installed on your computer, you can use this
button to choose the Antenna House executable script (AHFCmd.exe or XSLCmd.exe
for Windows, and run.sh for Linux/Mac OS).

Add 'Antenna House' FO
processor (executable file is
needed)

Note: The built-in Antenna House Formatter GUI transformation scenario
requires that you configure an external FO processor that runs
AHFormatter.exe (Windows only). In the external FO Processor
configuration dialog box, you could use
"${env(AHF62_64_HOME)}\AHFormatter.exe" -d ${fo} -s
for the value in the Command line field, although the environment variable
name changes for each version of the AH Formatter and for each system
architecture (you can install multiple versions side-by-side). For more
information, see https://github.com/AntennaHouse/focheck/wiki/focheck.

You can also add external processors or configure existing ones. Press the New button to open a configuration dialog

box that allows you to add a new external FO processor. Use the other buttons (Edit, Duplicate, Delete) to
configure existing external processors.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 125

https://github.com/AntennaHouse/focheck/wiki/focheck

Figure 33: External FO Processor Configuration Dialog Box

The external FO Processor configuration dialog box includes the following options:

The name that will be displayed in the list of available FO processors on the FOP tab of the
transformation scenario dialog box.

Name

A textual description of the FO processor that will be displayed in the FO processors table and
in tooltips of UI components where the processor is selected.

Description

The directory where the intermediate and final results of the processing is stored. You can specify

the path by using the text field, the Insert Editor Variables button, or the Browse button.
You can use one of the following editor variables:

Working directory

• ${homeDir} - The path to the user home directory.
• ${cfd} - The path of the current file directory. If the current file is not a local file, the target

is the user desktop directory.
• ${pd} - The project directory.
• ${oxygenInstallDir} -The Oxygen XML Editor plugin installation directory.

The command line that starts the FO processor, specific to each processor. You can specify the

path by using the text field, the Insert Editor Variables button, or the Browse button. You
can use one of the following editor variables:

Command line

• ${method} - The FOP transformation method: pdf, ps, or txt.
• ${fo} - The input FO file.
• ${out} - The output file.
• ${pd} - The project directory.
• ${frameworksDir} - The path of the frameworks subdirectory of the Oxygen XML Editor

plugin installation directory.
• ${oxygenInstallDir} - The Oxygen XML Editor plugin installation directory.
• ${ps} - The platform-specific path separator. It is used between the library files specified in

the class path of the command line.

The encoding of the FO processor output stream that is displayed in a results panel at the bottom
of the Oxygen XML Editor plugin window.

Output Encoding

The encoding of the FO processor error stream that is displayed in a results panel at the bottom
of the Oxygen XML Editor plugin window.

Error Encoding

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 126

XPath Preferences

To configure XPath options, open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XPath.

Oxygen XML Editor plugin allows you to customize the following options:

When enabled, the entities of an XPath expressions that you type in the XPath/XQuery
Builder are unescaped during their execution. For example the expression

//varlistentry[starts-with(@os,'s')]

Unescape XPath
expression

is equivalent with:

//varlistentry[starts-with(@os,'s')]

Specifies the default namespace to be used for unprefixed element names. You can choose
between the following four options:

XPath Default
Namespace (only for
XPath version 2.0)

• No namespace - If selected, Oxygen XML Editor plugin considers unprefixed element
names of the evaluated XPath expressions as belonging to no namespace.

• Use the default namespace from the root element (default selection) - Oxygen XML
Editor plugin considers unprefixed element names of the evaluated XPath expressions
as belonging to the default namespace declared on the root element of the XML document
you are querying.

• Use the namespace of the root - If selected, Oxygen XML Editor plugin considers
unprefixed element names of the evaluated XPath expressions as belonging to the same
namespace as the root element of the XML document you are querying.

• This namespace - If selected, you can use the corresponding text field to enter the
namespace of the unprefixed elements.

You can use this table to associate prefixes with namespaces. Use these mappings when
you want to define them globally (not for each document). Use the New button to add
mappings to the list and the Delete button to remove mappings.

Default
prefix-namespace
mappings

Custom Engines Preferences

You can configure and run XSLT and XQuery transformations with processors other than the ones which come with the
Oxygen XML Editor plugin distribution.

Note: You can not use these custom engines in the Debugger perspective.

To configure the Custom Engines preferences, open the Preferences dialog box and go to XML > XSLT/FO/XQuery >
Custom Engines.

The table in this preferences page displays the custom engines that have been defined. Use the New or Edit button
at the bottom of the table to open a dialog box that allows you to add or configure a custom engine.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 127

Figure 34: Parameters of a Custom Engine

The following parameters can be configured for a custom engine:

Specifies the transformer type. You can choose between XSLT and XQuery engines.Engine type

The name of the transformer displayed in the dialog box for editing transformation scenarios.Name

A textual description of the transformer.Description

The start directory of the executable program for the transformer. The following editor variables
are available for making the path to the working directory independent of the location of the
input files:

Working directory

• ${homeDir} - The user home directory in the operating system.
• ${cfd} - The path to the directory of the current file.
• ${pd} - The path to the directory of the current project.
• ${oxygenInstallDir} - The Oxygen XML Editor plugin install directory.

The command line that must be executed by Oxygen XML Editor plugin to perform a
transformation with the engine. The following editor variables are available for making the

Command line

parameters in the command line (the transformer executable, the input files) independent of
the location of the input files:

• ${xml} - The XML input document as a file path.
• ${xmlu} - The XML input document as a URL.
• ${xsl} - The XSL / XQuery input document as a file path.
• ${xslu} - The XSL / XQuery input document as a URL.
• ${out} - The output document as a file path.
• ${outu} - The output document as a URL.
• ${ps} - The platform separator that is used between library file names specified in the

class path.

The encoding of the transformer output stream.Output Encoding

The encoding of the transformer error stream.Error Encoding

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 128

Import Preferences

To configure importing options, open the Preferences dialog box and go to XML > Import. This page allows you to
configure how empty values and null values are handled when they are encountered in imported database tables or
Excel sheets. Also you can configure the format of date / time values recognized in the imported database tables or Excel
sheets.

The following options are available:

If checked, an empty value from a database column or from a text file is imported as an
empty element.

Create empty elements for
empty values

If checked, null values from a database column are imported as empty elements.Create empty elements for
null values

Enabled by default, this option instructs Oxygen XML Editor plugin to escape the
imported content to an XML-safe form.

Escape XML content

If checked, the generated XML Schema contains an annotation for each of the imported
table columns. The documentation inside the annotation tag contains the remarks of the

Add annotations for
generated XML Schema

database columns (if available) and also information about the conversion between the
column type and the generated XML Schema type.

Specifies the format used for importing date and time values from Excel spreadsheets
or database tables, and in the generated XML schemas. You can choose from the following
format types:

Date / Time Format section

• Unformatted - The date and time formats specific to the database are used for import.
When importing data from Excel a string representation of date or time values are
used. The type used in the generated XML Schema is xs:string.

• XML Schema date format -The XML Schema-specific format ISO8601 is used for
imported date / time data (yyyy-MM-dd'T'HH:mm:ss for datetime,
yyyy-MM-dd for date and HH:mm:ss for time). The types used in the generated
XML Schema are xs:datetime, xs:date and xs:time.

• Custom format - If selected, you can define a custom format for timestamp, date,
and time values or choose one of the predefined formats. A preview of the values is
presented when a format is used. The type used in the generated XML Schema is
xs:string.

Date / Time Patterns Preferences

Table 1: Pattern letters

ExamplesPresentationDate or Time ComponentLetter

ADTextEra designatorG

1996; 96YearYeary

July; Jul; 07MonthMonth in yearM

27NumberWeek in yearw

2NumberWeek in monthW

189NumberDay in yearD

10NumberDay in monthd

2NumberDay of week in monthF

Tuesday; TueTextDay in weekE

PMTextAm / pm markera

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 129

ExamplesPresentationDate or Time ComponentLetter

0NumberHour in day (0-23)H

24NumberHour in day (1-24)k

0NumberHour in am / pm (0-11)K

12NumberHour in am / pm (1-12)h

30NumberMinute in hourm

55NumberSecond in minutes

978NumberMillisecondS

Pacific Standard Time; PST;
GMT-08:00

General time zoneTime zonez

-0800RFC 822 time zoneTime zoneZ

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text - If the number of pattern letters is 4 or more, the full form is used. Otherwise, a short or abbreviated form is
used if available.

• Number - The number of pattern letters is the minimum number of digits, and shorter numbers are zero-padded to
this amount.

• Year - If the number of pattern letters is 2, the year is truncated to 2 digits. Otherwise, it is interpreted as a number.
• Month - If the number of pattern letters is 3 or more, the month is interpreted as text. Otherwise, it is interpreted as

a number.
• General time zone - Time zones are interpreted as text if they have names. For time zones representing a GMT offset

value, the following syntax is used:

• GMTOffsetTimeZone - GMT Sign Hours : Minutes
• Sign - one of + or -
• Hours - one or two digits
• Minutes - two digits
• Digit - one of 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale independent and
digits must be taken from the Basic Latin block of the Unicode standard.

• RFC 822 time zone: The RFC 822 4-digit time zone format is used:

• RFC822TimeZone
• TwoDigitHours

TwoDigitHours must be between 00 and 23.

XML Signing Certificates Preferences

Oxygen XML Editor plugin provides two types of keystores for certificates that are used for digital signatures of XML
documents: Java KeyStore (JKS) and Public-Key Cryptography Standards version 12 (PKCS-12). A keystore file is
protected by a password. To configure a certificate keystore, open the Preferences dialog box and go to XML > XML
Signing Certificates. You can customize the following parameters of a keystore:

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 130

Figure 35: Certificates Preferences Panel

• Keystore type - The type of keystore that Oxygen XML Editor plugin uses (JKS or PKCS-12).
• Keystore file - The location of the imported file.
• Keystore password - The password that is used for protecting the privacy of the stored keys.
• Certificate alias - The alias used for storing the key entry (the certificate or the private key) inside the keystore.
• Private key password - The private key password of the certificate (required only for JKS keystores).
• Validate - Press this button to verify the configured keystore and the validity of the certificate.

XML Refactoring Preferences

To specify a folder for loading the custom XML refactoring operations, open the Preferences dialog box and go to
XML > XML Refactoring. The following option is available in this preferences page:

Use this text box to specify a folder for loading custom XML refactoring
operations. You can specify the path by using the text field, the Insert Editor

Variables button, or the Browse button.

Load additional refactoring
operations from

XML Structure Outline Preferences

To configure options in regards to the Outline view, open the Preferences dialog box and go to XML Structure
Outline. It contains the following options:

The preferred attribute names when displaying the attributes of an element in the
Outline view. If there is no preferred attribute name specified, the first attribute
of an element is displayed.

Preferred attribute names for
display

Drag and drop is disabled for the tree displayed in the Outline view only if there
is a possibility to accidentally change the structure of the document by such
operations.

Enable outline drag and drop

Configuring Options
A set of options controls the behavior of Oxygen XML Editor plugin, allowing you to configure most of the features.
To offer you the highest degree of flexibility in customizing the application to fit the needs of your organization, Oxygen
XML Editor plugin includes several distinct layers of option values.

The option layers are as follows (sorted from high priority to low):

• Global Options

Allows individual users to personalize Oxygen XML Editor plugin according to their specific needs.

• Customized Default Options

Designed to customize the initial option values for a group of users, this layer allows an administrator to deploy the
application preconfigured with a standardized set of option values.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 131

Note: Once this layer is set, it represents the initial state of Oxygen XML Editor plugin when an end-user
uses the Restore defaults or Reset Global Options actions.

• Default Options

The predefined default or built-in values, tuned so that Oxygen XML Editor plugin behaves optimally in most working
environments.

Important: If you set a specific option in one of the layers, but it is not applied in the application, make sure
that one of the higher priority layers does not overwrite it.

Customizing Default Options

Oxygen XML Editor plugin has an extensive set of options that you can configure. When Oxygen XML Editor plugin
in installed, these options are set to default values. You can provide a different set of default values for an installation
using an XML options file.

Creating an XML Options File

To create an options file, follow these steps:

1. It is recommended that you use a fresh install for this procedure, to make sure that you do not copy personal or local
preferences.

2. Open Oxygen XML Editor plugin and open the Preferences dialog box .
3. Go through the options and set them to the desired defaults.
4. Go to back to the main preferences page and click Export Global Options to create an XML options file.

Using Customized Default Options

There are two methods that you can use to configure an Oxygen XML Editor plugin installation to use the customized
default options from the created XML options file:

• Copy the XML Options File to the Installation Directory

In the [OXYGEN_INSTALL_DIR], create a folder called preferences and copy the created XML options file
into it (for example:
[ECLIPSE-INSTALL-DIR]/plugins/com.oxygenxml.editor/preferences/default.xml, or
if the plugin was installed as a drop-in:
[ECLIPSE-INSTALL-DIR]/dropins/com.oxygenxml.editor/preferences/default.xml).

• Specify a Path to the XML Options File in a Startup Parameter

Set the path to the XML options file as the value of the com.oxygenxml.default.options system property
in the Eclipse configuration file ([ECLIPSE-INSTALL-DIR]/configuration/config.ini). The path
can be specified with any of the following:

• A URL or file path relative to the application installation folder. For example:

com.oxygenxml.default.options=file\:default.xml

This will make Oxygen XML Editor plugin look for default.xml inside the installation folder (for example:
[ECLIPSE-INSTALL-DIR]/plugins/com.oxygenxml.editor/preferences/default.xml,
or if the plugin was installed as a drop-in:
[ECLIPSE-INSTALL-DIR]/dropins/com.oxygenxml.editor/preferences/default.xml).

• A system variable that specifies the file path. For example:

com.oxygenxml.default.options=file\:${system(CONFIG)}/default.xml

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 132

• An environmental variable that specifies the file path. For example:

com.oxygenxml.default.options=file\:${env(CONFIG)}/default.xml

Note: In the Eclipse configuration file, the backslash (\) is considered a special character. Therefore, use
forward slashes for separators inside the file path.

Importing / Exporting Global Options

Actions for importing, exporting, and resetting global options are available in the preferences page of the Oxygen XML
Editor plugin. To open this page, open the Preferences dialog box . The export operation allow you to save global
preferences as an XML options file and the import operation allows you to load the options file. You can use this file
to reload the options on your computer or to share with others.

The following buttons are available at the bottom of the preferences page:

Restores the preference to the factory defaults or to customized defaults.Reset Global Options

Allows you to import a set of Global Options from an exported XML options file. You can
also select a project file (.xpr) to import all the Global Options that are set in that project

Import Global Options

file. After you select a file, the Import Global Options dialog box is displayed, and it
informs you that the operation will only override the options that are included in the imported
file. You can enable the Reset all other options to their default values option to reset all
options to the default values before the file is imported.

Allows you to export Global Options to an XML options file. Some user-specific options
that are private are not included. For example, passwords and the name of the Review Author
is not included in the export operation.

Export Global Options

Reset Global Options

To reset all global preferences to their default values, open the Preferences dialog box and click the Reset Global
Options button.

This action also resets the transformation and validation scenarios to the default scenarios and clears recently used file
templates.

Associating a File Extension with Oxygen XML Editor plugin
To associate a file extension with Oxygen XML Editor plugin on Windows:

1. Go to the Windows Start menu and open Control Panel.
2. Go to Default Programs.
3. Click Associate a file type or protocol with a program.
4. Click the file extension you want to associate with Oxygen XML Editor plugin, then click the Change program

button.
5. In the subsequent dialog box, browse for and choose Oxygen XML Editor plugin.

To associate a file extension with Oxygen XML Editor plugin on Mac OS:

1. In Finder, select a file and from the contextual menu select Get Info.
2. In the Open With subsection, select Other from the application combo box.
3. Browse to and select Oxygen XML Editor plugin.
4. Select the Always Open With option, then click Add.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 133

Scenarios Management
You can export global transformation and validation scenarios into specialized scenarios files. You can import
transformation and validation scenarios from various sources (such as project files, framework option files, or exported
scenario files). To access these import and export actions, open the Preferences dialog box and go to Scenarios
Management. The following actions are available:

Loads a set of transformation scenarios from a project file, framework
options file, or exported scenarios file.

Import Global Transformation Scenarios

Stores a set of global (not project-level) transformation scenarios in a
specialized scenarios file.

Export Global Transformation Scenarios

Loads a set of validation scenarios from a project file, framework
options file, or exported scenarios file.

Import Global Validation Scenarios

Stores a set of global (not project-level) Validation scenarios in a
specialized scenarios file.

Export Global Validation Scenarios

The Export Global Transformation Scenarios and Export Global Validation Scenarios options are used to store all
the scenarios in a separate file. Associations between document URLs and scenarios are also saved in this file. You can
load the saved scenarios using the Import Global Transformation Scenarios and Import Global Validation Scenarios
actions. To distinguish the existing scenarios and the imported ones, the names of the imported scenarios contain the
word import.

Editor Variables
An editor variable is a shorthand notation for context-dependent information, such as a file or folder path, a time-stamp,
or a date. It is used in the definition of a command (for example, the input URL of a transformation, the output file path
of a transformation, or the command line of an external tool) to make a command or a parameter generic and re-usable
with other input files. When the same command is applied to multiple files, the notation is expanded at the execution
of the command so that the same command has different effects depending on the actual file.

Oxygen XML Editor plugin includes a variety of built-in editor variables. You can also create your own custom editor
variables by using the Custom Editor Variables preferences page.

You can use the following editor variables in Oxygen XML Editor plugin commands of external engines or other external
tools, in transformation scenarios, and in validation scenarios:

• ${oxygenHome} - Oxygen XML Editor plugin installation folder as URL.
• ${oxygenInstallDir} - Oxygen XML Editor plugin installation folder as file path.
• ${framework} - The path (as URL) of the current framework, as part of the

[OXYGEN_INSTALL_DIR]/frameworks directory.
• ${framework(fr_name)} - The path (as URL) of the fr_name framework.
• ${frameworkDir(fr_name)} - The path (as file path) of the fr_name framework.

Note: Since multiple frameworks might have the same name (although it is not recommended), for both
${framework(fr_name)} and ${frameworkDir(fr_name)} editor variables Oxygen XML Editor plugin employs
the following algorithm when searching for a given framework name:

• All frameworks are sorted, from high to low, according to their Priority setting from the Document Type
configuration dialog box. Only frameworks that have the Enabled checkbox set are taken into account.

• Next, if the two or more frameworks have the same name and priority, a further sorting based on the
Storage setting is made, in the exact following order:

• Frameworks stored in the internal Oxygen XML Editor plugin options.
• Additional frameworks added in the Locations preferences page.
• Frameworks installed using the add-ons support.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 134

• Frameworks found in the main frameworks location (Default or Custom).

• ${frameworks} - The path (as URL) of the [OXYGEN_INSTALL_DIR] directory.
• ${frameworkDir} - The path (as file path) of the current framework, as part of the

[OXYGEN_INSTALL_DIR]/frameworks directory.
• ${frameworksDir} - The path (as file path) of the [OXYGEN_INSTALL_DIR]/frameworksdirectory.
• ${home} - The path (as URL) of the user home folder.
• ${homeDir} - The path (as file path) of the user home folder.
• ${pdu} - Current project folder as URL. Usually the current folder selected in the Project View.
• ${pd} - Current project folder as file path. Usually the current folder selected in the Project View.
• ${pn} - Current project name.
• ${cfdu} - Current file folder as URL, that is the path of the current edited document up to the name of the parent

folder, represented as a URL.
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent

folder.
• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently opened

and selected.
• ${cfne} - Current file name with extension. The current file is the one currently opened and selected.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${af} - The local file path of the ZIP archive that includes the current edited document.
• ${afu} - The URL path of the ZIP archive that includes the current edited document.
• ${afd} - The local directory path of the ZIP archive that includes the current edited document.
• ${afdu} - The URL path of the directory of the ZIP archive that includes the current edited document.
• ${afn} - The file name (without parent directory and without file extension) of the zip archive that includes the current

edited file.
• ${afne} - The file name (with file extension, for example .zip or .epub, but without parent directory) of the zip

archive that includes the current edited file.
• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document represented

as URL.
• ${ps} - Path separator, which is the separator that can be used on the current platform (Windows, OS X, Linux)

between library files specified in the class path.
• ${timeStamp} - Time stamp, that is the current time in Unix format. For example, it can be used to save transformation

results in multiple output files on each transformation.
• ${caret} - The position where the cursor is located. This variable can be used in a code template, in Author mode

operations, or in a selection plugin.
• ${selection} - The current selected text content in the current edited document. This variable can be used in a code

template, in Author mode operations, or in a selection plugin.
• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not guaranteed to

be universally unique.
• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID

class.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed by

the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor variable.
• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified

in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for operating
system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${makeRelative(base,location)} - Takes two URL-like paths as parameters and tries to return a relative path. A
use-case would be to insert content references to a certain reusable component when defining code templates.

Example:

${makeRelative(${currentFileURL}, ${dictionaryURL}#gogu)}

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 135

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default_value')} - To
prompt for values at runtime, use the ask('message', type, ('real_value1':'rendered_value1';
'real_value2':'rendered_value2'; ...), 'default-value'') editor variable. You can set the following parameters:

• 'message' - The displayed message. Note the quotes that enclose the message.
• type - Optional parameter, with one of the following values:

Parameter

Format: ${ask('message', url, 'default_value')}url

Description: Input is considered a URL. Oxygen XML Editor plugin checks that the
provided URL is valid.

Example:

• ${ask('Input URL', url)} - The displayed dialog box has the name Input
URL. The expected input type is URL.

• ${ask('Input URL', url, 'http://www.example.com')} - The
displayed dialog box has the name Input URL. The expected input type is URL.
The input field displays the default value http://www.example.com.

Format: ${ask('message', password, 'default')}password

Description: The input is hidden with bullet characters.

Example:

• ${ask('Input password', password)} - The displayed dialog box has
the name 'Input password' and the input is hidden with bullet symbols.

• ${ask('Input password', password, 'abcd')} - The displayed
dialog box has the name 'Input password' and the input hidden with bullet
symbols. The input field already contains the default abcd value.

Format: ${ask('message', generic, 'default')}generic

Description: The input is considered to be generic text that requires no special handling.

Example:

• ${ask('Hello world!')} - The dialog box has a Hello world! message
displayed.

• ${ask('Hello world!', generic, 'Hello again!')} - The dialog
box has a Hello world! message displayed and the value displayed in the input
box is 'Hello again!'.

Format: ${ask('message', relative_url, 'default')}relative_url

Description: Input is considered a URL. Oxygen XML Editor plugin tries to make the
URL relative to that of the document you are editing.

Note: If the $ask editor variable is expanded in content that is not yet saved
(such as an untitled file, whose path cannot be determined), then Oxygen XML
Editor plugin will transform it into an absolute URL.

Example:

• ${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has the name
'File location'. The URL inserted in the input box is made relative to the
current edited document location.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 136

Parameter

Format: ${ask('message', combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

combobox

Description: Displays a dialog box that offers a drop-down menu. The drop-down menu
is populated with the given rendered_value values. Choosing such a value will
return its associated value (real_value).

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} -
The dialog box has the name 'Operating System'. The drop-down menu
displays the three given operating systems. The associated value will be returned
based upon your selection.

Note: In this example, the default value is indicated by the osx key.
However, the same result could be obtained if the default value is indicated
by Mac OS X, as in the following example: ${ask('Operating
System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'Mac
OS X')}

• ${ask('Mobile OS', combobox, ('win':'Windows
Mobile';'ios':'iOS';'and':'Android'), 'Android')}

Format: ${ask('message', editable_combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

editable_combobox

Description: Displays a dialog box that offers a drop-down menu with editable elements.
The drop-down menu is populated with the given rendered_value values. Choosing
such a value will return its associated real value (real_value) or the value inserted
when you edit a list entry.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', editable_combobox,
('win':'Microsoft Windows';'osx':'Mac OS
X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has the name
'Operating System'. The drop-down menu displays the three given operating
systems and also allows you to edit the entry. The associated value will be returned
based upon your selection or the text you input.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 137

Parameter

Format: ${ask('message', radio,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

radio

Description: Displays a dialog box that offers a series of radio buttons. Each radio
button displays a 'rendered_value and will return an associated real_value.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', radio, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} -
The dialog box has the name 'Operating System'. The radio button group
allows you to choose between the three operating systems.

Note: In this example Mac OS X is the default selected value and if
selected it would return osx for the output.

• 'default-value' - optional parameter. Provides a default value.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat class.
Example: yyyy-MM-dd;

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to
http://www.w3.org/TR/xmlschema-2/#dateTime.

• ${dbgXML} - The local file path to the XML document that is current selected in the Debugger source combo box
(for tools started from the XSLT/XQuery Debugger).

• ${dbgXSL} - The local file path to the XSL/XQuery document that is current selected in the Debugger stylesheet
combo box (for tools started from the XSLT/XQuery Debugger).

• ${tsf} - The transformation result file path. If the current opened file has an associated scenario that specifies a
transformation output file, this variable expands to it.

• ${dsu} - The path of the detected schema as a URL for the current validated XML document.
• ${ds} - The path of the detected schema as a local file path for the current validated XML document.
• ${cp} - Current page number. Used to display the current page number on each printed page in the Editor / Print

Preferences page.
• ${tp} - Total number of pages in the document. Used to display the total number of pages on each printed page in

the Editor / Print Preferences page.
• ${xpath_eval(expression)} - Evaluates an XPath 3.0 expression. Depending on the context, the expression can be:

• static - When executed in a non-XML context. For example, you can use such static expressions to perform string
operations on other editor variables for composing the name of the output file in a transformation scenario's
Output tab.

Example:

${xpath_eval(upper-case(substring('${cfn}', 1, 4)))}

• dynamic - When executed in an XML context. For example, you can use such dynamic expression in a code
template or as a value of a parameter of an Author mode operation.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 138

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime

Example:

${ask('Set new ID attribute', generic, '${xpath_eval(@id)}')}

• ${i18n(key)} - Editor variable used only at framework level to allow translating names and descriptions of Author
mode actions in multiple actions. For more details see the Localizing Frameworks on page 924 section.

Custom Editor Variables

An editor variable can be created and included in any user-defined expression where a built-in editor variable is also
allowed. For example, a custom editor variable may be necessary for configuring the command line of an external tool,
the working directory of a custom validator, the command line of a custom XSLT engine, or a custom FO processor.

You can create or configure custom editor variables in the Custom Editor Variables preferences page. To create a
custom editor variable, follow these steps:

1. Open the Preferences dialog box and go to Custom Editor Variables.

2. Click the New button at the bottom of the table.
3. Use the subsequent dialog box to specify the Name, Value, and Description for the new editor variable.
4. Click OK to save your configuration.

Related information
Editor Variables on page 134

Localizing of the User Interface
To localize the Oxygen XML Editor plugin, you can use one of the following methods:

• Localization through the update site:

Start Eclipse, go to Help > Install New Software. Press Add Site in the Available Software tab of the Software
Updates dialog box. Enter http://www.oxygenxml.com/InstData/Editor/Eclipse/site.xml in the location field of the
Add Site dialog box. Press OK. Select the language pack checkbox.

• Localization through the zip archive:

Go to http://www.oxygenxml.com/download.html and download the zip archive with the plugin language pack. Unzip
the downloaded zip archive in the dropins subdirectory of the Eclipse install directory. Restart Eclipse.

If your operating system is running in the language you want to start Eclipse in (for example, you are using Japanese
version of Windows, and you want to start Eclipse in Japanese), Oxygen XML Editor plugin matches the appropriate
language from the language pack. However, if your operating system is running in a language other than the one you
want to start Eclipse in (for example, you are using the English version of Windows, and you want to start Eclipse in
Japanese, if you have the required operating system language support including the keyboard layouts and input method
editors installed), specify the -nl <locale> command line argument when you launch Eclipse. Oxygen XML Editor
plugin uses the translation file that matches the specified <locale>.

You can also localize the Eclipse plugin to a different language than the initial languages in the language pack. Duplicate
the plugin.properties file from the Oxygen XML Editor plugin plugin installation directory, translate all the
keys in the file and change its name to plugin_<locale>.properties.

Oxygen XML Editor plugin | Configuring Oxygen XML Editor plugin | 139

http://www.oxygenxml.com/InstData/Editor/Eclipse/site.xml
http://www.oxygenxml.com/download.html

Chapter

5

Perspectives

The detailed descriptions of the Editor, XSLT Debugger, XQuery Debugger,
and Database perspectives.

Topics:

• oXygen XML Perspective
An Oxygen XML Editor plugin perspective is an interface layout geared towards
a specific use. The Oxygen XML Editor plugin interface uses standard interface

• XSLT Debugger Perspective
• XQuery Debugger Perspective conventions and components to provide a familiar and intuitive editing
• Oxygen XML Editor plugin

Database Perspective
environment across all operating systems. There are several perspectives that
you can use to work with documents in Oxygen XML Editor plugin. You can
change the perspective by selecting the perspective from the Window > Open
Perspective menu.

oXygen XML Perspective
The <oXygen/> XML perspective is the most commonly used perspective and it is the default perspective when you
start Oxygen XML Editor plugin for the first time. It is the perspective that you will use to edit the content of your XML
documents.

To switch the focus to this perspective, select <oXygen/> XML from the Window > Open Perspective menu.

The layout of this perspective is composed of the following components:

Provides menu driven access to all the features and functions available in Oxygen XML Editor plugin. Most
of the menus are common for all types of documents. However, Oxygen XML Editor plugin also includes

Menus

some context-sensitive and framework-specific menus that are only available for a specific context or type
of document.

Provides easy access to common and frequently used functions. Each icon is a button that acts as a shortcut
to a related function. Most of the toolbars are common for all types of documents. However, Author mode

Toolbars

also includes framework-specific toolbars, depending on the type of document that is being edited (for
example, if you are editing a DITA document, a DITA Author Custom Actions toolbar is available that
includes operations that are specific to DITA documents).

The main editing pane where you spend most of your time reading, editing, applying markup, and validating
your documents.

Editor
Pane

Oxygen XML Editor plugin includes a large variety of views to assist you with editing, viewing, searching,
validating, transforming, and organizing your documents. The most commonly used views are displayed by
default and you can choose to display others by selecting them from the Window > Show View menu.

When two or more views are displayed, the application provides divider bars. Divider bars can be dragged
to a new position increasing the space occupied by one panel while decreasing it for the other.

Views

As the majority of the work process centers around the Editor area, other views can be hidden using the
controls located on the top-right corner of the view ().

Some of the most helpful views in the <oXygen/> XML perspective include the following:

• Navigator view - Enables the definition of projects and logical management of the documents they
contain.

• DITA Maps Manager view - For DITA frameworks, this view helps you organize, manage, and edit
DITA topics and maps.

• Outline view - It provides an XML tag overview and offers a variety of functions, such as modifications
follow-up, document structure change, document tag selection, and elements filtering.

• Results view - Displays the messages generated as a result of user actions such as validations,
transformation scenarios, spell checking in multiple files, search operations, and others. Each message
is a link to the location related to the event that triggered the message.

• Attributes view - Presents all possible attributes of the current element and allows you to edit attribute
values. You can also use this view to insert attributes in Text mode. Author mode also includes an
in-place attribute editor.

• Model view - Presents the current edited element structure model and additional documentation as defined
in the schema.

• Elements view - Presents a list of all defined elements that you can insert at the current cursor position
according to the document's schema. In Author mode this view includes tabs that present additional
information relative to the cursor location.

• Entities view - Displays a list with all entities declared in the current document as well as built-in ones.
• Transformation Scenarios view - Displays a list with all currently configured transformation scenarios.
• XPath/XQuery Builder view - Displays the results from running an XPath expression.
• Text view - Displays the text output that is produced in XSLT transformations.
• Browser view - Displays HTML output from XSLT transformations.

Oxygen XML Editor plugin | Perspectives | 142

• Problems view - A general Eclipse view that displays system-generated errors, warnings, or information
associated with a resource.

• Console view - Status information generated by the Schema detection, validation, and transformation
threads.

• WSDL SOAP Analyzer view - Provides a tool that helps you test if the messages defined in a Web Service
Descriptor (WSDL) are accepted by a Web Services server.

Related information
XSLT Debugger Perspective on page 144

XQuery Debugger Perspective on page 144

Oxygen XML Editor plugin Database Perspective on page 145

Supported Document Types

You can use the main editing pane in Oxygen XML Editor plugin to edit a large variety of document types. You can
see the type of document association by the special icons displayed in the tabs of the editor title bar.

The supported document types include the following:

• - XML documents

• - XSLT stylesheets

• - XML Schema

• - DTD (Document Type Definition) schemas

• - RELAX NG full syntax schemas

• - RELAX NG compact syntax schemas

• - NVDL (Namespace-based Validation Dispatching Language) schemas

• - XSL:FO documents

• - XQuery documents

• - WSDL documents

• - Schematron documents

• - JavaScript documents

• - Python documents

• - CSS documents

• - LESS documents

• - XProc scripts

• - SQL documents

• - JSON documents

• - Ant build scripts

Oxygen XML Editor plugin | Perspectives | 143

XSLT Debugger Perspective
The XSLT Debugger perspective allows you to detect problems in an XSLT transformation by executing the process
step by step. To switch the focus to this perspective, select Window > Open Perspective > Other > Oxygen XSLT
Debugger.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing area
contains editor panels that you can split horizontally or vertically in a stack of XML editor panels and a stack of XSLT
editor panels. The XML files and XSL files can be edited in Text mode only.

The layout of this perspective is composed of the following components:

Provides menu driven access to all the features and functions available in the XSLT Debugger.Menus

Contains all actions needed to configure and control the debugging process.Toolbars

The editing pane where you can display and edit data or document-oriented XML documents.XML Source Pane

The editing pane where you can display and edit XSL stylesheets.XSL Source Pane

Displays the transformed output that results from the input of a selected document (XML) and
selected stylesheet (XSL) to the transformer. The result of transformation is dynamically written

Output View

as the transformation is processed. There are three types of views for the output: a text view
(with XML syntax highlight), an XHTML view, and one text view for each
xsl:result-document element used in the stylesheet (if it is an XSLT 2.0 / 3.0 stylesheet).

Presented in two panes, they display various types of information that can be used to understand
the transformation process. For each information type there is a corresponding tab. While running

Debugging
Information Views

a transformation, relevant events are displayed in the various information views. This allows
you to obtain a clear view of the transformation progress. See the Debugging Information Views
topic for a list of all the information views (and links to more details on each view).

Note: You can add XPath expression automatically in the XWatch view using the
Watch expression action from the contextual menu. In case you select an expression
or a fragment of it and then click Watch expression in the contextual menu, the entire
selection is presented in the XWatch view. Using Watch expression without selecting
an expression displays the value of the attribute from the cursor position in the XWatch
view. Variables detected at the cursor position are also displayed. Expressions displayed
in the XWatch view are normalized (unnecessary white spaces are removed from the
expression).

To watch our video demonstration about the XSLT debugging capabilities in Oxygen XML Editor plugin, go to
http://www.oxygenxml.com/demo/XSLT_Debugger.html.

Related information
oXygen XML Perspective on page 142

XQuery Debugger Perspective on page 144

Oxygen XML Editor plugin Database Perspective on page 145

XQuery Debugger Perspective
The XQuery Debugger perspective allows you to detect problems in an XQuery transformation process by executing
the process step by step in a controlled environment and inspecting the information provided in the special views. To
switch the focus to this perspective, select Window > Open Perspective > Other > Oxygen XQuery Debugger.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing area
contains editor panels that you can split horizontally or vertically in a stack of XML editor panels and a stack of XQuery
editor panels. The XML files and XQuery files can be edited in Text mode only.

Oxygen XML Editor plugin | Perspectives | 144

http://www.oxygenxml.com/demo/XSLT_Debugger.html

The layout of this perspective is composed of the following components:

Provides menu driven access to all the features and functions available in the XQuery
Debugger.

Menus

Contains all actions needed to configure and control the debugging process.Toolbars

The editing pane where you can display and edit data or document-oriented XML documents.XML Source Pane

The editing pane where you can display and edit XQuery files.XQuery Source Pane

Displays the transformed output that results from the input of a selected document (XML) and
selected XQuery document to the XQuery transformer. The result of transformation is

Output View

dynamically written as the transformation is processed. There are two types of views for the
output: a text view (with XML syntax highlight) and an XHTML view.

Presented in two panes, they display various types of information that can be used to understand
the transformation process. For each information type there is a corresponding tab. While

Debugging
Information Views

running a transformation, relevant events are displayed in the various information views. This
allows you to obtain a clear view of the transformation progress. See the Debugging Information
Views topic for a list of all the information views (and links to more details on each view).

Note: You can add XPath expression automatically in the XWatch view using the
Watch expression action from the contextual menu. If you select an expression, or
a fragment of it, and then click Watch expression in the contextual menu, the entire
selection is presented in the XWatch view. Expressions displayed in the XWatch
view are normalized (unnecessary white spaces are removed from the expression).

To watch our video demonstration about the XQuery debugging capabilities in Oxygen XML Editor plugin, go to
http://www.oxygenxml.com/demo/XQuery_Debugger.html.

Related information
oXygen XML Perspective on page 142

XSLT Debugger Perspective on page 144

Oxygen XML Editor plugin Database Perspective on page 145

Oxygen XML Editor plugin Database Perspective
The Database perspective allows you to manage databases. To switch the focus to this perspective, select <oXygen/>
Database from the Window > Open perspective menu.

The Database perspective offers various helpful features, including:

• Support for browsing multiple connections at the same time.
• Support for both Relational and Native XML databases.
• Browsing the structure of databases.
• Viewing tables from databases.
• Inspecting or modifying data.
• Specifying XML Schemas for XML fields.
• SQL execution.
• XQuery execution.
• Data export to XML.

Supported Databases

Oxygen XML Editor plugin supports numerous types of databases, including:

• Oracle Berkeley DB XML Database
• eXist XML Database

Oxygen XML Editor plugin | Perspectives | 145

http://www.oxygenxml.com/demo/XQuery_Debugger.html

• IBM DB2 (Enterprise edition only)
• JDBC-ODBC Bridge
• MarkLogic (Enterprise edition only)
• Microsoft SQL Server 2005 and Microsoft SQL Server 2008 (Enterprise edition only)
• MySQL
• Oracle 11g (Enterprise edition only)
• PostgreSQL 8.3 (Enterprise edition only)
• Documentum xDB (X-Hive/DB) 10 XML Database (Enterprise edition only)
• Documentum (CMS) 6.5 (Enterprise edition only)
• SharePoint (CMS)

Note: For the databases marked with "Enterprise edition only", the XML capabilities are only available in the
Enterprise edition of Oxygen XML Editor plugin. For a detailed feature matrix that compares the Academic,
Professional, and Enterprise editions of Oxygen XML Editor plugin go to the Oxygen XML Editor plugin website.

Supported Capabilities

The supported non-XML capabilities are as follows:

• Browsing the structure of the database instance.
• Opening a database table in the Table Explorer view.
• Handling the values from XML Type columns as String values.

Note: The non-XML capabilities are available in the Enterprise, Academic, and Professional editions of Oxygen
XML Editor plugin by registering the database driver as a Generic JDBC type driver when defining the data
source for accessing the database. For more information, see the Database Connection Support on page 741
section.

The supported XML capabilities are as follows:

• Displaying an XML Schema node in the tree of the database structure (for databases with an XML-specific structure)
with actions for opening, editing, and validating the schemas in an Oxygen XML Editor plugin editor panel.

• Handling the values from XML Type columns as XML instance documents that can be opened and edited in an
Oxygen XML Editor plugin editor panel.

• Validating an XML instance document added to an XML Type (column of a table, etc.)

Tip: Connections configured on relational data sources can be used to import data to XML or to generate XML
schemas.

Layout of the Database Perspective

The layout of this perspective is composed of the following components:

Provides menu driven access to all the features and functions available in the XQuery
Debugger.

Menus

Contains all actions needed to configure and control the debugging process.Toolbars

The main editing pane where you spend most of your time reading, editing, applying
markup, and validating your documents.

Editor Pane

Provides browsing support for the configured connections.Data Source Explorer View

Provides table content editing support for inserting new rows, deleting table rows,
editing cell values, exporting to an XML file, and more.

Table Explorer View

Related information
oXygen XML Perspective on page 142

XSLT Debugger Perspective on page 144

Oxygen XML Editor plugin | Perspectives | 146

http://www.oxygenxml.com/feature_matrix.html

XQuery Debugger Perspective on page 144
Oxygen XML Editor plugin | Perspectives | 147

Chapter

6

Editing Modes

Oxygen XML Editor plugin includes several editing modes to suit your type of
editing.

Topics:

• Text Editing Mode
The main editing area in Oxygen XML Editor plugin includes several editing
modes to suit the type of editing that you want to perform. You can easily switch

• Grid Editing Mode
• Author Editing Mode between modes by clicking on the desired mode at the bottom of the main editing

pane. Oxygen XML Editor plugin offers the following editing modes:• Design Editing Mode

• Text - This mode presents the source of an XML document.
• Grid - This mode displays an XML document as a structured grid of nested

tables.
• Author - This mode enables you to edit in a WYSIWYG-like editor.
• Design - This mode is found in the schema editor and represents the schema

as a diagram.

Text Editing Mode
The Text mode of Oxygen XML Editor plugin provides the usual functionality of a plain text editor. It also includes a
variety of advanced features that are unique to Oxygen XML Editor plugin.

Related information
Editing XML Documents in Text Mode on page 223

Text Mode Editor

The Text mode Author editor in Oxygen XML Editor plugin is designed to be a simple, yet powerful, XML editor. It
provides support to help you edit, transform, and debug XML-based documents. It also includes a specialized Content
Completion Assistant, an Outline view, and many other helpful features.

Related information
Changing the colors displayed in the Text Mode Editor on page 95

Navigating the Document Content in Text Mode

Oxygen XML Editor plugin includes some useful features to help you navigate XML documents in Text mode.

Using the Keyboard

Oxygen XML Editor plugin allows you to quickly navigate through a document using the Ctrl + CloseBracket
(Command + CloseBracket on OS X) key to go to the next XML node and Ctrl + OpenBracket (Command +
OpenBracket on OS X) to go to the previous one.

To navigate one word forward or backwards, use Ctrl + RightArrow (Command + RightArrow on OS X), and Ctrl
+ LeftArrow (Command + LeftArrow on OS X), respectively. To position the cursor at the beginning or end of the
document you can use Ctrl + Home (Command + Home on OS X), and Ctrl + End (Command + End on OS X),
respectively.

Navigation Shortcuts

Oxygen XML Editor plugin includes some keyboard shortcuts to help you quickly navigate to a particular modification.
They are also available as actions in the Navigation menu.

• Ctrl+Q - Last Edit Location - Moves the cursor to the last modification in any opened document.
• Alt+LeftArrow (Command+OpenBracket on OS X) - Back - Moves the cursor to the previous position.
• Alt+RightArrow (Command+CloseBracket on OS X) - Forward - Moves the cursor to the next position.

Navigating with the Outline View
Oxygen XML Editor plugin includes a very useful Outline view that displays a hierarchical tag overview of the currently
edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is
synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are
highlighted in the editor area.

Figure 36: Outline View Navigation in Text Mode

Oxygen XML Editor plugin | Editing Modes | 150

Using the Breadcrumb to Navigate

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can also be
used as a helpful tool to navigate to specific elements throughout the structure of the document.

Figure 37: Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. Clicking an element from the
breadcrumb selects the entire element and navigates to it in the editor area.

Navigating with the Go To Dialog Box

In Text mode, you can navigate precisely to a location in the document you are editing by using the Go To Line (Ctrl+L
(Command+L on OS X)) action that is available in the Navigation menu.

Text Mode Views

There is a large selection of useful views available in the Window > Show View menu. This section presents some of
the most helpful views for editing in Text mode.

Navigator View

The Navigator view is designed to assist you with organizing and managing related files grouped in the same XML
project. The actions available on the contextual menu and toolbar associated to this panel enable the creation of XML
projects and shortcuts to various operations on the project documents.

Figure 38: Navigator View

By default, the view is positioned on the left side of the Oxygen XML Editor plugin window, above the Outline view.
If the view has been closed, it can be reopened at any time from the Window > Show View menu.

The following actions are grouped in the upper right corner:

Collapses all project tree folders. You can also collapse/expand a project tree folder if
you select it and press the Enter key or Left Arrow to collapse and Right Arrow to
expand.

Collapse All

Oxygen XML Editor plugin | Editing Modes | 151

When selected, the project tree highlights the currently edited file, if it is found in the
project files.

Link with Editor

Note: This button is disabled automatically when you move to the Debugger
perspective.

Drop-down menu that contains various settings.View Menu

The files are usually organized in an XML project as a collection of folders. There are two types of resources displayed
in the Navigator view:

• Physical folders and files - marked with the operating system-specific icon for folders (usually a yellow icon on
Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that exist in the
local file system. They are created or added to the project by using contextual menu actions (such as New > File and

New > Folder).Also, the contextual menu action Delete can be used to remove them from the project and local
file system.

• Shortcut folders and files - the icons for file and folder shortcuts are displayed with a shortcut symbol. They are
created and added by using the actions New > File > Advanced or New > Folder > Advanced from the contextual

menu or File menu. Also, the contextual menu action Delete can be used to remove them from the project (the
local file system remains unchanged).

Figure 39: Navigator View with Examples of the Two Types of Resources

Creating New Projects

The following actions are available by selecting New from the contextual menu or File menu:

Opens the New XML Project dialog box that allows you to create a new project
and adds it to the project structure in the Navigator view.

New > XML Project

Opens the New sample XML project dialog box that allows you to customize
sample resources in a new project and adds it to the project structure in the Navigator
view.

New > Sample XML Project

Creating New Project Items

To create new project items, select the desired document type or folder from the New menu of the contextual menu,
when invoked from the Navigator view (or from the File menu). You can also create a document from a template by
selecting New > New from Templates from the contextual menu.

Opens a New file dialog box that helps you create a new file and adds it to the project
structure.

New > File

Oxygen XML Editor plugin | Editing Modes | 152

Opens a New Folder dialog box that allows you to specify a name for a new folder
and adds it to the structure of the project.

New > Folder

Available when invoked from the project root, this action creates a logical folder in

the tree structure (the icon is a magenta folder on Mac OS X -).
New > Logical Folder

Available when invoked from the project root, this action replicates the structure of
a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders.
The newly created logical folders contain the file structure of the folder it points to.

New > Logical Folders from
Web

Managing Project Content
Creating/Adding Files and Folders

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer / Mac OS X
Finder to the project tree, or by using the contextual menu from the location in the project tree where you wanted it
added and selecting New > Folder > Advanced. To create a file inside a linked folder, use the contextual menu and
select New > File (you can use the Advanced button to link to a file in the local file system).

Note: The linked folders presented in the Navigator view are marked with a special icon.

You can create physical folders by selecting New > Folder from the contextual menu.

When adding files to a project, the default target is the project root. To change a target, select a new folder. Files may
have multiple instances within the folder system, but cannot appear twice within the same folder.

Removing Files and Folders

To remove one or more files or folders, select them in the project tree and press the Delete key, or select the contextual

menu action Delete.

CAUTION: In most cases this action is irreversible, deleting the file permanently. Under particular circumstances
(if you are running a Windows installation of Oxygen XML Editor plugin and the Recycle Bin is active) the file
is moved to Recycle Bin.

Moving Files and Folders

You can move the resources of the project with drag and drop operations on the files and folders of the tree.

You can also use the usual Copy and Paste actions to move resources in the Navigator view.

Renaming Files and Folders

There are two ways you can rename an item in the Navigator view. Select the item in the Navigator view and do one
of the following:

• Invoke the Rename action from the contextual menu.
• Press F2 and type the new name.

To finish editing the item name, press Enter.

Locating and Opening Files

If a project folder contains a lot of documents, a certain document can be located quickly in the project tree by selecting
the folder containing the desired document and typing the first few characters of the document name. The desired
document is automatically selected as soon as the typed characters uniquely identify its name in the folder.

The selected document can be opened by pressing the Enter key, by double-clicking it, or with one of the Open actions
from the contextual menu. The files with known document types are opened in the associated editor, while binary files
are opened with the associated system application. To open a file with a known document type in an editor other than
the default one, use the Open with action. Also, dragging and dropping files from the project tree to the editor area
results in the files being opened.

Saving the Project

Oxygen XML Editor plugin | Editing Modes | 153

The project file is automatically saved every time the content of the Navigator view is saved or modified by actions
such as adding or removing files and drag and drop.

Validate Files

The currently selected files associated with the Oxygen XML Editor plugin in the Package Explorer view or in the
Navigator view can be checked to be XML well-formed or validated against a schema (DTD, XML Schema, Relax
NG, Schematron or NVDL) with one of the following contextual menu actions found in the Validate submenu:

Checks if the selected file or files are well-formed.Check Well-Formedness

Validates the selected file or files against their associated schema. EPUB
files make an exception, because this action triggers a Validate and Check
for Completeness operation.

Validate

Validates the selected file of files against a specified schema.Validate with Schema

Allows you to configure and run a validation scenario.Configure Validation Scenario(s)

Clears all the error markers from the main editor and Problems view.Clear Validation Markers

Applying Transformation Scenarios

The currently selected files associated with the Oxygen XML Editor plugin in the Package Explorer view or in the
Navigator view can be transformed in one step with one of the following actions available from contextual menu in the
Transform submenu:

Obtains the output with one of the built-in scenarios.Apply Transformation Scenario(s)

Opens a dialog box that allows you to configure pre-defined
transformation scenarios.

Configure Transformation Scenario(s)

Allows you to select a transformation scenario to be applied to the
currently selected files.

Transform with

Refactoring Actions (Available for certain document types (such as XML, XSD, and XSL)

Oxygen XML Editor plugin includes some refactoring operations that help you manage the structure of your documents.
The following actions are available from the contextual menu in the Refactoring submenu:

Allows you to change the name of a resource.Rename resource

Allows you to change the location on disk of a resource.Move resource

Opens the XML Refactoring tool wizard that presents refactoring operations to
assist you with managing the structure of your XML documents.

XML Refactoring

Other Contextual Menu Actions

Other actions that are available in the contextual menu from the project tree include:

Opens the selected files in the corresponding editor.Open

This submenu offers you choices for opening the selected file in various editors.Open with submenu

Refreshes the content and the dependencies between the resources in the Master
Files directory.

Refresh

Opens the XPath/XQuery Builder view that allows you to compose XPath and
XQuery expressions and execute them over the currently edited XML document.

XPath in Files

Allows you to check the spelling of multiple files.Check Spelling in Files

Oxygen XML Editor plugin | Editing Modes | 154

Opens the Format and Indent Files dialog box that allows you to configure the
format and indent (pretty print) action that will be applied on the selected documents.

Format and Indent Files

Displays the properties of the current file in a Properties dialog box.Properties

Related information
Working with EPUB on page 734

Outline View in Text Mode

The Outline view in Text mode displays a general tag overview of the currently edited XML Document. When you
edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you modify.
This functionality gives you great insight on the location of your modifications in the current document. It also shows
the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure
and the way element tags are nested.

Outline View Features
The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.
• Insert or delete nodes using contextual menu actions.
• Move elements by dragging them to a new position in the tree structure.
• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the

editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.
• View document errors, as they are highlighted in the Outline view. A tooltip also provides more information about

the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

It also includes a View menu in the top-right corner that presents a variety of options to help you filter the view even
further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view with
drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be
moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will
be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or
lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the
target element.

• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead
of a move.

The drag and drop actions in the Outline view can be disabled and enabled from a Preferences page.

Oxygen XML Editor plugin | Editing Modes | 155

Figure 40: Outline View in Text Mode

Related information
Outline View in Author Mode on page 177

Outline View Filters in Text Mode

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

The following actions are available in the View menu of the Outline view when editing in Text mode:

The text filter of the Outline view returns only exact matches.Filter returns exact matches

Controls the synchronization between Outline view and source document.
The selection in the Outline view can be synchronized with the cursor

Selection update on cursor move

moves or the changes in the editor. Selecting one of the components from
the Outline view also selects the corresponding item in the source
document.

When active, the application flattens the filtered result elements to a single
level.

Flat presentation mode of the filtered
results

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

Outline View Contextual Menu Actions in Text Mode

The following actions are available from the contextual menu in the Outline view in Text mode:

Allows you to select an element (from a drop-down list) that is allowed by the
associated schema and inserts it as a child of the current element.

Append Child

Oxygen XML Editor plugin | Editing Modes | 156

Allows you to select an element (from a drop-down list) that is allowed by the
associated schema and inserts it immediately before the current element, as a sibling.

Insert Before

Allows you to select an element (from a drop-down list) that is allowed by the
associated schema and inserts it immediately after the current element, as a sibling.

Insert After

Opens a dialog box that allows you to edit the attributes of the currently selected
component.

Edit Attributes

Encloses the currently selected element in an XML comment, if the element is not
already commented. If it is already commented, this action will remove the comment.

Toggle Comment

Cuts the currently selected component.Cut

Copies the currently selected component.Copy

Deletes the currently selected component.Delete

Expands the structure of a component in the Outline view.Expand All

Collapses the structure of all the component in the Outline view.Collapse All

Attributes View in Text Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By
default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

You can use the Attributes view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

• The names of the attributes with a specified value are rendered with a bold font, and their values with a plain font.

Note: The names of the attributes with an empty string value are also rendered bold.

• Default values are rendered with a plain font, painted gray.
• Empty values display the text "[empty]", painted gray.
• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column . If the possible values of the
attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows
you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as follows:

• By attribute name in ascending order.
• By attribute name in descending order.
• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed

by the rest of the allowed elements sorted in ascending order.

Oxygen XML Editor plugin | Editing Modes | 157

Figure 41: Attributes View

Contextual Menu Actions in the Attributes View
The following actions are available in the contextual menu of the Attributes view when editing in Text mode:

Allows you to insert a new attribute. Adding an attribute that is not in the list of all defined attributes
is not possible when the Allow only insertion of valid elements and attributes schema aware option
is enabled.

Add

Specifies the current attribute value as empty.Set empty value

Removes the attribute (action available only if the attribute is specified). You can invoke this action
by pressing the (Delete) or (Backspace) keys.

Remove

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:Copy

• The value of the attribute.
• The value of the default attribute, if the attribute does not appear in the edited document.
• Empty, if the attribute does not appear in the edited document and has no default value set.

Depending on the content of the clipboard, the following cases are possible:Paste

• If the clipboard contains an attribute and its value, both of them are introduced in the Attributes
view. The attribute is selected and its value is changed if they exist in the Attributes view.

• If the clipboard contains an attribute name with an empty value, the attribute is introduced in the
Attributes view and you can start editing it. The attribute is selected and you can start editing
it if it exists in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the
schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it
can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Editing Modes | 158

Figure 42: Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The
information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with
imposed restrictions, if any.

Figure 43: Element Structure Panel

Oxygen XML Editor plugin | Editing Modes | 159

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected
from the XML schema.

Figure 44: Annotation panel

Elements View in Text Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the
schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed,
it can be opened from the Window > Show View menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor position.

Figure 45: Elements View in Text Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain
characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE
declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Built-in or Predefined - Entities that are part of the predefined XML markup (<, >, &, ',
").

• Internal - Defined in the DOCTYPE declaration header of the current XML.
• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

Note: If you want to add internal entities, you would need to switch to the Text editing mode and manually
modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file
and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default,
it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View
menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort
entities by name and value by clicking the column headers.

Oxygen XML Editor plugin | Editing Modes | 160

Figure 46: Entities View

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose
to display the internal or external entities.

Note: When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating
them with a comma.

Results View

The Results view displays the messages generated as a result of user actions such as validations, transformations, search
operations, and others. Each message is a link to the location related to the event that triggered the message.
Double-clicking a message opens the file containing the location and positions the cursor at the location offset. The
Results view is automatically opened when certain actions generate result messages. Those actions include the following:

• Validate action
• Transform action
• Check Spelling in Files action
•
•
• Search References action
• SQL results

Figure 47: Results View

Oxygen XML Editor plugin | Editing Modes | 161

Results View Toolbar Actions
The view includes a toolbar with the following actions:

You can choose to group the result messages in a Hierarchical or Flat
arrangement.

Grouping Mode toggle options

Navigates to the message below the current selection.Next

Navigates to the message above the current selection.Previous

Removes the current selection from the view. This can be helpful if you want to
reduce the number of messages or remove those that have already been addressed
or not relevant to your task.

Remove selected

Removes all messages from the view.Remove all

Results View Contextual Menu Actions
The following actions are available when the contextual menu is invoked in the table grid:

Displays a dialog box with the full error message, which is useful for a long message that
does not have enough room to be displayed completely in the view.

Show message

Removes selected messages from the view.Remove

Removes all messages from the view.Remove all

Copies the information associated with the selected messages:Copy
• The file path of the document that triggered the output message.
• Error severity (error, warning, info message, etc.)
• Name of validating processor.
• The line and column in the file that triggered the message.

Saves the complete list of messages in a file in text format. For each message the included
details are the same as the ones for the Copy action.

Save Results

Saves the complete list of messages in a file in XML format. For each message the included
details are the same as the ones for the Copy action.

Save Results as XML

Available when Hierarchical mode is selected. Expands all the nodes of the tree, which
is useful when the messages are presented in a hierarchical mode.

Expand All

Available when Hierarchical mode is selected. Collapses all the nodes of the tree, which
is useful when the messages are presented in a hierarchical mode.

Collapse All

Syntax Highlight Depending on Namespace Prefix

The syntax highlight scheme of an XML file type allows the configuration of a color per each type of token that can
appear in an XML file. Distinguishing between the XML tag tokens based on the namespace prefix brings additional
visual help in editing some XML file types. For example, in XSLT stylesheets, elements from various namespaces (such
as XSLT, XHTML, XSL:FO, or XForms) are inserted in the same document and the editor panel can become cluttered.
Marking tags with different colors based on the namespace prefix allows easier identification of the tags.

Oxygen XML Editor plugin | Editing Modes | 162

Figure 48: Example of Coloring XML Tags by Prefix

Related information
Changing the colors displayed in the Text Mode Editor on page 95

Presenting Validation Errors in Text Mode

Oxygen XML Editor plugin can be configured to automatically validate documents while editing in the Text mode, and
actions are also available to manually validate documents on-request.

A line with a validation error or warning is marked in the editor panel by underlining the error region with a red line,
while validation warnings are underlined in yellow. Hovering over a validation error presents a tooltip message with
more details about the error and possible quick fixes (if available for that error or warning).

Figure 49: Presenting Validation Errors in Text Mode

Also, the ruler on the right side of the editor panel is designed to display the errors found during the validation process
and to help you locate them in the document. The ruler contains the following:

A success indicator square will turn green if the validation is successful, red if validation errors
are found, or yellow if validation warnings are found. More details about the errors or warnings

Upper Part of the
Ruler

are displayed in a tool tip when you hover over indicator square. If there are numerous errors,
only the first three are presented in the tool tip.

Errors are depicted with red markers, and warnings with yellow markers. If you want to limit
the number of markers that are displayed, open the Preferences dialog box , go to Editor >

Middle Part of the
Ruler

Document checking, and specify the desired limit in the Maximum number of validation
highlights option.

Oxygen XML Editor plugin | Editing Modes | 163

Clicking a marker will highlight the corresponding text area in the editor. The error or warning
message is also displayed both in a tool tip (when hovering over the marker) and in the message
area on the bottom of the application.

Two navigation arrows () allow you to skip to the next or previous error. The same actions
can be triggered from Document > Automatic validation > Next error (Ctrl + Period

Bottom Part of the
Ruler

(Command + Period on OS X)) and Document > Automatic validation > Previous error
(Ctrl + Comma (Command + Comma on OS X)).

Status messages from every validation action are logged in the Console view (the Enable oXygen consoles option must
be enabled in the View preferences page).

If you want to see all the validation error messages grouped in the Results view, you should use the Validate action
from the toolbar or XML menu. This action also collects the error messages and displays them in the Problems view
if the validated file is in the current workspace or in a custom Errors view if the validated file is outside the workspace.

Related information
Validating XML Documents Against a Schema on page 357

Grid Editing Mode
The Grid editing mode in Oxygen XML Editor plugin displays XML documents in a structured spreadsheet-like grid.
It allows you to easily edit XML documents consisting of repetitive patterns.

Grid Mode Editor

The Oxygen XML Editor plugin Grid editor displays the XML document as a structured grid of nested tables. To activate
this mode, select Grid at the bottom of the editing area.

Modify Content Without Working with XML Tags

If you are a non-technical user, you can modify the text content of the edited document without working with the XML
tags directly. You can expand and collapse the tables using the mouse cursor and also display or hide the elements of
the document as nested. The document structure can also be changed easily with drag and drop operations on the grid
components.

Changing the Font Size

The font size of the editor panel can be changed with the following actions that are available with shortcuts or in the
Document > Font size menu:

Increases the font size with one point for each
execution of the action.

Increase editor font (Ctrl + NumPad+ (Command + NumPad+
on OS X) or Ctrl + MouseWheelForward (Command +
MouseWheelForward on OS X)

Decreases the font size with one point for each
execution of the action.

Decrease editor font (Ctrl + NumPad- (Command + NumPad-
on OS X) or Ctrl + MouseWheelBackwards (Command +
MouseWheelBackwards on OS X)

Resets the font size to the value of the editor font
set in the Fonts preferences page.

Normal editor font (Ctrl + 0 (Command + 0 on OS X))

Oxygen XML Editor plugin | Editing Modes | 164

Figure 50: Grid Editing Mode

Switch Editing Modes

To switch back from the Grid mode to the Text or Author mode, use the Text and Grid buttons from the bottom of
the editor. .

Content Completion Assistant

If the edited document is associated with a schema (DTD, XML Schema, Relax NG, etc.), the editor offers a Content
Completion Assistant for the elements and attributes names and values. If you choose to insert an element that has
required content, the sub-tree of needed elements and attributes are automatically included.

To display the content completion pop-up menu, you have to start editing (for example, double-click a cell). Pressing
Ctrl + Space (Command + Space on OS X) on your keyboard also displays the pop-up menu.

Figure 51: Content Completion in Grid Editing Mode

To watch our video demonstration about some of the features available in the Grid editor, go to
http://oxygenxml.com/demo/Grid_Editor.html.

Layouts: Grid and Tree

The Grid editor offers two layout modes. The default one is the grid layout. This smart layout detects the recurring
elements in the XML document and creates tables having the children (including the attributes) of these elements as
columns. This way, it is possible to have tables nested in other tables, reflecting the structure of your document.

Oxygen XML Editor plugin | Editing Modes | 165

http://oxygenxml.com/demo/Grid_Editor.html

Figure 52: Grid Layout

The other layout mode is tree-like. It does not create any tables and it only presents the structure of the document.

Figure 53:Tree Layout

To switch between the two modes, go to the contextual menu > Grid mode/Tree mode.

Grid Mode Navigation

At first, the content of a document opened in the Grid mode is collapsed. Only the root element and its attributes are
displayed. The grid disposition of the node names and values is similar to a web form or dialog box. The same set of
key shortcuts used to select dialog box components is also available in the Grid mode:

Table 2: Shortcuts in the Grid Mode

ActionKey

Moves the cursor to the next editable value in a table row.Tab

Moves the cursor to the previous editable value in a table
row.

Shift + Tab

Begins editing and lets you insert a new value. Also
commits the changes after you finish editing.

Enter

Navigates toward the beginning of the document.UpArrow/PageUp

Navigates toward the end of the document.DownArrow/PageDown

Used in conjunction with the navigation keys to create a
continuous selection area.

Shift

Used in conjunction with the mouse cursor to create
discontinuous selection areas.

Ctrl (Command on OS X) key

The following key combinations can be used to scroll the grid:

• Ctrl + UpArrow (Command + UpArrow on OS X) - scrolls the grid upwards.
• Ctrl + DownArrow (Command + DownArrow on OS X) - scrolls the grid downwards.
• Ctrl + LeftArrow (Command + LeftArrow on OS X) scrolls the grid to the left.
• Ctrl + RightArrow (Command + RightArrow on OS X) scrolls the grid to the right.

Oxygen XML Editor plugin | Editing Modes | 166

An arrow sign displayed at the left of the node name indicates that this node has child nodes. To display the children,
click this sign. The expand/collapse actions can be invoked either with the NumPad+ and NumPad- keys, or from the
Expand/Collapse submenu of the contextual menu.

The following actions are available on the Expand/Collapse menu:

Expands the selection and all its children.Expand All

Collapses the selection and all its children.Collapse All

Expands all the children of the selection but not the selection.Expand Children

Collapses all the children of the selection but not the selection.Collapse Children

Collapses all the siblings of the current selection but not the selection.Collapse Others

Bidirectional Text Support in Grid Mode

If you are editing documents with a bidirectional text orientation, you can change the way the text is rendered and edited
in the grid cells by using the Change Text Orientation(Ctrl + Shift + O (Command + Shift + O on OS X)) action
that is available from the Edit menu in the Grid editing mode. Use this action to switch from the default left to right
text orientation to the right to left orientation, and vice versa.

Note: This change applies only to the text from the cells, and not to the layout of the grid editor.

Figure 54: Default left to right text orientation

Figure 55: Right to left text orientation

Related information
Bidirectional Text Support in Author Mode on page 188

Oxygen XML Editor plugin | Editing Modes | 167

Author Editing Mode
This chapter presents the visual editor, called Author mode, that is designed for content authors.

Author Mode Editor

The Author editing mode in Oxygen XML Editor plugin allows you to visually edit XML documents in a visual interface
that is similar to a WYSIWYG word processor.

Figure 56: Author Editing Mode

Navigating the Document Content in Author Mode

Oxygen XML Editor plugin includes some useful features to help you navigate XML documents.

Using the Keyboard

Oxygen XML Editor plugin allows you to quickly navigate through a document using the Tab key to move the cursor
to the next XML node and Shift + Tab to go to the previous one. If you encounter a space preserved element when you
navigate through a document and you do not press another key, pressing the Tab key will continue the navigation.
However, if the cursor is positioned in a space preserved element and you press another key or you position the cursor
inside such an element using the mouse, the Tab key can be used to arrange the text.

To navigate one word forward or backwards, use Ctrl + RightArrow (Command + RightArrow on OS X), and Ctrl
+ LeftArrow (Command + LeftArrow on OS X), respectively. Entities and hidden elements are skipped. To position
the cursor at the beginning or at the end of the document you can use Ctrl + Home (Command + Home on OS X),
and Ctrl + End (Command + End on OS X), respectively.

Oxygen XML Editor plugin | Editing Modes | 168

Navigation Shortcuts

Oxygen XML Editor plugin includes some keyboard shortcuts to help you quickly navigate to a particular modification.
They are also available as actions in the Navigation menu.

• Ctrl+Q - Last Edit Location - Moves the cursor to the last modification in any opened document.
• Alt+LeftArrow (Command+OpenBracket on OS X) - Back - Moves the cursor to the previous position.
• Alt+RightArrow (Command+CloseBracket on OS X) - Forward - Moves the cursor to the next position.

Navigating with the Outline View
Oxygen XML Editor plugin includes a very useful Outline view that displays a hierarchical tag overview of the currently
edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is
synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are
highlighted in the editor area.

Figure 57: Outline View Navigation in Author Mode

Using the Linking Support

When working on multiple documents that reference each other (references, external entities, XInclude, DITA conref,
etc), the linking support is useful for navigating between the documents. In the predefined customizations that are
bundled with Oxygen XML Editor plugin, links are marked with an icon representing a chain link (). When hovering
over the icon, the mouse pointer changes its shape to indicate that the link can be accessed and a tooltip presents the
destination location. Click the link to open the referenced resource in the editor or system browser. The same effect can
be obtained by pressing the F3 key when the cursor is in a link element.

Note: Depending on the referenced file type, the target link will either be opened in the Oxygen XML Editor
plugin or in the default system application. If the target file does not exist, Oxygen XML Editor plugin prompts
you to create it.

Displaying the Markup

You can control the amount of markup that is displayed in the Author mode with various levels of tag modes for both
block and in-line elements.

The following dedicated tag modes are available from the Tags display mode drop-down menu (available on the
toolbar):

Displays full tag names with attributes for both block and in-line elements.Full Tags with Attributes

Displays full tag names without attributes for both block and in-line elements.Full Tags

Displays full tag names for block elements and simple tags without names for
in-line elements.

Block Tags

Displays full tag names for in-line elements, while block elements are not displayed.Inline Tags

Displays simple tags without names for in-line elements, while block elements are
not displayed.

Partial Tags

No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

No Tags

Oxygen XML Editor plugin | Editing Modes | 169

To set a default tags mode, go to Author preferences page and configure the Tags display mode options.

Note: The graphical format of the tags is controlled from the associated CSS via the display property. If the
current document does not have an associated CSS stylesheet, then the Full Tags mode will be used.

Visual Hints for the Cursor Position

When the cursor is positioned inside a new context, a tooltip will be shown for a couple of seconds displaying the position
of the cursor relative to the context of the current element.

Here are some of the common situations that can be encountered:

• The cursor is positioned before the first block child of the current node.

Figure 58: Before first block

• The cursor is positioned between two block elements.

Figure 59: Between two block elements

• The cursor is positioned after the last block element child of the current node.

Figure 60: After last block

• The cursor is positioned inside a node.

Figure 61: Inside a node

• The cursor is positioned inside an element, before an inline child element.

Figure 62: Before an inline element

• The cursor is positioned between two inline elements.

Figure 63: Between two inline elements

• The cursor is positioned inside an element, after an inline child element.

Oxygen XML Editor plugin | Editing Modes | 170

Figure 64: After an inline element

The nodes in these cases are displayed in the tooltip window using the element names.

To deactivate this feature, open the Preferences dialog box , go to Author > Cursor Navigation, and disable the Show
cursor position tooltip option. Even if this option is disabled, you can trigger the display of the position tooltip by
pressing Shift+F2.

Note: The position information tooltip is not displayed if Full Tags with Attributes or Full Tags is selected in

the Tags display mode drop-down menu.

Location Tooltip

When editing XML documents in a visual environment, you might find it difficult to position the cursor between certain
tags that do not have a visual representation. To counterbalance this, Oxygen XML Editor plugin displays a transparent
preview of the position information, called the Location Tooltip:

Figure 65: Location Tooltip

Oxygen XML Editor plugin displays a Location Tooltip when the following conditions are met:

• You are editing the document in one of the following tags display modes: Inline Tags, Partial Tags, No Tags.
• The mouse pointer is moved between block elements.

To activate or deactivate this feature, use the Show location tooltip on mouse move option in the Cursor Navigation
preferences page.

Displaying Referenced Content

The references to entities, XInclude, and DITA conrefs are expanded by default in Author mode and the referenced
content is displayed. You can control this behavior from the Author preferences page. The referenced resources are
loaded and displayed inside the element or entity that refers them, however the displayed content cannot be modified
directly.

When the referenced resource cannot be resolved, an error will be presented inside the element that refers them instead
of the content.

If you want to make modifications to the referenced content, you must open the referenced resource in an editor. The
referenced resource can be opened quickly by clicking the link (marked with the icon:) that is displayed before the
referenced content or by using the Edit Reference action from the contextual menu (in this case the cursor is placed at
the precise location where the action was invoked in the main file). The referenced resource is resolved through the
XML Catalog set in Preferences.

The referenced content is refreshed:

• Automatically, when it is modified and saved from Oxygen XML Editor plugin.
• On demand, by using the Refresh references action. Useful when the referenced content is modified outside the

Oxygen XML Editor plugin scope.

Presenting Validation Errors in Author Mode

Oxygen XML Editor plugin can be configured to automatically validate documents while editing in the Author mode,
and actions are also available to manually validate documents on-request.

Oxygen XML Editor plugin | Editing Modes | 171

Validation errors are marked in Author mode with a red underline, while validation warnings are underlined in yellow.
Hovering over a validation error presents a tooltip message with more details about the error and possible quick fixes
(if available for that error or warning).

Information about the error is also displayed in the message area on the bottom of the editor panel (clicking the

Document checking options button opens the Document Checking preferences page.

Figure 66: Presenting Validation Errors in Author Mode

Also, the ruler on the right side of the editor panel is designed to display the errors found during the validation process
and to help you locate them in the document. The ruler contains the following:

A success indicator square will turn green if the validation is successful, red if validation errors
are found, or yellow if validation warnings are found. More details about the errors or warnings

Upper Part of the
Ruler

are displayed in a tool tip when you hover over indicator square. If there are numerous errors,
only the first three are presented in the tool tip.

Errors are depicted with red markers, and warnings with yellow markers. If you want to limit
the number of markers that are displayed, open the Preferences dialog box , go to Editor >

Middle Part of the
Ruler

Document checking, and specify the desired limit in the Maximum number of validation
highlights option.

Clicking a marker will highlight the corresponding text area in the editor. The error or warning
message is also displayed both in a tool tip (when hovering over the marker) and in the message
area on the bottom of the application.

Two navigation arrows () allow you to skip to the next or previous error. The same actions
can be triggered from Document > Automatic validation > Next error (Ctrl + Period

Bottom Part of the
Ruler

(Command + Period on OS X)) and Document > Automatic validation > Previous error
(Ctrl + Comma (Command + Comma on OS X)).

Status messages from every validation action are also logged in the Console view (the Enable oXygen consoles option
must be enabled in the View preferences page).

If you want to see all the validation error messages grouped in the Results view, you should use the Validate action
from the toolbar or XML menu. This action also collects the error messages and displays them in the Problems view
if the validated file is in the current workspace or in a custom Errors view if the validated file is outside the workspace.

Related information
Validating XML Documents Against a Schema on page 357

Oxygen XML Editor plugin | Editing Modes | 172

Whitespace Handling in Author Mode

When you edit a document in Author mode, Oxygen XML Editor plugin must serialize the resulting document as XML.
Oxygen XML Editor plugin serializes the document when you save it or switch to another editing mode. When the
document is serialized, Oxygen XML Editor plugin formats and indents the XML document according to the current
format and indent settings.

Minimizing whitespace differences between versions

When serializing a document to XML, Author mode will only format and indent those elements of the document that
have been edited. Any element that has not been edited will be serialized exactly as it was loaded from disk. This is
useful when your content is managed in a version control systems, as it avoids introducing insignificant whitespace
differences between version, which in turn makes diff output easier to read.

Entering whitespace in Author mode

Oxygen XML Editor plugin controls the entry of whitespace characters in Author mode according the XML whitespace
rules, which means it will not let you insert insignificant whitespace. This means that it will not let you insert extra
line-breaks or spaces inside a typical paragraph element, for instance. (Any such whitespace would be normalized away
when the document was serialized to XML, so Oxygen XML Editor plugin is saving you from any surprises when this
happens.)

Of course, you will legitimately want to enter additional spaces and returns in some cases, such as code samples. Oxygen
XML Editor plugin will allow this in elements that are configured as preserve space elements according to the XML
whitespace rules. For all of its predefined document types, Oxygen XML Editor plugin is correctly configured to recognize
preserve space elements and to allow you to enter additional spaces in them.

If you are using a predefined document type and you are unable to enter additional whitespace, make sure that you are
using an element from that document type that is intended to be a preserve-space element.

If you are using a custom document type, make sure that it is configured correctly so that Oxygen XML Editor plugin
recognizes that the current element is a preserve-space element.

Author Mode Views

The content author is supported by special views that are automatically synchronized with the current editing context
of the editor panel. The views present additional information about this context thus helping the author to see quickly
the current location in the overall document structure and the available editing options.

There is a large selection of useful views available in the Window > Show View menu. This section presents some of
the most helpful views for editing in Author mode.

Navigator View

The Navigator view is designed to assist you with organizing and managing related files grouped in the same XML
project. The actions available on the contextual menu and toolbar associated to this panel enable the creation of XML
projects and shortcuts to various operations on the project documents.

Oxygen XML Editor plugin | Editing Modes | 173

Figure 67: Navigator View

By default, the view is positioned on the left side of the Oxygen XML Editor plugin window, above the Outline view.
If the view has been closed, it can be reopened at any time from the Window > Show View menu.

The following actions are grouped in the upper right corner:

Collapses all project tree folders. You can also collapse/expand a project tree folder if
you select it and press the Enter key or Left Arrow to collapse and Right Arrow to
expand.

Collapse All

When selected, the project tree highlights the currently edited file, if it is found in the
project files.

Link with Editor

Note: This button is disabled automatically when you move to the Debugger
perspective.

Drop-down menu that contains various settings.View Menu

The files are usually organized in an XML project as a collection of folders. There are two types of resources displayed
in the Navigator view:

• Physical folders and files - marked with the operating system-specific icon for folders (usually a yellow icon on
Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that exist in the
local file system. They are created or added to the project by using contextual menu actions (such as New > File and

New > Folder).Also, the contextual menu action Delete can be used to remove them from the project and local
file system.

• Shortcut folders and files - the icons for file and folder shortcuts are displayed with a shortcut symbol. They are
created and added by using the actions New > File > Advanced or New > Folder > Advanced from the contextual

menu or File menu. Also, the contextual menu action Delete can be used to remove them from the project (the
local file system remains unchanged).

Oxygen XML Editor plugin | Editing Modes | 174

Figure 68: Navigator View with Examples of the Two Types of Resources

Creating New Projects

The following actions are available by selecting New from the contextual menu or File menu:

Opens the New XML Project dialog box that allows you to create a new project
and adds it to the project structure in the Navigator view.

New > XML Project

Opens the New sample XML project dialog box that allows you to customize
sample resources in a new project and adds it to the project structure in the Navigator
view.

New > Sample XML Project

Creating New Project Items

To create new project items, select the desired document type or folder from the New menu of the contextual menu,
when invoked from the Navigator view (or from the File menu). You can also create a document from a template by
selecting New > New from Templates from the contextual menu.

Opens a New file dialog box that helps you create a new file and adds it to the project
structure.

New > File

Opens a New Folder dialog box that allows you to specify a name for a new folder
and adds it to the structure of the project.

New > Folder

Available when invoked from the project root, this action creates a logical folder in

the tree structure (the icon is a magenta folder on Mac OS X -).
New > Logical Folder

Available when invoked from the project root, this action replicates the structure of
a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders.
The newly created logical folders contain the file structure of the folder it points to.

New > Logical Folders from
Web

Managing Project Content
Creating/Adding Files and Folders

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer / Mac OS X
Finder to the project tree, or by using the contextual menu from the location in the project tree where you wanted it
added and selecting New > Folder > Advanced. To create a file inside a linked folder, use the contextual menu and
select New > File (you can use the Advanced button to link to a file in the local file system).

Note: The linked folders presented in the Navigator view are marked with a special icon.

You can create physical folders by selecting New > Folder from the contextual menu.

Oxygen XML Editor plugin | Editing Modes | 175

When adding files to a project, the default target is the project root. To change a target, select a new folder. Files may
have multiple instances within the folder system, but cannot appear twice within the same folder.

Removing Files and Folders

To remove one or more files or folders, select them in the project tree and press the Delete key, or select the contextual

menu action Delete.

CAUTION: In most cases this action is irreversible, deleting the file permanently. Under particular circumstances
(if you are running a Windows installation of Oxygen XML Editor plugin and the Recycle Bin is active) the file
is moved to Recycle Bin.

Moving Files and Folders

You can move the resources of the project with drag and drop operations on the files and folders of the tree.

You can also use the usual Copy and Paste actions to move resources in the Navigator view.

Renaming Files and Folders

There are two ways you can rename an item in the Navigator view. Select the item in the Navigator view and do one
of the following:

• Invoke the Rename action from the contextual menu.
• Press F2 and type the new name.

To finish editing the item name, press Enter.

Locating and Opening Files

If a project folder contains a lot of documents, a certain document can be located quickly in the project tree by selecting
the folder containing the desired document and typing the first few characters of the document name. The desired
document is automatically selected as soon as the typed characters uniquely identify its name in the folder.

The selected document can be opened by pressing the Enter key, by double-clicking it, or with one of the Open actions
from the contextual menu. The files with known document types are opened in the associated editor, while binary files
are opened with the associated system application. To open a file with a known document type in an editor other than
the default one, use the Open with action. Also, dragging and dropping files from the project tree to the editor area
results in the files being opened.

Saving the Project

The project file is automatically saved every time the content of the Navigator view is saved or modified by actions
such as adding or removing files and drag and drop.

Validate Files

The currently selected files associated with the Oxygen XML Editor plugin in the Package Explorer view or in the
Navigator view can be checked to be XML well-formed or validated against a schema (DTD, XML Schema, Relax
NG, Schematron or NVDL) with one of the following contextual menu actions found in the Validate submenu:

Checks if the selected file or files are well-formed.Check Well-Formedness

Validates the selected file or files against their associated schema. EPUB
files make an exception, because this action triggers a Validate and Check
for Completeness operation.

Validate

Validates the selected file of files against a specified schema.Validate with Schema

Allows you to configure and run a validation scenario.Configure Validation Scenario(s)

Clears all the error markers from the main editor and Problems view.Clear Validation Markers

Oxygen XML Editor plugin | Editing Modes | 176

Applying Transformation Scenarios

The currently selected files associated with the Oxygen XML Editor plugin in the Package Explorer view or in the
Navigator view can be transformed in one step with one of the following actions available from contextual menu in the
Transform submenu:

Obtains the output with one of the built-in scenarios.Apply Transformation Scenario(s)

Opens a dialog box that allows you to configure pre-defined
transformation scenarios.

Configure Transformation Scenario(s)

Allows you to select a transformation scenario to be applied to the
currently selected files.

Transform with

Refactoring Actions (Available for certain document types (such as XML, XSD, and XSL)

Oxygen XML Editor plugin includes some refactoring operations that help you manage the structure of your documents.
The following actions are available from the contextual menu in the Refactoring submenu:

Allows you to change the name of a resource.Rename resource

Allows you to change the location on disk of a resource.Move resource

Opens the XML Refactoring tool wizard that presents refactoring operations to
assist you with managing the structure of your XML documents.

XML Refactoring

Other Contextual Menu Actions

Other actions that are available in the contextual menu from the project tree include:

Opens the selected files in the corresponding editor.Open

This submenu offers you choices for opening the selected file in various editors.Open with submenu

Refreshes the content and the dependencies between the resources in the Master
Files directory.

Refresh

Opens the XPath/XQuery Builder view that allows you to compose XPath and
XQuery expressions and execute them over the currently edited XML document.

XPath in Files

Allows you to check the spelling of multiple files.Check Spelling in Files

Opens the Format and Indent Files dialog box that allows you to configure the
format and indent (pretty print) action that will be applied on the selected documents.

Format and Indent Files

Displays the properties of the current file in a Properties dialog box.Properties

Related information
Working with EPUB on page 734

Outline View in Author Mode

The Outline view in Author mode displays a general tag overview of the currently edited XML Document. When you
edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you modify.
This functionality gives you great insight on the location of your modifications in the current document. It also shows
the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure
and the way element tags are nested.

Outline View Features
The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.
• Insert or delete nodes using contextual menu actions.
• Move elements by dragging them to a new position in the tree structure.

Oxygen XML Editor plugin | Editing Modes | 177

• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the
editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.

• View document errors, as they are highlighted in the Outline view. A tooltip also provides more information about
the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

It also includes a View menu in the top-right corner that presents a variety of options to help you filter the view even
further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view with
drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be
moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will
be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or
lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the
target element.

• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead
of a move.

The drag and drop actions in the Outline view can be disabled and enabled from a Preferences page.

Tip: You can select and drag multiple nodes in the Outline view when editing in Author mode.

Figure 69: Outline View

Oxygen XML Editor plugin | Editing Modes | 178

Outline View Filters in Author Mode

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

The following actions are available in the View menu of the Outline view when editing in Author mode:

The text filter of the Outline view returns only exact matches.Filter returns exact matches

When active, the application flattens the filtered result elements to a
single level.

Flat presentation mode of the filtered
results

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

Outline View Contextual Menu Actions in Author Mode

The contextual menu of the Outline view in Author mode contains the following actions:

Allows you to edit the attributes of a selected node. You can find more details about
this action in the Attributes View in Author Mode on page 180 topic.

Edit Attributes

Allows you to change the profiling attributes defined on all selected elements.Edit Profiling Attributes

Invokes a content completion list with the names of all the elements that are allowed
by the associated schema and inserts your selection as a child of the current element.

Append Child

Invokes a content completion list with the names of all the elements that are allowed
by the associated schema and inserts your selection immediately before the current
element, as a sibling.

Insert Before

Invokes a content completion list with the names of all the elements that are allowed
by the associated schema and inserts your selection immediately after the current
element, as a sibling.

Insert After

Executes the typical editing actions on the currently selected elements. The Cut and
Copy operations preserve the styles of the copied content. The Paste before and Paste

Cut, Copy, Paste,

Delete editing actions after actions allow you to insert a well-formed element before or after the currently
selected element. The Paste as XML action pastes copied content that is considered
to be valid XML, preserving its XML structure.

Encloses the currently selected element in an XML comment, if the element is not
already commented. If it is already commented, this action will remove the comment.

Toggle Comment

Invokes a Rename dialog box that allows you to rename the currently selected element,
siblings with the same name, or all elements with the same name.

Rename Element

Expands the structure tree of the currently selected element.Expand All

Collapses all of the structure tree of the currently selected node.Collapse All

Tip: You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting
multiple nodes in the tree.

Oxygen XML Editor plugin | Editing Modes | 179

Related information
Attributes View in Author Mode on page 180

Attributes View in Author Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By
default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

You can use this view to edit or add attribute values. The attributes of an element are editable if any one of the following
is true:

• The CSS stylesheet associated with the document does not specify a false value for the -oxy-editable property
associated with the element.

• The element is entirely included in a deleted Track Changes marker.
• The element is part of a content fragment that is referenced in Author mode from another document.

The attributes are rendered differently depending on their state:

• The names of the attributes with a specified value are rendered with a bold font, and their values with a plain font.

Note: The names of the attributes with an empty string value are also rendered bold.

• Default values are rendered with a plain font, painted gray.
• Empty values display the text "[empty]", painted gray.
• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column . If the possible values of the
attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows
you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as follows:

• By attribute name in ascending order.
• By attribute name in descending order.
• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed

by the rest of the allowed elements sorted in ascending order.

Figure 70: Attributes View

A drop-down list located in the upper part of the view allows you to select the current element or its ancestors.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Author mode:

Oxygen XML Editor plugin | Editing Modes | 180

Specifies the current attribute value as empty.Set empty value

Removes the attribute (action available only if the attribute is specified). You can invoke this action
by pressing the (Delete) or (Backspace) keys.

Remove

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:Copy

• The value of the attribute.
• The value of the default attribute, if the attribute does not appear in the edited document.
• Empty, if the attribute does not appear in the edited document and has no default value set.

Depending on the content of the clipboard, the following cases are possible:Paste

• If the clipboard contains an attribute and its value, both of them are introduced in the Attributes
view. The attribute is selected and its value is changed if they exist in the Attributes view.

• If the clipboard contains an attribute name with an empty value, the attribute is introduced in
the Attributes view and you can start editing it. The attribute is selected and you can start editing
it if it exists in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

In-place Attributes Editor

Oxygen XML Editor plugin includes an in-place attributes editor in Author mode. To edit the attributes of an XML
element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.

• Double-click any named start tag when the document is edited in one of the following display modes.: Full Tags
with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this editor
presents the Name and Value fields, with the list of all the possible attributes collapsed.

Figure 71: In-place Attributes Editor

Use this combo box to select an attribute. The drop-down list displays the list of possible
attributes allowed by the schema of the document, as in the Attributes view.

Name Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute
has predefined values in the schema, the drop-down list displays those possible values.

Value Combo Box

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

Oxygen XML Editor plugin | Editing Modes | 181

Figure 72: In-place Attributes Editor (Full Version)

The full version includes a table grid, similar to the Atributes view, that presents all the attributes for the selected
element.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the
schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it
can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Editing Modes | 182

Figure 73: Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The
information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with
imposed restrictions, if any.

Figure 74: Element Structure Panel

Oxygen XML Editor plugin | Editing Modes | 183

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected
from the XML schema.

Figure 75: Annotation panel

Elements View in Author Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the
schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed,
it can be opened from the Window > Show View menu.

The upper part of the view features a combo box that contains the ordered ancestors of the current element. Selecting a
new element in this combo box updates the list of the allowed elements. By default, only the elements that are allowed
at the current cursor position are listed. However, if the Show only items allowed at cursor position option is disabled
in the View preferences page, two additional tabs (Before and After) will be displayed at the bottom of the view and
they list elements that are allowed before or after the element at the current cursor position.

Double-clicking any of the listed elements inserts that element into the edited document and its position depends on the
tab.

• Cursor tab - Double-clicking an element inserts it at the current cursor position.
• Before tab - Double-clicking an element inserts it before the element at the cursor position.
• After tab - Double-clicking an element inserts it after the element at the cursor position.

Figure 76: Elements View in Author Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain
characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE
declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Built-in or Predefined - Entities that are part of the predefined XML markup (<, >, &, ',
").

• Internal - Defined in the DOCTYPE declaration header of the current XML.
• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

Oxygen XML Editor plugin | Editing Modes | 184

Note: If you want to add internal entities, you would need to switch to the Text editing mode and manually
modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file
and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default,
it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View
menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort
entities by name and value by clicking the column headers.

Figure 77: Entities View

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose
to display the internal or external entities.

Note: When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating
them with a comma.

Results View

The Results view displays the messages generated as a result of user actions such as validations, transformations, search
operations, and others. Each message is a link to the location related to the event that triggered the message.
Double-clicking a message opens the file containing the location and positions the cursor at the location offset. The
Results view is automatically opened when certain actions generate result messages. Those actions include the following:

• Validate action
• Transform action
• Check Spelling in Files action
•
•
• Search References action
• SQL results

Oxygen XML Editor plugin | Editing Modes | 185

Figure 78: Results View

Results View Toolbar Actions
The view includes a toolbar with the following actions:

You can choose to group the result messages in a Hierarchical or Flat
arrangement.

Grouping Mode toggle options

Navigates to the message below the current selection.Next

Navigates to the message above the current selection.Previous

Removes the current selection from the view. This can be helpful if you want to
reduce the number of messages or remove those that have already been addressed
or not relevant to your task.

Remove selected

Removes all messages from the view.Remove all

Results View Contextual Menu Actions
The following actions are available when the contextual menu is invoked in the table grid:

Displays a dialog box with the full error message, which is useful for a long message that
does not have enough room to be displayed completely in the view.

Show message

Removes selected messages from the view.Remove

Removes all messages from the view.Remove all

Copies the information associated with the selected messages:Copy
• The file path of the document that triggered the output message.
• Error severity (error, warning, info message, etc.)
• Name of validating processor.
• The line and column in the file that triggered the message.

Saves the complete list of messages in a file in text format. For each message the included
details are the same as the ones for the Copy action.

Save Results

Saves the complete list of messages in a file in XML format. For each message the included
details are the same as the ones for the Copy action.

Save Results as XML

Available when Hierarchical mode is selected. Expands all the nodes of the tree, which
is useful when the messages are presented in a hierarchical mode.

Expand All

Available when Hierarchical mode is selected. Collapses all the nodes of the tree, which
is useful when the messages are presented in a hierarchical mode.

Collapse All

Oxygen XML Editor plugin | Editing Modes | 186

CSS Inspector View

The purpose of the CSS Inspector view is to display information about the styles applied to the currently selected
element. You can use this view to examine the structure and layout of the CSS rules that match the element. The matching
rules displayed in this view include a link to the line in the CSS file that defines the styles. With this tool you can see
how the CSS rules were applied and the properties defined, and use the link to open the associated CSS for editing
purposes.

Figure 79: CSS Inspector View

Figure 80: CSS Inspector View

Displaying the CSS Inspector View

You can open this view by selecting the Inspect Styles action from the contextual menu in Author mode, or selecting
the CSS Inspector view in the Window > Show View menu. This action makes the view visible and also initializes it
for the currently selected element.

Displaying Rules

All rules that apply to the current element are displayed in sections, which are listed in order of importance (from most
specific to least specific). Rules that are overridden by other rules are crossed out. If you click the link in the top-right
corner of a rule Oxygen XML Editor plugin opens the associated CSS file at the line number where the properties of
the rule are defined.

Figure 81: CSS Inspector View - Displaying Rules

Oxygen XML Editor plugin | Editing Modes | 187

The CSS Inspector view contains five tabs:

• Element - Displays the CSS rules matching the currently selected element in the Author page (ordered from
most-specific to least-specific).

• :before - Displays the rules matching the :before pseudo-element.
• :after - Displays the rules matching the :after pseudo-element.
• Computed - Displays all the styling properties that apply to the current element, as a result of all the CSS rules

matching the element.
• Path - Displays the path for the current element, and its attributes, allowing you to quickly see the attributes on all

parent elements, and allows you to copy fragments from this view and paste it into the associated CSS to easily create
new rules.

The information displayed in each of the five tabs is updated when you click other elements in the Author editing view.
The first three tabs include the link to the associated CSS source, while the other two tabs simply display the style
properties that match the current element.

Each of the tabbed panes include a contextual menu with the following actions:

• Copy - copies the current selection
• Select all - selects all information listed in the pane

Also, a Show empty rules action is available from a drop-down menu in the toolbar of the view. This action forces the
view to show all the matching rules, even if they do not declare any CSS properties. By default, the empty rules are not
displayed.

Bidirectional Text Support in Author Mode

Oxygen XML Editor plugin offers support for languages that require right to left scripts. This means that authors editing
documents in the Author mode can create and edit XML content in Arabic, Hebrew, Persian and others. To achieve
this, Oxygen XML Editor plugin implements the Unicode Bidirectional Algorithm, as specified by the Unicode consortium.
The text arrangement is similar to what you get in a modern HTML browser. The final text layout is rendered according
to the directional CSS properties matching the XML elements and the Unicode directional formatting codes.

By default, when navigating bidirectional text with the arrow keys in Author mode, pressing the right arrow key moves
the cursor in the writing direction and the left arrow moves it in the opposite direction. However, if the Arrow keys move
the cursor in the writing direction option in the Cursor Navigation preferences page is disabled, pressing the right
arrow will simply move the cursor to the right (and the left arrow moves it to the left), regardless of the text direction.

To watch our video demonstration about the bidirectional text support in the Author mode, go to
http://oxygenxml.com/demo/BIDI_Support.html.

Tip: If you experience performance issues when editing documents that contain bidirectional text, you could
try the following solution:

• Changing the font. For example, you could try using theDavid font in Hebrew content. If it is not already
installed in your operating system, this font is available at:
https://www.microsoft.com/typography/fonts/family.aspx?FID=234. To change the font in Oxygen XML
Editor plugin, open the Preferences dialog box , go to Fonts, and change the font in the Author default font
option.

Related information
Bidirectional Text Support in Grid Mode on page 167

Controlling the Text Direction Using XML Markup

Oxygen XML Editor plugin Supports the following CSS properties:

Oxygen XML Editor plugin | Editing Modes | 188

http://www.unicode.org/reports/tr9/
http://oxygenxml.com/demo/BIDI_Support.html
https://www.microsoft.com/typography/fonts/family.aspx?FID=234

Table 3: CSS Properties Controlling Text Direction

Specifies the writing direction of the text. The possible
values are ltr (the text direction is left to right), rtl (the
text direction is right to left, and inherit (the direction
property is inherited from the parent element).

direction

Used along with the direction property to create levels
of embedded text with different text directions in the same
document. The possible values of this property are
bidi-override (creates an additional level of
embedding and forces all strong characters to the direction
specified in the direction), embed (creates an
additional level of embedding), normal (does not use an
additional level of embedding), and inherit (the value
of the unicodeBidi property is inherited from parent
element).

unicodeBidi

For instance, to declare an element as being Right to Left, you could use a stylesheet like the one below:

XML File:

<article>
<myRTLpara>RIGHT TO LEFT TEXT</myRTLPara>

</article>

Associated CSS File:

myRTLpara{
direction:rtl;
unicode-bidi:embed;

}

Oxygen XML Editor plugin recognizes the dir attribute on any XML document. The supported values are:

The text from the current element is Left to Right,
embedded.

ltr

The text from the current element is Right to Left,
embedded.

rtl

The text from the current element is Left to Right,
embedded.

lro

The text from the current element is Right to Left,
embedded.

rlo

The following XML document types make use of the dir attribute with the above values:

• DITA
• DocBook
• TEI
• XHTML

Note: When the inline element tags are visible, the text in the line is arranged according to the BIDI algorithm
after replacing the tags symbols with Object Replacement Characters. This makes it possible to get a different
text arrangement when viewing a document in the No Tags mode versus viewing it in the Full Tags mode.

Oxygen XML Editor plugin | Editing Modes | 189

Controlling the Text Direction Using the Unicode Direction Formatting Codes

These Unicode Direction Formatting Codes codes can be embedded in the edited text, specifying a text direction and
embedding. However, it is not recommended to use them in XML as they are zero width characters, making it hard to
debug the text arrangement.

Table 4: Directional Formatting Codes

Treats the following text as embedded
left-to-right.

LEFT-TO-RIGHT EMBEDDINGU+202A (LRE)

Treats the following text as embedded
right to left.

RIGHT-TO-LEFT EMBEDDINGU+202B (RLE)

Forces the following characters to be
treated as strong left-to-right
characters.

LEFT-TO-RIGHT OVERRIDEU+202D (LRO)

Forces the following characters to be
treated as strong right-to-left
characters.

RIGHT-TO-LEFT OVERRIDEU+202E (RLO)

Restores the bidirectional state to what
it was before the last LRE, RLE, RLO,
or LRO.

POP DIRECTIONAL FORMATTING
CODE

U+202C (PDF)

Left-to-right strong zero-width
character.

LEFT-TO-RIGHT MARKU+200E (LRM)

Right-to-left strong zero-width
character.

RIGHT-TO-LEFT MARKU+200F (RLM)

To insert Unicode Direction Formatting Codes, use the Symbols toolbar action. To easily find such a code, you can
either enter directly the hexadecimal value, or use the Details tab to enter the codes name.

Oxygen XML Editor plugin offers the support for bi-directional text in all the side views (Outline view, Attributes
view and so on) and text fields.

Design Editing Mode
This section presents the Design mode that allows you to edit XML Schemas in a visual schema diagram editor.

XML Schema Diagram Editor (Design Mode)

XML Schemas enable document designers to specify the allowed structure and content of an XML document and to
check if an XML document is valid.

Oxygen XML Editor plugin provides a simple and expressive XML Schema diagram editor (Design mode) for editing
XML Schemas. The schema diagram helps both the content authors who want to understand a schema and schema
designers who develop complex schemas.

Oxygen XML Editor plugin | Editing Modes | 190

Figure 82: XML Schema Diagram

To watch our video demonstration about the basic aspects of designing an XML Schema using the new Schema Editor,
go to http://oxygenxml.com/demo/XML_Schema_Editing.html.

Navigation in the XML Schema Design Mode

The following editing and navigation features work for all types of schema components in the XML Schema Design
mode:

• Move/reference components in the diagram using drag-and-drop actions.
• Select consecutive components on the diagram (components from the same level) using the Shift key. You can also

make discontinuous selections in the schema diagram using the Ctrl (Meta on Mac OS) key. To deselect one of the
components, use Ctrl + Single-Click (Command + Single-Click on OS X).

• Use the arrow keys to navigate the diagram vertically and horizontally.

Oxygen XML Editor plugin | Editing Modes | 191

http://oxygenxml.com/demo/XML_Schema_Editing.html

• Use Home/End keys to jump to the first/last component from the same level. Use Ctrl + Home (Command + Home
on OS X) key combination to go to the diagram root and Ctrl + End (Command + End on OS X) to go to the last
child of the selected component.

• You can easily go back to a previously visited component while moving from left to right. The path will be preserved
only if you use the left arrow key or right arrow key. For example, if the current selection is on the second attribute
from an attribute group and you press the left arrow key to jump to the attribute group, when you press the right
arrow key, then the selection will be moved to the second attribute.

• Go back and forward between components viewed or edited in the diagram by selecting them in the Outline view:

• Back (go to previous schema component).

• Forward (go to next schema component).

• Go to Last Modification (go to last modified schema component).

• Copy, reference, or move global components, attributes, and identity constraints to another position and from one
schema to another using the Cut/Copy and Paste/Paste as Reference actions.

• Go to the definition of an element or attribute with the Show Definition action.
• You can expand and see the contents of the imports/includes/redefines in the diagram. In order to edit components

from other schemas the schema for each component will be opened as a separate file in Oxygen XML Editor plugin.

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will
be detected and you will be asked to refresh the current schema contents.

• Recursive references are marked with a recurse symbol (). Click this symbol to navigate between the element
declaration and its reference.

Figure 83: Recursive Reference

XML Schema Outline View

The Outline view for XML Schemas presents all the global components grouped by their location, namespace, or type.
By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Oxygen XML Editor plugin | Editing Modes | 192

Figure 84: Outline View for XML Schema

The Outline view provides the following options in the View Menu on the Outline view action bar:

The text filter of the Outline view returns only exact matches;Filter returns exact matches

Allows a synchronization between Outline view and schema diagram. The
selected view from the diagram is also selected in the Outline view.

Selection update on cursor move

Allows you to sort alphabetically the schema components.Sort

Displays all components that were collected starting from the main files.
Components that are not referable from the current file are marked with an orange

Show all components

underline. To reference them, add an import directive with the componentNS
namespace.

Displays all components (collected starting from the main files) that can be
referenced from the current file. This option is set by default.

Show referable components

Displays the components defined in the current file only.Show only local components

These three operations allow you to group the components by location,
namespace, or type. When grouping by namespace, the main schema target
namespace is the first presented in the Outline view.

Group by location/namespace/type

The following contextual menu actions are available in the Outline view:

Removes the selected item from the diagram.Remove (Delete)

Searches all references of the item found at current cursor position in the
defined scope, if any.

Search References

Searches all references of the item found at current cursor position in the
specified scope.

Search References in

Allows you to see the dependencies for the current selected component.Component Dependencies

Oxygen XML Editor plugin | Editing Modes | 193

Allows you to see the hierarchy for the current selected resource.Resource Hierarchy

Allows you to see the dependencies for the current selected resource.Resource Dependencies

Renames the selected component.Rename Component in

Generate XML files using the current opened schema. The selected
component is the XML document root.

Generate Sample XML Files

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline
view, its definition is highlighted in the editing area.

Related information
Searching and Refactoring Actions in XML Schemas on page 474

Component Dependencies View for XML Schema on page 472

XML Schema Resource Hierarchy / Dependencies View on page 470

Generating Sample XML Files on page 476

Editing Relax NG Schema in the Master Files Context on page 522

XML Schema Attributes View

The Attributes view for XML Schemas presents the properties for the selected component in the schema diagram. By
default, it is displayed on the right side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Figure 85: Attributes View

Oxygen XML Editor plugin | Editing Modes | 194

The default value of a property is presented in the Attributes view with blue foreground. The properties that can not
be edited are rendered with gray foreground. A non-editable category that contains at least one child is rendered with
bold. Bold properties are properties with values set explicitly to them.

Properties for components that do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking by pressing Enter. For most properties you can choose valid values from a
list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted in the table
with the corresponding foreground color. By default, properties with errors are highlighted with red and the properties
with warnings are highlighted with yellow. You can customize these colors from the Document checking user preferences.

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog box will open
that allows you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit
Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:

Allows you to add a new member type to an union's member types category.Add

Allows you to remove the value of a property.Remove

Allows you to move up the current member to an union's member types
category.

Move Up

Allows you to move down the current member to an union's member types
category.

Move Down

Copy the attribute value.Copy

Shows the definition for the selected type.Show DefinitionCtrl (Meta on MAC
OS) + Click

Allows you to edit the facets for a simple type.Show Facets

XML Schema Facets View

The Facets view for XML Schemas presents the facets for the selected component, if available. If the view is not
displayed, it can be opened from the Window > Show View menu.

Figure 86: Facets View

The default value of a facet is rendered in the Facets view with a blue color. The facets that can not be edited are rendered
with a gray color. The grouping categories (for example: Enumerations and Patterns) are not editable. If these categories
contain at least one child they are rendered with bold. Bold facets are facets with values set explicitly to them.

Oxygen XML Editor plugin | Editing Modes | 195

Important: Usually inherited facets are presented as default in the Facets view but if patterns are inherited
from a base type and also specified in the current simple type only the current specified patterns will be presented.
You can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip
on the Patterns category.

Facets for components that do not belong to the current edited schema are read-only but if you double-click them you
can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking it or by pressing Enter, when that facet is selected. For some facets you can
choose valid values from a list or you can specify another value. If a facet has an invalid value or a warning, it will be
highlighted in the table with the corresponding foreground color. By default, facets with errors are presented with red
and the facets with warnings with yellow. You can customize the error colors from the Document Checking user
preferences.

The Facets view provides the following actions in its toolbar and contextual menu:

Allows you to add a new enumeration or a new pattern.Add

Allows you to remove the value of a facet.Remove

Allows you to edit an annotation for the selected facet.Edit Annotations

Allows you to move up the current enumeration/pattern in Enumerations/Patterns
category.

Move Up

Allows you to move down the current enumeration/pattern in
Enumerations/Patterns category.

Move Down

Copy the attribute value.Copy

Rather than editing regular expressions manually, this action allows you to open
the pattern in the XML Schema Regular Expressions Builder that guides you
through the process of testing and constructing the pattern..

Open in Regular Expressions
Builder

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the Pin button.

XML Schema Palette View

The Palette view is designed to offer quick access to XML Schema components and to improve the usability of the
XML Schema diagram builder. You can use the Palette to drag and drop components in the Design mode. The components
offered in the Palette view depend on the XML schema version set in the XML Schema preferences page. If the view
is not displayed, it can be opened from the Window > Show View menu.

Figure 87: Palette View

Oxygen XML Editor plugin | Editing Modes | 196

Figure 88: Palette View

Components are organized functionally into 4 collapsible categories:

• Basic components: elements, group, attribute, attribute group, complex type, simple type, type alternative.
• Compositors and Wildcards: sequence, choice, all, any, any attribute, open content.
• Directives: import, include, redefine, override.
• Identity constraints: key, keyref, unique, selector, field, assert.

Note: The type alternative, open content, override, and assert components are available for XML Schema
1.1.

To add a component to the edited schema:

• Click and hold a graphic symbol from the Palette view, then drag the component into the Design view.
• A line dynamically connects the component with the XML schema structure.
• Release the component into a valid position.

Note: You cannot drop a component into an invalid position. When you hover the component into an invalid

position, the mouse cursor changes its shape into . Also, the connector line changes its color from the
usual dark gray to the color defined in the Validation error highlight color option (default color is red).

To watch our video demonstration about the Schema palette and developing XML Schemas, go to
http://oxygenxml.com/demo/Schema_Palette.html and http://oxygenxml.com/demo/Developing_XML_Schemas.html
respectively.

Oxygen XML Editor plugin | Editing Modes | 197

http://oxygenxml.com/demo/Schema_Palette.html
http://oxygenxml.com/demo/Developing_XML_Schemas.html

Chapter

7

Editing Documents

This chapter explains the editor types available in Oxygen XML Editor plugin
and how to work with them for editing various types of documents.

Topics:

• Working with Unicode
This chapter explains the editor types available in Oxygen XML Editor plugin
and how to work with them for editing various types of documents.

• Creating and Working with
Documents

• Using Projects to Group
Documents

• Editing XML Documents
• Editing XSLT Stylesheets
• Editing XML Schemas
• Editing XQuery Documents
• Editing WSDL Documents
• Editing CSS Stylesheets
• Editing LESS CSS Stylesheets
• Editing Relax NG Schemas
• Editing NVDL Schemas
• Editing JSON Documents
• Editing StratML Documents
• Editing XLIFF Documents
• Editing JavaScript Documents
• Editing XProc Scripts
• Editing Schematron Schemas
• Editing Schematron Quick Fixes
• Editing XHTML Documents
• Spell Checking
• AutoCorrect Misspelled Words
• Handling Read-Only Files
• XML Digital Signatures

Working with Unicode
Unicode provides a unique number for every character, independent of the platform and language. Unicode is an
internationally recognized standard, adopted by industry leaders. The Unicode is required by modern standards (such
as XML, Java, JavaScript, LDAP, CORBA 3.0, WML, etc.) and is the official way to implement ISO/IEC 10646.

It is supported in many operating systems, all modern browsers, and many other products. The emergence of the Unicode
Standard, and the availability of tools supporting it, are among the most significant recent global software technology
trends. Incorporating Unicode into client-server or multiple tiered applications and websites offers significant cost
savings over the use of legacy character sets.

As a modern XML Editor, Oxygen XML Editor plugin provides support for the Unicode standard enabling your XML
application to be targeted across multiple platforms, languages, and countries without re-engineering. Internally, the
Oxygen XML Editor plugin XML Editor uses 16 bit characters covering the Unicode Character set.

Note: Oxygen XML Editor plugin may not be able to display characters that are not supported by the operating
system (either not installed or unavailable).

Tip: On windows, you can enable the support for CJK (Chinese, Japanese, Korean) languages from Control
Panel / Regional and Language Options / Languages / Install files for East Asian languages.

Opening and Saving Unicode Documents

When loading documents, Oxygen XML Editor plugin receives the encoding of the document from the Eclipse platform.
This encoding is then used to instruct the Java Encoder to load support for and to save the document using the specified
code chart.

While in most cases you are using UTF-8, simply changing the encoding name causes the application to save the file
using the new encoding.

To edit documents written in Japanese or Chinese, change the font to one that supports the specific characters (a Unicode
font). For the Windows platform, Arial Unicode MS or MS Gothic is recommended. Do not expect WordPad or Notepad
to handle these encodings. Use Internet Explorer or Word to examine XML documents.

When a document with a UTF-16 encoding is edited and saved in Oxygen XML Editor plugin, the saved document has
a byte order mark (BOM) that specifies the byte order of the document content. The default byte order is
platform-dependent. That means that a UTF-16 document created on a Windows platform (where the default byte order
mark is UnicodeLittle) has a different BOM than a UTF-16 document created on a Mac OS platform (where the byte
order mark is UnicodeBig). The byte order and the BOM of an existing document are preserved when the document is
edited and saved.

Inserting Symbols

You can insert symbols by using the Character Map dialog box that can be opened with the Edit > Insert from
Character Map action.

Oxygen XML Editor plugin | Editing Documents | 200

Figure 89: Character Map Dialog Box

The Character Map dialog box allows you to visualize all characters that are available in a particular font, pick the
character you need, and insert it in the document you are editing. It includes the following fields and sections:

Use this drop-down list to choose the font for which you want to display characters.Font

Use this drop-down list to only see a certain range of characters. This will filter the number
of characters displayed, showing only a contiguous range of characters corresponding to the
selected block. Unassigned characters are displayed as empty squares.

Unicode Block

Use this filter to search for a character by one of the following attributes:Search

• hexadecimal
• decimal
• description

Note: Selecting description opens the Details tab. If you enter a character
description in the Search field, tdescription is selected automatically.

The characters that are available to be inserted are listed in two tabs:Character Table
Section

• Compact - Matrix-like table that displays a visual representation of the characters.
• Details - Displays the available characters in a tabular format, presenting their decimal

and hexadecimal value along with their description.

Displays the symbols that you have used recently and you can also select one from there to
insert it in the current document.

Recently Used
Characters Section

The next section of the dialog box allows you to select how you want the character to appear
in the Text editing mode. You can choose between the following:

Character Mode
Section

• Character
• Character entity - decimal

Oxygen XML Editor plugin | Editing Documents | 201

• Character entity - hexadecimal

You can see the character or code that will be inserted in Text mode next to the selections in
this section and a box on the right side of the dialog box allows you to see the character that
will be inserted in Author mode. You can also see the name and range name of a character
either at the bottom of the dialog box, or in a tooltip when hovering the cursor over the
character.

Press the Insert button to insert the selected character in the current editor at cursor position. You will see the character
in the editor if the editor font is able to render it. The Copy button copies it to the clipboard without inserting it in the
editor.

Note: The Character Map dialog box is not available in the Grid editor.

Unicode Fallback Font Support

Oxygen XML Editor plugin provides fonts for most common Unicode ranges. However, if you use special symbols or
characters that are not included in the default fonts, they will be rendered as small rectangles. A fallback font is a reserve
typeface that contains symbols for as many Unicode characters as possible. When a display system encounters a character
that is not part of the range of any of the available fonts, Oxygen XML Editor plugin will try to find that symbol in a
fallback font.

Example of a Scenario Where a Fallback Font is Needed
Suppose that you need to insert the wheelchair symbol (- U+267F) into your content in a Windows operating system.
By default, Oxygen XML Editor plugin does not render this symbol correctly since it is not included in any of the default
fonts. It is included in Segoe UI Symbol, but this font is not part of the default fonts that come with Oxygen XML Editor
plugin. To allow Oxygen XML Editor plugin to recognize and render the symbol correctly, you can add Segoe UI Symbol
as a fallback font.

Add a Fallback Font in Windows (7 or Later)
To add a fallback font to the Oxygen XML Editor plugin installation, use the following procedure:

1. Start Windows Explorer and browse to the [OXYGEN_INSTALL_DIR]/jre/lib/fonts directory.
2. Create a directory called fallback (if it is not already there).
3. Copy a font file (True Type Font - TTF) that includes the special characters into this directory.

Tip: You could, for example, copy the Segoe UI Symbol Regular font from C:\Windows\Fonts.

4. Restart Oxygen XML Editor plugin for the changes to take full effect.

Result: Whenever Oxygen XML Editor plugin finds a character that cannot be rendered using its standard fonts, it will
look for the glyph in the fonts stored in the fallback folder.

Alternate Solution for Other Platforms

For Mac OS X or other platforms, you could use the following approach:

1. Use a font editor (such as FontForge) to combine multiple true type fonts into a single custom font.
2. Install the font file into the dedicated font folder of your operating system.
3. In Oxygen XML Editor plugin, open the Preferences dialog box and go to Appearance > Fonts.
4. Click the Choose button in the Editor option and select your custom font from the drop-down list in the subsequent

dialog box.
5. Restart Oxygen XML Editor plugin for the font changes to take full effect.

Oxygen XML Editor plugin | Editing Documents | 202

http://fontforge.github.io/en-US/

Creating and Working with Documents
Oxygen XML Editor plugin includes various features, actions, and wizards to assist you with creating new files and
working with existing files. This section explains many of these features, including information on creating new
documents, opening, saving, and closing existing files, searching documents, viewing file properties, and more.

Creating New Documents and Templates

Oxygen XML Editor plugin includes a handy New Document wizard that allows you to customize and create new files
from a large list of document types and predefined new file templates. You can also create your own templates and share
them with others.

New Document Wizard

Oxygen XML Editor plugin supports a wide range of document types. The New Document wizard presents the default
associations between a file extension and the type of editor that opens the file. The New Document wizard only creates
a skeleton document. It may contain a root element, the document prolog, and possibly other child elements depending
on options that are specific for each schema type.

The Oxygen XML Editor plugin includes a series of Eclipse wizards for easy document creation. If you use these wizards,
Oxygen XML Editor plugin automatically completes the following details:

• The system ID or schema location of a new XML document.
• The minimal markup of a DocBook article, or the namespace declarations of a Relax NG schema.

New Document Wizard

The New Document wizard allows you to create various types of documents and provides some options that help you
to configure the new document. To use this wizard to create a new document in Oxygen XML Editor plugin, follow
these steps:

1. Click the New button on the toolbar or select File > New > Other > Oxygen XML Editor plugin.

Tip: You can also select New from Templates to create a document based upon predefined templates or
custom templates.

Result: The New Document wizard is displayed with all the supported document types.

2. Select the type of document that you want to create.
3. Click the Next button.

Result: The next wizard page allows you to select a path where you want to store the new file and for some document
types it includes some customization options. If you selected XML File or XML Schema (XSD) File for the
type of document, you need to select the storage path and click Next again to reach customization options.

4. After configuring the options in this wizard, click Finish to create the file. If the Open file for editing when done
option is selected, the new file will be opened in the appropriate editor.

Oxygen XML Editor plugin | Editing Documents | 203

XML File Type

Figure 90: New XML File Configuration Options

If you selected XML File for the type of document you want to create, the wizard will include the following options:

• URL - Specifies the path to the schema file. When you select a file, Oxygen XML Editor plugin analyzes its content
and tries to fill in the rest of the dialog box.

• Schema Type - Allows you to select the schema type. The following options are available: XML Schema, DTD,
RelaxNG XML syntax, RelaxNG compact syntax, and NVDL.

• Public ID - Specifies the PUBLIC identifier declared in the document prolog.
• Namespace - Specifies the document namespace.
• Prefix - Specifies the prefix for the namespace of the document root.
• Root Element - Populated with elements defined in the specified schema, enables selection of the element used as

document root.
• Description pane - A small description of the selected document root.
• Add Optional Content - If you select this option, the elements and attributes defined in the XML Schema as optional

are generated in the skeleton XML document.
• Add First Choice Particle - If you select this option, Oxygen XML Editor plugin generates the first element of an

xs:choice schema element in the skeleton XML document. Oxygen XML Editor plugin creates this document
in a new editor panel when you click Finish.

Oxygen XML Editor plugin | Editing Documents | 204

XSL Stylesheet File Type

Figure 91: New XSL Document Configuration Options

If you selected Stylesheet (XSL) File for the type of file you want to create, the wizard will include the following
options:

• Stylesheet version - Allows you to select the Stylesheet version number. You can select from: 1.0, 2.0, and 3.0.
• Add documentation annotations - Enable this option to generate the stylesheet annotation documentation.

Oxygen XML Editor plugin | Editing Documents | 205

XML Schema (XSD) File Type

Figure 92: New XML Schema Configuration Options

If you selected XML Schema (XSD) File for the type of file you want to create, the wizard will include the following
options:

• Default XML Schema version - Select this option to use the XML Schema version defined in the XML Schema
preferences page.

• XML Schema 1.0 - Sets the minVersion attribute to 1.0 and the maxVersion attribute to 1.1.
• XML Schema 1.1 - Sets the minVersion attribute to 1.1.
• Target namespace - Allows you to specify the schema target namespace.
• Namespace prefix declaration table - This table contains namespace prefix declarations. Table information can be

managed using the New and Delete buttons.

Tip: For further details on how you can set the version of an XML Schema, go to Setting the XML Schema
Version.

Oxygen XML Editor plugin | Editing Documents | 206

Schematron File Type

Figure 93: New Schematron Configuration Options

If you selected Schematron File for the type of file you want to create and selected the Customize option, the
configuration dialog box will include the following option:

• Schematron version - Specifies the Schematron version. Possible options: 1.5 (deprecated) and ISO.

Note: Starting with version 16.0 of Oxygen XML Editor plugin, the support for Schematron 1.5 is deprecated.
It is recommended to use ISO Schematron instead.

Creating New Documents Based on Templates

The New Document wizard allows you to select predefined templates or custom templates that you or other users created
in previous sessions.

The list of templates presented in the wizard includes:

• User-defined template directory - You can add your own custom templates by creating template files in a directory
and then add that directory to the list of template directories that Oxygen XML Editor plugin uses in the Document
Templates preferences page. This user-defined directory will appear in the New from templates wizard.

• Global templates - Contains a list of predefined templates as well as any user-defined custom templates that are
saved in the templates directory of the Oxygen XML Editor plugin installation folder
([OXYGEN_INSTALL_DIR]/templates).

• Framework templates - Contains the list of templates defined in the Document Type configuration dialog box
(Templates tab) for each framework.

New from Templates Wizard

The New from Templates wizard allows you to create various types of documents based upon predefined or custom
document templates. To use this wizard to create a new document in Oxygen XML Editor plugin, follow these steps:

Oxygen XML Editor plugin | Editing Documents | 207

1. Click the New button on the toolbar and select New from Templates (or select File > New > Other > Oxygen
XML Editor plugin > New From Templates).

Result: The New from Templates wizard is displayed that allows you to select various types of document templates.

2. Select the type of document that you want to create and click Next.
3. Choose the storage path and a file name for the new document.
4. Click the Finish button.

Result: The new file is created and if the Open file for editing when done option is selected, the new file will be
opened in the appropriate editor.

Creating New Document Templates

Oxygen XML Editor plugin allows you to create your own custom document templates and they will appear in the
Global templates folder (or another specified folder) within the New from templates wizard.

Creating a New Document Template

To create your own custom document template and have it appear in the new file wizard, follow these steps:

1. Create a new file (whatever type of document you need) and customize it to become a starting point for creating new
files of this type.

Tip: You can use editor variables in the template file content and they will be expanded when the files are
opened.

2. Save the new file template in one of the following locations:

• The templates directory of the Oxygen XML Editor plugin installation directory
([OXYGEN_INSTALL_DIR]/templates). File templates saved in this directory will appear in the Global
templates category in the New from templates wizard.

• You can also use any other directory of your choice, but you must add that directory to the list of templates in
the Document Templates preferences page. This user-defined directory will appear in the New from templates
wizard with the new file templates that you save in it.

Attention: The name that you use to save the template will be the name that appears in the new file wizard,
including capitalization, space, and characters (for example, My Custom Template1.xml will appear
in the new file wizard as My Custom Template1).

3. Open the new file wizard (New toolbar button or File > New > New from Templates) and you should see your
custom template in the appropriate folder. For DITA templates, they will also appear in the dialog box for creating
new DITA topics from the DITA Maps Manager, but if you create a corresponding properties file (see the procedure
below), you need to set the type property to dita.

Related information
Customizing Document Templates on page 208

Customizing Document Templates

Oxygen XML Editor plugin allows you to customize certain aspects of predefined or custom document templates. For
example, you can customize the icons or specify a prefix/suffix that will be used for the proposed file name in the New
from templates wizard.

Customizing the Icons for a Document Template

If you want to customize the icons to be used for document templates, use a properties file to specify the icons using
the following procedure:

1. Create a new properties file or edit an existing one.

Oxygen XML Editor plugin | Editing Documents | 208

If you create a new properties file, use the same name as the template file except with a .properties extension
(for example, MyTemplate.properties). This properties file will specify the paths to the icons that will

•

be used in the new file wizard. You can find some examples in the templates directory of the Oxygen XML
Editor plugin installation directory to help you get started.

When defining the icons, the properties file should look like this:

type=general
smallIcon=../icons/Article_16.png
bigIcon=../icons/Article_48.png

Important: For DITA files, the type property needs to be set to dita. Otherwise, the template will
not appear in the dialog box for creating new DITA topics from the DITA Maps Manager. For all other
types of files, set it to general. The icons specified in this properties file will only be used for the new
file wizards and not in any other part of the interface.

Note: If you created a new template and chose to use a custom directory for the new template (in step
2 of the new template procedure), make sure the path to the icons is relative to that directory.

• If you edit an existing template, simply define the icon paths as specified above.

2. Save the properties file in the same directory as the document template.
3. Open the new file wizard (File > New > New from Templates) and you should see your custom icons next to the

document template in the appropriate folder.

Add a Prefix or Suffix to File Names for a Document Template

You can use a properties file for each document template to add a prefix or suffix to the file name that is proposed in
certain dialog boxes when you create a new file from that template. This applies to the following new document dialog
boxes:

• The new document dialog box that appears when you select New > New from Templates > [Template Name] >
Next from the contextual menu in the Navigator view. The prefix or suffix is added to the name of the file in the
File field.

• For DITA files, it also applies to the new document dialog box that appears when you select Append Child > New
or Insert After > New from the DITA Maps Manager. The prefix or suffix is added to the name of the file in the
Save as field.

To add a prefix or suffix to the file names for a document template, follow these steps:

1. Create a new properties file or edit an existing one.

• If you create a new properties file, use the same name as the template file except with a .properties extension
(for example, MyTemplate.properties). This properties file will specify the prefix/suffix that will be used
to propose the file name in the new file wizards.

When defining the prefix/suffix, the properties file should look something like this:

type=general
filenamePrefix=prod_
filenameSuffix=_test

Important: For DITA files, the type property needs to be set to dita. For all other types of files, set
it to general.

• If you edit an existing template, simply define the prefix/suffix as specified above.

2. Save the properties file in the same directory as the document template.
3. Open the new document wizard (using the methods described above) and when you select the appropriate template,

you should see your prefix or suffix in the file name that is proposed in that dialog box.

Oxygen XML Editor plugin | Editing Documents | 209

Related information
Creating New Document Templates on page 208

Saving Documents

You can save the document you are editing with one of the following actions:

• File > Save.
• File > Save As - Displays the Save As dialog box, used either to name and save an open document to a file or to

save an existing file with a new name.
• File > Save All - Saves all open documents.

Opening and Saving Remote Documents via FTP/SFTP/WebDAV

Oxygen XML Editor plugin supports editing remote files, using the FTP, SFTP, and WebDAV protocols. You can edit
remote files in the same way you edit local files.

You can open one or more remote files in the Open using FTP/SFTP dialog box

A WebDAV resource can be locked when it is opened in Oxygen XML Editor plugin by checking the Lock WebDAV
files on open option to prevent other users to modify it concurrently on the server. If a user tries to edit a locked file,
Oxygen XML Editor plugin displays an error message that contains the lock owner's name. The lock is released
automatically when the editor for that resource is closed in Oxygen XML Editor plugin.

To avoid conflicts with other users when you edit a resource stored on a SharePoint server, you can Check Out the
resource.

To improve the transfer speed, the content exchanged between Oxygen XML Editor plugin and the HTTP / WebDAV
server is compressed using the GZIP algorithm.

The current WebDAV Connection details can be saved using the Database Perspective button and then used in the
Data Source Explorer view.

Open Using FTP/SFTP/WebDAV Dialog Box

To access the Open using FTP/SFTP/WebDAV dialog box, go to File > Open URL menu, then choose the Browse
for remote file option from the drop-down action list.

Oxygen XML Editor plugin | Editing Documents | 210

Figure 94: Open URL Dialog Box

The displayed dialog box is composed of several parts:

• The editable URL combo box, in which you specify the URL to be opened or saved.

Tip: If the file is accessible through an anonymous FTP, you can type a URL like:
ftp://anonymous@some.site/home/test.xml.

This combo box also displays the current selection when you change selection by browsing the tree of folders and
files on the server.

• The Identification section contains the access credentials. If you want to browse for a file on a server, you have to
specify the user and password. This information is bound to the selected URL and is also used in opening or saving
the file. If the Save checkbox is selected, the user and password are saved between editing sessions. The password
is encrypted and kept in the options file.

Note: Your password is well protected. If the options file is used on another machine by a user with a
different user name the password, it will become unreadable since the encryption is user-name dependent.
This is also true if you add URLs to your project that include a user and password.

• The Browse for remote file section contains the Server URL combo box and Autoconnect check box. In the Server
URL combo box, you can specify the protocol, the server host name, or server IP.

Tip: When accessing a FTP server, you only need to specify the protocol and the host (such as
ftp://server.com or if using a non-standard port ftp://server.com:7800/).

Oxygen XML Editor plugin | Editing Documents | 211

By pressing the Browse button, the directory listing will be shown in the component. When Autoconnect is selected,
every time the dialog box is displayed, the browse action will be performed.

• The bottom part of the dialog box displays the tree view of the documents stored on the server. You can browse the
directories and make multiple selections. Additionally, you can use the Rename, Delete, and New Folder actions
to manage the file repository.

The file names are sorted in a case-insensitive manner.

Changing File Permissions on a Remote FTP Server

Some FTP servers allow the modification of permissions of the files served over the FTP protocol. This protocol feature
is accessible directly in the FTP file browser dialog box by right-clicking a tree node and selecting the Change permissions
menu item.

In this dialog box, the usual Unix file permissions Read, Write, and Execute are granted or denied for the file owner,
owner group, and the rest of the users. The aggregate number of permissions is updated in the Permissions text field
when it is modified with one of the check boxes.

WebDAV over HTTPS

If you want to access a WebDAV repository across an unsecure network, Oxygen XML Editor plugin allows you to
load and save the documents over the HTTPS protocol (if the server understands this protocol) so that any data exchange
with the WebDAV server is encrypted.

When a WebDAV repository is first accessed over HTTPS, the server hosting the repository will present a security
certificate as part of the HTTPS protocol, without any user intervention. Oxygen XML Editor plugin will use this
certificate to decrypt any data stream received from the server. For the authentication to succeed you should make sure
the security certificate of the server hosting the repository can be read by Oxygen XML Editor plugin. This means that
Oxygen XML Editor plugin can find the certificate in the key store of the Java Runtime Environment in which it runs.
You know the server certificate is not in the JRE key store if you get the error No trusted certificate found when trying
to access the WebDAV repository.

Troubleshooting HTTPS

When Oxygen XML Editor plugin cannot connect to an HTTPS-capable server, most likely there is no certificate set in
the Java Runtime Environment (JRE) that Oxygen XML Editor plugin runs into. The following procedure describes
how to:

• Export a certificate to a local file using any HTTPS-capable Web browser (for example, Internet Explorer).
• Import the certificate file into the JRE using the keytool tool that comes bundled with Oxygen XML Editor plugin.

1. Export the certificate into a local file

a) Point your HTTPS-aware Web browser to the repository URL.

If this is your first visit to the repository it will be displayed a security alert stating that the security certificate
presented by the server is not trusted.

Oxygen XML Editor plugin | Editing Documents | 212

Figure 95: Security alert - untrusted certificate

b) Go to menu Tools > Internet Options.
Internet Options dialog box is opened.

c) Select Security tab.
d) Select Trusted sites icon.
e) Press Sites button.

This will open Trusted sites dialog box.
f) Add repository URL to Websites list.
g) Close the Trusted sites and Internet Options dialog boxes.
h) Try again to connect to the same repository URL in Internet Explorer.

The same error page as above will be displayed.
i) Select Continue to this website option.

A clickable area with a red icon and text Certificate Error is added to Internet Explorer address bar.
j) Click the Certificate Error area.

A dialog box containing a View certificates link is displayed.
k) Click the View certificates link.

Certificate dialog box is displayed.
l) Select Details tab of Certificate dialog box.
m) Press Copy to File button.

Certificate Export Wizard is started.
n) Follow indications of wizard for DER encoded binary X.509 certificate. Save certificate to local file server.cer.

2. Import the local file into the JRE running Oxygen XML Editor plugin.

a) Open a text-mode console with administrative rights.

If Oxygen XML Editor plugin has been installed in a user's home directory and includes a bundled JRE,
administrative rights are not required. In all other cases administrative rights will be required.

b) Go to the lib/security directory of the JRE running Oxygen XML Editor plugin. You find the home directory
of the JRE in the java.home property that is displayed in the About dialog box (Installation Details >
Configuration). On Mac OS X systems, the lib/security directory is usually located in
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home directory.

Oxygen XML Editor plugin | Editing Documents | 213

On OS X, if you have installed a distribution of Oxygen XML Editor plugin that is not bundled with a JRE, a
JRE from Apple is required. The Apple Java version 1.6 stores the certificates in
/System/Library/Java/Support/CoreDeploy.bundle/Contents/Home/lib/security/cacerts
with a symbolic link pointing to it from
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/lib/security/cacerts.

On OS X, if you have installed a distribution of Oxygen XML Editor plugin that bundles the JRE from Oracle,
the JRE uses the .install4j/jre.bundle/Contents/Home/jre/lib/security/cacerts path
within its installation directory.

c) Run the following command:

..\..\bin\keytool -import -trustcacerts -file server.cer -keystore cacerts

The server.cer file contains the server certificate, created during the previous step. keytool requires a password
before adding the certificate to the JRE keystore. The default password is changeit. If someone changed the
default password, then that person is the only one who can perform the import.

Note: To make Oxygen XML Editor plugin accept a certificate even if it is invalid, open the Preferences
dialog box , go to Connection settings > HTTP(S)/WebDAV, and enable the Automatically accept
a security certificate, even if invalid option.

Tip: If you need to import multiple certificates, you need to specify a different alias for each additional
imported certificate with the -alias command line argument, as in the following example:

..\..\bin\keytool -import -alias myalias1 -trustcacerts -file server1.cer -keystore cacerts

..\..\bin\keytool -import -alias myalias2 -trustcacerts -file server2.cer -keystore cacerts

3. Restart Oxygen XML Editor plugin.

Related information
HTTP(S)/WebDAV Preferences on page 106

HTTP Authentication Schemes

Oxygen XML Editor plugin supports the following HTTP authentication schemes:

• Basic - The basic authentication scheme defined in the RFC2617 specifications.
• Digest - The digest authentication scheme defined in the RFC2617 specifications.
• NTLM - The NTLM scheme is a proprietary Microsoft Windows Authentication protocol (considered to be the most

secure among currently supported authentication schemes).

Note: For NTLM authentication, the user name must be preceded by the name of the domain it belongs to,
as in the following example:

domain\username

• Kerberos - An authentication protocol that works on the basis of tickets to allow nodes communicating over a
non-secure network to prove their identity to one another in a secure manner.

Single Sign-on

Oxygen XML Editor plugin implements the Single sign-on property (meaning that you can log on once and gain access
to multiple services without being prompted to log on for each of them), based on the Kerberos protocol and relies on
a ticket-granting ticket (TGT) that Oxygen XML Editor plugin obtains from the operating system.

To turn on the Kerberos-based authentication, you need to add the following system property in the eclipse.ini
configuration file (on a separate line after the -vmargs parameter):

-Djavax.security.auth.useSubjectCredsOnly=false

Oxygen XML Editor plugin | Editing Documents | 214

https://www.ietf.org/rfc/rfc2617.txt
https://www.ietf.org/rfc/rfc2617.txt

Closing Documents

To close open documents, use one of the following methods:

• Click Close (Ctrl + F4 (Command + F4 on OS X)) in the contextual menu of an open tab (or from the File menu)
to close it.

• Click Close Other Files in the contextual menu of an open tab (or from the File menu) to close all the open tabs
except the selected one.

• Click Close All (Ctrl + Shift + F4 (Command + Shift + F4 on OS X)) in the contextual menu of an open tab (or
from the File menu) to close all open tabs.

Contextual Menu of the Current Editor Tab

A contextual menu is available when you right-click the current editor tab label.

The actions that are available depend on the context and the number of files that are opened. The menu includes the
following actions:

Closes the currently selected editor.Close

If multiple files are opened, this action is available to close all opened editors except
for the one you are currently viewing.

Close Others

If multiple files are opened, this action is available to close all opened editors.Close All

Viewing File Properties

The Editor Properties view, you can quickly access information about the currently edited document. The information
includes:

• Character encoding.
• Full path on the file system.
• Schema used for content completion and document validation.
• Document type name and path.
• Associated transformation scenario.
• Read-only state of a file.
• Bidirectional text (left to right and right to left) state.
• Total number of characters in the document.
• Line width.
• Indent with tabs state.
• Indent size.

The view can be accessed from Window > Show View > Other > Editor Properties.

To copy a value from the Editor Properties view in the clipboard (for example, the full file path), use the Copy action
available on the contextual menu of the view.

Using Projects to Group Documents
This section explains how to create and work with Projects.

Creating a New Project

Oxygen XML Editor plugin allows you to organize your XML-related files into projects. This helps you manage and
organize your files and also allows you to perform batch operations (such as validation and transformation) over multiple
files. Use the Navigator view to manage projects, and the files and folders contained within.

Oxygen XML Editor plugin | Editing Documents | 215

Creating a New Project
To create a new project, select New > XML Project or New > Sample XML Project from the contextual menu or File
menu. This opens a dialog box that allows you to create and customize a new project and adds it to the structure of the
project in the Navigator view.

Adding Items to the Project
To add items to the project, select the desired document type or folder from the New menu of the contextual menu, when
invoked from the Navigator view (or from the File menu). You can also create a document from a template by selecting
New > New from Templates from the contextual menu.

Using Linked Folders (Shortcuts)
Another easy way to organize your XML working files is to place them in a directory and then to create a corresponding

linked folder in you project. If you add new files to that folder, you can simply use the Refresh (F5) action from the
toolbar or contextual menu and the Navigator view will display the existing files and subdirectories. If your files are
scattered amongst several folders, but represent the same class of files, you might find it useful to combine them in a
logical folder.

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer (Mac OS X
Finder) to the project tree, or by using the contextual menu from the location in the project tree where you want it added
and selecting New > Folder > Advanced. The linked folders presented in the Navigator view are marked with a special
icon. To create a file inside a linked folder, use the contextual menu and select New > File (you can use the Advanced
button to link to a file in the local file system).

Note: Files may have multiple instances within the folder system, but cannot appear twice within the same
folder.

For much more information on managing projects and their content, see the Navigator View on page 151 section.

Related information
Using Projects to Group Documents on page 215

Navigator View

The Navigator view is designed to assist you with organizing and managing related files grouped in the same XML
project. The actions available on the contextual menu and toolbar associated to this panel enable the creation of XML
projects and shortcuts to various operations on the project documents.

Figure 96: Navigator View

Oxygen XML Editor plugin | Editing Documents | 216

By default, the view is positioned on the left side of the Oxygen XML Editor plugin window, above the Outline view.
If the view has been closed, it can be reopened at any time from the Window > Show View menu.

The following actions are grouped in the upper right corner:

Collapses all project tree folders. You can also collapse/expand a project tree folder if
you select it and press the Enter key or Left Arrow to collapse and Right Arrow to
expand.

Collapse All

When selected, the project tree highlights the currently edited file, if it is found in the
project files.

Link with Editor

Note: This button is disabled automatically when you move to the Debugger
perspective.

Drop-down menu that contains various settings.View Menu

The files are usually organized in an XML project as a collection of folders. There are two types of resources displayed
in the Navigator view:

• Physical folders and files - marked with the operating system-specific icon for folders (usually a yellow icon on
Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that exist in the
local file system. They are created or added to the project by using contextual menu actions (such as New > File and

New > Folder).Also, the contextual menu action Delete can be used to remove them from the project and local
file system.

• Shortcut folders and files - the icons for file and folder shortcuts are displayed with a shortcut symbol. They are
created and added by using the actions New > File > Advanced or New > Folder > Advanced from the contextual

menu or File menu. Also, the contextual menu action Delete can be used to remove them from the project (the
local file system remains unchanged).

Figure 97: Navigator View with Examples of the Two Types of Resources

Creating New Projects

The following actions are available by selecting New from the contextual menu or File menu:

Opens the New XML Project dialog box that allows you to create a new project
and adds it to the project structure in the Navigator view.

New > XML Project

Opens the New sample XML project dialog box that allows you to customize
sample resources in a new project and adds it to the project structure in the Navigator
view.

New > Sample XML Project

Oxygen XML Editor plugin | Editing Documents | 217

Creating New Project Items

To create new project items, select the desired document type or folder from the New menu of the contextual menu,
when invoked from the Navigator view (or from the File menu). You can also create a document from a template by
selecting New > New from Templates from the contextual menu.

Opens a New file dialog box that helps you create a new file and adds it to the project
structure.

New > File

Opens a New Folder dialog box that allows you to specify a name for a new folder
and adds it to the structure of the project.

New > Folder

Available when invoked from the project root, this action creates a logical folder in

the tree structure (the icon is a magenta folder on Mac OS X -).
New > Logical Folder

Available when invoked from the project root, this action replicates the structure of
a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders.
The newly created logical folders contain the file structure of the folder it points to.

New > Logical Folders from
Web

Managing Project Content
Creating/Adding Files and Folders

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer / Mac OS X
Finder to the project tree, or by using the contextual menu from the location in the project tree where you wanted it
added and selecting New > Folder > Advanced. To create a file inside a linked folder, use the contextual menu and
select New > File (you can use the Advanced button to link to a file in the local file system).

Note: The linked folders presented in the Navigator view are marked with a special icon.

You can create physical folders by selecting New > Folder from the contextual menu.

When adding files to a project, the default target is the project root. To change a target, select a new folder. Files may
have multiple instances within the folder system, but cannot appear twice within the same folder.

Removing Files and Folders

To remove one or more files or folders, select them in the project tree and press the Delete key, or select the contextual

menu action Delete.

CAUTION: In most cases this action is irreversible, deleting the file permanently. Under particular circumstances
(if you are running a Windows installation of Oxygen XML Editor plugin and the Recycle Bin is active) the file
is moved to Recycle Bin.

Moving Files and Folders

You can move the resources of the project with drag and drop operations on the files and folders of the tree.

You can also use the usual Copy and Paste actions to move resources in the Navigator view.

Renaming Files and Folders

There are two ways you can rename an item in the Navigator view. Select the item in the Navigator view and do one
of the following:

• Invoke the Rename action from the contextual menu.
• Press F2 and type the new name.

To finish editing the item name, press Enter.

Locating and Opening Files

Oxygen XML Editor plugin | Editing Documents | 218

If a project folder contains a lot of documents, a certain document can be located quickly in the project tree by selecting
the folder containing the desired document and typing the first few characters of the document name. The desired
document is automatically selected as soon as the typed characters uniquely identify its name in the folder.

The selected document can be opened by pressing the Enter key, by double-clicking it, or with one of the Open actions
from the contextual menu. The files with known document types are opened in the associated editor, while binary files
are opened with the associated system application. To open a file with a known document type in an editor other than
the default one, use the Open with action. Also, dragging and dropping files from the project tree to the editor area
results in the files being opened.

Saving the Project

The project file is automatically saved every time the content of the Navigator view is saved or modified by actions
such as adding or removing files and drag and drop.

Validate Files

The currently selected files associated with the Oxygen XML Editor plugin in the Package Explorer view or in the
Navigator view can be checked to be XML well-formed or validated against a schema (DTD, XML Schema, Relax
NG, Schematron or NVDL) with one of the following contextual menu actions found in the Validate submenu:

Checks if the selected file or files are well-formed.Check Well-Formedness

Validates the selected file or files against their associated schema. EPUB
files make an exception, because this action triggers a Validate and Check
for Completeness operation.

Validate

Validates the selected file of files against a specified schema.Validate with Schema

Allows you to configure and run a validation scenario.Configure Validation Scenario(s)

Clears all the error markers from the main editor and Problems view.Clear Validation Markers

Applying Transformation Scenarios

The currently selected files associated with the Oxygen XML Editor plugin in the Package Explorer view or in the
Navigator view can be transformed in one step with one of the following actions available from contextual menu in the
Transform submenu:

Obtains the output with one of the built-in scenarios.Apply Transformation Scenario(s)

Opens a dialog box that allows you to configure pre-defined
transformation scenarios.

Configure Transformation Scenario(s)

Allows you to select a transformation scenario to be applied to the
currently selected files.

Transform with

Refactoring Actions (Available for certain document types (such as XML, XSD, and XSL)

Oxygen XML Editor plugin includes some refactoring operations that help you manage the structure of your documents.
The following actions are available from the contextual menu in the Refactoring submenu:

Allows you to change the name of a resource.Rename resource

Allows you to change the location on disk of a resource.Move resource

Opens the XML Refactoring tool wizard that presents refactoring operations to
assist you with managing the structure of your XML documents.

XML Refactoring

Other Contextual Menu Actions

Other actions that are available in the contextual menu from the project tree include:

Oxygen XML Editor plugin | Editing Documents | 219

Opens the selected files in the corresponding editor.Open

This submenu offers you choices for opening the selected file in various editors.Open with submenu

Refreshes the content and the dependencies between the resources in the Master
Files directory.

Refresh

Opens the XPath/XQuery Builder view that allows you to compose XPath and
XQuery expressions and execute them over the currently edited XML document.

XPath in Files

Allows you to check the spelling of multiple files.Check Spelling in Files

Opens the Format and Indent Files dialog box that allows you to configure the
format and indent (pretty print) action that will be applied on the selected documents.

Format and Indent Files

Displays the properties of the current file in a Properties dialog box.Properties

Related information
Working with EPUB on page 734

Moving/Renaming Resources in the Navigator View

The Navigator view allows you to move or rename files in the current project.

Moving Resources

To move a file or directory in the Navigator view, drag and drop it to the new location in the tree structure or use the

Move action from the contextual menu (you can also use the Copy and Paste actions from the contextual menu
or Edit menu to copy resources to a new location).

You can also move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the
Refactoring > Move resource action from the contextual menu. This action opens the Move resource dialog box that
includes the following options:

• Destination - Presents the path to the current location of the resource you want to move and gives you the option to
introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Enable this option to update the references to the resource you are

moving, based upon the selected scope. You can select or configure the scope by using the button.

Renaming Resources

To quickly rename a file or a directory, use the in-place editing either by pressing F2 or by selecting Rename from the
contextual menu.

You can also rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the
Refactoring > Rename resource action from the contextual menu. This action opens the Rename resource dialog
box that includes the following options:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references of the renamed resource - Enable this option to update the references to the resource you are

renaming. You can select or configure the scope by using the button.

Problems Updating References of Moved/Renamed Resources

In some case the references of a moved or a renamed resource can not be updated. For example, when a resource is
resolved through an XML catalog or when the path to the moved or renamed resource contains entities. For these cases,
Oxygen XML Editor plugin displays a warning dialog box.

Oxygen XML Editor plugin | Editing Documents | 220

Figure 98: Problems Dialog Box

Defining Master Files at Project Level

This chapter details the Master Files Support available in Oxygen XML Editor plugin. A Master File typically refers
to the root of an imported or included tree of modules and this support helps you simplify the configuration and
development of XML projects.

Oxygen XML Editor plugin allows you to define master files at project level. These master files are automatically used
by Oxygen XML Editor plugin to determine the context for operations such as validation, content completion, refactoring,
or search for XML, XSD, XSL, WSDL, and RNG modules. Oxygen XML Editor plugin maintains the hierarchy of the
master files, helping you to determine the editing context.

To watch our video demonstration about the Master Files Support for XML documents, XSL documents, and WSDL
documents, go to Working with Modular XML Files, Master Files Support, and Working with Modular WSDL Files,
respectively.

Master Files Benefits

Using the Master Files support in Oxygen XML Editor plugin includes the following benefits:

• When the module is validated, Oxygen XML Editor plugin automatically identifies the master files that include the
module and validates all of them.

• The Content Completion Assistant presents all the components that are collected from the master files for the modules
they include.

• The Outline view displays all the components that are defined in the master files hierarchy.

Oxygen XML Editor plugin | Editing Documents | 221

http://oxygenxml.com/demo/Working_With_XML_Modules.html
http://oxygenxml.com/demo/MasterFilesSupport.html
http://oxygenxml.com/demo/WSDL_Working_Modules.html

• The master files that are defined for the current module determines the scope of the search and refactoring actions.
Oxygen XML Editor plugin performs the search and refactoring actions in the context that the master files determine,
thus improving the speed of execution.

Enabling the Master Files Support

Oxygen XML Editor plugin stores the master files in a folder located in the Navigator view, as the first child of the
project root. The Master Files Support is disabled by default. To enable it, select the Enable Master Files Support
action from the contextual menu of the project itself. Oxygen XML Editor plugin allows you to enable or disable the
Master Files Support for each project you are working on.

Detecting Master Files

Oxygen XML Editor plugin allows you to detect the master files using the Detect Master Files option. This action
applies to the folders you select in the project. To detect master files over the entire project, do one of the following:

• Right-click the root of the project and select Detect Master Files.

• Use the Detect Master Files from Project option, available in the contextual menu of the Master Files
folder.

Both of these options display the Detect Master Files wizard. In the first panel you can select the type of master files
you want Oxygen XML Editor plugin to detect. In the subsequent panel the detected master files are presented in a
tree-like fashion.The resources are grouped into three categories:

• Possible master files - The files presented on the first level in this category are not imported or included from other
files. These files are most likely to be set as master files.

• Cycles - The files that are presented on the first level have circular dependencies between them. Any of the files
presented on the first level of a cycle is a possible master file.

• Standalone - Files that do not include or import other files and are also not included or imported themselves. It is
not necessary to set them as master files.

To set them as master files, simply enable their check-boxes. Oxygen XML Editor plugin marks all the children of a
master file as modules. Modules are rendered in gray and their tool-tip presents a list of their master files. A module
can be accessed from multiple master files.

The master files that are already defined in the project are automatically marked in the tree and cannot be removed. The
only way to disable a master file is to delete it from the Master Files folder.

The next panel displays a list with the selected master files. Click the Finish button to add the master files in the Master
Files folder.

You can use the Select Master Files option to automatically mark all master files. This action sets all the resources
from the Possible Master Files category and the first resource of each Cycle as master files .

Tip: We recommend that you to only add top-level files (files that are at the root of the include/import graph)
in the Master Files directory. Keep the file set to a minimum and only add files that import or include other
files.

Adding or Removing a Master File

The Master Files directory only contains logical folders and linked files. To add files in the Master Files
directory, use one of the following methods:

• Right-click a file from your project and select Add to Master Files from the contextual menu.
• Drag and drop files into the Master Files directory.

• From the contextual menu of the Resource Hierarchy Dependencies view, use the Add to Master Files
action.

You can view the master files for the currently edited resource in the Editor Properties view.

Oxygen XML Editor plugin | Editing Documents | 222

Editing XML Documents
This section explains the various features in Oxygen XML Editor plugin for editing XML documents. It includes
information about the user interface components and actions that are available in the various editing modes and numerous
features to help you edit XML documents in any mode.

Related information
Text Editing Mode on page 150

Grid Editing Mode on page 164

Author Editing Mode on page 168

Editing XML Documents in Text Mode

This section includes features and actions for editing XML documents in the Text mode of Oxygen XML Editor plugin.

Navigating the Document Content in Text Mode

Oxygen XML Editor plugin includes some useful features to help you navigate XML documents in Text mode.

Using the Keyboard

Oxygen XML Editor plugin allows you to quickly navigate through a document using the Ctrl + CloseBracket
(Command + CloseBracket on OS X) key to go to the next XML node and Ctrl + OpenBracket (Command +
OpenBracket on OS X) to go to the previous one.

To navigate one word forward or backwards, use Ctrl + RightArrow (Command + RightArrow on OS X), and Ctrl
+ LeftArrow (Command + LeftArrow on OS X), respectively. To position the cursor at the beginning or end of the
document you can use Ctrl + Home (Command + Home on OS X), and Ctrl + End (Command + End on OS X),
respectively.

Navigation Shortcuts

Oxygen XML Editor plugin includes some keyboard shortcuts to help you quickly navigate to a particular modification.
They are also available as actions in the Navigation menu.

• Ctrl+Q - Last Edit Location - Moves the cursor to the last modification in any opened document.
• Alt+LeftArrow (Command+OpenBracket on OS X) - Back - Moves the cursor to the previous position.
• Alt+RightArrow (Command+CloseBracket on OS X) - Forward - Moves the cursor to the next position.

Navigating with the Outline View
Oxygen XML Editor plugin includes a very useful Outline view that displays a hierarchical tag overview of the currently
edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is
synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are
highlighted in the editor area.

Figure 99: Outline View Navigation in Text Mode

Oxygen XML Editor plugin | Editing Documents | 223

Using the Breadcrumb to Navigate

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can also be
used as a helpful tool to navigate to specific elements throughout the structure of the document.

Figure 100: Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. Clicking an element from the
breadcrumb selects the entire element and navigates to it in the editor area.

Navigating with the Go To Dialog Box

In Text mode, you can navigate precisely to a location in the document you are editing by using the Go To Line (Ctrl+L
(Command+L on OS X)) action that is available in the Navigation menu.

Smart Editing in Text Mode

Oxygen XML Editor plugin includes smart editing features to help you edit XML documents in Text mode. The following
smart editing features are included:

• Closing tag auto-expansion - This feature helps save some keystrokes by automatically inserting a closing tag when
you insert a complete start tag and the cursor is automatically placed in between the start and end tags. For instance,
after entering a start <tag>, the corresponding closing </tag> is automatically inserted and the cursor is placed
between the two (<tag>|</tag>.

• Auto-rename matching tag - When you edit the name of a start tag, Oxygen XML Editor plugin will mirror-edit
the name of the matching end tag. This feature can be controlled from the Content Completion option page.

• Auto-breaking the edited line - The Hard line wrap option automatically breaks the edited line when its length
exceeds the maximum line length defined for the format and indent operation.

• Indent on Enter - The Indent on Enter option indents the new line inserted when you press Enter.
• Smart Enter - The Smart Enter option inserts an empty line between the start and end tags. If you press Enter

between a start and end tag, the action places the cursor in an indented position on the empty line between the lines
that contain the start and end tag.

• Double-click - A double-click selects certain text, depending on the position of the click in the document:

• If the click position is on a start tag or end tag, then the element name is selected.
• If the click position is after a start tag or before an end tag, then the entire content of the element without the start

and end tags is selected.
• If the click position is before a start tag or after an end tag, then the entire tag is selected, including the start and

end tags, and the content in between.
• If the click position is immediately before an attribute, then the entire attribute and its value is selected.
• If the click position is immediately after the opening quote or immediately before the closing quote of an attribute

value, then the entire attribute value is selected.
• Otherwise, a double-click selects contiguous text.

• Triple-click - A triple-click selects the entire current line of text.

Editing Content in Text Mode

Oxygen XML Editor plugin includes numerous shortcut actions to help you edit content in the Text editing mode.

Undo/Redo Actions
The typical undo and redo actions are available with shortcuts or in the Edit menu:

Reverses a maximum of 200 editing actions to return to the preceding
state.

Undo (Ctrl + Z (Command + Z on OS X))

Note: Complex operations such as Replace All or Indent
selection count as single undo events.

Oxygen XML Editor plugin | Editing Documents | 224

Recreates a maximum of 100 editing actions that were undone by the
Undo function.

Redo (Ctrl + Y (Command + Shift + Z on OS
X, Ctrl + Shift + Z on Linux/Unix))

Copy and Paste Actions
The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the Edit menu):

Removes the current selected content from the document and
places it in the clipboard.

Cut (Ctrl + X (Command + X on OS X))

Places a copy of the current selected content in the clipboard.Copy (Ctrl + C (Command + C on OS X))

Inserts the current clipboard content into the document at the
cursor position.

Paste (Ctrl + V (Command + V on OS X))

Selects the entire content of the current document.Select All (Ctrl + A (Command + A on OS X))

Miscellaneous Shortcut Actions in Text Mode
Oxygen XML Editor plugin also includes the following other miscellaneous shortcut actions in Text mode:

Deletes the next word.Ctrl + Delete (Command + Delete on OS X)

Deletes the previous word.Ctrl + Backspace (Command + Backspace on
OS X)

Cuts the previous word.Ctrl + W (Command + W on OS X)

Cuts to end of line.Ctrl + K (Command + K on OS X)

Use this shortcut to open any of the following:Ctrl + Single-Click (Command + Single-Click
on OS X)

• Any absolute URL (URLs that have a protocol), regardless of
their location in the document.

• URI attributes such as: schemaLocation,
noNamespaceSchemaLocation, href and others.

• Processing instructions used for associating resources,
xml-models, xml-stylesheets.

Enables or disables line wrapping. When enabled, if text exceeds
the width of the displayed editor, content is wrapped so that you
do not have to scroll horizontally.

Ctrl + Shift + Y (Command + Shift + Y on OS
X) (Document > Edit > Toggle Line Wrap)

Editing XML Markup in Text Mode

Oxygen XML Editor plugin includes some useful actions that allow you to easily edit XML markup in Text mode.
These actions are available in the Refactoring submenu of the contextual menu, and many of the actions can also be
done with simple keyboard shortcuts.

Using the Breadcrumb

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can also be
used as a helpful tool to insert and edit specific elements in the document structure.

Figure 101: Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. Clicking an element in the
breadcrumb selects the entire element in the editor area. Also, each element provides a contextual menu with access to
the following actions:

Oxygen XML Editor plugin | Editing Documents | 225

Allows you to select an element (from a drop-down list) that is allowed by the associated
schema and inserts it as a child of the current element.

Append Child

Allows you to select an element (from a drop-down list) that is allowed by the associated
schema and inserts it immediately before the current element, as a sibling.

Insert Before

Allows you to select an element (from a drop-down list) that is allowed by the associated
schema and inserts it immediately after the current element, as a sibling.

Insert After

Opens an editing window that allows you to edit the attributes of the currently selected
element.

Edit Attributes

Encloses the currently selected element in an XML comment, if the element is not
already commented. If it is already commented, this action will remove the comment.

Toggle Comment

Removes the selected element and copies it to the clipboard.Cut

Copies the selected element to the clipboard.Copy

Deletes the currently selected element.Delete

Move Nodes
You can easily move XML nodes in the current document by using the following shortcut keys:

Moves the current node or selected nodes in front of the previous node.Alt + UpArrow

Moves the current node or selected nodes after the subsequent node.Alt + DownArrow

Rename Elements
You can rename elements by using the following actions in the Refactoring submenu of the contextual menu:

The element from the cursor position, and any elements with the same name, can be renamed
according with the options from the Rename dialog box.

Rename Element

The prefix of the element from the cursor position, and any elements with the same prefix,
can be renamed according with the options from the Rename dialog box.

Rename Prefix (Alt
+ Shift + P (Command
+ Shift + P on OS X)) • If you select the Rename current element prefix option, the application will recursively

traverse the current element and all its children. For example, to change the
xmlns:p1="ns1" association in the current element to xmlns:p5="ns1", if the
xmlns:p1="ns1" association is applied on the parent element, then Oxygen XML
Editor plugin will introduce xmlns:p5="ns1" as a new declaration in the current
element and will change the prefix from p1 to p5. If p5 is already associated with another
namespace in the current element, then the conflict will be displayed in a dialog box. By
pressing OK, the prefix is modified from p1 to p5 without inserting a new declaration.

• If you select the Rename current prefix in all document option, the application will
apply the change on the entire document.

• To also apply the action inside attribute values, check the Rename also attribute values
that start with the same prefix checkbox.

Surround Content with Tags (Wrap)
You can surround a selection of content with tags (wrap the content) by using the following action in the Refactoring
submenu of the contextual menu:

Allows you to choose a tag that encloses a selected portion of content. If
there is no selection, the start and end tags are inserted at the cursor position.

Surround with Tags (Alt + Shift +
E)

• If the Position cursor between tags option is enabled in the Content
Completion preferences page, the cursor is placed between the start and
end tag.

Oxygen XML Editor plugin | Editing Documents | 226

• If the Position cursor between tags option is disabled in the Content
Completion preferences page, the cursor is placed at the end of the start
tag, in an insert-attribute position.

Surround the selected content with the last tag used.Surround with '[tag]' (Alt + Shift +
ForwardSlash)

Surround the selected content with a CDATA tag so that the parser will
interpret it as textual data rather than markup.

Surround with <![CDATA]]> (Alt +
Shift + C (Command + Alt + C on OS
X))

Unwrap the Content of Elements
You can unwrap the content of an element by using the following action in the Refactoring submenu of the contextual
menu:

Deletes the start and end tag of the current element.Delete element tags (Alt + Shift + Comma)

Join or Split Elements
You can join or split elements in the current document by using the following actions in the Refactoring submenu of
the contextual menu:

Joins the left and right elements relative to the current cursor position. The
elements must have the same name, attributes, and attributes values.

Join elements (Alt + Shift + F
(Command + Alt + F on OS X))

Split the element from the cursor position into two identical elements. The
cursor must be inside the element.

Split element

Other Refactoring Actions
You can also manage the structure of the markup by using the other specific XML refactoring actions that are available
in the Refactoring submenu of the contextual menu:

Contains predefined XML refactoring operations that pertain to attributes. Oxygen XML Editor plugin
considers the editing context to get the names and namespaces of the element or attribute for which

Attributes
submenu

the contextual menu was invoked, and uses this information to preconfigure some of the parameter
values for the selected refactoring operation.

Allows you to change the value of an attribute or insert a new
one.

Add/Change attribute

Allows you to remove one or more attributes.Delete attribute

Allows you to rename an attribute.Rename attribute

Allows you to search for a text fragment inside an attribute
value and change the fragment to a new value.

Replace in attribute value

Contains predefined XML refactoring operations that pertain to elements. Oxygen XML Editor plugin
considers the editing context to get the names and namespaces of the element or attribute for which

Elements
submenu

the contextual menu was invoked, and uses this information to preconfigure some of the parameter
values for the selected refactoring operation.

Allows you to delete elements.Delete element

Allows you to delete the content of elements.Delete element content

Allows you to insert new elements.Insert element

Allows you to rename elements.Rename element

Allows you to remove the surrounding tags of elements, while
keeping the content unchanged.

Unwrap element

Oxygen XML Editor plugin | Editing Documents | 227

Allows you to surround elements with element tags.Wrap element

Allows you to surround the content of elements with element
tags.

Wrap element content

Contains predefined XML refactoring operations that pertain to XML fragments. Oxygen XML Editor
plugin considers the editing context to get the names and namespaces of the element or attribute for

Fragments
submenu

which the contextual menu was invoked, and uses this information to preconfigure some of the
parameter values for the selected refactoring operation.

Allows you to insert an XML fragment.Insert XML fragment

Allows you to replace the content of elements with an
XML fragment.

Replace element content with XML
fragment

Allows you to replace elements with an XML
fragment.

Replace element with XML fragment

Related information
Refactoring XML Documents on page 388

Contextual Menu Actions in Text Mode on page 245

Folding XML Elements in Text Mode

When working with a large document, the folding support in Oxygen XML Editor plugin can be used to collapse some
element content leaving only those that you need to edit in focus. Expanding and collapsing works on individual elements.
Expanding an element leaves the child elements unchanged.

Figure 102: Folding of XML Elements in Text Mode

Folding Actions in Text Mode
Element folds are marked with a small icon (/) in the left stripe. To toggle the fold, simply click the icon. Also, if
you right-click the icon, the following actions are available in the Folding sub-menu:

Toggles the state of the current fold.Toggle Fold

Folds all the elements except the current element.Collapse Other Folds (Ctrl + NumPad/ (Command +
NumPad/ on OS X))

Folds the child elements that are indented one level
inside the current element.

Collapse Child Folds (Ctrl + NumPad- (Command +
NumPad- on OS X))

Oxygen XML Editor plugin | Editing Documents | 228

Unfolds all child elements of the currently selected
element.

Expand Child Folds (Ctrl + NumPad+ (Command +
NumPad+ on OS X))

Unfolds all elements in the current document.Expand All (Ctrl + NumPad* (Command + NumPad*
on OS X))

To watch our video demonstration about the folding support in Oxygen XML Editor plugin, go to
http://oxygenxml.com/demo/FoldingSupport.html.

Drag and Drop in Text Mode

To move a whole region of text to other location in the same edited document, just select the text, drag the selection by
holding down the left mouse button and drop it to the target location.

You can also copy content from other applications and paste it into the document.

Selecting Content in Text Mode

Oxygen XML Editor plugin includes a variety of keyboard shortcuts that allow you to select content in Text mode.
These include numerous standard continuous selection possibilities that are common to many text editors.

Standard Continuous Selection Shortcuts

Selects all content in the document.Ctrl + A (Meta + A on Mac OS X)

Begins a continuous selection at the cursor position and extends it one character
at a time in the direction that you press the arrow keys.

Shift + Left/Right Arrow Keys

Begins a continuous selection at the cursor position and extends it one line at
a time in the direction that you press the arrow keys.

Shift + Up/Down Arrow Keys

Begins a continuous selection at the cursor position and extends it one word at
a time in the direction that you press the arrow keys.

Ctrl + Shift + Left/Right Arrow
Keys (Meta + Shift + Left/Right
Arrow Keys on Mac OS X)

Begins a continuous selection at the cursor position and extends it to the
beginning of the current line (on Mac OS X, it extends to the beginning of the
document).

Shift + Home

Begins a continuous selection at the cursor position and extends it to the end
of the current line (on Mac OS X, it extends to the end of the document).

Shift + End

Begins a continuous selection at the cursor position and extends it to the
beginning of the document.

Ctrl + Shift + Home

Begins a continuous selection at the cursor position and extends it to the end
of the document.

Ctrl + Shift + End

Begins a continuous selection at the cursor position and extends it up one screen
page.

Shift + PageUp

Begins a continuous selection at the cursor position and extends it down one
screen page.

Shift + PageDown

Selects certain text, depending on the position of the click in the document. See
Smart Editing Double-Click for the specifics.

Double-Click

Selects entire regions of text, depending on the position of the click in the
document. See the Smart Editing Triple-Click for the specifics.

Triple-Click

Oxygen XML Editor plugin | Editing Documents | 229

http://oxygenxml.com/demo/FoldingSupport.html

Content Completion Assistant in Text Mode

Oxygen XML Editor plugin includes an intelligent Content Completion Assistant that offers rapid, in-line identification
and insertion of structured language elements, attributes, and attribute values. Oxygen XML Editor plugin shows the
available entries that are valid in the current editing context.

Figure 103: Content Completion Assistant

The Content Completion Assistant feature is schema-driven (XML Schema, DTD, and RELAX NG) and status
information about the detected schema is logged in the Status view.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box , go to Editor >
Content Completion, and disable the Enable content completion option.

Using the Content Completion Assistant in Text Mode

The feature is activated in Text mode in the following situations:

• After you press the < character when inserting an element, it is automatically activated after a short delay. You can
adjust the activation delay with the Activation delay of the proposals window (ms) option from the Content
Completion preferences page.

• After typing a partial element or attribute name, you can activate it by pressing Ctrl + Space (Command + Space
on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X). If there is only one valid proposal
at the current location, it is inserted without displaying the list of proposals.

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current cursor
position. Elements can be selected in the list by using the Up and Down keys on your keyboard. For each selected item
in the list, the Content Completion Assistant displays a documentation window. You can customize the size of the
documentation window by dragging its top, right, and bottom borders.

To insert the selected content in Text mode, do one of the following:

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a position
suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor
between the tags in a position where you can start typing content.

Note: When the DTD, XML Schema or RELAX NG schema specifies required child elements for the newly
added element, they are inserted automatically only if the Add Element Content option (in the Content
Completion preferences page) is enabled. The Content Completion Assistant can also add optional content
and first choice particle, as specified in the DTD, XML Schema, or RELAX NG schema. To activate these
features, select the Add optional content and Add first Choice particle options in the Content Completion
preferences page.

After inserting an element, the cursor is positioned:

Oxygen XML Editor plugin | Editing Documents | 230

• Before the > character of the start tag, if the element allows attributes, to enable rapid insertion of any of the attributes
supported by the element. Pressing the space bar displays the Content Completion list once again. This time it contains
the list of allowed attribute names. If the attribute supports a fixed set of parameters, the assistant list displays the
list of valid parameters. If the parameter setting is user-defined and therefore variable, the assistant is closed to enable
manual insertion. The values of the attributes can be learned from the same elements in the current document

• After the > character of the start tag if the element has no attributes.

Where the Content Completion Assistant is Displayed

The Content Completion Assistant is displayed:

• Anywhere within a tag name or at the beginning of a tag name in an XML document, XML Schema, DTD,or Relax
NG (full or compact syntax) schema.

• Anywhere within an attribute name or at the beginning of an attribute name in any XML document with an associated
schema.

• Within attribute values or at the beginning of attribute values in XML documents where lists of possible values have
been defined for that element in the schema associated with the document.

Types of Proposals Listed in the Content Completion Assistant
The following things are considered for determining the proposals that are listed in the content completion window:

• The items that populate the Content Completion Assistant depend on the element structure specified in the DTD,
XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema associated with the edited document.

Note: The Content Completion Assistant is able to offer elements defined both by XML Schemas version
1.0 and 1.1.

• The number and type of elements displayed by the Content Completion Assistant is dependent on the cursor's
current position in the structured document. The child elements displayed within a given element are defined by the
structure of the specified DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema.

• A schema may declare certain attributes as ID or IDREF/IDREFS. When the document is validated, Oxygen XML
Editor plugin checks the uniqueness and correctness of the ID attributes. It also collects the attribute values declared
in the document to prepare the list of proposals. This is available for documents that use DTD, XML Schema, and
Relax NG schema.

• Values of all the xml:id attributes are handled as ID attributes. They are collected and displayed by the Content
Completion Assistant as possible values for anyURI attributes defined in the schema of the edited document. This
works only for XML Schema and Relax NG schemas.

• For documents that use an XML Schema or Relax NG schema, the content assistant offers proposals for attributes
and elements values that have an enumeration of tokens as the type. Also, if a default value or fixed value is defined
in the XML Schema used in validation for an attribute or element, then that value is offered in the Content Completion
Assistant window.

Related information
Customizing the Content Completion Assistant on page 968

Set Schema to be Used for Content Completion in Text Mode

The list of proposals in the Content Completion Assistant depend on the associated schemas. The DTD, XML Schema,
Relax NG, or NVDL schema used to populate the Content Completion Assistant is specified in the following methods,
in the order of their precedence:

• The schema specified explicitly in the document. In this case, Oxygen XML Editor plugin reads the beginning of
the document and resolves the location of the DTD, XML Schema, Relax NG schema, or NVDL schema.

• The default schema declared in the Document Type configuration dialog box that matches the edited document.
• For XSLT stylesheets, the schema specified in the Oxygen XML Editor plugin Content Completion options. Oxygen

XML Editor plugin will read the content completion settings when the prolog fails to provide or resolve the location
of a DTD, XML Schema, Relax NG, or NVDL schema.

Oxygen XML Editor plugin | Editing Documents | 231

• For XML Schemas, the schema specified in the Oxygen XML Editor plugin Content Completion options. Oxygen
XML Editor plugin will read the content completion settings and the specified schema will enhance the content
completion inside the xs:annotation/xs:appinfo elements of the XML Schema.

Schema Annotations in Text Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a schema.
If such a schema is associated with an XML document, the annotations are displayed in:

• The Content Completion Assistant.
• A small tooltip window shown when the mouse hovers over an element or attribute.

The schema annotations support is available if the schema type is one of the following:

• XML Schema
• Relax NG
• NVDL schema
• DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content Completion
Assistant option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves the
visual appearance and readability of the documentation window displayed when editing XML documents validated
against such a schema. An annotation is recognized and displayed as HTML if it contains at least one HTML element
(such as div, body, p, br, table, ul, or ol).

The HTML rendering is controlled by the Show annotations using HTML format, if possible option in the Annotations
preferences page. When this options is disabled, the annotations are converted and displayed as plain text and if the
annotation contains one or more HTML tags (p, br, ul, li), they are rendered as an HTML document loaded in a web
browser. For example, p begins a new paragraph, br breaks the current line, ul encloses a list of items, and li encloses
an item of the list.

Collecting Annotations from XML Schemas
In an XML Schema, the annotations are specified in an <xs:annotation> element like this:
<xs:annotation>
 <xs:documentation>
 Description of the element.
 </xs:documentation>
</xs:annotation>

If an element or attribute does not have a specific annotation, then Oxygen XML Editor plugin looks for an annotation
in the type definition of that element or attribute.

Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the <documentation> element from the
http://relaxng.org/ns/compatibility/annotations/1.0 namespace. However, any element outside
the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as annotation and the text
content is displayed in the annotation window. To activate this behavior, enable the Use all Relax NG annotations as
documentation option in the Annotations preferences page.

Collecting Annotation from DTDs

For DTD, Oxygen XML Editor plugin defines a custom mechanism for annotations using comments enabled from the
Prefer DTD comments that start with "doc:" as annotations option in the Annotations preferences page. The following
is an example of a DTD annotation:

<!--doc:Description of the element. -->

Oxygen XML Editor plugin | Editing Documents | 232

Content Completion Helper Views

Information about the current element being edited is also available in various views, such as the Model view, Attributes
view, Elements view, and Entities view. By default, they are located on the right-hand side of the main editor window.
These views, along with the powerful Outline view, provide spatial and insight information about the edited document
and the current element.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the
schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it
can be opened from the Window > Show View menu.

Figure 104: Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The
information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with
imposed restrictions, if any.

Oxygen XML Editor plugin | Editing Documents | 233

Figure 105: Element Structure Panel

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected
from the XML schema.

Figure 106: Annotation panel

Attributes View in Text Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By
default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

You can use the Attributes view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

• The names of the attributes with a specified value are rendered with a bold font, and their values with a plain font.

Note: The names of the attributes with an empty string value are also rendered bold.

• Default values are rendered with a plain font, painted gray.
• Empty values display the text "[empty]", painted gray.
• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column . If the possible values of the
attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows
you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as follows:

• By attribute name in ascending order.
• By attribute name in descending order.

Oxygen XML Editor plugin | Editing Documents | 234

• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed
by the rest of the allowed elements sorted in ascending order.

Figure 107: Attributes View

Contextual Menu Actions in the Attributes View
The following actions are available in the contextual menu of the Attributes view when editing in Text mode:

Allows you to insert a new attribute. Adding an attribute that is not in the list of all defined attributes
is not possible when the Allow only insertion of valid elements and attributes schema aware option
is enabled.

Add

Specifies the current attribute value as empty.Set empty value

Removes the attribute (action available only if the attribute is specified). You can invoke this action
by pressing the (Delete) or (Backspace) keys.

Remove

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:Copy

• The value of the attribute.
• The value of the default attribute, if the attribute does not appear in the edited document.
• Empty, if the attribute does not appear in the edited document and has no default value set.

Depending on the content of the clipboard, the following cases are possible:Paste

• If the clipboard contains an attribute and its value, both of them are introduced in the Attributes
view. The attribute is selected and its value is changed if they exist in the Attributes view.

• If the clipboard contains an attribute name with an empty value, the attribute is introduced in the
Attributes view and you can start editing it. The attribute is selected and you can start editing
it if it exists in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

Elements View in Text Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the
schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed,
it can be opened from the Window > Show View menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor position.

Oxygen XML Editor plugin | Editing Documents | 235

Figure 108: Elements View in Text Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain
characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE
declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Built-in or Predefined - Entities that are part of the predefined XML markup (<, >, &, ',
").

• Internal - Defined in the DOCTYPE declaration header of the current XML.
• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

Note: If you want to add internal entities, you would need to switch to the Text editing mode and manually
modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file
and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default,
it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View
menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort
entities by name and value by clicking the column headers.

Oxygen XML Editor plugin | Editing Documents | 236

Figure 109: Entities View

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose
to display the internal or external entities.

Note: When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating
them with a comma.

Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position . Oxygen XML Editor
plugin includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, and XML Schema document
types. You can also define you own code templates and share them with others.

To get a complete list of available code templates, press Ctrl + Shift + Space in Text mode. To enter the code template,
select it from the list or type its code and press Enter. If a shortcut key has been assigned to the code template, you can
also use the shortcut key to enter it. Code templates are displayed with a symbol in the content completion list.

When the Content Completion Assistant is invoked (Ctrl + Space (Command + Space on OS X) in Text mode or
Enter in Author mode), it also presents a list of code templates specific to the type of the active editor.

To watch our video demonstration about code templates, go to http://oxygenxml.com/demo/Code_Templates.html.

Outline View in Text Mode

The Outline view in Text mode displays a general tag overview of the currently edited XML Document. When you
edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you modify.
This functionality gives you great insight on the location of your modifications in the current document. It also shows
the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure
and the way element tags are nested.

Outline View Features
The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.
• Insert or delete nodes using contextual menu actions.
• Move elements by dragging them to a new position in the tree structure.
• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the

editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.

Oxygen XML Editor plugin | Editing Documents | 237

http://oxygenxml.com/demo/Code_Templates.html

• View document errors, as they are highlighted in the Outline view. A tooltip also provides more information about
the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

It also includes a View menu in the top-right corner that presents a variety of options to help you filter the view even
further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view with
drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be
moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will
be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or
lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the
target element.

• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead
of a move.

The drag and drop actions in the Outline view can be disabled and enabled from a Preferences page.

Figure 110: Outline View in Text Mode

Related information
Outline View in Author Mode on page 177

Oxygen XML Editor plugin | Editing Documents | 238

Outline View Filters in Text Mode

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

The following actions are available in the View menu of the Outline view when editing in Text mode:

The text filter of the Outline view returns only exact matches.Filter returns exact matches

Controls the synchronization between Outline view and source document.
The selection in the Outline view can be synchronized with the cursor

Selection update on cursor move

moves or the changes in the editor. Selecting one of the components from
the Outline view also selects the corresponding item in the source
document.

When active, the application flattens the filtered result elements to a single
level.

Flat presentation mode of the filtered
results

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

Outline View Contextual Menu Actions in Text Mode

The following actions are available from the contextual menu in the Outline view in Text mode:

Allows you to select an element (from a drop-down list) that is allowed by the
associated schema and inserts it as a child of the current element.

Append Child

Allows you to select an element (from a drop-down list) that is allowed by the
associated schema and inserts it immediately before the current element, as a sibling.

Insert Before

Allows you to select an element (from a drop-down list) that is allowed by the
associated schema and inserts it immediately after the current element, as a sibling.

Insert After

Opens a dialog box that allows you to edit the attributes of the currently selected
component.

Edit Attributes

Encloses the currently selected element in an XML comment, if the element is not
already commented. If it is already commented, this action will remove the comment.

Toggle Comment

Cuts the currently selected component.Cut

Copies the currently selected component.Copy

Deletes the currently selected component.Delete

Expands the structure of a component in the Outline view.Expand All

Collapses the structure of all the component in the Outline view.Collapse All

Oxygen XML Editor plugin | Editing Documents | 239

Quick Assist Support for IDs and IDREFS

The Quick Assist support is activated automatically when you place the cursor inside and ID or an IDREF. To access
it, click the yellow bulb help marker placed on the current line, in the line number stripe of the editor. You can also
invoke the quick assist menu from the contextual menu or by pressing Ctrl 1 (Meta 1 on Mac OS X) on your keyboard.

The following actions are available:

Renames the ID and all its occurrences. Selecting this action opens the Rename XML
ID dialog box. This dialog box lets you insert the new ID value and choose the scope of

Rename in

the rename operation. For a preview of the changes you are about to make, click Preview.
This opens the Preview dialog box, which presents a list with the files that contain
changes and a preview zone of these changes.

Searches for the declaration of the ID reference. By default, the scope of this action is
the current project. If you configure a scope using the Select the scope for the Search
and Refactor operations dialog box, this scope will be used instead.

Search Declarations

Searches for the references of the ID. By default, the scope of this action is the current
project. If you configure a scope using the Select the scope for the Search and Refactor
operations dialog box, this scope will be used instead.

Search References

Opens the Select the scope for the Search and Refactor operations dialog box.Change scope

Renames the ID you are editing and all its occurrences from the current file.Rename in File

Searches for the declaration an references of the ID located at the cursor position in the
current document.

Search Occurrences

Formatting and Indenting XML Documents

Oxygen XML Editor plugin creates XML documents using several edit modes. In text mode, you as the author decide
how the XML file is formatted and indented. In the other modes, and when you switch between modes, Oxygen XML
Editor plugin must decide how to format and indent the XML. Oxygen XML Editor plugin will also format and indent
your XML for you in Text mode if you use one of the Format and Indent options:

• Document > Source > Format and Indent - Formats and indents the whole document.

• Document > Source > Indent Selection - Indents the current selection (but does not add line breaks). This action
is also available in the Source submenu of the contextual menu.

• Document > Source > Format and Indent Element - Formats and indents the current element (the inmost nested
element that currently contains the cursor) and its child-elements. This action is also available in the Source submenu
of the contextual menu.

A number of settings affect how Oxygen XML Editor plugin formats and indents XML. Many of these settings have to
do with how whitespace is handled.

Significant and insignificant whitespace in XML

XML documents are text files that describe complex documents. Some of the white space (spaces, tabs, line feeds, etc.)
in the XML document belongs to the document it describes (such as the space between words in a paragraph) and some
of it belongs to the XML document (such as a line break between two XML elements). Whitespace belonging to the
XML file is called insignificant whitespace. The meaning of the XML would be the same if the insignificant whitespace
were removed. Whitespace belonging to the document being described is called significant whitespace.

Knowing when whitespace is significant or insignificant is not always easy. For instance, a paragraph in an XML
document might be laid out like this:

<p>
NO Free man shall be taken or imprisoned, or be stripped of his Freedom, or Liberties, or
free Customs, or be outlawed, or exiled, or any otherwise destroyed; nor will we not pass

Oxygen XML Editor plugin | Editing Documents | 240

upon him, nor condemn him, but by lawful judgment of his Peers, or by the <xref
href="http://en.wikipedia.org/wiki/Law_of_the_land" format="html" scope="external">Law of the land</xref>.
We will sell to no man, we will not deny or defer to any man either Justice or Right.
</p>

By default, XML considers a single whitespace between words to be significant, and all other whitespace to be
insignificant. Thus, the paragraph above could be written all on one line with no spaces between the start tag and the
first word or between the last word and the end tag and the XML parser would see it as exactly the same paragraph.
Removing the insignificant space in markup like this is called normalizing space.

In some cases, all the spaces inside an element should be treated as significant. For example, in a code sample:

<codeblock>
class HelloWorld
{

public static void main(String args[])
 {
 System.out.println("Hello World");
 }
}
</codeblock>

Here every whitespace character between the codeblock tags should be treated as significant.

How Oxygen XML Editor plugin determines when whitespace is significant

When Oxygen XML Editor plugin formats and indents an XML document, it introduces or removes insignificant
whitespace to produce a layout with reasonable line lengths and elements indented to show their place in the hierarchy
of the document. To correctly format and indent the XML source, Oxygen XML Editor plugin needs to know when to
treat whitespace as significant and when to treat it as insignificant. However it is not always possible to tell this from
the XML source file alone. To determine what whitespace is significant, Oxygen XML Editor plugin assigns each
element in the document to one of four categories:

In the ignore space category, all whitespace is considered insignificant. This generally applies to
content that consists only of elements nested inside other elements, with no text content.

Ignore space

In the normalize space category, a single whitespace character between character strings is considered
significant and all other spaces are considered insignificant. This generally applies to elements that

Normalize space

contain text content only. This content can be normalized by removing insignificant whitespace.
Insignificant whitespace may then be added to format and indent the content.

In the mixed content category, a single whitespace between text characters is considered significant
and all other spaces are considered insignificant. However,

Mixed content

• Whitespace between two child elements embedded in the text is normalized to a single space
(rather than to zero spaces as would normally be the case for a text node with only whitespace
characters, or the space between elements generally).

• The lack of whitespace between a child element embedded in the text and either adjacent text
or another child element is considered significant. That is, no whitespace can be introduced here
when formatting and indenting the file.

For example:

<p>The file is located in <i>HOME</i>/<i>USER</i>/hello. This is s big

<emphasis>deal</emphasis>.
</p>

In this example, whitespace should not be introduced around the i tags as it would introduce extra
significant whitespace into the document. The space between the end tag and the
beginning <emphasis> tag should be normalized to a single space, not zero spaces.

Oxygen XML Editor plugin | Editing Documents | 241

In the preserve space category, all whitespace in the element is regarded as significant. No changes
are made to the spaces in elements in this category. However, child elements may be in another
category, and may be treated differently.

Preserve space

Attribute values are always in the preserve space category. The spaces between attributes in an element tag are always
in the default space category.

Oxygen XML Editor plugin consults several pieces of information to assign an element to one of these categories. An
element is always assigned to the most restrictive category (from Ignore to Preserve) that it is assigned to by any of the
sources Oxygen XML Editor plugin consults. For instance, if the element is named on the Default elements list (as
described below) but it has an xml:space="preserve" attribute in the source file, it will be assigned to the preserve
space category. If an element has the xml:space="default" attribute in the source, but is listed on the Mixed
content elements list, it will be assigned to the mixed content category.

To assign elements to these categories, Oxygen XML Editor plugin consults information from the following sources:

If the XML element contains the xml:space attribute, the element is promoted to the
appropriate category based on the value of the attribute.

xml:space

If the CSS stylesheet controlling the Author mode editor applies the whitespace: pre
setting to an element, it is promoted to the preserve space category.

CSS whitespace
property

If a text node contains only white-spaces:CSS display property

• If the node has a parent element with the CSS display property set to inline then
the node is promoted to the mixed content category.

• If the left or right sibling is an element with the CSS display property set to inline
then the node is promoted to the mixed content category.

• If one of its ancestors is an element with the CSS display property set to table then
the node is assigned to the ignore space category.

If a schema is available for the XML document, Oxygen XML Editor plugin can use
information from the schema to promote the element to the appropriate category. For example:

Schema aware
formatting

• If the schema declares an element to be of type xs:string, the element will be
promoted to the preserve space category because the string built-in type has the whitespace
facet with the value preserve.

• If the schema declares an element to be mixed content, it will be promoted to the mixed
content category.

Schema aware formatting can be turned on and off.

• To turn it on or off for Author mode, open the Preferences dialog box , go to Editor >
Edit modes > Author > Schema aware, and enable/disable the Schema aware
normalization, format and indent option.

• To turn it on or off for the Text editing mode ,open the Preferences dialog box , go to
Editor > Format > XML, and enable/disable the Schema aware format and indent
option.

If an element is listed in the Preserve space tab of the Element Spacing list in the XML
formatting preferences, it is promoted to the preserve space category.

Preserve space elements
list

If an element is listed in the Default space tab of the Element Spacing list in the XML
formatting preferences, it is promoted to the default space category

Default space elements
list

If an element is listed in the Mixed content tab of the Element Spacing list in the XML
formatting preferences, it is promoted to the mixed content category.

Mixed content elements
list

Oxygen XML Editor plugin | Editing Documents | 242

If an element contains mixed content, that is, a mix of text and other elements, it is promoted
to the mixed content category. (Note that, in accordance with these rules, this happens even
if the schema declares the element to have element only content.)

Element content

If an element contains text content, it is promoted to the default space category.

If a text node contains any non-whitespace characters then the text node is promoted to the
normalize space category.

Text node content

Exception to the Rule

In general, a element can only be promoted to a more restrictive category (one that treats more whitespace as significant).
However, there is one exception. In Author mode, if an element is marked as mixed content in the schema, but the
actual element contains no text content, it can be demoted to the space ignore category if all of its child elements are
displayed as blocks by the associated CSS (that is, they have a CSS property of display: block). For example, in
some schemas, a section or a table entry can be defined as having mixed content but in many cases they contain only
block elements. In these cases, any whitespace they contain cannot be significant and they can be treated as space ignore
elements. This exception can be turned on or off using the Schema Aware Editing option in the Schema-Aware
preferences page.

How Oxygen XML Editor plugin formats and indents XML

You can control how Oxygen XML Editor plugin formats and indents XML documents. This can be particularly important
if you store your XML document in a version control system, as it allows you to limit the number of trivial changes in
spacing between versions of an XML document. The following preference pages include options that control how XML
documents are formatted:

• Format Preferences on page 87
• XML Formatting Preferences on page 89
• Whitespaces Preferences on page 91

When Oxygen XML Editor plugin formats and indents XML

Oxygen XML Editor plugin formats and indents a document, or part of it, on the following occasions:

• In Text mode when you select one of the format and indent actions (Document > Source > Format and Indent,
Document > Source > Indent Selection, or Document > Source > Format and Indent Element).

• When saving documents in Author mode.
• When switching from Author mode to another mode.
• When saving documents in Design mode.
• When switching from Design mode to another mode.
• When saving or switching to Text mode from Grid mode, if the Format and indent when passing from grid to text

or on save option is selected in the Grid preferences page.

Setting an Indent Size to Zero

Oxygen XML Editor plugin will automatically format and indent documents at certain times. This includes indenting
the content from the margin to reflect its structure. In some cases, you may not want your content indented. To avoid
your content being indented, you can set an indent size of zero.

Note: Changing the indent size does not override the rules that Oxygen XML Editor plugin uses for handling
whitespace when formatting and indenting XML documents. Therefore, changing the indent size will have no
effect on elements that require whitespaces to be maintained.

There are two cases to consider.

If you have existing documents with zero indent and you want Oxygen XML Editor plugin
to maintain a zero indent when editing or formatting those documents:

Maintaining zero indent
in documents with zero
indent

1. Open the Preferences dialog box and go to Editor > Format.

Oxygen XML Editor plugin | Editing Documents | 243

2. Select Detect indent on open.
3. Select Use zero-indent if detected.

Oxygen XML Editor plugin will examine the indent of each document as it is opened and
if the indent is zero for all lines, or for nearly all lines, a zero indent will be used when
formatting and indenting the document. Otherwise, Oxygen XML Editor plugin will use
the indent closest to what it detects in the document.

If you want all documents to be formatted with zero indent, regardless of their current
indenting:

Enforcing zero indent for
all documents

1. Open the Preferences dialog box and go to Editor > Format.
2. Deselect Detect indent on open.
3. Set Indent size to 0.

All documents will be formatted and indented with an indent of zero.

Warning: Setting the indent size to zero can change the meaning of some file
types, such as Python source files.

Format and Indent (Pretty Print) Multiple Files

Oxygen XML Editor plugin provides support for formatting and indenting (pretty printing) multiple files at once. This
action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the contextual menu
of the Navigator view. This opens the Format and Indent Files dialog box that allows you to configure options for
the action.

Figure 111: Format and Indent Files Dialog Box

The Scope section allows you choose from the following scopes:

• All opened files - The pretty print is performed in all opened files.
• Directory of the current file - All the files in the folder of the current edited file.
• Project files - All files from the current project.
• Selected project files - The selected files from the current project.
• Specified path - Pretty prints the files located at a specified path.

The Options section includes the following options:

Oxygen XML Editor plugin | Editing Documents | 244

• File filter - Allow you to filter the files from the selected scope.
• Recurse subdirectories - When enabled, the pretty print is performed recursively for the specified scope. The one

exception is that this option is ignored if the scope is set to All opened files.
• Include hidden files - When enabled, the pretty print is also performed in the hidden files.
• Make backup files with extension - When enabled, Oxygen XML Editor plugin makes backup files of the modified

files. The default extension is .bak, but you can change the extension as you prefer.

Managing Highlighted Content

While working with XML documents you often have frequent changes to the structure and content. You are often faced
with a situation where you need to make a slight change in multiple places in the same document. Oxygen XML Editor
plugin includes a feature, Manage Highlighted Content, that is designed to help you achieve this.

When you are in Text mode and you perform a search operation or apply an XPath that highlights multiple results, you
can select the Manage Highlighted Content action from the contextual menu of any highlight in the document, and
the following options are available in its submenu:

• Modify All - Use this option to modify (in-place) all the occurrences of the selected content. When you use this
option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases
are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same
letter case or all matches.

Note: If you select a very large number of highlights that you want to modify using this feature, a dialog
box informs you that you may experience performance issues. You have the option to either use the
Find/Replace operation, or continue the operation.

• Surround All - Use this option to surround the highlighted content with a specific tag. This option opens the Tag
dialog box. The Specify the tag drop-down menu presents all the available elements that you can choose from.

• Remove All - Removes all the highlighted content.

If you right-click content in another part of the document, other than a highlight, you have the option to select the
following option:

• Modify All Matches - Use this option to modify (in-place) all the occurrences of the selected content (or the
contiguous fragment in which the cursor is located). When you use this option, a thin rectangle replaces the highlights
and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows
you select whether you want to modify only matches with the same letter case or all matches.

Highlight ID Occurrences in Text Mode

To see the occurrences of an ID in an XML document in the Text mode, place the cursor inside the ID declaration or
reference. The occurrences are marked in the vertical side bar at the right of the editor. Click a marker on the side bar
to jump to the occurrence that it corresponds to. The occurrences are also highlighted in the editing area.

Note: Highlighted ID declarations are rendered with a different color than highlighted ID references. To
customize these colors or disable this feature, open the Preferences dialog box and go to Editor > Mark
Occurrences.

Contextual Menu Actions in Text Mode

When editing XML documents in Text mode, Oxygen XML Editor plugin provides the following actions in the contextual
menu (many of them also appear in the submenus of the Document menu):

Executes the typical editing actions on the currently selected content.Cut,

Copy,

Paste

Copies the XPath expression of the current element or attribute from the current editor to the clipboard.Copy XPath

Oxygen XML Editor plugin | Editing Documents | 245

Comments the current selection of the current editor. If the selection already contains a comment the
action removes the comment from around the selection. If there is no selection in the current editor

Toggle
Comment (Ctrl

and the cursor is not positioned inside a comment the current line is commented. If the cursor is
positioned inside a comment then the commented text is uncommented.

+ Shift +
Comma
(Command +
Shift + Comma
on OS X))

This submenu includes the following actions:Go to submenu

Moves the cursor to the end tag that matches
the start tag, or vice versa.

Go to Matching Tag (Ctrl + Shift + G)

Moves the cursor to the end of the next tag.Go after Next Tag (Ctrl + CloseBracket
(Command + CloseBracket on OS X))

Moves the cursor to the end of the previous
tag.

Go after Previous Tag (Ctrl + OpenBracket
(Command + OpenBracket on OS X))

This submenu allows you to select the following:Select submenu

Selects the entire element at the current cursor position.Element

Selects the entire content of the element at the current cursor position,
excluding the start and end tag. Performing this action repeatedly will result

Content

in the selection of the content of the ancestor of the currently selected element
content.

Selects all the attributes of the element at the current cursor position.Attributes

Selects the parent of the element at the current cursor position.Parent

This submenu includes the following actions:Source
submenu Shifts the currently selected block to the right.Shift Right

Shifts the currently selected block to the left.Shift Left

Corrects the indentation of the selected block of lines if it does not follow
the current indenting preferences.

Indent selection (Ctrl
+ I (Command + I on OS
X))

Escapes a range of characters by replacing them with the corresponding
character entities.

Escape Selection

Replaces the character entities with the corresponding characters.Unescape Selection

Pretty prints the element that surrounds the current cursor position.Format and Indent
Element (Ctrl + Shift +
I (Command + Shift + I
on OS X))

Converts a sequence of hexadecimal characters to the corresponding
Unicode character. The action can be invoked if there is a selection

Convert Hexadecimal
Sequence to Character

containing a valid hexadecimal sequence or if the cursor is placed at the(Ctrl + Shift + H
right side of a valid hexadecimal sequence. A valid hexadecimal(Command + Shift + H

on OS X)) sequence can be composed of 2 to 4 hexadecimal characters and may
or may not be preceded by the 0x or 0X prefix. Examples of valid
sequences: 0x0045, 0X0125, 1253, 265, 43.

Oxygen XML Editor plugin | Editing Documents | 246

This submenu include the following actions for encoding or decoding
base64 schemes:

Base64 Encode/Decode
submenu

Encodes a file and then inserts the encoded
content into the current document at the
cursor position.

Import File to Encode
and Insert

Decodes a selection of text from the current
document and then exports (saves) the result
to another file.

Decode Selection and
Export to File

Replaces a selection of text with the result
of encoding that selection.

Encode Selection

Replaces a selection of text with the result
of decoding that selection.

Decode Selection

This submenu include the following actions for encoding or decoding
base32 schemes:

Base32 Encode/Decode
submenu

Encodes a file and then inserts the encoded
content into the current document at the
cursor position.

Import File to Encode
and Insert

Decodes a selection of text from the current
document and then exports (saves) the result
to another file.

Decode Selection and
Export to File

Replaces a selection of text with the result
of encoding that selection.

Encode Selection

Replaces a selection of text with the result
of decoding that selection.

Decode Selection

This submenu include the following actions for encoding or decoding
hex schemes:

Hex Encode/Decode
submenu

Encodes a file and then inserts the encoded
content into the current document at the
cursor position.

Import File to Encode
and Insert

Decodes a selection of text from the current
document and then exports (saves) the result
to another file.

Decode Selection and
Export to File

Replaces a selection of text with the result
of encoding that selection.

Encode Selection

Replaces a selection of text with the result
of decoding that selection.

Decode Selection

For the current selection, this action joins the lines by replacing the line
separator with a single space character. It also normalizes the

Join and Normalize
Lines

whitespaces by replacing a sequence of such characters with a single
space.

Oxygen XML Editor plugin | Editing Documents | 247

Displays a dialog box that allows you to browse and select the content
to be included and automatically generates the corresponding XInclude
instruction.

Insert XInclude

Note: In the Author mode, this dialog box presents a preview
of the inserted document as an author page in the preview tab
and as a text page in the Source tab. In the Text mode, the
Source tab is presented.

Displays a dialog box that allows you to select a list of files as sources
for external DTD entities. The internal subset of the DOCTYPE

Import entities list

declaration of your document will be updated with the chosen entities.
For instance, choosing the files chapter1.xml and chapter2.xml
inserts the following section in the DOCTYPE:

<!ENTITY chapter1 SYSTEM "chapter1.xml">
<!ENTITY chapter2 SYSTEM "chapter2.xml">

Opens the Canonicalize dialog box that allows you to select a
canonicalization algorithm to standardize the format of the document.

Canonicalize

Opens the Sign dialog box that allows you to configure a digital signature
for the document.

Sign

Allows you to specify the location of a file to verify its digital signature.Verify Signature

This submenu is available from the contextual menu when it is invoked from a highlight after you
perform a search operation or apply an XPath expression that highlights more than one result. The
following options are available in this submenu:

Manage
Highlighted
Content
submenu Allows you to modify (in-place) all the occurrences of the selected content. A

thin rectangle replaces the highlights and allows you to start editing. If matches
Modify All

with different letter cases are found, a dialog box is displayed that allows you
select whether you want to modify only matches with the same letter case or
all matches.

Surround the highlighted content with a specific tag. This option opens the
Tag dialog box. The Specify the tag drop-down menu presents all the available
elements that you can choose from.

Surround All

Removes all the highlighted content.Remove All

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous
fragment in which the cursor is located). When you use this option, a thin rectangle replaces the

Modify All
Matches

highlights and allows you to start editing. If matches with different letter cases are found, a dialog
box is displayed that allows you select whether you want to modify only matches with the same letter
case or all matches.

Moves the cursor to the definition of the current element or attribute in the schema (DTD, XML
Schema, Relax NG schema) associated with the edited XML document. If the current attribute is a

Show
Definition (Ctrl
+ Shift + Enter) “type” belonging to the “http://www.w3.org/2001/XMLSchema-instance” namespace, the cursor is

moved in the XML schema to the definition of the type referenced in the value of the attribute.

This submenu includes the following actions:Refactoring
submenu The element from the cursor position, and any elements with the same

name, can be renamed according with the options from the Rename dialog
box.

Rename Element

Oxygen XML Editor plugin | Editing Documents | 248

http://www.w3.org/2001/XMLSchema-instance

The prefix of the element from the cursor position, and any elements with
the same prefix, can be renamed according with the options from the
Rename dialog box.

Rename Prefix (Alt
+ Shift + P (Command
+ Shift + P on OS X))

• If you select the Rename current element prefix option, the
application will recursively traverse the current element and all its
children. For example, to change the xmlns:p1="ns1" association
in the current element to xmlns:p5="ns1", if the
xmlns:p1="ns1" association is applied on the parent element, then
Oxygen XML Editor plugin will introduce xmlns:p5="ns1" as a
new declaration in the current element and will change the prefix from
p1 to p5. If p5 is already associated with another namespace in the
current element, then the conflict will be displayed in a dialog box. By
pressing OK, the prefix is modified from p1 to p5 without inserting
a new declaration.

• If you select the Rename current prefix in all document option, the
application will apply the change on the entire document.

• To also apply the action inside attribute values, check the Rename
also attribute values that start with the same prefix checkbox.

Allows you to choose a tag that encloses a selected portion of content. If
there is no selection, the start and end tags are inserted at the cursor
position.

Surround with
Tags (Alt + Shift + E)

• If the Position cursor between tags option is enabled in the Content
Completion preferences page, the cursor is placed between the start
and end tag.

• If the Position cursor between tags option is disabled in the Content
Completion preferences page, the cursor is placed at the end of the
start tag, in an insert-attribute position.

Surround the selected content with the last tag used.Surround with
'[tag]' (Alt + Shift +
ForwardSlash)

Surround the selected content with a CDATA tag so that the parser will
interpret it as textual data rather than markup.

Surround with
<![CDATA]]> (Alt +
Shift + C (Command
+ Alt + C on OS X))

Deletes the start and end tag of the current element.Delete element tags
(Alt + Shift + Comma)

Split the element from the cursor position into two identical elements. The
cursor must be inside the element.

Split element

Joins the left and right elements relative to the current cursor position. The
elements must have the same name, attributes, and attributes values.

Join elements (Alt
+ Shift + F (Command
+ Alt + F on OS X))

Contains predefined XML refactoring operations that pertain to attributes.
Oxygen XML Editor plugin considers the editing context to get the names

Attributes submenu

and namespaces of the element or attribute for which the contextual menu
was invoked, and uses this information to preconfigure some of the
parameter values for the selected refactoring operation.

Allows you to change the value of an attribute
or insert a new one.

Add/Change attribute

Allows you to remove one or more attributes.Delete attribute

Oxygen XML Editor plugin | Editing Documents | 249

Allows you to rename an attribute.Rename attribute

Allows you to search for a text fragment
inside an attribute value and change the
fragment to a new value.

Replace in attribute
value

Contains predefined XML refactoring operations that pertain to elements.
Oxygen XML Editor plugin considers the editing context to get the names

Elements submenu

and namespaces of the element or attribute for which the contextual menu
was invoked, and uses this information to preconfigure some of the
parameter values for the selected refactoring operation.

Allows you to delete elements.Delete element

Allows you to delete the content of elements.Delete element content

Allows you to insert new elements.Insert element

Allows you to rename elements.Rename element

Allows you to remove the surrounding tags
of elements, while keeping the content
unchanged.

Unwrap element

Allows you to surround elements with
element tags.

Wrap element

Allows you to surround the content of
elements with element tags.

Wrap element content

Contains predefined XML refactoring operations that pertain to XML
fragments. Oxygen XML Editor plugin considers the editing context to

Fragments submenu

get the names and namespaces of the element or attribute for which the
contextual menu was invoked, and uses this information to preconfigure
some of the parameter values for the selected refactoring operation.

Allows you to insert an XML fragment.Insert XML fragment

Allows you to replace the content of
elements with an XML fragment.

Replace element content with
XML fragment

Allows you to replace elements with an
XML fragment.

Replace element with XML
fragment

This submenu is available for XML documents that have an associated DTD, XML Schema, or Relax
NG schema. It includes the following actions:

Manage IDs
submenu

Renames the ID and all its occurrences. Selecting this action opens the
Rename XML ID dialog box. This dialog box lets you insert the new

Rename in

ID value and choose the scope of the rename operation. For a preview
of the changes you are about to make, click Preview. This opens the
Preview dialog box, which presents a list with the files that contain
changes and a preview zone of these changes.

Renames the ID you are editing and all its occurrences from the current
file.

Rename in File

Searches for the references of the ID. By default, the scope of this action
is the current project. If you configure a scope using the Select the scope

Search References

for the Search and Refactor operations dialog box, this scope will be
used instead.

Searches for the references of the ID. Selecting this action opens the
Select the scope for the Search and Refactor operations.

Search References in

Oxygen XML Editor plugin | Editing Documents | 250

Searches for the declaration of the ID reference. By default, the scope of
this action is the current project. If you configure a scope using the Select

Search Declarations

the scope for the Search and Refactor operations dialog box, this scope
will be used instead.

Searches for the declaration of the ID reference. Selecting this action
opens the Select the scope for the Search and Refactor operations.

Search Declarations in

Searches for the declaration an references of the ID in the current
document.

Search Occurrences
in file

Available when the cursor is inside an ID or IDREF, this action opens the Quick Assist window that
allows you to select some search and refactoring actions for the selected ID or IDREF.

Quick Assist
(Ctrl + 1
(Command + 1
on OS X))

Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will
be opened in system file browser. If the file at the specified location does not exist, an error dialog

Open File at
Cursor

box is displayed and it includes a Create new file button that starts the New document wizard. This
allows you to choose the type or the template for the file. If the action succeeds, the file is created
with the referenced location and name and is opened in a new editor panel.

Opens the Resource Hierarchy/Dependencies view that allows you to see the resource hierarchy
for an XML document.

Resource
Hierarchy

Opens the Resource Hierarchy/Dependencies view that allows you to see the resource dependencies
for an XML document.

Resource
Dependencies

Editing XML Documents in Grid Mode

This section includes features and actions for editing XML documents in the Grid mode of Oxygen XML Editor plugin.

Editing Actions in Grid Mode

A variety of editing actions are available in Grid mode from the contextual menu, the Document menu, the toolbar,
and with shortcut keys. This section explains some of those useful editing actions.

Sorting a Table Column

You can sort certain table columns by using the Sort Ascending or Sort Descending actions that are available
on the toolbar or from the contextual menu.

The sorting result depends on the data type of the column content. It could be a numerical sorting for numbers or an
alphabetical sorting for text information. The editor automatically analyzes the content and decides what type of sorting
to apply. When a mixed set of values is present in the sorted column, a dialog box is displayed that allows you to choose
the desired type of sorting between numerical and alphabetical.

Inserting a Row in a Table

You can add a new row using the Copy/Paste actions, or by selecting Insert row from the contextual menu or the
toolbar.

For a faster way to insert a new row, move the selection over the row header, and then press Enter. The row header is
the zone in the left of the row that holds the row number. The new row is inserted below the selection.

Inserting a Column in a Table

You can insert a column after the selected column by using the Insert column action from the contextual menu or
the toolbar.

Clearing the Content of a Column

You can clear all the cells from a column by using the Clear content action from the contextual menu.

Oxygen XML Editor plugin | Editing Documents | 251

Adding Nodes

You can add nodes before, after, or as a child of the currently selected node by using the various actions in the following
submenus of the contextual menu:

• Insert before - Offers a list of valid nodes, depending on the context, and inserts your selection before the currently
selected node, as a sibling.

• Insert after - Offers a list of valid nodes, depending on the context, and inserts your selection after the currently
selected node, as a sibling.

• Append child - Offers a list of valid nodes, depending on the context, and appends your selection as a child of the
currently selected node.

Duplicating Nodes

You can quickly create new nodes by duplicating existing ones. The Duplicate action is available in the contextual
menu and in the Document > Grid Edit menu.

Refresh Layout

When using drag and drop to reorganize the document, the resulting layout can be different from the expected one. For
instance, the layout can contain a set of sibling tables that can be joined together. To force the layout to be recomputed,

you can use the Refresh selected action that is available in the contextual menu and in the Document > Grid Edit
menu.

Start and Stop Editing a Cell Value

To edit the value of a cell, simply select the grid cell and press (Enter).

To stop editing a cell value, press (Enter) again.

To cancel the editing without saving the current changes in the document, press the (Esc) key.

Drag and Drop in the Grid Editing Mode

You can easily arrange sections in your XML document in the Grid mode by using drag and drop actions.

You can do the following with drag and drop:

• Copy or move a set of nodes.
• Change the order of columns in the tables.
• Move the rows from the tables.

These operations are available for both single and multiple selections. To deselect one of the selected fragments, use
Ctrl + Single-Click (Command + Single-Click on OS X).

While dragging, the editor paints guide-lines showing the locations where you can drop the nodes. You can also drag
nodes outside the Grid editor and text from other applications into the Grid. For more information, see Copy and Paste
in the Grid Editor.

Copy and Paste in the Grid Editing Mode

The selection in the Grid mode is a bit complex compared to the selection in a text component. It consists of a currently
selected cell and additional selected cells. These additional cells are either selected with the cursor, or implied by the
currently selected cell. To be more specific, consider that you click the name of the column (this becomes the current
selected cell), but the editor automatically extends the selection so that it contains all the cells from that column. The
currently selected cell is painted with a color that is different from the rest of the selection.

You can also select discontinuous regions of nodes and place them in the clipboard with the copy action. To deselect
one of the selected fragments, use Ctrl + Single-Click (Command + Single-Click on OS X).

Pasting Content Within Grid Mode

You can paste the copied nodes relative to the currently selected cell using one of the following actions (available in
the contextual menu):

Oxygen XML Editor plugin | Editing Documents | 252

• Paste (Ctrl + V (Command + V on OS X)) - Pastes the content, as a sibling, just below (after) the current
selection.

• Paste as Child - Pastes the content as the last child of the current selection.

Pasting Content from Grid Mode to Other Edtiors

Nodes that are copied from the Grid editor can also be pasted into the Text editor or other applications. When copying
from the Grid into the Text editor or other text based applications, the inserted string represents the nodes serialization.
The nodes from tables can be copied using HTML or RTF in table format. The resulting cells contain only the concatenated
values of the text nodes.

Figure 112: Copying from Grid to Other Editors

Pasting Content from Other Editors into Grid Mode

You can also paste well-formed XML content or tab separated values from other editors into the Grid editor. If you
paste XML content, the result will be the insertion of the nodes obtained by parsing this content.

Figure 113: Pasting XML Data into Grid

Oxygen XML Editor plugin | Editing Documents | 253

If the pasted text contains multiple lines of tab-separated values, it can be considered as a matrix of values. By pasting
this matrix of values into the Grid editor, the result will be a matrix of cells. If the operation is performed inside existing
cells, the existing values will be overwritten and new cells will be created when needed. This is useful, for example,
when trying to transfer data from spreadsheet-like editors to the Grid editor.

Figure 114: Pasting Tab-Separated Values into Grid

Editing XML Documents in Author Mode

This section includes details about editing the text content and markup of XML documents in Author mode.

Figure 115: Author Editing Mode

Author Mode User Roles

There are two main types of users for the Author mode: framework developers and content authors.

Framework Developers

A framework developer is a technical person with advanced XML knowledge who defines the framework for authoring
XML documents in the visual editor. Once the framework is created or edited by the developer, it is distributed as a
deliverable component ready to plug into the application for the content authors.

Oxygen XML Editor plugin | Editing Documents | 254

Content Authors

A content author does not need to have advanced knowledge about XML markup, operations such as validation of XML
documents, or applying XPath expressions to an XML document. The content author just uses the framework set up by
the developer in the application and starts editing the content of XML documents without editing the XML tags directly.

Document Type Association (Framework)

The framework that is set up by the developer is also called a document type association and defines a type of XML
document by specifying all the details needed for editing the content of XML documents in Author mode.

The framework details that are created and customized by the developer include:

• The CSS stylesheet that drives the visual rendering of the document.
• The rules for associating an XML schema with the document, which is needed for the content completion assistance

and validation of the document.
• Transformation scenarios for the document.
• XML catalogs.
• Custom actions available as buttons on the toolbar or in menus.

Oxygen XML Editor plugin includes some ready-to-use predefined document types for XML frameworks, such as
DocBook, DITA, TEI, JATS, and XHTML.

Rendering XML Documents in Author Mode

The structure of an XML document and the required restrictions on its elements and their attributes are defined with an
XML schema. This makes it easier to edit XML documents in a visual editor. For more information about schema
association, see the Associate a Schema to a Document on page 374 section. The Author mode renders the content of
the XML documents visually, based on a CSS stylesheet associated with the document.

Associating a Stylesheet with an XML Document

The rendering of an XML document in the Author mode is driven by a CSS stylesheet that conforms to the version 2.1
of the CSS specification from the W3C consortium. Some CSS 3 features, such as namespaces and custom extensions,
of the CSS specification are also supported. Oxygen XML Editor plugin also supports stylesheets coded with the LESS
dynamic stylesheet language.

There are several methods for associating a stylesheet (CSS or LESS) with an XML document:

1. Insert the xml-stylesheet processing instruction with the type attribute at the beginning of the XML document.
If you do not want to alter your XML documents, you should create a new document type (framework).

CSS example:

<?xml-stylesheet type="text/css" href="test.css"?>

LESS example:

<?xml-stylesheet type="text/css" href="test.less"?>

Note: XHTML documents need a link element, with the href and type attributes in the head child
element, as specified in the W3C CSS specification. XHTML example:

<link href="/style/screen.css" rel="stylesheet" type="text/css"/>

Tip: You can also insert the xml-stylesheet processing instruction by using the Associate XSLT/CSS
Stylesheet action that is available on the toolbar or in the XML menu.

Oxygen XML Editor plugin | Editing Documents | 255

http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

2. Configure a Document Type Association by adding a new CSS or LESS file in the settings. To do so, open the
Preferences dialog box and go to Document Type Association. Edit the appropriate framework, open the Author

tab, then the CSS tab. Press the New button to add a new CSS or LESS file.

Note: The Document Type Associations are read-only, so you need to extend an existing one.

You can read more about associating a CSS to a document in the section about customizing the CSS of a document type.

If a document has no CSS association or the referenced stylesheet files cannot be loaded, a default one is used. A warning
message is also displayed at the beginning of the document, presenting the reason why the CSS cannot be loaded.

Figure 116: Document with no CSS association default rendering

Selecting and Combining Multiple CSS Styles

Oxygen XML Editor plugin provides a Styles drop-down menu on the Author Styles toolbar that allows you to select
one main (non-alternate) CSS style and multiple alternate CSS styles. An option in the preferences can be enabled to
allow the alternate styles to behave like layers and be combined with the main CSS style. This makes it easy to change
the look of the document.

Tip: For information about configuring the Styles drop-down menu, see the Selecting and Combining Multiple
CSS Styles on page 982 topic.

You can select a main CSS stylesheet that styles the whole document and then apply alternate styles, as layers, to specific
parts of the document. In the subsequent figure, a DITA document has the Century style selected for the main CSS and
the alternate styles Full width, Show table column specification, Hints, and Inline actions are combined for additive
styling to specific parts of the document.

Oxygen XML Editor plugin | Editing Documents | 256

Figure 117: Styles Drop-down Menu in a DITA Document

Related information
Associate a Schema to a Document on page 374

Navigating the Document Content in Author Mode

Oxygen XML Editor plugin includes some useful features to help you navigate XML documents.

Using the Keyboard

Oxygen XML Editor plugin allows you to quickly navigate through a document using the Tab key to move the cursor
to the next XML node and Shift + Tab to go to the previous one. If you encounter a space preserved element when you
navigate through a document and you do not press another key, pressing the Tab key will continue the navigation.
However, if the cursor is positioned in a space preserved element and you press another key or you position the cursor
inside such an element using the mouse, the Tab key can be used to arrange the text.

To navigate one word forward or backwards, use Ctrl + RightArrow (Command + RightArrow on OS X), and Ctrl
+ LeftArrow (Command + LeftArrow on OS X), respectively. Entities and hidden elements are skipped. To position
the cursor at the beginning or at the end of the document you can use Ctrl + Home (Command + Home on OS X),
and Ctrl + End (Command + End on OS X), respectively.

Oxygen XML Editor plugin | Editing Documents | 257

Navigation Shortcuts

Oxygen XML Editor plugin includes some keyboard shortcuts to help you quickly navigate to a particular modification.
They are also available as actions in the Navigation menu.

• Ctrl+Q - Last Edit Location - Moves the cursor to the last modification in any opened document.
• Alt+LeftArrow (Command+OpenBracket on OS X) - Back - Moves the cursor to the previous position.
• Alt+RightArrow (Command+CloseBracket on OS X) - Forward - Moves the cursor to the next position.

Navigating with the Outline View
Oxygen XML Editor plugin includes a very useful Outline view that displays a hierarchical tag overview of the currently
edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is
synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are
highlighted in the editor area.

Figure 118: Outline View Navigation in Author Mode

Using the Linking Support

When working on multiple documents that reference each other (references, external entities, XInclude, DITA conref,
etc), the linking support is useful for navigating between the documents. In the predefined customizations that are
bundled with Oxygen XML Editor plugin, links are marked with an icon representing a chain link (). When hovering
over the icon, the mouse pointer changes its shape to indicate that the link can be accessed and a tooltip presents the
destination location. Click the link to open the referenced resource in the editor or system browser. The same effect can
be obtained by pressing the F3 key when the cursor is in a link element.

Note: Depending on the referenced file type, the target link will either be opened in the Oxygen XML Editor
plugin or in the default system application. If the target file does not exist, Oxygen XML Editor plugin prompts
you to create it.

Displaying the Markup

You can control the amount of markup that is displayed in the Author mode with various levels of tag modes for both
block and in-line elements.

The following dedicated tag modes are available from the Tags display mode drop-down menu (available on the
toolbar):

Displays full tag names with attributes for both block and in-line elements.Full Tags with Attributes

Displays full tag names without attributes for both block and in-line elements.Full Tags

Displays full tag names for block elements and simple tags without names for
in-line elements.

Block Tags

Displays full tag names for in-line elements, while block elements are not displayed.Inline Tags

Displays simple tags without names for in-line elements, while block elements are
not displayed.

Partial Tags

No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

No Tags

Oxygen XML Editor plugin | Editing Documents | 258

To set a default tags mode, go to Author preferences page and configure the Tags display mode options.

Note: The graphical format of the tags is controlled from the associated CSS via the display property. If the
current document does not have an associated CSS stylesheet, then the Full Tags mode will be used.

Editing Content in Author Mode

The Author mode in Oxygen XML Editor plugin allows you to create, review, and edit structured content in a visual
editor that is similar to common word processors. To enter this mode, click the Author button at the bottom of the
editing area. This mode includes a large variety of user-friendly authoring features to help even novice users work with
XML content, including numerous toolbar, menu, and shortcut actions, drag and drop support, smart paste support, and
some specialized content editing features.

Undo/Redo Actions
The typical undo and redo actions are available with shortcuts or in the Edit menu:

Reverses a maximum of 200 editing actions to return to the preceding
state.

Undo (Ctrl + Z (Command + Z on OS X))

Note: Complex operations such as Replace All or Indent
selection count as single undo events.

Recreates a maximum of 100 editing actions that were undone by the
Undo function.

Redo (Ctrl + Y (Command + Shift + Z on OS
X, Ctrl + Shift + Z on Linux/Unix))

Copy and Paste Actions
The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the Edit menu):

Removes the current selected content from the document and
places it in the clipboard.

Cut (Ctrl + X (Command + X on OS X))

Places a copy of the current selected content in the clipboard.Copy (Ctrl + C (Command + C on OS X))

Inserts the current clipboard content into the document at the
cursor position.

Paste (Ctrl + V (Command + V on OS X))

Selects the entire content of the current document.Select All (Ctrl + A (Command + A on OS X))

Entering Text in Elements

By default, you can only enter text in elements that accept text content. If the element is declared as empty or element
only in the associated schema, you are not allowed to insert text in it. Instead, a warning message is displayed.

Figure 119: Editing in empty element warning

To allow text to be inserted in these instances, go to the Schema-Aware preferences page and disable the Reject action
when its result is invalid option in the Typing actions section.

To watch our video demonstration about the basic functionality of the Author mode, go to
http://oxygenxml.com/demo/WYSIWYG_XML_Editing.html.

Related information
Editing XML Markup in Author Mode on page 260

Drag and Drop in Author Mode on page 264

Smart Paste Support on page 264

Oxygen XML Editor plugin | Editing Documents | 259

http://oxygenxml.com/demo/WYSIWYG_XML_Editing.html

Contextual Menu Actions in Author Mode on page 349

Editing XML Markup in Author Mode

Oxygen XML Editor plugin includes some useful actions that allow you to easily edit XML markup in Author mode.
Most of these actions are available in the contextual menu and some of them have simple keyboard shortcuts.

Move Nodes
You can move XML nodes in the current document by using the following actions in the Refactoring submenu of the
contextual menu:

Moves the current node or selected nodes in front of the previous node.Move Up (Alt + UpArrow)

Moves the current node or selected nodes after the subsequent node.Move Down (Alt + DownArrow)

Tip: The easiest way to move nodes is to use the Alt + UpArrow and Alt + DownArrow shortcut keys.

Promote/Demote List Item Nodes

You can easily promote or demote list item nodes within ordered lists or unordered lists by using the following keyboard
shortcuts:

Promotes the current list item node to be a sibling of its parent node (the list item is moved
to the left). It also works for selections of multiple list item nodes as long as all the selected
nodes are siblings (on the same hierarchical level).

Promote (Shift + Tab)

Demotes the current list item node (the list item is moved to the right). It also works for
selections of multiple list item nodes as long as all the selected nodes are siblings (on the
same hierarchical level).

Demote (Tab)

Join or Split Elements
You can join or split elements in the current document by using the following actions in the Refactoring submenu of
the contextual menu:

Joins two adjacent block elements that have the same name. The action is available only when
the cursor position is between the two adjacent block elements. Also, joining two block elements

Join Elements

can be done by pressing the Delete or Backspace keys and the cursor is positioned between
the boundaries of these two elements.

Tip: Specifically, the Delete or Backspace keys can be used to join block elements in the following situations:

• The cursor is located before the end position of the first element and (Delete) key is pressed.
• The cursor is located after the end position of the first element and (Backspace) key is pressed.
• The cursor is located before the start position of the second element and (Delete) key is pressed.
• The cursor is located after the start position of the second element and (Backspace) key is pressed.

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be performed.

Splits the content of the closest element that contains the position of the cursor. Thus, if
the cursor is positioned at the beginning or at the end of the element, the newly created
sibling will be empty.

Split Element

Rename Elements
You can rename elements by using the following action in the Refactoring submenu of the contextual menu:

The element from the cursor position, and any elements with the same name, can be
renamed according with the options from the Rename dialog box.

Rename Element

Oxygen XML Editor plugin | Editing Documents | 260

Surround Content with Tags (Wrap)
You can surround a selection of content with tags (wrap the content) by using the following action in the Refactoring
submenu of the contextual menu:

Allows you to choose a tag to enclose a selected portion of content. If there is no
selection, the start and end tags are inserted at the cursor position.

Surround with Tags (Alt +
Shift + E)

• If the Position cursor between tags option is enabled in the Content
Completion preferences page, the cursor is placed between the start and end
tag.

• If the Position cursor between tags option is disabled in the Content
Completion preferences page, the cursor is placed at the end of the start tag,
in an insert-attribute position.

Surround the selected content with the last tag used.Surround with '[tag]' (Alt +
Shift + ForwardSlash)

Unwrap the Content of Elements
You can unwrap the content of an element by using the following action in the Refactoring submenu of the contextual
menu:

Deletes the tags of the closest element that contains the position of the cursor. This
operation is also executed if the start or end tags of an element are deleted by pressing
the Delete or Backspace keys.

Delete Element Tags

Tip: Specifically, the Delete or Backspace keys can be used to unwrap the content of an element in the following
situations:

• The cursor is located before the start position of the element and (Delete) key is pressed.
• The cursor is located after the start position of the element and (Backspace) key is pressed.
• The cursor is located before the end position of the element and (Delete) key is pressed.
• The cursor is located after the end position of the element and (Backspace) key is pressed.

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be performed.

Remove Markup from Blocks of Content
You can remove the markup from the current element by highlighting the appropriate block of content and using the
following action in the Refactoring submenu of the contextual menu:

Removes all the XML markup inside the selected block of content and keeps
only the text content.

Remove All Markup

Tip: You can use the (Delete) or (Backspace) keys to remove markup, in which case the elements in the selected
block will be unwrapped or joined with their sibling, or if the current element is empty, the element tags will
be deleted.

Remove Text from Selected Markup
You can remove the text from elements by highlighting the appropriate block of content and using the following action
in the Refactoring submenu of the contextual menu:

Removes the text content of the selected block of content and keeps the markup in
tact with empty elements.

Remove Text

Other Refactoring Actions
You can also manage the structure of the markup by using the other specific XML refactoring actions that are available
in the Refactoring submenu of the contextual menu:

Oxygen XML Editor plugin | Editing Documents | 261

Contains predefined XML refactoring operations that pertain to attributes. Oxygen XML Editor plugin
considers the editing context to get the names and namespaces of the element or attribute for which

Attributes
submenu

the contextual menu was invoked, and uses this information to preconfigure some of the parameter
values for the selected refactoring operation.

Allows you to change the value of an attribute or insert a new
one.

Add/Change attribute

Allows you to remove one or more attributes.Delete attribute

Allows you to rename an attribute.Rename attribute

Allows you to search for a text fragment inside an attribute
value and change the fragment to a new value.

Replace in attribute value

Contains predefined XML refactoring operations that pertain to elements. Oxygen XML Editor plugin
considers the editing context to get the names and namespaces of the element or attribute for which

Elements
submenu

the contextual menu was invoked, and uses this information to preconfigure some of the parameter
values for the selected refactoring operation.

Allows you to delete elements.Delete element

Allows you to delete the content of elements.Delete element content

Allows you to insert new elements.Insert element

Allows you to rename elements.Rename element

Allows you to remove the surrounding tags of elements, while
keeping the content unchanged.

Unwrap element

Allows you to surround elements with element tags.Wrap element

Allows you to surround the content of elements with element
tags.

Wrap element content

Contains predefined XML refactoring operations that pertain to XML fragments. Oxygen XML Editor
plugin considers the editing context to get the names and namespaces of the element or attribute for

Fragments
submenu

which the contextual menu was invoked, and uses this information to preconfigure some of the
parameter values for the selected refactoring operation.

Allows you to insert an XML fragment.Insert XML fragment

Allows you to replace the content of elements with an
XML fragment.

Replace element content with XML
fragment

Allows you to replace elements with an XML
fragment.

Replace element with XML fragment

Related information
Refactoring XML Documents on page 388

Contextual Menu Actions in Author Mode on page 349

Editing Attributes in Author Mode

You can easily edit attributes in Author mode by using the Attributes View and Oxygen XML Editor plugin also allows
you to edit attribute and element values in-place, directly in the Author mode, using an in-place attribute editor.

In-place Attributes Editor

Oxygen XML Editor plugin includes an in-place attributes editor in Author mode. To edit the attributes of an XML
element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.

Oxygen XML Editor plugin | Editing Documents | 262

• Double-click any named start tag when the document is edited in one of the following display modes.: Full Tags
with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this editor
presents the Name and Value fields, with the list of all the possible attributes collapsed.

Figure 120: In-place Attributes Editor

Use this combo box to select an attribute. The drop-down list displays the list of possible
attributes allowed by the schema of the document, as in the Attributes view.

Name Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute
has predefined values in the schema, the drop-down list displays those possible values.

Value Combo Box

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

Figure 121: In-place Attributes Editor (Full Version)

The full version includes a table grid, similar to the Atributes view, that presents all the attributes for the selected
element.

Folding XML Elements in Author Mode

When working with a large document, the folding support in Oxygen XML Editor plugin can be used to collapse some
element content leaving only the parts that you need to edit in focus. Expanding and collapsing works on individual
elements. Expanding an element leaves the child elements unchanged.

Oxygen XML Editor plugin | Editing Documents | 263

Figure 122: Folding of XML Elements in Author Mode

Folding Actions in Author Mode

Foldable elements are marked with a small triangle (/) on the left side of the editor panel. If you hover over that
arrow, the entire content of the element is highlighted by a dotted border for quick identification of the foldable area.
To toggle the fold, simply click the icon. Also, the following actions are available in the Folding sub-menu of the
contextual menu:

Toggles the state of the current fold.Toggle Fold (or you can simply click on the / arrow)

Folds all the elements except the current element.Collapse Other Folds (Ctrl + NumPad/ (Command +
NumPad/ on OS X))

Folds the child elements that are indented one level
inside the current element.

Collapse Child Folds (Ctrl + NumPad- (Command +
NumPad- on OS X))

Unfolds all child elements of the currently selected
element.

Expand Child Folds (Ctrl + NumPad+ (Command +
NumPad+ on OS X))

Unfolds all elements in the current document.Expand All (Ctrl + NumPad* (Command + NumPad* on
OS X))

To watch our video demonstration about the folding support in Oxygen XML Editor plugin, go to
http://oxygenxml.com/demo/FoldingSupport.html.

Drag and Drop in Author Mode

The Oxygen XML Editor plugin Author mode includes support for dragging and dropping content in XML documents.

When editing content in Author mode, entire sections or chunks of data can be moved or copied by using the drag and
drop feature. The following situations can be encountered:

• When both of the drag and drop sources are from the Author mode editor, a well-formed XML fragment is transferred.
The section is balanced before dropping it by adding matching tags when needed.

• When the drag source is from the Author mode editor but the drop target is a text-based editor, only the text inside
the selection is transferred as it is.

• The text dropped from another text editor or another application into the Author mode editor is inserted without
changes.

Related information
Smart Paste Support on page 264

Smart Paste Support

The Author editing mode includes a Smart Paste feature that preserves certain style and structure information when
copying content and pasting it into document types that support the feature. You can copy content from various sources,
including web pages, external applications (such as Office-type applications), or other document types within Oxygen
XML Editor plugin, and then paste it into DITA, TEI, DocBook, JATS, and XHTML documents. Oxygen XML Editor
plugin preserves the original text styling (such as bold, italics, underline) and formatting (such as lists, tables, paragraphs)
and considers various pasting solutions to keep the resulting document valid.

Oxygen XML Editor plugin | Editing Documents | 264

http://oxygenxml.com/demo/FoldingSupport.html

The styles and general layout of the pasted content are converted to the equivalent XML markup for the target document
type while preserving certain style and structure information. For example, if you copy content that includes multiple
paragraphs and then paste it in Author mode, the multiple paragraph structure is preserved. If you paste the content in
a location where the resulting XML would not be valid, Oxygen XML Editor plugin will attempt to place it in a valid
location, and may prompt you with one or more choices for where to place it.

Smart Paste Options

By default, the Smart Paste features are enabled in Oxygen XML Editor plugin. There are several options in the Schema
Aware preferences page that control the Smart Paste feature:

• Smart paste and drag and drop - This option determines whether or not Oxygen XML Editor plugin will try to find
an appropriate insert position when the current location is not valid for the pasted content. This option is enabled by
default.

• Reject action when its result is invalid - If you enable this option, Oxygen XML Editor plugin will not let you paste
content into a position where it would be invalid. This option is disabled by default.

• Convert external content on paste - This option determines whether or not Oxygen XML Editor plugin will convert
the styling and formatting of copied content from external sources when pasting it into a document type that supports
the feature. This option is enabled by default.

• Convert even when pasting inside space-preserve elements - If you enable this option, the Smart Paste feature will
also work when pasting external content into a space-preserve element (such as a codeblock). This option is
disabled by default.

Smart Paste Supported Document Types

The Smart Paste feature is supported for the following document types (frameworks):

• DITA
• DocBook 4
• DocBook 5
• TEI P4
• TEI P5
• XHTML
• JATS

To watch our video demonstration about the Smart Paste support, go to
http://oxygenxml.com/demo/Smart_Paste_Copy_Paste_from_Web_Office_Documents_to_DITA_DocBook_TEI_XHTML_Documents.html.

Related information
Customizing Smart Paste Support on page 941

Content Completion Assistant in Author Mode

One of the most useful features in Author mode is the content completion support. It offers a list of elements, attributes,
attribute values, and other options that are valid in the current editing context.

Figure 123: Content Completion Assistant in Author Mode

Oxygen XML Editor plugin | Editing Documents | 265

http://oxygenxml.com/demo/Smart_Paste_Copy_Paste_from_Web_Office_Documents_to_DITA_DocBook_TEI_XHTML_Documents.html

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box , go to Editor >
Content Completion, and disable the Enable content completion option.

Using the Content Completion Assistant in Author Mode

To activate the feature in Author mode, use any of the following shortcut keys:

• Enter
• Ctrl + Space (Command + Space on OS X)
• Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X)

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current cursor
position. Elements can be selected in the list by using the Up and Down keys on your keyboard. For each selected item
in the list, the Content Completion Assistant displays a documentation window. You can customize the size of the
documentation window by dragging its top, right, and bottom borders.

To insert the selected content in Author mode, simply press Enter.

Types of Proposals Listed in the Content Completion Assistant

The Content Completion Assistant offers the following types of proposed actions:

• Insert allowed elements for the current context schema and the list of proposals contains elements depending on the
elements inserted both before and after the cursor position.

• Insert element values if such values are specified in the schema for the current context.
• Insert new undeclared elements by entering their name in the text field.
• Insert CDATA sections, comments, processing instructions.
• Insert code templates.
• If invoked on a selection that only contains an element start or end tag (remember that you can see all element tags

while working in Full Tags mode), it will allow you to rename the element.
• If invoked on a selection of multiple elements or other content, it will allow you to surround the content with certain

tags.
• If the Show all possible elements in the content completion list option from the Schema-Aware preferences page

is enabled, the content completion pop-up window will present all the elements defined by the schema. When choosing
an element from this section, the insertion will be performed using the schema-aware smart editing features.

Note: By default, you are not allowed to insert element names that are not defined by the schema. This can
be changed by deselecting the Allow only insertion of valid elements and attributes check box from the
Schema-Aware preferences page.

Examples of How the Content Completion Assistant Works

To illustrate how the feature works, consider the following examples of invoking the Content Completion Assistant
in certain contexts:

• If the cursor is positioned at the beginning or at the end of the element, the first item offered in the Content
Completion Assistant is a New <Element> item. Selecting this item will insert an empty element.

Figure 124: Example (New [Element Name])

Oxygen XML Editor plugin | Editing Documents | 266

• If the cursor is positioned somewhere inside the element, the first entry in the Content Completion Assistant is a
Split <Element> item. In most cases, you can only split the closest block element to the cursor position, but if it is
inside a list item, the list item will also be proposed for split. Selecting Split <Element> splits the content of the
specified element around the cursor position.

Figure 125: Example (Split [Element Name])

• If the cursor is positioned inside a space preserved element (for example, a code block), the first choice in the Content
Completion Assistant is Enter, which will insert a new line in the content of the element, followed by New
<Element>.

Figure 126: Example ('ENTER' New Line)

• If invoked on a selection that only contains an element start or end tag (remember that you can see all element tags
while working in Full Tags mode), it will allow you to rename the element.

Figure 127: Example (Rename)

• If invoked on a selection of multiple elements or other content, it will allow you to surround the content with certain
tags.

Figure 128: Example (Surround)

Related information
Customizing the Content Completion Assistant on page 968

Oxygen XML Editor plugin | Editing Documents | 267

Set the Schema to be Used for Content Completion

The proposals that are presented in the Content Completion Assistant depend on the associated schemas. The DTD,
XML Schema, Relax NG, or NVDL schema used to populate the Content Completion Assistant is specified in the
following methods, in the order of their precedence:

• The schema specified explicitly in the document. In this case, Oxygen XML Editor plugin reads the beginning of
the document and resolves the location of the DTD, XML Schema, Relax NG schema, or NVDL schema.

• The schema declared in the Schema tab of the Document Type configuration dialog box for the particular document
type.

Schema Annotations in Author Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a schema.
If such a schema is associated with an XML document, the annotations are displayed in the Content Completion
Assistant.

Figure 129: Schema Annotation in the Content Completion Assistant

The schema annotations support is available if the schema type is one of the following:

• XML Schema
• Relax NG
• NVDL schema
• DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content Completion
Assistant option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves the
visual appearance and readability of the documentation window displayed when editing XML documents validated
against such a schema. An annotation is recognized and displayed as HTML if it contains at least one HTML element
(such as div, body, p, br, table, ul, or ol).

The HTML rendering is controlled by the Show annotations using HTML format, if possible option in the Annotations
preferences page. When this options is disabled, the annotations are converted and displayed as plain text and if the
annotation contains one or more HTML tags (p, br, ul, li), they are rendered as an HTML document loaded in a web
browser. For example, p begins a new paragraph, br breaks the current line, ul encloses a list of items, and li encloses
an item of the list.

Collecting Annotations from XML Schemas
In an XML Schema, the annotations are specified in an <xs:annotation> element like this:
<xs:annotation>
 <xs:documentation>
 Description of the element.
 </xs:documentation>
</xs:annotation>

If an element or attribute does not have a specific annotation, then Oxygen XML Editor plugin looks for an annotation
in the type definition of that element or attribute.

Oxygen XML Editor plugin | Editing Documents | 268

Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the <documentation> element from the
http://relaxng.org/ns/compatibility/annotations/1.0 namespace. However, any element outside
the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as annotation and the text
content is displayed in the annotation window. To activate this behavior, enable the Use all Relax NG annotations as
documentation option in the Annotations preferences page.

Collecting Annotation from DTDs

For DTD, Oxygen XML Editor plugin defines a custom mechanism for annotations using comments enabled from the
Prefer DTD comments that start with "doc:" as annotations option in the Annotations preferences page. The following
is an example of a DTD annotation:

<!--doc:Description of the element. -->

Related tasks
Providing Additional Annotations for XML Elements and Attributes on page 967

Related information
Customizing the Rendering of Elements on page 974

Content Completion Helper Views

Information about the current element being edited is also available in various views, such as the Model view, Attributes
view, Elements view, and Entities view. By default, they are located on the right-hand side of the main editor window.
These views, along with the powerful Outline view, provide spatial and insight information about the edited document
and the current element.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the
schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it
can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Editing Documents | 269

Figure 130: Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The
information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with
imposed restrictions, if any.

Figure 131: Element Structure Panel

Oxygen XML Editor plugin | Editing Documents | 270

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected
from the XML schema.

Figure 132: Annotation panel

Attributes View in Author Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By
default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

You can use this view to edit or add attribute values. The attributes of an element are editable if any one of the following
is true:

• The CSS stylesheet associated with the document does not specify a false value for the -oxy-editable property
associated with the element.

• The element is entirely included in a deleted Track Changes marker.
• The element is part of a content fragment that is referenced in Author mode from another document.

The attributes are rendered differently depending on their state:

• The names of the attributes with a specified value are rendered with a bold font, and their values with a plain font.

Note: The names of the attributes with an empty string value are also rendered bold.

• Default values are rendered with a plain font, painted gray.
• Empty values display the text "[empty]", painted gray.
• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column . If the possible values of the
attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows
you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as follows:

• By attribute name in ascending order.
• By attribute name in descending order.
• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed

by the rest of the allowed elements sorted in ascending order.

Oxygen XML Editor plugin | Editing Documents | 271

Figure 133: Attributes View

A drop-down list located in the upper part of the view allows you to select the current element or its ancestors.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Author mode:

Specifies the current attribute value as empty.Set empty value

Removes the attribute (action available only if the attribute is specified). You can invoke this action
by pressing the (Delete) or (Backspace) keys.

Remove

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:Copy

• The value of the attribute.
• The value of the default attribute, if the attribute does not appear in the edited document.
• Empty, if the attribute does not appear in the edited document and has no default value set.

Depending on the content of the clipboard, the following cases are possible:Paste

• If the clipboard contains an attribute and its value, both of them are introduced in the Attributes
view. The attribute is selected and its value is changed if they exist in the Attributes view.

• If the clipboard contains an attribute name with an empty value, the attribute is introduced in
the Attributes view and you can start editing it. The attribute is selected and you can start editing
it if it exists in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

In-place Attributes Editor

Oxygen XML Editor plugin includes an in-place attributes editor in Author mode. To edit the attributes of an XML
element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.

• Double-click any named start tag when the document is edited in one of the following display modes.: Full Tags
with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this editor
presents the Name and Value fields, with the list of all the possible attributes collapsed.

Oxygen XML Editor plugin | Editing Documents | 272

Figure 134: In-place Attributes Editor

Use this combo box to select an attribute. The drop-down list displays the list of possible
attributes allowed by the schema of the document, as in the Attributes view.

Name Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute
has predefined values in the schema, the drop-down list displays those possible values.

Value Combo Box

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

Figure 135: In-place Attributes Editor (Full Version)

The full version includes a table grid, similar to the Atributes view, that presents all the attributes for the selected
element.

Elements View in Author Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the
schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed,
it can be opened from the Window > Show View menu.

The upper part of the view features a combo box that contains the ordered ancestors of the current element. Selecting a
new element in this combo box updates the list of the allowed elements. By default, only the elements that are allowed
at the current cursor position are listed. However, if the Show only items allowed at cursor position option is disabled
in the View preferences page, two additional tabs (Before and After) will be displayed at the bottom of the view and
they list elements that are allowed before or after the element at the current cursor position.

Double-clicking any of the listed elements inserts that element into the edited document and its position depends on the
tab.

Oxygen XML Editor plugin | Editing Documents | 273

• Cursor tab - Double-clicking an element inserts it at the current cursor position.
• Before tab - Double-clicking an element inserts it before the element at the cursor position.
• After tab - Double-clicking an element inserts it after the element at the cursor position.

Figure 136: Elements View in Author Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain
characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE
declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Built-in or Predefined - Entities that are part of the predefined XML markup (<, >, &, ',
").

• Internal - Defined in the DOCTYPE declaration header of the current XML.
• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

Note: If you want to add internal entities, you would need to switch to the Text editing mode and manually
modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file
and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default,
it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View
menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort
entities by name and value by clicking the column headers.

Oxygen XML Editor plugin | Editing Documents | 274

Figure 137: Entities View

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose
to display the internal or external entities.

Note: When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating
them with a comma.

Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position . Oxygen XML Editor
plugin includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, and XML Schema document
types. You can also define you own code templates and share them with others.

To get a complete list of available code templates, press Ctrl + Shift + Space in Text mode. To enter the code template,
select it from the list or type its code and press Enter. If a shortcut key has been assigned to the code template, you can
also use the shortcut key to enter it. Code templates are displayed with a symbol in the content completion list.

When the Content Completion Assistant is invoked (Ctrl + Space (Command + Space on OS X) in Text mode or
Enter in Author mode), it also presents a list of code templates specific to the type of the active editor.

To watch our video demonstration about code templates, go to http://oxygenxml.com/demo/Code_Templates.html.

Outline View in Author Mode

The Outline view in Author mode displays a general tag overview of the currently edited XML Document. When you
edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you modify.
This functionality gives you great insight on the location of your modifications in the current document. It also shows
the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure
and the way element tags are nested.

Outline View Features
The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.
• Insert or delete nodes using contextual menu actions.
• Move elements by dragging them to a new position in the tree structure.
• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the

editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.

Oxygen XML Editor plugin | Editing Documents | 275

http://oxygenxml.com/demo/Code_Templates.html

• View document errors, as they are highlighted in the Outline view. A tooltip also provides more information about
the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

It also includes a View menu in the top-right corner that presents a variety of options to help you filter the view even
further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view with
drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be
moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will
be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or
lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the
target element.

• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead
of a move.

The drag and drop actions in the Outline view can be disabled and enabled from a Preferences page.

Tip: You can select and drag multiple nodes in the Outline view when editing in Author mode.

Figure 138: Outline View

Oxygen XML Editor plugin | Editing Documents | 276

Outline View Filters in Author Mode

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

The following actions are available in the View menu of the Outline view when editing in Author mode:

The text filter of the Outline view returns only exact matches.Filter returns exact matches

When active, the application flattens the filtered result elements to a
single level.

Flat presentation mode of the filtered
results

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

Outline View Contextual Menu Actions in Author Mode

The contextual menu of the Outline view in Author mode contains the following actions:

Allows you to edit the attributes of a selected node. You can find more details about
this action in the Attributes View in Author Mode on page 180 topic.

Edit Attributes

Allows you to change the profiling attributes defined on all selected elements.Edit Profiling Attributes

Invokes a content completion list with the names of all the elements that are allowed
by the associated schema and inserts your selection as a child of the current element.

Append Child

Invokes a content completion list with the names of all the elements that are allowed
by the associated schema and inserts your selection immediately before the current
element, as a sibling.

Insert Before

Invokes a content completion list with the names of all the elements that are allowed
by the associated schema and inserts your selection immediately after the current
element, as a sibling.

Insert After

Executes the typical editing actions on the currently selected elements. The Cut and
Copy operations preserve the styles of the copied content. The Paste before and Paste

Cut, Copy, Paste,

Delete editing actions after actions allow you to insert a well-formed element before or after the currently
selected element. The Paste as XML action pastes copied content that is considered
to be valid XML, preserving its XML structure.

Encloses the currently selected element in an XML comment, if the element is not
already commented. If it is already commented, this action will remove the comment.

Toggle Comment

Invokes a Rename dialog box that allows you to rename the currently selected element,
siblings with the same name, or all elements with the same name.

Rename Element

Expands the structure tree of the currently selected element.Expand All

Collapses all of the structure tree of the currently selected node.Collapse All

Tip: You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting
multiple nodes in the tree.

Oxygen XML Editor plugin | Editing Documents | 277

Related information
Attributes View in Author Mode on page 180

Reviewing Documents

Oxygen XML Editor plugin includes a variety of helpful review tools that improve your ability to collaborate with other
members of your team, track changes, mark content for various reasons, add comments in your content, and to manage
the review features.

Tracking Document Changes

The Track Changes feature is a way to keep track of the changes you make in a document. Track Changes highlights
changes that you make to the content in a document, as well as changes to attributes. Changes can be tracked for insertions
and deletions. When the Track Changes feature is activated, insertions are rendered in Author mode with an underline
while deletions are rendered with a strike through.

The tracked changes are also displayed in the Review view and you can also choose to present the changes in callouts
by enabling Track Changes Deletions and Track Changes Insertions in the Callouts preferences page.

Adding Comments in Documents

You can associate a comment to a selected area of content. Comments can highlight virtually any content from your
document, with the exception of read-only text. The difference between using comments and change tracking is that a
comment can be associated to an area of text without modifying or deleting the text.

Comments are presented in callouts with persistent highlights and a colored background. The background color is
assigned automatically by the application, but it can also be customized from the Review preferences page.

Highlighting Content

Oxygen XML Editor plugin includes a highlighting feature that allows you to create digital markers to emphasise
important fragments of your documents. This is especially useful when you want to mark content that needs additional
work or the attention of others.

Using the Review View
Oxygen XML Editor plugin includes a Review view that provides a simplified way of monitoring all the insertions,
deletions, comments, and highlights in an XML document. This handy tool is especially useful for large teams that need
to gather and manage all the edits from all team members who are working on the same project.

The Review view is also useful for managing tracked changes and comments in a single panel. In this view, the changes
and comments are presented in a compact form, in the order they appear in the document, and they are synchronized
with the changes and comments in the main editing area.

You can use this view to quickly navigate through changes, accept or reject them, or to view and manage comments or
highlights. You can also search for specific changes or comments and it includes some filtering options (for example,
you can filter it to only show certain types of edits or to only show edits for a particular author).

Printing Review Information

When you print a document from Author mode, whatever review information is shown in the main editing area will be
included in the printed output. For example, tracked changes will be included and as long as the Comments option is
enabled in the Callouts preferences page, comment callouts will also be included (same with tracked change callouts
if their corresponding options are enabled in the Callouts preferences page.

Managing Tracked Changes

Oxygen XML Editor plugin includes a Track Changes feature that allows you to review changes that you or other authors
have made and then accept or reject them. You can also manage the visualization mode of the tracked changes, add
comments to changes, and mark them as being done. These actions are easily accessible from contextual menus, the
toolbar, or the Review view.

Oxygen XML Editor plugin | Editing Documents | 278

The Track Changes feature is also able to keep track of changes you make to attributes in a document and the changes
are presented in the Review view and Attributes view.

To watch our video demonstration about the Track Changes support, go to
http://oxygenxml.com/demo/Change_Tracking.html.

Types of Tracked Changes

The types of tracked changes include:

• Inserting, deleting content (text or elements)
• Drag and drop content (text or elements)
• Cutting or pasting content (text or elements)
• Inserting, deleting, and changing the structure of tables
• Inserting and editing lists and their content
• Inserting and deleting entities
• Inserting and deleting element tags
• Editing attributes
• Performing a Split operation
• Performing a Surround with operation
• Changes in referenced content (for example, XInclude fragments or DITA conrefs)

Important: If you copy content in Author mode that contains tracked changes, the changes will automatically
be accepted prior to the content being copied to the clipboard. This filtering is performed only if the selection
is not entirely inside a tracked change.

Activating the Change Tracking Feature

To activate the Track Changes feature for the current document, use any of the following methods:

• Click the Track Changes button on the toolbar.

• Select Track Changes from the Review submenu of the contextual menu in the main editing area in Author
mode.

• Select Track Changes from the Edit > Review menu.

When Track Changes is enabled, your modifications are highlighted using a distinctive color. The colors can be
customized from the Review preferences page, along with the name of the author and the initial state of the feature when
you open a document. Insertions are rendered with an underline while deletions are rendered with a strike through.

Oxygen XML Editor plugin | Editing Documents | 279

http://oxygenxml.com/demo/DocBook_Editing_in_Author.html

Figure 139: Change Tracking in Author Mode

When hovering over a change a tooltip displays information about the author and modification time.

Change Tracking Contextual Menu Actions

You can right-click any change in Author mode to access the following contextual menu actions:

Accepts the tracked change located at the cursor position and moves to the next change. If
you select a part of a deletion or insertion change, only the selected content is accepted. If

Accept Change(s)

you select multiple changes, all of them are accepted. For an insertion change, it keeps the
inserted text and for a deletion change, it removes the content from the document.

Rejects the tracked change located at the cursor position and moves to the next change. If you
select a part of a deletion or insertion change, only the selected content is rejected. If you

Reject Change(s)

select multiple changes, all of them are rejected. For an insertion change, it removes the
inserted text and for a deletion change, it preserves the original content.

Opens a dialog box that allows you to add a comment to an existing tracked change. The
comment will appear in a callout and a tooltip when hovering over the change. If the action

Comment Change

is selected on an existing commented change, the dialog box will allow you to edit the
comment.

You can accept or reject multiple changes at once by selecting a block of content that contains the changes and then

Accept Change(s) or Reject Change(s) from the contextual menu or toolbar.

Change Tracking Toolbar Actions

By default, the toolbar includes the following actions and options for reviewing or tracking changes (similar actions are
also available in the Edit > Review menu and the Review submenu of the contextual menu):

Enables or disables the track changes support for the current document.Track Changes

Accepts the tracked change located at the cursor position and moves to the next change.
If you select a part of a deletion or insertion change, only the selected content is accepted.

Accept Change(s)

If you select multiple changes, all of them are accepted. For an insertion change, it keeps
the inserted text and for a deletion change, it removes the content from the document.

Rejects the tracked change located at the cursor position and moves to the next change. If
you select a part of a deletion or insertion change, only the selected content is rejected. If

Reject Change(s)

Oxygen XML Editor plugin | Editing Documents | 280

you select multiple changes, all of them are rejected. For an insertion change, it removes
the inserted text and for a deletion change, it preserves the original content.

Opens a dialog box that allows you to add a comment to an existing tracked change. The
comment will appear in a callout and a tooltip when hovering over the change. If the action

Comment Change

is selected on an existing commented change, the dialog box will allow you to edit the
comment.

This drop-down menu includes specialized actions that allow you to switch between the
following visualization modes:

Track Changes
Visualization Modes
Drop-Down Menu

• View All Changes/Comments - This mode is active by default. When you use this
mode, all tracked changes are represented in the Author mode.

• View only Changes/Comments by - Only the tracked changes made by the author
you select are presented.

• View Final - This mode offers a preview of the document as if all tracked changes
(both inserted and deleted) were accepted.

• View Original -this mode offers a preview of the document as if all tracked changes
(both inserted and deleted) were rejected. You cannot edit the document in this mode.
Attempting to do so switches the view mode to View All Changes.

Note: If you use View Final mode and View Original mode, callouts are
not displayed for comments or changes. To display callouts, use the View All
Changes/Comments mode.

Enables or disables the Highlight tool. Use the Highlight drop-down menu to select
a new color.

Highlight

Inserts a comment at the cursor position. The comment appears in a callout box and a
tooltip (when hovering over the change).

Add Comment

Opens the Edit Comment dialog box that allows you to edit the selected comment. You
cannot edit a comment if you are not the author who inserted the original comment. Note

Edit Comment

that you cannot edit a comment that was added by another user, so in that case, the action

is Show Comment and the dialog box just displays the comment without the possibility
of editing it.

Removes a selected comment. If you remove a comment that contains replies, all of the
replies will also be removed.

Remove Comment

Opens the Review view.Manage Reviews

Tracked Change Callouts

You can also choose to display insertion and deletion changes in callouts in Author mode. By default, tracked changes
are not displayed in callouts, but you can change this behavior by enabling Track Changes Deletions and Track Changes
Insertions in the Callouts preferences page. You can also choose to display the actual content of the deletion or insertion.

By displaying the changes in callouts, you then have access to even more actions, such as the ability to reply or mark
them as being done. For more information, see the Author Callouts on page 288 topic.

Tracked Changes in the Review View
The Review view is also useful for managing tracked changes and comments. In this view, the edits are presented in a
compact form, in the order they appear in the document and each edit is marked with a type-specific icon. You can use
this view to quickly navigate through changes, accept or reject them, or to add and manage comments for the changes.
You can also search for specific changes and it includes some filtering options (for example, you can filter it to only
show certain types of changes or to only show changes for a particular author).

Oxygen XML Editor plugin | Editing Documents | 281

For more information about this view, see the Review View on page 292 topic.

Tracked Changes XML Source Code

The changes are stored in the document source code as processing instructions and they do not interfere with validations
or transformations. For each change, the author name and the modification time are preserved.

Example - Insertion Change: The following processing instruction is an example of how an insertion change is stored
in a document:

<?oxy_insert_start author="John Doe" timestamp="20090408T164459+0300"?>all<?oxy_insert_end?>

Example - Deletion Change: The following processing instruction is an example of how a deletion change is stored in
a document:

<?oxy_delete author="John Doe" timestamp="20090508T164459+0300" content="belong"?>

Related information
Managing Comments on page 284

Author Callouts on page 288

Review View on page 292

Tracked Changes Behavior

The behavior of the Track Changes feature depends on the context, the type of change, and whether or not it is activated.

Inserting Content

If the Track Changes feature is disabled and you insert content, the following behavior is possible:

• Making an insertion in a Delete change results in the change being split in two and the content is inserted without
being marked as change.

• Making an insertion in an Insert change results in the change being split in two and the content is inserted without
being marked as change.

• Making an insertion in regular content results in a regular insertion.

If the Track Changes feature is enabled and you insert content, the following behavior is possible:

• Making an insertion in a Delete change results in the change being split in two and the current inserted content
appears marked as an INSERT.

• Making an insertion in an Insert change results in the following:

• If the original insertion was made by another user, the change is split in two and the current inserted content
appears marked as an INSERT by the current author.

• If the original Insert change was made by the same user, the change is just expanded to contain the inserted
content. The creation time-stamp of the previous insert is preserved.

• If we insert in regular content, the current inserted content appears marked as an Insert change.

Surrounding Content

If the Track Changes feature is enabled and you surround content in a new XML element, the following behavior is
possible:

• Making a surround in a Delete change results in nothing happening.
• Making a surround in an Insert change results in the following:

• If the original insertion was made by another user, the change is split in two and the surround operation appears
marked as being performed by the current author.

• If the original Insert change was made by the same user, the existing change is just expanded to contain the
surrounded content.

Oxygen XML Editor plugin | Editing Documents | 282

• Making a surround in regular content results in the operation being marked as a surround change.

Deleting Characters

If the Track Changes feature is disabled and you delete content character by character, the following behavior is possible:

• Deleting content in an existing Delete change results in nothing happening.
• Deleting content in an existing Insert change results in the content being deleted without being marked as a deletion

and the INSERT change shrinks accordingly.
• Deleting in regular content results in a regular deletion.

If the Track Changes feature is enabled and you delete content character by character, the following behavior is possible:

• Deleting content in an existing Delete change results in the following:

• If the same author created the Delete change, the previous change is marked as deleted by the current author.
• If another author created the Delete change, nothing happens.

• Deleting content in an existing Insert change results in the following:

• If the same author created the Insert change, the content is deleted and the Insert change shrinks accordingly.
• If another author created the Insert change, the Insert change is split in two and the deleted content appears

marked as a Delete change by the current author.

• Deleting in regular content results in the content being marked as Delete change by the current author.

Deleting Selections of Content

If the Track Changes feature is disabled and you delete a selection of content, the following behavior is possible:

• If the selection contains an entire Delete change, the change disappears and the content is deleted.
• If the selection intersects with a Delete change (starts or ends in one), it results in nothing happening.
• If the selection contains an entire Insert change, the change disappears and the content is deleted.
• If the selection intersects with an Insert change (starts or ends in one), the Insert change is shrunk and the content

is deleted.

If the Track Changes feature is enabled and you delete a selection of content, the following behavior is possible:

• If the selection contains an entire Delete change, the change is considered as rejected and then marked as deleted by
the current author, along with the other selected content.

• If the selection intersects a Delete change (starts or ends in one), the change is considered as rejected and marked
as deleted by the current author, along with the other selected content.

• If the selection contains an entire Insert change, the following is possible:

• If the Insert is made by the same author, the change disappears and the content is deleted.
• If the Insert is made by another author, the change is considered as accepted and then marked as deleted by the

current author, along with the other selected content.

• If the selection intersects an Insert change (starts or ends in one), the Insert change shrinks and the part of the Insert
change that intersects with the selection is deleted.

Copying Content

If the Track Changes feature is disabled and you copy content, the following behavior is possible:

• If the copied area contains Insert or Delete changes (or attribute edits), these are also copied to the clipboard.

If the Track Changes feature is enabled and you copy content, the following behavior is possible:

• If the copied area contains Insert or Delete changes (or attribute edits), these are all accepted in the content of the
clipboard (the changes will no longer be in the clipboard).

Oxygen XML Editor plugin | Editing Documents | 283

Pasting Content

If the Track Changes feature is disabled and you paste content, the following behavior is possible:

• If the clipboard content contains Insert or Delete changes (or attribute edits), they will be preserved on paste.

If the Track Changes feature is enabled and you paste content, the following behavior is possible:

• If the clipboard content contains Insert or Delete changes (or attribute edits), all the changes are accepted and then
the paste operation proceeds according to the insertion rules.

Tracked Changes Limitations

There are some inherent limitations to the change tracking feature. These limitations include the following:

• Limitations to rejected changes - Recording changes has limitations and there is no guarantee that rejecting all
changes will return the document exactly to its original state.

• Limitations to hierarchical changes - Recorded changes are not hierarchical, a change cannot contain other changes
inside. For example, if you delete an insertion made by another user, then reject the deletion, the information about
the author who made the previous insertion is not preserved.

• Limitations to using certain actions - Some actions cannot be implemented with the Track Changes feature

enabled. For example, some of the table-related actions (Delete Row(s), Delete Column(s), Join Cells,

Split Cell) ignore the Track Changes feature when executing the action.

Tracked Changes XML Markup

Depending on the type of edits, the following track changes markup appears in the document source code when you

activate the Track Changes feature:

AttributesProcessing Instruction End
Marker

Processing Instruction Start
Marker

Edit Type

author, timestamp<?oxy_insert_end?><?oxy_insert_start?>Insertion

author, timestamp,
type="split"

<?oxy_insert_end?><?oxy_insert_start?>Split

author, timestamp,
type="surround"

<?oxy_insert_end?><?oxy_insert_start?>Surround

author, timestamp, content_<?oxy_delete?>Deletion

author, timestamp,
comment, mid

<?oxy_comment_end?><?oxy_comment_start?>Comment

id, type, oldValue, author,
timestamp

_<?oxy_attributes?>Attribute
Change

If a comment intersects another, the mid attribute is used to correctly identify start and end processing instruction
markers.

Intersecting Comments Markup

<?oxy_comment_start author="Andrew" timestamp="20130111T151520+0200" comment="Do we have a
task about pruning trees?"?>Unpruned

<?oxy_comment_start author="Matthew" timestamp="20130111T151623+0200" comment="What time
of the year do they flower?" mid="3"?>lilacs<?oxy_comment_end?>
 flower reliably every year<?oxy_comment_end mid="3"?>

Managing Comments

You can add comments to any selected area of content within XML documents, with the exception of read-only content.
The difference between using comments and tracked changes is that a comment is associated to a selection without
modifying or deleting the content.

Oxygen XML Editor plugin | Editing Documents | 284

By default, when you annotate your XML documents, the comments are displayed in the Author mode as callouts
(balloons) and they are rendered with a unique name and background for each user. If comments are not currently
displayed in callouts, enable the Comments option in the Callouts preferences page. Comments are also displayed in
the Review view.

Figure 140: Comments in Author Mode

Managing Comments in the Main Editor
You can insert and manage comments directly in the main editing area in Author mode.

To insert a comment at the cursor position or on a specific selection of content, select the

Add Comment action from the toolbar (or in the Review submenu of the contextual menu).

Add Comment

To edit an existing comment that you have added in the main editing area in Author mode,

select the Show/Edit Comments action from the toolbar (or in the Review submenu of

Show/Edit Comments

the contextual menu). The action opens a dialog box that allows you to see and edit your
comment at the cursor position. Note that you cannot edit a comment that was added by
another user, so in that case, the dialog box just displays the comment without the possibility
of editing it.

To remove a comment at the cursor position or multiple comments in a selection, select

Remove Comment(s) from the toolbar (or in the Review submenu of the contextual menu).

Remove Comments

Tip: When adding or editing a comment, you can use Enter to insert line breaks and Oxygen XML Editor
plugin will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter to
accept your changes and close the dialog box.

Managing Comments in Callouts

As long as the Comments option is enabled in the Callouts preferences page, comments are also displayed in callouts.
By displaying the comments in callouts, you then have access to even more actions, such as the ability to reply or mark
them as being done. When you right-click a specific comment in its callout, the contextual menu includes the following
actions.

Opens a dialog box that allows you to add a reply to a comment or tracked change. When
replying to a comment, the dialog box shows the entire conversation in the comment thread,

Reply

starting with the first comment added in the particular thread, followed by all the replies. After
replies are added to a comment thread, they are displayed with an indentation in the callouts
and Review view.

A toggle action that marks or unmarks a comment or comment thread as being done. It is also
available for tracked changes that are displayed in a callout. When a comment or change is

Mark as Done

marked as done, the callout is grayed out and cannot be edited unless the action is toggled to
the unmarked state. The action applies to the particular comment and all of its descendents.
This is useful for marking comments or changes that have been addressed, leaving only those
that still need some attention.

Opens the Edit Comment dialog box that allows you to edit the selected comment. You cannot
edit a comment if you are not the author who inserted the original comment. Note that you

Edit Comment

Oxygen XML Editor plugin | Editing Documents | 285

cannot edit a comment that was added by another user, so in that case, the action is Show
Comment and the dialog box just displays the comment without the possibility of editing it.

Removes a selected comment. If you remove a comment that contains replies, all of the replies
will also be removed.

Remove
Comment

Select this option to open the Callouts preference page where you can configure various callout
options.

Callouts Options

Tip: When adding, editing, or replying to a comment, you can use Enter to insert line breaks and Oxygen XML
Editor plugin will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter
to accept your changes and close the dialog box.

Managing Comments in the Review View
The Review view is also useful for managing comments. In this view, comments are presented in a compact form, in
the order they appear in the document, along with tracked changes. You can also use this view to search for specific
comments and it includes some filtering options (for example, you can filter it to only show comments for a particular
author). When you right-click a specific comment in the Review view, the contextual menu includes the following
actions.

Opens a dialog box that allows you to add a reply to a comment or tracked change. When
replying to a comment, the dialog box shows the entire conversation in the comment thread,

Reply

starting with the first comment added in the particular thread, followed by all the replies.
After replies are added to a comment thread, they are displayed with an indentation in the
callouts and Review view.

A toggle action that marks or unmarks a comment or comment thread as being done. It is
also available for tracked changes that are displayed in a callout. When a comment or change

Mark as Done

is marked as done, the callout is grayed out and cannot be edited unless the action is toggled
to the unmarked state. The action applies to the particular comment and all of its descendents.
This is useful for marking comments or changes that have been addressed, leaving only
those that still need some attention.

Opens the Edit Comment dialog box that allows you to edit the selected comment. You
cannot edit a comment if you are not the author who inserted the original comment. Note

Edit Comment

that you cannot edit a comment that was added by another user, so in that case, the action

is Show Comment and the dialog box just displays the comment without the possibility
of editing it.

Removes a selected comment. If you remove a comment that contains replies, all of the
replies will also be removed.

Remove Comment

Filters the comments to only show comments for the particular author.Show only reviews by
'<author name>'

Removes all comments from the document.Remove all Comments

Comments XML Source Code

The comments are stored in the document source code as processing instructions that contain information about the
author name and the comment time:

<?oxy_comment_start author="John Doe" timestamp="20090508T164459+0300" comment="Do not change this content"?>
 Important content
<?oxy_comment_end?>

Oxygen XML Editor plugin | Editing Documents | 286

Replies to comments are stored in the document source code as a comment (with information about the author name
and time), but with a parentID attribute and its value is the same as the id value of the parent comment.

<?oxy_comment_start author="Tom" timestamp="20160217T102630+0200" comment="We should not forget about recycling
 the oil and oil filter!" parentID="vws_x4l_1v" mid="4"?>

Related information
Author Callouts on page 288

Review View on page 292

Managing Highlights

Use the Highlight tool to mark fragments in your document using various colors. This is especially useful when you
want to mark sections that needs additional editing or to draw the attention of others to particular content.

To watch our video demonstration about using the Highlight tool, go to http://oxygenxml.com/demo/Highlight_Tool.html.

Using the Highlight Tool

You can find the Highlight action on the main toolbar, in the Edit > Review menu, or in the Review submenu of
the contextual menu of a document. You can also choose the color to use for the highlight or choose to Stop highlighting
from the same menus.

To highlight content, follow these steps:

1. Click the Highlight icon on the toolbar.

Step Result: The highlighting mode is on and the cursor changes to a dedicated symbol.

2. Click the small arrow next to the Highlight icon and select the color that you want to use for the highlighting.
3. Select the content you want to highlight. To mark multiple parts of a document, press and hold Ctrl (Meta on Mac

OS) and select the parts you want to highlight.

4. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

To remove highlighting from a document, follow these steps:

1. Either select the text you want to remove highlighting from using your cursor, or press Ctrl + A (Command + A
on OS X) if you want to select all of the text.

2. Click the small arrow next to the Highlight icon and select No color (erase), or right-click the highlighted content
and select Remove highlight(s).

3. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

Note: Oxygen XML Editor plugin preserves the highlighting of a document between working sessions.

Review View
The Review view is also useful for managing highlights. In this view, the highlights are presented in a compact form,
in the order they appear in the document, along with tracked changes and comments. The following actions are available
in the contextual menu of each highlight in the Review view:

Allows you to change the color of an existing highlight by selecting the
new color from this menu.

Change Color

Removes the selected highlight.Remove Highlight

Removes the selected highlight and all others that have the same color.Remove Highlights with the Same Color

Removes all highlights from the document.Remove All Highlights

Oxygen XML Editor plugin | Editing Documents | 287

http://oxygenxml.com/demo/Highlight_Tool.html

Highlights XML Source Code

The highlights are stored in the document source code as processing instructions that contain information about the
color:

<?oxy_custom_start type="oxy_content_highlight" color="0,128,255"?>The highlights are
 stored<?oxy_custom_end?>

Related information
Review View on page 292

Author Callouts

A callout is a string of text inside a graphic and is connected to a specific location in a document by a line. Oxygen
XML Editor plugin uses callouts to present comments and tracked change modifications that you or other members of
your team have added to the document.

To watch our video demonstration about the Callouts support, go to http://oxygenxml.com/demo/CalloutsSupport.html.

Displaying Callouts in Author Mode

The callouts are displayed in the right side of the editing area in Author mode. They are decorated with a colored border
and also have a colored background. The background color is assigned automatically by the application depending on
the user who is editing the document and the type of change, but it can also be customized from the Review preferences
page. This preferences page allows you to configure the colors for tracked change insertions or deletions, and for
comments.

You can also choose to use the same color for all changes of that particular type of change, regardless of who makes
the change. To do this, select the Fixed option for the particular type of change and choose a color from the color box.
If the Automatic option is selected, Oxygen XML Editor plugin automatically assigns a color based upon the Colors
for automatic assignment list.

The horizontal line that connects the callouts to their corresponding text fragments has the same color as the border. If
this horizontal line is not visible, enable the Show all connecting lines option in the Callouts preferences page. If you
hover over a callout, it is highlighted and a tooltip is displayed that contains additional information.

Figure 141: Multiple Author Callouts

Oxygen XML Editor plugin | Editing Documents | 288

http://oxygenxml.com/demo/CalloutsSupport.html

Note: Oxygen XML Editor plugin displays callouts only if View All Changes/Comments or View Only
Changes/Comments by is selected in the Track Changes Visualization Modes drop-down menu. Oxygen
XML Editor plugin does not display callouts in View Final and View Original modes.

In some cases, the text you are editing can span into the callouts area. For example, this situation can appear for callouts
associated with wide images or space-preserve elements that contain long fragments (such as a DITA codeblock element
or programlisting in DocBook). To help you view the text under the covered area, Oxygen XML Editor plugin
applies transparency to these callouts. When the cursor is located under a callout, the transparency is enhanced, allowing
you to both edit the covered content and access the contextual menu of the editing area.

Figure 142:Transparent Callout

Adjusting Callout Width

To display more of the content in all the callouts in the current document, you can adjust the width by dragging the left
side of any of the callouts. This will adjust the width for all comments in the current document. When you end the current
editing session, the width of all callouts will revert back to the default value, which is the value of the Initial Width
option in the Callouts preferences page.

You can also adjust the maximum number of lines to be shown in the callouts using the Text Lines Count Limit option.
Note that this does not limit the number of lines in the actual comment. It only limits the number of lines shown without
opening or editing it.

Type of Callouts in Oxygen XML Editor plugin

Oxygen XML Editor plugin uses callouts to display comments and tracked changes that you associate with fragments
of the document you are editing. You can choose which types of edits will be shown in callouts by configuring the
options in the Callouts preferences page. You can choose to enable the following types of review callouts:

• Comments
• Tracked Change Deletions
• Tracked Change Insertions

As long as the Comments option is enabled in the Callouts preferences page, comments are displayed
in callouts. A comment callout contains the name of the author who inserts the callout and the comment

Comment
Callouts

itself. You can also enable the Show review time option to include timestamp information in the comment
callouts.

Figure 143: Comment Callouts

There are several types of comments that can be added in Author mode:

Comments that you associate with specific content. To insert this type of comment,

select the content and use the Add Comment action that is available on the
toolbar (or in the Review submenu of the contextual menu).

Author Review
Comments

Oxygen XML Editor plugin | Editing Documents | 289

Comments that you add to an already existing tracked change insertion or deletion.
To insert this type of comment, right-click the change in the main editor or its

callout and select Comment Change.

Comments Added
to Tracked
Changes

You can use this type of comment to create discussion threads. To insert this type
of comment, right-click the change in the its callout and select Reply. A single

Replies to
Comments

callout is presented for a root comment or change and its replies. The replies are
displayed with an indentation in the callouts and those that are on the same level
are sorted depending on the timestamp.

Figure 144: Callout for a Comment with Replies

Tip: When adding, editing, or replying to a comment, you can use Enter to insert line breaks
and Oxygen XML Editor plugin will take the line breaks into account when presenting the
callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

As long as the Track Changes Deletions option is enabled in the Callouts preferences page, deletions
that are made while the Track Changes feature is enabled are displayed in callouts. A deletion callout

Tracked
Change

contains the type of callout (Deleted) and the name of the author that made the deletion. You can alsoDeletion
Callouts enable the Show deleted content in callout option to display the actual deleted content in the callout.

Additionally, you can enable the Show review time option to include timestamp information in the
deletion callouts.

Figure 145: Deletion Callouts

As long as the Track Changes Insertions option is enabled in the Callouts preferences page, insertions
that are done while the Track Changes feature is enabled are displayed in callouts. An insertion callout

Tracked
Change

contains the type of callout (Inserted) and the name of the author that inserted the content. You canInsertion
Callouts also enable the Show inserted content in callout option to display the actual deleted content in the

callout. Additionally, you can enable the Show review time option to include timestamp information in
the deletion callouts.

Figure 146: Insertion Callouts

Oxygen XML Editor plugin | Editing Documents | 290

Callout Contextual Menu Actions

Some useful actions are available when the contextual menu is invoked on a callout. The actions depend on the type of
callout.

The following actions are available in the contextual menu of an insertion or deletion callout:Insertion or
Deletion Opens a dialog box that allows you to add a reply to a comment or tracked change.

When replying to a comment, the dialog box shows the entire conversation in the
Reply

Callout
Actions comment thread, starting with the first comment added in the particular thread,

followed by all the replies. After replies are added to a comment thread, they are
displayed with an indentation in the callouts and Review view.

A toggle action that marks or unmarks a comment or comment thread as being
done. It is also available for tracked changes that are displayed in a callout. When

Mark as Done

a comment or change is marked as done, the callout is grayed out and cannot be
edited unless the action is toggled to the unmarked state. The action applies to
the particular comment and all of its descendents. This is useful for marking
comments or changes that have been addressed, leaving only those that still need
some attention.

Accepts the tracked change, removes the callout, and moves to the next change.
For an insertion change, it keeps the inserted text and for a deletion change, it
removes the content from the document.

Accept Change

Rejects the tracked change, removes the callout, and moves to the next change.
For an insertion change, it removes the inserted text and for a deletion change, it
preserves the original content.

Reject Change

Opens a dialog box that allows you to add a comment to an existing tracked
change. The comment will appear in a callout and a tooltip when hovering over

Comment
Change

the change. If the action is selected on an existing commented change, the dialog
box will allow you to edit the comment.

If the fragment that contains a callout is a reference, use this option to go to the
reference and edit the callout.

Edit Reference

Select this option to open the Callouts preference page where you can configure
various callout options.

Callouts Options

The following options are available in the contextual menu of a comment callout:Comment
Callout
Actions

Opens a dialog box that allows you to add a reply to a comment or tracked change.
When replying to a comment, the dialog box shows the entire conversation in the

Reply

comment thread, starting with the first comment added in the particular thread,
followed by all the replies. After replies are added to a comment thread, they are
displayed with an indentation in the callouts and Review view.

A toggle action that marks or unmarks a comment or comment thread as being
done. It is also available for tracked changes that are displayed in a callout. When

Mark as Done

a comment or change is marked as done, the callout is grayed out and cannot be
edited unless the action is toggled to the unmarked state. The action applies to the
particular comment and all of its descendents. This is useful for marking comments
or changes that have been addressed, leaving only those that still need some
attention.

Opens the Edit Comment dialog box that allows you to edit the selected comment.
You cannot edit a comment if you are not the author who inserted the original

Edit Comment

comment. Note that you cannot edit a comment that was added by another user,

so in that case, the action is Show Comment and the dialog box just displays
the comment without the possibility of editing it.

Oxygen XML Editor plugin | Editing Documents | 291

Removes a selected comment. If you remove a comment that contains replies, all
of the replies will also be removed.

Remove
Comment

If the fragment that contains a callout is a reference, use this option to go to the
reference and edit the callout.

Edit Reference

Select this option to open the Callouts preference page where you can configure
various callout options.

Callouts
Options

Printing Callouts

When you print a document from Author mode, all callouts that you or other authors have added to the document are
printed. For a preview of the document and its callouts, go to File > Print Preview.

Review View
The Review view is also useful for managing the information in callouts. In this view, changes and comments are
presented in a compact form, in the order they appear in the document, and they are synchronized with the changes in
the callouts. You can also search for specific changes or comments and it includes some filtering options (for example,
you can filter it to only show certain types of edits or to only show edits for a particular author).

For more information about this view, see the Review View on page 292 topic.

Related information
Managing Tracked Changes on page 278

Managing Comments on page 284

Review View on page 292

Review View

The Review view is a framework-independent panel, available both for built-in and custom XML document frameworks.
It is designed to offer an enhanced way of monitoring all the changes that you make to a document. This means you can
view and manage highlights, comments, and tracked changes using a single view.

The Review view is useful when you are working with documents that contain large number of edits. The edits are
presented in a compact form, in the order they appear in the document. Each type of edit is marked with a specific icon.
This view and the editing area are synchronized. When you select an edit listed in the Review view, its corresponding
fragment of text is highlighted in the editing area and the reverse is also true. For example, when you place the cursor
inside an area of text marked as inserted, its corresponding edit is selected in the list.

You can use this view to quickly navigate through changes and it includes some useful hover actions and contextual
menu actions to help you manage changes, comments, and highlights. You can also search for specific changes or
comments and it includes some filtering options (for example, you can filter it to only show certain types of edits or to
only show edits for a particular author).

Oxygen XML Editor plugin | Editing Documents | 292

Figure 147: Review View

To watch our video demonstration about the Review view, go to http://oxygenxml.com/demo/Review_Panel.html.

Activating the Review View
To activate the Review view, do one of the following:

• Click the Manage reviews button on the toolbar.
• Right-click anywhere in a document and select Review > Manage reviews.
• Open it from the Window > Show View menu.

Review View Settings
The upper part of the view contains a filtering area that allows you to search for specific edits. Use the small arrow
symbol from the right side of the search field to display the search history.

The Settings menu includes the following options:

• Show highlights - Controls whether or not the Review view displays the highlighting in your document.
• Show comments - Controls whether or not the Review view displays the comments in the document you are editing.
• Show track changes - Controls whether or not the Review view displays the inserted and deleted content in your

document.
• Show review time - Displays the time when the edits from the Review view were made.

• Configure review options - Opens the Review preferences page where you can configure various options for
review information.

Hover Actions in the Review View
You can use this view to easily manage changes, highlights, and comments that have been added by you or other users.
The following actions are available when you hover over the changes in the Review view:

Available for highlights and comments presented in the Review view and it removes the particular
highlight or comment from your document and moves to the next change.

Remove

Available for inserted and deleted content presented in the Review view and it accepts the particular
change in your document and moves to the next change.

Accept

Available for inserted and deleted content presented in the Review view and it rejects the particular
change in your document and moves to the next change.

Reject

Contextual Menu Actions in the Review View
Depending on the type of an edit, the following additional actions are available in the contextual menu of the Review
view:

Oxygen XML Editor plugin | Editing Documents | 293

http://oxygenxml.com/demo/Review_Panel.html

Opens the Reply dialog box where you can add a reply to comment or change.
The replies are displayed with an indentation in this view.

Reply

This toggles the comment or change as being done in the contextual menu and
grays it out in the callout. You can mark a whole discussion thread as being
done by selecting the action on the first (parent) comment in the thread.

Mark as Done

Available for comments added by other users and you can use this option to
view it in a Show comment dialog box.

Show Comment

Available for comments you have added and you can use this action to edit a
comment.

Edit Comment

Use this action to remove the selected comment.Remove Comment

Use this action to filter the edits to only show them for a certain author.Show only Reviews by '<author
name>'

Use this action to remove all the comments that appear in the edited document.Remove All Comments

Available for highlights and it opens a palette that allows you to choose a new
color for the highlighted content.

Change Color

Use this action to remove the selected highlight.Remove Highlight

Use this action to remove all the highlights with the same color from the entire
document.

Remove Highlights with the Same
Color

Use this action to remove all the highlights in your document.Remove All Highlights

Accepts the selected change and moves to the next change.Accept Change

Rejects the selected change and moves to the next change.Reject change

Available for insertions or deletions and you can use this option to add a
comment for the particular change.

Comment change

Accepts all the changes made to a document.Accept all changes

Rejects all the changes made to a document.Reject all changes

Related information
Managing Tracked Changes on page 278

Managing Comments on page 284

Managing Highlights on page 287

Author Callouts on page 288

Profiling and Conditional Text

Profiling text is a way to mark blocks of text meant to appear in some renditions of the document but not in others.
Conditional text differs from one variant of the document to another, while unconditional text appear in all document
versions. For example, you can mark a section of a document that is to be included in a manual to be designated for
expert users and another section for novice users, while unmarked sections are included in all renditions.

Oxygen XML Editor plugin allows you to define values for the profiling attributes and they can be easily managed to
filter content in the published output. You can switch between profile sets to see how the edited content looks like before
publishing. You can also conditionally profile parts of a document so that certain parts are displayed when certain
profiling conditions are set. You can even customize the colors and styling of how the profiling is displayed in Author
mode.

You can use profiling and conditional text to help you create documentation for multiple output scenarios, including:

• Multiple outputs for a series of similar products.
• Multiple outputs for various releases of a product.

Oxygen XML Editor plugin | Editing Documents | 294

• Multiple outputs for various audiences.

This feature helps to reduce the effort for updating and translating your content and provides an easy way to customize
the output for various audiences.

Figure 148: Example: Profiling Content

Oxygen XML Editor plugin includes a preconfigured set of profiling attribute values for some of the most popular
document types. These attributes can be redefined to match your specific needs. You can also define your own profiling
attributes for each document type (framework).

Related information
Customize Profiling Conditions on page 940

Managing Profiling Attributes

Oxygen XML Editor plugin includes support for defining your own profiling attributes, or modifying existing ones, for
each particular document type (framework). You can then apply the profiling attributes to content in Author mode to
see how the profiling will affect the output.

Create Profiling Attributes

To create custom profiling attributes for a specific document type, follow these steps:

1. Make sure the attribute is already defined in the document DTD or schema before continuing with the procedure.
2. Open the Preferences dialog box and go to Editor > Edit modes > Author > Profiling/Conditional Text .

3. In the Profiling Attributes section, press the New button.

Step Result: The Profiling Attribute configuration dialog box is opened.

Oxygen XML Editor plugin | Editing Documents | 295

Figure 149: Profiling Attribute Dialog Box

4. Configure your profiling attributes as desired. The following options are available in this dialog box:

Select the document type (framework) for which you have defined profiling attributes.Document type

The name of the new profiling attribute.Attribute name

This optional field is used for descriptive rendering in profiling dialog boxes.Display name

This table displays the values for the profiling attribute and allows you to configure them
by using the following buttons at the bottom of the table:

Attribute Values
Table

Opens a dialog box that allows you to insert a new value. The fields that
can be configured in this dialog box correspond to the columns in the table
and are as follows:

New

• Value - The attribute value.
• Label - You can specify a label for the attribute value that will be

rendered as its name in various components in Author mode (Edit
Profiling Attributes dialog box, Condition Set dialog box, Profiling
tab in the Edit Properties dialog box, DITA Maps Manager). If the
Label is not specified, the Value will be used as its rendered name.

• Description - A description for the attribute value that will be displayed
in the Attribute Values Table.

Use this button or double-click an attribute value to modify it.Edit

Removes the selected attributed value.Delete

Use the New button to add new attribute values. You can also specify an optional
description for each attribute value.

Select this option if you want the attribute to only accept a single value.Single value

Select this option if you want the attribute to accept multiple values, and you can choose
the type of delimiter to use. You can choose between space, comma, and semicolon, or you

Multiple values
separated by

Oxygen XML Editor plugin | Editing Documents | 296

can enter a custom delimiter in the text field. A custom delimiter must be supported by the
specified document type. For example, the DITA document type only accepts spaces as
delimiters for attribute values.

5. Click OK to confirm your selections and close the Profiling Attributes configuration dialog box.
6. Click Apply to save the profiling attribute.

Editing Existing Profiling Attributes

To modify an existing profiling attribute or its values, follow these steps:

1. Open the Preferences dialog box and go to Editor > Edit modes > Author > Profiling/Conditional Text.

2. In the Profiling Attributes section, press the Edit button to modify an existing condition set (you can also use
Delete button to remove a profiling attribute or the Up and Down buttons to change their priority).

Step Result: If you use the Edit button, the Profiling Attributes configuration dialog box is opened:

3. Modify your profiling attribute as desired.

4. To add or modify attribute values, use the New, Edit, or Delete buttons under the attribute values table.
5. Click OK to confirm your selections and close the Profiling Attributes configuration dialog box.
6. Click Apply to save your modifications.

Adding or Editing Profiling Attribute Values

There are several ways to add values to existing profiling attributes.

• Use the procedure in the Editing Existing Profiling Attributes on page 297 section to edit an existing attribute and
use the Profiling Attribute configuration dialog box to add, edit, or delete values for existing profiling attributes.

• You can add values directly to the existing profiling attributes in a document using the In-Place Attributes Editor in
Author mode, the Attributes view, or in the source code in Text mode. However, this just adds them to the document
and does not change the conditional text configuration. If you invoke the Edit Profiling Attributes action (from the
contextual menu in Author mode) on the new value, the Profiling Values Conflict dialog box will appear and it
includes an Add these values to the configuration action that will automatically add the new value to the particular
profiling attribute. It also includes an Edit the configuration action that opens the Profiling / Conditional Text
preferences page where you can edit the profiling configuration.

Note: If the Allow additional profiling attribute values collected from the document option is disabled in
the Profiling / Conditional Text preferences page, the Profiling Values Conflict dialog box will never
appear, so this second method will not be possible.

Figure 150: Profiling Values Conflict Dialog Box

Oxygen XML Editor plugin | Editing Documents | 297

Apply Profiling Attributes

Profiling attributes are applied on element nodes. You can apply profiling attributes on a text fragment, on a single
element, or on multiple elements in the same time. If there is no selection in your document, the profiling attributes are
applied on the element at the cursor position.

To profile a fragment from your document, select the fragment in the Author editing mode and follow these steps:

1. Invoke the Edit Profiling Attributes action from the contextual menu in Author mode.

Step Result: The Edit Profiling Attributes dialog box is displayed and shows all the profiling attributes and their
values, as defined for the particular document type (framework).

Figure 151: Edit Profiling Attributes Dialog Box

2. In the Edit Profiling Attributes dialog box, select the checkboxes that correspond to the attribute values you want
to apply on the document fragment.

3. Click OK to finish the profiling configuration.

Result: The attributes and attributes values selected in the Edit Profiling Attributes dialog box are set on the
elements contained in the profiled fragment. If you only select a fragment of content (rather than the entire element),
this fragment is wrapped in phrase-type elements in which the profiling attributes are set.

If the Show Profiling Attributes option (available in the Profiling / Conditional Text toolbar menu) is enabled,
a light green border is painted around profiled text, in the Author mode. Also, all profiling attributes set on the
current element are listed at the end of the highlighted block and in its tooltip message. To edit the attributes of a
profiled fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove
attribute values.

Oxygen XML Editor plugin | Editing Documents | 298

Figure 152: Profiling Attribute Value Form Control Pop Up

Related information
Customize Profiling Conditions on page 940

Managing Profiling Condition Sets

Multiple profiling attributes can be aggregated into a profiling condition set that allows you to apply more complex
filters on the document content. A Profiling Condition Set is a very powerful and convenient tool that can be used to
preview the content that goes into the published output. For example, an installation manual available in both Windows
and Linux variants can be profiled to highlight only the Linux procedures for more advanced users.

Create Profiling Condition Sets

To create a new profiling condition set, follow these steps:

1. Open the Preferences dialog box and go to Editor > Edit modes > Author > Profiling/Conditional Text.

2. In the Profiling Condition Sets section, press the New button.

Step Result: The Condition Set configuration dialog box is opened.

Oxygen XML Editor plugin | Editing Documents | 299

Figure 153: Condition Set Dialog Box

3. Configure your condition set as desired. The following options are available in this dialog box:

The name of the new condition set.Name

Select the document type (framework) for which you have defined profiling
attributes.

Document type

Select this option if you want the Profiling Condition Set to reference a DITAVAL
file. You can specify the path by using the text field, the Insert Editor Variables

button, or the Browse button.

Use DITAVAL file

You can select this option to define the combination of attribute values for your
condition set by selecting the appropriate checkboxes in this section. If you have

Include the content matching
the following conditions

defined a lot of profiling attributes, you can use the filter text field to search for
specific conditions.

4. Click OK to confirm your selections and close the Condition Set configuration dialog box.

5. Click Apply to save the condition set. All saved profiling condition sets are available in the Profiling /
Conditional Text toolbar drop-down menu.

Editing Existing Profiling Condition Sets

To modify an existing profiling condition set, follow these steps:

1. Open the Preferences dialog box and go to Editor > Edit modes > Author > Profiling/Conditional Text.

2. In the Profiling Condition Sets section, press the Edit button to modify an existing condition set (you can also
use Delete button to remove a condition set or the Up and Down buttons to change their priority).

Step Result: If you use the Edit button, the Condition Set configuration dialog box is opened:

3. Modify your condition set as desired.
4. Click OK to confirm your selections and close the Condition Set configuration dialog box.

Oxygen XML Editor plugin | Editing Documents | 300

5. Click Apply to save your modifications.

Apply Profiling Condition Sets

All defined Profiling Condition Sets are available as shortcuts in the Profiling / Conditional Text toolbar menu.
Select a menu entry to apply the condition set. The filtered content is then grayed-out in the Author mode, Outline
view, and DITA Maps Manager view. An element is filtered-out when one of its attributes is part of the condition set
and its value does not match any of the value covered by the condition set.

As an example, suppose that you have the following document:

If you apply the following condition set, it means that you want to filter out the content to only include
content written for an expert audience and content that has the Other attribute value of prop1.

Oxygen XML Editor plugin | Editing Documents | 301

This is how the document looks after you apply the condition set:

Oxygen XML Editor plugin | Editing Documents | 302

Profiling / Conditional Text Toolbar Menu

The Profiling / Conditional Text toolbar menu allows you to select some settings for how profiled content is
shown in the editor. It also displays a list of the profiling conditions sets that are defined in the current framework, and
it includes an option that opens a preferences page where you can define and configure profiling attributes and condition
sets.

The Profiling / Conditional Text menu includes the following:

Enable this option to turn on conditional styling.Show Profiling Colors and
Styles

Enable this option to turn on conditional text markers. They are displayed at the end
of conditional text blocks, as a list of attribute name and their currently set values.

Show Profiling Attributes

Controls if the content filtered out by a particular condition set is hidden or grayed-out
in the editor area and in the Outline and DITA Maps Manager views. When this

Show Excluded Content

option is enabled, the content filtered by the currently applied condition set is
grayed-out. To show only the content that matches the currently applied condition
set, disable this option.

Note: To remind you that document content is hidden, Oxygen XML Editor
plugin displays labels showing the currently applied condition set. These
labels are displayed in the Author mode editing area, the Outline view and
DITA Maps Manager view. Right-click any of the labels to quickly access
the Show Excluded Content action.

Click a condition set entry to activate it.List of all profiling condition
sets that match the current
document type

Opens the profiling options preferences page, where you can manage profiling
attributes and profiling conditions sets. You can also configure the profiling styles

Profiling Settings

and colors options from the colors/styles preferences page and the attributes rendering
preferences page.

All these settings are associated with the current project, being restored the next time you open it. For a new project all
Profiling/Conditional Text menu actions states are reset to their default values.

Customizing Colors and Styles for Rendering Profiling in Author Mode

By applying profiling colors and styles, you can customize the Author mode editing area to mark profiled content so
you can instantly spot differences between multiple variants of the output. This allows you to preview the content that
will go into the published output. The excluded text is grayed-out or hidden in Author mode, allowing you to easily
recognize the differences.

Oxygen XML Editor plugin | Editing Documents | 303

Figure 154: Example: Profiling Colors and Styles

Choosing the right style for a specific profiling attribute is a matter of personal taste, but be aware of the following:

• If the same block of text is profiled with two or more profiling attributes, their associated styles combine. Depending
on the styling, this might result in an excessively styled content that may prove difficult to read or work with.

• It is recommended that you only profile the differences. There is no need to profile common content, since excessive
profiling can visually pollute the document.

• A mnemonic associated with a style will help you instantly spot differences in the types of content.

Styling Profiling Attribute Values

To set colors and styles for profiling attribute values, follow these steps:

1. Enable the Show Profiling Colors and Styles option from the Profiling / Conditional Text toolbar drop-down
menu.

2. Go to Profiling Settings from the Profiling / Conditional Text toolbar drop-down menu. This is a shortcut
to the Profiling/Conditional Text options page. Select the Colors and Styles options page.

3. Configure the styling for your profiling attribute values.

Result: The styling is now applied in the Author editing mode, the Outline view, and DITA Maps Manager view.
Also, to help you more easily identify the profiling you want to apply in the current context, the styling is applied in the
Edit Profiling Attributes dialog box and in the inline form control pop up that allows you to quickly set the profiling
attributes.

Oxygen XML Editor plugin | Editing Documents | 304

Figure 155: Profiling Attribute Value Form Control Pop Up

Adding Tables in Author Mode

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in various document
types (DITA, DocBook, TEI, and XHTML). This opens the Insert Table dialog box. Each framework has a different
set of options that are available in this dialog box for configuring the properties of the tables. In all cases, Oxygen XML
Editor plugin includes some general editing actions for configuring tables in Author mode.

This section explains those general actions and the various configuration options and layouts for tables that are inserted
in the most commonly used frameworks.

Editing Tables in Author Mode

Oxygen XML Editor plugin provides support for editing data in a tabular form. A variety of features and operations are
available for editing tables in Author mode and they include the following:

Adjusting Column Width

To adjust the width of a column or table, drag the border of the column or table. The changes you make to a table are
committed into the source document. You can also manage table width and column width specifications from the source
document, and some types of tables include a colspecs section that appears above the table in Author mode that allows
you to easily configure some column specifications (such as column width). These column width specifications are
supported in fixed, dynamic, and proportional dimensions. The predefined DITA, DocBook, and XHTML frameworks
support this feature. The layout of the tables for these document types takes into account the table width and the column
width specifications particular to them.

Figure 156: Resizing a Table Column in Author Mode

Selecting Columns and Rows

To select a row or a column of a table, place the mouse cursor above the column or in front of the row you want to select,

then click. When hovering the mouse cursor in front of rows or above column headers, the cursor changes to for

row selection and to for column selection and that specific row or column is highlighted.

You can use the Ctrl and Shift keys to select multiple rows.

Oxygen XML Editor plugin | Editing Documents | 305

Selecting Cells

To select a cell in a table, press and hold the Ctrl key and click anywhere inside the cell. You can also use the Ctrl and
Shift keys to select multiple cells or to deselect cells from a selection. Alternatively, you can click the left corner of a

cell (right corner if you are editing a RTL document) to select it. The cursor changes to when you hover over the
corner of the cell.

You can also select multiple rectangular blocks of cells by using your mouse to select a cell and drag it to expand the
selection.

Drag and Drop

You can use the drag and drop action to edit the content of a table. You can select a column and drag it to another location
in the table you are editing. When you drag a column and hover the cursor over a valid drop position, Oxygen XML
Editor plugin decorates the target location with bold rectangles. The same drag and drop action is also available for
entire rows or columns by hovering the mouse cursor in front of rows or above column headers, then selecting the row
or column and dragging them to the desired location.

Copy/Cut and Paste

In Oxygen XML Editor plugin, you can copy/cut entire rows or columns of the table you are editing and paste the copied
columns or rows inside the same table or inside other tables. You can also use the copy or cut actions for tables located
in other documents. If you paste a row or column into non-table content, Oxygen XML Editor plugin introduces a new
table that contains the fragments of the copied row or column content.

For copied columns, the fragments are introduced starting with the header of the column. Also, if the copied column is
from a CALS table, Oxygen XML Editor plugin preserves column width information. This information is then used
when you paste the column into another CALS table.

Deleting Content

To delete the content of a cell, select the cell and press the Delete or Backspace key on your keyboard. If you press
Delete or Backspace again, the selected table structure will also be removed.

To delete an entire row or column, place the cursor inside the row or column (or select it) and use the Delete Row(s)
or Delete Column(s) actions from the toolbar or contextual menu. This will delete both the content and the table
structure for the current row or column.

To delete a selection of multiple rows or columns, select them and use the Delete Row(s) or Delete Column(s)
actions from the toolbar or contextual menu. This will delete both the content and the table structure for all rows or
columns that exist in the current selection.

Navigating Cells

Along with the normal mouse navigation, you can also navigate between cells by using the arrow keys on your keyboard.
By default, when using the arrow keys to navigate between table cells, the cursor jumps from one cell to another.
However, if the Quick navigation in tables option is disabled in the Cursor Navigation preferences page, using the
arrow keys to navigate between table cells will cause the cursor to navigate between XML nodes, rather than jumping
from cell to cell.

Related information
Adding Tables in DocBook on page 306

Adding Tables in DITA Topics on page 314

Adding Tables in XHTML Documents on page 323

Adding Tables in DocBook

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a DocBook document.

Oxygen XML Editor plugin | Editing Documents | 306

DocBook supports two types of tables:

• CALS table model - This is used for more advanced functionality.
• HTML table model - This is used for inserting a formal (captioned) HTML table.

Inserting a CALS Table Model in DocBook

To insert a CALS table model in DocBook documents, select the Insert Table action on the toolbar or from the
contextual menu. The Insert Table dialog box appears. Select CALS for the table Model. This model allows you to
configure a few more properties than the HTML model.

Figure 157: Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

If this checkbox is enabled, you can specify a title for your table in the adjacent text box.Title

Allows you to choose the number of Rows and Columns for the table.Table Size

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate table
header

If enabled, an extra row will be inserted at the bottom of the table to be used as the table footer.Generate table
footer

Allows you to specify the type of properties for column widths (colwidth attribute). You can
choose one of the following properties for the column width:

Column widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a colwidth attribute with the values listed as the number of
shares followed by an asterisk. The value of the shares are totaled and rendered as a percent.
For example, colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When
entering content into a cell in one column, the width proportions of the other columns are
maintained. If you change the width by dragging a column in Author mode, the values of the
colwidth attribute are automatically changed accordingly. By default, when you insert,
drag and drop, or copy/paste a column, the value of the colwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width
(colwidth attribute). Entering content into a cell changes the rendered width dynamically.
If you change the width by dragging a column in Author mode, a dialog box will be displayed
that asks you if you want to switch to proportional or fixed column widths.

Oxygen XML Editor plugin | Editing Documents | 307

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can
change the units in the colspecs (column specifications) section above the table or in Text
mode. The following units are allowed: pt (points), cm (centimeters), mm (millimeters), pi
(picas), in (inches).

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. There are a variety of allowed values, as specified in the DocBook CALS table
specifications.

Frame

Specifies whether or not to include row separators (rowsep attribute). The allowed values are:
0 (no separator) and 1 (include separators).

Row separator

Specifies whether or not to include column separators (colsep attribute). The allowed values
are: 0 (no separator) and 1 (include separators).

Column separator

Specifies the alignment of the text within the table (align attribute). The allowed values are:Alignment

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you will only
see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char attribute for
alignment.

When you click Insert, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the colspecs (column specifications) of your table. Click
the link to open the controls that allow you to adjust various column properties. Although they appear as part of the
Author mode, the colspecs link and its controls will not appear in your output. They are just there to make it easier
to adjust how the columns of your table are formatted.

Figure 158: CALS Table in DocBook

Inserting an HTML Table Model

To insert an HTML table model in DocBook documents, select the Insert Table action on the toolbar or from the
contextual menu. The Insert Table dialog box appears. Select HTML for the table Model.

Oxygen XML Editor plugin | Editing Documents | 308

http://www.docbook.org/tdg5/en/html/cals.table.html
http://www.docbook.org/tdg5/en/html/cals.table.html

Figure 159: Insert Table Dialog Box - Simple Model

The dialog box allows you to configure the following options when you select the HTML table model:

If this checkbox is enabled, you can specify a title for your table in the adjacent text box.Title

Allows you to choose the number of Rows and Columns for the table.Table Size

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate table
header

If enabled, an extra row will be inserted at the bottom of the table to be used as the table footer.Generate table
footer

Allows you to specify the type of properties for column widths (width attribute). You can choose
one of the following properties for the column width:

Column widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a width attribute (in a col element) with the values listed as the
number of shares followed by an asterisk. The value of the shares are totaled and rendered as a
percent. For example, width="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%.
When entering content into a cell in one column, the width proportions of the other columns
are maintained. If you change the width by dragging a column in Author mode, the values of
the width attribute are automatically changed accordingly. By default, when you insert, drag
and drop, or copy/paste a column, the value of the width attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width. Entering
content into a cell changes the rendered width dynamically. If you change the width by dragging
a column in Author mode, a dialog box will be displayed that asks you if you want to switch
to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can
change the units in the section above the table or in Text mode. In addition to the standard pixel,
percentage, and relative values, this attribute also allows the special form “0*” (zero asterisk),
which means that the width of the each column in the group should be the minimum width
necessary to hold the contents.

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. There are a variety of allowed values, as specified in the DocBook HTML table
specifications.

Frame

Oxygen XML Editor plugin | Editing Documents | 309

http://www.docbook.org/tdg5/en/html/html.table.html
http://www.docbook.org/tdg5/en/html/html.table.html

Specifies the alignment of the text within the table (align attribute). The allowed values are:Alignment

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you will only see
it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char attribute for
alignment.

When you click Insert, an HTML style of table is inserted into your document at the current cursor position.

When you insert an HTML table, you see a section above the table that allows you to easily configure some properties
without opening the Table Properties dialog box. Although this section appears as part of the Author mode, it will not
appear in your output. It is just there to make it easier to adjust how the columns of your table are formatted.

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add
or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the
formatting of your tables by using the Attributes view (Window > Show View > Attributes).

You can also use the Table Properties (Ctrl + T (Command + T on OS X)) action from the toolbar or contextual
menu to modify many of the properties of the table.

Also, remember that underneath the visual representation, both table models are really just XML, and, if necessary, you
can edit the XML directly by switching to Text mode.

DocBook Table Layouts

The DocBook framework supports the following two table model layouts:

• CALS table model
• HTML table model

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing a CALS
table model from the Insert Table dialog box, you have access to more configurable properties. The layout of a CALS
table includes a colspecs section that allows you to easily configure some properties without opening the Table Properties
dialog box. For example, you can change the value of column widths (colwidth attribute) or the text alignment
(align attribute). Although they appear as part of the Author mode, the colspecs link and its controls will not appear
in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Oxygen XML Editor plugin | Editing Documents | 310

Figure 160: CALS Table in DocBook

HTML Table Model Layout

Choosing an HTML table model from the Insert Table dialog box in a DocBook document inserts a formal (captioned)
HTML table. The layout of an HTML table includes a section above the table that allows you to easily configure some
properties without opening the Table Properties dialog box. For example, you can change the value of column widths
(width attribute) or the text alignment (align attribute). Although these properties appear as part of the Author mode,
they will not appear in your output. They are just there to make it easier to adjust how the columns of your table are
formatted.

Figure 161: HTML Table in DocBook

Pasting Tables in DocBook

Tables that are pasted into a DocBook file are automatically converted to the CALS model. If you want to overwrite this
behavior and instruct Oxygen XML Editor plugin to convert them to HTML tables, set the docbook.html.table
parameter to 1. You can find this parameter in the following stylesheet:

• [OXYGEN_INSTALL_DIR]/frameworks/docbook/resources/xhtml2db5Driver.xsl for DocBook
5

• [OXYGEN_INSTALL_DIR]/frameworks/docbook/resources/xhtml2db4Driver.xsl for DocBook
4

Table Validation in DocBook

Oxygen XML Editor plugin reports table layout problems that are detected in manual or automatic validations. The
types of errors that may be reported for DocBook table layout problems include:

CALS Tables

• A row has fewer cells than the number of columns detected from the table cols attribute.

Oxygen XML Editor plugin | Editing Documents | 311

• A row has more cells than the number of columns detected from the table cols attribute.
• A cell has a vertical span greater than the available rows count.
• The number of colspecs is different than the number of columns detected from the table cols attribute.
• The number of columns detected from the table cols attribute is different than the number of columns detected in

the table structure.
• The value of the cols, rowsep, or colsep attributes are not numeric.
• The namest, nameend, or colname attributes point to an incorrect column name.

HTML Tables

• A row has fewer cells than the number of table columns.
• The value of the colspan, rowspan, or span attributes are not numeric.
• A cell has a vertical span greater than the available rows count.

Editing Table Properties in DocBook

You can edit the structure of an existing table using the table buttons on the toolbar (or from the contextual menu) to
add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune
the formatting of your tables by using the Attributes view (Window > Show View > Attributes).

You can use the Table Properties (Ctrl + T (Command + T on OS X)) action to modify many of the properties of
the table. You can also adjust some of the properties in the specification section above the table.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available
depend on the context and location within the table in which the action was invoked.

Note: Some properties allow the following special values, depending on the context and the current properties
or values:

• <not set> - Use this value if you want to remove a property.
• <preserve> - If you select multiple elements that have the same property set to different values, you can

choose this value to keep the values that are already set. In some cases it can also be used to keep the current
non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.
• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of

the tab tells you how many rows will be affected.
• Column tab - The options in this tab apply to the current column or selection of multiple columns. A message at the

bottom of the tab tells you how many columns will be affected.
• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of

the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.

Oxygen XML Editor plugin | Editing Documents | 312

Figure 162:Table Properties Dialog Box with Cell Tab Selected (DocBook CALS Table Model)

The options in the four tabs include the following:

Specifies the horizontal alignment of text within the current table/column/cell or
selection of multiple columns/cells (align attribute). The allowed values are as
follows:

Horizontal alignment (Available
in the Table, Column, and Cell
tabs)

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so
you will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the
char attribute for alignment.

Specifies the vertical alignment of text within the current row/cell or selection of
multiple rows/cells (valign attribute). The allowed values are as follows:

Vertical alignment (Available in
the Row and Cell tabs)

• top - Aligns the text at the top of the cell.
• middle - Aligns the text in a vertically centered position.
• bottom - Aligns the text at the bottom of the cell.

Specifies whether or not to include column separators (colsep attribute). The
allowed values are: 0 (no separator) and 1 (include separators).

Column separator (Available in
the Table, Column, and Cell tabs)

Specifies whether or not to include row separators (rowsep attribute). The
allowed values are: 0 (no separator) and 1 (include separators).

Row separator (Available in all
four tabs)

Allows you to specify a value for the frame attribute. It is used to specify where
a border should appear in the table. There are a variety of allowed values, as
specified in the DocBook CALS table specifications.

Frame

Allows you change the row to a header, body, or footer type of row (within a
thead, tbody, or tfoot attribute).

Row type (Available in the Row
tab only)

Oxygen XML Editor plugin | Editing Documents | 313

http://www.docbook.org/tdg5/en/html/cals.table.html

Edit Table Properties for an HTML Table Model

For an HTML table model, the Table properties dialog box includes four tabs of options (Table, Row, Column, and
Cell) and the options include a Preview pane that shows a representation of the modification.

The options in the four tabs include the following:

Allows you to specify a value for the frame attribute. It is used to specify where a
border should appear in the table. There are a variety of allowed values, as specified
in the DocBook HTML table specifications.

Frame (Available only in the
Table tab)

Allows you change the row to a header, body, or footer type of row (within a thead,
tbody, or tfoot attribute).

Row type (Available in the Row
tab only)

Specifies the horizontal alignment for the text in the current row/column/cell or
selection of multiple rows/columns/cells (align attribute). The allowed values are:

Horizontal alignment
(Available in the Row, Column,
and Cell tabs)

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so
you will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char
attribute for alignment.

Specifies the vertical alignment for the text in the current row/column/cell or selection
of multiple rows/columns/cells (valign attribute). The allowed values are:

Vertical alignment (Available
in the Row, Column, and Cell
tabs)

• top - Aligns the text at the top of the cell.
• middle - Aligns the text in a vertically centered position.
• bottom - Aligns the text at the bottom of the cell.
• baseline - Sets the row so that all the table data share the same baseline. This

often has the same effect as the bottom value. However, if the fonts are different
sizes, the baseline value often makes the table look better.

Related information
Editing Tables in Author Mode on page 305

Adding Tables in DITA Topics

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a DITA topic. By
default, DITA supports three types of tables:

• DITA Simple table model - This is the most commonly used model for basic tables.
• OASIS Exchange Table Model (a subset of the CALS table model) - This is used for more advanced functionality.
• DITA Choice table model - This is used within a step in a DITA task document to describe a series of optional choices

that a user must make before proceeding.

If you are using a specialized DITA vocabulary, it may contain specialized versions of these table models.

Since DITA is a structured format, you can only insert a table in places in the structure of a topic where tables are
allowed. The Oxygen XML Editor plugin toolbar provides support for entering and editing tables. It also helps to indicate
where you are allowed to insert a table or its components by disabling the appropriate buttons.

Inserting a Simple Table Model

To insert a Simple DITA table, select the Insert Table action on the toolbar or from the contextual menu (or the
Table submenu from the DITA menu). The Insert Table dialog box appears. Select Simple for the table Model.

Oxygen XML Editor plugin | Editing Documents | 314

http://www.docbook.org/tdg5/en/html/html.table.html

Figure 163: Insert Table Dialog Box - Simple Model

The dialog box allows you to configure the following options when you select the Simple table model:

If this checkbox is enabled, you can specify a title for your table in the adjacent text box.Title

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate
table header

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose
one of the following properties for the column width:

Column
widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a relcolwidth attribute with the values listed as the number of
shares followed by an asterisk. The value of the shares are totaled and rendered as a percent. For
example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When
entering content into a cell in one column, the width proportions of the other columns are maintained.
If you change the width by dragging a column in Author mode, the values of the relcolwidth
attribute are automatically changed accordingly. By default, when you insert, drag and drop, or
copy/paste a column, the value of the relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width. Entering
content into a cell changes the rendered width dynamically. If you change the width by dragging
a column in Author mode, a dialog box will be displayed that asks you if you want to switch to
proportional or fixed column widths.

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified locally

are preserved. You can choose this option to override this behavior and pull the value of this
particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Oxygen XML Editor plugin | Editing Documents | 315

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

When you click Insert, a simple table is inserted into your document at the current cursor position.

Inserting a CALS Table Model (OASIS Exchange Table)

To insert an OASIS Exchange Table (CALS), select the Insert Table action on the toolbar or from the contextual
menu (or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select CALS for the table
Model. This model allows you to configure more properties than the Simple model.

Figure 164: Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

If this checkbox is enabled, you can specify a title for your table in the adjacent text box.Title

Allows you to choose the number of Rows and Columns for the table.Table Size

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate table
header

Allows you to specify the type of properties for column widths (colwidth attribute). You can
choose one of the following properties for the column width:

Column widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a colwidth attribute with the values listed as the number of shares
followed by an asterisk. The value of the shares are totaled and rendered as a percent. For example,
colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content
into a cell in one column, the width proportions of the other columns are maintained. If you change
the width by dragging a column in Author mode, the values of the colwidth attribute are
automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a
column, the value of the colwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width (colwidth
attribute). Entering content into a cell changes the rendered width dynamically. If you change the
width by dragging a column in Author mode, a dialog box will be displayed that asks you if you
want to switch to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can change
the units in the colspecs (column specifications) section above the table or in Text mode. The
following units are allowed: pt (points), cm (centimeters), mm (millimeters), pi (picas), in
(inches).

Oxygen XML Editor plugin | Editing Documents | 316

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the value of
this particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Specifies whether or not to include row separators (rowsep attribute). The allowed values are: 0
(no separator) and 1 (include separators).

Row separator

Specifies whether or not to include column separators (colsep attribute). The allowed values are:
0 (no separator) and 1 (include separators).

Column
separator

Specifies the alignment of the text within the table (align attribute). The allowed values are:Alignment

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you will only see
it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char attribute for
alignment.

• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified
locally are preserved. You can choose this option to override this behavior and pull the value of
this particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

When you click Insert, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the colspecs (column specifications) of your table. Click
the link to open the controls that allow you to adjust various column properties. Although they appear as part of the
Author mode, the colspecs link and its controls will not appear in your output. They are just there to make it easier
to adjust how the columns of your table are formatted.

Oxygen XML Editor plugin | Editing Documents | 317

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

Figure 165: CALS Table in DITA

Inserting a Choice Table Model

To insert a Choice table within a step element in a DITA task, select the Insert Table action on the toolbar or in
the Insert submenu from the contextual menu (or the Table submenu from the DITA menu), or select choicetable
from the Content Completion Assistant. The Insert Table dialog box appears. Select Simple for the table Model.

Figure 166: Insert Table Dialog Box - Choice Model

The dialog box allows you to configure the following options when you insert a Choice table model within a DITA task:

Allows you to choose the number of Rows and Columns for the table.Table Size

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate table
header

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose
one of the following properties for the column width:

Column
widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a relcolwidth attribute with the values listed as the number of
shares followed by an asterisk. The value of the shares are totaled and rendered as a percent. For
example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When
entering content into a cell in one column, the width proportions of the other columns are
maintained. If you change the width by dragging a column in Author mode, the values of the
relcolwidth attribute are automatically changed accordingly. By default, when you insert,
drag and drop, or copy/paste a column, the value of the relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width. Entering
content into a cell changes the rendered width dynamically. If you change the width by dragging
a column in Author mode, a dialog box will be displayed that asks you if you want to switch to
proportional or fixed column widths.

Oxygen XML Editor plugin | Editing Documents | 318

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the value of
this particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

When you click Insert, a Choice table is inserted into your task document at the current cursor position (within a step
element).

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add
or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the
formatting of your tables by using the Attributes view (Window > Show View > Attributes). See the DITA documentation
for a full explanation of these attributes.

You can also use the Table Properties (Ctrl + T (Command + T on OS X)) action from the toolbar or contextual
menu (or DITA menu) to modify many of the properties of the table.

Also, remember that underneath the visual representation, both table models are really just XML, and, if necessary, you
can edit the XML directly by switching to Text mode.

Related information
Editing Tables in Author Mode on page 305

DITA Table Layouts

Depending on the context, DITA accepts the following table layouts:

• CALS table model
• Simple table model
• Choice table model

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing a CALS
table model from the Insert Table dialog box, you have access to more configurable properties. The layout of a CALS
table includes a colspecs section that allows you to easily configure some properties without opening the Table Properties
dialog box. For example, you can change the value of column widths (colwidth attribute) or the text alignment
(align attribute). Although they appear as part of the Author mode, the colspecs link and its controls will not appear
in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Oxygen XML Editor plugin | Editing Documents | 319

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/table2.html#table2

Figure 167: CALS Table in DITA

Simple Table Model Layout

When choosing a Simple table model from the Insert Table dialog box, you only have access to configure a few
properties. For example, you can choose the number of rows and columns, specify values for frames, and choose from
a few types of properties for the column width. The layout of this type of table is very simple, as the name suggests.

Figure 168: DITA Simple Table

Choice Table Model Layout

A Choice table model is used within a step in a DITA task document to describe a series of optional choices that a user
must make before proceeding. The choicetable element is a useful device for documenting options within a single
step of a task. You can insert Choice tables in DITA tasks either by selecting choicetable from the Content

Completion Assistant (within a step element) or by using the Insert Table action on the toolbar or from the
contextual menu). The options and layout of a Choice table is similar to the Simple table model.

Figure 169: DITA Choice Table

Table Validation in DITA

Oxygen XML Editor plugin reports table layout problems that are detected in manual or automatic validations. When

you validate a DITA map with the Validate and Check for Completeness action, if the Report table layout problems
option is enabled in the DITA Map Completeness Check dialog box, table layout problems will be reported in the
validation results. The types of errors that may be reported for DITA table layout problems include:

CALS Tables

• A row has fewer cells than the number of columns detected from the table cols attribute.

Oxygen XML Editor plugin | Editing Documents | 320

• A row has more cells than the number of columns detected from the table cols attribute.
• A cell has a vertical span greater than the available rows count.
• The number of colspecs is different than the number of columns detected from the table cols attribute.
• The number of columns detected from the table cols attribute is different than the number of columns detected in

the table structure.
• The value of the cols, rowsep, or colsep attributes are not numeric.
• The namest, nameend, or colname attributes point to an incorrect column name.

Simple or Choice Tables

• A row has fewer cells than the number of table columns.

Editing Table Properties in DITA

To customize the look of a table in DITA, place the cursor anywhere in a table and invoke the Table Properties
(Ctrl + T (Command + T on OS X)) action from the toolbar or the Table submenu of the contextual menu (or DITA
menu). This opens the Table properties dialog box.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available
depend on the context and location within the table in which the action was invoked.

Note: Some properties allow the following special values, depending on the context and the current properties
or values:

• <not set> - Use this value if you want to remove a property.
• <preserve> - If you select multiple elements that have the same property set to different values, you can

choose this value to keep the values that are already set. In some cases it can also be used to keep the current
non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.
• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of

the tab tells you how many rows will be affected.
• Column tab - The options in this tab apply to the current column or selection of multiple columns. A message at the

bottom of the tab tells you how many columns will be affected.
• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of

the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.

Oxygen XML Editor plugin | Editing Documents | 321

Figure 170:Table Properties Dialog Box with Cell Tab Selected (DITA CALS Table Model)

The options in the four tabs include the following:

Specifies the horizontal alignment of text within the current table/column/cell or selection
of multiple columns/cells (align attribute). The allowed values are as follows:

Horizontal alignment
(Available in the Table,
Column, and Cell tabs)

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you
will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char
attribute for alignment.

• -dita-use-conref-target - Normally, when using a conref, the values of attributes
specified locally are preserved. You can choose this option to override this behavior
and pull the value of this particular attribute from the conref target. For more
information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Specifies the vertical alignment of text within the current row/cell or selection of multiple
rows/cells (valign attribute). The allowed values are as follows:

Vertical alignment
(Available in the Row and
Cell tabs)

• top - Aligns the text at the top of the cell.
• middle - Aligns the text in a vertically centered position.
• bottom - Aligns the text at the bottom of the cell.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes

specified locally are preserved. You can choose this option to override this behavior
and pull the value of this particular attribute from the conref target. For more
information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Oxygen XML Editor plugin | Editing Documents | 322

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

Specifies whether or not to include column separators (colsep attribute). The allowed
values are: 0 (no separator) and 1 (include separators).

Column separator
(Available in the Table,
Column, and Cell tabs)

Specifies whether or not to include row separators (rowsep attribute). The allowed
values are: 0 (no separator) and 1 (include separators).

Row separator (Available
in all four tabs)

Allows you to specify a value for the frame attribute. It is used to specify where a border
should appear in the table. The allowed values are as follows:

Frame (Available only in
the Table tab)

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes

specified locally are preserved. You can choose this option to override this behavior
and pull the value of this particular attribute from the conref target. For more
information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Edit Table Properties for a Simple or Choice Table Model
For a Simple or Choice table model, the Table properties dialog box only allows you to edit a few options.

Table tab Allows you to specify a value for the frame attribute. It is used to specify where a border
should appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes

specified locally are preserved. You can choose this option to override this behavior and
pull the value of this particular attribute from the conref target. For more information,
see http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Row tab Allows you change the row to a body or header type of row.Row type

Related information
Adding Tables in DITA Topics on page 314

Editing Tables in Author Mode on page 305

Adding Tables in XHTML Documents

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in an XHTML document.
This action opens the Insert Table dialog box.

Oxygen XML Editor plugin | Editing Documents | 323

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

Figure 171: Insert Table Dialog Box in XHTML

The dialog box allows you to configure the following options:

If this checkbox is enabled, you can specify a title (caption) for your table in the adjacent text box.Caption

Allows you to choose the number of Rows and Columns for the table.Table Size

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate table
header

If enabled, an extra row will be inserted at the bottom of the table to be used as the table footer.Generate table
footer

Allows you to specify the type of properties for column widths (width attribute). You can choose
one of the following properties for the column width:

Column widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a width attribute (in a col element) with the values listed as the
number of shares followed by an asterisk. The value of the shares are totaled and rendered as
a percent. For example, width="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%.
When entering content into a cell in one column, the width proportions of the other columns
are maintained. If you change the width by dragging a column in Author mode, the values of
the width attribute are automatically changed accordingly. By default, when you insert, drag
and drop, or copy/paste a column, the value of the width attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width. Entering
content into a cell changes the rendered width dynamically. If you change the width by dragging
a column in Author mode, a dialog box will be displayed that asks you if you want to switch
to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can
change the units in the section above the table or in Text mode. In addition to the standard pixel,
percentage, and relative values, this attribute also allows the special form “0*” (zero asterisk),
which means that the width of the each column in the group should be the minimum width
necessary to hold the contents.

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. There are a variety of allowed values, as specified in HTML specifications.

Frame

Specifies the alignment of the text within the table (align attribute). The allowed values are:Alignment

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Oxygen XML Editor plugin | Editing Documents | 324

Note: The justify value cannot be rendered in Author mode, so you will only see
it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char attribute for
alignment.

When you click Insert, an HTML style of table is inserted into your XHTML document at the current cursor position.

When you insert an HTML table, you see a link for setting the colspecs (column specifications) of your table. Click
the link to open the controls that allow you to adjust various column properties. Although they appear as part of the
Author mode, the colspecs link and its controls will not appear in your output. They are just there to make it easier
to adjust how the columns of your table are formatted.

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add
or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the
formatting of your tables by using the Attributes view (Window > Show View > Attributes).

Also, remember that underneath the visual representation, both table models are really just XML, and, if necessary, you
can edit the XML directly by switching to Text mode.

XHTML Table Layout

When you insert a table in an XHTML document, an HTML type of table is added. The layout of an XHTML table
includes a colspecs section that allows you to easily configure some properties. For example, you can change the value
of column widths (width attribute) or the text alignment (align attribute). Although they appear as part of the Author
mode, the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust
how the columns of your table are formatted.

Figure 172:Table Layout in XHTML Documents

Sorting Content in Tables and List Items

Oxygen XML Editor plugin offers support for sorting the content of tables and list items of ordered and unordered lists.

What do you want to do?

• Sort an entire table.
• Sort a selection of rows in a table.
• Sort a table that contains cells merged over multiple rows.
• Sort list items.

Sorting a Table

To sort rows in a table, select the entire table (or specific rows) and use the Sort action from the main toolbar or the
contextual menu. This opens the Sort dialog box.

Oxygen XML Editor plugin | Editing Documents | 325

Figure 173: Sort Dialog Box

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on
whether you sort an entire table or only a selection of its rows.

Note: When you invoke the sorting operation over an entire table, the Selected rows option is disabled.

The Criteria section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by the
following:

• A name, which is collected from the column heading.
• The type of the information that is sorted. You can choose between the following:

• Text - Alphanumeric characters.
• Numeric - Regular integer or floating point numbers are accepted.
• Date - Default date and time formats from the local OS are accepted (such as short, medium, long, full, xs:date,

and xs:dateTime).

• The sorting direction (either ascending or descending).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting operation is
invoked.

After you finish configuring the options in the Sort dialog box, click OK to complete the sorting operation. If you want
to revert to the initial order of your content, press Ctrl + Z (Command + Z on OS X) on your keyboard.

Note: The sorting support takes the value of the xml:lang attribute into account and sorts the content in a
natural order.

Sorting a Selection of Rows

To sort a selection of rows in a table, select the rows that you want to sort and either right-click the selection and choose

Sort, or click Sort on the main toolbar. This opens the Sort dialog box.

Oxygen XML Editor plugin | Editing Documents | 326

Figure 174: Sort Selected Rows

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on
whether you sort an entire table or only a selection of its rows.

The Sort dialog box also allows you to apply the sorting operation to the entire table, using the All rows option.

The Criteria section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by the
following:

• A name, which is collected from the column heading.
• The type of the information that is sorted. You can choose between the following:

• Text - Alphanumeric characters.
• Numeric - Regular integer or floating point numbers are accepted.
• Date - Default date and time formats from the local OS are accepted (such as short, medium, long, full, xs:date,

and xs:dateTime).

• The sorting direction (either ascending or descending).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting operation is
invoked.

After you finish configuring the options in the Sort dialog box, click OK to complete the sorting operation. If you want
to revert to the initial order of your content, press Ctrl + Z (Command + Z on OS X) on your keyboard.

Note: The sorting support takes the value of the xml:lang attribute into account and sorts the content in a
natural order.

Sort Using Multiple Criteria

You can also sort an entire table or a selection of its rows based on multiple sorting criteria. To do so, enable the rest of
boxes in the Criteria section of the Sort dialog box, configure the applicable items, and click OK to complete the sorting
operation.

Oxygen XML Editor plugin | Editing Documents | 327

Figure 175: Sorting Based on Multiple Criteria

Sorting a Table that Contains Merged Cells

If a table contains cells that span over multiple rows, you can not perform the sorting operation over the entire table.
Still, the sorting mechanism works over a selection of rows that do not contain rowspans.

Note: For this type of table, the Sort dialog box keeps the All rows option disabled even if you perform the
sorting operation over a selection of rows.

Sorting List Items

A sorting operation can be performed on various types of lists and list items. Oxygen XML Editor plugin provides
support for sorting the following types of lists:

• Ordered list (ol)
• Unordered list (ul)
• Parameter list (parml)
• Simple list (sl)
• Required conditions (reqconds)
• Supplies list (supplyli)
• Spare parts list (sparesli)
• Safety conditions (safety)
• Definitions list (dl)

The sorting mechanism works on an entire list or on a selection of list items. To sort items in a list, select the items or

list and use the Sort action from the main toolbar or the contextual menu. This opens the Sort dialog box.

Figure 176: Sorting List Items

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on
whether you sort an entire list or only a selection of its items.

Oxygen XML Editor plugin | Editing Documents | 328

Note: When you invoke the sorting operation over an entire list, the Selected rows option is disabled.

The Criteria section specifies the sorting criteria, defined by the following:

• The name of the type of item being sorted.
• The type of the information that is sorted. You can choose between the following:

• Text - Alphanumeric characters.
• Numeric - Regular integer or floating point numbers are accepted.
• Date - Default date and time formats from the local OS are accepted (such as short, medium, long, full, xs:date,

and xs:dateTime).

• The sorting direction (either ascending or descending).

After you finish configuring the options in the Sort dialog box, click OK to complete the sorting operation. If you want
to revert to the initial order of your content, press Ctrl + Z (Command + Z on OS X) on your keyboard.

Note: The sorting support takes the value of the xml:lang attribute into account and sorts the content in a
natural order.

Inserting Images

To insert an image in a document while editing in Author mode, use one of the following methods:

• Click the Insert Image action from the toolbar and choose the image file you want to insert. Oxygen XML Editor
plugin tries to reference the image with a path that is relative to that of the document you are currently editing. For
example, if you want to add the file:/C:/project/xml/dir/img1.jpg image into the
file:/C:/project/xml/doc1.xml document, Oxygen XML Editor plugin inserts a reference to
dir/img1.jpg. This is useful when multiple users work on a common project and they have it stored in multiple
locations.

Note: The Insert Image action is available for the following document types: DocBook 4, DocBook 5,
DITA, TEI P4, TEI P5, XHTML.

• Drag an image from other application and drop it in the Author editing mode. If it is an image file, it is inserted as
a reference to the image file. For example, in a DITA topic the path of the image file is inserted as the value of the
href attribute in an image element:

<image href="../images/image_file.png"/>

Note: To replace an image, just drag and drop a new image over the existing one. Oxygen XML Editor
plugin will automatically update the reference to the new image.

• Copy the image from another application (such as an image editor) and paste it into your document. Oxygen XML
Editor plugin prompts you to first save it. After saving the image, a reference to that file path is inserted at the paste
position.

Related information
Image Map Editor on page 329

Image Rendering in Author Mode on page 341

Image Map Editor

Oxygen XML Editor plugin includes an Image Map Editor that allows you to create hyperlinks in specific areas of an
image that will link to various destinations. For example, an image that is a map of the seven continents may have a
specific hyperlink for each continent that links to a resource that has information about the particular continent. The
main purpose of an image map is to provide an easy way of linking various parts of an image without having to divide
the image into separate image files.

Oxygen XML Editor plugin | Editing Documents | 329

The support for image maps in Oxygen XML Editor plugin is available for images in DITA, DocBook, TEI, and XHTML
document types (frameworks). To create an image map on an existing image and open the Image Map Editor, right-click
the image and select Image Map Editor.

Figure 177: Image Map Rendered in Author Mode

Image Maps in DITA

Oxygen XML Editor plugin includes support for image maps in DITA documents through the use of the imagemap
element. This feature provides an easy way to create hyperlinks in various areas within an image without having to
divide the image into separate image files. The visual Author editing mode includes an Image Map Editor that helps
you to easily create and configure image maps.

Oxygen XML Editor plugin | Editing Documents | 330

Figure 178: Image Map Editor in DITA

Image Map Editor Interface in DITA

The interface of the Image Map Editor consists of the following sections and actions:

Toolbar Use this button to draw a rectangular shape over an area in the image.
You can drag any of the four points to adjust the size and shape of the
rectangle.

New Rectangle

Use this button to draw a circle over an area in the image. You can
drag any of the four points to adjust the size of the circle.New Circle

Use this button to draw a polygon shape over an area in the image.
This actions opens a dialog box that allows you to select the numberNew Polygon

of points for the polygon. You can drag any of the points to adjust the
size and shape of the polygon.

Use this button to create a duplicate of the currently selected shape.
Duplicate

Use this button to delete the currently selected shape.
Delete

Use this button to undo the last action.
Undo

Use this button to redo the last action that was undone.
Redo

Use this button to toggle between showing or hiding the numbers for
the shapes.Show/Hide Numbers

Oxygen XML Editor plugin | Editing Documents | 331

Use this button to bring the currently selected shape forward to the top
layer.Bring Shape to Front

Use this button to bring the currently selected shape forward one layer.
Bring Shape Forward

Use this button to send the currently selected shape back one layer.
Send Shape Backward

Use this button to send the currently selected shape back to the bottom
layer.Send Shape to Back

Use this drop-down menu to select a color scheme for the lines and
numbers of the shapes.

Color Chooser

Use this slider to zoom the image in or out in the main image pane.Zoom Slider

This main image pane is where you work with shapes to add hyperlinks to multiple areas within an image.
Use the mouse to move shapes around in the image to the desired area and drag the points on a selected

Image
Pane

shape to adjust its size and shape. It is easy to see which shape is selected in this image pane because the
border of the selected shape changes from a solid line to a dotted line.

Area
Properties

Allows you to choose the target resource that you want the selected area (shape) to be linked
to. You can enter the path to the target in the text field but the easiest way to select a target
is to use the Link drop-down menu to the right of the text field. You can choose between

Target

the following types of links: Cross Reference, File Reference, or Web Link. All three types
will open a dialog box that allows you to define the target resource. This linking process is
similar to the normal process of inserting links in DITA by using the identical Link
drop-down menu from the main toolbar.

When you click OK to finalize your changes in the Image Map Editor, an xref element
will be inserted with either an href attribute or a keyref attribute. Additional attributes
may also be inserted and their values depend on the target and the type of link. For details
about the three types of links and their dialog boxes, see Inserting a Link in Oxygen XML
Editor plugin on page 1181.

You can enter an optional description for the selected area (shape) that will be displayed in
the Image Map Details section in Author mode and as a tooltip message when the end user
hovers over the hyperlink in the output.

Description

How to Create an Image Map in DITA

To create an image map on an existing image in a DITA document, follow these steps:

1. Right-click the image and select Image Map Editor.

Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting one of the shape buttons (New Rectangle, New Circle, or New
Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form.
You can use the other buttons on the toolbar to adjust its layer and color, or to perform other editing actions.

4. With the shape selected, use one of the linking options in the Link drop-down menu to select a target resource
(or enter its path in the Target text field).

5. (Optional) Enter a Description for the selected area (shape).
6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.
7. When you are finished creating hyperlinks, click OK to process your changes.

Oxygen XML Editor plugin | Editing Documents | 332

Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In
Author mode, the image map is now rendered over the image. If the image includes an alt element, its value will be
displayed under the image. The following two buttons will also now be available under the image in Author mode:

• Image Map Editor - Click this button to open the Image Map Editor.
• Image Map Details - Click this button to expand a section that displays the details of the image map and allows you

to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this
section, you also need to add or remove coordinates to match the requirements of the new shape.

Figure 179: Image Map Details

How to Edit an Existing Image Map in DITA

To edit an existing image map, right-click the image and select Image Map Editor (or click the Image Map Editor
button below the image). This opens the Image Map Editor where you can make changes to the image map with a
visual editor. You can also make changes to the XML structure of the image map in the Text editing mode.

You can also click the Image Map Details button below the image to expand a section that displays the details of the
image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change
the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown

inside each shape represent its layer (if the numbers are not displayed, click the Show/Hide Numbers button on the
Image Map Editor toolbar). To change the layer order for a shape, use the layer buttons on the Image Map Editor

toolbar (, , ,).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display
a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely
inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

Warning: PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains
circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might
affect overlaps in the output.

Related information
DITA 'imagemap' Element Specifications

Adding Images in DITA Topics on page 1150

Image Maps in DocBook

Oxygen XML Editor plugin includes support for image maps in DocBook documents through the use of the areaspec
element. This feature provides an easy way to create hyperlinks in various parts of an image without having to divide
the image into separate image files. The visual Author editing mode includes an Image Map Editor that helps you to
easily create and configure image maps.

Oxygen XML Editor plugin | Editing Documents | 333

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/imagemap.html#imagemap

Figure 180: Image Map Editor in DocBook

Image Map Editor Interface in DocBook

The interface of the Image Map Editor consists of the following sections and actions:

Toolbar Use this button to draw a rectangular shape over an area in the
image. You can drag any of the four points to adjust the size and
shape of the rectangle.

New Rectangle

Use this button to create a duplicate of the currently selected shape.
Duplicate

Use this button to delete the currently selected shape.
Delete

Use this button to undo the last action.
Undo

Use this button to redo the last action that was undone.
Redo

Use this button to toggle between showing or hiding the numbers
for the shapes.Show/Hide Numbers

Use this button to bring the currently selected shape forward to the
top layer.Bring Shape to Front

Use this button to bring the currently selected shape forward one
layer.Bring Shape Forward

Use this button to send the currently selected shape back one layer.
Send Shape Backward

Oxygen XML Editor plugin | Editing Documents | 334

Use this button to send the currently selected shape back to the
bottom layer.Send Shape to Back

Use this drop-down menu to select a color scheme for the lines and
numbers of the shapes.

Color Chooser

Use this slider to zoom the image in or out in the main image pane.Zoom Slider

This main image pane is where you work with shapes to add hyperlinks to multiple areas within an image.
Use the mouse to move shapes around in the image to the desired area and drag the points on a selected

Image
Pane

shape to adjust its size and shape. It is easy to see which shape is selected in this image pane because the
border of the selected shape changes from a solid line to a dotted line.

Area
Properties

The identifier for the selected area. This will become the value of the xml:id attribute
for the particular area element.

ID

Allows you to choose the target resource that you want the selected area to be linked to.
You can enter the path to the target in the text field but the easiest way to select a target

Target

is to use the Link drop-down menu to the right of the text field. You can choose
between the following types of links: Cross Reference or Web Link. Both types open
a dialog box that allows you to select the target resource and it is inserted as the value
of an xlink:href attribute.

You can enter an optional description for the selected area that will be displayed in the
Image Map Details section in Author mode and as a tooltip message when the end user
hovers over the hyperlink in the output.

Description

How to Create an Image Map in DocBook

To create an image map on an existing image in a DocBook document, follow these steps:

1. Right-click the image and select Image Map Editor.

Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting the New Rectangle button.
3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form.

You can use the other buttons on the toolbar to adjust its layer and color, or to perform other editing actions.

4. With the shape selected, enter an ID and use one of the linking options in the Link drop-down menu to select
a target resource (or enter its path in the Target text field).

5. (Optional) Enter a Description for the selected area (shape).

6. If you want to add more hyperlinks to the image, select New Rectangle button again and repeat the appropriate
steps.

7. When you are finished creating hyperlinks, click OK to process your changes.

Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In
Author mode, the image map is now rendered over the image. If the image includes an alt element, its value will be
displayed above the image. The following two buttons will also now be available at the top of the image in Author
mode:

• Image Map Editor - Click this button to open the Image Map Editor.
• Image Map Details - Click this button to expand a section that displays the details of the image map.

How to Edit an Existing Image Map in DocBook

To edit an existing image map, right-click the image and select Image Map Editor (or click the Image Map Editor
button above the image). This opens the Image Map Editor where you can make changes to the image map with a
visual editor. You can also make changes to the XML structure of the image map in the Text editing mode.

Oxygen XML Editor plugin | Editing Documents | 335

Note: If you want to link a set of related area elements, you can use areaset elements. However, the layer

buttons on the Image Map Editor toolbar (, , ,) will be disabled for areas inside an areaset
element. Therefore, to change the layer of an areaset, you need to move it in Text mode where the layer
order is sequential (the area or areaset that appears first is the top layer, and so on).

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown

inside each shape represent its layer (if the numbers are not displayed, click the Show/Hide Numbers button on the
Image Map Editor toolbar). To change the layer order for a shape, use the layer buttons on the Image Map Editor

toolbar (, , ,).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display
a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely
inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

Related information
DocBook 'areaspec' Element Specifications

Image Maps in TEI

Oxygen XML Editor plugin includes support for image maps in TEI documents through the use of the facsimile
element. In TEI documents, this feature provides an easy way to create areas (using zone elements) in an image where
the end user can hover or click to retrieve more information about that particular area of the image. The visual Author
editing mode includes an Image Map Editor that helps you to easily create the areas in the image.

Oxygen XML Editor plugin | Editing Documents | 336

http://www.docbook.org/tdg5/en/html/areaspec.html

Figure 181: Image Map Editor in TEI

Image Map Editor Interface in TEI

The interface of the Image Map Editor consists of the following sections and actions:

Toolbar Use this button to draw a rectangular shape over an area in the image.
You can drag any of the four points to adjust the size and shape of
the rectangle.

New Rectangle

Use this button to draw a polygon shape over an area in the image.
This actions opens a dialog box that allows you to select the numberNew Polygon

of points for the polygon. You can drag any of the points to adjust
the size and shape of the polygon.

Use this button to create a duplicate of the currently selected shape.
Duplicate

Use this button to delete the currently selected shape.
Delete

Use this button to undo the last action.
Undo

Use this button to redo the last action that was undone.
Redo

Use this button to toggle between showing or hiding the numbers
for the shapes.Show/Hide Numbers

Use this button to bring the currently selected shape forward to the
top layer.Bring Shape to Front

Oxygen XML Editor plugin | Editing Documents | 337

Use this button to bring the currently selected shape forward one
layer.Bring Shape Forward

Use this button to send the currently selected shape back one layer.
Send Shape Backward

Use this button to send the currently selected shape back to the
bottom layer.Send Shape to Back

Use this drop-down menu to select a color scheme for the lines and
numbers of the shapes.

Color Chooser

Use this slider to zoom the image in or out in the main image pane.Zoom Slider

This main image pane is where you work with shapes to add areas (zones) within an image. Use the
mouse to move shapes around in the image to the desired area and drag the points on a selected shape

Image Pane

to adjust its size and shape. It is easy to see which shape is selected in this image pane because the border
of the selected shape changes from a solid line to a dotted line.

Area
Properties

The identifier for the selected area. This will become the value of the xml:id attribute for
the particular zone element. When you insert a new zone, a unique ID is automatically
generated and displayed in this field. However, you can change this value if you want to.

ID

How to Create an Image Map in TEI

To create an image map on an existing image in a TEI document, follow these steps:

1. The image (graphic) must be inside a facsimile element to support the Image Map Editor feature.
2. Right-click the image and select Image Map Editor.

Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.

3. Add areas (zones) in the image by selecting one of the shape buttons (New Rectangle or New Polygon).
4. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form.

You can use the other buttons on the toolbar to adjust its layer and color, or to perform other editing actions.
5. With the shape selected, enter an ID.
6. If you want to add more areas (zones) to the image, select a shape button again and repeat the appropriate steps.
7. When you are finished, click OK to process your changes.

Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In
Author mode, the image map is now rendered over the image and the following two buttons will now be available at
the bottom of the image:

• Image Map Editor - Click this button to open the Image Map Editor.
• Image Map Details - Click this button to expand a section that displays the details of the image map.

How to Edit an Existing Image Map in TEI

To edit an existing image map, right-click the image and select Image Map Editor (or click the Image Map Editor
button below the image). This opens the Image Map Editor where you can make changes to the image map with a
visual editor. You can also make changes to the XML structure of the image map in the Text editing mode.

Restriction: Currently, if zone elements contain additional content (such as text or comments) and you edit
the image map, the Image Map Editor does not preserve the additional content. Therefore, if you do need to
insert additional content inside the zone elements, you should do so after the image map has been created and
finalized. Subsequent changes to the image map should then be done in Text mode.

Oxygen XML Editor plugin | Editing Documents | 338

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown

inside each shape represent its layer (if the numbers are not displayed, click the Show/Hide Numbers button on the
Image Map Editor toolbar). To change the layer order for a shape, use the layer buttons on the Image Map Editor

toolbar (, , ,).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display
a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely
inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

Warning: PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains
circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might
affect overlaps in the output.

Related information
TEI 'facsimile' Element Specifications

Image Maps in XHTML

Oxygen XML Editor plugin includes support for image maps in XHTML documents. This feature provides an easy way
to create hyperlinks in various parts of an image without having to divide the image into separate image files. In HTML,
an image (in the form of an img element) may be associated with an image map (in the form of a map element) by
specifying a usemap attribute on the img element. The visual Author editing mode includes an Image Map Editor
that helps you to easily create and configure image maps.

Figure 182: Image Map Editor in XHTML

Oxygen XML Editor plugin | Editing Documents | 339

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-facsimile.html

Image Map Editor Interface in XHTML

The interface of the Image Map Editor consists of the following sections and actions:

Toolbar Use this button to draw a rectangular shape over an area in the image.
You can drag any of the four points to adjust the size and shape of the
rectangle.

New Rectangle

Use this button to draw a circle over an area in the image. You can
drag any of the four points to adjust the size of the circle.New Circle

Use this button to draw a polygon shape over an area in the image.
This actions opens a dialog box that allows you to select the numberNew Polygon

of points for the polygon. You can drag any of the points to adjust the
size and shape of the polygon.

Use this button to create a duplicate of the currently selected shape.
Duplicate

Use this button to delete the currently selected shape.
Delete

Use this button to undo the last action.
Undo

Use this button to redo the last action that was undone.
Redo

Use this button to toggle between showing or hiding the numbers for
the shapes.Show/Hide Numbers

Use this button to bring the currently selected shape forward to the
top layer.Bring Shape to Front

Use this button to bring the currently selected shape forward one layer.
Bring Shape Forward

Use this button to send the currently selected shape back one layer.
Send Shape Backward

Use this button to send the currently selected shape back to the bottom
layer.Send Shape to Back

Use this drop-down menu to select a color scheme for the lines and
numbers of the shapes.

Color Chooser

Use this slider to zoom the image in or out in the main image pane.Zoom Slider

This main image pane is where you work with shapes to add hyperlinks to multiple areas within an image.
Use the mouse to move shapes around in the image to the desired area and drag the points on a selected

Image
Pane

shape to adjust its size and shape. It is easy to see which shape is selected in this image pane because the
border of the selected shape changes from a solid line to a dotted line.

Area
Properties

Specifies the hyperlink target for the selected area. This will become the value of the href
attribute for the particular area element. The possible values are:

Href

• An Absolute URL - A URL of another web site (for example,
http://www.example.com/index.htm).

• A Relative URL - A link to a file within your web site (for example, index.htm).
• An Element - A link to the ID of an element within the page (for example, #top).
• Other Protocols - A specified path using other protocols (such as https://, ftp://,

mailto:, file:).
• A Script - A link to a script (for example, javascript:alert('Hello');)

The description for the selected area. The value is inserted in an alt attribute in the particular
area element. This is a required attribute to present a text alternative for browsers that do
not display images.

Alternate

Oxygen XML Editor plugin | Editing Documents | 340

Specifies where to open the linked resource. The allowed values are:Target

• _blank - Opens the linked resource in a new window or tab.
• _self - Opens the linked resource in the same frame as it was clicked.
• _parent - Opens the linked resource in the full body of the window.
• framename - Opens the linked resource in the named frame.

How to Create an Image Map in XHTML

To create an image map on an existing image in an XHTML document, follow these steps:

1. Right-click the image and select Image Map Editor.

Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting one of the shape buttons (New Rectangle, New Circle, or New
Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form.
You can use the other buttons on the toolbar to adjust its layer and color, or to perform other editing actions.

4. With the shape selected, specify the hyperlink target in the Href field and enter a description for the selected area in
the Alternate field.

5. (Optional) Specify where the hyperlink resource will be opened in the Target field.
6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.
7. When you are finished creating hyperlinks, click OK to process your changes.

Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In
Author mode, the image map is now rendered over the image and its properties are displayed in a section below the
image.

How to Edit an Existing Image Map in XHTML

To edit an existing image map, right-click the image and select Image Map Editor. This opens the Image Map Editor
where you can make changes to the image map with a visual editor. You can also make changes to the XML structure
of the image map in the Text editing mode.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown

inside each shape represent its layer (if the numbers are not displayed, click the Show/Hide Numbers button on the
Image Map Editor toolbar). To change the layer order for a shape, use the layer buttons on the Image Map Editor

toolbar (, , ,).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display
a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely
inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

Warning: PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains
circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might
affect overlaps in the output.

Related information
HTML Image Map Specifications

Image Rendering

The Author mode and the output transformation process might render the images referenced in an XML document
differently, since they use different rendering engines.

Oxygen XML Editor plugin | Editing Documents | 341

http://w3c.github.io/html/semantics-embedded-content.html#embedded-content-image-maps

Table 5: Supported Image Formats

Additional InformationSupportImage Type

Animations not yet supportedbuilt-inGIF

JPEG images with CMYK color profiles are properly rendered only if color profile is
inside the image.

built-inJPG, JPEG

built-inPNG

Rendered using the open-source Apache Batik library that supports SVG 1.1.built-inSVG, SVGZ,
WMF

built-inBMP

Rendered using a part of the Java JAI Image library.built-inTIFF

Renders the preview TIFF image inside the EPS.built-inEPS

Renders the preview image inside the Adobe Illustrator file.built-inAI

Renders by installing the Java Advanced Imaging (JAI) Image I/O Tools plug-in.pluginJPEG 2000,
WBMP

Renders by installing an additional library.pluginCGM

Renders by installing the Apache PDF Box library.pluginPDF

When an image cannot be rendered, Oxygen XML Editor plugin Author mode displays a warning message that contains
the reason why this is happening. Possible causes include the following:

• The image is too large. Enable the Show very large images option.
• The image format is not supported by default. It is recommended to install the Java Advanced Imaging(JAI) Image

I/O Tools plug-in.

Scaling Images

Image dimension and scaling attributes are taken into account when an image is rendered. The following rules apply:

• If you specify only the width attribute of an image, the height of the image is proportionally applied.
• If you specify only the height attribute of an image, the width of the image is proportionally applied.
• If you specify width and height attributes of an image, both of them control the rendered image.
• If you want to scale both the width and height of an image proportionally, use the scale attribute.

Note: As a Java application, Oxygen XML Editor plugin uses the Java Advanced Imaging API that provides
a pluggable support for new image types. If you have an ImageIO library that supports additional image formats,
just copy this library to the [OXYGEN_INSTALL_DIR]/lib directory.

Related tasks
Customize Oxygen XML Editor plugin to Render PDF Images (Experimental Support) on page 343

Customize Oxygen XML Editor plugin to Render CGM Images (Experimental Support) on page 342

Related information
Customize Oxygen XML Editor plugin to Render EPS and AI Images on page 343

JPEG CMYK Color Space Issues on page 1114

Customize Oxygen XML Editor plugin to Render CGM Images (Experimental Support)

Oxygen XML Editor plugin provides experimental support for CGM 1.0 images.

Attention: Image hotspots are not supported.

Since this is an experimental support, some graphical elements might be missing from the rendered image.

Oxygen XML Editor plugin | Editing Documents | 342

The CGM rendering support is based on a third party library. In its free of charge variant it renders the images
watermarked with the string Demo, painted across the panel. You can find more information about ordering the
fully functioning version here: http://www.bdaum.de/cgmpanel.htm.

Follow this procedure to enable the rendering of CGM images in Author mode:

1. Download the CGMPANEL.ZIP from http://www.bdaum.de/CGMPANEL.ZIP.

2. Unpack the ZIP archive and copy the cgmpanel.jar into the [OXYGEN_INSTALL_DIR]\lib directory.

3. Open OXYGEN_PLUGIN_DIR/META-INF/MANIFEST.MF and add a reference to the JAR library in the
Bundle-ClassPath entry.

4. Restart Eclipse in clean mode (edit the shortcut you use to start Eclipse and add -clean as the first argument.)

Customize Oxygen XML Editor plugin to Render PDF Images (Experimental Support)

Oxygen XML Editor plugin provides experimental support for PDF images using the Apache PDFBox library.

To enable the rendering of PDF images in Author mode, follow this procedure:

1. Go to http://pdfbox.apache.org/downloads.html and download the pre-built PDFBox standalone binary JAR files
pdfbox-1.8.9.jar, fontbox-1.8.9.jar, and jempbox-1.8.9.jar.

2. Copy the downloaded JAR libraries to the [OXYGEN_INSTALL_DIR]\lib directory.

3. Open OXYGEN_PLUGIN_DIR/META-INF/MANIFEST.MF and add a reference to the JAR libraries in the
Bundle-ClassPath entry.

4. Restart Eclipse in clean mode (edit the shortcut you use to start Eclipse and add -clean as the first argument.)

Customize Oxygen XML Editor plugin to Render PSD Images

Oxygen XML Editor plugin provides support for rendering PSD (Adobe Photoshop) images.

To enable the rendering of PSD images in Author mode, follow this procedure:

1. Download the following JAR files:

• http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-lang/3.1.0/common-lang-3.1.0.jar
• http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-io/3.1.0/common-io-3.1.0.jar
• http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-image/3.1.0/common-image-3.1.0.jar
• http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/imageio/imageio-core/3.1.0/imageio-core-3.1.0.jar
• http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/imageio/imageio-metadata/3.1.0/imageio-metadata-3.1.0.jar
• http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/imageio/imageio-psd/3.1.0/imageio-psd-3.1.0.jar

2. Copy the downloaded JAR libraries to the [OXYGEN_INSTALL_DIR]\lib directory.

3. Open OXYGEN_PLUGIN_DIR/META-INF/MANIFEST.MF and add a reference to the JAR libraries in the
Bundle-ClassPath entry.

4. Restart Eclipse in clean mode (edit the shortcut you use to start Eclipse and add -clean as the first argument.)

Customize Oxygen XML Editor plugin to Render EPS and AI Images

Most EPS and AI image files include a preview picture of the content. Oxygen XML Editor plugin tries to render this
preview picture. The following scenarios are possible:

• The EPS or AI image does not include the preview picture. Oxygen XML Editor plugin cannot render the image.
• The EPS image includes a TIFF preview picture.

Note: Some newer versions of the TIFF picture preview are rendered in gray-scale.

• The AI image contains a JPEG preview picture. Oxygen XML Editor plugin renders the image correctly.

Installing Java Advanced Imaging (JAI) Image I/O Tools Plugin

Certain special image types can be rendered in Oxygen XML Editor plugin by using a Java Advanced Imaging (JAI)
Image I/O Tools plugin.

Oxygen XML Editor plugin | Editing Documents | 343

http://www.bdaum.de/cgmpanel.htm
http://www.bdaum.de/CGMPANEL.ZIP
http://pdfbox.apache.org/downloads.html
http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-lang/3.1.0/common-lang-3.1.0.jar
http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-io/3.1.0/common-io-3.1.0.jar
http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-image/3.1.0/common-image-3.1.0.jar
http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/imageio/imageio-core/3.1.0/imageio-core-3.1.0.jar
http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/imageio/imageio-metadata/3.1.0/imageio-metadata-3.1.0.jar
http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/imageio/imageio-psd/3.1.0/imageio-psd-3.1.0.jar

How to Install JAI Image I/O Tools Plugin

To install this plug, follow this procedure:

1. Start Oxygen XML Editor plugin and open the Help > About dialog box. Click the Installation Details button, go
to the Configuration tab, and look for the java.runtime.name and java.home properties. Keep their values for later
use.

2. Download the JAI Image I/O kit corresponding to your operating system and Java distribution (found in the
java.runtime.name property). A list of archived JAI distributions can be found at:
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html.

Note: The JAI API is not the same thing as JAI Image I/O. Make sure you have installed the latter.

3. Run the installer. When the installation wizard displays the Choose Destination Location page, fill-in the Destination
Folder field with the value of the java.home property. Continue with the installation procedure and follow the
on-screen instructions.

OS X Workaround

There is no native implementation of the JAI Image I/O Tools plugin for OS X 10.5 and later. However, it has a Java
implementation fallback that also works on OS X. Some of the image formats are not fully supported in this fallback
mode, but at least the TIFF image format is known to be supported.

Use the following procedure for this OS X workaround:

1. Download a Linux (tar.gz) distribution of the JAI Image I/O Tools plugin. A list of archived JAI distributions
can be found at:
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html.

2. In the [OXYGEN_INSTALL_DIR]/lib directory, create a directory named endorsed
([OXYGEN_INSTALL_DIR]/lib/endorsed).

3. Unpack the tar.gz. Copy the clibwrapper_jiio.jar and jai_imageio.jar files from its lib directory
and paste them in the [OXYGEN_INSTALL_DIR]/lib/endorsed directory.

4. Restart the application and the JAI Image I/O support will be up and running.

Editing MathML Notations

The Author editor includes a built-in editor for MathML notations. To start the MathML editor, either double-click a
MathML notation, or select the Edit Equation action from its contextual menu.

Oxygen XML Editor plugin | Editing Documents | 344

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html

Figure 183: Default MathML Editor

Configure the MathFlow Editor

The MathFlow Components product (MathFlow SDK) can replace the default MathML editor with a specialized MathML
editor. You have to purchase a MathFlow Component from Design Science and configure it in Oxygen XML Editor
plugin with the following procedure:

Oxygen XML Editor plugin | Editing Documents | 345

http://www.dessci.com/en/products/mathflow/

Figure 184: Default MathML Editor

1. Install MathFlow Components (MathFlow SDK).

2. On Windows make sure there is a copy of the FLEXlm DLL, which is the file
[MathFlow-install-folder]/resources/windows/lmgr10.dll, in a folder that is added to the
PATH environment variable.

3. Set the path to the MathFlow install folder in the MathML preferences page.

4. Set the path to the MathFlow license file in the MathML preferences page.

MathML Equations in HTML Output

Currently, only Firefox can render MathML equations embedded in the HTML code. MathJax is a solution to properly
view MathML equations embedded in HTML content in a variety of browsers.

If you have DocBook or DITA content that has embedded MathML equations and you want to properly view the
equations in published HTML output types (WebHelp, CHM, EPUB, etc.), you need to add a reference to the MathJax
script in the head element of all HTML files that have the equation embedded.

For example:

<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>

For DITA documents, you can also edit the DITA Map WebHelp transformation scenario and set the args.hdf
parameter to point to the footer.html resource. Then transform to WebHelp and the equation should be properly
rendered in the browsers such as IE, Chrome, and Firefox.

Refreshing the Content

On occasion you may need to reload the content of the document from the disk or reapply the CSS. This can be performed

by using the Reload action.

To refresh the content of the referenced resources you can use the Refresh references action. However, this action

will not refresh the expanded external entities, for which you will need to use the Reload action.

Oxygen XML Editor plugin | Editing Documents | 346

http://www.mathjax.org/

Generating IDs for Elements in Author Mode

Oxygen XML Editor plugin allows you to manually assign or edit values of id attributes in Author mode by using the
Attributes View or an in-place attribute editor. Oxygen XML Editor plugin also includes mechanisms to generate ID
values for elements, either on-request or automatically, in DITA, DocBook, or TEI documents.

Generate IDs On-Request
You can generate ID values for specific elements on-request. To do so, select the element for which you want to generate
an ID (or place the cursor inside the element) and select the Generate IDs action from the contextual menu or the
framework-specific menu (DITA, DocBook, or TEI). This action generates a unique ID for the current element. If you
invoke the action on a block of selected content, the action will generate IDs for all top-level elements and elements
that are listed in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects elements that do not
already have an id attribute.

Automatically Generate IDs

Oxygen XML Editor plugin includes an option to automatically add unique ID values to certain elements when they are
created in Author mode. The Auto generate IDs for elements option can be found in the ID Options dialog box that
is displayed when you select the ID Options action from the framework-specific menu (DITA, DocBook, or TEI). If
enabled, Oxygen XML Editor plugin automatically generates unique ID values for elements that are listed in this dialog
box. You can use this dialog box to customize the format of the ID values and choose which elements will have their
ID values automatically generated (for example, you can customize the list of elements to include those that you most
often need to identify).

ID Options Dialog Box

Figure 185: ID Options Dialog Box

The ID Options dialog box allows you to configure the following options in regards to generating ID values:

The pattern for the ID values that will be generated. This text field can be
customized using constant strings or any of the Oxygen XML Editor plugin Editor
Variables on page 134.

ID Pattern

The elements for which ID values will be generated, specified using class attribute
values. To customize the list, use the Add, Edit, or Remove buttons.

Element name or class value to
generate ID for

Oxygen XML Editor plugin | Editing Documents | 347

If enabled, Oxygen XML Editor plugin will automatically generate unique IDs
for the elements listed in this dialog box when they are created in Author mode.

Auto generate IDs for elements

When copying and pasting content in the same document, this option allows you
to control whether or not pasted elements that are listed in this dialog box should
retain their existing IDs. To retain the element IDs, disable this option.

Remove IDs when copying
content in the same document

Note: This option does not have an effect on content that is cut and
pasted.

Duplicating Elements with Existing IDs
If you duplicate elements with existing IDs (for example, through copy/paste or drag/drop actions), all IDs are removed
at the resolution of the operation. However, you can use the options in the ID Options dialog box to change this behavior.
The options in this dialog box affect duplicated elements with existing IDs in the following ways:

Note: Only the elements listed in this dialog box are affected by these options. Therefore, if you want to use
these options to preserve IDs or generate new ones, you must first add the elements to be duplicated to the list
in this dialog box.

• If the Auto generate IDs for elements option is enabled and you duplicate elements with existing IDs, Oxygen XML
Editor plugin assigns new, unique ID values to the duplicates.

• If the Auto generate IDs for elements option is disabled and you duplicate elements with existing IDs, the ID values
are removed from the duplicates. However, when elements are duplicated in the same document, this option has no
effect and IDs are preserved if the Remove IDs when copying content in the same document option is disabled.

• If the Remove IDs when copying content in the same document option is enabled, the ID values are removed from
elements that are duplicated in the same document. However, enabling this option has no effect if the Auto generate
IDs for elements option is enabled.

• If the Remove IDs when copying content in the same document option is disabled, the ID values are preserved
when elements are duplicated in the same document. This option has no affect on elements that are duplicated in
other documents.

Using Form Controls in Author Mode

You can use form controls in Author mode in a variety of ways to make it easier to capture, organize, and edit content.
Oxygen XML Editor plugin includes built-in form controls that can be used by content authors in Author mode. The
types of built-in form controls that you can use include the following:

• Text Field - A graphical user interface box that allows you to enter a single line of text.
• Combo Box - A graphical user interface object that can be a drop-down menu or a combination of a drop-down menu

and a single-line text field.
• Checkbox - A graphical user interface box that you can click to select or deselect a value.
• Pop-up - A contextual menu that provides quick access to various actions.
• Button - A graphical user interface object that performs a specific action.
• Button Group - A graphical user interface group of buttons (such as radio buttons) that perform specific actions.
• Text Area - A box that allows you to enter multiple lines of text.
• URL Chooser - A dialog box that allows you to select the location of local or remote resources.
• Date Picker - A form control object that allows you to select a date in a specified format.
• HTML Content - A graphical user interface box that is used for rendering HTML content.

You can also implement custom form controls for more specific needs.

The following image is an example of how form controls can be used by content authors in Author mode. It includes

several button form controls, a combo box, and a text field. The icon is a button form control that is assigned a
specific action that changes the layout to an editing mode. The [+] and [-] icons are also button form controls that are
assigned specific actions to add or delete records from the document. The Direct manager row includes a combo box

Oxygen XML Editor plugin | Editing Documents | 348

form control that is both a drop-down menu and an editable text field, while the Homepage row includes a simple editable
text field form control.

Figure 186: Example of Form Controls in Author Mode

You can use your imagination to envision the multitude of ways that you can use form controls to make the editing
experience for content authors easier and more efficient. As a working example, a bundled samples project (located in
the samples folder inside the Oxygen XML Editor plugin installation directory) contains a file called personal.xml
that contains form controls. You can use this file, along with its corresponding personal.css file (form controls are
defined in the CSS) to experiment with an example of how form controls can be implemented in Author mode.

Contextual Menu Actions in Author Mode

Oxygen XML Editor plugin includes powerful support for editing XML documents through actions included in the
contextual menu. When editing XML documents in Author mode, the contextual menu includes general actions that
are available for all of the recognized document types and document type-specific actions that are configured for each
document type.

General Contextual Menu Actions in Author Mode

The general actions that are available in the contextual menu (some of them are also available in the submenus of the
Document menu) for all document types include the following:

Available when the contextual menu is invoked on an error where Oxygen XML Editor plugin can
provide a quick fix.

Quick Fix (Alt
+ 1 (Command
+ Alt 1 on OS
X))

Available when the contextual menu is invoked on an image. This action allows you to open an image
in a default system application associated with the current image type.

Open Image

Available when the Track Changes feature is enabled and the contextual menu is invoked on a
change. The following options are available:

Track Changes
Actions

Accepts the tracked change located at the cursor position and moves to the
next change. If you select a part of a deletion or insertion change, only the

Accept
Change(s)

selected content is accepted. If you select multiple changes, all of them are
accepted. For an insertion change, it keeps the inserted text and for a deletion
change, it removes the content from the document.

Rejects the tracked change located at the cursor position and moves to the next
change. If you select a part of a deletion or insertion change, only the selected

Reject
Change(s)

content is rejected. If you select multiple changes, all of them are rejected. For
an insertion change, it removes the inserted text and for a deletion change, it
preserves the original content.

Oxygen XML Editor plugin | Editing Documents | 349

Opens a dialog box that allows you to add a comment to an existing tracked
change. The comment will appear in a callout and a tooltip when hovering

Comment
Change

over the change. If the action is selected on an existing commented change,
the dialog box will allow you to edit the comment.

Available when the contextual menu is invoked on a callout. If enabled in the Callouts preferences
page, the callouts are displayed in Author mode for comments, tracked insertion changes, or tracked
deletion changes.

Author Callout
Actions

The following actions are available in the contextual menu when invoked on an insertion
or deletion callout box:

Insertion
or
Deletion Opens a dialog box that allows you to add a reply to a comment or

tracked change. When replying to a comment, the dialog box shows
Reply

Callout
Actions the entire conversation in the comment thread, starting with the first

comment added in the particular thread, followed by all the replies.
After replies are added to a comment thread, they are displayed with
an indentation in the callouts and Review view.

A toggle action that marks or unmarks a comment or comment thread
as being done. It is also available for tracked changes that are

Mark as Done

displayed in a callout. When a comment or change is marked as done,
the callout is grayed out and cannot be edited unless the action is
toggled to the unmarked state. The action applies to the particular
comment and all of its descendents. This is useful for marking
comments or changes that have been addressed, leaving only those
that still need some attention.

Accepts the tracked change located at the cursor position and moves
to the next change. If you select a part of a deletion or insertion

Accept
Change(s)

change, only the selected content is accepted. If you select multiple
changes, all of them are accepted. For an insertion change, it keeps
the inserted text and for a deletion change, it removes the content
from the document.

Rejects the tracked change located at the cursor position and moves
to the next change. If you select a part of a deletion or insertion

Reject
Change(s)

change, only the selected content is rejected. If you select multiple
changes, all of them are rejected. For an insertion change, it removes
the inserted text and for a deletion change, it preserves the original
content.

Opens a dialog box that allows you to add a comment to an existing
tracked change. The comment will appear in a callout and a tooltip

Comment
Change

when hovering over the change. If the action is selected on an existing
commented change, the dialog box will allow you to edit the
comment.

If the fragment that contains a callout is a reference, use this option
to go to the reference and edit the callout.

Edit Reference

Select this option to open the Callouts preference page where you
can configure various callout options.

Callouts
Options

The following actions are available in the contextual menu when invoked on a comment
callout box:

Comment
Callout
Actions Opens a dialog box that allows you to add a reply to a comment or

tracked change. When replying to a comment, the dialog box shows
Reply

the entire conversation in the comment thread, starting with the first
comment added in the particular thread, followed by all the replies.

Oxygen XML Editor plugin | Editing Documents | 350

After replies are added to a comment thread, they are displayed with
an indentation in the callouts and Review view.

A toggle action that marks or unmarks a comment or comment thread
as being done. It is also available for tracked changes that are

Mark as Done

displayed in a callout. When a comment or change is marked as done,
the callout is grayed out and cannot be edited unless the action is
toggled to the unmarked state. The action applies to the particular
comment and all of its descendents. This is useful for marking
comments or changes that have been addressed, leaving only those
that still need some attention.

Opens the Edit Comment dialog box that allows you to edit the
selected comment. You cannot edit a comment if you are not the

Edit
Comment

author who inserted the original comment. Note that you cannot edit
a comment that was added by another user, so in that case, the action

is Show Comment and the dialog box just displays the comment
without the possibility of editing it.

Removes a selected comment. If you remove a comment that contains
replies, all of the replies will also be removed.

Remove
Comment

Select this option to open the Callouts preference page where you
can configure various callout options.

Callouts
Options

Displays an in-place attributes editor that allows you to manage the attributes of an element.Edit
Attributes

Allows you to change the profiling attributes defined on all selected elements.Edit Profiling
Attributes

This submenu includes insert actions that are specific to each framework, along with the following
general action:

Insert
submenu

Allows you to insert a predefined entity or character entity. Surrogate character
entities (range #x10000 to #x10FFFF) are also accepted. Character entities can be
entered in one of the following forms:

Insert Entity

• #<decimal value> - e. g. #65
• &#<decimal value>; - e. g. A
• #x<hexadecimal value> - e. g. #x41
• &#x<hexadecimal value>; - e. g. A

Removes the current selected content from the document and places it in the clipboard.Cut (Ctrl +
X (Command +
X on OS X))

Places a copy of the current selected content in the clipboard.Copy (Ctrl
+ C (Command
+ C on OS X))

Inserts the current clipboard content into the document at the cursor position.Paste (Ctrl
+ V (Command
+ V on OS X))

Oxygen XML Editor plugin | Editing Documents | 351

This submenu includes special paste actions that are specific to each framework, as well as the
following general paste actions:

Paste special
submenu

Pastes clipboard content that is considered to be XML, preserving
its XML structure.

Paste As XML

Pastes clipboard content, ignoring any structure or styling markup.Paste As Text

This submenu allows you to select the following:Select submenu

Selects the entire element at the current cursor position.Element

Selects the entire content of the element at the current cursor position, excluding
the start and end tag. Performing this action repeatedly will result in the
selection of the content of the ancestor of the currently selected element content.

Content

Selects the parent of the element at the current cursor position.Parent

This submenu contains the following actions:Text submenu

Converts the selected content to lower case characters.To Lower Case

Converts the selected content to upper case characters.To Upper Case

Converts to upper case the first character of every selected sentence.Capitalize Sentences

Converts to upper case the first character of every selected word.
0034

Capitalize Words

Counts the number of words and characters (no spaces) in the entire
document or in the selection for regular content and read-only
content.

Count Words

Note: The content marked as deleted with change tracking
is ignored when counting words.

Converts a sequence of hexadecimal characters to the corresponding
Unicode character. The action can be invoked if there is a selection

Convert Hexadecimal
Sequence to Character (Ctrl

containing a valid hexadecimal sequence or if the cursor is placed+ Shift + H (Command +
Shift + H on OS X)) at the right side of a valid hexadecimal sequence. A valid

hexadecimal sequence can be composed of 2 to 4 hexadecimal
characters and may or may not be preceded by the 0x or 0X prefix.
Examples of valid sequences: 0x0045, 0X0125, 1253, 265, 43.

Contains a series of actions designed to alter the XML structure of the document:Refactoring
submenu Encloses the currently selected text in an XML comment, or removes the

comment if it is commented.
Toggle Comment

Moves the current node or selected nodes in front of the previous node.Move Up (Alt +
UpArrow)

Moves the current node or selected nodes after the subsequent node.Move Down (Alt +
DownArrow)

Splits the content of the closest element that contains the position of the
cursor. Thus, if the cursor is positioned at the beginning or at the end of the
element, the newly created sibling will be empty.

Split Element

Joins two adjacent block elements that have the same name. The action is
available only when the cursor position is between the two adjacent block

Join Elements

elements. Also, joining two block elements can be done by pressing the
Delete or Backspace keys and the cursor is positioned between the
boundaries of these two elements.

Oxygen XML Editor plugin | Editing Documents | 352

Allows you to choose a tag to enclose a selected portion of content. If there
is no selection, the start and end tags are inserted at the cursor position.

Surround with
Tags (Alt + Shift + E
) • If the Position cursor between tags option is enabled in the Content

Completion preferences page, the cursor is placed between the start and
end tag.

• If the Position cursor between tags option is disabled in the Content
Completion preferences page, the cursor is placed at the end of the start
tag, in an insert-attribute position.

Surround the selected content with the last tag used.Surround with
'[tag]' (Alt + Shift +
ForwardSlash)

The element from the cursor position, and any elements with the same name,
can be renamed according with the options from the Rename dialog box.

Rename Element

Deletes the tags of the closest element that contains the position of the cursor.
This operation is also executed if the start or end tags of an element are
deleted by pressing the Delete or Backspace keys.

Delete Element
Tags

Removes all the XML markup inside the selected block of content and keeps
only the text content.

Remove All
Markup

Removes the text content of the selected block of content and keeps the
markup in tact with empty elements.

Remove Text

Contains predefined XML refactoring operations that pertain to attributes.
Oxygen XML Editor plugin considers the editing context to get the names

Attributes submenu

and namespaces of the element or attribute for which the contextual menu
was invoked, and uses this information to preconfigure some of the parameter
values for the selected refactoring operation.

Allows you to change the value of an attribute
or insert a new one.

Add/Change attribute

Allows you to remove one or more attributes.Delete attribute

Allows you to rename an attribute.Rename attribute

Allows you to search for a text fragment inside
an attribute value and change the fragment to
a new value.

Replace in attribute
value

Contains predefined XML refactoring operations that pertain to elements.
Oxygen XML Editor plugin considers the editing context to get the names

Elements submenu

and namespaces of the element or attribute for which the contextual menu
was invoked, and uses this information to preconfigure some of the parameter
values for the selected refactoring operation.

Allows you to delete elements.Delete element

Allows you to delete the content of elements.Delete element content

Allows you to insert new elements.Insert element

Allows you to rename elements.Rename element

Allows you to remove the surrounding tags of
elements, while keeping the content
unchanged.

Unwrap element

Allows you to surround elements with element
tags.

Wrap element

Oxygen XML Editor plugin | Editing Documents | 353

Allows you to surround the content of
elements with element tags.

Wrap element content

Contains predefined XML refactoring operations that pertain to XML
fragments. Oxygen XML Editor plugin considers the editing context to get

Fragments submenu

the names and namespaces of the element or attribute for which the
contextual menu was invoked, and uses this information to preconfigure
some of the parameter values for the selected refactoring operation.

Allows you to insert an XML fragment.Insert XML fragment

Allows you to replace the content of
elements with an XML fragment.

Replace element content with
XML fragment

Allows you to replace elements with an
XML fragment.

Replace element with XML
fragment

This submenu includes the following actions:Review
submenu Enables or disables the track changes support for the current document.Track Changes

Accepts the tracked change located at the cursor position and moves to
the next change. If you select a part of a deletion or insertion change,

Accept Change(s)

only the selected content is accepted. If you select multiple changes, all
of them are accepted. For an insertion change, it keeps the inserted text
and for a deletion change, it removes the content from the document.

Rejects the tracked change located at the cursor position and moves to
the next change. If you select a part of a deletion or insertion change,

Reject Change(s)

only the selected content is rejected. If you select multiple changes, all
of them are rejected. For an insertion change, it removes the inserted
text and for a deletion change, it preserves the original content.

Opens a dialog box that allows you to add a comment to an existing
tracked change. The comment will appear in a callout and a tooltip when

Comment Change

hovering over the change. If the action is selected on an existing
commented change, the dialog box will allow you to edit the comment.

Enables the highlighting tool that allows you to mark text in your
document.

Highlight

Allows you to select the color for highlighting text.Colors

Use this action to disable the highlighting tool.Stop highlighting

Use this action to remove highlighting from the document.Remove highlight(s)

Inserts a comment at the cursor position. The comment appears in a
callout box and a tooltip (when hovering over the change).

Add Comment

Removes a selected comment. If you remove a comment that contains
replies, all of the replies will also be removed.

Remove Comment

Opens the Review view.Manage Reviews

This submenu is available for XML documents that have an associated DTD, XML Schema, or Relax
NG schema. It includes the following actions:

Manage IDs
submenu

Renames the ID and all its occurrences. Selecting this action opens the
Rename XML ID dialog box. This dialog box lets you insert the new
ID value and choose the scope of the rename operation.

Rename in

Oxygen XML Editor plugin | Editing Documents | 354

Searches for the references of the ID. By default, the scope of this action
is the current project. If you configure a scope using the Select the scope

Search References

for the Search and Refactor operations dialog box, this scope will be
used instead.

Searches for the references of the ID. Selecting this action opens the
Select the scope for the Search and Refactor operations.

Search References in

Searches for the occurrences of the ID in the current document.Search Occurrences in
file

This submenu includes the following actions:Folding
submenu Toggles the state of the current fold.Toggle Fold

Folds all the elements except the current
element.

Collapse Other Folds (Ctrl + NumPad/
(Command + NumPad/ on OS X))

Folds the elements indented with one level
inside the current element.

Collapse Child Folds (Ctrl + NumPad-
(Command + NumPad- on OS X))

Unfolds all child elements of the currently
selected element.

Expand Child Folds (Ctrl + NumPad+
(Command + NumPad+ on OS X))

Unfolds all elements in the current document.Expand All (Ctrl + NumPad* (Command +
NumPad* on OS X))

Opens the CSS Inspector view that allows you to examine the CSS rules that match the currently
selected element.

Inspect Styles

Opens the Author mode options page.Options

Document Type-Specific Contextual Menu Actions in Author Mode
Other document type-specific actions are available in the contextual menu of Author mode for the following document
types (click the links to see the default actions that are available for each specific document types):

• DocBook4 Author Actions
• DocBook5 Author Actions
• DITA Author Actions
• DITA Map Author Actions
• XHTML Author Actions
• TEI ODD Author Actions
• TEI P4 Author Actions
• TEI P5 Author Actions
• JATS Author Actions

Validating XML Documents

The W3C XML specification states that a program should not continue to process an XML document if it finds a
validation error. The reason is that XML software should be easy to write and all XML documents should be compatible.
With HTML, for example, it is possible to create documents with lots of errors (for instance, when you forget an end
tag). One of the main reasons that various HTML browsers have performance and compatibility problems is that they
have different methods of figuring out how to render a document when an HTML error is encountered. Using XML
helps to eliminate such problems.

Even when creating XML documents, errors are easily introduced. When working with large projects or a large number
of files, the probability that errors will occur is even greater. Preventing and solving errors in your projects can be time
consuming and frustrating. Fortunately, Oxygen XML Editor plugin provides validation functions that enable you to
easily identify errors and their location.

Oxygen XML Editor plugin | Editing Documents | 355

Checking XML Well-formedness

A Well-formed XML document is a document that conforms to the XML syntax rules. A Namespace Well-Formed XML
document is a document that is Well-formed XML and is also Namespace-wellformed and Namespace-valid.

Well-Formedness Rules

The XML Syntax rules for Well-formed XML are as follows:

• All XML elements must have a closing tag.
• XML tags are case-sensitive.
• All XML elements must be properly nested.
• All XML documents must have a root element.
• Attribute values must always be quoted.
• With XML, whitespace is preserved.

The Namespace-wellformed rules are as follows:

• All element and attribute names contain either zero or one colon.
• No entity names, processing instruction targets, or notation names contain any colons.

The Namespace-valid rules are as follows:

• The xml prefix is by definition bound to the namespace name: http://www.w3.org/XML/1998/namespace. It MAY
be declared, but MUST NOT be undeclared or bound to any other namespace name. Other prefixes MUST NOT be
bound to this namespace name.

• The xmlns prefix is used only to declare namespace bindings and is by definition bound to the namespace name:
http://www.w3.org/2000/xmlns/. It MUST NOT be declared or undeclared. Other prefixes MUST NOT be bound to
this namespace name.

• All other prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved. This means
that users SHOULD NOT use them except as defined by later specifications and processors MUST NOT treat them
as fatal errors.

• The namespace prefix (unless it is xml or xmlns) MUST have been declared in a namespace declaration attribute in
either the start tag of the element where the prefix is used or in an ancestor element (for example, an element in
whose content the prefixed markup occurs). Furthermore, the attribute value in the innermost such declaration MUST
NOT be an empty string.

Check for Well-Formedness

To check if a document is Namespace Well-Formed XML, select the Check Well-Formedness (Alt + Shift + V, W
(Command + Alt + V, W on OS X)) action from the XML menu or from the Validation drop-down menu on the
toolbar.

The selected files in the current project can also be checked for well-formedness with a single action by selecting the

Check Well-Formedness action from the Validate submenu when invoking the contextual menu in the Navigator
view.

If any errors are found, the result is displayed in the message panel at the bottom of the editor. Each error is displayed
as one record in the result list and is accompanied by an error message. Clicking the record will open the document
containing the error and highlight its approximate location.

A non Well-formed XML Document

<root><tag></root>

When Check Well-Formedness is performed the following error is raised:

The element type "tag" must be terminated by the matching end-tag "</tag>"

Oxygen XML Editor plugin | Editing Documents | 356

To resolve the error, click the record in the result list and it will locate and highlight the approximate
position of the error. In this case, identify the tag that is missing an end tag and insert </tag>.

A non Namespace-wellformed Document

<x::y></x::y>

When Check document form is performed the following error is raised:

Element or attribute do not match QName production:
QName::=(NCName':')?NCName.

A non Namespace-valid Document

<x:y></x:y>

When Check document form is performed the following error is raised:

The prefix "x" for element "x:y" is not bound.

Validating XML Documents Against a Schema

A Valid XML document is a Well-Formed XML document that also conforms to the rules of a schema that defines the
legal elements of an XML document. The schema type can be: XML Schema, Relax NG (full or compact syntax),
Schematron, Document Type Definition (DTD), or Namespace-based Validation Dispatching Language (NVDL).

The purpose of the schema is to define the legal building blocks of an XML document. It defines the document structure
with a list of legal elements.

The Validate function ensures that your document is compliant with the rules defined by an associated DTD, XML
Schema, Relax NG, or Schematron schema. XML Schema or Relax NG schema also allows you to embed Schematron
rules. For Schematron validations you can also select the validation phase.

Related information
Validate an XML Document Against Schematron on page 370

Automatic Validation

Oxygen XML Editor plugin can be configured to automatically mark validation errors in the document as you are editing.
The Enable automatic validation option in the Document Checking preferences page controls whether or not all
validation errors and warnings will automatically be highlighted in the editor panel.

The automatic validation starts parsing the document and marking the errors after a configurable delay from the last
key typed. Errors are highlighted with underline markers in the main editor panel and small rectangles on the right side
ruler of the editor panel. Hovering over a validation error presents a tooltip message with more details about the error.

Related information
Manual Validation Actions on page 357

Presenting Validation Errors in Text Mode on page 163

Presenting Validation Errors in Author Mode on page 171

Manual Validation Actions

You can choose to validate documents at any time by using the manual validation actions that are available in Oxygen
XML Editor plugin.

Oxygen XML Editor plugin | Editing Documents | 357

Manually Validate Current Document
To manually validate the currently edited document, use one of the following actions:

Available from the Validation drop-down menu on the toolbar, the XML menu, or from
the Validate submenu when invoking the contextual menu in the Navigator view.

An error list is presented in the message panel at the bottom of the editor. Markup of the current
document is checked to conform with the specified DTD, XML Schema, or Relax NG schema

Validate (Alt +
Shift + V, V)

rules. This action also re-parses the XML catalogs and resets the schema used for content
completion.

Available from the Validation drop-down menu on the toolbar or the XML menu.

This action caches the schema, allowing it to be reused for the next validation. Markup of the
current document is checked to conform with the specified DTD, XML Schema, or Relax NG
schema rules.

Validate (cached)

Note: Automatic validation also caches the associated schema.

Available from the Validation drop-down menu on the toolbar, the XML menu, or from
the Validate submenu when invoking the contextual menu in the Navigator view.

You can use this action to validate the current document using a schema of your choice (XML
Schema, DTD, Relax NG, NVDL, Schematron schema), other than the associated one. An

Validate with

error list is presented in the message panel at the bottom of the editor. Markup of current
document is checked to conform with the specified schema rules.

Available from the Validate submenu when invoking contextual menu in the Navigator view.

Use this action to validate all selected files with a chosen schema.

Validate with Schema

Other Validation Options

To open the schema used for validating the current document, select the Open Associated Schema action from the
XML menu.

To clear the error markers added to the Problems view in the last validation, select Clear Validation Markers from
the Validate submenu when invoking the contextual menu in the Navigator view .

Tip: If a large number of validation errors are detected and the validation process takes too long, you can limit
the maximum number of reported errors in the Document Checking preferences page.

Related information
Automatic Validation on page 357

Presenting Validation Errors in Text Mode on page 163

Presenting Validation Errors in Author Mode on page 171

Presenting Validation Errors in Text Mode

Oxygen XML Editor plugin can be configured to automatically validate documents while editing in the Text mode, and
actions are also available to manually validate documents on-request.

A line with a validation error or warning is marked in the editor panel by underlining the error region with a red line,
while validation warnings are underlined in yellow. Hovering over a validation error presents a tooltip message with
more details about the error and possible quick fixes (if available for that error or warning).

Oxygen XML Editor plugin | Editing Documents | 358

Figure 187: Presenting Validation Errors in Text Mode

Also, the ruler on the right side of the editor panel is designed to display the errors found during the validation process
and to help you locate them in the document. The ruler contains the following:

A success indicator square will turn green if the validation is successful, red if validation errors
are found, or yellow if validation warnings are found. More details about the errors or warnings

Upper Part of the
Ruler

are displayed in a tool tip when you hover over indicator square. If there are numerous errors,
only the first three are presented in the tool tip.

Errors are depicted with red markers, and warnings with yellow markers. If you want to limit
the number of markers that are displayed, open the Preferences dialog box , go to Editor >

Middle Part of the
Ruler

Document checking, and specify the desired limit in the Maximum number of validation
highlights option.

Clicking a marker will highlight the corresponding text area in the editor. The error or warning
message is also displayed both in a tool tip (when hovering over the marker) and in the message
area on the bottom of the application.

Two navigation arrows () allow you to skip to the next or previous error. The same actions
can be triggered from Document > Automatic validation > Next error (Ctrl + Period

Bottom Part of the
Ruler

(Command + Period on OS X)) and Document > Automatic validation > Previous error
(Ctrl + Comma (Command + Comma on OS X)).

Status messages from every validation action are logged in the Console view (the Enable oXygen consoles option must
be enabled in the View preferences page).

If you want to see all the validation error messages grouped in the Results view, you should use the Validate action
from the toolbar or XML menu. This action also collects the error messages and displays them in the Problems view
if the validated file is in the current workspace or in a custom Errors view if the validated file is outside the workspace.

Related information
Validating XML Documents Against a Schema on page 357

Presenting Validation Errors in Author Mode

Oxygen XML Editor plugin can be configured to automatically validate documents while editing in the Author mode,
and actions are also available to manually validate documents on-request.

Oxygen XML Editor plugin | Editing Documents | 359

Validation errors are marked in Author mode with a red underline, while validation warnings are underlined in yellow.
Hovering over a validation error presents a tooltip message with more details about the error and possible quick fixes
(if available for that error or warning).

Information about the error is also displayed in the message area on the bottom of the editor panel (clicking the

Document checking options button opens the Document Checking preferences page.

Figure 188: Presenting Validation Errors in Author Mode

Also, the ruler on the right side of the editor panel is designed to display the errors found during the validation process
and to help you locate them in the document. The ruler contains the following:

A success indicator square will turn green if the validation is successful, red if validation errors
are found, or yellow if validation warnings are found. More details about the errors or warnings

Upper Part of the
Ruler

are displayed in a tool tip when you hover over indicator square. If there are numerous errors,
only the first three are presented in the tool tip.

Errors are depicted with red markers, and warnings with yellow markers. If you want to limit
the number of markers that are displayed, open the Preferences dialog box , go to Editor >

Middle Part of the
Ruler

Document checking, and specify the desired limit in the Maximum number of validation
highlights option.

Clicking a marker will highlight the corresponding text area in the editor. The error or warning
message is also displayed both in a tool tip (when hovering over the marker) and in the message
area on the bottom of the application.

Two navigation arrows () allow you to skip to the next or previous error. The same actions
can be triggered from Document > Automatic validation > Next error (Ctrl + Period

Bottom Part of the
Ruler

(Command + Period on OS X)) and Document > Automatic validation > Previous error
(Ctrl + Comma (Command + Comma on OS X)).

Status messages from every validation action are also logged in the Console view (the Enable oXygen consoles option
must be enabled in the View preferences page).

If you want to see all the validation error messages grouped in the Results view, you should use the Validate action
from the toolbar or XML menu. This action also collects the error messages and displays them in the Problems view
if the validated file is in the current workspace or in a custom Errors view if the validated file is outside the workspace.

Related information
Validating XML Documents Against a Schema on page 357

Oxygen XML Editor plugin | Editing Documents | 360

Customizing Assert Error Messages

To customize the error messages that the Xerces or Saxon validation engines display for the assert and assertion
elements, set the message attribute on these elements.

• For Xerces, the message attribute has to belong to the http://xerces.apache.org namespace.
• For Saxon, the message attribute has to belong to the http://saxon.sourceforge.net/ namespace.

The value of the message attribute is the error message displayed if the assertion fails.

Custom Validators

If you need to validate the edited document with a validation engine that is different from the built-in engine, you can
configure external validators in the Custom Validation Engines preferences page. After a custom validation engine is
properly configured, it can be applied on the current document by selecting it from the list of custom validation engines
in the Validation toolbar drop-down menu. The document is validated against the schema declared in the document.

Some validators are configured by default but there are third-party processors that do not support the output message
format of Oxygen XML Editor plugin for linked messages:

• LIBXML - Included in Oxygen XML Editor plugin (Windows edition only). It is associated to XML Editor. It is
able to validate the edited document against XML Schema, Relax NG schema full syntax, internal DTD (included
in the XML document) or a custom schema type. XML catalogs support (the --catalogs parameter) and XInclude
processing (--xinclude) are enabled by default in the preconfigured LIBXML validator. The --postvalid parameter
is also set by default and it allows LIBXML to validate correctly the main document even if the XInclude fragments
contain IDREFS to ID's located in other fragments.

For validation against an external DTD specified by URI in the XML document, add the --dtdvalid ${ds} parameter
manually to the DTD validation command line. ${ds} represents the detected DTD declaration in the XML document.

CAUTION: File paths containing spaces are not handled correctly in the LIBXML processor. For example,
the built-in XML catalog files of the predefined document types (DocBook, TEI, DITA, etc.) are not handled
by LIBXML if Oxygen XML Editor plugin is installed in the default location on Windows (C:\Program
Files) because the built-in XML catalog files are stored in the frameworks subfolder of the installation
folder and in this case, the file path contains at least one space character.

Attention: On OS X, if the full path to the LIBXML executable file is not specified in the Executable path
text field, some errors may occur during validation against a W3C XML Schema, such as:
Unimplemented block at ... xmlschema.c

To avoid these errors, specify the full path to the LIBXML executable file.

• Saxon-EE - Included in Oxygen XML Editor plugin. It is associated to XML Editor and XSD Editor. It is able to
validate XML Schema schemas and XML documents against XML Schema schemas. The validation is done according
to the W3C XML Schema 1.0 or 1.1. This can be configured in Preferences.

• MSXML 4.0 - Included in Oxygen XML Editor plugin (Windows edition only). It is associated to XML Editor,
XSD Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD (included
in the XML document), external DTD or a custom schema type.

• MSXML.NET - Included in Oxygen XML Editor plugin (Windows edition only). It is associated to XML Editor,
XSD Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD (included
in the XML document), external DTD or a custom schema type.

• XSV - Not included in Oxygen XML Editor plugin. Windows and Linux distributions of XSV can be downloaded
from http://www.cogsci.ed.ac.uk/~ht/xsv-status.html. The executable path is already configured in Oxygen XML
Editor plugin for the [OXYGEN_INSTALL_DIR]/xsv installation folder. If it is installed in a different folder, the
predefined executable path must be corrected in Preferences. It is associated to XML Editor and XSD Editor. It is
able to validate the edited document against XML Schema or a custom schema type.

• SQC (Schema Quality Checker from IBM) - Not included in Oxygen XML Editor plugin. It can be downloaded
from here (it comes as a .zip file, at the time of this writing SQC2.2.1.zip is about 3 megabytes). The executable path
and working directory are already configured for the SQC installation directory [OXYGEN_INSTALL_DIR]/sqc.

Oxygen XML Editor plugin | Editing Documents | 361

http://www.cogsci.ed.ac.uk/%7Eht/xsv-status.html
http://www.alphaworks.ibm.com/tech/xmlsqc/download

If it is installed in a different folder, the predefined executable path and working directory must be corrected in the
Preferences page. It is associated to XSD Editor.

Linked Output Messages of an External Engine

Validation engines display messages in an output view at the bottom of the Oxygen XML Editor plugin window. If such
an output message (warning, error, fatal error, etc) spans between three to six lines of text and has the format specified
below, then the message is linked to a location in the validated document. Clicking the message in the output view
highlights the location of the message in an editor panel containing the file referenced in the message. This behavior is
similar to the linked messages generated by the default built-in validator.

Linked messages have the following format:

• Type:[F|E|W] (the string Type: followed by a letter for the type of the message: fatal error, error, warning) - this
property is optional in a linked message.

• SystemID: a system ID of a file (the string SystemID: followed by the system ID of the file that will be opened
for highlighting when the message is clicked in the output message - usually the validated file, the schema file or an
included file).

• Line: a line number (the string Line: followed by the number of the line that will be highlighted).
• Column: a column number (the string Column: followed by the number of the column where the highlight will start

on the highlighted line) - this property is optional in a linked message.
• EndLine: a line number (the string EndLine: followed by the number of the line where the highlight ends) - this

property is optional in a linked message.
• EndColumn: a column number (the string EndColumn: followed by the number of the column where the highlight

ends on the end line) - this property is optional in a linked message.

Note: The Line/Column pair works in conjunction with the EndLine/EndColumn pair. Thus, if both pairs
are specified, then the highlight starts at Line/Column and ends at EndLine/EndColumn. If the
EndLine/EndColumn pair is missing, the highlight starts from the beginning of the line identified by the Line
parameter and ends at the column identified by the Column parameter.

• AdditionalInfoURL: the URL string pointing to a remote location where additional information about the error can
be found - this line is optional in a linked message.

• Description: message content (the string Description: followed by the content of the message that will be displayed
in the output view).

Example of how a custom validation engine can report an error using the format specified above:

Type: E
SystemID: file:///c:/path/to/validatedFile.xml
Line: 10
Column: 20
EndLine: 10
EndColumn: 35
AdditionalInfoURL: http://www.host.com/path/to/errors.html#errorID
Description: custom validator message

Validation Scenario

A complex XML document is split in smaller interrelated modules. These modules do not make much sense individually
and cannot be validated in isolation due to interdependencies with other modules. Oxygen XML Editor plugin validates
the main module of the document when an imported module is checked for errors.

A typical example is the chunking of a DocBook XSL stylesheet that has chunk.xsl as the main module and
param.xsl, chunk-common.xsl, and chunk-code.xsl as imported modules. param.xsl only defines XSLT
parameters. The module chunk-common.xsl defines an XSLT template with the name chunk. Chunk-code.xsl
calls this template. The parameters defined in param.xsl are used in the other modules without being redefined.

Validating chunk-code.xsl as an individual XSLT stylesheet generates misleading errors in regards to parameters
and templates that are used but undefined. These errors are only caused by ignoring the context in which this module is
used in real XSLT transformations and in which it is validated. To validate such a module, define a validation scenario

Oxygen XML Editor plugin | Editing Documents | 362

to set the main module of the stylesheet and the validation engine used to find the errors. Usually this engine applies
the transformation during the validation process to detect the errors that the transformation generates.

You can validate a stylesheet with several engines to make sure that you can use it in various environments and have
the same results. For example, an XSLT stylesheet may be applied with Saxon 6.5, Xalan, and MSXML 4.0 engines in
different production systems.

Other examples of documents that can benefit from a validation scenario include:

• A complex XQuery file with a main module that imports modules developed independently but validated in the
context of the main module of the query. In an XQuery validation scenario, the default validator of Oxygen XML
Editor plugin (Saxon 9) or any connection to a database that supports validation (Berkeley DB XML Database, eXist
XML Database, Documentum xDB (X-Hive/DB) 10 XML Database, MarkLogic version 5 or newer) can be set as
a validation engine.

• An XML document in which the master file includes smaller fragment files using XML entity references.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file
are used and take precedence over the default scenarios defined for the particular framework. For more
information on master files, see the Defining Master Files at Project Level on page 221 section or Working
with Modular XML Files in the Master Files Context on page 378.

To watch our video demonstration about how to use a validation scenario in Oxygen XML Editor plugin, go to
http://oxygenxml.com/demo/Validation_Scenario.html.

Creating a New Validation Scenario

To create a validation scenario, follow these steps:

1. Select the Configure Validation Scenario(s) from the toolbar, or from the XML menu (or the Validate submenu
when invoking the contextual menu on a file in the Navigator view).
The Configure Validation Scenario(s) dialog box is displayed. It contains predefined and user-defined scenarios.
The predefined scenarios are organized in categories depending on the type of file they apply to and you can identify
them by a yellow key icon that marks them as read-only. The user-defined scenarios are organized under a single
category. The default scenarios for the particular framework are rendered in bold.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file
are used and take precedence over the default scenarios defined for the particular framework. For more
information on master files, see the Defining Master Files at Project Level on page 221 section or Working
with Modular XML Files in the Master Files Context on page 378.

Oxygen XML Editor plugin | Editing Documents | 363

http://oxygenxml.com/demo/Validation_Scenario.html

Figure 189: Configure Validation Scenario Dialog Box

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the
Settings button allows you to configure the following options:

Select this option to display all the available scenarios, regardless of the document
they are associated with.

Show all scenarios

Select this option to only display the scenarios that Oxygen XML Editor plugin can
apply for the current document type.

Show only the scenarios
available for the editor

Select this option to only display the scenarios associated with the document you
are editing.

Show associated scenarios

This option opens the Import scenarios dialog box that allows you to select the
scenarios file that contains the scenarios you want to import. If one of the

Import scenarios

scenarios you import is identical to an existing scenario, Oxygen XML Editor plugin
ignores it. If a conflict appears (an imported scenario has the same name as an
existing one), you can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor plugin adds
imported to the name of the imported scenario.

Use this option to export selected scenarios individually. Oxygen XML Editor plugin
creates a scenarios file that contains the scenarios that you export. This is useful
if you want to share scenarios with others or export them to another computer.

Export selected scenarios

2. To add a scenario, click the New button.
The New scenarios dialog box is displayed and it lists all the validation units for the scenario.

Oxygen XML Editor plugin | Editing Documents | 364

Figure 190: Create New Validation Scenario

This scenario configuration dialog box allows you to configure the following information and options:

The name of the validation scenario.Name

The URL of the main module that includes the current module. It is also the entry module of
the validation process when the current one is validated. To edit the URL, click its cell and
specify the URL of the main module by doing one of the following:

URL of the file to
validate

• Enter the URL in the text field or select it from the drop-down list.

• Use the Browse drop-down button to browse for a local, remote, or archived file.

• Use the Insert Editor Variable button to insert an editor variable or a custom editor
variable.

Figure 191: Insert an Editor Variable

The type of the document that is validated in the current validation unit. Oxygen XML Editor
plugin automatically selects the file type depending on the value of the URL of the file to
validate field.

File type

You can select one of the engines available in Oxygen XML Editor plugin for validation of
the particular document type.

Default engine means that the default engine is used to run the validation for the current
document type, as specified in the preferences page for that type of document (for example,
XSLT preferences page, XQuery preferences page, XML Schema preferences page).

Validation engine

The DITA Validation engine performs DITA-specific checks in the context of the specifications

(it is similar to the checks done with the DITA map Validate and Check for Completeness
action, but for a local file rather than an entire DITA map).

Oxygen XML Editor plugin | Editing Documents | 365

The Table Layout Validation engine looks for table layout problems (for more information,
see Report table layout problems on page 1145).

If this option is checked, the validation operation defined by this row is also applied by the
automatic validation feature. If the Automatic validation feature is disabled in the Document

Automatic
validation

Checking preferences page, then this option is ignored, as the preference setting has a higher
priority.

This option becomes active when you set the File type to XML Document and allows you to
specify the schema used for the validation unit.

Schema

Opens the Specify Schema dialog box that allows you to set a schema for validating XML
documents, or a list of extensions for validating XSL or XQuery documents. You can also set
a default phase for validation with a Schematron schema.

Settings

Moves the selected scenario up one spot in the list.Move Up

Moves the selected scenario down one spot in the list.Move Down

Adds a new validation unit to the list.Add

Removes an existing validation unit from the list.Remove

3. Configure any of the existing validation units according to the information above, and you can use the buttons at the
bottom of the table to add, remove, or move validation units. Note that if you add a Schematron validation unit, you
can also select the validation phase.

4. Press OK.
The newly created validation scenario will now be included in the list of scenarios in the Configure Validation
Scenario(s) dialog box. You can select the scenario in this dialog box to associate it with the current document and
press the Apply associated button to run the validation scenario.

Editing a Validation Scenario

To edit an existing validation scenario, follow these steps:

1. Select the Configure Validation Scenario(s) from the toolbar, or from the XML menu (or the Validate submenu
when invoking the contextual menu on a file in the Navigator view).
The Configure Validation Scenario(s) dialog box is displayed. It contains predefined and user-defined scenarios.
The predefined scenarios are organized in categories depending on the type of file they apply to and you can identify
them by a yellow key icon that marks them as read-only. The user-defined scenarios are organized under a single
category. The default scenarios for the particular framework are rendered in bold.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file
are used and take precedence over the default scenarios defined for the particular framework. For more
information on master files, see the Defining Master Files at Project Level on page 221 section or Working
with Modular XML Files in the Master Files Context on page 378.

Oxygen XML Editor plugin | Editing Documents | 366

Figure 192: Configure Validation Scenario Dialog Box

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the
Settings button allows you to configure the following options:

Select this option to display all the available scenarios, regardless of the document
they are associated with.

Show all scenarios

Select this option to only display the scenarios that Oxygen XML Editor plugin can
apply for the current document type.

Show only the scenarios
available for the editor

Select this option to only display the scenarios associated with the document you
are editing.

Show associated scenarios

This option opens the Import scenarios dialog box that allows you to select the
scenarios file that contains the scenarios you want to import. If one of the

Import scenarios

scenarios you import is identical to an existing scenario, Oxygen XML Editor plugin
ignores it. If a conflict appears (an imported scenario has the same name as an
existing one), you can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor plugin adds
imported to the name of the imported scenario.

Use this option to export selected scenarios individually. Oxygen XML Editor plugin
creates a scenarios file that contains the scenarios that you export. This is useful
if you want to share scenarios with others or export them to another computer.

Export selected scenarios

2. Select the scenario and press the Edit button. If you try to edit one of the read-only predefined scenarios, you will
receive a warning message that Oxygen XML Editor plugin needs to creates customizable duplicate (you can also
use the Duplicate button).
The Edit scenario dialog box is displayed and it lists all the validation units for the scenario.

Oxygen XML Editor plugin | Editing Documents | 367

Figure 193: Edit Validation Scenario

This scenario configuration dialog box allows you to configure the following information and options:

The name of the validation scenario.Name

The URL of the main module that includes the current module. It is also the entry module of
the validation process when the current one is validated. To edit the URL, click its cell and
specify the URL of the main module by doing one of the following:

URL of the file to
validate

• Enter the URL in the text field or select it from the drop-down list.

• Use the Browse drop-down button to browse for a local, remote, or archived file.

• Use the Insert Editor Variable button to insert an editor variable or a custom editor
variable.

Figure 194: Insert an Editor Variable

The type of the document that is validated in the current validation unit. Oxygen XML Editor
plugin automatically selects the file type depending on the value of the URL of the file to
validate field.

File type

You can select one of the engines available in Oxygen XML Editor plugin for validation of
the particular document type.

Default engine means that the default engine is used to run the validation for the current
document type, as specified in the preferences page for that type of document (for example,
XSLT preferences page, XQuery preferences page, XML Schema preferences page).

Validation engine

The DITA Validation engine performs DITA-specific checks in the context of the specifications

(it is similar to the checks done with the DITA map Validate and Check for Completeness
action, but for a local file rather than an entire DITA map).

Oxygen XML Editor plugin | Editing Documents | 368

The Table Layout Validation engine looks for table layout problems (for more information,
see Report table layout problems on page 1145).

If this option is checked, the validation operation defined by this row is also applied by the
automatic validation feature. If the Automatic validation feature is disabled in the Document

Automatic
validation

Checking preferences page, then this option is ignored, as the preference setting has a higher
priority.

This option becomes active when you set the File type to XML Document and allows you to
specify the schema used for the validation unit.

Schema

Opens the Specify Schema dialog box that allows you to set a schema for validating XML
documents, or a list of extensions for validating XSL or XQuery documents. You can also set
a default phase for validation with a Schematron schema.

Settings

Moves the selected scenario up one spot in the list.Move Up

Moves the selected scenario down one spot in the list.Move Down

Adds a new validation unit to the list.Add

Removes an existing validation unit from the list.Remove

3. Configure any of the existing validation units according to the information above, and you can use the buttons at the
bottom of the table to add, remove, or move validation units. Note that if you add a Schematron validation unit, you
can also select the validation phase.

4. When you are done configuring the scenario, press OK.
The modified validation scenario will now be included in the list of scenarios in the Configure Validation Scenario(s)
dialog box. If you chose to duplicate an existing one, the modified scenario will be listed with the word copy at the
end of its name.

Sharing Validation Scenarios

The validation scenarios and their settings can be shared with other users by exporting them to a specialized scenarios
file that can then be imported.

Resolving References to Remote Schemas with an XML Catalog

When a reference to a remote schema must be used in the validated XML document for interoperability purposes, but
a local copy of the schema should actually be used for performance reasons, the reference can be resolved to the local
copy of the schema with an XML catalog.

For example, if the XML document contains a reference to a remote schema docbook.rng like this:

<?xml-model href="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng" type="application/xml"
schematypens="http://relaxng.org/ns/structure/1.0"?>

it can be resolved to a local copy with a catalog entry like this:

<uri name="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
uri="rng/docbook.rng"/>

An XML catalog can also be used to map a W3C XML Schema specified with a URN in the xsi:schemaLocation
attribute of an XML document to a local copy of the schema. For example, if the XML document specifies the schema
with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

the URN can be resolved to a local schema file with a catalog entry like this:

<uri name="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
uri="topic.xsd"/>

Oxygen XML Editor plugin | Editing Documents | 369

Validation Example - A DocBook Validation Error

In the following DocBook 4 document, the content of the listitem element does not match the rules of the DocBook
4 schema (docbookx.dtd).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"
 "http://www.docbook.org/xml/4.4/docbookx.dtd">
<article>

<title>Article Title</title>
<sect1>

<title>Section1 Title</title>
<itemizedlist>

<listitem>
<link>a link here</link>

</listitem>
</itemizedlist>

</sect1>
</article>

The Validate Document action will return the following error:

Unexpected element "link". The content of the parent element type must match
"(calloutlist|glosslist|bibliolist|itemizedlist|orderedlist|segmentedlist|simplelist
|variablelist|caution|important|note|tip|warning|literallayout|programlisting
|programlistingco|screen|screenco|screenshot|synopsis|cmdsynopsis|funcsynopsis
|classsynopsis|fieldsynopsis|constructorsynopsis|destructorsynopsis|methodsynopsis
|formalpara|para|simpara|address|blockquote|graphic|graphicco|mediaobject|mediaobjectco
|informalequation|informalexample|informalfigure|informaltable|equation|example|figure
|table|msgset|procedure|sidebar|qandaset|task|anchor|bridgehead|remark|highlights
|abstract|authorblurb|epigraph|indexterm|beginpage)+".

This error message is a little more difficult to understand, so understanding of the syntax or processing rules for the
DocBook XML DTD listitem element is recommended. However, the error message does offer a clue as to the
source of the problem, indicating that “The content of element type must match”.

Fortunately, most standards-based DTDs, XML Schemas, and Relax NG schemas are supplied with reference
documentation. This enables you to lookup the element and read about it. In this case, you should learn about the child
elements of listitem and their nesting rules. Once you have correctly inserted the required child element and nested
it in accordance with the XML rules, the document will become valid.

Validate an XML Document Against Schematron

To validate an XML document against a Schematron schema, select the Validate action from the Validation
toolbar drop-down menu, or the XML menu, or from the Validate menu when invoking the contextual menu in the
Navigator view.

If you want to add a persistence association between your Schematron rules and the current edited XML document, use

the Associate Schema action from the Document > Schema menu or the Document toolbar. A custom processing
instruction is added into the document and the validation process will take into account the Schematron rules:

PI Added by the Associate Schema Action

<?xml-model href="percent.sch" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/schematron"?>

The possible errors that might occur during the validation process are presented in the Problems tab at the bottom area
of the Oxygen XML Editor plugin window. Each error is flagged with a severity level that can be one of warning, error,
fatal or info.

To set a severity level, Oxygen XML Editor plugin looks for the following information:

• The role attribute, which can have one of the following values:

• warn or warning, to set the severity level to warning
• error, to set the severity level to error
• fatal, to set the severity level to fatal

Oxygen XML Editor plugin | Editing Documents | 370

• info or information, to set the severity level to info

• The start of the message, after trimming leading white-spaces. Oxygen XML Editor plugin looks to match the
following exact string of characters (case sensitive):

• Warning:, to set the severity level to warning
• Error:, to set the severity level to error
• Fatal:, to set the severity level to fatal
• Info:, to set the severity level to info

Note: Displayed message does not contain the matched prefix.

• If none of the previous rules match, Oxygen XML Editor plugin sets the severity level to error.

Related concepts
Validation Scenario on page 362

Finding and Replacing Text in the Current File

This section walks you through the find and replace features available in Oxygen XML Editor plugin.

You can use a number of advanced views depending on what you need to find in the document you are editing or in
your entire project. The Find All Elements/Attributes dialog box allows you to search through the structure of the current
document for elements and attributes.

Find All Elements Dialog Box

To open the Find All Elements dialog box, go to Edit > Find All Elements . It assists you in defining XML element
/ attribute search operations in the current document.

Figure 195: Find All Elements Dialog Box

The dialog box can perform the following actions:

• Find all the elements with a specified name
• Find all the elements that contain, or does not contain, a specified string in their text content
• Find all the elements that have a specified attribute
• Find all the elements that have an attribute with, or without, a specified value

You can combine all of these search criteria to filter your results.

The following fields are available in the dialog box:

• Element name - The qualified name of the target element to search for. You can use the drop-down menu to find
an element or enter it manually. It is populated with valid element names collected from the associated schema. To
specify any element name, leave the field empty.

Oxygen XML Editor plugin | Editing Documents | 371

Note: Use the qualified name of the element (<namespace prefix>:<element name>) when the
document uses this element notation.

• Element text - The target element text to search for. The drop-down menu beside this field allows you to specify
whether you are looking for an exact or partial match of the element text. For any element text, select contains from
the drop-down menu and leave the field empty. If you leave the field empty but select equals from the drop-down
menu, only elements with no text will be found. Select not contains to find all elements that do not include the
specified text.

• Attribute name - The name of the attribute that must be present in the element. You can use the drop-down menu
to select an attribute or enter it manually. It is populated with valid attribute names collected from the associated
schema. For any or no attribute name, leave the field empty.

Note: Use the qualified name of the attribute (<namespace prefix>:<attribute name>) when
the document uses this attribute notation.

• Attribute value - The drop-down menu beside this field allows you to specify that you are looking for an exact or
partial match of the attribute value. For any or no attribute value, select contains from the drop-down menu and
leave the field empty. If you leave the field empty but select equals from the drop-down menu, only elements that
have at least an attribute with an empty value will be found. Select not contains to find all elements that have
attributes without a specified value.

• Case sensitive - When this option is checked, operations are case-sensitive

When you press Find All, Oxygen XML Editor plugin tries to find the items that match all the search parameters. The
results of the operation are presented as a list in the message panel.

Regular Expressions Syntax

Oxygen XML Editor plugin uses the Java regular expression syntax. It is similar to that used in Perl 5, with several
exceptions. Thus, Oxygen XML Editor plugin does not support the following constructs:

• The conditional constructs (?{X}) and (?(condition)X|Y).
• The embedded code constructs (?{code}) and (??{code}).
• The embedded comment syntax (?#comment).
• The preprocessing operations \l, \u, \L, and \U.

When using regular expressions, note that some sets of characters from XPath/XML Schema/Schematron are slightly
different than the ones used by Oxygen XML Editor plugin/Java in the text searches from the Find/Replace dialog
boxes. The most common example is with the \w and \W set of characters. To ensure consistent results between the
two, it is recommended that you use the following constructs in the Find/Replace dialog boxes:

• /w - [#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}] instead of \w
• /W - [\p{P}\p{Z}\p{C}] instead of \W

There are some other notable differences that may cause unexpected results, including the following:

• In Perl, \1 through \9 are always interpreted as back references. A backslash-escaped number greater than 9 is
treated as a back reference if at least that many sub-expressions exist. Otherwise, it is interpreted, if possible, as an
octal escape. In this class octal escapes must always begin with a zero. In Java, \1 through \9 are always interpreted
as back references, and a larger number is accepted as a back reference if at least that many sub-expressions exist at
that point in the regular expression. Otherwise, the parser will drop digits until the number is smaller or equal to the
existing number of groups or it is one digit.

• Perl uses the g flag to request a match that resumes where the last match left off.
• In Perl, embedded flags at the top level of an expression affect the whole expression. In Java, embedded flags always

take effect at the point where they appear, whether they are at the top level or within a group. In the latter case, flags
are restored at the end of the group just as in Perl.

• Perl is forgiving about malformed matching constructs, as in the expression *a, as well as dangling brackets, as in
the expression abc], and treats them as literals. This class also accepts dangling brackets but is strict about dangling
meta-characters such as +, ? and *.

Oxygen XML Editor plugin | Editing Documents | 372

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
https://www.w3.org/TR/xmlschema-2/#dt-ccesN

Related information
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#jcc

Comparison between the Java and Perl 5 regular expression syntax

Search and Refactor Actions for IDs and IDREFS

Oxygen XML Editor plugin allows you to search for ID declarations and references (IDREFS) and to define the scope
of the search and refactor operations. These operations are available for XML documents that have an associated DTD,
XML Schema, or Relax NG schema. These operations are available through the search and refactor actions in the
contextual menu. In Text mode, these actions are also available in the Quick Assist menu.

The search and refactor actions from the contextual menu are grouped in the Manage IDs section:

Renames the ID and all its occurrences. Selecting this action opens the Rename XML
ID dialog box. This dialog box lets you insert the new ID value and choose the scope of

Rename in

the rename operation. For a preview of the changes you are about to make, click Preview.
This opens the Preview dialog box, which presents a list with the files that contain
changes and a preview zone of these changes.

Renames the ID you are editing and all its occurrences from the current file.Rename in File

Note: Available in the Text mode only.

Searches for the references of the ID. By default, the scope of this action is the current
project. If you configure a scope using the Select the scope for the Search and Refactor
operations dialog box, this scope will be used instead.

Search References

Searches for the references of the ID. Selecting this action opens the Select the scope
for the Search and Refactor operations.

Search References in

Searches for the declaration of the ID reference. By default, the scope of this action is
the current project. If you configure a scope using the Select the scope for the Search
and Refactor operations dialog box, this scope will be used instead.

Search Declarations

Note: Available in the Text mode only.

Searches for the declaration of the ID reference. Selecting this action opens the Select
the scope for the Search and Refactor operations.

Search Declarations in

Note: Available in the Text mode only.

Searches for the declaration and references of the ID in the current document.Search Occurrences in
file

Tip: A quick way to go to the declaration of an ID in Text mode is to move the cursor over an ID reference
and use the Ctrl + Single-Click (Command + Single-Click on OS X) navigation.

Selecting an ID that you use for search or refactor operations differs between the Text and Author modes. In the Text
mode, you position the cursor inside the declaration or reference of an ID. In the Author mode, Oxygen XML Editor
plugin collects all the IDs by analyzing each element from the path to the root. If more IDs are available, you are prompted
to choose one of them.

Oxygen XML Editor plugin | Editing Documents | 373

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#jcc

Figure 196: Selecting an ID in the Author Mode

Search and Refactor Operations Scope

The scope is a collection of documents that define the context of a search and refactor operation. To control it you can

use the Change scope operation, available in the Quick Fix action set or on the Resource Hierarchy/Dependency
View toolbar. You can restrict the scope to the current project or to one or multiple working sets. The Use only Master
Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations to the resources from
the Master Files directory. Click read more for details about the Master Files support.

Figure 197: Change Scope Dialog Box

The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu actions
allow you to add or delete files, folders, and other resources to the working set structure.

Associate a Schema to a Document

This section explains the methods of associating a schema to a document for validation and content completion purposes.

Setting a Schema for Content Completion

This section explains the available methods of setting a schema for content completion in an XML document edited in
Oxygen XML Editor plugin.

Supported Schema Types for XML Documents

The following schema types are supported:

• W3C XML Schema 1.0 and 1.1 (with and without embedded Schematron rules)
• DTD
• Relax NG - XML syntax (with and without embedded Schematron rules)
• Relax NG - compact syntax
• NVDL

Oxygen XML Editor plugin | Editing Documents | 374

• Schematron (both ISO Schematron and Schematron 1.5)

Setting a Default Schema

When trying to detect a schema, Oxygen XML Editor plugin searches in multiple locations, in the exact following order:

• The validation scenario associated with the document.
• The validation scenario associated with the document type (if defined).
• The document schema declaration.

Note: If a DTD schema is specified in the document, the content completion for Author mode is based on
this schema (even if there is already one detected from the validation scenario).

• The document type schema definition. Each document type available in Document Type Association preferences
page contains a set of rules for associating a schema with the current document.

Note: The locations are sorted by priority, from high to low.

The schema has one of the following types: XML Schema, XML Schema with embedded Schematron rules, Relax NG
(XML syntax or compact syntax), Relax NG (XML syntax) with embedded Schematron rules, Schematron, DTD, NVDL.

The rules are applied in the order they appear in the table and take into account the local name of the root element, the
default namespace and the file name of the document.

Important:

The editor is creating the content completion lists by analysing the specified schema and the current context
(the position in the editor). If you change the schema, then the list of tags to be inserted is updated.

Figure 198: Content Completion Driven by DocBook DTD

Making the Schema Association Explicit in the XML Instance Document

The schema used by the Content Completion Assistant and document validation engine can be associated with the

document using the Associate Schema action. For most of the schema types, it uses the xml-model processing
instruction, the exceptions being:

• W3C XML Schema - The xsi:schemaLocation attribute is used.
• DTD - The DOCTYPE declaration is used.

The association can specify a relative file path or a URL of the schema. The advantage of relative file path is that you
can configure the schema at file level instead of document type level.

Oxygen XML Editor plugin | Editing Documents | 375

Select the Associate schema action from the toolbar or Document > Schema menu to select the schema that will
be associated with the XML document. The Associate Schema dialog box is displayed:

Figure 199: Associate Schema Dialog Box

The available options are:

• URL - Contains a predefined set of schemas that are used more often and it also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server
through HTTP(S), FTP(S).

• Schema type - Selected automatically from the list of possible types in the Schema type combo box (XML Schema,
DTD, Relax NG, Relax NG Compact, Schematron, NVDL) based on the extension of the schema file that was entered
in the URL field.

• Public ID - Specify a public ID if you have selected a DTD.
• Add additional association for embedded schematron rules - If you have selected XML Schema or Relax NG

schemas with embedded Schematron rules, enable this option.
• Use path relative to file location - Enable this option if the XML instance document and the associated schema

contain relative paths. The location of the schema file is inserted in the XML instance document as a relative file
path. This practice allows you, for example, to share these documents with other users, without running into problems
caused by multiple project locations on physical disk.

• Keep existing schema associations - Enable this option to keep the associations of the currently edited document
with a Schema when you associate a new one.

The association with an XML Schema is added as an attribute of the root element. The Associate schema action adds
one of the following:

• xsi:schemaLocation attribute, if the root element of the document sets a default namespace with an xmlns
attribute.

• xsi:noNamespaceSchemaLocation attribute, if the root element does not set a default namespace.

The association with a DTD is added as a DOCTYPE declaration. The association with a Relax NG , Schematron or
NVDL schema is added as xml-model processing instruction.

Associating a Schema With the Namespace of the Root Element

The namespace of the root element of an XML document can be associated with an XML Schema using an XML catalog.
If there is no xsi:schemaLocation attribute on the root element and the XML document is not matched with a
document type, the namespace of the root element is searched in the XML catalogs set in Preferences.

If the XML catalog contains a uri or rewriteUri or delegateUri element, its schema will be used by the
application to drive the content completion and document validation.

Oxygen XML Editor plugin | Editing Documents | 376

xml-model Processing Instruction

The xml-model processing instruction associates a schema with the XML document that contains the processing
instruction. It must be added at the beginning of the document, just after the XML prologue. The following code snippet
contains an xml-model processing instruction declaration:

<?xml-model href="../schema.sch" type="application/xml" schematypens="http://purl.oclc.org/dsdl/schematron"
phase="ALL" title="Main schema"?>

It is available in the Content Completion Assistant, before XML document root element, and includes the following
attributes:

• href (required) - The schema file location.
• type - The content type of the schema. This is an optional attribute with the following possible values for each

specified type:

• DTD - The recommended value is application/xml-dtd.
• W3C XML Schema - The recommended value is application/xml, or can be left unspecified.
• RELAX NG XML Syntax - The recommended value is application/xml, or can be left unspecified.
• RELAX NG Compact Syntax - The recommended value is application/relax-ng-compact-syntax.
• Schematron - The recommended value is application/xml, or can be left unspecified.
• NVDL - The recommended value is application/xml, or can be left unspecified.

• schematypens - The namespace for the schema language of the referenced schema with the following possible
values:

• DTD - Not specified.
• W3C XML Schema - The recommended value is http://www.w3.org/2001/XMLSchema.
• RELAX NG XML Syntax - The recommended value is http://relaxng.org/ns/structure/1.0.
• RELAX NG Compact Syntax - Not specified.
• Schematron - The recommended value is http://purl.oclc.org/dsdl/schematron.
• NVDL - The recommended value is http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0.

• phase - The phase name for the validation function in Schematron schema. This is an optional attribute. To run all
phases from the Schematron, use the special #ALL value. If the phase is not specified, the default phase that is
configured in the Schematron will be applied.

• title - The title for the associated schema. This is an optional attribute.

Older versions of Oxygen XML Editor plugin used the oxygen processing instruction with the following attributes:

• RNGSchema - Specifies the path to the Relax NG schema that is associated with the current document.
• type - Specifies the type of Relax NG schema. It is used along with the RNGSchema attribute and can have the

value xml or compact.
• NVDLSchema - Specifies the path to the NVDL schema that is associated with the current document.
• SCHSchema - Specifies the path to the SCH schema that is associated with the current document.

Note: Documents that use the oxygen processing instruction are compatible with newer versions of Oxygen
XML Editor plugin.

Learning Document Structure

When working with documents that do not specify a schema, or for which the schema is not known or does not exist,
Oxygen XML Editor plugin is able to learn and translate the document structure to a DTD. You can choose to save the
learned structure to a file to provide a DTD as an initialization source for content completion and document validation.
This feature is also useful for producing DTD's for documents containing personal or custom element types.

When you open a document that is not associated with a schema, Oxygen XML Editor plugin automatically learns the
document structure and uses it for content completion. To disable this feature you have to uncheck the checkbox Learn
on open document in the user preferences.

Oxygen XML Editor plugin | Editing Documents | 377

Create a DTD from Learned Document Structure

When there is no schema associated with an XML document, Oxygen XML Editor plugin can learn the document
structure by parsing the document internally. This feature is enabled with the option Learn on open document that is
available in the user preferences.

To create a DTD from the learned structure:

1. Open the XML document for which a DTD will be created.

2. Go to XML > Learn Structure (Ctrl + Shift + L (Command + Shift + L on OS X)).
The Learn Structure action reads the mark-up structure of the current document. The Learn completed message
is displayed in the application's status bar when the action is finished.

3. Go to XML > Save Structure (Ctrl + Shift + S (Command + Shift + S on OS X)) and enter the DTD file path.

4. Press the Save button.

Working with Modular XML Files in the Master Files Context

Smaller interrelated modules that define a complex XML modular structure cannot be correctly edited or validated
individually, due to their interdependency with other modules. Oxygen XML Editor plugin provides the support for
defining the main module (or modules), allowing you to edit any file from the hierarchy in the context of the master
XML files.

You cat set a main XML document either using the master files support from the Navigator view, or using a validation
scenario.

To set a main file using a validation scenario, add validation units that point to the main modules. Oxygen XML Editor
plugin warns you if the current module is not part of the dependencies graph computed for the main XML document.
In this case, it considers the current module as the main XML document.

The advantages of working with modular XML files in the context of a master file include:

• Correct validation of a module in the context of a larger XML structure.
• Content Completion Assistant displays all collected entities and IDs starting from the master files.
• Oxygen XML Editor plugin uses the schema defined in the master file when you edit a module that is included in

the hierarchy through the External Entity mechanism.
• The master files defined for the current module determines the scope of the search and refactoring actions for

ID/IDREFS values and for updating references when renaming/moving a resource. Oxygen XML Editor plugin
performs the search and refactoring actions in the context that the master files determine, improving the speed of
execution.

To watch our video demonstration about editing modular XML files in the master files context, go to
http://oxygenxml.com/demo/Working_With_XML_Modules.html.

Related information
Defining Master Files at Project Level on page 221

XML Resource Hierarchy/Dependencies View on page 378

XML Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to easily see the hierarchy / dependencies for an XML
document. The tree structure presented in this view is built based on the XIinclude and External Entity mechanisms. To

define the scope for calculating the dependencies of a resource, click Configure dependencies search scope on the
Resource Hierarchy/Dependencies toolbar.

To open this view, go to Window > Show View > Other > Oxygen XML Editor plugin > Resource
Hierarchy/Dependencies. As an alternative, right-click the current document and either select Resource Hierarchy
or Resource Dependencies.

Oxygen XML Editor plugin | Editing Documents | 378

http://oxygenxml.com/demo/Working_With_XML_Modules.html

Figure 200: Resource Hierarchy/Dependencies View - Hierarchy for Syncro phone v1.xml

The build process for the dependencies view is started with the Resource Dependencies action available on the contextual
menu.

Figure 201: Resource Hierarchy/Dependencies View - Dependencies for Insert battery.xml

The following actions are available in the Resource Hierarchy/Dependencies view:

Refreshes the Hierarchy/Dependencies structure.Refresh

Stops the hierarchy/dependencies computing.Stop

Allows you to choose a resource to compute the hierarchy structure.Show Hierarchy

Allows you to choose a resource to compute the dependencies structure.Show Dependencies

Allows you to configure a scope to compute the dependencies structure. There is
also an option for automatically using the defined scope for future operations.

Configure

Provides access to the list of previously computed dependencies. Use the Clear
history button to remove all items from this list.

History

The contextual menu contains the following actions:

Oxygen XML Editor plugin | Editing Documents | 379

Opens the resource. You can also double-click a resource in the
Hierarchy/Dependencies structure to open it.

Open

Copies the location of the resource.Copy location

Moves the selected resource.Move resource

Renames the selected resource.Rename resource

Shows the hierarchy for the selected resource.Show Resource Hierarchy

Shows the dependencies for the selected resource.Show Resource Dependencies

Adds the currently selected resource in the Master Files directory.Add to Master Files

Expands all the children of the selected resource from the
Hierarchy/Dependencies structure.

Expand All

Collapses all children of the selected resource from the
Hierarchy/Dependencies structure.

Collapse All

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special
icon .

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource. Only the references made through the XInclude and External Entity mechanisms are handled.

Related information
Search and Refactor Operations Scope on page 374

Moving/Renaming XML Resources

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Enable this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move
resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the option to
introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Enable this option to update the references to the resource you are

moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is enabled, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are updated.

Working with XML Catalogs

An XML Catalog maps a system ID or a URI reference pointing to a resource (stored either remotely or locally) to a
local copy of the same resource. If XML processing relies on external resources (such as referenced schemas and
stylesheets), the use of an XML Catalog becomes a necessity when Internet access is not available or the Internet
connection is slow.

Oxygen XML Editor plugin supports any XML Catalog file that conforms to one of the following:

1. OASIS XML Catalogs Committee Specification v1.1.
2. OASIS Technical Resolution 9401:1997, including the plain-text flavor described in that resolution.

Oxygen XML Editor plugin | Editing Documents | 380

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/specs/a401.htm

The version 1.1 of the OASIS XML Catalog specification introduces the possibility to map a system ID, public ID, or
a URI to a local copy using only a suffix of the ID or URI used in the actual document. This is done using the catalog
elements systemSuffix and uriSuffix.

Depending on the resource type, Oxygen XML Editor plugin uses different catalog mappings.

Table 6: Catalog Mappings

MappingsReferenced
Resource

Document

system or public

The Prefer option controls which one of the mappings should be used.

DTDXML

The following strategy is used (if one step fails to provide a resource, the next is applied):

1. resolve the schema using URI catalog mappings.
2. resolve the schema using system catalog mappings.

This happens only if the Resolve schema locations also through system mappings
option is enabled (it is by default).

3. resolve the root namespace using URI catalog mappings.

XML Schema

Relax NG

Schematron

NVDL

URIXSL/ANYXSL

URICSSCSS

The following strategy is used (if one step fails to provide a resource, the next is applied):

1. resolve schema reference using URI catalog mappings.
2. resolve schema reference using system catalog mappings.

This happens only if the Resolve schema locations also through system mappings
option is enabled (it is by default).

3. resolve schema namespace using uri catalog mappings.

This happens only if the Process namespaces through URI mappings for XML Schema
option is enabled (it is not by default).

XML SchemaXML
Schema

Relax NGRelax
NG

Creating an XML Catalog with a Template

An XML Catalog file can be created quickly in Oxygen XML Editor plugin starting from the two XML Catalog document
templates called OASIS XML Catalog 1.0 and OASIS XML Catalog 1.1 and available when creating new document
templates.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog
 PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN"
 "http://www.oasis-open.org/committees/entity/release/1.1/catalog.dtd">

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

<!-- Use "system" and "public" mappings when resolving DTDs -->
<system

systemId="http://www.docbook.org/xml/4.4/docbookx.dtd"
uri="frameworks/docbook/4.4/dtd/docbookx.dtd"/>

<!-- The "systemSuffix" matches any system ID ending in a specified string -->
<systemSuffix

systemIdSuffix="docbookx.dtd"
uri="frameworks/docbook/dtd/docbookx.dtd"/>

<!-- Use "uri" for resolving XML Schema and XSLT stylesheets -->
<uri

name="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
uri="frameworks/docbook/5.0/rng/docbookxi.rng"/>

Oxygen XML Editor plugin | Editing Documents | 381

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.systemsuffix
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.urisuffix

<!-- The "uriSuffix" matches any URI ending in a specified string -->
<uriSuffix

uriSuffix="docbook.xsl"
uri="frameworks/docbook/xsl/fo/docbook.xsl"/>

</catalog>

How Oxygen XML Editor plugin Determines which Catalog to Use

An XML catalog is used to resolve references for document validation and transformations and it maps such references
to the built-in local copies of the schemas of the Oxygen XML Editor plugin frameworks (DocBook, DITA, TEI,
XHTML, SVG, etc.)

Oxygen XML Editor plugin includes a built-in catalog set as default, but you can also create your own and Oxygen
XML Editor plugin looks for catalogs in the following order:

• Global user-defined catalogs that are set in the XML Catalog preferences page.
• User-defined catalogs that are set at document type level, in the Catalog tab from the Document Type configuration

dialog box.
• Default built-in catalogs.

An XML catalog can be used to map a W3C XML Schema specified with an URN in the
xsi:noNamespaceSchemaLocation attribute of an XML document to a local copy of the
schema.

Considering the following XML document code snippet:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

The URN can be resolved to a local schema file with a catalog entry like this:

<uri name="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
uri="topic.xsd"/>

Related information
XML Catalog Preferences on page 108

Resolve Schemas Through XML Catalogs

Oxygen XML Editor plugin resolves the location of a schema in the following order:

• First, it attempts to resolve the schema location as a URI (uri, uriSuffix, rerwriteURI mappings from the
XML catalog). If this succeeds, the process end here.

• If the Resolve schema locations also through system mappings option is selected, it attempts to resolve the schema
location as a systemID (system, systemSuffix, rewriteSuffix, rerwriteSystem from the XML catalog).
If this succeeds, the process ends here.

• If the Process namespace through URI mappings for XML Schema option is selected, it attempts to resolve the
location by processing the schema namespace as a URI (uri, uriSuffix, rewriteURI from the XML catalog).
The namespace is taken into account only when the schema specified in the schemaLocation attribute was not resolved
successfully. If this succeeds, the process ends here.

• If none of these succeeds, the actual schema location is used.

Editing Large XML Documents with DTD Entities or XInclude

Consider the case of documenting a large project. It is likely that there will be several people involved. The resulting
document can be few megabytes in size. The question becomes how to deal with this amount of data in such a way that
work parallelism will not be affected.

Fortunately, XML provides two solutions for this: DTD Entities and XInclude. A master document can be created, with
references to the other document parts, containing the document sections. The users can edit the documents individually,

Oxygen XML Editor plugin | Editing Documents | 382

then apply an XSLT stylesheet over the master and obtain the output files in various formats (for example, PDF or
HTML).

Including Document Parts with DTD Entities

There are two conditions for including a part using DTD entities:

• The master document should declare the DTD to be used, while the external entities should declare the XML sections
to be referenced.

• The document containing the section must not define again the DTD.

A master document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "../xml/docbookx.dtd" [
<!ENTITY testing SYSTEM "testing.xml" >]
>
<book>
<chapter> ...

The referenced document looks like this:

<section> ... here comes the section content ... </section>

Note:

The indicated DTD and the element names (section, chapter) are used here only for illustrating the inclusion
mechanism. You can use any DTD and element names you need.

At a certain point in the master document there can be inserted the section testing.xml entity:

... &testing; ...

When splitting a large document and including the separate parts in the master file using external entities, only the master
file will contain the Document Type Definition (the DTD) or other type of schema. The included sections can not define
the schema again because the main document will not be valid. If you want to validate the parts separately you have to
use XInclude for assembling the parts together with the master file.

Including Document Parts with XInclude

XInclude is a standard for assembling XML instances into another XML document through inclusion. It enables larger
documents to be dynamically created from smaller XML documents without having to physically duplicate the content
of the smaller files in the main file. XInclude is targeted as the replacement for External Entities. The advantage of using
XInclude is that, unlike the entities method, each of the assembled documents is permitted to contain a Document Type
Declaration (DOCTYPE). This means that each file is a valid XML instance and can be independently validated. It also
means that the main document, which includes smaller instances, can be validated without having to remove or comment
out the DOCTYPE. as is the case with External Entities. This makes XInclude a more convenient and effective method
for managing XML instances that need to be stand-alone documents and part of a much larger project.

The main application for XInclude is in the document-oriented content frameworks such as manuals and Web pages.
Employing XInclude enables authors and content managers to manage content in a modular fashion that is akin to Object
Oriented methods used in languages such as Java, C++ or C#.

The advantages of modular documentation include: reusable content units, smaller file units that are easier to be edited,
better version control and distributed authoring.

Include a chapter in an article using XInclude

Create a chapter file and an article file in the samples folder of the Oxygen XML Editor plugin
install folder.

Oxygen XML Editor plugin | Editing Documents | 383

Chapter file (introduction.xml) looks like this:

<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/docbookx.dtd">
<chapter>

<title>Getting started</title>
<section>

<title>Section title</title>
<para>Para text</para>

</section>
</chapter>

Main article file looks like this:

<?xml version="1.0"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.docbook.org/xml/4.3/docbookx.dtd"
[<!ENTITY % xinclude SYSTEM "../frameworks/docbook/dtd/xinclude.mod">
%xinclude;
]>
<article>

<title>Install guide</title>
<para>This is the install guide.</para>
<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

href="introduction.xml">
<xi:fallback>
<para>
<emphasis>FIXME: MISSING XINCLUDE CONTENT</emphasis>

</para>
</xi:fallback>

</xi:include>
</article>

In this example the following is of note:

• The DOCTYPE declaration defines an entity that references a file containing the information to add the xi namespace
to certain elements defined by the DocBook DTD.

• The href attribute of the xi:include element specifies that the introduction.xml file will replace the xi:include
element when the document is parsed.

• If the introduction.xml file cannot be found, the parser will use the value of the xi:fallback element - a FIXME
message.

If you want to include only a fragment of a file in the master file, the fragment must be contained in a tag having an
xml:id attribute and you must use an XPointer expression pointing to the xml:id value. For example, if the master file
is:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml" schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>

<xi:include href="a.xml" xpointer="a1"
xmlns:xi="http://www.w3.org/2001/XInclude"/>

</test>

and the a.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<test>

<a xml:id="a1">test
</test>

after resolving the XPointer reference the document is:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml" schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>

<a xml:id="a1" xml:base="a.xml">test
</test>

Oxygen XML Editor plugin | Editing Documents | 384

The XInclude support in Oxygen XML Editor plugin is enabled by default. To configure it, open the Preferences dialog
box and go to XML > XML Parser > Enable XInclude processing. When enabled, Oxygen XML Editor plugin will
be able to validate and transform documents comprised of parts added using XInclude.

Viewing Status Information

Status information generated by operations such as schema detection, manual validation, automatic validation, and
transformations are fed into the Console view, allowing you to monitor how the operation is being executed (the Enable
oXygen consoles option must be enabled in the View preferences page).

Figure 202: Console View Messages

Messages contain a timestamp, the name of the thread that generated it and the actual status information. The number
of displayed messages can be controlled with the Limit console output option in the View preference page.

To make the view visible, select Window > Show View > Console.

Editor Highlights

An editor highlight is a text fragment emphasized by a colored background.

Highlights are generated in both Text and Author mode when the following actions generate results:

• Find/Replace
• Find All Elements
• XPath in Files
• Search References
• Search Declarations

By default, Oxygen XML Editor plugin uses a different color for each type of highlight (XPath in Files, Find/Replace,
Search References, Search Declarations, etc.) You can customize these colors and the maximum number of highlights
displayed in a document on the Editor preferences page. The default maximum number of highlights is 10000.

You can navigate the highlights in the current document by using the following methods:

• Clicking the markers from the range ruler, located at the right side of the document.

• Clicking the Next and Previous buttons () from the bottom of the range ruler.

Note: When there are multiple types of highlights in the document, the Next and Previous buttons ()
navigate through highlights of the same type.

• Clicking the messages displayed in the Results view at the bottom of the editor.

To remove the highlights, you can do the following:

• Click the Remove all button from bottom of the range ruler.
• Close the results tab at the bottom of the editor that contains the output of the action that generated the highlights.

• Click the Remove all button from the results panel at the bottom of the editor.

Oxygen XML Editor plugin | Editing Documents | 385

XML Quick Fixes

The Oxygen XML Editor plugin Quick Fix support helps you resolve errors that appear in an XML document by offering
quick fixes to problems such as missing required attributes or invalid elements. Quick fixes are available in Text mode
and Author mode

To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error or warning
occurs. If a Quick Fix is available for that particular error or warning, you can access the Quick Fix proposals with any
of the following methods:

• When hovering over the error or warning, the proposals are presented in a tooltip pop-up window and the available
quick fixes include a link that can be used to perform the fix.

Figure 203: Quick Fix Presented in a Tooltip in Text Mode

Figure 204: Quick Fix Presented in a Tooltip in Author Mode

• When hovering over the error or warning in Author mode, a small quick fix drop-down menu is presented. You can
use the drop-down menu to display a list of available quick fixes to select from for the particular error or warning.

Figure 205: Quick Fix Drop-Down Menu in Author Mode

• If you place the cursor in the highlighted area where a validation error or warning occurs, a quick fix icon () is
displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Editor plugin displays the
list of available fixes.

Figure 206: Quick Fix Menu Invoked by Clicking on the Icon

• With the cursor placed in the highlighted area of the error or warning, you can also invoke the quick fix menu by
pressing Ctrl + 1 (Command + 1 on OS X) on your keyboard.

Whenever you make a modification in the XML document or you apply a fix, the list of quick fixes is recomputed to
ensure that you always have valid proposals.

Note: A quick fix that adds an element inserts it along with required and optional elements, and required and
fixed attributes, depending on how the Content Completion Assistant options are configured.

Oxygen XML Editor plugin | Editing Documents | 386

Quick Fixes for XSD and Relax NG Errors

Oxygen XML Editor plugin offers quick fixes for common errors that appear in XML documents that are validated
against XSD or Relax NG schemas.

Note: For XML documents validated against XSD schemas, the quick fixes are only available if you use the
default Xerces validation engine.

Quick fixes are available in Text mode and Author mode.

Oxygen XML Editor plugin provides quick fixes for numerous types of problems, including the following:

Available quick fixesProblem type

Insert the required elementA specific element is required in the current context

Remove the invalid elementAn element is invalid in the current context

Remove the element contentThe content of the element should be empty

Remove all child elementsAn element is not allowed to have child elements

Remove the text contentText is not allowed in the current element

Insert the required attributeA required attribute is missing

Remove the attributeAn attribute is not allowed to be set for the current
element

Propose the correct attribute valuesThe attribute value is invalid

Generate a unique ID valueID value is already defined

Change the reference to an already defined IDReferences to an invalid ID

Related information
Schematron Quick Fixes (SQF) on page 387

Schematron Quick Fixes (SQF)

Oxygen XML Editor plugin provides support for Schematron Quick Fixes (SQF). They help you resolve errors that
appear in XML documents that are validated against Schematron schemas by offering you solution proposals. The
Schematron Quick Fixes are an extension of the Schematron language and they allow you to define fixes for Schematron
error messages. Specifically, they are associated with assert or report messages.

A typical use case is using Schematron Quick Fixes to assist content authors with common editing tasks. For example,
you can use Schematron rules to automatically report certain validation warnings (or errors) when performing regular
editing tasks, such as inserting specific elements or changing IDs to match specific naming conventions. For more details
and examples, please see the following blog:
http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html.

Displaying the Schematron Quick Fix Proposals

The defined Schematron Quick Fixes are displayed on validation errors in Text mode and Author mode.

Figure 207: Example of a Schematron Quick Fix

Oxygen XML Editor plugin | Editing Documents | 387

http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html

Related information
Editing Schematron Quick Fixes on page 555

Schematron Quick Fix Specifications

Refactoring XML Documents

In the life cycle of XML documents there are instances when the XML structure needs to be changed to accommodate
various needs. For example, when an associated schema is updated, an attribute may have been removed, or a new
element added to the structure.

These types of situations cannot be resolved with a traditional Find/Replace tool, even if the tool accepts regular
expressions. The problem becomes even more complicated if an XML document is computed or referenced from multiple
modules, since multiple resources need to be changed.

To assist you with these types of refactoring tasks, Oxygen XML Editor plugin includes a specialized XML Refactoring
tool that helps you manage the structure of your XML documents.

XML Refactoring Tool

The XML Refactoring tool is presented in the form of an easy to use wizard that is designed to reduce the time and
effort required to perform various structure management tasks. For example, you can insert, delete, or rename an attribute
in all instances of a particular element that is found in all documents within your project.

To access the tool, select the XML Refactoring action from one of the following locations:

• The XML Tools menu.
• The Refactoring submenu from the contextual menu in the Navigator view.
• The Refactoring submenu from the contextual menu in the DITA Maps Manager view.

Note: The predefined refactoring operations are also available from the Refactoring submenu in the contextual
menu of Author or Text mode. This is useful because by selecting the operations from the contextual menu,
Oxygen XML Editor plugin considers the editing context to skip directly to the wizard page of the appropriate
operation and to help you by preconfiguring some of the parameter values. For your convenience, the last 5
operations that are used also appear in the Refactoring submenu of the contextual menu in the DITA Maps
Manager.

XML Refactoring Wizard

The XML Refactoring tool includes the following wizard pages:

Oxygen XML Editor plugin | Editing Documents | 388

http://schematron-quickfix.github.io/sqf/publishing-snapshots/April2015Draft/spec/SQFSpec.html

The first wizard page presents the available operations, grouped by category. To search for an operation,
you can use the filter text box at the top of the page.

Figure 208: XML Refactoring Wizard

Refactoring
operations

Oxygen XML Editor plugin | Editing Documents | 389

The next wizard page allows you to specify the parameters for the refactoring operation. The parameters
are specific to the type of refactoring operation that is being performed. For example, to delete an attribute
you need to specify the parent element and the qualified name of the attribute to be removed.

Figure 209: XML Refactoring 2nd Wizard Page (Delete Attribute Operation)

Configure
Operation
Parameters

The last wizard page allows you to select the set of files that represent the input of the operation. You can
select from predefined resource sets (such as the current file, your whole project, the current DITA map
hierarchy, etc.) or you can define your own set of resources by creating a working set.

Scope and
Filters

The Filters section includes the following options:

• Include files - Allows you to filter the selected resources by using a file pattern. For example, to restrict
the operation to only analyze build files you could use build*.xml for the file pattern.

• Restrict only to known XML file types - When enabled, only resources with a known XML file type
will be affected by the operation.

Figure 210: XML Refactoring - Scope and Filters Wizard Page

Oxygen XML Editor plugin | Editing Documents | 390

If an operation takes longer than expected you can use the Stop button in the progress bar to cancel the operation.

Note: It is recommended that you use the Preview button to review all the changes that will be made by the
refactoring operation before applying the changes.

Warning: After clicking the Finish button, the operation will be processed and Oxygen XML Editor plugin
provides no automatic means for reverting the operations. Any Undo action will only revert changes on the
current document.

Predefined Refactoring Operations

The XML Refactoring tool includes a variety of predefined operations that can be used for common refactoring tasks.
They are grouped by category in the Refactoring operations wizard page. You can also access the operations from the
Refactoring submenu in the contextual menu of Author or Text mode. The operations are also grouped by category
in this submenu. When selecting the operations from the contextual menu, Oxygen XML Editor plugin considers the
editing context to get the names and namespaces of the current element or attribute, and uses this information to
preconfigure some of the parameter values for the selected refactoring operation.

Tip: Each operation includes a link in the lower part of the wizard that opens the XML / XSLT-FO-XQuery
/ XPath preferences page where you can configure XPath options and declare namespace prefixes.

The following predefined operations are available:

Refactoring Operations for Attributes

Use this operation to change the value of an attribute or insert a new one. This operation allows
you to specify the following parameters:

Add/Change
attribute

• Parent element section

• Element - The parent element of the attribute to be changed, in the form of a local name
from any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute section

• Local name - The local name of the affected attribute.
• Namespace - The namespace of the affected attribute.
• Value - The value for the affected attribute.

• Options section

• You can choose between one of the following options for the Operation mode:

• Add the attribute in the parent elements where it is missing
• Change the value in the parent elements where the atrribute already exists
• Both

Use this operation to remove one or more attributes. This operation requires you to specify the
following parameters:

Delete attribute

• Element - The parent element of the attribute to be deleted, in the form of a local name from
any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be deleted.

Use this operation to rename an attribute. This operation requires you to specify the following
parameters:

Rename attribute

• Element - The parent element of the attribute to be renamed, in the form of a local name from
any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be renamed.

Oxygen XML Editor plugin | Editing Documents | 391

• New local name - The new local name of the attribute.

Use this operation to search for a text fragment inside an attribute value and change the fragment
to a new value. This operation allows you to specify the following parameters:

Replace in
attribute value

• Target attribute section

• Element - The parent element of the attribute to be modified, in the form of a local name
from any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be modified.

• Find / Replace section

• Find - The text fragments to find. You can use Perl-like regular expressions.
• Replace with - The text fragment to replace the target with. This parameter can bind regular

expression capturing groups ($1, $2, etc.) from the find pattern.

Refactoring Operations for Comments

Use this operation to delete comments from one or more elements. This operation requires you
specify the following parameter:

Delete comments

• Element - The target element (or elements) for which comments will be deleted, in the form
of a local name from any namespace, a local name with a namespace prefix, or an XPath
expression.

Note: Comments that are outside the root element will not be deleted because the serializer
preserves the content before and after the root.

Refactoring Operations for Elements

Use this operation to delete elements. This operation requires you to specify the following
parameter:

Delete element

• Element - The target element to be deleted, in the form of a local name from any namespace,
a local name with a namespace prefix, or an XPath expression.

Use this operation to delete the content of elements. This operation requires you to specify the
following parameter:

Delete element
content

• Element - The target element whose content is to be deleted, in the form of a local name from
any namespace, a local name with a namespace prefix, or an XPath expression.

Use this operation to insert new elements. This operation allows you to specify the following
parameters:

Insert element

• Element section

• Local name - The local name of the element to be inserted.
• Namespace - The namespace of the element to be inserted.

• Location section

• XPath- An XPath expression that identifies an existing element to which the new element
is relative, in the form of a local name from any namespace, a local name with a namespace
prefix, or other XPath expressions.

• Position - The position where the new element will be inserted, in relation to the specified
existing element. The possible selections in the drop-down menu are: After, Before, First
child, or Last child.

Oxygen XML Editor plugin | Editing Documents | 392

Use this operation to rename elements. This operation requires you to specify the following
parameters:

Rename element

• Target elements (XPath) - The target elements to be renamed, in the form of a local name
from any namespace, a local name with a namespace prefix, or other XPath expressions.

• New local name - The new local name of the element.

Use this operation to remove the surrounding tags of elements, while keeping the content unchanged.
This operation requires you to specify the following parameter:

Unwrap element

• Target elements (XPath) - The target elements whose surrounding tags will be removed, in
the form of a local name from any namespace, a local name with a namespace prefix, or other
XPath expressions.

Use this operation to surround elements with element tags. This operation allows you to specify
the following parameters:

Wrap element

• Target elements (XPath) - The target elements to be surrounded with tags, in the form of a
local name from any namespace, a local name with a namespace prefix, or other XPath
expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element.
• Namespace - The namespace of the Wrapper element.

Use this operation to surround the content of elements with element tags. This operation allows
you to specify the following parameters:

Wrap element
content

• Target elements (XPath) - The target elements whose content will be surrounded with tags,
in the form of a local name from any namespace, a local name with a namespace prefix, or
other XPath expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element that will surround the content of the
target.

• Namespace - The namespace of the Wrapper element that will surround the content of the
target.

Refactoring Operations for Fragments

Use this operation to insert an XML fragment. This operation allows you to specify the
following:

Insert XML fragment

• XML Fragment - The XML fragment to be inserted.
• Location section

• XPath - An XPath expression that identifies an existing element to which the inserted
fragment is relative, in the form of a local name from any namespace, a local name
with a namespace prefix, or other XPath expressions.

• Position - The position where the fragment will be inserted, in relation to the specified
existing element. The possible selections in the drop-down menu are: After, Before,
First child, or Last child.

Use this operation to replace the content of elements with an XML fragment. This operation
allows you to specify the following parameters:

Replace element
content with XML
fragment

• Target elements (XPath) - The target elements whose content will be replaced, in the
form of a local name from any namespace, a local name with a namespace prefix, or
other XPath expressions.

Oxygen XML Editor plugin | Editing Documents | 393

• XML Fragment - The XML fragment with which to replace the content of the target
element.

Use this operation to replace elements with an XML fragment. This operation allows you to
specify the following parameters:

Replace element with
XML fragment

• Target elements (XPath) - The target elements to be replaced, in the form of a local
name from any namespace, a local name with a namespace prefix, or other XPath
expressions.

• XML Fragment - The XML fragment with which to replace the target element.

Additional Notes

Note: There are some operations that allow <ANY> for the local name and namespace parameters. This value
can be used to select an element or attribute regardless of its local name or namespace. Also, the
<NO_NAMESPACE> value can be used to select nodes that do not belong to a namespace.

Note: Some operations have parameters that accept XPath expressions to match elements or attributes. In these
XPath expressions you can only use the prefixes declared in the Options > Preferences > XML >
XSLT-FO-XQUERY > XPath page. This preferences page can be easily opened by clicking the link in the note
(Each prefix used in an XPath expression must be declared in the Default prefix-namespace mappings
section) at the bottom of the Configure Operation Parameters wizard page.

Custom Refactoring Operations

While Oxygen XML Editor plugin includes a variety of predefined XML refactoring operations to help you accomplish
particular tasks, you can also create custom operations according to your specific needs. For example, you could create
a custom refactoring operation to convert an attribute to an element and insert the element as the first child of the parent
element.

An XML Refactoring operation is defined as a pair of resources:

• An XQuery Update script or XSLT stylesheet that Oxygen XML Editor plugin will run to refactor the XML files.
• An XML Operation Descriptor file that contains information about the operation (such as the name, description, and

parameters).

Oxygen XML Editor plugin | Editing Documents | 394

Figure 211: Diagram of an XML Refactoring Operation

All the defined custom operations are loaded by the XML Refactoring Tool and presented in the Refactoring Operations
wizard page, along with the predefined built-in operations.

After the user chooses an operation and specifies its parameters, Oxygen XML Editor plugin processes an XQuery
Update or XSLT transformation over the input file. This transformation is executed in a safe mode, which implies the
following:

• When loading the document:

• The XInclude mechanism is disabled. This means that the resources included by using XInclude will not be visible
in the transformation.

• The DTD entities will be processed without being expanded.
• The associated DTD will be not loaded, so the default attributes declared in the DTD will not be visible in the

transformation.

• When saving the updated XML document:

• The DOCTYPE will be preserved.
• The DTD entities will be preserved as they are in the original document when the document is saved.
• The attribute values will be kept in their original form without being normalized.
• The spaces between attributes are preserved. Basically, the spaces are lost by a regular XML serialization since

they are not considered important.

The result of this transformation overrides the initial input file.

Note: To achieve some of the previous goals, the XML Refactoring mechanism adds several attributes that are
interpreted internally. The attributes belong to the
http://oxygenxml.com/app/xml_refactory/additional_attributes namespace. These
attributes should not be taken into account when processing the input XML document since they are discarded
when the transformed document is serialized.

Oxygen XML Editor plugin | Editing Documents | 395

Restriction: Comments or processing instructions that are in any node before or after the root element cannot
be modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be
performed on comments or processing instructions that are inside the root element.

Creating a Custom Refactoring Operation

To create a custom refactoring operation, follow these steps:

1. Create an XQuery Update script or XSLT file.
2. Create an XML Refactoring Operation Descriptor file.
3. Store both files in one of the locations that Oxygen XML Editor plugin scans when loading the custom operations.

Result: Once you run the XML Refactoring tool again, the custom operation appears in the Refactoring Operations
wizard page.

Related information
Storing and Sharing Refactoring Operations on page 402

Custom Refactoring Script

The first step in creating a custom refactoring operation is to create an XQuery Update script or XSLT stylesheet that is
needed to process the refactoring operations. The easiest way to create this script file is to use the New document wizard
to create a new XQuery or XSLT file and you can use our examples to help you with the content.

There are cases when it is necessary to add parameters in the XQuery script or XSLT stylesheet. For instance, if you
want to rename an element, you may want to declare an external parameter associated with the name of the element to
be renamed. To allow you to specify the value for these parameters, they need to be declared in the refactoring operation
descriptor file that is associated with this operation.

Note: The XQuery Update processing is disabled by default in Oxygen XML Editor plugin. Thus, if you want
to create or edit an XQuery Update script you have to enable this facility by creating an XQuery transformation
scenario and choose Saxon EE as the transformation engine. Also, you need to make sure the Enable XQuery
update option is enabled in the Saxon processor advanced options.

Note: If you are using an XSLT file, XPath expressions that are passed as parameters will automatically be
rewritten to conform with the mapping of the namespace prefixes declared in the XML /XSLT-FO-XQuery /
XPath preferences page.

The next step in creating a custom refactoring operation is to create a custom operation descriptor file.

Related information
Example of an XML Refactoring Operation on page 399

Custom Refactoring Operation Descriptor File

The second step in creating a custom refactoring operation is to create an operation descriptor file. The easiest way to
do this is to use the New document wizard and choose the XML Refactoring Operation Descriptor template.

Introduction to the Descriptor File

This file contains information (such as name, description, and id) that is necessarily when loading an XML
Refactoring operation . It also contains the path to the XQuery Update script or XSLT stylesheet that is associated with
the particular operation through the script element.

You can specify a category for your custom operations to logically group certain operations. The category element
is optional and if it is not included in the descriptor file, the default name of the category for the custom operations is
Other operations.

The descriptor file is edited and validated against the following schema:
frameworks/xml_refactoring/operation_descriptor.xsd.

Oxygen XML Editor plugin | Editing Documents | 396

Declaring Parameters in the Descriptor File

If the XQuery Update script or XSLT stylesheet includes parameters, they should be declared in the parameters section
of the descriptor file. All the parameters specified in this section of the descriptor file will be displayed in the XML
Refactoring tool within the Configure Operation Parameters wizard page for that particular operation.

The value of the first description element in the parameters section will be displayed at the top of the Configure
Operation Parameters wizard page.

To declare a parameter, specify the following information:

• label - This value is displayed in the user interface for the parameter.
• name - The parameter name used in the XQuery Update script or XSLT stylesheet and it should be the same as the

one declared in the script.
• type - Defines the type of the parameter and how it will be rendered. There are several types available:

• TEXT - Generic type used to specify a simple text fragment.
• XPATH - Type of parameter whose value is an XPATH expression. For this type of parameter, Oxygen XML

Editor plugin will use a text input with corresponding content completion and syntax highlighting.

Note: The value of this parameter is transferred as plain text to the XQuery Update or XSLT
transformation without being evaluated. You should evaluate the XPath expression inside the XQuery
Update script or XSLT stylesheet. For example, you could use the saxon:evaluate Saxon extension
function.

Note: A relative XPath expression is converted to an absolute XPath expression by adding // before it
(//XPathExp). This conversion is done before transferring the XPath expression to the XML refactoring
engine.

Note: When writing XPath expressions, you can only use prefixes declared in the Options > Preferences >
XML > XSLT-FO-XQUERY > XPath options page.

• NAMESPACE - Used for editing namespace values.
• REG_EXP_FIND - Used when you want to match a certain text by using Perl-like regular expressions.
• REG_EXP_REPLACE - Used along with REG_EXP_FIND to specify the replacement string.
• XML_FRAGMENT - This type is used when you want to specify an XML fragment. For this type, Oxygen XML

Editor plugin will display a text area specialized for inserting XML documents.
• NC_NAME - The parameter for NC_NAME values. It is useful when you want to specify the local part of a QName

for an element or attribute.
• BOOLEAN - Used to edit boolean parameters.
• TEXT_CHOICE - It is useful for parameters whose value should be from a list of possible values. Oxygen XML

Editor plugin renders each possible value as a radio button option.

• description - The description of the parameter. It is used by the application to display a tooltip when you hover
over the parameter.

• possibleValues - Contains the list with possible values for the parameter and you can specify the default value,
as in the following example:

<possibleValues onlyPossibleValuesAllowed="true">
<value name="before">Before</value>
<value name="after"default="true">After</value>
<value name="firstChild">First child</value>
<value name="lastChild">Last child</value>

</possibleValues>

Specialized Parameters to Match Elements or Attributes

If you want to match elements or attributes, you can use some specialized parameters, in which case Oxygen XML
Editor plugin will propose all declared elements or attributes based on the schema associated with the currently edited
file. The following specialized parameters are supported:

Oxygen XML Editor plugin | Editing Documents | 397

This parameter is used to match elements. For this type of parameter, the application displays
a text field where you can enter the element name or an XPath expression. The text from

elementLocation

the label attribute is displayed in the application as the label of the text field. The name
attribute is used to specify the name of the parameter from the XQuery Update script or
XSLT stylesheet. If the value of the useCurrentContext attribute is set to true, the
element name from the cursor position is used as proposed values for this parameter.

Example of an elementLocation:

<elementLocation name="elem_loc" useCurrentContext="false">
<element label="Element location">

<description>Element location description.</description>
</element>

</ ElementLocation>

This parameter is used to match attributes. For this type of parameter, the application displays
two text fields where you can enter the parent element name and the attribute name (both

attributeLocation

text fields accept XPath expressions for a finer match). The text from the label attributes
is displayed in the application as the label of the associated text fields. The name attribute
is used to specify the name of the parameter from the XQuery Update script or XSLT
stylesheet. The value of this parameter is an XPath expression that is computed by using
the values of the expression from the element and attribute text fields. For example,
if section is entered for the element and a title is entered for the attribute, the XPath
expression would be computed as //section/@title. If the value of the
useCurrentContext attribute is set to true, the element and attribute name from the
cursor position is used as proposed values for the operation parameters.

Example of an attributeLocation:

<attributeLocation name="attr_xpath" useCurrentContext="true">
<element label="Element path">

<description>Element path description.</description>
</element>
<attribute label="Attribute" >

<description>Attribute path description.</description>
</attribute>

</ AttributeLocation>

This parameter is used to specify elements by local name and namespace. For this type of
parameter, the application displays two combo boxes with elements and namespaces collected

elementParameter

from the associated schema of the currently edited file. The text from the label attribute
is displayed in the application as label of the associated combo. The name attribute is used
to specify the name of the parameter from the XQuery Update script or XSLT stylesheet.
If you specify the allowsAny attribute, the application will propose <ANY> as a possible
value for the Name and Namespace combo boxes. You can also use the
useCurrentContext attribute and if its value is set to true, the element name and
namespace from the cursor position is used as proposed values for the operation parameters.

Example of an elementParameter:

<elementParameter id="elemID">
<localName label="Name" name="element_localName" allowsAny="true"

useCurrentContext="true">
<description>The local name of the attribute's parent element.</description>

</localName>
<namespace label="Namespace" name="element_namespace" allowsAny="true">

<description>The local name of the attribute's parent element</description>

</namespace>
</elementParameter>

This parameter is used to specify attributes by local name and namespace. For this type of
parameter, the application displays two combo boxes with attributes and their namespaces

attributeParameter

collected from the associated schema of the currently edited file. The text from the label
attribute is displayed in the application as the label of the associated combo box. You can
also use the useCurrentContext attribute and if its value is set to true, the attribute

Oxygen XML Editor plugin | Editing Documents | 398

name and namespace from the cursor position is used as proposed values for the operation
parameters.

Note: An attributeParameter is dependant upon an elementParameter.
The list of attributes and namespaces are computed based on the selection in the
elementParameter combo boxes.

Example of an attributeParameter:

<attributeParameter dependsOn="elemID">
<localName label="Name" name="attribute_localName" useCurrentContext="true">

<description>The name of the attribute to be converted.</description>
</localName>
<namespace label="Namespace" name="attribute_namespace" allowsAny="true">

<description>The namespace of the attribute to be converted.</description>
</namespace>

</attributeParameter>

Note: All predefined operations are loaded from the [OXYGEN_INSTALL_DIR]/refactoring folder.

Related information
Example of an XML Refactoring Operation on page 399

Example of an XML Refactoring Operation

To demonstrate creating a custom operation, consider that we have a task where we need to convert an attribute into an
element and insert it inside another element. A specific example would be if you have a project with a variety of image
elements where a deprecated alt attribute was used for the description and you want to convert all instances of that
attribute into an element with the same name and insert it as the first child of the image element.

Thus, our task is to convert this attribute into an element with the same name and insert it as the first child of the image
element.

Figure 212: Example: Custom XML Refactoring Operation

A new custom XML refactoring operation requires:

• An XQuery Update script or XSLT stylesheet.
• An XML Refactoring operation descriptor file that contains the path to the XQuery Update script or XSLT stylesheet.

Oxygen XML Editor plugin | Editing Documents | 399

Example of an XQuery Update Script for Creating a Custom Operation to Convert an Attribute to an
Element
The XQuery Update script does the following:

• Iterates over all elements from the document that have the specified local name and namespace.
• Finds the attribute that will be converted to an element.
• Computes the QName of the new element to be inserted and inserts it as the first child of the parent element.

(:
 XQuery document used to implement 'Convert attribute to element' operation from XML Refactoring tool.
:)

declare namespace output = "http://www.w3.org/2010/xslt-xquery-serialization";
declare option output:method "xml";
declare option output:indent "no";

(: Local name of the attribute's parent element. :)
declare variable $element_localName as xs:string external;

(: Namespace of the attribute's parent element. :)
declare variable $element_namespace as xs:string external;

(: The local name of the attribute to be converted :)
declare variable $attribute_localName as xs:string external;

(: The namespace of the attribute to be converted :)
declare variable $attribute_namespace as xs:string external;

(: Local name of the new element. :)
declare variable $new_element_localName as xs:string external;

(: Namespace of the new element. :)
declare variable $new_element_namespace as xs:string external;

(: Convert attribute to element:)
for $node in //*
(: Find the attribute to convert :)
let $attribute :=
 $node/@*[local-name() = $attribute_localName and
 ($attribute_namespace = '<ANY>' or $attribute_namespace = namespace-uri())]

(: Compute the prefix for the new element to insert :)
let $prefix :=
 for $p in in-scope-prefixes($node)
 where $new_element_namespace = namespace-uri-for-prefix($p, $node)
return $p

(: Compute the qname for the new element to insert :)
let $new_element_qName :=
 if (empty($prefix) or $prefix[1] = '') then $new_element_localName
 else $prefix[1] || ':' || $new_element_localName

 where ('<ANY>' = $element_localName or local-name($node) = $element_localName) and
 ($element_namespace = '<ANY>' or $element_namespace = namespace-uri($node))

 return
 if (exists($attribute)) then
 (insert node element {QName($new_element_namespace, $new_element_qName)}
 {string($attribute)} as first into $node,
 delete node $attribute)
 else ()

Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element
The XSLT stylesheet does the following:

• Iterates over all elements from the document that have the specified local name and namespace.
• Finds the attribute that will be converted to an element.
• Adds the new element as the first child of the parent element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
exclude-result-prefixes="xs"
xmlns:xr="http://www.oxygenxml.com/ns/xmlRefactoring"
version="2.0">

 <xsl:import href="http://www.oxygenxml.com/ns/xmlRefactoring/resources/commons.xsl"/>

 <xsl:param name="element_localName" as="xs:string" required="yes"/>
 <xsl:param name="element_namespace" as="xs:string" required="yes"/>

Oxygen XML Editor plugin | Editing Documents | 400

 <xsl:param name="attribute_localName" as="xs:string" required="yes"/>
 <xsl:param name="attribute_namespace" as="xs:string" required="yes"/>
 <xsl:param name="new_element_localName" as="xs:string" required="yes"/>
 <xsl:param name="new_element_namespace" as="xs:string" required="yes"/>

 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="//*[xr:check-local-name($element_localName, ., true()) and
 xr:check-namespace-uri($element_namespace, .)]">

 <xsl:variable name="attributeToConvert"
select="@*[xr:check-local-name($attribute_localName, ., true()) and

 xr:check-namespace-uri($attribute_namespace, .)]"/>

 <xsl:choose>
 <xsl:when test="empty($attributeToConvert)">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy>
 <xsl:for-each select="@*[empty(. intersect $attributeToConvert)]">
 <xsl:copy-of select="."/>
 </xsl:for-each>

<!-- The new element namespace -->
 <xsl:variable name="nsURI" as="xs:string">
 <xsl:choose>
 <xsl:when test="$new_element_namespace eq $xr:NO-NAMESPACE">
 <xsl:value-of select="''"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$new_element_namespace"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:element name="{$new_element_localName}" namespace="{$nsURI}">
 <xsl:value-of select="$attributeToConvert"/>
 </xsl:element>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

Note: The XSLT stylesheet imports a module library that contains utility functions and variables. The location
of this module is resolved via an XML catalog set in the XML Refactoring framework.

Example of an Operation Descriptor File for Creating a Custom Operation to Convert an Attribute to
an Element

After you have developed the XQuery script or XSLT stylesheet, you have to create an XML Refactoring operation
descriptor. This descriptor is used by the application to load the operation details such as name, description, or parameters.

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"
id="convert-attribute-to-element"
name="Convert attribute to element">
<description>Converts the specified attribute to an element. The new element will be inserted as first child

 of the attribute's parent element.</description>
<!-- For the XSLT stylesheet option uncomment the following line and comment the line referring the XQuery

 Update script -->
<!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->
<script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>
<parameters>

<description>Specify the attribute to be converted to element.</description>
<section label="Parent element">

<elementParameter id="elemID">
<localName label="Name" name="element_localName" allowsAny="true">

<description>The local name of the attribute's parent element.</description>
</localName>
<namespace label="Namespace" name="element_namespace" allowsAny="true">

<description>The local name of the attribute's parent element</description>
</namespace>

</elementParameter>

Oxygen XML Editor plugin | Editing Documents | 401

</section>
<section label="Attribute">

<attributeParameter dependsOn="elemID">
<localName label="Name" name="attribute_localName">

<description>The name of the attribute to be converted.</description>
</localName>
<namespace label="Namespace" name="attribute_namespace" allowsAny="true">

<description>The namespace of the attribute to be converted.</description>
</namespace>

</attributeParameter>
</section>
<section label="New element">

<elementParameter>
<localName label="Name" name="new_element_localName">

<description>The name of the new element.</description>
</localName>
<namespace label="Namespace" name="new_element_namespace">

<description>The namespace of the new element.</description>
</namespace>

</elementParameter>
</section>

</parameters>
</refactoringOperationDescriptor>

Note: If you are using an XSLT file, the line with the script element would look like this:

<script type="XSLT" href="convert-attribute-to-element.xsl"/>

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Editor plugin when it loads the
custom operation. When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The following
image shows the parameters that can be specified in our example of the custom operation to convert an attribute to an
element:

Figure 213: Example: XML Refactoring Wizard for a Custom Operation

Storing and Sharing Refactoring Operations

Oxygen XML Editor plugin scans the following locations when looking for XML Refactoring operations to provide
flexibility:

• A refactoring folder, created inside a directory that is associated to a framework you are customizing.
• Any folder. In this case, you need to open the Preferences dialog box , go to XML > XML Refactoring, and specify

the same folder in the Load additional refactoring operations from text box.

Oxygen XML Editor plugin | Editing Documents | 402

• The refactoring folder from the Oxygen XML Editor plugin installation directory
([OXYGEN_INSTALL_DIR]/refactoring/).

Sharing Custom Refactoring Operations

The purpose of Oxygen XML Editor plugin scanning multiple locations for the XML Refactoring operations is to provide
more flexibility for developers who want to share the refactoring operations with the other team members. Depending
on your particular use case, you can attach the custom refactoring operations to other resources, such as frameworks or
projects.

After storing custom operations, you can share them with other users by sharing the resources.

Localizing XML Refactoring Operations

Oxygen XML Editor plugin includes localization support for the XML refactoring operations.

The translation keys for the built-in refactoring operations are located in
[OXYGEN_INSTALL_DIR]/refactoring/i18n/translation.xml.

The localization support is also available for custom refactoring operations. The following information can be translated:

• The operation name, description, and category.
• The description of the parameters element.
• The label, description, and possibleValues for each parameter.

Translated refactoring information uses the following form:

${i18n(translation_key)}

Oxygen XML Editor plugin scans the following locations to find the translation.xml files that are used to load
the translation keys:

• A refactoring/i18n folder, created inside a directory that is associated to a customized framework.
• A i18n folder, created inside a directory that is associated to a customized framework.
• An i18n folder inside any specified folder. In this case, you need to open the Preferences dialog box , go to XML >

XML Refactoring, and specify the folder in the Load additional refactoring operations from text box.
• The refactoring/i18n folder from the Oxygen XML Editor plugin installation directory

([OXYGEN_INSTALL_DIR]/refactoring/i18n).

Example of a Refactoring Operation Descriptor File with i18n Support

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://oxygenxml.com/app/xml_refactory

http://oxygenxml.com/app/xml_refactory/operation_descriptor.xsd"
xmlns="http://oxygenxml.com/app/xml_refactory" id="remove_text_content"

name="${i18n(Remove_text_content)}">
<description>${i18n(Remove_text_content_description)}</description>
<script type="XQUERY_UPDATE" href="remove_text_content.xq"/>
<parameters>

<description>${i18n(parameters_description)}</description>
<parameter label="${i18n(Element_name)}" name="element_localName" type="NC_NAME">

<description>${i18n(Element_name_descriptor)}</description>
<possibleValues>

<value default="true" name="value1">${i18n(value_1)}</value>
<value name="value2">${i18n(value_2)}</value>

</possibleValues>
</parameter>

</parameters>
</refactoringOperationDescriptor>

Oxygen XML Editor plugin | Editing Documents | 403

Editing XSLT Stylesheets
Oxygen XML Editor plugin includes a built-in editor for XSLT stylesheets. This section presents the features of the
XSLT editor and how these features can be used. The features of the XSLT editor include:

• Create new XSLT files and templates - You can use the built-in new file wizards to create new XSLT documents
or templates.

• Open and Edit XSLT files - XSLT files can be opened and edited in the source editor (Text mode).
• Visual Editing - XSLT stylesheets are rendered, and can be edited, in the visual Author editing mode.
• Validation - Presents validation errors in XSLT files.
• Content completion - Offers proposals for properties and the values that are available for each property.
• Syntax highlighting - The syntax highlighting in Oxygen XML Editor plugin makes XSLT files more readable.

To watch our video demonstration about basic XSLT editing and transformation scenarios in Oxygen XML Editor
plugin, go to http://oxygenxml.com/demo/XSL_Editing.html.

Editing XSLT Stylesheets in the Master Files Context

Smaller interrelated modules that define a complex stylesheet cannot be correctly edited or validated individually, due
to their interdependency with other modules. For example, a function defined in a main stylesheet is not visible when
you edit an included or imported module. Oxygen XML Editor plugin provides the support for defining the main module
(or modules), allowing you to edit any of the imported/included files in the context of the larger stylesheet structure.

You cat set a main XSLT stylesheet either using the master files support from the Navigator view, or using a validation
scenario.

To set a main file using a validation scenario, add validation units that point to the main modules. Oxygen XML Editor
plugin warns you if the current module is not part of the dependencies graph computed for the main stylesheet. In this
case, it considers the current module as the main stylesheet.

The advantages of editing in the context of main file include:

• Correct validation of a module in the context of a larger stylesheet structure.
• Content Completion Assistant displays all components valid in the current context.
• The Outline displays the components collected from the entire stylesheet structure.

To watch our video demonstration about editing XSLT stylesheets in the master files context, go to
http://oxygenxml.com/demo/MasterFilesSupport.html.

Related information
XSLT Resource Hierarchy/Dependencies View on page 415

XSLT Component Dependencies View on page 417

Validating XSLT Stylesheets

Oxygen XML Editor plugin performs the validation of XSLT documents with the help of an XSLT processor that you
can configure in the preferences pages according to the XSLT version. For XSLT 1.0, the options are: Xalan, Saxon
6.5.5, Saxon 9.6.0.7 and a JAXP transformer specified by the main Java class. For XSLT 2.0, the options are: Saxon
9.6.0.7 and a JAXP transformer specified by the main Java class. For XSLT 3.0, the options are Saxon 9.6.0.7 and a
JAXP transformer specified by the main Java class.

Creating a Validation Scenario for XSLT Stylesheets

You can validate an XSLT document using the engine defined in the transformation scenario, or a custom validation
scenario. If you choose to validate using the engine from transformation scenario, and a transformation scenario is not
associated with the current document or the engine has no validation support, the default engine is used. To set the
default engine, open the Preferences dialog box and go to XML > XSLT/FO/XQuery > XSLT.

You can also create new validation scenarios or edit existing ones, and you can add jars and classes that contain extension
functions. To create or edit a validation scenario for an XSLT stylesheet, follow these steps:

Oxygen XML Editor plugin | Editing Documents | 404

http://oxygenxml.com/demo/XSL_Editing.html
http://oxygenxml.com/demo/MasterFilesSupport.html

1. With the XSLT file opened in Oxygen XML Editor plugin, select the Configure Validation Scenario(s) from
the XML menu, or the toolbar, or from the Validate submenu when invoking the contextual menu on the XSLT file
in the Navigator view.
The Configure Validation Scenario(s) dialog box is displayed. It contains the existing scenarios, organized in

categories depending on the type of file they apply to. You can use the options in the Settings drop-down menu
to filter which scenarios are shown.

2. To edit an existing scenario, select the scenario and press the Edit button. If you try to edit one of the read-only
predefined scenarios, Oxygen XML Editor plugin creates a customizable duplicate (you can also use the Duplicate
button).

3. To add a new scenario, press the New button.
The New scenarios dialog box is displayed. It lists all validation units of the scenario.

Figure 214: Add / Edit a Validation Unit

4. Configure the following information in this dialog box:

a) Name - The name of the validation scenario.
b) URL of the file to validate - In most cases, leave this field as the default selection (the URL of the current file).

If you want to specify a different URL, click its cell and enter the URL in the text field, select it from the drop-down
list, or use the Browse drop-down menu or Insert Editor Variable button.

c) File type - The file type should be XSLT Document.
d) Validation engine - Click the cell to select a validation engine. You must select an engine to be able to add or

edit extensions.
e) Automatic validation - If this option is checked, the validation operation defined by this row is also used by the

automatic validation feature.

5. To add or edit extensions, click the Edit extensions button. This button is only available if the File type is set as
XSLT Document and a Validation engine is chosen.
The Libraries dialog box is opened. It is used to specify the jars and classes that contain extension functions called
from the XSLT file of the current validation scenario. They will be searched, in the specified extensions, in the order
displayed in this dialog box. To change the order of the items, select the item and press the Move up or Move
down buttons.

6. Press OK to close the New scenario dialog box.
The newly created validation scenario is now included in the list of scenarios in the Configure Validation Scenario(s)
dialog box. You can select the scenario in this dialog box to associate it with the current XSLT document and press
the Apply associated button to run the validation scenario.

Oxygen XML Editor plugin | Editing Documents | 405

Validating XSLT Stylesheets with Custom Engines

If you need to validate an XSLT stylesheet with a validation engine that is different from the built-in engine, you can
configure external engines as custom XSLT validation engines in the Oxygen XML Editor plugin preferences. After a
custom validation engine is properly configured, it can be applied on the current document by selecting it from the list
of custom validation engines in the Validation toolbar drop-down menu. The document is validated against the
schema declared in the document.

By default, there are two validators that are configured for XSLT stylesheets:

• MSXML 4.0 - included in Oxygen XML Editor plugin (Windows edition). It is associated to the XSL Editor type
in Preferences page.

• MSXML.NET - included in Oxygen XML Editor plugin (Windows edition). It is associated to the XSL Editor type
in Preferences page.

Content Completion in XSLT Stylesheets

The items in the list of proposals offered by the Content Completion Assistant are context-sensitive and includes
proposed items that are valid at the current cursor position. You can enhance the list of proposals by specifying an
additional schema. This schema is defined by the user in the Content Completion / XSL preferences page and can be:
XML Schema, DTD, RELAX NG schema, or NVDL schema.

Figure 215: XSLT Content Completion Assistant

The feature is activated in Text mode in the following situations:

• After you press the < character when inserting an element, it is automatically activated after a short delay. You can
adjust the activation delay with the Activation delay of the proposals window (ms) option from the Content
Completion preferences page.

• After typing a partial element or attribute name, you can activate it by pressing Ctrl + Space (Command + Space
on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X). If there is only one valid proposal
at the current location, it is inserted without displaying the list of proposals.

The Content Completion Assistant proposes numerous item types (such as templates, variables, parameters, keys, etc.)
that are defined in the current stylesheet, and in the imported and included XSLT stylesheets. The Content Completion
Assistant also includes code templates that can be used to quickly insert code fragments into stylesheets.

Note: For XSL and XSD resources, the Content Completion Assistant collects its components starting from
the master files. The master files can be defined in the project or in the associated validation scenario. For further
details about the Master Files support go to Defining Master Files at Project Level.

The extension functions included in the Saxon 6.5.5 and 9.6.0.7 transformation engines are presented in the content
completion list only if the Saxon namespace (http://saxon.sf.net for XSLT version 2.0 / 3.0 or http://icl.com/saxon for
XSLT version 1.0) is declared and one of the following conditions is true:

Oxygen XML Editor plugin | Editing Documents | 406

• The edited file has a transformation scenario that uses as transformation engine Saxon 6.5.5 (for XSLT version 1.0),
Saxon 9.6.0.7 PE or Saxon 9.6.0.7 EE (for XSLT version 2.0 / 3.0).

• The edited file has a validation scenario that uses as validation engine Saxon 6.5.5 (for version 1.0), Saxon 9.6.0.7
PE or Saxon 9.6.0.7 EE (for version 2.0 / 3.0).

• The validation engine specified in Options page is Saxon 6.5.5 (for version 1.0), Saxon 9.6.0.7 PE or Saxon 9.6.0.7
EE (for version 2.0 / 3.0).

Additionally. the Saxon-CE-specific extension functions and instructions are presented in the list of content completion
assistance proposals only if the http://saxonica.com/ns/interactiveXSLT namespace is declared.

Namespace prefixes in the scope of the current context are presented at the top of the content completion assistance
window to speed up the insertion into the document of prefixed elements.

Figure 216: Namespace Prefixes in the Content Completion Assistant

For the common namespaces such as XSL namespace (http://www.w3.org/1999/XSL/Transform), XML
Schema namespace (http://www.w3.org/2001/XMLSchema), or Saxon namespace (http://icl.com/saxon
for version 1.0, http://saxon.sf.net/ for version 2.0 / 3.0), Oxygen XML Editor plugin provides an easy mode
to declare them by proposing a prefix for these namespaces.

Content Completion in XPath Expressions

In XSLT stylesheets, the Content Completion Assistant provides all the features available in the XML editor and also
adds some enhancements. In XPath expressions used in attributes of XSLT stylesheets (elements such as match,
select, and test), the Content Completion Assistant offers the names of XPath and XSLT functions, XSLT axes,
and user-defined functions (the name of the function and its parameters). If a transformation scenario was defined and
associated to the edited stylesheet, the Content Completion Assistant computes and presents elements and attributes
based on:

• The input XML document selected in the scenario.
• The current context in the stylesheet.

The associated document is displayed in the XSLT/XQuery Input view.

Content completion for XPath expressions is started:

• On XPath operators detected in one of the match, select and test attributes of XSLT elements: ", ', /, //, (, [,
|, :, ::, $

• For attribute value templates of non-XSLT elements, that is the { character when detected as the first character of
the attribute value.

• On request, if the combination Ctrl + Space (Command + Space on OS X) is pressed inside an edited XPath
expression.

The items presented in the Content Completion Assistant are dependent on:

Oxygen XML Editor plugin | Editing Documents | 407

• The context of the current XSLT element.
• The XML document associated with the edited stylesheet in the stylesheet transformation scenario.
• The XSLT version of the stylesheet (1.0, 2.0, or 3.0).

Note: The XSLT 3.0 content completion list of proposals includes specific elements and attributes for the
3.0 version.

For example, if the document associated with the edited stylesheet is:

<personnel>
<person id="Big.Boss">

<name>
<family>Boss</family>
<given>Big</given>

</name>
<email>chief@oxygenxml.com</email>
<link subordinates="one.worker"/>

</person>
<person id="one.worker">

<name>
<family>Worker</family>
<given>One</given>

</name>
<email>one@oxygenxml.com</email>
<link manager="Big.Boss"/>

</person>
</personnel>

If you enter an xsl:template element using the Content Completion Assistant, the following actions are triggered:

• The match attribute is inserted automatically.
• The cursor is placed between the quotes.
• The XPath Content Completion Assistant automatically displays a pop-up window with all the XSLT axes, XPath

functions and elements and attributes from the XML input document that can be inserted in the current context.

The set of XPath functions depends on the XSLT version declared in the root element xsl:stylesheet: 1.0, 2.0 or
3.0.

Figure 217: Content Completion in the match Attribute

If the cursor is inside the select attribute of an xsl:for-each, xsl:apply-templates, xsl:value-of or
xsl:copy-of element the content completion proposals depend on the path obtained by concatenating the XPath
expressions of the parent XSLT elements xsl:template and xsl:for-each as shown in the following figure:

Oxygen XML Editor plugin | Editing Documents | 408

Figure 218: Content Completion in the select Attribute

Also XPath expressions typed in the test attribute of an xsl:if or xsl:when element benefit of the assistance of
the content completion.

Figure 219: Content Completion in the test Attribute

XSLT variable references are easier to insert in XPath expressions with the help of the content completion pop-up
triggered by the $ character, which signals the start of such a reference in an XPath expression.

Figure 220: Content Completion in the test Attribute

Oxygen XML Editor plugin | Editing Documents | 409

If the { character is the first one in the value of the attribute, the same Content Completion Assistant is available also
in attribute value templates of non-XSLT elements.

Figure 221: Content Completion in Attribute Value Templates

The time delay (configured in the Content Completion preferences page) for all content completion assistance windows
is also applied for the content completion in XPath expressions.

Tooltip Helper for the XPath Functions Arguments

When editing the arguments of an XPath/XSLT function, Oxygen XML Editor plugin tracks the current entered argument
by displaying a tooltip containing the function signature. The currently edited argument is highlighted with a bolder
font.

When moving the cursor through the expression, the tooltip is updated to reflect the argument found at the cursor position.

We want to concatenate the absolute values of two variables, named v1 and v2.

<xsl:template match="/">
 <xsl:value-of select="concat(abs($v1), abs($v2))"></xsl:value-of>
</xsl:template>

When moving the cursor before the first abs function, Oxygen XML Editor plugin identifies it as the
first argument of the concat function. The tooltip shows in bold font the following information about
the first argument:

• Its name is $arg1.
• Its type is xdt:anyAtomicType.
• It is optional (note the ? sign after the argument type).

The function takes also other arguments, having the same type, and returns a xs:string.

Figure 222: XPath Tooltip Helper - Identify the concat Function's First Argument

Moving the cursor on the first variable $v1, the editor identifies the abs as context function and
shows its signature:

Figure 223: XPath Tooltip Helper - Identify the abs Function's Argument

Oxygen XML Editor plugin | Editing Documents | 410

Further, clicking the second abs function name, the editor detects that it represents the second argument
of the concat function. The tooltip is repainted to display the second argument in bold font.

Figure 224: XPath Tooltip Helper - Identify the concat Function's Second Argument

The tooltip helper is available also in the XPath toolbar and the XPath Builder view.

Syntax Highlight

The XSL editor renders the CSS and JS scripts, and XPath expressions with dedicated coloring schemes. To customize
the coloring schemes, open the Preferences dialog box and go to Editor > Syntax Highlight.

Related information
Customize Syntax Highlight colors on page 95

XSLT Outline View

The Outline view for XSLT stylesheets displays the list of all the components (templates, attribute-sets, character-maps,
variables, functions, keys, outputs) from both the edited stylesheet and its imports or includes. For XSL and XSD
resources, the Outline view collects its components starting from the master files. The master files can be defined in
the project or in the associated validation scenario. For further details about the Master Files support go to Defining
Master Files at Project Level.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Figure 225: XSLT Outline View

The following actions are available in the View Menu on the Outline view action bar:

The text filter of the Outline view returns only exact matches;Filter returns exact matches

Controls the synchronization between Outline view and source document. The
selection in the Outline view can be synchronized with the cursor moves or the

Selection update on cursor
move

Oxygen XML Editor plugin | Editing Documents | 411

changes in the XSLT editor. Selecting one of the components from the Outline
view also selects the corresponding item in the source document.

When the Show components option is selected, the following actions are available:

Displays the XML document structure in a tree-like structure.Show XML structure

Displays all components that were collected starting from the main file.
This option is set by default.

Show all components

Displays the components defined in the current file only.Show only local components

The stylesheet components can be grouped by location and type.Group by location/type

When the Show XML structure option is selected, the following actions are available:

Switches the Outline view to the components display mode.Show components

When active, the application flattens the filtered result elements to a
single level.

Flat presentation mode of the filtered
results

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

The following contextual menu actions are also available when the Show components option is selected in the View
menu:

Opens a small in-place editor that allow you to edit the attributes of the
selected node.

Edit Attributes

Cuts the currently selected node.Cut

Copies the currently selected node.Copy

Deletes the currently selected node.Delete

Searches all references of the item found at current cursor position in the
defined scope, if any. See Finding XSLT References and Declarations for
more details.

Search References Ctrl + Shift + R
(Command + Shift + R on OS X)

Searches all references of the item found at current cursor position in the
specified scope. See Finding XSLT References and Declarations for more
details.

Search References in

Allows you to see the dependencies for the current selected component. See
Component Dependencies View for more details.

Component Dependencies

Displays the hierarchy for the currently selected resource.Resource Hierarchy

Displays the dependencies of the currently selected resource.Resource Dependencies

Renames the selected component. See XSLT Refactoring Actions for more
details.

Rename Component in

Oxygen XML Editor plugin | Editing Documents | 412

The following contextual menu actions are available in the Outline view when the Show XML structure option is
selected in the View menu:

Displays a list of elements that you can insert as children of the current element.Append Child

Displays a list of elements that you can insert as siblings of the current element,
before the current element.

Insert Before

Displays a list of elements that you can insert as siblings of the current element,
after the current element.

Insert After

Opens a small in-place editor that allow you to edit the attributes of the selected
node.

Edit Attributes

Comments/uncomments the currently selected element.Toggle Comment

Searches for the references of the currently selected component.Search references

Searches for the references of the currently selected component in the context
of a scope that you define.

Search references in

Displays the dependencies of the currently selected component.Component dependencies

Renames the currently selected component in the context of a scope that you
define.

Rename Component in

Cuts the currently selected component.Cut

Copies the currently selected component.Copy

Deletes the currently selected component.Delete

Expands the structure of a component in the Outline view.Expand All

Collapses the structure of all the component in the Outline view.Collapse All

The stylesheet components information is presented on two columns: the first column presents the name and match
attributes, the second column the mode attribute. If you know the component name, match or mode, you can search it
in the Outline view by typing one of these pieces of information in the filter text field from the top of the view or directly
on the tree structure. When you type de component name, match or mode in the text field, you can switch to the tree
structure using:

• Keyboard arrow keys
• Enter key
• Tab key
• Shift-Tab key combination

To switch from tree structure to the filter text field, you can use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline
view, its definition is highlighted in the editing area.

Oxygen XML Editor plugin allows you to sort the components of the tree in the Outline view.

Note: Sorting groups in the Outline view is not supported.

Oxygen XML Editor plugin | Editing Documents | 413

Oxygen XML Editor plugin has a predefined order of the groups in the Outline view:

• For location, the names of the files are sorted alphabetically. The main file is the one you are editing and it is located
at the top of the list.

• For type, the order is: parameters, variables, templates, functions, set attributes, character-map.

Note: When no grouping is available and the table is not sorted, Oxygen XML Editor plugin sorts the
components depending on their order in the document. Oxygen XML Editor plugin also takes into account
the name of the file that the components are part of.

XSLT/XQuery Input View

The structure of the XML document associated to the edited XSLT stylesheet, or the structure of the source documents
of the edited XQuery is displayed in a tree form in a view called XSLT/XQuery Input. If the view is not displayed, it
can be opened from the Window > Show View menu. The tree nodes represent the elements of the documents.

XSLT Input View

If you click a node in the XSLT Input view, the corresponding template from the stylesheet is highlighted. A node can
be dragged from this view and dropped in the editor area for quickly inserting xsl:template, xsl:for-each, or
other XSLT elements that have the match/select/test attribute already completed. The value of the attribute is the
correct XPath expression that refers to the dragged tree node. This value is based on the current editing context of the
drop spot.

Figure 226: XSLT Input View

For example, for the following XML document:

<personnel>
<person id="Big.Boss">

<name>
<family>Boss</family>
<given>Big</given>

</name>
<email>chief@oxygenxml.com</email>
<link subordinates="one.worker"/>

</person>
<person id="one.worker">

<name>
<family>Worker</family>
<given>One</given>

</name>
<email>one@oxygenxml.com</email>
<link manager="Big.Boss"/>

</person>
</personnel>

and the following XSLT stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="2.0">
 <xsl:template match="personnel">

Oxygen XML Editor plugin | Editing Documents | 414

 <xsl:for-each select="*">

 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

if you drag the given element and drop it inside the xsl:for-each element, the following pop-up
menu is displayed:

Figure 227: XSLT Input Drag and Drop Pop-up Menu

If you select Insert xsl:value-of, for example, the resulting document is:

Figure 228: XSLT Input Drag and Drop Result

XSLT Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a stylesheet. If the view
is not displayed, it can be opened from the Window > Show View menu.

If you want to see the hierarchy of a stylesheet, select the desired stylesheet in the project view and choose Resource
Hierarchy from the contextual menu.

Oxygen XML Editor plugin | Editing Documents | 415

Figure 229: Resource Hierarchy/Dependencies View - Hierarchy for docbook.xsl

If you want to see the dependencies of a stylesheet, select the desired stylesheet in the project view and choose Resource
Dependencies from the contextual menu.

Figure 230: Resource Hierarchy/Dependencies View - Dependencies for common.xsl

The following actions are available in the Resource Hierarchy/Dependencies view:

Refreshes the Hierarchy/Dependencies structure.Refresh

Stops the hierarchy/dependencies computing.Stop

Allows you to choose a resource to compute the hierarchy structure.Show Hierarchy

Allows you to choose a resource to compute the dependencies structure.Show Dependencies

Oxygen XML Editor plugin | Editing Documents | 416

Allows you to configure a scope to compute the dependencies structure. There is
also an option for automatically using the defined scope for future operations.

Configure

Provides access to the list of previously computed dependencies. Use the Clear
history button to remove all items from this list.

History

The contextual menu contains the following actions:

Opens the resource. You can also double-click a resource in the
Hierarchy/Dependencies structure to open it.

Open

Copies the location of the resource.Copy location

Moves the selected resource.Move resource

Renames the selected resource.Rename resource

Shows the hierarchy for the selected resource.Show Resource Hierarchy

Shows the dependencies for the selected resource.Show Resource Dependencies

Adds the currently selected resource in the Master Files directory.Add to Master Files

Expands all the children of the selected resource from the
Hierarchy/Dependencies structure.

Expand All

Collapses all children of the selected resource from the
Hierarchy/Dependencies structure.

Collapse All

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special
icon .

Related information
Search and Refactor Operations Scope on page 374

Moving/Renaming XSLT Resources
You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename
resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Enable this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move
resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the option to
introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Enable this option to update the references to the resource you are

moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is enabled, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are updated.

XSLT Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected XSLT component. If the view is
not displayed, it can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Editing Documents | 417

If you want to see the dependencies of an XSLT component, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named components (templates,
variables, parameters, attribute sets, keys, functions, outputs).

Figure 231: Component Dependencies View - Hierarchy for table.xsl

In the Component Dependencies view you have several actions in the toolbar:

Refreshes the dependencies structure.Refresh

Stops the dependencies computing.Stop

Allows you to configure a search scope to compute the dependencies structure. You
can decide to use automatically the defined scope for future operations by checking
the corresponding checkbox.

Configure

Allows you to repeat a previous dependencies computation.History

The following actions are available on the contextual menu:

Selects the first reference of the referenced component from the current selected
component in the dependencies tree.

Go to First Reference

Shows the definition of the current selected component in the dependencies tree.Go to Component

Tip: If a component contains multiple references to another, a small table is displayed that contains all references.
When a recursive reference is encountered, it is marked with a special icon .

Related information
Search and Refactor Operations Scope on page 374

Search and Refactor Operations Scope

Oxygen XML Editor plugin | Editing Documents | 418

Highlight Component Occurrences

When a component (for example variable or named template) is found at current cursor position, Oxygen XML Editor
plugin performs a search over the entire document to find the component declaration and all its references. When found,
they are highlighted both in the document and in the stripe bar, at the right side of the document.

Note: Oxygen XML Editor plugin also supports occurrences highlight for template modes.

Customizable colors are used: one for the component definition and another one for component references. Occurrences
are displayed until another component is selected and a new search is performed. All occurrences are removed when
you start to edit the document.

This feature is enabled by default. To configure it, open the Preferences dialog box and go to Editor > Mark
Occurrences. A search can also be triggered with the Search > Search Occurrences in File (Ctrl + Shift + U (Command
+ Shift + U on OS X)) contextual menu action. Matches are displayed in separate tabs of the Results view.

Finding XSLT References and Declarations

The following search actions related with XSLT references and declarations are available from the Search submenu of
the contextual menu:

• Search References (Also available from the XSL menu) - Searches all references of the item found at current
cursor position in the defined scope, if any. If a scope is defined but the currently edited resource is not part of the
range of determined resources, a warning dialog box is displayed that allows you to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files that
you specify when a scope is defined.

• Search Declarations (Also available from the XSL menu) - Searches all declarations of the item found at current
cursor position in the defined scope, if any. If a scope is defined but the current edited resource is not part of the
range of resources determined by this scope, a warning dialog box is displayed that allows you to define another
search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or files
that you specify when a scope is defined.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited file.

The following action is available from the XSL menu:

• Show Definition - Moves the cursor to the location of the definition of the current item.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference
to display its definition.

Related information
Search and Refactor Operations Scope on page 374

Search and Refactor Operations Scope

XSLT Stylesheet Documentation Support

Oxygen XML Editor plugin offers built-in support for documenting XSLT stylesheets. If the expanded QName of the
element has a non-null namespace URI, the xsl:stylesheet element may contain any element not from the XSLT
namespace. Such elements are referenced as user-defined data elements. Such elements can contain the documentation
for the stylesheet and its elements (top-level elements whose names are in the XSLT namespace). Oxygen XML Editor
plugin offers its own XML schema that defines such documentation elements. The schema is named
stylesheet_documentation.xsd and can be found in
[OXYGEN_INSTALL_DIR]/frameworks/stylesheet_documentation. The user can also specify a custom
schema in XSL Content Completion options.

When content completion is invoked inside an XSLT editor by pressing Ctrl + Space (Command + Space on OS X),
it offers elements from the XSLT documentation schema (either the built-in one or one specified by user).

Oxygen XML Editor plugin | Editing Documents | 419

In Text mode, to add documentation blocks while editing use the Add component documentation action available in
the contextual menu.

In Author mode, the following stylesheet documentation actions are available in the contextual menu, Component
Documentation submenu:

• Add component documentation - Adds documentation blocks for the component at cursor position.
• Paragraph - Inserts a new documentation paragraph.
• Bold - Makes the selected documentation text bold.
• Italic - Makes the selected documentation text italic.
• List - Inserts a new list.
• List Item - Inserts a list item.
• Reference - Inserts a documentation reference.

If the cursor is positioned inside the xsl:stylesheet element context, documentation blocks are generated for all
XSLT elements. If the cursor is positioned inside a specific XSLT element (such as a template or function), a
documentation block is generated for that element only.

Example of a documentation block using Oxygen XML Editor plugin built-in schema

<xd:doc>
<xd:desc>
<xd:p>Search inside parameter <xd:i>string</xd:i> for the last occurrence of parameter
<xd:i>searched</xd:i>. The substring starting from the 0 position to the identified last

 occurrence will be returned. <xd:ref name="f:substring-after-last" type="function"
xmlns:f="http://www.oxygenxml.com/doc/xsl/functions">See also</xd:ref></xd:p>

</xd:desc>
<xd:param name="string">
<xd:p>String to be analyzed</xd:p>

</xd:param>
<xd:param name="searched">
<xd:p>Marker string. Its last occurrence will be identified</xd:p>

</xd:param>
<xd:return>
<xd:p>A substring starting from the beginning of <xd:i>string</xd:i> to the last

 occurrence of <xd:i>searched</xd:i>. If no occurrence is found an empty string will be
 returned.</xd:p>

</xd:return>
</xd:doc>

Related information
Generating Documentation for an XSLT Stylesheet on page 420

Generating Documentation for an XSLT Stylesheet

You can use Oxygen XML Editor plugin to generate detailed documentation in HTML format for the elements (top-level
elements whose names are in the XSLT namespace) of an XSLT stylesheet. You can select what XSLT elements to
include in the generated documentation and also the level of details to present for each of them. The elements are
hyperlinked. To generate documentation in a custom output format, you can edit the XSLT stylesheet used to generate
the documentation, or create your own stylesheet.

To open the XSLT Stylesheet Documentation dialog box, select XSLT Stylesheet Documentation from the XML
Tools > Generate Documentation menu or from the Generate Stylesheet Documentation action from the contextual
menu of the Navigator view.

Oxygen XML Editor plugin | Editing Documents | 420

Figure 232: XSLT Stylesheet Documentation Dialog Box

The XSL URL field of the dialog box must contain the full path to the XSL Stylesheet file you want to generate
documentation for. The stylesheet may be a local or a remote file. You can specify the path to the stylesheet by entering
it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output. Click

the Options button to open a Custom format options dialog box where you can specify a custom stylesheet for
creating the output. There is also an option to Copy additional resources to the output folder and you can
select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate
XML files created during the documentation process by deselecting the Delete intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large XSLT
stylesheets, choosing another split criterion may generate smaller output files, providing faster documentation
browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output file
type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

Settings Tab
When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include in the output
(templates, functions, global parameters, global variables, attribute sets, character maps, keys, decimal formats, output
formats, XSLT elements from referenced stylesheets) and the details to include in the documentation.

Oxygen XML Editor plugin | Editing Documents | 421

Figure 233: Settings Tab of the XSLT Stylesheet Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Templates, Functions,
Global parameters, Global variables, Attribute sets, Character maps, Keys, Decimal formats, Output formats,
Referenced stylesheets.

You can choose whether or not to include the following other details:

• Documentation - Shows the documentation for each XSLT element. For HTML format, the user-defined data
elements that are recognized and transformed in documentation blocks of the XSLT elements they precede, are the
ones from the following schemas:

• Oxygen XML Editor plugin built-in XSLT documentation schema.
• A subset of DocBook 5 elements. The recognized elements are: section, sect1 to sect5, emphasis,

title, ulink, programlisting, para, orderedlist, itemizedlist.
• A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul,

ol, pre, sl, sli, step, steps, li, title, xref.
• Full XHTML 1.0 support.
• XSLStyle documentation environment. XSLStyle uses DocBook or DITA languages inside its own user-defined

data elements. The supported DocBook and DITA elements are the ones mentioned above.
• Doxsl documentation framework. Supported elements are : codefrag, description, para, docContent,

documentation, parameter, function, docSchema, link, list, listitem, module, parameter,
template, attribute-set;

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre element.
You can change this behavior by using a custom format instead of the built-in HTML format and providing your
own XSLT stylesheets.

• Use comments - Controls whether or not the comments that precede an XSLT element is treated as documentation
for the element they precede. Comments that precede or succeed the xsl:stylesheet element, are treated as
documentation for the whole stylesheet. Note that comments that precede an import or include directive are not
collected as documentation for the imported/included module. Also, comments from within the body of the XSLT
elements are not collected at all.

• Namespace - Shows the namespace for named XSLT elements.
• Location - Shows the stylesheet location for each XSLT element.
• Parameters - Shows parameters of templates and functions.
• References - Shows the named XSLT elements that are referenced from within an element.

Oxygen XML Editor plugin | Editing Documents | 422

• Used by - Shows the list of all the XSLT elements that reference the current named element.
• Supersedes - Shows the list of all the XSLT elements that are superseded the current element.
• Overriding - Shows the list of all the XSLT elements that override the current element.
• Return type - Shows the return type of the function.
• Source - Shows the text stylesheet source for each XSLT element.
• Import precedence - Shows the computed import precedence as declared in the XSL transformation specifications.
• Generate index - Creates an index with all the XSLT elements included in the documentation.

Export settings - Save the current settings in a settings file for further use (for example, with the exported settings file
you can generate the same documentation from the command-line interface.)

Load settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XSLT documentation.

Related information
XSLT Stylesheet Documentation Support on page 419

Generate XSLT Documentation in HTML Format

The XSLT documentation generated in HTML format is presented in a visual diagram style with various sections,
hyperlinks, and options.

Figure 234: XSLT Stylesheet Documentation Example

The generated documentation includes the following:

• Table of Contents - You can group the contents by namespace, location, or component type. The XSLT elements
from each group are sorted alphabetically (named templates are presented first and the match ones second).

Oxygen XML Editor plugin | Editing Documents | 423

• Information about main, imported, and included stylesheets. This information consists of:

• XSLT modules included or imported by the current stylesheet.
• The XSLT stylesheets where the current stylesheet is imported or included.
• The stylesheet location.

Figure 235: Information About an XSLT Stylesheet

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are
grouped using the same criteria as the split.

After the documentation is generated, you can collapse or expand details for some stylesheet XSLT elements by using
the Showing options or the Collapse or Expand buttons.

Figure 236: Showing Options

For each element included in the documentation, the section presents the element type followed by the element name
(value of the name or match attribute for match templates).

Oxygen XML Editor plugin | Editing Documents | 424

Figure 237: Documentation for an XSLT Element

Generate XSLT Documentation in a Custom Format

XSLT stylesheet documentation can be also generated in a custom format. You can choose the format from the XSLT
Stylesheet Documentation dialog box. Specify your own stylesheet to transform the intermediary XML generated in the
documentation process. You must write your stylesheet based on the schema xslDocSchema.xsd from
[OXYGEN_INSTALL_DIR]/frameworks/stylesheet_documentation. You can create a custom format
starting from one of the stylesheets used in the predefined HTML, PDF, and DocBook formats. These stylesheets are
available in [OXYGEN_INSTALL_DIR]/frameworks/stylesheet_documentation/xsl.

Oxygen XML Editor plugin | Editing Documents | 425

Figure 238: Custom Format Options Dialog Box

When using a custom format, you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating XSLT Documentation From the Command-Line Interface

You can export the settings of the XSLT Stylesheet Documentation dialog box to an XML file by pressing the Export
settings button. With the exported settings file, you can generate the same documentation from the command line by
running the script stylesheetDocumentation.bat (on Windows) / stylesheetDocumentation.sh (on
OS X / Unix / Linux) located in the Oxygen XML Editor plugin installation folder. The script can be integrated in an
external batch process launched from the command-line interface.

The command-line parameter of the script is the relative path to the exported XML settings file. The files that are
specified with relative paths in the exported XML settings are resolved relative to the script directory.

Example of an XML Configuration File

<serialized>
<map>

<entry>
<String xml:space="preserve">xsd.documentation.options</String>
<xsdDocumentationOptions>

<field name="outputFile">
<String xml:space="preserve">${cfn}.html</String>

</field>
<field name="splitMethod">

<Integer xml:space="preserve">1</Integer>
</field>
<field name="openOutputInBrowser">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="format">

<Integer xml:space="preserve">1</Integer>
</field>
<field name="customXSL">

<null/>
</field>
<field name="deleteXMLFiles">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeIndex">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeGlobalElements">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeGlobalAttributes">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeLocalElements">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeLocalAttributes">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeSimpleTypes">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeComplexTypes">

<Boolean xml:space="preserve">true</Boolean>
</field>

Oxygen XML Editor plugin | Editing Documents | 426

<field name="includeGroups">
<Boolean xml:space="preserve">true</Boolean>

</field>
<field name="includeAttributesGroups">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeRedefines">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeReferencedSchemas">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsDiagram">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsNamespace">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsLocation">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsType">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsTypeHierarchy">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsModel">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsChildren">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsInstance">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsUsedby">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsProperties">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsFacets">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsAttributes">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsIdentityConstr">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsEscapeAnn">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsSource">

<Boolean xml:space="preserve">true</Boolean>
</field>
<field name="detailsAnnotations">

<Boolean xml:space="preserve">true</Boolean>
</field>

</xsdDocumentationOptions>
</entry>

</map>
</serialized>

XSLT Quick Assist Support

The Quick Assist support helps you to rapidly access search and refactoring actions. If one or more actions are available

in the current context, they are accessible via a yellow bulb help () placed at the current line in the stripe on the left
side of the editor. Also, you can invoke the quick assist menu by using the Ctrl + 1 (Meta 1 on Mac OS X) keyboard
shortcuts.

Two categories of actions are available in the Quick Assist menu:

• Actions available on a selection made inside an attribute that contains an XPath expression:

Extracts the selected XSLT instructions sequence into a new template.Extract template

Allows you to move one or more XSLT global components (templates,
functions, or parameters) to another stylesheet.

Move to another stylesheet

Oxygen XML Editor plugin | Editing Documents | 427

Allows you to create a new local variable by extracting the selected XPath
expression.

Extract local variable

Allows you to create a new global variable by extracting the selected
XPath expression.

Extract global variable

Allows you to create a new template parameter by extracting the selected
XPath expression.

Extract template parameter

Allows you to create a new global parameter by extracting the selected
XPath expression.

Extract global parameter

Figure 239: XSLT Quick Assist Support - Refactoring Actions

• Actions available when the cursor is positioned over the name of a component:

Renames the component and all its dependencies.Rename Component in

Searches the declaration of the component in a predefined scope. It is
available only when the context represents a component name reference.

Search Declarations

Searches all references of the component in a predefined scope.Search References

Searches the component dependencies in a predefined scope.Component Dependencies

Configures the scope that will be used for future search or refactor
operations.

Change Scope

Allows you to rename the current component in-place.Rename Component

Searches all occurrences of the component within the current file.Search Occurrences

Figure 240: XSLT Quick Assist Support - Component Actions

Related information
Component Dependencies View on page 417

XSLT Hierarchy View on page 415

XSLT Refactoring Actions on page 430

Search and Refactor Operations Scope on page 374

Oxygen XML Editor plugin | Editing Documents | 428

XSLT Quick Fix Support

The Oxygen XML Editor plugin Quick Fix support helps you resolve various errors that appear in a stylesheet by
proposing quick fixes to problems such as missing templates, misspelled template names, missing functions, or references
to an undeclared variable or parameter.

To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error or warning
occurs. If a Quick Fix is available for that particular error or warning, you can access the Quick Fix proposals with any
of the following methods:

• When hovering over the error or warning, the proposals are presented in a tooltip pop-up window.

• If you place the cursor in the highlighted area where a validation error or warning occurs, a quick fix icon () is
displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Editor plugin displays the
list of available fixes.

• With the cursor placed in the highlighted area of the error or warning, you can also invoke the quick fix menu by
pressing Ctrl + 1 (Command + 1 on OS X) on your keyboard.

Note: The quick fixes are available only when validating an XSLT file with Saxon HE/PE/EE.

Figure 241: Example of an Undefined XSLT Functions Quick Fix

Figure 242: Example of an Undeclared XSLT Variables/Parameters Quick Fix

Oxygen XML Editor plugin provides XSLT quick fixes for the following types of instances:

• Template does not exist, when the template name referenced in a call-template element does not exist. The
following fixes are available:

• Create template "templateName" - creates a template and generates its corresponding parameters. The template
name and parameter names and types are collected from the call-template element.

• Change reference to "newTemplateName" - changes the name of the missing template referenced in the
call-template element. The proposed new names are the existing templates with names similar with the
missing one.

• Variable/Parameter not declared, when a parameter or variable reference cannot be found. The following fixes
are available:

• Create global variable "varName" - creates a global variable with the specified name in the current stylesheet.
The new variable is added at the beginning of the stylesheet after the last global variable or parameter declaration.

Oxygen XML Editor plugin | Editing Documents | 429

• Create global parameter "paramName" - creates a global parameter with the specified name in the current
stylesheet. The new parameter is added at the beginning of the stylesheet after the last global parameter or variable
declaration.

• Create local variable "varName" - creates a local variable with the specified name before the current element.
• Create template parameter "paramName" - creates a new parameter with the specified name in the current

template. This fix is available if the error is located inside a template.
• Create function parameter "paramName" - creates a new parameter with the specified name in the current

function. This fix is available if the error is located inside a function.
• Change reference to "varName" - changes the name of the referenced variable/parameter to an existing local

or global variable/parameter, that has a similar name with the current one.

• Parameter from a called template is not declared, when a parameter referenced from a call-template element
is not declared. The following fixes are available:

• Create parameter "paramName" in the template "templateName" - creates a new parameter with the
specified name in the referenced template.

• Change "paramName" parameter reference to "newParamName" - changes the parameter reference from
the call-template element to a parameter that is declared in the called template.

• Remove parameter "paramName" from call-template - removes the parameter with the specified name from
the call-template element.

• No value supplied for required parameter, when a required parameter from a template is not referenced in a
call-template element. The following quick-fix is available::

• Add parameter "paramName" in call-template - creates a new parameter with the specified name in
call-template element.

• Function "prefix:functionName()" has not been defined, when a function declaration is not found. The following
quick fixes are available:

• Create function "prefix:functionName(param1, param2)" - creates a new function with the specified signature,
after the current top level element from stylesheet.

• Change function to "newFunctionName(..)" - changes the referenced function name to an already defined
function. The proposed names are collected from functions with similar names and the same number of parameters.

• Attribute-set "attrSetName" does not exist, when the referenced attribute set does not exist. The following quick
fixes are available:

• Create attribute-set "attrSetName" - creates a new attribute set with the specified name, after the current top
level element from stylesheet.

• Change reference to "attrSetName" - changes the referenced attribute set to an already defined one.

• Character-map "chacterMap" has not been defined, when the referenced character map declaration is not found.
The following quick fixes are available:

• Create character-map "characterMapName" - creates a new character map with the specified name, after the
current top level element from stylesheet.

• Change reference to "characterMapName" - changes the referenced character map to an already defined one.

XSLT Refactoring Actions

Oxygen XML Editor plugin offers a set of actions that allow you to change the structure of an XSLT stylesheet without
changing the results of running it in an XSLT transformation. Depending on the selected text, the following XSLT
refactoring actions are available from the Refactoring submenu of the contextual menu:

• Extract template (Active only when the selection contains well-formed elements) - Extracts the selected XSLT
instructions sequence into a new template. It opens a dialog box that allows you to specify the name of the new
template to be created. The possible changes to perform on the document can be previewed before altering the

Oxygen XML Editor plugin | Editing Documents | 430

document. After pressing OK, the template is created and the selection is replaced with a <xsl:call-template>
instruction referencing the newly created template.

Note: The newly created template is indented and its name is highlighted in the <xsl:call-template>
element.

• Extract function - Extracts the selected XSLT instructions sequence into a new function. It opens a dialog box
that allows you to specify the name of the new function. It then moves the selected lines to a newly created XSLT
function and inserts a function call in the place of the selected lines.

• Create local variable - Creates an XSLT variable, wrapped around the selection. It opens a dialog box that allows
you to specify the name of the new variable. It then wraps the selection in the variable and you can reference it at
anytime in the code.

• Move to another stylesheet (Active only when entire components are selected) - Allows you to move one or
more XSLT global components (templates, functions, or parameters) to another stylesheet. It opens a dialog box that
allows you to specify where the selected components will be moved to. Follow these steps when using the dialog
box:

1. Choose whether you want to move the selected components to a new stylesheet or an existing one.
2. If you choose to move the components to an existing one, select the destination stylesheet. Press the Choose

button to select the destination stylesheet file. Oxygen XML Editor plugin will automatically check if the
destination stylesheet is already contained by the hierarchy of the current stylesheet. If it is not contained, choose
whether or not the destination stylesheet will be referenced (imported or included) from the current stylesheet.
The following options are available:

• Include - The current stylesheet will use an xsl:include instruction to reference the destination stylesheet.
• Import - The current stylesheet will use an xsl:import instruction to reference the destination stylesheet.
• None - There will be created no relation between the current and destination stylesheets.

3. Press the Move button to move the components to the destination. The moved components are highlighted in the
destination stylesheet.

• Convert attributes to xsl:attributes - Converts the attributes from the selected element and represents each of them
with an <xsl:attribute> instruction. For example, the following element:

<person id="Big{test}Boss"/>

is converted to:

<person>
 <xsl:attribute name="id">
 <xsl:text>Big</xsl:text>
 <xsl:value-of select="test"/>
 <xsl:text>Boss</xsl:text>
 </xsl:attribute>
</person>

• Convert xsl:if into xsl:choose/xsl:when - Converts an xsl:if block to an xsl:when block surrounded by an
xsl:choose element. For example, the following block:

<xsl:if test="a">
<!-- XSLT code -->

</xsl:if>

is converted to:

<xsl:choose>
 <xsl:when test="a">

<!-- XSLT code -->
 </xsl:when>
 <xsl:otherwise>
 |
 </xsl:otherwise>
</xsl:choose>

Oxygen XML Editor plugin | Editing Documents | 431

(where the | character is the current cursor position)

• Extract local variable (Active on a selection made inside an attribute that contains an XPath expression) - Allows
you to create a new local variable by extracting the selected XPath expression. After creating the new local variable
before the current element, Oxygen XML Editor plugin allows you to edit the name of the variable.

• Extract global variable (Active on a selection made inside an attribute that contains an XPath expression) -
Allows you to create a new global variable by extracting the selected XPath expression. After creating the new global
variable, Oxygen XML Editor plugin allows you to edit the name of the variable.

Note: Oxygen XML Editor plugin checks if the selected expression depends on local variables or parameters
that are not available in the global context where the new variable is created.

• Extract template parameter (Active on a selection made inside an attribute that contains an XPath expression)
- Allows you to create a new template parameter by extracting the selected XPath expression. After creating the new
parameter, Oxygen XML Editor plugin allows you to edit the name of the parameter.

• Extract global parameter (Active on a selection made inside an attribute that contains an XPath expression) -
Allows you to create a new global parameter by extracting the selected XPath expression. After creating the new
parameter, Oxygen XML Editor plugin allows you to edit the name of the parameter.

Note: Oxygen XML Editor plugin checks if the selected expression depends on local variables or parameters
that are not available in the global context where the new parameter is created.

• Rename Component - Allows you to rename the current component (in-place). The component and all its references
in the document are highlighted with a thin border and the changes you make to the component at the cursor position
are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key
on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by specifying
the new component name and the files to be affected by the modification. If you click the Preview button, you can
view the files to be affected by the action.

Figure 243: Rename Identity Constraint Dialog Box

Note: Many of these refactoring actions are also proposed by the Quick Assist support.

To watch our video demonstration about XSLT refactoring, go to http://oxygenxml.com/demo/XSL_Refactoring.html.

Oxygen XML Editor plugin | Editing Documents | 432

http://oxygenxml.com/demo/XSL_Refactoring.html

XSLT Unit Test (XSpec)

XSpec is a behavior driven development (BDD) framework for XSLT and XQuery. XSpec consists of a syntax for
describing the behavior of your XSLT or XQuery code, and some code that enables you to test your code against those
descriptions.

To create an XSLT Unit Test, go to File > New > XSLT Unit Test. You can also create an XSLT Unit Test from the
contextual menu of an XSL file in the Project view. Oxygen XML Editor plugin allows you to customize the XSpec
document when you create it. In the customization dialog box, you can enter the path to an XSL document or to a master
XSL document.

To run an XSLT Unit Test, open the XSPEC file in an editor and click Apply Transformation Scenario(s) on the
main toolbar.

Note: The transformation scenario is defined in the XSPEC document type.

When you create an XSpec document based on an XSL document, Oxygen XML Editor plugin uses information from
the validation and transformation scenarios associated with the XSL file. From the transformation scenario Oxygen
XML Editor plugin uses extensions and properties of Saxon 9.6.0.7, improving the Ant scenario associated with the
XSpec document.

Figure 244: New XSLT Unit Test Wizard

An XSpec file contains one, or more test scenarios. You can test a stylesheet in one of the following ways:

• Test an entire stylesheet.

Testing is performed in a certain context. You can define a context as follows:

• Inline context, building the test based on a string.

<x:scenario label="when processing a para element">
<x:context>

<para>...</para>

Oxygen XML Editor plugin | Editing Documents | 433

</x:context>
 ...
</x:scenario>

• Based on an external file, or on a part of an external file extracted with an XPath expression.

<x:scenario label="when processing a para element">
<x:context href="source/test.xml" select="/doc/body/p[1]" />

 ...
</x:scenario>

• Test a function.

<x:scenario label="when capitalising a string">
<x:call function="eg:capital-case">

<x:param select="'an example string'" />
<x:param select="true()" />

</x:call>
 ...
</x:scenario>

• Test a template with a name.

<x:call template="createTable">
<x:param name="nodes">

<value>A</value>
<value>B</value>

</x:param>
<x:param name="cols" select="2" />

</x:call>

You can reference test files between each other, which allows you to define a suite of tests. For further details about test
scenarios, go to https://github.com/expath/xspec/wiki/Writing-Scenarios.

Editing XML Schemas
An XML Schema describes the structure of an XML document and is used to validate XML document instances against
it, to check that the XML instances conform to the specified requirements. If an XML instance conforms to the schema
then it is said to be valid. Otherwise, it is invalid.

Oxygen XML Editor plugin offers support for both XML Schema 1.0 and 1.1 and you can edit XML Schema files in
the following editing modes:

• Text editing mode - Allows you to edit XML Schema files in a source editing mode.
• Grid editing mode - Displays XML Schema files in a structured spreadsheet-like grid.
• Design editing mode - Visual schema designer that helps you understand the structure and develop complex schemas.
• Author editing mode - The visual Author mode is also available for XML Schema, allowing you to visually edit

the schema annotations. It presents a polished and compact view of the XML Schema, with support for links on
imported/included schemas.

XML Schema Diagram Editor (Design Mode)

XML Schemas enable document designers to specify the allowed structure and content of an XML document and to
check if an XML document is valid.

Oxygen XML Editor plugin provides a simple and expressive XML Schema diagram editor (Design mode) for editing
XML Schemas. The schema diagram helps both the content authors who want to understand a schema and schema
designers who develop complex schemas.

Oxygen XML Editor plugin | Editing Documents | 434

https://github.com/expath/xspec/wiki/Writing-Scenarios

Figure 245: XML Schema Diagram

To watch our video demonstration about the basic aspects of designing an XML Schema using the new Schema Editor,
go to http://oxygenxml.com/demo/XML_Schema_Editing.html.

Navigation in the XML Schema Design Mode

The following editing and navigation features work for all types of schema components in the XML Schema Design
mode:

• Move/reference components in the diagram using drag-and-drop actions.
• Select consecutive components on the diagram (components from the same level) using the Shift key. You can also

make discontinuous selections in the schema diagram using the Ctrl (Meta on Mac OS) key. To deselect one of the
components, use Ctrl + Single-Click (Command + Single-Click on OS X).

• Use the arrow keys to navigate the diagram vertically and horizontally.
• Use Home/End keys to jump to the first/last component from the same level. Use Ctrl + Home (Command + Home

on OS X) key combination to go to the diagram root and Ctrl + End (Command + End on OS X) to go to the last
child of the selected component.

Oxygen XML Editor plugin | Editing Documents | 435

http://oxygenxml.com/demo/XML_Schema_Editing.html

• You can easily go back to a previously visited component while moving from left to right. The path will be preserved
only if you use the left arrow key or right arrow key. For example, if the current selection is on the second attribute
from an attribute group and you press the left arrow key to jump to the attribute group, when you press the right
arrow key, then the selection will be moved to the second attribute.

• Go back and forward between components viewed or edited in the diagram by selecting them in the Outline view:

• Back (go to previous schema component).

• Forward (go to next schema component).

• Go to Last Modification (go to last modified schema component).

• Copy, reference, or move global components, attributes, and identity constraints to another position and from one
schema to another using the Cut/Copy and Paste/Paste as Reference actions.

• Go to the definition of an element or attribute with the Show Definition action.
• You can expand and see the contents of the imports/includes/redefines in the diagram. In order to edit components

from other schemas the schema for each component will be opened as a separate file in Oxygen XML Editor plugin.

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will
be detected and you will be asked to refresh the current schema contents.

• Recursive references are marked with a recurse symbol (). Click this symbol to navigate between the element
declaration and its reference.

Figure 246: Recursive Reference

Schema Editing Actions

You can edit an XML schema using drag and drop operations or contextual menu actions.

Drag and drop is the easiest way to move the existing components to other locations in an XML schema. For example,
you can quickly insert an element reference in the diagram with a drag and drop from the Outline view to a compositor
in the diagram. Also, the components order in an xs:sequence can be easily changed using drag and drop.

If this property has not been set, you can easily set the attribute/element type by dragging over it a simple type or complex
type from the diagram. If the type property for a simple type or complex type is not already set, you can set it by dragging
over it a simple or complex type.

Depending on the drop area, various actions are available:

• move - Context dependent, the selected component is moved to the destination.
• reference - Context dependent, the selected component is referenced from the parent.
• copy - If (Ctrl (Meta on Mac OS)) key is pressed, a copy of the selected component is inserted to the destination.

Visual clues about the operation type are indicated by the mouse pointer shape:

• - When moving a component.

• - When referencing a component.

• - When copying a component.

Oxygen XML Editor plugin | Editing Documents | 436

You can edit some schema components directly in the diagram. For these components, you can edit the name and the
additional properties presented in the diagram by double clicking the value you want to edit. If you want to edit the name
of a selected component, you can also press (Enter). The list of properties that can be displayed for each component
can be customized in the Preferences.

When editing references, you can choose from a list of available components. Components from an imported schema
for which the target namespace does not have an associated prefix is displayed in the list as
componentName#targetNamespace. If the reference is from a target namespace that was not yet mapped, you
are prompted to add prefix mappings for the inserted component namespace in the current edited schema.

You can also change the compositor by double-clicking it and choose the compositor you want from the proposals list.

There are some components that cannot be edited directly in the diagram: imports, includes, redefines. The editing action
can be performed if you double-click or press (Enter) on an import/include/redefine component. An edit dialog box is
displayed, allowing you to customize the directives.

Related information
Searching and Refactoring Actions in XML Schemas on page 474

Component Dependencies View for XML Schema on page 472

XML Schema Resource Hierarchy / Dependencies View on page 470

Generating Sample XML Files on page 476

Schema Design Preferences on page 86

Contextual Menu Actions in the Design Mode

The contextual menu of the Design mode includes the following actions:

Shows the definition for the current selected component. For references, this action is available
by clicking the arrow displayed in its bottom right corner.

Show Definition
(Ctrl + Shift +
Enter)

Opens the selected schema. This action is available for xsd:import, xsd:include and
xsd:redefine elements. If the file you try to open does not exist, a warning message is
displayed and you have the possibility to create the file.

Open Schema
(Ctrl + Shift +
Enter)

Allows you to edit the attributes of the selected component in a small in-place editor that presents
the same attributes as in the Attributes View and the Facets View. The actions that can be
performed on attributes in this dialog box are the same actions presented in the two views.

Edit Attributes (Alt
+ Shift + Enter)

Offers a list of valid components, depending on the context, and appends your selection as a
child of the currently selected component. You can set a name for a named component after it
has been added in the diagram.

Append child

Offers a list of valid components, depending on the context, and inserts your selection before
the selected component, as a sibling. You can set a name for a named component after it has
been added in the diagram.

Insert before

Offers a list of valid components, depending on the context, and inserts your selection after the
selected component, as a sibling. You can set a name for a named component after it has been
added in the diagram.

Insert after

Inserts a global component in the schema diagram. This action does not depend on the current
context. If you choose to insert an import you have to specify the URL of the imported file, the

New global

target namespace and the import ID. The same information, excluding the target namespace, is
requested for an xsd:include or xsd:redefine element.

Note: If the imported file has declared a target namespace, the field Namespace is
completed automatically.

Oxygen XML Editor plugin | Editing Documents | 437

When performed on the schema root, it allows you to edit the schema target namespace and
namespace mappings. You can also invoke the action by double-clicking the target namespace
property from Attributes view for the schema or by double-clicking the schema component.

Edit Schema
Namespaces

Allows you to edit the annotation for the selected schema component in the Edit Annotations
dialog box. You can perform the following operations in the dialog box:

Edit Annotations

• Edit all appinfo/documentation items for a specific annotation - All
appinfo/documentation items for a specific annotation are presented in a table and
can be easily edited. Information about an annotation item includes: type
(documentation/appinfo), content, source (optional, specify the source of the
documentation/appinfo element) and xml:lang. The content of a
documentation/appinfo item can be edited in the Content area below the table.

• Insert/Insert before/Remove documentation/appinfo. The Add button allows you to
insert a new annotation item (documentation/appinfo). You can add a new item before
the item selected in table by pressing the Insert Before button. Also, you can delete the

selected item using the Remove button.

• Move items up/down - to do this use the Move up and Move down buttons.
• Insert/Insert before/Remove annotation - Available for components that allow multiple

annotations such as schemas or redefines.
• Specify an ID for the component annotation. An optional identifier for the annotation.

Annotations are rendered by default under the graphical representation of the component. When
you have a reference to a component with annotations, these annotations are presented in the
diagram also below the reference component. The Edit Annotations action invoked from the
contextual menu edit the annotations for the reference. If the reference component does not have
annotations, you can edit the annotations of the referenced component by double-clicking the
annotations area. Otherwise, you can edit the referenced component annotations only if you go
to the definition of the component.

Note: For imported/included components that do not belong to the currently edited
schema, the Edit Annotations dialog box presents the annotation as read-only. To edit
its annotation, open the schema where the component is defined.

Action that is available for local elements. A local element is made global and is replaced with
a reference to the global element. The local element properties that are also valid for the global
element declaration are kept.

Extract Global
Element

Figure 247: Extracting a Global Element

If you use the Extract Global Element action on a name element , the result is:

Oxygen XML Editor plugin | Editing Documents | 438

Figure 248: Extracting a Global Element on a name Element

Action available for local attributes. A local attribute is made global and replaced with a reference
to the global attribute. The properties of local attribute that are also valid in the global attribute
declaration are kept.

Figure 249: Extracting a Global Attribute

Extract Global
Attribute

If you use the Extract Global Attribute action on a note attribute, the result is:

Oxygen XML Editor plugin | Editing Documents | 439

Figure 250: Extracting a Global Attribute on a note Attribute

Action available for compositors (sequence, choice, all). This action extracts a global group and
makes a reference to it. The action is enabled only if the parent of the compositor is not a group.

If you use the Extract Global Group action on the sequence element, the Extract Global
Component dialog box is displayed and you can choose a name for the group. If you type
personGroup, the result is:

Figure 251: Extracting a Global Group

Extract Global
Group

Figure 252: Extracting a Global Gropu on a sequence Element

Oxygen XML Editor plugin | Editing Documents | 440

Action used to extract an anonymous simple type or an anonymous complex type as global. For
anonymous complex types, the action is available on the parent element.

Figure 253: Extracting a Global Simple Type

Extract Global
Type

If you use the action on the union component and choose numericST for the new global
simple type name, the result is:

Figure 254: Extracting a Global Simple Type on a union Component

Figure 255: Extracting a Global Complex Type

If you use the action on a person element and choose person_type for the new complex
type name, the result is:

Oxygen XML Editor plugin | Editing Documents | 441

Figure 256: Extracting a Global Complex Type on a person Element

Rename the selected component.Rename
Component in

Cut the selected component(s).Cut Ctrl + X
(Command + X on
OS X)

Copy the selected component(s).Copy Ctrl + C
(Command + C on
OS X)

This action copies an XPath expression that identifies the selected element or attribute in an
instance XML document of the edited schema and places it in the clipboard.

Copy XPath

Paste the component(s) from the clipboard as children of the selected component.Paste Ctrl + V
(Command + V on
OS X)

Create references to the copied component(s). If not possible a warning message is displayed.Paste as Reference

Remove the selected component(s).Remove (Delete)

Copies the overridden component in the current XML Schema. This option is available for
xs:override components.

Override
component

The referenced component is added in the current XML Schema. This option is available for
xs:redefine components.

Redefine
component

Can be performed on element/attribute/group references, local attributes, elements, compositors,
and element wildcards. The minOccurs property is set to 0 and the use property for attributes
is set to optional.

Optional

Can be performed on element/attribute/group references, local attributes, elements, compositors,
and element wildcards. The maxOccurs property is set to unbounded and the use property
for attributes is set to required.

Unbounded

Can be performed on local elements or attributes. This action makes a reference to a global
element or attribute.

Search

Oxygen XML Editor plugin | Editing Documents | 442

Searches all references of the item found at current cursor position in the defined scope if any.Search
References

Searches all references of the item found at current cursor position in the specified scope.Search References
in

Searches all occurrences of the item found at current cursor position in the current file.Search
Occurrences in File

Allows you to see the dependencies for the current selected component.Component
Dependencies

Allows you to see the hierarchy for the current selected resource.Resource
Hierarchy

Recursively adds the components of included Schema files to the main one. It also flattens every
imported XML Schema from the hierarchy.

Flatten Schema

Allows you to see the dependencies for the current selected resource.Resource
Dependencies

Recursively expands all sub-components of the selected component.Expand All

Recursively collapses all sub-components of the selected component.Collapse All

Save the diagram as image, in JPEG, BMP, SVG or PNG format.Save as Image

Generate XML files using the current opened schema. The selected component is the XML
document root. See more in the Generate Sample XML Files section.

Generate
Sample XML Files

Show the Schema preferences panel.Options

XML Schema Components

A schema diagram contains a series of interconnected components. To quickly identify the relation between two connected
components, the connection is represented as:

• A thick line to identify a connection with a required component (in the following image, family is a required
element).

Figure 257: Example: Required Component

• A thin line to identify a connection with an optional component (in the following image, email is an optional
element).

Figure 258: Example: Optional Component

The following topics explain in detail all available components and their symbols as they appear in an XML schema
diagram.

Oxygen XML Editor plugin | Editing Documents | 443

xs:schema

Figure 259:The xs:schema Component

Defines the root element of a schema. A schema document contains representations for a collection of schema components,
such as type definitions and element declarations, that have a common target namespace. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-schema.

By default, it displays the targetNamespace property when rendered.

xs:schema Properties

Possible ValuesDescriptionProperty Name

Any URIThe schema target namespace.Target Namespace

qualified, unqualified, [Empty]. Default
value is unqualified.

Determining whether or not local
element declarations will be
namespace-qualified by default.

Element Form Default

qualified, unqualified, [Empty]. Default
value is unqualified.

Determining whether or not local
attribute declarations will be
namespace-qualified by default.

Attribute Form Default

#all, extension, restriction, substitution,
restriction extension, restriction
substitution, extension substitution,
restriction extension substitution,
[Empty].

Default value of the block attribute
of xs:element and
xs:complexType.

Block Default

#all, restriction, extension, restriction
extension, [Empty].

Default value of the final attribute
of xs:element and
xs:complexType.

Final Default

Any.Specifies a set of attributes that apply
to every complex Type in a schema
document.

Default Attributes

##defaultNamespace,
##targetNamespace, ##local.

The default namespace used when the
XPath expression is evaluated.

Xpath Default Namespace

Any token.Schema versionVersion

Any ID.The schema idID

Not editable property.The edited component name.Component

Not editable property.The schema system idSystemID

xs:element

Figure 260:The xs:element Component

Defines an element. An element declaration is an association of a name with a type definition, either simple or complex,
an (optional) default value and a (possibly empty) set of identity-constraint definitions. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-element.

Oxygen XML Editor plugin | Editing Documents | 444

http://www.w3.org/TR/xmlschema11-1/#element-schema
http://www.w3.org/TR/xmlschema11-1/#element-element

An element by default displays the following properties when rendered in the diagram: default, fixed, abstract and type.
When referenced or declared locally, the element graphical representation also contains the value for the minOccurs
and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to
the element are drawn using dotted lines if the element is optional.

xs:element Properties

MentionsPossible ValuesDescriptionProperty Name

If missing, will be displayed
as '[element]' in diagram.

Any NCName for global or
local elements, any QName
for element references.

The element name. Always
required.

Name

Appears only for local
elements.

true/falseWhen set, the local element
is a reference to a global
element.

Is Reference

For all elements. For
references, the value is set in
the referenced element.

All declared or built-in
types. In addition, the
following anonymous types
are available:
[ST-restriction], [ST-union],
[ST-list], [CT-anonymous],
[CT-extension SC],
[CT-restriction SC],
[CT-restriction CC],
[CT-extension CC].

The element type.Type

For elements with complex
type, with simple or complex
content.

All declared or built-in typesThe extended/restricted base
type.

Base Type

For elements with complex
type.

true/falseDefines if the complex type
content model will be mixed.

Mixed

For elements with complex
type that extends/restricts a
base type. It is automatically
detected.

simple/complexThe content of the complex
type.

Content

For elements with complex
type that has a complex
content.

true/falseDefines if the complex
content model will be mixed.

Content Mixed

The fixed and default
attributes are mutually
exclusive.

Any stringDefault value of the element.
A default value is
automatically assigned to the
element when no other value
is specified.

Default

The fixed and default
attributes are mutually
exclusive.

Any stringA simple content element
may be fixed to a specific
value using this attribute. A
fixed value is also
automatically assigned to the
element and you cannot
specify another value.

Fixed

Only for references/local
elements

A numeric positive value.
Default value is 1

Minimum number of
occurrences of the element.

Min Occurs

Oxygen XML Editor plugin | Editing Documents | 445

MentionsPossible ValuesDescriptionProperty Name

Only for references/local
elements

A numeric positive value.
Default value is 1

Maximum number of
occurrences of the element.

Max Occurs

For global and reference
elements

All declared elements. For
XML Schema 1.1 this
property supports multiple
values.

Qualified name of the head
of the substitution group that
this element belongs to.

Substitution Group

For global elements and
element references

true/falseControls whether or not the
element may be used directly
in instance XML documents.
When set to true, the element
may still be used to define
content models, but it must
be substituted through a
substitution group in the
instance document.

Abstract

Only for local elementsunqualified/qualifiedDefines if the element is
"qualified" (belongs to the
target namespace) or
"unqualified" (doesn't belong
to any namespace).

Form

For global elements and
element references

true/falseWhen this attribute is set to
true, the element can be
declared as nil using an
xsi:nil attribute in the
instance documents.

Nillable

For all elements.Not editable property.Specifies the target
namespace for local element
and attribute declarations.
The namespace URI may be
different from the schema
target namespace. This
property is available for local
elements only.

Target Namespace

For global elements and
element references

#all, restriction,
extension,substitution,
extension restriction,
extension substitution,
restriction substitution,
restriction extension
substitution

Controls if the element can
be subject to a type or
substitution group
substitution. '#all' blocks any
substitution, 'substitution'
blocks any substitution
through substitution groups
and 'extension'/'restriction'
block any substitution (both
through xsi:type and
substitution groups) by
elements or types, derived
respectively by extension or
restriction from the type of
the element. Its default value
is defined by the
blockDefault attribute
of the parent xs:schema.

Block

Oxygen XML Editor plugin | Editing Documents | 446

MentionsPossible ValuesDescriptionProperty Name

For global elements and
element references

#all, restriction, extension,
restriction extension,
[Empty]

Controls whether the
element can be used as the
head of a substitution group
for elements whose types are
derived by extension or
restriction from the type of
the element. Its default value
is defined by the
finalDefault attribute
of the parent xs:schema.

Final

For all elements.Any idThe component id.ID

For all elements.Not editable property.The edited component name.Component

For all elements.Not editable property.The component namespace.Namespace

For all elements.Not editable property.The component system id.System ID

xs:attribute

Figure 261:The xs:attribute Component

Defines an attribute. See more info at http://www.w3.org/TR/xmlschema11-1/#element-attribute.

An attribute by default displays the following properties when rendered in the diagram: default, fixed, use and type.
Connectors to the attribute are drawn using dotted lines if the attribute use is optional. The attribute name is stroked out
if prohibited.

xs:attribute Properties

MentionsPossible ValueDescriptionProperty Name

For all local or global
attributes. If missing, will be
displayed as '[attribute]' in
the diagram.

Any NCName for
global/local attributes, all
declared attributes' QName
for references.

Attribute name. Always
required.

Name

For local attributes.true/falseWhen set, the local attribute
is a reference.

Is Reference

For all attributes. For
references, the type is set to
the referenced attribute.

All global simple types and
built-in simple types. In
addition another 3 proposals
are present: [anonymous
restriction], [anonymous
list], [anonymous union] for
creating anonymous simple
types more easily.

Qualified name of a simple
type.

Type

Oxygen XML Editor plugin | Editing Documents | 447

http://www.w3.org/TR/xmlschema11-1/#element-attribute

MentionsPossible ValueDescriptionProperty Name

For all local or global
attributes. For references the
value is from the referenced
attribute.

Any stringDefault value. When
specified, an attribute is
added by the schema
processor (if it is missing
from the instance XML
document) and it is given
this value. The default and
fixed attributes are mutually
exclusive.

Default

For all local or global
attributes. For references the
value is from the referenced
attribute.

Any stringWhen specified, the value of
the attribute is fixed and
must be equal to this value.
The default and fixed
attributes are mutually
exclusive.

Fixed

For local attributesoptional, required, prohibitedPossible usage of the
attribute. Marking an
attribute "prohibited" is
useful to exclude attributes
during derivations by
restriction.

Use

For local attributes.unqualified/qualifiedSpecifies whether or not the
attribute is qualified (must
have a namespace prefix in
the instance XML
document). The default value
for this attribute is specified
by the
attributeFormDefault
attribute of the xs:schema
document element.

Form

For all local or global
attributes. The default value
is false. This property is
available for XML Schema
1.1.

true/falseSpecifies if the attribute is
inheritable. Inheritable
attributes can be used by
<alternative> element on
descendant elements.

Inheritable

Setting a target namespace
for local attribute is useful
only when restricts attributes
of a complex type that is
declared in other schema
with a different target
namespace. This property is
available for XML Schema
1.1.

Any URISpecifies the target
namespace for local attribute
declarations. The namespace
URI may be different from
the schema target
namespace.

Target Namespace

For all attributes.Any idThe component id.ID

For all attributes.Not editable property.The edited component name.Component

For all attributes.Not editable property.The component namespace.Namespace

For all attributes.Not editable property.The component system id.System ID

Oxygen XML Editor plugin | Editing Documents | 448

xs:attributeGroup

Figure 262:The xs:attributeGroup Component

Defines an attribute group to be used in complex type definitions. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup.

xs:attributeGroup Properties

MentionsPossible ValuesDescriptionProperty Name

For all global or referenced
attribute groups. If missing,
will be displayed as
'[attributeGroup]' in diagram.

Any NCName for global
attribute groups, all declared
attribute groups for
reference.

Attribute group name.
Always required.

Name

For all attribute groups.Any idThe component id.ID

For all attribute groups.Not editable property.The edited component name.Component

For all attribute groups.Not editable property.The component namespace.Namespace

For all attribute groups.Not editable property.The component system id.System ID

xs:complexType

Figure 263:The xs:complexType Component

Defines a top level complex type. Complex Type Definitions provide for: See more data at
http://www.w3.org/TR/xmlschema11-1/#element-complexType.

• Constraining element information items by providing Attribute Declarations governing the appearance and content
of attributes.

• Constraining element information item children to be empty, or to conform to a specified element-only or mixed
content model, or else constraining the character information item children to conform to a specified simple type
definition.

• Using the mechanisms of Type Definition Hierarchy to derive a complex type from another simple or complex type.
• Specifying post-schema-validation infoset contributions for elements.
• Limiting the ability to derive additional types from a given complex type.
• Controlling the permission to substitute, in an instance, elements of a derived type for elements declared in a content

model to be of a given complex type.

Tip: A complex type that is a base type to another type will be rendered with yellow background.

xs:complexType Properties

MentionsPossible ValuesDescriptionProperty Name

Only for global complex
types. If missing, will be
displayed as '[complexType]'
in diagram.

Any NCNameThe name of the complex
type. Always required.

Name

For complex types with
simple or complex content.

Any from the declared
simple or complex types.

The name of the
extended/restricted types.

Base Type Definition

Oxygen XML Editor plugin | Editing Documents | 449

http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup
http://www.w3.org/TR/xmlschema11-1/#element-complexType

MentionsPossible ValuesDescriptionProperty Name

Only when base type is set.
If the base type is a simple
type, the derivation method
is always extension.

restriction/ extensionThe derivation method.Derivation Method

For complex types that
extend/restrict a base type. It
is automatically detected.

simple/ complexThe content of the complex
type.

Content

For complex contents.true/falseSpecifies if the complex
content model will be mixed.

Content Mixed

For global and anonymous
complex types.

true/falseSpecifies if the complex type
content model will be mixed.

Mixed

For global and anonymous
complex types.

true/falseWhen set to true, this
complex type cannot be used
directly in the instance
documents and needs to be
substituted using an
xsi:type attribute.

Abstract

For global complex types.all, extension, restriction,
extension restriction,
[Empty]

Controls if a substitution
(either through a xsi:type
or substitution groups) can
be performed for a complex
type, which is an extension
or a restriction of the current
complex type. This attribute
can only block such
substitutions (it cannot
"unblock" them), which can
also be blocked in the
element definition. The
default value is defined by
the blockDefault
attribute of xs:schema.

Block

For global complex types.all, extension, restriction,
extension restriction,
[Empty]

Controls whether the
complex type can be further
derived by extension or
restriction to create new
complex types.

Final

This property is available
only for XML Schema 1.1.

true/falseThe schema element can
carry a
defaultAttributes
attribute, which identifies an
attribute group. Each
complexType defined in
the schema document then
automatically includes that
attribute group, unless this is
overridden by the
defaultAttributesApply
attribute on the
complexType element.

Default Attributes Apply

Oxygen XML Editor plugin | Editing Documents | 450

MentionsPossible ValuesDescriptionProperty Name

For all complex types.Any idThe component id.ID

For all complex types.Not editable property.The edited component name.Component

For all complex types.Not editable property.The component namespace.Namespace

For all complex types.Not editable property.The component system id.System ID

xs:simpleType

Figure 264:The xs:simpleType Component

Defines a simple type. A simple type definition is a set of constraints on strings and information about the values they
encode, applicable to the normalized value of an attribute information item or of an element information item with no
element children. Informally, it applies to the values of attributes and the text-only content of elements. See more info
at http://www.w3.org/TR/xmlschema11-1/#element-simpleType.

Tip: A simple type that is a base type to another type will be rendered with yellow background.

xs:simpleType Properties

ScopePossible ValuesDescriptionName

Only for global simple types.
If missing, will be displayed
as '[simpleType]' in diagram.

Any NCName.Simple type name. Always
required.

Name

For all simple types.restriction,list or unionThe simple type category:
restriction, list or union.

Derivation

For global and anonymous
simple types with the
derivation method set to
restriction.

All global simple types and
built-in simple types. In
addition another 3 proposals
are present: [anonymous
restriction], [anonymous
list], [anonymous union] for
easily create anonymous
simple types.

A simple type definition
component. Required if
derivation method is set to
restriction.

Base Type

For global and anonymous
simple types with the
derivation method set to list.
Derivation by list is the
process of transforming a
simple datatype (named the
item type) into a
whitespace-separated list of
values from this datatype.
The item type can be defined
inline by adding a
simpleType definition as a
child element of the list
element, or by reference,
using the itemType attribute
(it is an error to use both).

All global simple types and
built-in simple types(from
schema for schema). In
addition another 3 proposals
are present: [anonymous
restriction], [anonymous
list], [anonymous union] for
easily create anonymous
simple types.

A simple type definition
component. Required if
derivation method is set to
list.

Item Type

Oxygen XML Editor plugin | Editing Documents | 451

http://www.w3.org/TR/xmlschema11-1/#element-simpleType

ScopePossible ValuesDescriptionName

For global and anonymous
simple types with the
derivation method set to
union.

Not editable property.Category for grouping union
members.

Member Types

For global and anonymous
simple types with the
derivation method set to
union. Deriving a simple
datatype by union merges the
lexical spaces of several
simple datatypes (called
member types) to create a
new simple datatype. The
member types can be defined
either by reference (through
the memberTypes attribute)
or embedded as simple
datatype local definitions in
the xs:union element. Both
styles can be mixed.

All global simple types and
built-in simple types(from
schema for schema). In
addition another 3 proposals
are present: [anonymous
restriction], [anonymous
list], [anonymous union] for
easily create anonymous
simple types.

A simple type definition
component. Required if
derivation method is set to
union.

Member

Only for global simple types.#all, list, restriction, union,
list restriction, list union,
restriction union. In addition,
[Empty] proposal is present
for set empty string as value.

Blocks any further
derivations of this datatype
(by list, union, derivation or
all).

Final

For all simple typesAny id.The component id.ID

Only for global and local
simple types

Not editable property.The name of the edited
component.

Component

For global simple types.Not editable property.The component namespace.Namespace

Not present for built-in
simple types..

Not editable property.The component system id.System ID

xs:alternative

The type alternatives mechanism allows you to specify type substitutions on an element declaration.

Note: xs:alternative is available for XML Schema 1.1.

Figure 265:The xs:alternative Component

xs:alternative Properties

Oxygen XML Editor plugin | Editing Documents | 452

Possible ValuesDescriptionName

All declared or built-in types. In
addition, the following anonymous
types are available: [ST-restriction],
[ST-union], [ST-list],
[CT-anonymous], [CT-extension SC],
[CT-restriction SC], [CT-restriction
CC], [CT-extension CC].

Specifies type substitutions for an
element, depending on the value of the
attributes.

Type

An XPath expression.Specifies an XPath expression. If the
XPath condition is valid, the specified
type is selected as the element type.
The expressions allowed are limited to
a subset of XPath 2.0. Only the
attributes of the current element and
inheritable attributes from ancestor
elements are accessible in the XPath
expression. When you edit this
property, the content completion list
of proposals offers XPath expressions.

Test

##defaultNamespace,
##targetNamespace, ##local.

The default namespace used when the
XPath expression is evaluated.

XPath Default Namespace

Any ID.Specifies the component ID.ID

Not editable property.Specifies the type of XML schema
component.

Component

Not editable property.Points to the document location of the
schema.

System ID

xs:group

Figure 266:The xs:group Component

Defines a group of elements to be used in complex type definitions. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-group.

When referenced, the graphical representation also contains the value for the minOccurs and maxOccurs properties (for
0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the group are drawn using dotted
lines if the group is optional.

xs:group Properties

MentionsPossible ValuesDescriptionProperty Name

If missing, will be displayed
as '[group]' in diagram.

Any NCName for global
groups, all declared groups
for reference.

The group name. Always
required.

Name

Appears only for reference
groups.

A numeric positive value.
Default value is 1.

Minimum number of
occurrences of the group.

Min Occurs

Appears only for reference
groups.

A numeric positive value.
Default value is 1.

Maximum number of
occurrences of the group.

Max Occurs

For all groups.Any idThe component id.ID

Oxygen XML Editor plugin | Editing Documents | 453

http://www.w3.org/TR/xmlschema11-1/#element-group

MentionsPossible ValuesDescriptionProperty Name

For all groups.Not editable property.The edited component name.Component

For all groups.Not editable propertyThe component namespace.Namespace

For all groups.Not editable property.The component system id.System ID

xs:include

Figure 267:The xs:include Component

Adds multiple schemas with the same target namespace to a document. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-include.

xs:include properties

Possible ValuesDescriptionProperty Name

Any URIIncluded schema location.Schema Location

Any IDInclude ID.ID

Not editable property.The component name.Component

xs:import

Figure 268:The xs:import Component

Adds multiple schemas with a different target namespace to a document. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-import.

xs:import Properties

Possible ValuesDescriptionProperty Name

Any URIImported schema locationSchema Location

Any URIImported schema namespaceNamespace

Any IDImport IDID

Not editable property.The component nameComponent

xs:redefine

Figure 269:The xs:redefine Component

Redefines simple and complex types, groups, and attribute groups from an external schema. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-redefine.

xs:redefine Properties

Possible ValuesDescriptionProperty Name

Any URIRedefine schema location.Schema Location

Any IDRedefine IDID

Not editable property.The component name.Component

Oxygen XML Editor plugin | Editing Documents | 454

http://www.w3.org/TR/xmlschema11-1/#element-include
http://www.w3.org/TR/xmlschema11-1/#element-import
http://www.w3.org/TR/xmlschema11-1/#element-redefine

xs:override

Figure 270:The xs:override Component

The override construct allows replacements of old components with new ones without any constraint. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-override.

xs:override Properties

Possible ValuesDescriptionProperty Name

Any URIRedefine schema location.Schema Location

Any IDRedefine IDID

xs:notation

Figure 271:The xs:notation Component

Describes the format of non-XML data within an XML document. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-notation.

xs:notation Properties

MentionsPossible valuesDescriptionProperty Name

If missing, will be displayed
as '[notation]' in diagram.

Any NCName.The notation name. Always
required.

Name

Required if public identifier
is absent (otherwise,
optional).

Any URIThe notation system
identifier.

System Identifier

Required if system identifier
is absent (otherwise,
optional).

A Public ID valueThe notation public
identifier.

Public Identifier

For all notations.Any IDThe component id.ID

For all notations.Not editable property.The edited component name.Component

For all notations.Not editable property.The component namespace.Namespace

For all notations.Not editable property.The component system id.System ID

xs:sequence / xs:choice / xs:all

Figure 272: xs:sequence

xs:sequence specifies that the child elements must appear in a sequence. Each child element can occur from 0 to
any number of times. See more info at http://www.w3.org/TR/xmlschema11-1/#element-sequence.

Figure 273: xs:choice

xs:choice allows only one of the elements contained in the declaration to be present within the containing element.
See more info at http://www.w3.org/TR/xmlschema11-1/#element-choice.

Oxygen XML Editor plugin | Editing Documents | 455

http://www.w3.org/TR/xmlschema11-1/#element-override
http://www.w3.org/TR/xmlschema11-1/#element-notation
http://www.w3.org/TR/xmlschema11-1/#element-sequence
http://www.w3.org/TR/xmlschema11-1/#element-choice

Figure 274: xs:all

xs:all specifies that the child elements can appear in any order. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-all.

The compositor graphical representation also contains the value for the minOccurs and maxOccurs properties (for
0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the compositor are drawn using
dotted lines if the compositor is optional.

xs:sequence, xs:choice, xs:all Properties

MentionsPossible ValuesDescriptionProperty Name

'all' is only available as a
child of a group or complex
type.

sequence, choice, all.Compositor type.Compositor

The property is not present
if compositor is 'all' and is
child of a group.

A numeric positive value.
Default is 1.

Minimum occurrences of
compositor.

Min Occurs

The property is not present
if compositor is 'all' and is
child of a group.

A numeric positive value.
Default is 1.

Maximum occurrences of
compositor.

Max Occurs

For all compositors.Any IDThe component id.ID

For all compositors.Not editable property.The edited component name.Component

For all compositors.Not editable property.The component system id.System ID

xs:any

Figure 275:The xs:any Component

Enables the author to extend the XML document with elements not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-any.

The graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and 1..1
occurs the values are implied by the connector style) and the connectors to the wildcard are drawn using dotted lines if
the wildcard is optional.

xs:any Properties

Possible ValuesDescriptionProperty Name

##any, ##other, ##targetNamespace,
##local or anyURI

The list of allowed namespaces. The
namespace attribute expects a list of
namespace URIs. In this list, two
values have a specific meaning:
'##targetNamespace' stands for the
target namespace, and '##local' stands
for local attributes (without
namespaces).

Namespace

##local, ##targetNamespaceSpecifies the namespace that extension
elements or attributes cannot come
from.

notNamespace

Oxygen XML Editor plugin | Editing Documents | 456

http://www.w3.org/TR/xmlschema11-1/#element-all
http://www.w3.org/TR/xmlschema11-1/#element-any

Possible ValuesDescriptionProperty Name

##definedSpecifies an element or attribute that
is not allowed.

notQName

skip, lax, strictType of validation required on the
elements allowed for this wildcard.

Process Contents

A numeric positive value. Default is 1.Minimum occurrences of anyMin Occurs

A numeric positive value. Default is 1.Maximum occurrences of anyMax Occurs

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:anyAttribute

Figure 276:The xs:anyAttribute Component

Enables the author to extend the XML document with attributes not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute.

xs:anyAttribute Properties

Possible ValueDescriptionProperty Name

##any, ##other, ##targetNamespace,
##local or anyURI

The list of allowed namespaces. The
namespace attribute expects a list of
namespace URIs. In this list, two
values have a specific meaning:
'##targetNamespace' stands for the
target namespace, and '##local' stands
for local attributes (without
namespaces).

Namespace

skip, lax, strictType of validation required on the
elements allowed for this wildcard.

Process Contents

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:unique

Figure 277:The xs:unique Component

Oxygen XML Editor plugin | Editing Documents | 457

http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute

Defines that an element or an attribute value must be unique within the scope. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-unique.

xs:unique Properties

Possible ValuesDescriptionProperty Name

Any NCName.The unique name. Always required.Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:key

Figure 278:The xs:key Component

Specifies an attribute or element value as a key (unique, non-nullable and always present) within the containing element
in an instance document. See more info at http://www.w3.org/TR/xmlschema11-1/#element-key.

xs:key Properties

Possible ValueDescriptionProperty Name

Any NCName.The key name. Always required.Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:keyRef

Figure 279:The xs:keyRef Component

Specifies that an attribute or element value corresponds to that of the specified key or unique element. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-keyref.

A keyref by default displays the Referenced Key property when rendered.

xs:keyRef Properties

Possible ValuesDescriptionProperty Name

Any NCName.The keyref name. Always required.Name

Oxygen XML Editor plugin | Editing Documents | 458

http://www.w3.org/TR/xmlschema11-1/#element-unique
http://www.w3.org/TR/xmlschema11-1/#element-key
http://www.w3.org/TR/xmlschema11-1/#element-keyref

Possible ValuesDescriptionProperty Name

any declared element constraints.The name of referenced key.Referenced Key

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:selector

Figure 280:The xs:selector Component

Specifies an XPath expression that selects a set of elements for an identity constraint. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-selector.

xs:selector Properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying
the element that the constraint applies
to.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

xs:field

Figure 281:The xs:field Component

Specifies an XPath expression that specifies the value used to define an identity constraint. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-field.

xs:field Properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying
the field(s) composing the key, key
reference, or unique constraint.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

xs:assert

Assertions provide a flexible way to control the occurrence and values of elements and attributes available in an XML
Schema.

Note: xs:assert is available for XML Schema 1.1.

Oxygen XML Editor plugin | Editing Documents | 459

http://www.w3.org/TR/xmlschema11-1/#element-selector
http://www.w3.org/TR/xmlschema11-1/#element-field

Figure 282:The xs:assert Component

xs:assert Properties

Possible ValuesDescriptionProperty Name

An XPath expression.Specifies an XPath expression. If the
XPath condition is valid, the specified
type is selected as the element type.
The expressions allowed are limited to
a subset of XPath 2.0. Only the
attributes of the current element and
inheritable attributes from ancestor
elements are accessible in the XPath
expression. When you edit this
property, the content completion list
of proposals offers XPath expressions.

Test

##defaultNamespace,
##targetNamespace, ##local.

The default namespace used when the
XPath expression is evaluated.

XPath Default Namespace

Any ID.Specifies the component ID.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

xs:openContent

Figure 283:The xs:openContent Component

The openContent element enables instance documents to contain extension elements to be inserted amongst the
elements declared by the schema. You can declare open content for your elements at one place (within the complexType
definition) or at the schema level.

For further details about the openContent component, go to
http://www.w3.org/TR/xmlschema11-1/#element-openContent.

xs:openContent Properties

Possible ValueDescriptionProperty Name

The value can be: "interleave", "suffix"
or "none". The default value is
"interleave".

Specifies where the extension elements
can be inserted.

Mode

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

Note: This component is available for XML Schema 1.1 only. To change the version of the XML Schema,
open the Preferences dialog box and go to XML > XML Parser > XML Schema.

Constructs Used to Group Schema Components

This section explains the components that can be used for grouping other schema components:

Oxygen XML Editor plugin | Editing Documents | 460

http://www.w3.org/TR/xmlschema11-1/#element-openContent

• Attributes
• Constraints
• Substitutions

Attributes

Figure 284: Attributes Construct

Groups all attributes and attribute groups belonging to a complex type.

attributes Properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the attributes
are displayed.

Component

Not editable property.The component system id.System ID

Constraints

Figure 285: Constraints Construct

Groups all constraints (xs:key, xs:keyRef or xs:unique) belonging to an element.

constraints Properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the constraints
are displayed.

Component

Not editable property.The component system id.System ID

Oxygen XML Editor plugin | Editing Documents | 461

Substitutions

Figure 286: Substitutions Construct

Groups all elements that can substitute the current element.

substitutions Properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the substitutions
are displayed.

Component

Not editable property.The component system id.System ID

Schema Validation

Validation for the Design mode is seamlessly integrated in the Oxygen XML Editor plugin XML documents validation
capability.

Figure 287: XML Schema Validation

A schema validation error is presented by highlighting the invalid component:

• In the Attributes View.
• In the diagram by surrounding the component that has the error with a red border.

Invalid facets for a component are highlighted in the Facets View.

Oxygen XML Editor plugin | Editing Documents | 462

Components with invalid properties are rendered with a red border. This is a default color, but you can customize it in
the Document checking user preferences. When hovering an invalid component, the tooltip will present the validation
errors associated with that component.

When editing a value that is supposed to be a qualified or unqualified XML name, the application provides automatic
validation of the entered value. This proves to be very useful in avoiding setting invalid XML names for the given
property.

If you validate the entire schema using the Validate action from the XML menu or from the Validation toolbar
drop-down menu, all validation errors will be presented in the Errors tab. To resolve an error, just click it (or double-click
for errors located in other schemas) and the corresponding schema component will be displayed as the diagram root so
that you can easily correct the error.

Important: If the schema imports only the namespace of other schema without specifying the schema location
and a catalog is set-up that maps the namespace to a certain location both the validation and the diagram will
correctly identify the imported schema.

Tip: If the validation action finds that the schema contains unresolved references, the application will suggest
the use of validation scenarios, but only if the current edited schema is an XML Schema module.

Edit Schema Namespaces

You can use the XML Schema Namespaces dialog box to easily set a target namespace and define namespace mappings
for a newly created XML Schema. In the Design mode these namespaces can be modified anytime by choosing Edit
Schema Namespaces from the contextual menu. You can also do this by double-clicking the schema root in the diagram.

The XML Schema Namespaces dialog box allows you to edit the following information:

• Target namespace - The target namespace of the schema.

• Prefixes - The dialog box displays a table with namespaces and the mapped prefixes. You can add a new prefix
mapping or remove an already existing one.

XML Schema Palette View

The Palette view is designed to offer quick access to XML Schema components and to improve the usability of the
XML Schema diagram builder. You can use the Palette to drag and drop components in the Design mode. The components
offered in the Palette view depend on the XML schema version set in the XML Schema preferences page. If the view
is not displayed, it can be opened from the Window > Show View menu.

Figure 288: Palette View

Oxygen XML Editor plugin | Editing Documents | 463

Figure 289: Palette View

Components are organized functionally into 4 collapsible categories:

• Basic components: elements, group, attribute, attribute group, complex type, simple type, type alternative.
• Compositors and Wildcards: sequence, choice, all, any, any attribute, open content.
• Directives: import, include, redefine, override.
• Identity constraints: key, keyref, unique, selector, field, assert.

Note: The type alternative, open content, override, and assert components are available for XML Schema
1.1.

To add a component to the edited schema:

• Click and hold a graphic symbol from the Palette view, then drag the component into the Design view.
• A line dynamically connects the component with the XML schema structure.
• Release the component into a valid position.

Note: You cannot drop a component into an invalid position. When you hover the component into an invalid

position, the mouse cursor changes its shape into . Also, the connector line changes its color from the
usual dark gray to the color defined in the Validation error highlight color option (default color is red).

To watch our video demonstration about the Schema palette and developing XML Schemas, go to
http://oxygenxml.com/demo/Schema_Palette.html and http://oxygenxml.com/demo/Developing_XML_Schemas.html
respectively.

XML Schema Facets View

The Facets view for XML Schemas presents the facets for the selected component, if available. If the view is not
displayed, it can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Editing Documents | 464

http://oxygenxml.com/demo/Schema_Palette.html
http://oxygenxml.com/demo/Developing_XML_Schemas.html

Figure 290: Facets View

The default value of a facet is rendered in the Facets view with a blue color. The facets that can not be edited are rendered
with a gray color. The grouping categories (for example: Enumerations and Patterns) are not editable. If these categories
contain at least one child they are rendered with bold. Bold facets are facets with values set explicitly to them.

Important: Usually inherited facets are presented as default in the Facets view but if patterns are inherited
from a base type and also specified in the current simple type only the current specified patterns will be presented.
You can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip
on the Patterns category.

Facets for components that do not belong to the current edited schema are read-only but if you double-click them you
can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking it or by pressing Enter, when that facet is selected. For some facets you can
choose valid values from a list or you can specify another value. If a facet has an invalid value or a warning, it will be
highlighted in the table with the corresponding foreground color. By default, facets with errors are presented with red
and the facets with warnings with yellow. You can customize the error colors from the Document Checking user
preferences.

The Facets view provides the following actions in its toolbar and contextual menu:

Allows you to add a new enumeration or a new pattern.Add

Allows you to remove the value of a facet.Remove

Allows you to edit an annotation for the selected facet.Edit Annotations

Allows you to move up the current enumeration/pattern in Enumerations/Patterns
category.

Move Up

Allows you to move down the current enumeration/pattern in
Enumerations/Patterns category.

Move Down

Copy the attribute value.Copy

Rather than editing regular expressions manually, this action allows you to open
the pattern in the XML Schema Regular Expressions Builder that guides you
through the process of testing and constructing the pattern..

Open in Regular Expressions
Builder

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the Pin button.

Editing XML Schema in Text Editing Mode

The Oxygen XML Editor plugin Text editing mode can be used for editing XML Schema in a source editing mode. It
offers powerful content completion support, a synchronized Outline view, and multiple refactoring actions. The Outline
view has two display modes: the standard outline mode and the components mode.

Oxygen XML Editor plugin | Editing Documents | 465

A diagram of the XML Schema can be presented side by side with the text. To activate the diagram presentation, enable
the Show Full Model XML Schema diagram checkbox from the Diagram preferences page.

Editing XML Schema in the Master Files Context

Smaller interrelated modules that define a complex XML Schema cannot be correctly edited or validated individually,
due to their interdependency with other modules. For example, an element defined in a main schema document is not
visible when you edit an included module. Oxygen XML Editor plugin provides the support for defining the main module
(or modules), thus allowing you to edit any of the imported/included schema files in the context of the larger schema
structure.

You cat set a main XML document either using the master files support from the Navigator view, or using a validation
scenario.

To set a main file using a validation scenario, add validation units that point to the main schemas. Oxygen XML Editor
plugin warns you if the current module is not part of the dependencies graph computed for the main schema. In this
case, it considers the current module as the main schema.

The advantages of editing in the context of main file include:

• Correct validation of a module in the context of a larger schema structure.
• Content Completion Assistant displays all the referable components valid in the current context. This include

components defined in modules other than the currently edited one.
• The Outline displays the components collected from the entire schema structure.

Validating XML Schema Documents

By default, XML Schema files are validated as you type. To change this, open the Preferences dialog box , go to
Editor > Document Checking, and disable the Enable automatic validation option.

To validate an XML Schema document manually, select the Validate action from the Validation toolbar
drop-down menu or the XML menu. When Oxygen XML Editor plugin validates an XML Schema file, it expands all
the included modules so the entire schema hierarchy is validated. The validation problems are highlighted directly in
the editor, making it easy to locate and fix any issues.

Related information
Validating XML Documents Against a Schema on page 357

Content Completion in XML Schema

The intelligent Content Completion Assistant available in Oxygen XML Editor plugin enables rapid, in-line identification
and insertion of elements, attributes and attribute values valid in the editing context. All available proposals are listed
in a pop-up menu displayed at the current cursor position.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box , go to Editor >
Content Completion, and disable the Enable content completion option.

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current cursor
position. Elements can be selected in the list by using the Up and Down keys on your keyboard. For each selected item
in the list, the Content Completion Assistant displays a documentation window. You can customize the size of the
documentation window by dragging its top, right, and bottom borders.

To insert the selected content in Text mode, do one of the following:

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a position
suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor
between the tags in a position where you can start typing content.

Depending on the selected schema version, Oxygen XML Editor plugin populates the proposals list with information
taken either from XML Schema 1.0 or 1.1.

Oxygen XML Editor plugin | Editing Documents | 466

Oxygen XML Editor plugin helps you to easily reference a component by providing the list of proposals (complex types,
simple types, elements, attributes, groups, attribute groups, or notations) valid in the current context. The components
are collected from the current file or from the imported/included schemas.

When editing xs:annotation/xs:appinfo elements of an XML Schema, the Content Completion Assistant
proposes elements and attributes from a custom schema (by default ISO Schematron). This feature can be configured
from the XSD Content Completion preferences page.

XML Schema Outline View

The Outline view for XML Schemas presents all the global components grouped by their location, namespace, or type.
By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Figure 291: Outline View for XML Schema

The Outline view provides the following options in the View Menu on the Outline view action bar:

The text filter of the Outline view returns only exact matches;Filter returns exact matches

Allows a synchronization between Outline view and schema diagram. The
selected view from the diagram is also selected in the Outline view.

Selection update on cursor move

Allows you to sort alphabetically the schema components.Sort

Displays all components that were collected starting from the main files.
Components that are not referable from the current file are marked with an orange

Show all components

underline. To reference them, add an import directive with the componentNS
namespace.

Displays all components (collected starting from the main files) that can be
referenced from the current file. This option is set by default.

Show referable components

Displays the components defined in the current file only.Show only local components

Oxygen XML Editor plugin | Editing Documents | 467

These three operations allow you to group the components by location,
namespace, or type. When grouping by namespace, the main schema target
namespace is the first presented in the Outline view.

Group by location/namespace/type

The following contextual menu actions are available in the Outline view:

Removes the selected item from the diagram.Remove (Delete)

Searches all references of the item found at current cursor position in the
defined scope, if any.

Search References

Searches all references of the item found at current cursor position in the
specified scope.

Search References in

Allows you to see the dependencies for the current selected component.Component Dependencies

Allows you to see the hierarchy for the current selected resource.Resource Hierarchy

Allows you to see the dependencies for the current selected resource.Resource Dependencies

Renames the selected component.Rename Component in

Generate XML files using the current opened schema. The selected
component is the XML document root.

Generate Sample XML Files

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline
view, its definition is highlighted in the editing area.

Related information
Searching and Refactoring Actions in XML Schemas on page 474

Component Dependencies View for XML Schema on page 472

XML Schema Resource Hierarchy / Dependencies View on page 470

Generating Sample XML Files on page 476

Editing Relax NG Schema in the Master Files Context on page 522

XML Schema Attributes View

The Attributes view for XML Schemas presents the properties for the selected component in the schema diagram. By
default, it is displayed on the right side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Oxygen XML Editor plugin | Editing Documents | 468

Figure 292: Attributes View

The default value of a property is presented in the Attributes view with blue foreground. The properties that can not
be edited are rendered with gray foreground. A non-editable category that contains at least one child is rendered with
bold. Bold properties are properties with values set explicitly to them.

Properties for components that do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking by pressing Enter. For most properties you can choose valid values from a
list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted in the table
with the corresponding foreground color. By default, properties with errors are highlighted with red and the properties
with warnings are highlighted with yellow. You can customize these colors from the Document checking user preferences.

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog box will open
that allows you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit
Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:

Allows you to add a new member type to an union's member types category.Add

Allows you to remove the value of a property.Remove

Allows you to move up the current member to an union's member types
category.

Move Up

Allows you to move down the current member to an union's member types
category.

Move Down

Copy the attribute value.Copy

Shows the definition for the selected type.Show DefinitionCtrl (Meta on MAC
OS) + Click

Allows you to edit the facets for a simple type.Show Facets

Oxygen XML Editor plugin | Editing Documents | 469

XML Schema Resource Hierarchy / Dependencies View

The Resource Hierarchy / Dependencies view allows you to easily see the hierarchy / dependencies for an XML
Schema, a Relax NG schema or an XSLT stylesheet. If the view is not displayed, it can be opened from the Window >
Show View menu.

The Resource Hierarchy / Dependencies is useful when you want to start from an XML Schema (XSD) file and build
and review the hierarchy of all the other XSD files that are imported, included or redefined in the given XSD file. The
view is also able to build the tree structure, that is the structure of all other XSD files that import, include or redefine
the given XSD file. The scope of the search is configurable (the current project, a set of local folders, etc.)

The build process for the hierarchy view is started with the Resource Hierarchy action available on the contextual
menu of the editor panel.

Figure 293: Resource Hierarchy/Dependencies View - Hierarchy for xhtml11.xsd

The build process for the dependencies view is started with the Resource Dependencies action available on the contextual
menu.

Oxygen XML Editor plugin | Editing Documents | 470

Figure 294: Resource Hierarchy/Dependencies View - Dependencies for xhtml-param-1.xsd

The following actions are available in the Resource Hierarchy/Dependencies view:

Refreshes the Hierarchy/Dependencies structure.Refresh

Stops the hierarchy/dependencies computing.Stop

Allows you to choose a resource to compute the hierarchy structure.Show Hierarchy

Allows you to choose a resource to compute the dependencies structure.Show Dependencies

Allows you to configure a scope to compute the dependencies structure. There is
also an option for automatically using the defined scope for future operations.

Configure

Provides access to the list of previously computed dependencies. Use the Clear
history button to remove all items from this list.

History

The contextual menu contains the following actions:

Opens the resource. You can also double-click a resource in the
Hierarchy/Dependencies structure to open it.

Open

Copies the location of the resource.Copy location

Moves the selected resource.Move resource

Renames the selected resource.Rename resource

Shows the hierarchy for the selected resource.Show Resource Hierarchy

Shows the dependencies for the selected resource.Show Resource Dependencies

Adds the currently selected resource in the Master Files directory.Add to Master Files

Expands all the children of the selected resource from the
Hierarchy/Dependencies structure.

Expand All

Collapses all children of the selected resource from the
Hierarchy/Dependencies structure.

Collapse All

Oxygen XML Editor plugin | Editing Documents | 471

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special
icon .

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Related information
Search and Refactor Operations Scope on page 374

Moving/Renaming XML Schema Resources
You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename
resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Enable this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move
resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the option to
introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Enable this option to update the references to the resource you are

moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is enabled, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are updated.

Component Dependencies View for XML Schema

The Component Dependencies view allows you to spot the dependencies for the selected component of an XML
Schema, a Relax NG schema, a NVDL schema or an XSLT stylesheet. If the view is not displayed, it can be opened from
the Window > Show View menu.

If you want to see the dependencies of a schema component:

• Select the desired schema component in the editor.
• Choose the Component Dependencies action from the contextual menu.

The action is available for all named components (for example, elements or attributes).

Oxygen XML Editor plugin | Editing Documents | 472

Figure 295: Component Dependencies View - Hierarchy for xhtml11.xsd

In the Component Dependencies view the following actions are available in the toolbar:

Refreshes the dependencies structure.Refresh

Stop the dependencies computing.Stop

Allows you to configure a search scope to compute the dependencies structure.Configure

Contains a list of previously executed dependencies computations.History

The contextual menu contains the following actions:

Selects the first reference of the referenced component from the current selected
component in the dependencies tree.

Go to First Reference

Shows the definition of the currently selected component in the dependencies
tree.

Go to Component

Tip: If a component contains multiple references to another components, a small table is displayed that contains
all these references. When a recursive reference is encountered, it is marked with a special icon .

Related information
Search and Refactor Operations Scope on page 374

Search and Refactor Operations Scope

Oxygen XML Editor plugin | Editing Documents | 473

Highlight Component Occurrences

When a component (for example types, elements, attributes) is found at current cursor position, Oxygen XML Editor
plugin performs a search over the entire document to find the component declaration and all its references. When found,
they are highlighted both in the document and in the stripe bar, at the right side of the document. Customizable colors
are used: one for the component definition and another one for component references. Occurrences are displayed until
another component is selected and a new search is performed. All occurrences are removed when you start to edit the
document.

This feature is on by default. To configured it, open the Preferences dialog box and go to Editor > Mark Occurrences.
A search can also be triggered with the Search > Search Occurrences in File () contextual menu action. All matches
are displayed in a separate tab of the Results view.

Searching and Refactoring Actions in XML Schemas

Search Actions

The following search actions can be applied on attribute, attributeGroup, element, group, key, unique,
keyref, notation, simple, or complex types and are available from the Search submenu in the contextual menu
of the current editor:

• Search References - Searches all references of the item found at current cursor position in the defined scope, if
any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a
warning dialog box is displayed and you have the possibility to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files that
you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined scope
if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this,
a warning dialog box will be displayed and you have the possibility to define another search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or files
that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

The following action is available from the XSL menu:

• Show Definition - Moves the cursor to the definition of the referenced XML Schema item.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference
to display its definition.

Refactoring Actions

The following refactoring actions can be applied on attribute, attributeGroup, element, group, key,
unique, keyref, notation, simple, or complex types and are available from the Refactoring submenu in the
contextual menu of the current editor:

• Rename Component - Allows you to rename the current component (in-place). The component and all its references
in the document are highlighted with a thin border and the changes you make to the component at the cursor position
are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key
on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by specifying
the new component name and the files to be affected by the modification. If you click the Preview button, you can
view the files to be affected by the action.

Oxygen XML Editor plugin | Editing Documents | 474

Figure 296: Rename Identity Constraint Dialog Box

Related information
Search and Refactor Operations Scope on page 374

Search and Refactor Operations Scope

XML Schema Quick Assist Support

The Quick Assist support improves the development work flow, offering fast access to the most commonly used actions
when you edit schema documents.

The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component. It is

accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also, you can
invoke the quick assist menu by using the Ctrl + 1 (Meta 1 on Mac OS X) keyboard shortcuts.

Figure 297: Quick Assist Support

The quick assist support offers direct access to the following actions:

Renames the component and all its dependencies.Rename Component in

Searches the declaration of the component in a predefined scope. It is
available only when the context represents a component name reference.

Search Declarations

Searches all references of the component in a predefined scope.Search References

Searches the component dependencies in a predefined scope.Component Dependencies

Oxygen XML Editor plugin | Editing Documents | 475

Configures the scope that will be used for future search or refactor
operations.

Change Scope

Allows you to rename the current component in-place.Rename Component

Searches all occurrences of the component within the current file.Search Occurrences

To watch our video demonstration about improving schema development using the Quick Assist action set, go to
http://oxygenxml.com/demo/Quick_Assist.html.

Related information
Resource Hierarchy / Dependencies View on page 470

Component Dependencies View on page 472

Searching and Refactoring Actions on page 474

Generating Sample XML Files

Oxygen XML Editor plugin offers support to generate sample XML files both from XML schema 1.0 and XML schema
1.1, depending on the XML schema version set in XML Schema preferences page.

To generate sample XML files from an XML Schema, use the Generate Sample XML Files action from the XML
Tools menu. This action is also available in the contextual menu of the schema Design mode. The action opens the
Generate Sample XML Files dialog box that allows you to configure a variety of options for generating the files.

For more information about this tool, watch our video demonstration about generating sample XML files at
http://oxygenxml.com/demo/Generate_Sample_XML_Files.html.

The Generate Sample XML Files dialog box contains three tabs with various configurable options. Default values for
these options can be set in the Sample XML Files Generator preferences page.

Schema Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The first set of options are found in the Schema tab.

Figure 298: Generate Sample XML Files Dialog Box (Schema Tab)

Oxygen XML Editor plugin | Editing Documents | 476

http://oxygenxml.com/demo/Quick_Assist.html
http://oxygenxml.com/demo/Generate_Sample_XML_Files.html

This tab includes the following options:

Specifies the URL of the Schema location. You can specify the path by using the
text field, the history drop-down menu, or the browsing tools in the Browse
drop-down list.

URL

Displays the namespace of the selected schema.Namespace

After the schema is selected, this drop-down menu is populated with all root
candidates gathered from the schema. Choose the root of the output XML
documents.

Root Element

Path to the folder where the generated XML instances will be saved.Output folder

You can specify the prefix and extension for the file name that will be generated.
Generated file names have the following format: prefixN.extension, where
N represents an incremental number from 0 up to the specified Number of instances.

Filename prefix and Extension

The number of XML files to be generated.Number of instances

When checked, the first generated XML file is opened in the editor.Open first instance in editor

You can specify the Default Namespace, as well as the prefixes for the namespaces.Namespaces section

Use this button to load previously exported settings.Load settings

Use this button to save the current settings for future use.Export settings

You can click OK at any point to generate the sample XML files.

Options Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The Options tab allows you to set specific options for namespaces and elements.

Oxygen XML Editor plugin | Editing Documents | 477

Figure 299: Generate Sample XML Files Dialog Box (Options Tab)

This tab includes the following options:

Allows you to set a namespace for each element name that appears in an XML document instance.
The following prefix-to-namespace associations are available:

Namespace /
Element table

• All elements from all namespaces (<ANY> - <ANY>). This is the default setting.
• All elements from a specific namespace.
• A specific element from a specific namespace.

Settings subtab Displays the namespace specified in the table at the top of the dialog box.Namespace

Displays the element specified in the table at the top of the dialog box.Element

When checked, all elements are generated, including the optional ones
(having the minOccurs attribute set to 0 in the schema).

Generate optional
elements

When checked, all attributes are generated, including the optional ones
(having the use attribute set to optional in the schema).

Generate optional
attributes

Controls the content of generated attribute and element values. The following
choices are available:

Values of elements
and attributes

• None - No content is inserted.
• Default - Inserts a default value depending of data type descriptor of

the particular element or attribute. The default value can be either the
data type name or an incremental name of the attribute or element
(according to the global option from the XML Instances Generator
preferences page). Note that type restrictions are ignored when this
option is enabled. For example, if an element is of a type that restricts

Oxygen XML Editor plugin | Editing Documents | 478

an xs:string with the xs:maxLength facet to allow strings with a
maximum length of 3, the XML instance generator tool may generate
string element values longer than 3 characters.

• Random - Inserts a random value depending of data type descriptor of
the particular element or attribute.

Important: If all of the following are true, the XML Instances
Generator outputs invalid values:

• At least one of the restrictions is a regexp.
• The value generated after applying the regexp does not

match the restrictions imposed by one of the facets.

Allows you to set the preferred number of repeating elements related to
minOccurs and maxOccurs facets defined in the XML Schema.

Preferred number of
repetitions

• If the value set here is between minOccurs and maxOccurs, then
that value is used.

• If the value set here is less than minOccurs, then the minOccurs
value is used.

• If the value set here is greater than maxOccurs, then maxOccurs is
used.

If a recursion is found, this option controls the maximum allowed depth of
the same element.

Maximum recursion
level

Used for the xs:alternative element from XML Schema 1.1. The
possible strategies are:

Type alternative
strategy

• First - The first valid alternative type is always used.
• Random - A random alternative type is used.

Used for xs:choice or substitutionGroup elements. The possible
strategies are:

Choice strategy

• First - The first branch of xs:choice or the head element of
substitutionGroup is always used.

• Random - A random branch of xs:choice or a substitute element
or the head element of a substitutionGroup is used.

If enabled, generates the other possible choices or substitutions (for
xs:choice and substitutionGroup). These alternatives are

Generate the other
options as comments

generated inside comments groups so you can uncomment and use them
later. Use this option with care (for example, on a restricted namespace and
element) as it may generate large result files.

Allows you to add values that are used to generate the content of elements. If there are multiple
values, then the values are used in a random order.

Element values
subtab

Allows you to add values that are used to generate the content of attributes. If there are multiple
values, then the values are used in a random order.

Attribute values
subtab

Use this button to load previously exported settings.Load settings

Use this button to save the current settings for future use.Export settings

You can click OK at any point to generate the sample XML files.

Oxygen XML Editor plugin | Editing Documents | 479

Advanced Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The Advanced tab allows you to set some options in regards to output values and performance.

Figure 300: Generate Sample XML Files Dialog Box (Advanced Tab)

This tab includes the following options:

If checked, the value of an element or attribute starts with the name of that element
or attribute. For example, for an a element the generated values are: a1, a2, a3,

Use incremental attribute / element
names as default

and so on. If not checked, the value is the name of the type of that element /
attribute (for example: string, decimal, etc.)

The maximum length of string values generated for elements and attributes.Maximum length

The optional elements that exceed the specified nested level are discarded. This
option is useful for limiting deeply nested element definitions that can quickly
result in very large XML documents.

Discard optional elements after
nested level

Generating Documentation for an XML Schema

Oxygen XML Editor plugin can generate detailed documentation for the components of an XML Schema in HTML,
PDF, DocBook, or other custom formats. You can select the components and the level of detail. The components are
hyperlinked in both HTML and DocBook documents.

Note: You can generate documentation for both XML Schema version 1.0 and 1.1.

To generate documentation for an XML Schema document, select XML Schema Documentation from the XML
Tools > Generate Documentation menu or from the Generate XML Schema Documentation action from the contextual
menu of the Navigator view.

Oxygen XML Editor plugin | Editing Documents | 480

Figure 301: XML Schema Documentation Dialog Box

The Schema URL field of the dialog box must contain the full path to the XML Schema (XSD) file for which you want
to generate documentation. The schema may be a local or a remote file. You can specify the path to the schema by
entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down
menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• PDF - The documentation is generated in PDF output format.
• DocBook - The documentation is generated in DocBook output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output. Click

the Options button to open a Custom format options dialog box where you can specify a custom stylesheet for
creating the output. There is also an option to Copy additional resources to the output folder and you can
select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate
XML files created during the documentation process by deselecting the Delete intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. You can choose to
split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output file
type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

Oxygen XML Editor plugin | Editing Documents | 481

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with the
xml:lang attribute set to the selected language. If you choose a primary language code (for example, en for
English), this includes all its possible variations (en-us, en-uk, etc.).

Settings Tab
When you generate documentation for an XML schema you can choose what components to include in the output and
the details to be included in the documentation.

Figure 302: Settings Tab of the XML Schema Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Global elements, Global
attributes, Local elements, Local attributes, Simple Types, Complex Types, Groups, Attribute Groups, Redefines,
Referenced schemas, Include notations.

You can choose whether or not to include the following other details:

• Diagram - Displays the diagram for each component. You can choose the image format (JPEG, PNG, SVG) to use
for the diagram section. The generated diagrams are dependent on the options from the Schema Design Properties
page.

• Diagram annotations - This option controls whether or not the annotations of the components presented in the
diagram sections are included.

• Namespace - Displays the namespace for each component.
• Location - Displays the schema location for each component.
• Type - Displays the component type if it is not an anonymous one.
• Type hierarchy - Displays the types hierarchy.
• Model - Displays the model (sequence, choice, all) presented in BNF form. The separator characters that are used

depend upon the information item used:

• xs:all - Its children will be separated by space characters.

Oxygen XML Editor plugin | Editing Documents | 482

• xs:sequence - Its children will be separated by comma characters.
• xs:choice - Its children will be separated by | characters.

• Children - Displays the list of component's children.
• Instance - Displays an XML instance generated based on each schema element.
• Used by - Displays the list of all the components that reference the current one. The list is sorted by component type

and name.
• Properties - Displays some of the component's properties.
• Facets - Displays the facets for each simple type
• Identity constraints - Displays the identity constraints for each element. For each constraint there are presented the

name, type (unique, key, keyref), reference attribute, selector and field(s).
• Attributes - Displays the attributes for the component. For each attribute there are presented the name, type, fixed

or default value, usage and annotation.
• Asserts - Displays the assert elements defined in a complex type. The test, XPath default namespace, and annotation

are presented for each assert.
• Annotations - Displays the annotations for the component. If you choose Escape XML Content, the XML tags are

present in the annotations.
• Source - Displays the text schema source for each component.
• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If checked, local elements and attributes are included in the documentation
index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema documentation
is generated. It is disabled by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported settings file
you can generate the same documentation from the command line interface.)

Load settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XML Schema documentation.

Related information
Customizing the PDF Output of Generated XML Schema Documentation on page 486

Output Formats for Generating XML Schema Documentation

XML Schema documentation can be generated in HTML, PDF, DocBook, or a custom format. You can choose the
format from the Schema Documentation dialog box. For the PDF and DocBook formats, the option to split the output
in multiple files is not available.

HTML Output Format

The XML Schema documentation generated in HTML format contains images corresponding to the same schema
definitions as the ones displayed by the schema diagram editor. These images are divided in clickable areas that are
linked to the definitions of the names of types or elements. The documentation of a definition includes a Used By section
with links to the other definitions that reference it. If the Escape XML Content option is unchecked, the HTML or
XHTML tags used inside the xs:documentation elements of the input XML Schema for formatting the documentation
text (for example, , <i>, <u>, , , etc.) are rendered in the generated HTML documentation.

The generated images format is PNG. The image of an XML Schema component contains the graphical representation
of that component as it is rendered in the schema diagram panel of the Oxygen XML Editor plugin XSD editor panel.

Oxygen XML Editor plugin | Editing Documents | 483

Figure 303: XML Schema Documentation Example

The generated documentation includes a table of contents. You can group the contents by namespace, location, or
component type. After the table of contents there is some information about the main, imported, included, and redefined
schemas. This information contains the schema target namespace, schema properties (attribute form default, element
form default, version), and schema location.

Figure 304: Information About a Schema

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are
grouped in the same mode. If you split the output by location, each file contains a schema description and the components
that you have chosen to include. If you split the output by namespace, each file contains information about schemas
from that namespace and the list with all included components. If you choose to split the output by component, each
file contains information about a schema component.

After the documentation is generated, you can collapse or expand details for some schema components by using the
Showing options or the Collapse or Expand buttons.

Oxygen XML Editor plugin | Editing Documents | 484

Figure 305: Showing Options

For each component included in the documentation, the section presents the component type follow by the component
name. For local elements and attributes, the name of the component is specified as parent name/component name. You
can easily go to the parent documentation by clicking the parent name.

Figure 306: Documentation for a Schema Component

If the schema contains imported or included modules, their dependencies tree is generated in the documentation.

Oxygen XML Editor plugin | Editing Documents | 485

Figure 307: Example: Generated Documentation

PDF Output Format
For the PDF output format, the documentation is generated in DocBook format and a transformation using the FOP
processor is applied to obtain the PDF file. To configure the FOP processor, see the FO Processors preferences page.

For information about customizing the PDF output, see the Customizing the PDF Output of Generated XML Schema
Documentation on page 486 topic.

DocBook Output Format
If you generate the documentation in DocBook output format, the documentation is generated as a DocBook XML file.
You can then apply a predefined transformation scenario (such as, DocBook PDF or DocBook HTML) on the output
file, or configure your own transformation scenario for it to convert it into whatever format you desire.

Custom Output Format

For the custom format, you can specify a stylesheet to transform the intermediary XML file generated in the documentation
process. You have to edit your stylesheet based on the schema xsdDocSchema.xsd from
[OXYGEN_INSTALL_DIR]/frameworks/schema_documentation. You can create a custom format starting
from one of the stylesheets used in the predefined HTML, PDF, and DocBook formats. These stylesheets are available
in [OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl.

When using a custom format you can also copy additional resources into the output folder and choose to keep the
intermediate XML files created during the documentation process.

Customizing the PDF Output of Generated XML Schema Documentation

To customize the PDF output of the generated XML Schema documentation, use the following procedure:

1. Customize the
[OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl/xsdDocDocbook.xsl
stylesheet to include the content that you want to add in the PDF output. Add the content in the XSLT template with
the match="schemaDoc" attribute between the info and xsl:apply-templates elements, as commented
in the following example:

<info>
<pubdate><xsl:value-of select="format-date(current-date(),'[Mn] [D], [Y]', 'en', (), ())"/></pubdate>

</info>
<!-- Add the XSLT template content with the match="schemaDoc" attribute here -->

<xsl:apply-templates select="schemaHierarchy"/>

Oxygen XML Editor plugin | Editing Documents | 486

Note: The content that you insert here has to be wrapped in DocBook markup. For details about working
with DocBook see the following video demonstration:
http://www.oxygenxml.com/demo/DocBook_Editing_in_Author.html.

2. Create an intermediary file that holds the content of your XML Schema documentation.

a. Go to Tools > Generate Documentation > XML Schema Documentation.
b. Select Custom for the output format and click the Options button.
c. In the Custom format options dialog box, do the following:

a. Enter the customized stylesheet in the Custom XSL field
([OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl/xsdDocDocbook.xsl).

b. Enable the Copy additional resources to the output folder option, and leave the default selection in the
Resources field.

c. Click OK.

d. When you return to the XML Schema Documentation dialog box, just press the Generate button to generate
a DocBook XML file with an intermediary form of the Schema documentation.

3. Create the final PDF document.

a. Use the Configure Transformation Scenario(s) action from the toolbar or the XML menu, click New, and
select XML transformation with XSLT.

b. In the New Scenario dialog box, go to the XSL URL field and choose the
[OXYGEN_INSTALL_DIR]/frameworks/docbook/oxygen/xsdDocDocbookCustomizationFO.xsl
file.

c. Go to the FO Processor tab and enable the Perform FO Processing and XSLT result as input options.
d. Go to the Output tab and select the directory where you want to store the XML Schema documentation output

and click OK.
e. Click Apply Associated.

Generating XML Schema Documentation From the Command-Line Interface

You can export the settings of the XML Schema Documentation dialog box to an XML file by pressing the Export
settings button. With the exported configuration file, you can generate the same documentation from the command-line
interface by running the following script:

• schemaDocumentation.bat on Windows.
• schemaDocumentation.sh on OS X / Unix / Linux.

The script is located in the Oxygen XML Editor plugin installation folder. The script can be integrated in an external
batch process launched from the command-line interface. The script accepts a variety command line arguments that
allow you to configure the documentation.

The accepted syntax and arguments are as follows:

schemaDocumentation schemaFile [[-cfg:configFile] | [[-out:outputFile]
[-format:<value>] [-xsl:<xslFile>] [-split:<value>] [-openInBrowser:<value>]] |
--help | -help | --h | -h]
schemaFile

The XML Schema file.

-cfg:configfile

The exported configuration file. It contains the output file, output format options, split method, and
some advanced options regarding the included components and components details. If an external
configuration file is specified, all other supplied arguments except for the XML Schema file will be
ignored.

-out:outputFile

Oxygen XML Editor plugin | Editing Documents | 487

http://www.oxygenxml.com/demo/DocBook_Editing_in_Author.html

The file where the generated documentation will be saved. By default, it is the name of the schema
file with an html extension.

-format:<value>

The output format type used when generating the documentation. Possible values are as follows:

• html - To generate documentation in HTML format.
• pdf - To generate documentation in PDF format.
• docbook - To generate documentation in DocBook format.
• custom - To generate documentation in a custom format.

-xsl:<xslFile>

The XSL file to be applied on the intermediate XML format. If there is no XSL file provided, the result
will be in the HTML format.

-split:<value>

The split method used when generating the documentation. Splitting is recommended for large schemas.
Possible values are as follows:

• none (default value) - To generate one single output file.
• namespace - To generate an output file for every namespace in the schema.
• component - To generate an output file for every component in the schema.
• location - To generate an output file for every schema location.

-openInBrowser:<value>

Opens the result of the transformation in a browser or system application. Possible values are true
or false (default value).

--help | -help | --h | -h

Displays the available options.

Example of the script in a Windows command line:

schemaDocumentation example.xsd -out:schemaDocumentation.html -format:custom -xsl:example.xsl
 -split:namespace

Converting Schema to Another Schema Language

The Generate/Convert Schema tool allows you to convert a DTD or Relax NG (full or compact syntax) schema or
a set of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where perfect
equivalence is not possible due to limitations of the target language, Oxygen XML Editor plugin generates an
approximation of the source schema. Oxygen XML Editor plugin uses Trang multiple format converter to perform the
actual schema conversions.

To use this tool, select the Generate/Convert Schema (Ctrl + Shift + BackSlash (Command + Shift + BackSlash
on OS X)) action from the XML Tools menu. This action opens the Generate/Convert Schema dialog box that allows
you to configure various options for conversion.

Oxygen XML Editor plugin | Editing Documents | 488

http://www.thaiopensource.com/relaxng/trang.html

Figure 308: Generate/Convert Schema Dialog Box

The Generate/Convert Schema dialog box includes the following options:

Allows you to select the language of the source schema. If the conversion is based on a set of XML files,
rather than just a single XML file, select the XML Documents option and use the file selector to add
the XML files involved in the conversion.

Input
section

Allows you to select the language of the target schema.Output
section You can choose the Encoding, the maximum Line width, and the Indent

size (in number of spaces) for one level of indentation.
Options

Specifies the path for the output file that will be generated.Output file

If you deselect this option, the dialog box will remain opened after the conversion so that you can easily
continue to convert more files.

Close dialog
when
finished

If you select XML 1.0 DTD for the input, you can click this button to access more advance options to
further fine-tune the conversion. The following advanced options are available:

Advanced
options

These options apply to the source DTD:XML 1.0
DTD Input
section

• xmlns - Specifies the default namespace, that is the namespace used for unqualified
element names.

• attlist-define - Specifies how to construct the name of the definition representing an
attribute list declaration from the name of the element. The specified value must
contain exactly one percent character. This percent character is replaced by the name
of element (after colon replacement) and the result is used as the name of the definition.

• colon-replacement - Replaces colons in element names with the specified chars when
constructing the names of definitions used to represent the element declarations and
attribute list declarations in the DTD.

• any-name - Specifies the name of the definition generated for the content of elements
declared in the DTD as having a content model of ANY.

• element-define - Specifies how to construct the name of the definition representing
an element declaration from the name of the element. The specified value must contain
exactly one percent character. This percent character is replaced by the name of element
(after colon replacement) and the result is used as the name of the definition.

Oxygen XML Editor plugin | Editing Documents | 489

• annotation-prefix - Default values are represented using an annotation attribute
prefix:defaultValue where prefix is the specified value and is bound to
http://relaxng.org/ns/compatibility/annotations/1.0 as defined
by the RELAX NG DTD Compatibility Committee Specification. By default, the
conversion engine will use a for prefix unless that conflicts with a prefix used in the
DTD.

• inline-attlist - Instructs the application not to generate definitions for attribute list
declarations, but instead move attributes declared in attribute list declarations into the
definitions generated for element declarations. This is the default behavior when the
output language is XSD.

• strict-any - Preserves the exact semantics of ANY content models by using an explicit
choice of references to all declared elements. By default, the conversion engine uses
a wildcard that allows any element

• generate-start - Specifies whether or not the conversion engine should generate a
start element. DTD's do not indicate what elements are allowed as document elements.
The conversion engine assumes that all elements that are defined but never referenced
are allowed as document elements.

• xmlns mappings table - Each row specifies the prefix used for a namespace in the
input schema.

This section is available if you select W3C XML Schema for the output.W3C XML
Schema

• disable-abstract-elements - Disables the use of abstract elements and substitution
groups in the generated XML Schema. This can also be controlled using an annotation
attribute.

Output
section

• any-process-contents - One of the values: strict, lax, skip. Specifies the value for the
processContents attribute of any elements. The default is skip (corresponding
to RELAX NG semantics) unless the input format is DTD, in which case the default
is strict (corresponding to DTD semantics).

• any-attribute-process-contents - Specifies the value for the processContents
attribute of anyAttribute elements. The default is skip (corresponding to RELAX
NG semantics).

Converting Database to XML Schema

Oxygen XML Editor plugin includes a tool that allows you to create an XML Schema from the structure of a database.

To convert a database structure to an XML Schema, use the following procedure:

1. Select the Convert DB Structure to XML Schema action from the Tools menu.

Result: The Convert DB Structure to XML Schema dialog box is opened and your current database connections
are displayed in the Connections section.

2. If the database source is not listed, click the Configure Database Sources button to open the Data Sources preferences
page where you can configure data sources and connections.

3. In the Format for generated schema section, select one of the following formats:

• Flat schema - A flat structure that resembles a tree-like view of the database without references to elements.
• Hierarchical schema - Display the table dependencies visually, in a type of tree view where dependent tables

are shown as indented child elements in the content model. Select this option if you want to configure the database
columns of the tables to be converted.

4. Click Connect.

Result: The database structure is listed in the Select database tables section according to the format you chose.

5. Select the database tables that you want to be included in the XML Schema.
6. If you selected Hierarchical schema for the format, you can configure the database columns.

Oxygen XML Editor plugin | Editing Documents | 490

Select the database column you want to configure.a.
b. In the Criterion section you can choose to convert the selected database column as an Element, Attribute, or

to be Skipped in the resulting XML Schema.
c. You can also change the name of the selected database column by changing it in the Name text field.

7. Click Generate XML Schema.

Result: The database structure is converted to an XML Schema and it is opened for viewing and editing.

Flatten an XML Schema

You can organize an XML schema linked by xs:include and xs:import statements on several levels. In some
cases, working on such a schema as if it were a single file is more convenient than working on multiple files separately.
The Flatten Schema operation allows you to flatten an entire hierarchy of XML schemas. Starting with the main XML
schema, Oxygen XML Editor plugin calculates its hierarchy by processing the xs:include and xs:import
statements.

The Flatten Schema action is available from the Refactoring submenu in the contextual menu in Text mode. The action
opens the Flatten Schema dialog box that allows you to configure the operation.

Figure 309: Flatten Schema Dialog Box

For the main schema file and for each imported schema, a new flattened schema is generated in the specified output
folder. These schemas have the same name as the original ones.

Note: If necessary, the operation renames the resulted schemas to avoid duplicated file names.

A flattened XML schema is obtained by recursively adding the components of the included schemas into the main one.
This means Oxygen XML Editor plugin replaces the xs:include, xs:redefine, and xs:override elements
with the ones coming from the included files.

Options in the Flatten Schema Dialog Box
The following options are available in the Flatten Schema dialog box:

Oxygen XML Editor plugin | Editing Documents | 491

The name of the output file.File name

The path of the output directory where the flattened schema file will be
saved.

Output directory

Opens the main flattened schema in the editing area after the operation
completes.

Open the flattened XML Schema file in
editor

Enables the imported and included schemas to be resolved through the
available XML Catalogs.

Use the XML Catalogs when collecting
the referenced XML Schemas

Note: Changing this option triggers the recalculation of the
dependencies graph for the main schema.

Specifies whether or not the imported schemas that were resolved through
an XML Catalog are also processed.

Process the imported XML Schemas
resolved through the XML Catalogs

Specifies whether or not the imported schemas are flattened.Flatten the imported XML Schema(s)

Note: For the schemas skipped by the flatten operation, no files
are created in the output folder and the corresponding import
statements remain unchanged.

Flatten Schema from the Command Line

The Flatten Schema tool can be also ran from command line by using the following command:

• flattenSchema.bat on Windows
• sh flattenSchemaMac.sh on OS X
• sh flattenSchema.sh on Unix/Linux

The command line accepts the following parameters:

• -in:inputSchemaURL - The input schema URL.
• -outDir:outputDirectory - The directory where the flattened schemas should be saved.
• -flattenImports:<boolean_value> - Controls whether or not the imported XML Schemas should be

flattened. The default value true.
• -useCatalogs:<boolean_value> - Controls if the references to other XML Schemas should be resolved

through the available XML Catalogs. The default value false.
• -flattenCatalogResolvedImports:<boolean_value> - Controls whether or not the imported schemas

that were resolved through the XML Catalogs should be flattened. The default value is true.

Note: This option is used only when -useCatalogs is set to true.

• -verbose - Provides information about the current flatten XML Schema operation.
• --help | -help | --h | -h - Prints the available parameters for the operation.

Command Line Example for Windows

flattenSchema.bat -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
-outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
-flattenCatalogResolvedImports:true -verbose

Command Line Example for OS X

sh flattenSchemaMac.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
-outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
-flattenCatalogResolvedImports:true -verbose

Oxygen XML Editor plugin | Editing Documents | 492

Command Line Example for Unix/Linux

sh flattenSchema.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
-outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
-flattenCatalogResolvedImports:true -verbose

XML Schema Regular Expressions Builder

The XML Schema regular expressions builder allows you to test regular expressions on a fragment of text as they are
applied to an XML instance document. Start the tool by selecting XML Schema Regular Expressions Builder from
the XML Tools menu.

Figure 310: XML Schema Regular Expressions Builder Dialog Box

The dialog box contains the following:

Allows you to edit the regular expression to be tested and used. Content completion is available
and presents a list with all the predefined expressions. It is triggered by pressing Ctrl + Space
(Command + Space on OS X).

Regular expressions
editor

If the edited regular expression is incorrect, an error message will be displayed here. The
message contains the description and the exact location of the error. Also, clicking the quick
navigation button () highlights the error inside the regular expression.

Error display area

You can choose from several categories of predefined expressions. The selected category
influences the displayed expressions in the Available expressions table.

Category

Oxygen XML Editor plugin | Editing Documents | 493

This table includes the available regular expressions and a short description for each of them.
The set of expressions depends on the category selected in the previous Category combo

Available expressions

box. You can add an expression in the Regular expressions editor by double-clicking the
expression row in the table. You will notice that in the case of Character categories and
Block names, the expressions are also listed in complementary format.

You can choose between two options:Evaluate expression on

• Evaluate expression on each line - The edited expression will be applied on each line
in the Test area.

• Evaluate expression on all text - The edited expression will be applied on the whole
text.

A text editor that allows you to enter a text sample for which the regular expression will be
applied. All matches of the edited regular expression will be highlighted.

Test

After editing and testing your regular expression you can insert it in the current editor. The Insert button will become
active when an editor is opened in the background and there is an expression in the Regular expressions editor.

The regular expression builder cannot be used to insert regular expressions in the Grid mode or Schema Design mode.
Accordingly, the Insert button will be disabled if the current document is edited in these modes.

Note: Some regular expressions may indefinitely block the Java Regular Expressions engine. If the execution
of the regular expression does not end in about five seconds, the application displays a dialog box that allows
you to interrupt the operation.

XML Schema 1.1

Oxygen XML Editor plugin offers full support for XML Schema 1.1, including:

• XML Documents Validation and Content Completion Based on XML Schema 1.1.
• XML Schema 1.1 Validation and Content Completion.
• Editing XML Schema 1.1 files in the Schema Design mode.
• The Flatten Schema action.
• Resource Hierarchy/Dependencies and Refactoring Actions.
• Master Files.
• Generating Documentation for XML Schema 1.1.
• Support for generating XML instances based on XML Schema.
• Support for validating XML documents with an NVDL schema that contains an XML Schema 1.1 validation step.

Note: To enable XML Schema 1.1 validation in NVDL, you need to pass the following option to the
validation engine to specify the schema version:
http://www.thaiopensource.com/validate/xsd-version (the possible values are 1.0 or
1.1.

Tip: To enable the full XPath expression in assertions and type alternatives, you need to set the
http://www.thaiopensource.com/validate/full-xpath option.

XML Schema 1.1 is a superset of XML Schema 1.0, that offers lots of new powerful capabilities.

Oxygen XML Editor plugin | Editing Documents | 494

Figure 311: XML Schema 1.1

The significant new features in XSD 1.1 are:

• Assertions - Support to define assertions against the document content using XPath 2.0 expressions (an idea borrowed
from Schematron).

• Conditional type assignment - The ability to select the type of schema an element is validated against, based on
the values of the attribute of the element.

• Open content - Content models can use the openContent element to specify content models with open content.
These content models allow elements not explicitly mentioned in the content model to appear in the document
instance. It is as if wildcards were automatically inserted at appropriate points within the content model. A default
may be set that causes all content models to be open unless specified otherwise.

To see the complete list with changes since version 1.0, go to http://www.w3.org/TR/xmlschema11-1/#ch_specs.

XML Schema 1.1 is intended to be mostly compatible with XML Schema 1.0 and to have approximately the same scope.
It also addresses bug fixes and brings improvements that are consistent with the constraints on scope and compatibility.

Note: An XML document conforming to a 1.0 schema can be validated using a 1.1 validator, but an XML
document conforming to a 1.1 schema may not validate using a 1.0 validator.

If you are constrained to use XML Schema 1.0 (for example, if you develop schemas for a server that uses an XML
Schema 1.0 validator that cannot be updated), change the default XML Schema version to 1.0. If you keep the default
XML Schema version set to 1.1, the Content Completion Assistant presents XML Schema 1.1 elements that you can
insert accidentally in an 1.0 XML Schema. So even if you make a document invalid conforming with XML Schema
1.0, the validation process does not signal any issues.

To change the default XML Schema version, open the Preferences dialog box and go to XML > XML Parser >
XML Schema.

To watch our video demonstration about the XML Schema 1.1 support, go to
http://oxygenxml.com/demo/XML_Schema_11.html.

Related information
Setting the XML Schema Version on page 495

Setting the XML Schema Version

Oxygen XML Editor plugin lets you set the version of the XML Schema you are editing either in the XML Schema
preferences page, or through the versioning attributes. If you want to use the versioning attributes, set the minVersion
and maxVersion attributes, from the http://www.w3.org/2007/XMLSchema-versioning namespace, on the schema
root element.

Note: The versioning attributes take priority over the XML Schema version defined in the preferences page.

Oxygen XML Editor plugin | Editing Documents | 495

http://www.w3.org/TR/xmlschema11-1/#ch_specs
http://oxygenxml.com/demo/XML_Schema_11.html

Table 7: Using the minVersion and maxVersion Attributes to Set the XML Schema Version

XML Schema VersionVersioning Attributes

1.0minVersion = "1.0" maxVerion = "1.1"

1.1minVersion = "1.1"

the XML Schema version defined in the XML Schema
preferences page.

minVersion = "1.0" maxVerion = greater than "1.1"

the XML Schema version defined in the XML Schema
preferences page.

Not set in the XML Schema document.

To change the XML Schema version of the current document, use the Change XML Schema version action from the
contextual menu. This is available both in the Text mode, and in the Design mode and opens the Change XML Schema
version dialog box. The following options are available:

• XML Schema 1.0 - Inserts the minVersion and maxVersion attributes on the schema element and gives them
the values "1.0" and "1.1" respectively. Also, the namespace declaration
(xmlns:vc=http://www.w3.org/2007/XMLSchema-versioning) is inserted automatically if it does not exist.

• XML Schema 1.1 - Inserts the minVersion attribute on the schema element and gives it the value "1.1". Also,
removes the maxVersion attribute if it exists and adds the versioning namespace
(xmlns:vc=http://www.w3.org/2007/XMLSchema-versioning) if it is not declared.

• Default XML Schema version - Removes the minVersion and maxVersion attributes from the schema
element. The default schema version, defined in the XML Schema preferences page, is used.

Note: The Change XML Schema version action is also available in the informative panel presented at the top
of the edited XML Schema. If you close this panel, it will no longer appear until you restore Oxygen XML
Editor plugin to its default options.

Oxygen XML Editor plugin automatically uses the version set through the versioning attributes, or the default version
if the versioning attributes are not declared, when proposing content completion elements and validating an XML
Schema. Also, the XML instance validation against an XML Schema is aware of the versioning attributes defined in
the XML Schema.

When you generate sample XML files from an XML Schema, Oxygen XML Editor plugin takes into account the
minVersion and maxVersion attributes defined in the XML Schema.

Related information
XML Schema 1.1 on page 494

Editing XQuery Documents
This section explains the features of the XQuery editor and how to use them.

XQuery Outline View

The XQuery document structure is presented in the Outline view. The outline tree presents the list of all the components
(namespaces, imports, variables, and functions) from both the edited XQuery file and its imports and it allows quick
access to components. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be
opened from the Window > Show View menu.

Oxygen XML Editor plugin | Editing Documents | 496

Figure 312: XQuery Outline View

The following actions are available in the View menu on the Outline view action bar:

Controls the synchronization between Outline view and source document. The
selection in the Outline view can be synchronized with the cursor moves or the

Selection update on cursor
move

changes performed in the XQuery editor. Selecting one of the components from
the Outline view also selects the corresponding item in the source document.

Allows you to alphabetically sort the XQuery components.Sort

Displays all collected components starting from the current file. This option is set
by default.

Show all components

Displays the components defined in the current file only.Show only local components

Allows you to group the components by location, namespace, and type. When
grouping by namespace, the main XQuery module namespace is presented first
in the Outline view.

Group by
location/namespace/type

If you know the component name, you can search it in the Outline view by typing its name in the filter text field from
the top of the view or directly on the tree structure. When you type the component name in the filter text field you can
switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch from tree
structure to the filter text field, you can use (Tab), (Shift-Tab).

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

Oxygen XML Editor plugin | Editing Documents | 497

Folding in XQuery Documents

In a large XQuery document, the instructions enclosed in the '{' and '}' characters can be collapsed so that only the
needed instructions remain in focus. The same folding features available for XML documents are also available in
XQuery documents.

Figure 313: Folding in XQuery Documents

There is available the action Go to Matching Bracket Ctrl + Shift + G on contextual menu of XQuery editor for going
to matching character when cursor is located at '{' character or '}' character. It helps for finding quickly matching character
of current folding element.

Formatting and Indenting XQuery Documents

Editing XQuery documents may lead to large chunks of content that are not easily readable by human audience. Also,
each developer may have a particular way of writing XQuery code. Oxygen XML Editor plugin assists you in maintaining

a consistent code writing style with the Format and Indent action that is available in the Document > Source menu
and also on the toolbar..

The Format and Indent action achieves this by performing the following steps:

• Manages whitespaces, by collapsing or inserting space characters where needed.
• Formats complex expressions on multiple, more readable lines by properly indenting each of them. The amount of

whitespaces that form an indent unit is controlled through one of the Indent with tabs and Indent size options from
the Format Preferences page.

Note: These operations can be performed only if your XQuery document conforms with W3C XQuery 1.0,
XQuery Update Facility 1.0, and XQuery 3.0 specifications. If the Format and Indent operation fails, the
document is left unaltered and an error message is presented in the Results view.

Generating HTML Documentation for an XQuery Document

To generate HTML documentation for an XQuery document, use the XQuery Documentation dialog box. It is opened
with the XQuery Documentation action that is available from the XML Tools > Generate Documentation menu or
from the Generate XQuery Documentation action from the contextual menu of the Navigator view.

The dialog box allows you to configure a set of parameters for the process of generating the HTML documentation.

Oxygen XML Editor plugin | Editing Documents | 498

Figure 314: XQuery Documentation Dialog Box

The following options are available:

• Input - The full path to the XQuery file must be specified in one of the two fields in this section:

• URLFile - The URL of the file in which you want to generate the documentation.
• Folder - The directory that contains the files for which you want to generate the documentation. You can also

specify the XQuery file extensions to be searched for in the specified directory.

• Default function namespace - Optional URI for the default namespace for the submitted XQuery.
• Predefined function namespaces - Optional, engine-dependent, predefined namespaces that the submitted XQuery

refers to. They allow the conversion to generate annotation information to support the presentation component
hypertext linking (only if the predefined modules have been loaded into the local xqDoc XML repository).

• Open in Browser/System Application - Select this option if you want the result to be opened in the system application
associated with that file type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

• Output - Allows you to specify where the generated documentation is saved on disk.

Editing WSDL Documents
WSDL is an XML format for describing network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and messages are described abstractly, and then
bound to a concrete network protocol and message format to define an endpoint. Related concrete endpoints are combined
into abstract endpoints (services).

Oxygen XML Editor plugin provides a special type of editor dedicated to WSDL documents. The WSDL editor offers
support for validation, a specialized Content Completion Assistant, a component oriented Outline view, searching
and refactoring operations, and support to generate documentation.

Oxygen XML Editor plugin | Editing Documents | 499

Both WSDL version 1.1 and 2.0 are supported and SOAP versions 1.1 and 1.2. That means that in the location where
a SOAP extension can be inserted the Content Completion Assistant offers elements from both SOAP 1.1 and SOAP
1.2. Validation of SOAP requests is executed first against a SOAP 1.1 schema and then against a SOAP 1.2 schema. In
addition to validation against the XSD schemas, Oxygen XML Editor plugin also checks if the WSDL file conforms
with the WSDL specification (available only for WSDL 1.1 and SOAP 1.1).

In the following example you can see how the errors are reported.

Figure 315: Validating a WSDL file

To watch our video demonstration about the WSDL editing support in Oxygen XML Editor plugin, go to
http://www.oxygenxml.com/demo/Create_New_WSDL.html.

Editing WSDL Documents in the Master Files Context

Smaller interrelated modules that define a complex WSDL structure cannot be correctly edited or validated individually,
due to their interdependency with other modules. Oxygen XML Editor plugin provides the support for defining the main
module (or modules), allowing you to edit any of the imported/included files in the context of the larger WSDL structure.

You cat set a main WSDL document either using the master files support from the Navigator view, or using a validation
scenario.

To set a main file using a validation scenario, add validation units that point to the main modules. Oxygen XML Editor
plugin warns you if the current module is not part of the dependencies graph computed for the main WSDL document.
In this case, it considers the current module as the main WSDL document.

The advantages of editing in the context of a master file include:

• Correct validation of a module in the context of a larger WSDL structure.
• Content Completion Assistant displays all components valid in the current context.
• The Outline displays the components collected from the entire WSDL structure.

Note: When you edit an XML schema document that has a WSDL document set as master, the validation
operation is performed over the master WSDL document.

To watch our video demonstration about editing WSDL documents in the master files context, go to
http://oxygenxml.com/demo/WSDL_Working_Modules.html.

Validating WSDL Documents

By default, WSDL files are validated as you type. To change this, open the Preferences dialog box , go to Editor >
Document Checking, and disable the Enable automatic validation option.

To validate a WSDL document manually, select the Validate action from the Validation toolbar drop-down
menu or the XML menu. The validation problems are highlighted directly in the editor, making it easy to locate and fix
any issues.

Oxygen XML Editor plugin | Editing Documents | 500

http://www.oxygenxml.com/demo/Create_New_WSDL.html
http://oxygenxml.com/demo/WSDL_Working_Modules.html

Content Completion Assistance in WSDL Documents

The Content Completion Assistant is a powerful feature that enhances the editing of WSDL documents. It helps you
define WSDL components by proposing context-sensitive element names. Another important capability of the Content
Completion Assistant is to propose references to the defined components when you edit attribute values. For example,
when you edit the type attribute of a binding element, the Content Completion Assistant proposes all the defined
port types. Each proposal that the Content Completion Assistant offers is accompanied by a documentation hint.

Note: XML schema specific elements and attributes are offered when the current editing context is the internal
XML schema of a WSDL document.

Figure 316: WSDL Content Completion Assistant

Note: The Content Completion Assistant collects its components starting from the master files. The master
files can be defined in the project or in the associated validation scenario. For further details about the Master
Files support go to Defining Master Files at Project Level.

Namespace prefixes in the scope of the current context are presented at the top of the content completion assistance
window to speed up the insertion into the document of prefixed elements.

Figure 317: Namespace Prefixes in the Content Completion Assistant

For the common namespaces, such as XML Schema namespace (http://www.w3.org/2001/XMLSchema) or SOAP
namespace (http://schemas.xmlsoap.org/wsdl/soap/), Oxygen XML Editor plugin provides an easy mode to declare
them by proposing a prefix for these namespaces.

WSDL Outline View

The Outline view for WSDL documents displays the list of all the components (services, bindings, port types and so
on) of the currently open WSDL document along with the components of its imports.

If you use the Master Files support, the Outline view collects the components of a WSDL document starting from the
master files of the current document.

Oxygen XML Editor plugin | Editing Documents | 501

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Figure 318: WSDL Outline View

The Outline view can display both the components of the current document and its XML structure, organized in a

tree-like fashion. You can switch between the display modes by using the Show XML structure and Show
components actions in the View menu on the Outline view action bar. The following actions are available:

The text filter of the Outline view returns only exact matches.Filter returns exact matches

Controls the synchronization between the Outline view and the current document.
The selection in the Outline view can be synchronized with the cursor moves or

Selection update on cursor
move

the changes in the WSDL editor. Selecting one of the components from the Outline
view also selects the corresponding item in the current document.

When the Show components option is selected, the following actions are available:

Displays the XML structure of the current document in a tree-like manner.Show XML structure

Sorts the components in the Outline view alphabetically.Sort

Displays all the components that were collected starting from current
document or from the main document, if it is defined.

Show all components

Displays all the components that you can reference from the current document.Show referable components

Displays the components defined in the current file only.Show only local components

Groups the WSDL components by their location.Group by location

Groups the WSDL components by their type.Group by type

Groups the WSDL components by their namespace.Group by namespace

Note: By default, all the three grouping criteria are active.

When the Show XML structure option is selected, the following actions are available:

Switches the Outline view to the components display mode.Show components

Oxygen XML Editor plugin | Editing Documents | 502

When active, the application flattens the filtered result elements to a
single level.

Flat presentation mode of the filtered
results

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

The following contextual menu actions are available in the Outline view when the Show components option is
selected in the View menu:

Opens a dialog box that allows you to edit the attributes of the currently
selected component.

Edit Attributes

Cuts the currently selected component.Cut

Copies the currently selected component.Copy

Deletes the currently selected component.Delete

Searches for the references of the currently selected component.Search references

Searches for the references of the currently selected component in the context
of a scope that you define.

Search references in

Displays the dependencies of the currently selected component.Component dependencies

Displays the hierarchy for the currently selected resource.Resource Hierarchy

Displays the dependencies of the currently selected resource.Resource Dependencies

Renames the currently selected component in the context of a scope that you
define.

Rename Component in

The following contextual menu actions are available in the Outline view when the Show XML structure option is
selected in the View menu:

Displays a list of elements that you can insert as children of the current element.Append Child

Displays a list of elements that you can insert as siblings of the current element,
before the current element.

Insert Before

Displays a list of elements that you can insert as siblings of the current element,
after the current element.

Insert After

Opens a dialog box that allows you to edit the attributes of the currently selected
component.

Edit Attributes

Comments/uncomments the currently selected element.Toggle Comment

Searches for the references of the currently selected component.Search references

Searches for the references of the currently selected component in the context
of a scope that you define.

Search references in

Displays the dependencies of the currently selected component.Component dependencies

Oxygen XML Editor plugin | Editing Documents | 503

Renames the currently selected component in the context of a scope that you
define.

Rename Component in

Cuts the currently selected component.Cut

Copies the currently selected component.Copy

Deletes the currently selected component.Delete

Expands the structure of a component in the Outline view.Expand All

Collapses the structure of all the component in the Outline view.Collapse All

To switch from the tree structure to the text filter, use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline
view, its definition is highlighted in the editing area.

WSDL Resource Hierarchy/Dependencies View in WSDL Documents

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a WSDL resource. If
the view is not displayed, it can be opened from the Window > Show View menu.

Note: The hierarchy of a WSDL resource includes the hierarchy of imported XML Schema resources. The
dependencies of an XML Schema resource present the WSDL documents that import the schema.

To view the hierarchy of a WSDL document, select the document in the project view and choose Resource Hierarchy
from the contextual menu.

Oxygen XML Editor plugin | Editing Documents | 504

Figure 319: Resource Hierarchy/Dependencies View

If you want to see the dependencies of a WSDL document, select the document in the project view and choose Resource
Dependencies from the contextual menu.

Figure 320: Resource Hierarchy/Dependencies View

Oxygen XML Editor plugin | Editing Documents | 505

The following actions are available in the Resource Hierarchy/Dependencies view:

Refreshes the Hierarchy/Dependencies structure.Refresh

Stops the hierarchy/dependencies computing.Stop

Allows you to choose a resource to compute the hierarchy structure.Show Hierarchy

Allows you to choose a resource to compute the dependencies structure.Show Dependencies

Allows you to configure a scope to compute the dependencies structure. There is
also an option for automatically using the defined scope for future operations.

Configure

Provides access to the list of previously computed dependencies. Use the Clear
history button to remove all items from this list.

History

The contextual menu contains the following actions:

Opens the resource. You can also double-click a resource in the
Hierarchy/Dependencies structure to open it.

Open

Copies the location of the resource.Copy location

Moves the selected resource.Move resource

Renames the selected resource.Rename resource

Shows the hierarchy for the selected resource.Show Resource Hierarchy

Shows the dependencies for the selected resource.Show Resource Dependencies

Adds the currently selected resource in the Master Files directory.Add to Master Files

Expands all the children of the selected resource from the
Hierarchy/Dependencies structure.

Expand All

Collapses all children of the selected resource from the
Hierarchy/Dependencies structure.

Collapse All

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special
icon .

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Related information
Search and Refactor Operations Scope on page 374

Moving/Renaming WSDL Resources
You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename
resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Enable this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move
resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the option to
introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.

Oxygen XML Editor plugin | Editing Documents | 506

• Update references of the moved resource(s) - Enable this option to update the references to the resource you are
moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is enabled, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are updated.

Component Dependencies View in WSDL Documents

The Component Dependencies view allows you to view the dependencies for a selected WSDL component. If the view
is not displayed, it can be opened from the Window > Show View menu.

To view the dependencies of an WSDL component, select the desired component in the editor and choose the Component
Dependencies action from the contextual menu. This action is available for all WSDL components (messages, port
types, operations, bindings and so on).

Note: If you search for dependencies of XML Schema elements, the Component Dependencies view presents
the references from WSDL documents.

Figure 321: Component Dependencies View

The following action are available in the toolbar of the Component Dependencies view:

Refreshes the dependencies structure.Refresh

Stops the dependencies computing.Stop

Allows you to configure a search scope to compute the dependencies structure. You
can decide to use the defined scope for future operations automatically, by checking
the corresponding check box.

Configure

Allows you to repeat a previous dependencies computation.History

The following actions are available in the contextual menu of the Component Dependencies view:

Selects the first reference of the referenced component from the current selected
component in the dependencies tree.

Go to First Reference

Displays the definition of the current selected component in the dependencies
tree.

Go to Component

Tip: If a component contains multiple references to another, a small table is displayed that contains all references.
When a recursive reference is encountered, it is marked with a special icon .

Oxygen XML Editor plugin | Editing Documents | 507

Highlight Component Occurrences in WSDL Documents

When you position your mouse cursor over a component in a WSDL document, Oxygen XML Editor plugin searches
for the component declaration and all its references and highlights them automatically.

Customizable colors are used: one for the component definition and another one for component references. Occurrences
are displayed until another component is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box and go to
Editor > Mark Occurrences. You can also trigger a search using the Search > Search Occurrences in File () action
from contextual menu. Matches are displayed in separate tabs of the Results view.

Searching and Refactoring Operations in WSDL Documents

Search Actions

The following search actions are available from the Search submenu in the contextual menu of the current editor:

• Search References - Searches all references of the item found at current cursor position in the defined scope, if
any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a
warning dialog box is displayed and you have the possibility to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files that
you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined scope
if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this,
a warning dialog box will be displayed and you have the possibility to define another search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or files
that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

The following action is available from the WSDL menu:

• Show Definition - Takes you to the location of the definition of the current item.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference
to display its definition.

Refactoring Actions

The following refactoring actions are available from the Refactoring submenu in the contextual menu of the current
editor:

• Rename Component - Allows you to rename the current component (in-place). The component and all its references
in the document are highlighted with a thin border and the changes you make to the component at the cursor position
are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key
on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by specifying
the new component name and the files to be affected by the modification. If you click the Preview button, you can
view the files to be affected by the action.

Oxygen XML Editor plugin | Editing Documents | 508

Figure 322: Rename Identity Constraint Dialog Box

Searching and Refactoring Operations Scope in WSDL Documents

The scope is a collection of documents that define the context of a search and refactor operation. To control it you can

use the Change scope operation, available in the Quick Fix action set or on the Resource Hierarchy/Dependency
View toolbar. You can restrict the scope to the current project or to one or multiple working sets. The Use only Master
Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations to the resources from
the Master Files directory. Click read more for details about the Master Files support.

Figure 323: Change Scope Dialog Box

The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu actions
allow you to add or delete files, folders, and other resources to the working set structure.

Quick Assist Support in WSDL Documents

The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component. It is

accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also, you can
invoke the quick assist menu by using the Ctrl + 1 (Meta 1 on Mac OS X) keyboard shortcuts.

Oxygen XML Editor plugin | Editing Documents | 509

Figure 324: WSDL Quick Assist Support

The quick assist support offers direct access to the following actions:

Renames the component and all its dependencies.Rename Component in

Searches the declaration of the component in a predefined scope. It is
available only when the context represents a component name reference.

Search Declarations

Searches all references of the component in a predefined scope.Search References

Searches the component dependencies in a predefined scope.Component Dependencies

Configures the scope that will be used for future search or refactor
operations.

Change Scope

Allows you to rename the current component in-place.Rename Component

Searches all occurrences of the component within the current file.Search Occurrences

Generating Documentation for WSDL Documents

You can use Oxygen XML Editor plugin to generate detailed documentation for the components of a WSDL document
in HTML format. You can select the WSDL components to include in your output and the level of details to present for
each of them. Also, the components are hyperlinked. You can also generate the documentation in a custom output format
by using a custom stylesheet.

Note: The WSDL documentation includes the XML Schema components that belong to the internal or imported
XML schemas.

To generate documentation for a WSDL document, select WSDL Documentation from the XML Tools > Generate
Documentation menu or from the Generate WSDL Documentation action from the contextual menu of the Navigator
view.

Oxygen XML Editor plugin | Editing Documents | 510

Figure 325: WSDL Documentation Dialog Box

The Input URL field of the dialog box must contain the full path to the WSDL document that you want to generate
documentation for. The WSDL document may be a local or a remote file. You can specify the path to the WSDL file
by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse
drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output. Click

the Options button to open a Custom format options dialog box where you can specify a custom stylesheet for
creating the output. There is also an option to Copy additional resources to the output folder and you can
select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate
XML files created during the documentation process by deselecting the Delete intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large WSDL
documents, choosing a different split criterion may generate smaller output files providing a faster documentation
browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output file
type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with the
xml:lang attribute set to the selected language. If you choose a primary language code (for example, en for
English), this includes all its possible variations (en-us, en-uk, etc.).

Oxygen XML Editor plugin | Editing Documents | 511

Setting Tab

When you generate documentation for a WSDL document, you can choose what components to include in the output
and the details to be included in the documentation.

Figure 326: Settings Tab of the WSDL Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following:

• Components

• Services - Specifies whether or not the generated documentation includes the WSDL services.
• Bindings - Specifies whether or not the generated documentation includes the WSDL bindings.
• Port Types - Specifies whether or not the generated documentation includes the WSDL port types.
• Messages - Specifies whether or not the generated documentation includes the WSDL messages.
• XML Schema Components - Specifies whether or not the generated documentation includes the XML Schema

components.

• Only global elements and types - Specifies whether or not the generated documentation includes only global
elements and types.

• Component Details

• Namespace - Presents the namespace information for WSDL or XML Schema components.
• Location - Presents the location information for each WSDL or XML Schema component.
• Used by - Presents the list of components that reference the current one.
• Documentation - Presents the component documentation. If you choose Escape XML Content, the XML tags

are presented in the documentation.
• Source - Presents the XML fragment that defines the current component.
• Instance - Generates a sample XML instance for the current component.

Note: This option applies to the XML Schema components only.

• XML Schema Diagram - Displays the diagram for each XML Schema component. You can choose the image
format (JPEG, PNG, SVG) to use for the diagram section.

Oxygen XML Editor plugin | Editing Documents | 512

• Diagram annotations - Specifies whether or not the annotations of the components presented in the diagram
sections are included.

• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If checked, local elements and attributes are included in the documentation
index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema documentation
is generated. It is disabled by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported settings file
you can generate the same documentation from the command-line interface.)

Load settings - Reloads the settings from the exported file.

Generate - Use this button to generate the WSDL documentation.

Generating WSDL Documentation in HTML Format

The WSDL documentation generated in HTML format is presented in a visual diagram style with various sections,
hyperlinks, and options.

Figure 327: WSDL Documentation in HTML Format

The documentation of each component is presented in a separate section. The title of the section is composed of the
component type and the component name. The component information (namespace, documentation, etc.) is presented
in a tabular form.

If you choose to split the output into multiple files, the table of contents is displayed in the left frame and is divided in
two tabs: Components and Resource Hierarchy.

The Components tab allows you to group the contents by namespace, location, or component type. The WSDL
components from each group are sorted alphabetically. The Resource Hierarchy tab displays the dependencies between
WSDL and XML Schema modules in a tree-like fashion. The root of the tree is the WSDL document that you generate
documentation for.

After the documentation is generated, you can collapse or expand details for some WSDL components by using the
Showing options or the Collapse or Expand buttons.

Oxygen XML Editor plugin | Editing Documents | 513

Figure 328: Showing Options

Generating WSDL Documentation in a Custom Format

To obtain the default HTML documentation output from a WSDL document, Oxygen XML Editor plugin uses an
intermediary XML document to which it applies an XSLT stylesheet. To create a custom output from your WSDL
document, edit the wsdlDocHtml.xsl XSLT stylesheet or create your own.

Note: The wsdlDocHtml.xsl stylesheet that is used to obtain the HTML documentation is located in the
[OXYGEN_INSTALL_DIR]/frameworks/wsdl_documentation/xsl folder.

Note: The intermediary XML document complies with the wsdlDocSchema.xsd XML Schema. This schema
is located in the [OXYGEN_INSTALL_DIR]/frameworks/wsdl_documentation folder.

Figure 329: Custom Format Options Dialog Box

When using a custom format, you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating WSDL Documentation from the Command-Line Interface

To generate documentation for a WSDL document from the command line, open the WSDL Documentation dialog
box and click Export settings. Using the exported settings file you can generate the same documentation from the
command line by running the following scripts:

• wsdlDocumentation.bat on Windows.
• wsdlDocumentation.sh on Unix / Linux.
• wsdlDocumentationMac.sh on Mac OS X.

The scripts are located in the installation folder of Oxygen XML Editor plugin. You can integrate the scripts in an
external batch process launched from the command-line interface.

WSDL SOAP Analyzer

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP, it is
easy to check if the defined SOAP messages are accepted by the remote Web Services server by using the integrated
WSDL SOAP Analyzer tool (available from the toolbar or WSDL menu).

Oxygen XML Editor plugin | Editing Documents | 514

Composing a SOAP Request

WSDL SOAP Analyzer is a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL) are
accepted by a Web Services server.

Oxygen XML Editor plugin provides two ways of testing, one for the currently edited WSDL document and another
for the remote WSDL documents that are published on a web server. To open the WSDL SOAP Analyzer tool for the
currently edited WSDL document do one of the following:

• Click the WSDL SOAP Analyzer toolbar button.

• Use the WSDL SOAP Analyzer action from the WSDL menu.
• Go to Open with > WSDL Editor in the contextual menu of the Navigator view.

Figure 330: WSDL SOAP Analyzer View

This tool contains a SOAP analyzer and sender for Web Services Description Language file types. The analyzer fields
are as follows:

• Services - The list of services defined by the WSDL file.
• Ports - The ports for the selected service.
• Operations - The list of available operations for the selected service.
• Action URL - The script that serves the operation.
• SOAP Action - Identifies the action performed by the script.
• Version - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected port.
• Request Editor - It allows you to compose the web service request. When an action is selected, Oxygen XML Editor

plugin tries to generate as much content as possible for the SOAP request. The envelope of the SOAP request has
the correct namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/envelope/ for SOAP
1.1 or http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to change a few values for
the request to be valid. The Content Completion Assistant is available for this editor and is driven by the schema
that defines the type of the current message. While selecting various operations, Oxygen XML Editor plugin remembers
the modified request for each one. You can press the Regenerate button to overwrite your modifications for the
current request with the initial generated content.

• Attachments List - You can define a list of file URLs to be attached to the request.
• Response Area - Initially it displays an auto generated server sample response so you can have an idea about how

the response looks like. After pressing the Send button, it presents the message received from the server in response
to the Web Service request. It may show also error messages. If the response message contains attachments, Oxygen
XML Editor plugin prompts you to save them, then tries to open them with the associated system application.

Oxygen XML Editor plugin | Editing Documents | 515

• Errors List - There may be situations where the WSDL file is respecting the WSDL XML Schema, but it fails to
be valid (for example, in the case of a message that is defined by means of an element that is not found in the types
section of the WSDL). In such a case, the errors are listed here. This list is presented only when there are errors.

• Send Button - Executes the request. A status dialog box is displayed when Oxygen XML Editor plugin is connecting
to the server.

The testing of a WSDL file is straight-forward: click the WSDL analysis button, then select the service, the port, and
the operation. The editor generates the skeleton for the SOAP request. You can edit the request, eventually attach files
to it and send it to the server. Watch the server response in the response area. You can find more details in the Testing
Remote WSDL Files section.

Note: SOAP requests and responses are automatically validated in the WSDL SOAP Analyzer using the XML
Schemas specified in the WSDL file.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web Service
SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs and parameters.

You can open the result of a Web Service call in an editor panel using the Open button.

Testing Remote WSDL Files

To open and test a remote WSDL file the steps are the following:

1. Go to Window > Show View > Other > Oxygen XML Editor plugin > WSDL SOAP Analyzer.

2. Press the Choose WSDL button and enter the URL of the remote WSDL file.

You enter the URL:

• by typing
• by browsing the local file system
• by browsing a remote file system
• by browsing a UDDI Registry

3. Press the OK button.
This will open the WSDL SOAP Analyzer tool. In the Saved SOAP Request tab you can open directly a previously
saved Web Service SOAP Call (WSSC) file, thus skipping the analysis phase.

UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog box (menu Tools > WSDL SOAP Analyzer) opens the UDDI
Registry Browser dialog box.

Oxygen XML Editor plugin | Editing Documents | 516

Figure 331: UDDI Registry Browser Dialog Box

The fields of the dialog box are as follows:

• URL - Type the URL of an UDDI registry or choose one from the default list.
• Keywords - Enter the string you want to be used when searching the selected UDDI registry for available Web

services.
• Rows to fetch - The maximum number of rows to be displayed in the result list.
• Search by - You can choose to search either by company or by provided service.
• Case sensitive - When checked, the search takes into account the keyword case.
• Search - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the OK button, the UDDI Registry Browser dialog box is closed and
you are returned to the WSDL File Opener dialog box.

Editing CSS Stylesheets
Oxygen XML Editor plugin includes a built-in editor for CSS stylesheets. This section presents the features of the CSS
editor and how these features should be used. The features of the CSS editor include:

• Create new CSS files and templates - You can use the built-in new file wizards to create new CSS documents or
templates.

• Open and Edit CSS files - CSS files can be opened and edited in a source editing mode.
• Validation - Presents validation errors in CSS files.
• Content completion - Offers proposals for properties and the values that are available for each property.
• Syntax highlighting - The syntax highlighting in Oxygen XML Editor plugin makes CSS files more readable.

Oxygen XML Editor plugin | Editing Documents | 517

• Shortcut to open resources - You can use Ctrl + Single-Click (Command + Single-Click on OS X) to open
imported stylesheets or other resources (such as images) in the default system application for the particular type of
resource.

Validating CSS Stylesheets

Oxygen XML Editor plugin includes a built-in CSS Validator, integrated with general validation support. This makes
the usual validation features for presenting errors also available for CSS stylesheets.

The CSS properties accepted by the validator are those included in the current CSS profile that is selected in the CSS
validation preferences. The CSS 3 with Oxygen extensions profile includes all the CSS 3 standard properties plus the
CSS extensions specific for Oxygen that can be used in Author mode. That means all Oxygen specific extensions are
accepted in a CSS stylesheet by the built-in CSS validator when this profile is selected.

Specify Custom CSS Properties
Lists the steps required for specifying custom CSS properties.

To specify custom CSS properties, follow these steps:

1. Create a file named CustomProperties.xml that has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<css_keywords

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oxygenxml.com/ns/css http://www.oxygenxml.com/ns/css/CssProperties.xsd"

xmlns="http://www.oxygenxml.com/ns/css">
<property name="custom">
<summary>Description for custom property.</summary>

<value name="customValue"/>
<value name="anotherCustomValue"/>

</property>
</css_keywords>

2. Go to your desktop and create the builtin/css-validator/ folder structure.

3. Press and hold Shift and right-click anywhere on your desktop. From the contextual menu, select Open Command
Window Here.

4. In the command line, run the jar cvf custom_props.jar builtin/ command.
The custom_props.jar file is created.

5. Go to [OXYGEN_INSTALL_DIR]/lib and create the endorsed folder. Copy the custom_props.jar file
to [OXYGEN_INSTALL_DIR]/lib/endorsed.

Content Completion in CSS Stylesheets

A Content Completion Assistant, similar to the one available for XML documents offers the CSS properties and the
values available for each property. It is activated with the Ctrl + Space (Command + Space on OS X) shortcut and is
context-sensitive when invoked for the value of a property. The Content Completion Assistant also includes code
templates that can be used to quickly insert code fragments into CSS stylesheets. The code templates that are proposed
include form controls, actions, and Author mode operations.

Figure 332: Content Completion in CSS Stylesheets

The properties and values available are dependent on the CSS Profile selected in the CSS preferences . The CSS 2.1
set of properties and property values is used for most of the profiles. However, with CSS 1 and CSS 3 specific proposal
sets are used.

Oxygen XML Editor plugin | Editing Documents | 518

The profile CSS 3 with Oxygen extensions includes all the CSS 3 standard properties plus the CSS extensions specific
for Oxygen XML Editor plugin that can be used in Author mode.

Proposals for CSS Selectors - After inserting a CSS selector, the content completion assistance will propose a list of
pseudo-elements and pseudo-classes that are available for the selected CSS profile.

Proposals for @media and @import Rules - After inserting @media or @import <url> rules, the content
completion assistance will propose a list of supported media types.

Related tasks
Specify Custom CSS Properties on page 518
Lists the steps required for specifying custom CSS properties.

CSS Outline View

The Outline view for CSS stylesheets presents the import declarations for other CSS stylesheet files and all the selectors
defined in the current CSS document. The selector entries can be presented as follows:

• In the order they appear in the document.
• Sorted by the element name used in the selector.
• Sorted by the entire selector string representation.

You can synchronize the selection in the Outline view with the cursor moves or changes you make in the stylesheet
document. When you select an entry from the Outline view, Oxygen XML Editor plugin highlights the corresponding
import or selector in the CSS editor.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Figure 333: CSS Outline View

The selectors presented in this view can be found quickly using the key search field. When you press a sequence of
character keys while the focus is in the view, the first selector that starts with that sequence is selected automatically.

Folding in CSS Stylesheets

In a large CSS stylesheet document, some styles can be collapsed so that only the styles that are needed remain in focus.
The same folding features available for XML documents are also available in CSS stylesheets.

Note: To enhance your editing experience, you can select entire blocks (parts of text delimited by brackets) by
double-clicking somewhere inside the brackets.

Oxygen XML Editor plugin | Editing Documents | 519

Formatting and Indenting CSS Stylesheets (Pretty Print)

If the edited CSS stylesheet becomes unreadable because of the bad alignment of the text lines, the format and indent
operation available for XML documents is also available for CSS stylesheets. It works in the same way as for XML
documents and is available as the same menu and toolbar action.

Minifying CSS Stylesheets

Minification (or compression) of a CSS document is the practice of removing unnecessary code without affecting the
functionality of the stylesheet.

To minify a CSS, invoke the contextual menu anywhere in the edited document and choose the Minify CSS action.
Oxygen XML Editor plugin opens a dialog box that allows you to:

• Set the location of the resulting CSS.
• Place each style rule on a new line.

After pressing OK, Oxygen XML Editor plugin performs the following actions:

• All spaces are normalized (all leading and trailing spaces are removed, while sequences of white spaces are replaced
with single space characters).

• All comments are removed.

Note: The CSS minifier relies heavily upon the W3C CSS specification. If the content of the CSS file you are
trying to minify does not conform with the specifications, an error dialog box will be displayed, listing all errors
encountered during the processing.

The resulting CSS stylesheet gains a lot in terms of execution performance, but loses in terms of readability. The source
CSS document is left unaffected.

Note: To restore the readability of a minified CSS, invoke the Format and Indent action from the XML menu,
the Source submenu from the contextual menu, or Source toolbar. However, this action will not recover any
of the deleted comments.

Editing LESS CSS Stylesheets
Oxygen XML Editor plugin provides support for stylesheets coded with the LESS dynamic stylesheet language. LESS
extends the CSS language by adding features that allow mechanisms such as variables, nesting, mixins, operators, and
functions. Oxygen XML Editor plugin offers additional LESS features that include:

• Create new LESS files and templates - You can use the built-in new file wizards to create new LESS documents
or templates.

• Open and Edit LESS files - LESS files can be opened and edited in a source editing mode.
• Validation - Presents validation errors in LESS files.
• Content completion - Offers proposals for properties and the values that are available for each property.
• Compile to CSS - Options are available to compile LESS files to CSS.
• Syntax highlighting - Oxygen XML Editor plugin supports syntax highlighting in LESS files, although there may

be some limitations in supporting all the LESS constructs.

For more information about LESS go to http://lesscss.org/.

Validating LESS Stylesheets

Oxygen XML Editor plugin includes a built-in LESS CSS Validator, integrated with general validation support. The
usual validation features for presenting errors also available for LESS stylesheets.

Oxygen XML Editor plugin provides three validation methods:

• Automatic validation as you type - marks validation errors in the document as you are editing.

Oxygen XML Editor plugin | Editing Documents | 520

http://lesscss.org/

• Validation upon request, by pressing the Validate button from the Validation toolbar drop-down menu. An
error list is presented in the message panel at the bottom of the editor.

• Validation scenarios, by selecting Configure Validation Scenario(s) from the Validation toolbar drop-down
menu. Errors are presented in the message panel at the bottom of the editor. This is useful when you need to validate
the current file as part of a larger LESS import hierarchy (for instance, you may change the URL of the file to validate
to the root of the hierarchy).

Content Completion in LESS Stylesheets

A Content Completion Assistant offers the LESS properties and the values available for each property. It is activated
with the Ctrl + Space (Command + Space on OS X) shortcut and is context-sensitive when invoked for the value of
a property in a LESS file. The Content Completion Assistant also includes code templates that can be used to quickly
insert code fragments into LESS stylesheets. The code templates that are proposed include form controls, actions, and
Author mode operations.

Figure 334: Content Completion in LESS Stylesheets

The properties and values available are dependent on the CSS Profile selected in the CSS preferences .

Compiling LESS Stylesheets to CSS

When editing LESS files, you can compile the files into CSS. Oxygen XML Editor plugin provides both manual and
automatic options to compile LESS stylesheets into CSS.

Important: The LESS processor works well only with files having the UTF-8 encoding. Thus, it is highly
recommended that you always use the utf-8 encoding when working with LESS files or the files they import
(other LESS or CSS files). You can use the following directive at the beginning of your files:

@charset "utf-8";

You have two options for compiling LESS files to CSS:

1. Use the contextual menu in a LESS file and select Compile to CSS (Ctrl + Shift + C (Command + Shift + C on
OS X)).

2. Enable the Automatically compile LESS to CSS when saving option in the settings (open the Preferences dialog
box and go to Editor > Open > Save > Save hooks). If enabled, when you save a LESS file it will automatically
be compiled to CSS (this option is disabled by default).

Important: If this option is enabled, when you save a LESS file, the CSS file that has the same name as
the LESS file is overwritten without warning. Make sure all your changes are made in the LESS file. Do not
edit the CSS file directly, as your changes might be lost.

Editing Relax NG Schemas
An XML Schema describes the structure of an XML document and is used to validate XML document instances against
it, to check that the XML instances conform to the specified requirements. If an XML instance conforms to the schema
then it is said to be valid. Otherwise, it is invalid.

Oxygen XML Editor plugin | Editing Documents | 521

Oxygen XML Editor plugin offers support for editing Relax NG schema files in the following editing modes:

• Text editing mode - Allows you to edit Relax NG schema files in a source editing mode, along with a schema design
pane with two tabs that offer a Full Model View and Logical Model View.

• Grid editing mode - Displays Relax NG schema files in a structured spreadsheet-like grid.
• Author editing mode - The visual Author mode is also available for Relax NG schema files, presenting the schema

similar to the Relax NG compact syntax. It links to imported schemas and external references. Embedded Schematron
is also supported in Relax NG schemas with XML syntax.

Editing Relax NG Schema in the Master Files Context

Smaller interrelated modules that define a complex Relax NG Schema cannot be correctly edited or validated individually,
due to their interdependency with other modules. For example, an element defined in a main schema document is not
visible when you edit an included module. Oxygen XML Editor plugin provides the support for defining the main module
(or modules), thus allowing you to edit any of the imported/included schema files in the context of the larger schema
structure.

You cat set a main Relax NG document either using the master files support from the Navigator view, or using a validation
scenario.

To set a main file using a validation scenario, add validation units that point to the main schemas. Oxygen XML Editor
plugin warns you if the current module is not part of the dependencies graph computed for the main schema. In this
case, it considers the current module as the main schema.

The advantages of editing in the context of main file include:

• Correct validation of a module in the context of a larger schema structure.
• Content Completion Assistant displays all the referable components valid in the current context. This include

components defined in modules other than the currently edited one.
• The Outline displays the components collected from the entire schema structure.

Related tasks
Creating a New Validation Scenario on page 363

Related information
XML Schema Outline View on page 192

Relax NG Schema Diagram Editor

This section explains how to use the graphical diagram editor for Relax NG schemas.

Introduction to Relax NG Schema Diagram Editor

Oxygen XML Editor plugin provides a simple, expressive, and easy-to-read schema diagram editor for Relax NG
schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG, or BMP images. It helps both schema authors in developing the schema and content authors who are using the
schema to understand it.

Oxygen XML Editor plugin is the only XML editor to provide a side by side source and diagram presentation and have
them real-time synchronized:

• The changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• Changing the selected element in the diagram selects the underlying code in the source editor.

Full Model View

When you create a new schema document or open an existing one, the editor panel is divided in two sections: one
containing the schema diagram and the second the source code. The schema diagram editor has two tabs that offer a
Full Model View and Logical Model View.

Oxygen XML Editor plugin | Editing Documents | 522

Figure 335: Relax NG Schema Editor - Full Model View

The following references can be expanded in place: patterns, includes, and external references. This expansion mechanism,
coupled with the synchronization support, makes the schema navigation easy.

All the element and attribute names are editable by double-clicking the names.

Logical Model View

The Logical Model View presents the compiled schema in the form of a single pattern. The patterns that form the
element content are defined as top level patterns with generated names. These names are generated depending of the
elements name class.

Oxygen XML Editor plugin | Editing Documents | 523

Figure 336: Logical Model View for a Relax NG Schema

Symbols Used in the Schema Diagram

The views in the schema diagram editor renders all the Relax NG schema patterns with the following intuitive symbols:

• - define pattern with the name attribute set to the value shown inside the rectangle (in this example
name).

• - define pattern with the combine attribute set to interleave and the name attribute
set to the value shown inside the rectangle (in this example attlist.person).

• - define pattern with the combine attribute set to choice and the name attribute set to
the value shown inside the rectangle (in this example attlist.person).

• - element pattern with the name attribute set to the value shown inside the rectangle (in this example
name).

• - attribute pattern with the name attribute set to the value shown inside de rectangle (in this case
note).

• - ref pattern with the name attribute set to the value shown inside the rectangle (in this case family).

• - oneOrMore pattern.

• - zeroOrMore pattern.

• - optional pattern.

Oxygen XML Editor plugin | Editing Documents | 524

• - choice pattern.

• - value pattern (for example, used inside a choice pattern).

• - group pattern.

• - A pattern from the Relax NG Annotations namespace (http://relaxng.org/ns/compatibility/annotations/1.0)
that is treated as a documentation element in a Relax NG schema.

• - text pattern.

• - empty pattern.

Actions Available in the Schema Diagram Editor

When editing Relax NG schemas in Full Model View, the contextual menu offers the following actions:

Appends a child to the selected component.Append child

Inserts a component before the selected component.Insert Before

Inserts a component after the selected component.Insert After

Edits the attributes of the selected component.Edit attributes

Removes the selected component.Remove

Depending on its state (selected/not selected), either the selected component or
all the diagram components are shown.

Show only the selected component

Depending on its state (selected/not selected), the documentation nodes are shown
or hidden.

Show Annotations

This option controls how the schema diagram is automatically expanded. If you
select it and then edit a top-level element or you make a refresh, the diagram is

Auto expand to references

expanded until it reaches referenced components. If this option is left unchecked,
only the first level of the diagram is expanded, showing the top-level elements.
For large schemas, the editor disables this option automatically.

Collapses the children of the selected view.Collapse Children

Expands the children of the selected view.Expand Children

Prints the selected view.Print Selection

Saves the current selection as JPEG, BMP, SVG or PNG image.Save as Image

Refreshes the schema diagram according to the changes in your code. They
represent changes in your imported documents or changes that are not reflected
automatically in the compiled schema).

Refresh

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

Validating Relax NG Schema Documents

By default, Relax NG schema files are validated as you type. To change this, open the Preferences dialog box , go to
Editor > Document Checking, and disable the Enable automatic validation option.

To validate a Relax NG schema document manually, select the Validate action from the Validation toolbar
drop-down menu or the XML menu. When Oxygen XML Editor plugin validates a Relax NG schema file, it expands

Oxygen XML Editor plugin | Editing Documents | 525

all the included modules so the entire schema hierarchy is validated. The validation problems are highlighted directly
in the editor, making it easy to locate and fix any issues.

Related information
Validating XML Documents Against a Schema on page 357

Relax NG Outline View

The Outline view for Relax NG schemas presents a list with the patterns that appear in the diagram in both the Full
Model View and Logical Model View cases and it allows for quick access to a component by name. By default, it is
displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window > Show View
menu.

Figure 337: Relax NG Outline View

This view has two modes, with the tree showing either the XML structure or the defined pattern (components) collected
from the current document. By default, the Outline view presents the components.

When the Show components option is selected in the View menu on the Outline view action bar, the following
option is available:

Shows the XML structure of the current document in a tree-like manner.Show XML structure

The following actions are available in the View menu on the Outline view action bar when the Show XML structure
option is selected:

The text filter of the Outline view returns only exact matches.Filter returns exact matches

Allows a synchronization between Outline view and schema diagram.
The selected view from the diagram will be also selected in the Outline
view.

Selection update on cursor move

Shows the defined pattern collected from the current document.Show components

When active, the application flattens the filtered result elements to a
single level.

Flat presentation mode of the filtered
results

Oxygen XML Editor plugin | Editing Documents | 526

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

The following contextual menu actions are also available in the Outline view when the Show XML structure option
is selected in the View menu:

Displays a list of elements that you can insert as children of the current element.Append Child

Displays a list of elements that you can insert as siblings of the current element,
before the current element.

Insert Before

Displays a list of elements that you can insert as siblings of the current element,
after the current element.

Insert After

Opens a dialog box that allows you to edit the attributes of the currently selected
component.

Edit Attributes

Comments/uncomments the currently selected element.Toggle Comment

Searches for the references of the currently selected component.Search references

Searches for the references of the currently selected component in the context
of a scope that you define.

Search references in

Displays the dependencies of the currently selected component.Component dependencies

Renames the currently selected component in the context of a scope that you
define.

Rename Component in

Cuts the currently selected component.Cut

Copies the currently selected component.Copy

Deletes the currently selected component.Delete

Expands the structure of a component in the Outline view.Expand All

Collapses the structure of all the component in the Outline view.Collapse All

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

RNG Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a schema. If the view
is not displayed, it can be opened from the Window > Show View menu.

If you want to see the hierarchy of a schema, select the desired schema in the project view and choose Resource
Hierarchy from the contextual menu.

Oxygen XML Editor plugin | Editing Documents | 527

Figure 338: Resource Hierarchy/Dependencies View - hierarchy for map.rng

If you want to see the dependencies of a schema, select the desired schema in the project view and choose Resource
Dependencies from the contextual menu.

Figure 339: Resource Hierarchy/Dependencies View - Dependencies for tblDecl.mod.rng

The following actions are available in the Resource Hierarchy/Dependencies view:

Refreshes the Hierarchy/Dependencies structure.Refresh

Stops the hierarchy/dependencies computing.Stop

Oxygen XML Editor plugin | Editing Documents | 528

Allows you to choose a resource to compute the hierarchy structure.Show Hierarchy

Allows you to choose a resource to compute the dependencies structure.Show Dependencies

Allows you to configure a scope to compute the dependencies structure. There is
also an option for automatically using the defined scope for future operations.

Configure

Provides access to the list of previously computed dependencies. Use the Clear
history button to remove all items from this list.

History

The contextual menu contains the following actions:

Opens the resource. You can also double-click a resource in the
Hierarchy/Dependencies structure to open it.

Open

Copies the location of the resource.Copy location

Moves the selected resource.Move resource

Renames the selected resource.Rename resource

Shows the hierarchy for the selected resource.Show Resource Hierarchy

Shows the dependencies for the selected resource.Show Resource Dependencies

Adds the currently selected resource in the Master Files directory.Add to Master Files

Expands all the children of the selected resource from the
Hierarchy/Dependencies structure.

Expand All

Collapses all children of the selected resource from the
Hierarchy/Dependencies structure.

Collapse All

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special
icon .

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Related information
Search and Refactor Operations Scope on page 374

Moving/Renaming RNG Resources
You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename
resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Enable this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move
resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the option to
introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Enable this option to update the references to the resource you are

moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is enabled, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are updated.

Oxygen XML Editor plugin | Editing Documents | 529

Note: Updating the references of a resource that is resolved through a catalog is not supported. Also, the update
references operation is not supported if the path to the renamed or moved resource contains entities.

Component Dependencies View for RelaxNG Schemas

The Component Dependencies view allows you to see the dependencies for a selected Relax NG component. If the
view is not displayed, it can be opened from the Window > Show View menu.

If you want to see the dependencies of a RelaxNG component, select the desired component in the editor and choose
the Component Dependencies action from the contextual menu. The action is available for all named defines.

Figure 340: Component Dependencies View - Hierarchy for xhtml.rng

In the Component Dependencies view you have several actions in the toolbar:

Refreshes the dependencies structure.Refresh

Stops the dependencies computing.Stop

Allows you to configure a search scope to compute the dependencies structure. You
can decide to use automatically the defined scope for future operations by checking
the corresponding checkbox.

Configure

Allows you to repeat a previous dependencies computation.History

The following actions are available on the contextual menu:

Selects the first reference of the referenced component from the current selected
component in the dependencies tree.

Go to First Reference

Shows the definition of the current selected component in the dependencies tree.Go to Component

Tip: If a component contains multiple references to another components, a small table is displayed that contains
all references. When a recursive reference is encountered, it is marked with a special icon .

Oxygen XML Editor plugin | Editing Documents | 530

Related information
Search and Refactor Operations Scope on page 374

Search and Refactor Operations Scope

Searching and Refactoring Actions in RNG Schemas

Search Actions

The following search actions can be applied on named defines and are available from the Search submenu in the
contextual menu of the current editor:

• Search References - Searches all references of the item found at current cursor position in the defined scope, if
any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a
warning dialog box is displayed and you have the possibility to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files that
you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined scope
if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this,
a warning dialog box will be displayed and you have the possibility to define another search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or files
that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

The following action is available from the XSL menu:

• Show Definition - Moves the cursor to the definition of the current element in the Relax NG (full syntax) schema.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference
to display its definition.

Refactoring Actions

The following refactoring actions can be applied on named defines and are available from the Refactoring submenu in
the contextual menu of the current editor:

• Rename Component - Allows you to rename the current component (in-place). The component and all its references
in the document are highlighted with a thin border and the changes you make to the component at the cursor position
are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key
on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by specifying
the new component name and the files to be affected by the modification. If you click the Preview button, you can
view the files to be affected by the action.

Oxygen XML Editor plugin | Editing Documents | 531

Figure 341: Rename Identity Constraint Dialog Box

RNG Quick Assist Support

The Quick Assist support improves the development work flow, offering fast access to the most commonly used actions
when you edit schema documents.

The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component. It is

accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also, you can
invoke the quick assist menu by using the Ctrl + 1 (Meta 1 on Mac OS X) keyboard shortcuts.

Figure 342: RNG Quick Assist Support

The quick assist support offers direct access to the following actions:

Renames the component and all its dependencies.Rename Component in

Searches the declaration of the component in a predefined scope. It is
available only when the context represents a component name reference.

Search Declarations

Searches all references of the component in a predefined scope.Search References

Searches the component dependencies in a predefined scope.Component Dependencies

Configures the scope that will be used for future search or refactor
operations.

Change Scope

Oxygen XML Editor plugin | Editing Documents | 532

Allows you to rename the current component in-place.Rename Component

Searches all occurrences of the component within the current file.Search Occurrences

Related information
Component Dependencies View on page 530

Resource Hierarchy/Dependencies View on page 527

Searching and Refactoring Actions on page 531

Search and Refactor Operations Scope on page 374

Configuring a Custom Datatype Library for a RELAX NG Schema

A RELAX NG schema can declare a custom datatype library for the values of elements found in XML document
instances. The datatype library must be developed in Java and it must implement the interface specified on the
www.thaiopensource.com website.

The jar file containing the custom library and any other dependent jar file must be added to the classpath of the application,
that is the jar files must be added to the folder [ECLIPSE-INSTALL-DIR]/lib and a line <library
name="lib/custom-library.jar"/> must be added for each jar file to the file
[ECLIPSE-INSTALL-DIR]/plugin.xml in the <runtime> element.

To load the custom library, restart the Eclipse platform.

Editing NVDL Schemas
Some complex XML documents are composed by combining elements and attributes from namespaces. Furthermore,
the schemas that define these namespaces are not even developed in the same schema language. In such cases, it is
difficult to specify in the document all the schemas that must be taken into account for validation of the XML document
or for content completion. An NVDL (Namespace Validation Definition Language) schema can be used. This schema
allows the application to combine and interleave multiple schemas of different types (W3C XML Schema, RELAX NG
schema, Schematron schema) in the same XML document.

Oxygen XML Editor plugin offers support for editing NVDL schema files in the following editing modes:

• Text editing mode - Allows you to edit NVDL schema files in a source editing mode, along with a schema design
pane with two tabs that offer a Full Model View and Logical Model View.

• Grid editing mode - Displays NVDL schema files in a structured spreadsheet-like grid.
• Author editing mode - The visual Author mode is also available for Relax NG schema files, presenting them in a

compact and easy to understand representation.

NVDL Schema Diagram

This section explains how to use the graphical diagram of a NVDL schema.

Introduction to NVDL Schema Diagram Editor

Oxygen XML Editor plugin provides a simple, expressive, and easy-to-read schema diagram editor for NVDL schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG, and BMP images. It helps both schema authors in developing the schema and content authors that are using the
schema to understand it.

Oxygen XML Editor plugin is the only XML Editor to provide a side by side source and diagram presentation and have
them real-time synchronized:

• The changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• Changing the selected element in the diagram, selects the underlying code in the source editor.

Oxygen XML Editor plugin | Editing Documents | 533

http://www.thaiopensource.com/relaxng/pluggable-datatypes.html
http://www.thaiopensource.com/relaxng/pluggable-datatypes.html

Full Model View

When you create a schema document or open an existing one, the editor panel is divided in two sections: one containing
the schema diagram and the second the source code. The diagram view has two tabbed panes offering a Full Model
View and a Logical Model View.

Figure 343: NVDL Schema Editor - Full Model View

The Full Model View renders all the NVDL elements with intuitive icons. This representation coupled with the
synchronization support makes the schema navigation easy.

Double-click any diagram component to edit its properties.

Actions Available in the Diagram Editor

The contextual menu offers the following actions:

Depending on its state (selected/not selected), either the selected component or all
the diagram components are shown.

Show only the selected
component

Depending on its state (selected/not selected), the documentation nodes are shown
or hidden.

Show Annotations

This option controls how the schema diagram is automatically expanded. For instance,
if you select it and then edit a top-level element or you trigger a diagram refresh,

Auto expand to references

the diagram will be expanded until it reaches the referenced components. If this
option is left unchecked, only the first level of the diagram is expanded, showing

Oxygen XML Editor plugin | Editing Documents | 534

the top-level elements. For large schemas, the editor disables this option
automatically.

Collapses the children of the selected view.Collapse Children

Expands the children of the selected view.Expand Children

Prints the selected view.Print Selection

Saves the current selection as image, in JPEG, BMP, SVG or PNG format.Save as Image

Refreshes the schema diagram according to the changes in your code (changes in
your imported documents or those that are not reflected automatically in the compiled
schema).

Refresh

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

NVDL Outline View

The Outline view for NVDL schemas presents a list with the named or anonymous rules that appear in the diagram and
it allows for quick access to a rule by name. By default, it is displayed on the left side of the editor. If the view is not
displayed, it can be opened from the Window > Show View menu.

Validating NVDL Schema Documents

By default, NVDL schema files are validated as you type. To change this, open the Preferences dialog box , go to
Editor > Document Checking, and disable the Enable automatic validation option.

To validate an NVDL schema document manually, select the Validate action from the Validation toolbar
drop-down menu or the XML menu. When Oxygen XML Editor plugin validates an NVDL schema file, it expands all
the included modules so the entire schema hierarchy is validated. The validation problems are highlighted directly in
the editor, making it easy to locate and fix any issues.

Related information
Validating XML Documents Against a Schema on page 357

Component Dependencies View for NVDL Schemas

The Component Dependencies view allows you to see the dependencies for a selected NVDL named mode. If the view
is not displayed, it can be opened from the Window > Show View menu.

If you want to see the dependencies of an NVDL mode, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named modes.

Figure 344: Component Dependencies View - Hierarchy for test.nvdl

Oxygen XML Editor plugin | Editing Documents | 535

In the Component Dependencies the following actions are available on the toolbar:

Refreshes the dependencies structure.Refresh

Allows you to stop the dependencies computing.Stop

Allows you to configure a search scope to compute the dependencies structure. If you
decide to set the application to use automatically the defined scope for future operations,
select the corresponding checkbox.

Configure

Repeats a previous dependencies computation.History

The following actions are available in the contextual menu:

Selects the first reference of the referenced component from the current selected
component in the dependencies tree.

Go to First Reference

Shows the definition of the current selected component in the dependencies tree.Go to Component

Tip: If a component contains multiple references to another component, a small table containing all references
is displayed. When a recursive reference is encountered it is marked with a special icon .

Searching and Refactoring Actions in NVDL Schemas

Search Actions

The following search actions can be applied on name, useMode, and startMode attributes and are available from
the Search submenu in the contextual menu of the current editor:

• Search References - Searches all references of the item found at current cursor position in the defined scope, if
any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a
warning dialog box is displayed and you have the possibility to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files that
you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined scope
if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this,
a warning dialog box will be displayed and you have the possibility to define another search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or files
that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

The following action is available from the XSL menu:

• Show Definition - Moves the cursor to its definition in the schema used by the NVDL to validate it.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference
to display its definition.

Refactoring Actions

The following refactoring actions can be applied on name, useMode, and startMode attributes and are available
from the Refactoring submenu in the contextual menu of the current editor:

• Rename Component - Allows you to rename the current component (in-place). The component and all its references
in the document are highlighted with a thin border and the changes you make to the component at the cursor position
are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key
on your keyboard.

Oxygen XML Editor plugin | Editing Documents | 536

• Rename Component in - Opens a dialog box that allows you to rename the selected component by specifying
the new component name and the files to be affected by the modification. If you click the Preview button, you can
view the files to be affected by the action.

Figure 345: Rename Identity Constraint Dialog Box

Editing JSON Documents
This section explains the features of the Oxygen XML Editor plugin JSON Editor and how to use them.

Editing JSON Documents in Text Mode

When editing JSON documents in the Text editing mode, the usual text editing actions are available, along with other
editor specific actions, including:

• Find / Replace
• Drag and Drop
• Validation
• Format and Indent (Pretty Print)

Note: You can run XPath expressions on opened JSON documents, but in Text mode the XPath results cannot
be mapped in the document. However, they can be mapped in the Grid editing mode. You can use the Grid
button at the bottom of the editor panel to switch to that editing mode.

Oxygen XML Editor plugin | Editing Documents | 537

Figure 346: JSON Editor Text Mode

Related information
Editing JSON Documents in Grid Mode on page 539

Syntax Highlight in JSON Documents

Oxygen XML Editor plugin supports Syntax Highlight for JavaScript / JSON editors and provides default configurations
for the JSON set of tokens. You can customize the foreground color, background color and the font style for each JSON
token type.

Folding in JSON

In a large JSON document, the data enclosed in the '{' and '}' characters can be collapsed so that only the needed data
remain in focus. The folding features available for XML documents are available in JSON documents.

Oxygen XML Editor plugin | Editing Documents | 538

Editing JSON Documents in Grid Mode

Figure 347: JSON Editor Grid Mode

Oxygen XML Editor plugin allows you to view and edit the JSON documents in the Grid Mode. The JSON is represented
in Grid mode as a compound layout of nested tables in which the JSON data and structure can be easily manipulated
with table-specific operations or drag and drop operations on the grid components. You can also use the following
JSON-specific contextual actions:

Useful when you want to convert a JSON value to array.Array

Inserts a value before the currently selected one.Insert value before

Inserts a value after the currently selected one.Insert value after

Appends a value as a child of the currently selected value.Append value as child

You can customize the JSON grid appearance according to your needs. For instance, you can change the font, the cell
background, foreground, or even the colors from the table header gradients. The default width of the columns can also
be changed.

Related information
Grid Editing Mode on page 164

Grid Preferences on page 73

Oxygen XML Editor plugin | Editing Documents | 539

Validating JSON Documents

Oxygen XML Editor plugin includes a built-in JSON validator (based on the free JAVA source code available on
www.json.org), integrated with the general validation support.

Related information
Presenting Validation Errors in Text Mode on page 163

Document Checking Preferences on page 103

JSON Outline View

The Outline view for JSON documents displays the list of all the components of the JSON document you are editing.
By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the Window >
Show View menu.

Figure 348: JSON Outline View

The following actions are available in the contextual menu of the JSON Outline view:

• Cut

• Copy

• Paste

• Delete

The View menu on the JSON Outline view action bar allows you to enable Selection update on cursor move. This
option controls the synchronization between the Outline view and source the document. Oxygen XML Editor plugin
synchronizes the selection in the Outline view with the cursor moves or the changes you make in the JSON editor.
Selecting one of the components from the Outline view also selects the corresponding item in the source document.

XML to JSON Converter

Oxygen XML Editor plugin includes a useful and simple tool for converting XML files to JSON. It can be found in the
XML Tools menu.

Oxygen XML Editor plugin | Editing Documents | 540

To convert an XML document to JSON, follow these steps:

1. Select the XML to JSON action from the XML Tools menu.
The XML to JSON dialog box is displayed:

Figure 349: XML to JSON Dialog Box

2. Choose or enter the Input URL of the XML document.

3. Choose the path of the Output file that will contain the conversion JSON result.

4. Check the Open in Editor option to open the JSON result of the conversion in the Oxygen XML Editor plugin JSON
Editor.

5. Click the Convert button.

The original XML document is now converted to a JSON document.

Figure 350: Example: XML to JSON Operation Result

Oxygen XML Editor plugin | Editing Documents | 541

Editing StratML Documents
Strategy Markup Language (StratML) is an XML vocabulary and schema for strategic plans. Oxygen XML Editor plugin
supports StratML Part 1 (Strategic Plan) and StratML Part 2 (Performance Plans and Reports) and provides templates
for the following documents:

• Strategic Plan (StratML Part 1)
• Performance Plan (StratML Part 2)
• Performance Report - (StratML Part 2)
• Strategic Plan - (StratML Part 2)

You can view the components of a StratML document in the Outline view. Oxygen XML Editor plugin implements a
default XML with XSLT transformation scenario for this document type, called StratML to HTML.

Editing XLIFF Documents
XLIFF (XML Localization Interchange File Format) is an XML-based format that was designed to standardize the way
multilingual data is passed between tools during a localization process. Oxygen XML Editor plugin provides the following
support for editing XLIFF documents:

XLIFF Version 1.2 and 2.0 Support:

• New file templates for XLIFF documents.
• A default CSS file (xliff.css) used for rendering XLIFF content in Author mode is stored in

[OXYGEN_INSTALL_DIR]/frameworks/xliff/css/.
• Validation and content completion support using local catalogs. The default catalog (catalog.xml) for version

1.2 is stored in [OXYGEN_INSTALL_DIR]/frameworks/xliff/xsd/1.2, and for version 2.0 in
[OXYGEN_INSTALL_DIR]/frameworks/xliff/xsd/2.0.

XLIFF Version 2.0 Enhanced Support:

• Support for validating XLIFF 2.0 documents using modules. The default modules are stored in
[OXYGEN_INSTALL_DIR]/frameworks/xliff/xsd/2.0/modules.

Editing JavaScript Documents
This section explains the features of the Oxygen XML Editor plugin JavaScript Editor and how you can use them.

JavaScript Editor Text Mode

Oxygen XML Editor plugin allows you to create and edit JavaScript files and assists you with useful features such as
syntax highlight, content completion, and outline view. To enhance your editing experience, you can select entire blocks
(parts of text delimited by brackets) by double-clicking somewhere inside the brackets.

Oxygen XML Editor plugin | Editing Documents | 542

Figure 351: JavaScript Editor Text Mode

The contextual menu of the JavaScript editor offers the following actions:

Allows you to cut fragments of text from the editing area.Cut

Allows you to copy fragments of text from the editing area.Copy

Allows you to paste fragments of text in the editing area.Paste

Allows you to comment a line or a fragment of the JavaScript document you are editing. This
option inserts a single comment for the entire fragment you want to comment.

Toggle Comment

Allows you to comment a line or a fragment of the JavaScript document you are editing. This
option inserts a comment for each line of the fragment you want to comment.

Toggle Line
Comment

Use this option to find the closing, or opening bracket, matching the bracket at the cursor
position. When you select this option, Oxygen XML Editor plugin moves the cursor to the
matching bracket, highlights its row, and decorates the initial bracket with a rectangle.

Go to Matching
Bracket

Note: A rectangle decorates the opening or closing bracket that matches the current
one, at all times.

Allows you to select one of the following actions:Source

Converts the selection content to lower case characters.To Lower Case

Converts the selection content to upper case characters.To Upper Case

Converts to upper case the first character of every selected
line.

Capitalize Lines

Joins all the rows you select to one row and normalizes
the content.

Join and Normalize Lines

Inserts a new line after the line at the cursor position.Insert new line after

Oxygen XML Editor plugin | Editing Documents | 543

Use this option to modify (in-place) all the occurrences of the selected content. When you use
this option, a thin rectangle replaces the highlights and allows you to start editing. If matches

Modify all matches

with different letter cases are found, a dialog box is displayed that allows you select whether
you want to modify only matches with the same letter case or all matches.

Allows you to select one of the following actions:Open

• Open File at Cursor - select this action to open the source of the file located at the cursor
position

• Open File at Cursor in System Application - select this action to open the source of the
file located at the cursor position with the application that the system associates with the
file

Select this option to open the Compare Files tool to compare the file you are editing with a
file you choose in the dialog box.

Compare

Validating JavaScript Files

You have the possibility to validate the JavaScript document you are editing. Oxygen XML Editor plugin uses the
Mozilla Rhino library for validation. For more information about this library, go to http://www.mozilla.org/rhino/doc.html.
The JavaScript validation process checks for errors in the syntax. Calling a function that is not defined is not treated as
an error by the validation process. The interpreter discovers this error when executing the faulted line. Oxygen XML
Editor plugin can validate a JavaScript document both on-request and automatically.

Content Completion in JavaScript Files

When you edit a JavaScript document, the Content Completion Assistant presents you a list of the elements you can
insert at the cursor position. For an enhanced assistance, JQuery methods are also presented. The following icons decorate
the elements in the content completion list of proposals depending on their type:

• - function

• - variable

• - object
• - property
• - method

Note: These icons decorate both the elements from the content completion list of proposals and from the Outline
view.

Oxygen XML Editor plugin | Editing Documents | 544

http://www.mozilla.org/rhino/doc.html

Figure 352: JavaScript Content Completion Assistant

The Content Completion Assistant collects:

• Method names from the current file and from the library files.
• Functions and variables defined in the current file.

If you edit the content of a function, the content completion list of proposals contains all the local variables defined in
the current function, or in the functions that contain the current one.

JavaScript Outline View

Oxygen XML Editor plugin present a list of all the components of the JavaScript document you are editing in the Outline
view. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened from the
Window > Show View menu.

Oxygen XML Editor plugin | Editing Documents | 545

Figure 353: JavaScript Outline View

The following icons decorate the elements in the Outline view depending on their type:

• - function

• - variable

• - object
• - property
• - method

The contextual menu of the JavaScript Outline view contains the usual Cut, Copy, Paste, and Delete actions.

From the Settings menu, you can enable the Update selection on cursor move option to synchronize the Outline
view with the editing area.

Editing XProc Scripts
An XProc script is edited as an XML document that is validated against a RELAX NG schema. If the script has an
associated transformation scenario, then the XProc engine from the scenario is invoked as validating engine. The default
engine for XProc scenarios is the Calabash engine that comes bundled with Oxygen XML Editor plugin version 18.0.

The content completion inside the element input/inline from the XProc namespace http://www.w3.org/ns/xproc
offers elements from the following schemas depending both on the port attribute and the parent of the input element.
When invoking the content completion inside the XProc element inline, the list of content completion proposals is
populated as follows:

• If the value of the port attribute is stylesheet and the xslt element is the parent of the input elements, the
Content Completion Assistant offers XSLT elements.

• If the value of the port attribute is schema and the validate-with-relax-ng element is the parent of the
input element, the Content Completion Assistant offers RELAX NG schema elements.

• If the value of the port attribute is schema and the validate-with-xml-schema element is the parent of
the input element, the Content Completion Assistant offers XML Schema schema elements.

• If the value of the port attribute is schema and the validate-with-schematron element is the parent of
the input element , the Content Completion Assistant offers either ISO Schematron elements or Schematron 1.5
schema elements.

Oxygen XML Editor plugin | Editing Documents | 546

• If the above cases do not apply, then the Content Completion Assistant offers elements from all the schemas from
the above cases.

The XProc editor assists you in writing XPath expressions by offering a Content Completion Assistant and dedicated
coloring schemes. To customize the coloring schemes, open the Preferences dialog box and go to Editor > Syntax
Highlight.

Figure 354: XProc Content Completion

Editing Schematron Schemas
Schematron is a simple and powerful Structural Schema Language for making assertions about patterns found in XML
documents. It relies almost entirely on XPath query patterns for defining rules and checks. Schematron validation rules
allow you to specify a meaningful error message. This error message is provided to you if an error is encountered during
the validation stage.

Oxygen XML Editor plugin assists you in editing Schematron documents with schema-based content completion, syntax
highlight, search and refactor actions, and dedicated icons for the Outline view. You can create a new Schematron
schema using one of the Schematron templates available in the New from Templates wizard.

Validating XML Documents Against Schematron
The Skeleton XSLT processor is used for validation and conforms with ISO Schematron or Schematron 1.5. It allows
you to validate XML documents against Schematron schemas or against combined RELAX NG / W3C XML Schema
and Schematron.

How to Specify the Query Language Binding
You can specify the query language binding to be used in the Schematron schema by doing the following:

• For embedded ISO schematron, open the Preferences dialog box , go to XML > XML Parser > Schematron, and
select it in the Embedded rules query language binding option.

• For standalone ISO Schematron, specify the version by setting the query language to be used in a queryBinding
attribute on the schema root element. For more information see the Query Language Binding section of the Schematron
specifications.

• For Schematron 1.5 (standalone and embedded), open the Preferences dialog box , go to XML > XML Parser >
Schematron, and select the version in the XPath Version option.

Oxygen XML Editor plugin | Editing Documents | 547

http://www.schematron.com/iso/P9.html#T44
http://www.schematron.com/iso/P9.html#T44

Multi-Lingual Support in Schematron Messages
You can specify the desired language for the validation messages in the Schematron Preferences page. The Schematron
validation messages can be presented in multiple languages by defining the language for each message using the
Schematron diagnostics. For more information, see the Use of Schematron for Multi-Lingual Schemas specification.

How to Customize Color Schemes in Schematron
The Schematron editor renders the XPath expressions with dedicated coloring schemes . To customize the coloring
schemes, open the Preferences dialog box and go to Editor > Syntax Highlight.

Schematron Transformation Scenario
When you create a Schematron document, Oxygen XML Editor plugin provides a built-in transformation scenario. You
can use this scenario to obtain the XSLT style-sheet corresponding to the Schematron schema. You can apply this XSLT
stylesheet to XML documents to obtain the Schematron validation results.

Editing Schematron Schema in the Master Files Context

Smaller interrelated modules that define a complex Schematron cannot be correctly edited or validated individually,
due to their interdependency with other modules. For example, a diagnostic defined in a main schema document is not
visible when you edit an included module. Oxygen XML Editor plugin provides the support for defining the main module
(or modules), thus allowing you to edit any of the imported/included schema files in the context of the larger schema
structure.

You cat set a main Schematron document either using the master files support from the Navigator view, or using a
validation scenario.

To set a main file using a validation scenario, add validation units that point to the main schemas. Oxygen XML Editor
plugin warns you if the current module is not part of the dependencies graph computed for the main schema. In this
case, it considers the current module as the main schema.

The advantages of editing in the context of main file include:

• Correct validation of a module in the context of a larger schema structure.
• Content Completion Assistant displays all the referable components valid in the current context. This include

components defined in modules other than the currently edited one.

Validating Schematron Documents

By default, a Schematron schema is validated as you type. To change this, open the Preferences dialog box , go to
Editor > Document Checking, and disable the Enable automatic validation option.

To validate a Schematron document manually, select the Validate action from the Validation toolbar drop-down
menu or the XML menu. When Oxygen XML Editor plugin validates a Schematron schema, it expands all the included
modules so the entire schema hierarchy is validated. The validation problems are highlighted directly in the editor,
making it easy to locate and fix any issues.

Oxygen XML Editor plugin offers an error management mechanism capable of pinpointing errors in XPath expressions
and in the included schema modules.

Related information
Validate an XML Document Against Schematron on page 370

Content Completion in Schematron Documents

Oxygen XML Editor plugin helps you edit a Schematron schema, offering, through the Content Completion Assistant,
items that are valid at the cursor position. When you edit the value of an attribute that refers a component, the proposed
components are collected from the entire schema hierarchy. For example, if the editing context is
phase/active/@pattern, the Content Completion Assistant proposes all the defined patterns.

Oxygen XML Editor plugin | Editing Documents | 548

http://www.schematron.com/iso/P27.html#GEN39

Note: For Schematron resources, the Content Completion Assistant collects its components starting from the
master files. The master files can be defined in the project or in the associated validation scenario. For further
details about the Master Files support go to Defining Master Files at Project Level.

If the editing context is an attribute value that is an XPath expression (such as assert/@test or report/@test),
the Content Completion Assistant offers the names of XPath functions, the XPath axes, and user-defined variables.

The Content Completion Assistant displays XSLT 1.0 functions and optionally XSLT 2.0 / 3.0 functions in the attributes
path, select, context, subject, test depending on the Schematron options that are set in Preferences pages. If the Saxon
6.5.5 namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9.6.0.7 namespace is declared in the
Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content completion also displays the XSLT
Saxon extension functions as in the following figure:

Figure 355: XSLT extension functions in Schematron schemas documents

The Content Completion Assistant also includes code templates that can be used to quickly insert code fragments into
Schematron documents.

RELAX NG/XML Schema with Embedded Schematron Rules

Schematron rules can be embedded into an XML Schema through annotations (using the appinfo element), or in any
element on any level of a RELAX NG Schema (taking into account that the RELAX NG validator ignores all elements
that are not in the RELAX NG namespace).

Oxygen XML Editor plugin accepts such documents as Schematron validation schemas and it is able to extract and use
the embedded rules. To validate an XML document with both RELAX NG schema and its embedded Schematron rules,
you need to associate the document with both schemas. For example:

<?xml-model href="percent.rng" type="application/xml"
schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="percent.rng" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/schematron"?>

The second association validates your document with Schematron rules extracted from the RELAX NG Schema.
Similarly, you can specify an XML Schema having the embedded Schematron rules.

<?xml-model href="percent.xsd" type="application/xml" schematypens="http://purl.oclc.org/dsdl/schematron"?>

Note: When you work with XML Schema or Relax NG documents that have embedded Schematron rules
Oxygen XML Editor plugin provides two built-in validation scenarios: Validate XML Schema with embedded
Schematron for XML schema , and Validate Relax NG with embedded Schematron for Relax NG. You can
use one of these scenarios to validate the embedded Schematron rules.

Oxygen XML Editor plugin | Editing Documents | 549

Schematron Outline View

The Outline view for Schematron schemas presents a list of components in a tree-like structure and it allows for quick
access to a component by name. By default, it is displayed on the left side of the editor. If the view is not displayed, it
can be opened from the Window > Show View menu.

Figure 356: Schematron Outline View

The following actions are available in the View menu on the Outline view action bar:

The text filter of the Outline view returns only exact matches.Filter returns exact matches

Controls the synchronization between Outline view and source document.
The selection in the Outline view can be synchronized with the cursor

Selection update on cursor move

moves or the changes in the editor. Selecting one of the components from
the Outline view also selects the corresponding item in the source
document.

When active, the application flattens the filtered result elements to a single
level.

Flat presentation mode of the filtered
results

Show/hide comments and processing instructions in the Outline view.Show comments and processing
instructions

Show/hide element name.Show element name

Show/hide additional text content for the displayed elements.Show text

Show/hide attribute values for the displayed elements. The displayed
attribute values can be changed from the Outline preferences panel.

Show attributes

Displays the XML Structured Outline preferences page.Configure displayed attributes

The following contextual menu actions are also available in the Outline view:

Displays a list of elements that you can insert as children of the current element.Append Child

Displays a list of elements that you can insert as siblings of the current element,
before the current element.

Insert Before

Displays a list of elements that you can insert as siblings of the current element,
after the current element.

Insert After

Opens a dialog box that allows you to edit the attributes of the currently selected
component.

Edit Attributes

Comments/uncomments the currently selected element.Toggle Comment

Oxygen XML Editor plugin | Editing Documents | 550

Cuts the currently selected component.Cut

Copies the currently selected component.Copy

Deletes the currently selected component.Delete

Expands the structure of a component in the Outline view.Expand All

Collapses the structure of all the component in the Outline view.Collapse All

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

Schematron Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a Schematron schema.
If the view is not displayed, it can be opened from the Window > Show View menu.

If you want to see the hierarchy of a schema, select the desired schema in the project view and choose Resource
Hierarchy from the contextual menu.

Figure 357: Resource Hierarchy/Dependencies View

If you want to see the dependencies of a schema, select the desired schema in the project view and choose Resource
Dependencies from the contextual menu.

Figure 358: Resource Hierarchy/Dependencies View - Dependencies for table_abstract.sch

The following actions are available in the Resource Hierarchy/Dependencies view:

Refreshes the Hierarchy/Dependencies structure.Refresh

Stops the hierarchy/dependencies computing.Stop

Allows you to choose a resource to compute the hierarchy structure.Show Hierarchy

Oxygen XML Editor plugin | Editing Documents | 551

Allows you to choose a resource to compute the dependencies structure.Show Dependencies

Allows you to configure a scope to compute the dependencies structure. There is
also an option for automatically using the defined scope for future operations.

Configure

Provides access to the list of previously computed dependencies. Use the Clear
history button to remove all items from this list.

History

The contextual menu contains the following actions:

Opens the resource. You can also double-click a resource in the
Hierarchy/Dependencies structure to open it.

Open

Copies the location of the resource.Copy location

Moves the selected resource.Move resource

Renames the selected resource.Rename resource

Shows the hierarchy for the selected resource.Show Resource Hierarchy

Shows the dependencies for the selected resource.Show Resource Dependencies

Adds the currently selected resource in the Master Files directory.Add to Master Files

Expands all the children of the selected resource from the
Hierarchy/Dependencies structure.

Expand All

Collapses all children of the selected resource from the
Hierarchy/Dependencies structure.

Collapse All

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special
icon .

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Moving/Renaming Schematron Resources
You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename
resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Enable this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move
resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the option to
introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Enable this option to update the references to the resource you are

moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is enabled, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are updated.

Highlight Component Occurrences in Schematron Documents

When you position your mouse cursor over a component in a Schematron document, Oxygen XML Editor plugin searches
for the component declaration and all its references and highlights them automatically.

Oxygen XML Editor plugin | Editing Documents | 552

Customizable colors are used: one for the component definition and another one for component references. Occurrences
are displayed until another component is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box and go to
Editor > Mark Occurrences. You can also trigger a search using the Search > Search Occurrences in File Ctrl +
Shift + U (Command + Shift + U on OS X) action from contextual menu. Matches are displayed in separate tabs of
the Results view.

Searching and Refactoring Operations in Schematron Documents

Search Actions

The following search actions can be applied on pattern, phase, or diagnostic types and are available from the
Search submenu in the contextual menu of the current editor:

• Search References - Searches all references of the item found at current cursor position in the defined scope, if
any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a
warning dialog box is displayed and you have the possibility to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files that
you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined scope
if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this,
a warning dialog box will be displayed and you have the possibility to define another search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or files
that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

Refactoring Actions

The following refactoring actions can be applied on pattern, phase, or diagnostic types and are available from
the Refactoring submenu in the contextual menu of the current editor:

• Rename Component - Allows you to rename the current component (in-place). The component and all its references
in the document are highlighted with a thin border and the changes you make to the component at the cursor position
are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key
on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by specifying
the new component name and the files to be affected by the modification. If you click the Preview button, you can
view the files to be affected by the action.

Oxygen XML Editor plugin | Editing Documents | 553

Figure 359: Rename Identity Constraint Dialog Box

Searching and Refactoring Operations Scope in Schematron Documents

The scope is a collection of documents that define the context of a search and refactor operation. To control it you can

use the Change scope operation, available in the Quick Fix action set or on the Resource Hierarchy/Dependency
View toolbar. You can restrict the scope to the current project or to one or multiple working sets. The Use only Master
Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations to the resources from
the Master Files directory. Click read more for details about the Master Files support.

Figure 360: Define Scope Dialog Box

The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu actions
allow you to add or delete files, folders, and other resources to the working set structure.

Quick Assist Support in Schematron Documents

The Quick Assist support improves the development work flow, offering fast access to the most commonly used actions
when you edit schema documents.

The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component. It is

accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also, you can
invoke the quick assist menu by using the Ctrl + 1 (Meta 1 on Mac OS X) keyboard shortcuts.

Oxygen XML Editor plugin | Editing Documents | 554

Figure 361: Schematron Quick Assist Support

The quick assist support offers direct access to the following actions:

Renames the component and all its dependencies.Rename Component in

Searches the declaration of the component in a predefined scope. It is
available only when the context represents a component name reference.

Search Declarations

Searches all references of the component in a predefined scope.Search References

Searches the component dependencies in a predefined scope.Component Dependencies

Configures the scope that will be used for future search or refactor
operations.

Change Scope

Allows you to rename the current component in-place.Rename Component

Searches all occurrences of the component within the current file.Search Occurrences

Editing Schematron Quick Fixes
Oxygen XML Editor plugin provides support for editing the Schematron Quick Fixes. You can define a library of quick
fixes by editing them directly in the current Schematron file or in a separate file. Oxygen XML Editor plugin assists
you in editing Schematron Quick Fixes with schema-based content completion, syntax highlighting, and validation as
you type.

This section includes details about the Schematron Quick Fixes feature and how to customize them.

Related information
http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html

oXygen XML Blog: Schematron Checks to Help Technical Writing

Customizing Schematron Quick Fixes

You can customize Schematron Quick Fixes by editing them directly in the current Schematron file or in a separate file.
The Schematron Quick Fixes are an extension of the Schematron language and they allow you to define fixes for
Schematron error messages. You can refer the quick fixes from the assert or report elements in the values of the
sqf:fix attributes.

Defining a Schematron Quick Fix

The basics of a Schematron Quick Fix is defined by an ID, name, description, and the operations to be executed.

• ID - Defined by the id attribute from the fix element and must be unique in the current context. It is used to refer
the quick fix from a report or assert element.

• Name - The name of the quick fix is defined by the title element.
• Description - Defined by the text in the paragraphs (p) of the description element.
• Operations - The following types of operations are supported:

Oxygen XML Editor plugin | Editing Documents | 555

http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html

<sqf:add> - To add a new node or fragment in the document.•
• <sqf:delete> - To remove a node from the document.
• <sqf:replace> - To replace a node with another node or fragment.
• <sqf:stringReplace> - To replace text content with other text or a fragment.

Figure 362: Schematron Quick Fix Components

The assertion message that generates the quick fix is added as the description of the problem to be fixed. The
title is presented as the name of the quick fix. The content of the paragraphs (p) within the description element
are presented in the tooltip message when the quick fix is selected.

Schematron Quick Fix Operations

The <sqf:add> element allows you to add a node to the instance. An anchor node is required to select the
position for the new node. The anchor node can be selected by the match attribute. Otherwise, it is selected by
the context attribute of the rule.

Add

The target attribute defines the name of the node to be added. It is required if the value of the node-type
attribute is set to anything other than "comment".

The <sqf:add> element has a position attribute and it determines the position relative to the anchor node.
The new node could be specified as the first child of the anchor node, the last child of the anchor node, before the
anchor node, or after the anchor node (first-child is the default value). If you want to add an attribute to the
anchor node, do not use the position attribute.

Note: If you insert an element and its content is empty, Oxygen XML Editor plugin will insert the
required element content.

An Example of the <sqf:add> Element:

<schema xmlns="http://purl.oclc.org/dsdl/schematron"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process" queryBinding="xslt2">
<pattern>

<rule context="head">
<assert test="title" sqf:fix="addTitle">title element is missing.</assert>
<sqf:fix id="addTitle">

<sqf:description>
<sqf:title>Insert title element.</sqf:title>

</sqf:description>
<sqf:add target="title" node-type="element">Title text</sqf:add>

</sqf:fix>
</rule>

</pattern>
</schema>

Specific Add Operations:

• Insert Element - To insert an element, use the <sqf:add> element, set the value of the node-type to
"element", and specify the element QName with the target attribute. If the element has a prefix, it must be

Oxygen XML Editor plugin | Editing Documents | 556

defined in the Schematron using a namespace declaration (<ns uri="namespace"
prefix="prefix"/>).

• Insert Attribute - To insert an attribute, use the <sqf:add> element, set the value of the node-type to
"attribute", and specify the attribute QName with the target attribute. If the attribute has a prefix, it must
be defined in the Schematron using a namespace declaration (<ns uri="namespace"
prefix="prefix"/>).

• Insert Fragment - If the node-type is not specified, the <sqf:add> element will insert an XML fragment.
The XML fragment must be well formed. You can specify the fragment in the add element or by using the
select attribute.

• Insert Comment - To insert a comment, use the <sqf:add> element and set the value of the node-type
to "comment".

• Insert Processing Instruction - To insert a processing instruction, use the <sqf:add> element, set the value
of the node-type to "pi" or "processing-instruction", and specify the name of the processing instruction in
the target attribute.

The <sqf:delete> element allows you to remove any type of node (such as elements, attributes, text,
comments, or processing instructions). To specify nodes for deletion the <sqf:delete> element can

Delete

include a match attribute that is an XPath expression (the default value is .). If the match attribute is not
included, it deletes the context node of the Schematron rule.

An Example of the <sqf:delete> Element:

<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
<pattern>

<rule context="*[@xml:lang]">
<report test="@xml:lang" sqf:fix="remove_lang">

 The attribute "xml:lang" is forbidden.</report>
<sqf:fix id="remove_lang">

<sqf:description>
<sqf:title>Remove "xml:lang" attribute</sqf:title>

</sqf:description>
<sqf:delete match="@xml:lang"/>

</sqf:fix>
</rule>

</pattern>
</schema>

The <sqf:replace> element allows you to replace nodes. Similar to the <sqf:delete> element, it can
include a match attribute. Otherwise, it replaces the context node of the rule. The <sqf:replace> element
has three tasks. It identifies the nodes to be replaced, defines the replacing nodes, and defines their content.

An Example of the <sqf:replace> Element:

<schema xmlns="http://purl.oclc.org/dsdl/schematron"
xmlns:sqf="http://www.schematron-quickfix.com/validator/process" queryBinding="xslt2">

Replace

<pattern>
<rule context="title">

<report test="exists(ph)" sqf:fix="resolvePh" role="warn">
 ph element is not allowed in title.</report>

<sqf:fix id="resolvePh">
<sqf:description>

<sqf:title>Change the ph element into text</sqf:title>
</sqf:description>
<sqf:replace match="ph">

<value-of select="."/>
</sqf:replace>

</sqf:fix>
</rule>

</pattern>
</schema>

Other Attributes for Replace Operations:

• node-type - Determines the type of the replacing node. The permitted values include:

• keep - Keeps the node type of the node to be replaced.
• element - Replaces the node with an element.
• attribute - Replaces the node with an attribute.

Oxygen XML Editor plugin | Editing Documents | 557

• pi - Replaces the node with a processing instruction.
• comment - Replaces the node with a comment.

• target - By using a QName it gives the replacing node a name. This is necessary when the value of the
node-type attribute is anything other than "comment".

• select - Allows you to choose the content of the replacing nodes. You can use XPath expressions with
the select attribute. If the select attribute is not specified then the content of the <sqf:replace>
element is used instead.

The <sqf:stringReplace> element is different from the others. It can be used to find a sub-string of
text content and replace it with nodes or other strings.

Attributes for the String Replace Operation:

String
Replace

• match - Allows you to select text nodes that contain the sub-strings you want to replace.
• select - Allows you to select the replacing fragment, in case you do not want to set it in the content

of the stringReplace element.
• regex - Matches the sub-strings using a regular expression.

Note: Regular expressions in the <sqf:stringReplace> element always has the dot
matches all flag set to "true". Therefore, the line terminator will also be matched by the regular
expression.

Attention: The context of the content within the <sqf:stringReplace> element is set to
the whole text node, rather than the current sub-string.

An Example of the <sqf:stringReplace> Element:

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"

xmlns:sqf="http://www.schematron-quickfix.com/validator/process" queryBinding="xslt2">
<sch:pattern>

<sch:rule context="text()">
<sch:report test="matches(., '[oO][xX]ygen')" sqf:fix="changeWord">The oXygen word is

 not allowed</sch:report>
<sqf:fix id="changeWord">

<sqf:description>
<sqf:title>Replace word with product</sqf:title>

</sqf:description>
<sqf:stringReplace regex="[oO][xX]ygen"><ph keyref="product"/></sqf:stringReplace>

</sqf:fix>
</sch:rule>

</sch:pattern>
</sch:schema>

Formatting and Indenting Inserted Content

The content that is inserted by the Add, Replace, or String Replace operations is automatically indented unless you
set the value of the xml:space attribute to preserve on the operation element. There are several methods available
to format the content that is inserted:

• xsl:text - You can use an xsl:text element to format the inserted content and keep the automatic indentation,
as in the following example:

<sqf:add position="last-child">
<row><xsl:text>

 </xsl:text>
<entry>First column</entry><xsl:text>

 </xsl:text>
<entry>Second column</entry><xsl:text>

 </xsl:text>
</row><xsl:text>

 </xsl:text>
</sqf:add>

Oxygen XML Editor plugin | Editing Documents | 558

• xml:space - Use the xml:space attribute and set its value to preserve to format the content and specify the
spacing between elements, as in the following example:

<sqf:add node-type="element" target="codeblock" xml:space="preserve">
 /* a long sample program */
 Do forever
 Say "Hello, World"
 End</sqf:add>

Use-When Condition

To restrict a quick fix or a specific operation to only be available if certain conditions are met, the use-when attribute
can be included in the <sqf:fix> element or any of the SQF operation elements. The condition of the use-when
attribute is an XPath expression and the fix or operation will be performed only if the condition is satisfied. In the
following example, the use-when condition is applied to the <sqf:fix> element:

<sqf:fix id="last" use-when="$colWidthSummarized - 100 lt $lastWidth" role="replace">
<sqf:description>

<sqf:title>Subtract the excessive width from the last element.</sqf:title>
</sqf:description>
<let name="delta" value="$colWidthSummarized - 100"/>
<sqf:add match="html:col[last()]" target="width" node-type="attribute">

<let name="newWidth" value="number(substring-before(@width,'%')) - $delta"/>
<value-of select="concat($newWidth,'%')"/>

</sqf:add>
</sqf:fix>

Executing Schematron Quick Fixes in Documents Other than the Current One

You can apply Schematron Quick Fixes over the nodes from referred documents (referred using XInclude or external
entities), and you can access them as nodes in your current document.

Also, you can apply the quick fixes over other documents using the doc() function in the value of the match attribute.
For example, you can add a new key in the keylist.xml file using the following operation:

<sqf:add match="doc('keylist.xml')/KeyList" target="Key" node-type="element" select="Key2">

Additional Elements Supported in the Schematron Quick Fixes

This element calls another quick fix within a quick fix. The called quick fix must be defined
globally or in the same Schematron rule as the calling quick fix. A calling quick fix adopts

<sqf:call-fix>

the activity elements of the called quick fix and should not include other activity elements.
You can also specify which parameters are sent by using the <sqf:with-param> child
element.

Allows you to group multiple quick fixes and refer them from an assert or report
element.

<sqf:group>

Is defined globally and contains global fixes and groups of fixes.<sqf:fixes>

Used to copy the selected nodes that are specified by the select attribute.<sqf:keep>

Note: In Oxygen XML Editor plugin the copied nodes cannot be manipulated by
the current or other activity elements.

Defines a parameter for a quick fix. If the parameter is defined as abstract then the type
and default value should not be specified and the fix can be called from an abstract pattern
that defines this parameter.

<sqf:param>

Allows you to specify a value that will be inserted after the user selects the quick fix. If
multiple user-entry elements are defined, Oxygen XML Editor plugin will display a
dialog box for each one, in which the user can insert values.

<sqf:user-entry>

Oxygen XML Editor plugin | Editing Documents | 559

Other SQF Notes

Note: The sqf:default-fix attribute is ignored in Oxygen XML Editor plugin.

For more details on editing Schematron Quick Fixes, go to: Schematron Quick Fix Specifications

Validating Schematron Quick Fixes

By default, Schematron Quick Fixes are validated as you edit them within the Schematron file or while editing them in
a separate file. To change this, open the Preferences dialog box , go to Editor > Document Checking, and disable
the Enable automatic validation option.

To validate Schematron Quick Fixes manually, select the Validate action from the Validation toolbar drop-down
menu or the XML menu. The validation problems are highlighted directly in the editor, making it easy to locate and fix
any issues.

Content Completion in SQF

Oxygen XML Editor plugin helps you edit Schematron Quick Fixes embedded in a Schematron document by offering
items that are valid at the cursor position in a Content Completion Assistant. When you edit the value of an attribute that
references a quick fix id, the ids are collected from the entire definition scope. For example, if the editing context is
assert/@sqf:fix, the Content Completion Assistant proposes all fixes defined locally and globally.

If the editing context is an attribute value that is an XPath expression (such as sqf:add/@match or
replace/@select), the Content Completion Assistant offers the names of XPath functions, the XPath axes, and
user-defined variables and parameters.

The Content Completion Assistant displays XSLT 1.0 functions (and optionally XSLT 2.0 / 3.0 functions) in the
attributes path, select, context, subject, and test, depending on the Schematron options that are set in Preferences pages.
If the Saxon 6.5.5 namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9.6.0.7 namespace is
declared in the Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content completion also
displays the XSLT Saxon extension functions.

Highlight Quick Fix Occurrences in SQF

When you position your mouse cursor over a quick fix id in a Schematron document, Oxygen XML Editor plugin
searches for the quick fix declaration and all its references and highlights them automatically.

Customizable colors are used: one for the quick fix definition and another one for its references. Occurrences are displayed
until another quick fix is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box and go to
Editor > Mark Occurrences. You can also trigger a search using the Search > Search Occurrences in File (Ctrl +
Shift + U (Command + Shift + U on OS X)) action from contextual menu. Matches are displayed in separate tabs of
the Results view.

Searching and Refactoring Operations in SQF

Search Actions

The following search actions can be applied on quick fix ids and are available from the Search submenu in the contextual
menu of the current editor:

• Search References - Searches all references of the item found at current cursor position in the defined scope, if
any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a
warning dialog box is displayed and you have the possibility to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files that
you specify when define a scope in the Search References dialog box.

Oxygen XML Editor plugin | Editing Documents | 560

http://schematron-quickfix.github.io/sqf/publishing-snapshots/April2015Draft/spec/SQFSpec.html

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined scope
if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this,
a warning dialog box will be displayed and you have the possibility to define another search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or files
that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

Refactoring Actions

The following refactoring actions can be applied on quick fix ids and are available from the Refactoring submenu in
the contextual menu of the current editor:

• Rename Component - Allows you to rename the current component (in-place). The component and all its references
in the document are highlighted with a thin border and the changes you make to the component at the cursor position
are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key
on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by specifying
the new component name and the files to be affected by the modification. If you click the Preview button, you can
view the files to be affected by the action.

Figure 363: Rename Identity Constraint Dialog Box

Embed Schematron Quick Fixes in Relax NG or XML Schema

Schematron Quick Fixes can be embedded into a Relax NG or XML Schema within the Schematron rules from annotations
(using the appinfo element), or in any Schematron rule of a RELAX NG Schema.

Oxygen XML Editor plugin is able to extract and use the embedded Schematron Quick Fixes. To make the Schematron
Quick Fixes available, validate the document with both the RELAX NG schema and its embedded Schematron rules.

Editing XHTML Documents
Oxygen XML Editor plugin provides support for editing XHTML files. Oxygen XML Editor plugin includes XHTML
catalogs and document templates to help you get started. You can also find a sample file in the
[OXYGEN_INSTALL_DIR]/samples/xhtml folder.

Oxygen XML Editor plugin | Editing Documents | 561

The XHTML editing features include:

• Source Editing - You can edit XHTML files in the Text editing mode (XML source editor) using all of its useful
features.

• Visual Editing - You can edit XHTML files in the visual Author editing mode using all of its authoring features.
• Validation - Easily identify errors and their location with the Oxygen XML Editor plugin XML validation features.
• Content Completion - The Content Completion Assistant displays a list of context-sensitive proposals that are

valid at the current cursor position.
• Import HTML as XHTML - Oxygen XML Editor plugin includes support for importing HTML files as an XML

document.
• Remote Editing - Oxygen XML Editor plugin has built-in support for editing documents that are stored on remote

servers through FTP, SFTP, and WebDAV protocols, allowing you to edit XHTML pages from your web server.
• Syntax Highlighting - XHTML documents with embedded CSS, JS, PHP, and JSP scripts are rendered with dedicated

coloring schemes. To customize them, open the Preferences dialog box and go to Editor > Syntax Highlight.

Related information
XHTML Document Type on page 868

Spell Checking
Oxygen XML Editor plugin includes an automatic (as-you-type) spell checking feature, as well as a manual spell checking

action to opens a Spelling dialog box that offers a variety of options. To open this dialog box, use the Check Spelling
action on the toolbar.

Figure 364: Check Spelling Dialog Box

The Spelling dialog box contains the following fields:

• Unrecognized word - Contains the word that cannot be found in the selected dictionary. The word is also highlighted
in the XML document.

• Replace with - The character string that is suggested to replace the unrecognized word.

Oxygen XML Editor plugin | Editing Documents | 562

• Guess - Displays a list of words suggested to replace the unknown word. Double-click a word to automatically insert
it in the document and resume the spell checking process.

• Default language - Allows you to select the default dictionary used by the spelling engine.
• Paragraph language - In an XML document, you can mix content written in multiple languages. To tell the spell

checker engine what language was used to write a specific section, you need to set the language code in thelang
or xml:lang attribute to that section. Oxygen XML Editor plugin automatically detects such sections and instructs
the spell checker engine to apply the appropriate dictionary.

• Replace - Replaces the currently highlighted word in the XML document, with the selected word in theReplace
with field.

• Replace All - Replaces all occurrences of the currently highlighted word in the XML document, with the selected
word in theReplace with field.

• Ignore - Ignores the first occurrence of the unrecognized word and allows you to continue checking the
document.Oxygen XML Editor plugin skips the content of the XML elements marked as ignorable.

• Ignore All - Ignores all instances of the unknown word in the current document.
• Learn - Includes the unrecognized word in the list of valid words.
• Options - Sets the configuration options of the spell checker.
• Begin at cursor position - Instructs the spell checker to begin checking the document starting from the current

cursor position.
• Close - Closes the dialog box.

Spell Checking Dictionaries

There are two spell checking engines available in Oxygen XML Editor plugin: Hunspell checker (default setting) and
Java checker. You can set the spell check engine in the Spell checking engine preferences page. The dictionaries used
by the two engines differ in format, so you need to follow specific procedures to add another dictionary to your installation
of Oxygen XML Editor plugin.

Dictionaries for the Hunspell Checker

The Hunspell spell checker is open source and has LGPL license. The format of the Hunspell spell dictionary is supported
by Mozilla, OpenOffice and the Chrome browser. Oxygen XML Editor plugin includes the following built-in dictionaries
for the Hunspell checker:

• English (US)
• English (UK)
• French
• German
• Spanish.

Each language-country variant combination has its specific dictionary. If you cannot find a Hunspell dictionary that is
already built for your language, you can build the dictionary you need. To build a dictionary from this list follow these
instructions.

Add Dictionaries for the Hunspell Checker

To add new spelling dictionaries to Oxygen XML Editor plugin, or to replace an existing one, follow these steps:

1. Download the files you need for your language dictionary.

2. The downloaded .oxt file is a zip archive. If you are creating a new dictionary, copy the .aff and .dic files
from this archive in the spell subfolder of the Oxygen XML Editor plugin preferences folder.

The Oxygen XML Editor plugin preferences folder is >, where [APPLICATION-DATA-FOLDER] is:

• C:\Users\[USER-NAME]\AppData\Roaming on Windows Vista/7/8/10
• [USER-HOME-FOLDER]/Library/Preferences on OS X
• [USER-HOME-FOLDER] on Linux

3. If you are updating an existing dictionary, copy the .aff and .dic files into the following folder:
[OXYGEN_INSTALL_DIR]/dicts/spell.

Oxygen XML Editor plugin | Editing Documents | 563

http://www.divvun.no/doc/infra/hunspell.html
http://www.divvun.no/doc/infra/hunspell.html
http://extensions.services.openoffice.org/dictionary

4. Restart the application after copying the dictionary files.

Note: You can specify that Oxygen XML Editor plugin includes dictionaries and term lists from a custom
location by selecting the Include dictionaries and term list from option and specifying its path in the
Dictionaries preferences page.

Related information
Adding Term Lists on page 564

Dictionaries for the Java Checker

A Java spell checker dictionary has the form of a .dar file located in the directory [OXYGEN_INSTALL_DIR]/dicts.
Oxygen XML Editor plugin includes the following built-in dictionaries for the Java checker:

• English (US)
• English (UK)
• English (Canada)
• French (France)
• French (Belgium)
• French (Canada)
• French (Switzerland)
• German (old orthography)
• German (new orthography)
• Spanish

A pre-built dictionary can be added by copying the corresponding .dar file to the folder
[OXYGEN_INSTALL_DIR]/dicts and restarting Oxygen XML Editor plugin. There is one dictionary for each
language-country variant combination.

Learned Words

Spell checker engines rely on dictionaries to decide that a word is spelled correctly. To instruct the spell checker engine
that an unknown word is actually correctly spelled, you need to add that word to a list of learned words. There are two
ways to do this:

• Invoke the contextual menu on an unknown word, then select Learn word.
• Press the Learn button from the Spelling dialog box.

Note: To delete items from the list of learned words, select Delete learned words in the Editor > Spell Check >
Dictionaries preferences page.

Adding Term Lists

Authoring in certain areas of expertise (for example, the pharmaceutical or automobile industries) might require the use
of specific terms that are not part of the standard spell checker dictionary. To avoid marking these terms as errors,
Oxygen XML Editor plugin provides a way of adding industry-specific terms to the spell checker engine. This involves
creating a file (term list) similar in structure to the file used by Oxygen XML Editor plugin for storing learned words.

The term list files are specific for each language and can also be specific to each domain or area of expertise (for example,
legal, medical, automotive, etc.).

To create a custom term file, follow this procedure:

1. Create a text file using one of the following naming conventions:

• <languageCode>-<name>.tdi

For example, a term file for a list of French medical terms could be named fr-medical.tdi.

• <languageCode_countryCode>-<name>.tdi

Oxygen XML Editor plugin | Editing Documents | 564

For example, a term file for a list of English legal terms can be named en_US-legal.tdi for American
English, or en_GB-legal.tdi for their British counterparts.

2. Edit the term file you just created and add the terms. Make sure that you only add one term per line.
3. Save the term file in the Oxygen XML Editor plugin default dictionary location:

• [HOME_DIR]\AppData\Roaming\com.oxygenxml\spell folder on Windows Vista/7/8/10.
• [HOME_DIR]\Application Data\com.oxygenxml\spell folder on Windows XP.
• [HOME_DIR]/Library/Preferences/com.oxygenxml/spell folder on OS X.
• [user-home-folder]/com.oxygenxml/spell folder on Linux.

Note: To change the default dictionary location folder go to the Editor > Spell Check > Dictionaries preferences
page.

Ignored Words (Elements)

The content of some XML elements such as programlisting, codeblock, or screen should always be skipped
by the spell checking process. The skipping can be done manually, word by word by the user using the Ignore button
of the Spelling dialog box, or automatically by maintaining a set of known element names that should never be checked.
You maintain this set of element names in the user preferences as a list of XPath expressions that match the elements.

Only a small subset of XPath expressions is supported, that is only the '/' and '//' separators and the '*' wildcard. Two
examples of supported expressions are /a/*/b and //c/d/*.

Automatic Spell Check

Oxygen XML Editor plugin includes an option to automatically check the spelling as you type. This feature is disabled
by default, but it can be enabled and configured in the Spell Check preferences page. When the Automatic Spell Check
option is enabled, unknown words are underlined and some actions are available in the contextual menu to help you
correct the word or prevent the word from being reported in the future.

Figure 365: Automatic Spell Checking in Author Mode

Oxygen XML Editor plugin | Editing Documents | 565

Figure 366: Automatic Spell Checking in Text Mode

The contextual menu includes the following actions:

Allows you to delete repeated words.Delete Repeated Word

A list of words suggested by the spell checking engine as possible
replacements for the unknown word.

List of Suggestions

Allows you to add the current unknown word to the persistent dictionary.Learn Word

Opens the Spell Check preferences page.Spell check options (Available in Author
mode only)

This submenu give you access to all the usual contextual menu actions.Other actions

Related information
Learned Words on page 564

Learned Words

Spell Checking in Multiple Files

The Check Spelling in Files action allows you to check the spelling on multiple local or remote documents. This
action is available in the following locations:

•
• The contextual menu of the Navigator view.
• The contextual menu of the DITA Maps Manager view.

The spelling corrections are displayed in the Results view, that allows you to group the reported errors as a tree with
two levels.

Oxygen XML Editor plugin | Editing Documents | 566

Figure 367: Check Spelling in Files Dialog Box

The following scopes are available:

• All opened files - The spell check is performed in all opened files.
• Directory of the current file - All the files in the folder of the current edited file.
• Project files - All files from the current project.
• Selected project files - The selected files from the current project.
• Specified path - Checks the spelling in the files located at a path that you specify.

The Options section includes the following options:

• File filter - Allow you to filter the files from the selected scope.
• Recurse subdirectories - When enabled, the spell check is performed recursively for the specified scope. The one

exception is that this option is ignored if the scope is set to All opened files.
• Include hidden files - When enabled, the spell check is also performed in the hidden files.
• Spell Check Options - The spell check processor uses the options available in the Spell Check preferences panel .

When you invoke the Check Spelling in Files action in the DITA Maps Manager view, a different dialog box is
displayed:

Figure 368: Check Spelling in Files Dialog Box (Invoked from the DITA Maps Manager View)

The following scopes are available:

Oxygen XML Editor plugin | Editing Documents | 567

• Current DITA Map hierarchy - All the files referenced in the currently selected DITA map, opened in the DITA
Maps Manager view

• Specified path - checks the spelling in the files located at a path that you specify

AutoCorrect Misspelled Words
Oxygen XML Editor plugin includes an AutoCorrect feature to automatically correct misspelled words, as well as to
insert certain symbols or other text, as you type in Author mode. Oxygen XML Editor plugin includes a default list of
commonly misspelled words and symbols, but you can modify the list to suit your needs. You can also choose to have
the AutoCorrect feature use suggestions from the main spell checker. The suggestions will only be used if the misspelled
words are not found in the Replacements table.

When enabled, the AutoCorrect feature can be used to do the following:

• Automatically correct misspelled words while you edit in Author mode.
• Easily insert symbols. For example, if you want to insert a ® character, you would type (R).
• Quickly insert text fragments.

AutoCorrect is enabled by default. To configure this feature, open the Preferences dialog box and go to Editor > Edit
Modes > Author > AutoCorrect.

The actual operation of replacing a word is triggered by a space, dash, or certain punctuation characters (, . ; : ? ! '
")] }). After a correction, the affected string is highlighted. The highlight is removed upon the next editing action
(text insertion or deletion). If you hover over the highlight, a small widget appears below the word. If you hover over
the widget, it expands and you can click it to present a drop-down list that includes the following options:

• Change back to "[original word]" - Reverts the correction back to its original form.
• Stop Automatically Correcting "[original word]" - This option is presented if the correction is performed based

on the AutoCorrect Replacements Table and selecting it will delete the corresponding entry from the Replacements
Table.

• Learn Word "[original word]" - This option is presented if the Use additional suggestions from the spell checker
option is enabled in the AutoCorrect preferences page and the correction is performed based on the Spell Checker.
Selecting this option will add the item to the list of learned words.

• AutoCorrect options - Opens the AutoCorrect Preferences on page 84 page that allows you to configure the feature.

Figure 369: AutoCorrect Widget

The AutoCorrect feature results in the following types of substitutions in regards to case-sensitivity:

• Words with all lower-case characters will be replaced with lower-case substitutions (for example, "abotu" is replaced
with "about").

• Words with irregular-case characters will be replaced with lower-case substitutions ("ABotU" is replaced with
"about").

• Words with all upper-case characters will be replaced with upper-case substitutions ("ABOTU" is replaced with
"ABOUT").

• Words starting with an upper-case character will be replaced with substitutions having the same pattern ("Abotu" is
replaced with "About").

The AutoCorrect feature also uses the list of ignored elements from the Spell Check preferences page. All elements
(along with their descendant elements) included in this list will be ignored by the AutoCorrect engine.

Oxygen XML Editor plugin | Editing Documents | 568

Add Dictionaries for the AutoCorrect Feature

To add new dictionaries for the AutoCorrect feature, or to replace an existing one, follow these steps:

1. Download the files you need for your language dictionary.

2. If you are creating a new dictionary, copy the downloaded .dat files to the autocorrect subfolder of the Oxygen
XML Editor plugin preferences folder.

The Oxygen XML Editor plugin preferences folder is >, where [APPLICATION-DATA-FOLDER] is:

• C:\Users\[USER-NAME]\AppData\Roaming on Windows Vista/7/8/10
• [USER-HOME-FOLDER]/Library/Preferences on OS X
• [USER-HOME-FOLDER] on Linux

3. If you are updating an existing dictionary, copy the .dat file to the following folder:
[OXYGEN_INSTALL_DIR]/dicts/autocorrect.

4. Restart the application after copying the dictionary files.

Note: You can setup Oxygen XML Editor plugin to use dictionaries from a custom location configured in
the Dictionaries preferences page.

Handling Read-Only Files
The default workbench behavior applies when editing read-only files in the Text mode. For all other modes no modification
is allowed provided that the file remains read-only.

You can check out the read-only state of the file by looking in the Properties view. If you modify the file properties
from the operating system and the file becomes writable, you can modify it on the spot without having to reopen it.

XML Digital Signatures
This chapter explains how to apply and verify digital signatures on XML documents.

Digital Signatures Overview

Digital signatures are widely used as security tokens, not just in XML. A digital signature provides a mechanism for
assuring integrity of data, the authentication of its signer, and the non-repudiation of the entire signature to an external
party:

• A digital signature must provide a way to verify that the data has not been modified or replaced to ensure integrity.
• The signature must provide a way to establish the identity of the data's signer for authentication.
• The signature must provide the ability for the data's integrity and authentication to be provable to a third party for

non-repudiation.

A public key system is used to create the digital signature and it's also used for verification. The signature binds the
signer to the document because digitally signing a document requires the originator to create a hash of the message and
then encrypt that hash value with their own private key. Only the originator has that private key and that person is the
only one who can encrypt the hash so that it can be unencrypted using their public key. The recipient, upon receiving
both the message and the encrypted hash value, can decrypt the hash value, knowing the originator's public key. The
recipient must also try to generate the hash value of the message and compare the newly generated hash value with the
unencrypted hash value received from the originator. If the hash values are identical, it proves that the originator created
the message, because only the actual originator could encrypt the hash value correctly.

XML Signatures can be applied to any digital content (data object), including XML (see W3C Recommendation,
XML-Signature Syntax and Processing). An XML Signature may be applied to the content of one or more resources:

• Enveloped or enveloping signatures are applied over data within the same XML document as the signature

Oxygen XML Editor plugin | Editing Documents | 569

http://extensions.openoffice.org/en/search?query=autocorrect&sort_by=field_project_stats_year&sort_order=DESC
http://www.w3.org/TR/xmldsig-core/

• Detached signatures are applied over data external to the signature element; the signature is "detached" from the
content it signs. This definition typically applies to separate data objects, but it also includes the instance where the
signature and data object reside within the same XML document but are sibling elements.

The XML Signature is a method of associating a key with referenced data. It does not normatively specify how keys
are associated with persons or institutions, nor the meaning of the data being referenced and signed.

The original data is not actually signed. Instead, the signature is applied to the output of a chain of canonicalization and
transformation algorithms, which are applied to the data in a designated sequence. This system provides the flexibility
to accommodate whatever "normalization" or desired preprocessing of the data that might be required or desired before
subjecting it to being signed.

To canonicalize something means to put it in a standard format that everyone generally uses. Since the signature is
dependent on the content it is signing, a signature produced from a non-canonicalized document could possibly be
different from one produced from a canonicalized document. The canonical form of an XML document is physical
representation of the document produced by the method described in this specification. The term canonical XML refers
to XML that is in canonical form. The XML canonicalization method is the algorithm defined by this specification that
generates the canonical form of a given XML document or document subset. The term XML canonicalization refers to
the process of applying the XML canonicalization method to an XML document or document subset. XML
canonicalization is designed to be useful for applications that require the ability to test whether or not the information
content of a document or document subset has been changed. This is done by comparing the canonical form of the
original document before application processing with the canonical form of the document result of the application
processing.

A digital signature over the canonical form of an XML document or document subset would allows the signature digest
calculations to be oblivious to changes in the original document's physical representation. During signature generation,
the digest is computed over the canonical form of the document. The document is then transferred to the relying party,
which validates the signature by reading the document and computing a digest of the canonical form of the received
document. The equivalence of the digests computed by the signing and relying parties (hence, the equivalence of the
canonical forms for which they were computed) ensures that the information content of the document has not been
altered since it was signed.

The following canonicalization algorithms are used in Oxygen XML Editor plugin: Canonical XML (or Inclusive XML
Canonicalization)(XMLC14N) and Exclusive XML Canonicalization(EXCC14N). The first is used for XML where the
context doesn't change while the second was designed for canonicalization where the context might change.

Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of the signature, and
all the declarations you might use will be unambiguously specified. Inclusive Canonicalization is useful when it is less
likely that the signed data will be inserted in other XML document and it is the safer method from the security perspective
because it requires no knowledge of the data that are to be secured to safely sign them. A problem may occur if the
signed document is moved into another XML document that has other declarations because the Inclusive Canonicalization
will copy them and the signature will be invalid.

Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part of the XML
syntax). It does not look into attribute values or element content, so the namespace declarations required to process these
are not copied. This is useful if you have a signed XML document that you want to insert into other XML documents
(or you need self-signed structures that support placement within various XML contexts), as it will ensure the signature
is verified correctly each time.

The canonicalization method can specify whether or not comments should be included in the canonical form output by
the XML canonicalization method. If a canonical form contains comments corresponding to the comment nodes in the
input node-set, the result is called canonical XML with comments. In an uncommented canonical form comments are
removed, including delimiter for comments outside document element.

The three operations. Canonicalize, Sign, and Verify Signature, are available from the Source submenu when invoking
the contextual menu in Text mode or from the XML Tools menu.

Related tasks
Example of How to Digitally Sign XML Files or Content on page 574

Related information
Certificates on page 571

Oxygen XML Editor plugin | Editing Documents | 570

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Canonicalizing Files on page 571

Signing Files on page 572

Verifying Signature on page 574

Certificates

A certificate is a digitally signed statement from the issuer (an individual, an organization, a website or a firm), saying
that the public key (and some other information) of some other entity has a particular value. When data is digitally
signed, the signature can be verified to check the data integrity and authenticity. Integrity means that the data has not
been modified. Authenticity means the data comes indeed from the entity that claims to have created and signed it.
Certificates are kept in special repositories called keystores.

A keystore is an encrypted file that contains private keys and certificates. All keystore entries (key and trusted certificate
entries) are accessed via unique aliases. An alias must be assigned for every new entry of either a key or certificate as
a reference for that entity. No keystore can store an entity if its alias already exists in that keystore and cannot store
trusted certificates generated with keys in its keystore.

In Oxygen XML Editor plugin there are provided two types of keystores: Java Key Store (JKS) and Public-Key
Cryptography Standards version 12 (PKCS-12). A keystore file is protected by a password. In a PKCS 12 keystore you
should not store a certificate without alias together with other certificates, with or without alias, as in such a case the
certificate without alias cannot be extracted from the keystore.

To configure the options for a certificate or to validate it, open the Preferences dialog box and go to XML > XML
Signing Certificates. This opens the certificates preferences page.

Related information
Digital Signatures Overview on page 569

Canonicalizing Files

You can select the canonicalization algorithm to be used for a document from the dialog box that is displayed by using
the Canonicalize action that is available from the Source submenu when invoking the contextual menu in Text mode
or from the XML Tools menu.

Figure 370: Canonicalization Settings Dialog Box

The Canonicalize dialog box allows you to set the following options:

Oxygen XML Editor plugin | Editing Documents | 571

• Input URL - Available if the Canonicalize action was selected from the XML Tools menu. It allows you to specify
the location of the input file.

• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part
of the XML syntax). It does not look into attribute values or element content, so the namespace declarations
required to process these are not copied. This is useful if you have a signed XML document that you want
to insert into other XML documents (or you need self-signed structures that support placement within various
XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope
of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security perspective because it requires no knowledge of the data that are
to be secured to safely sign them. A problem may occur if the signed document is moved into another XML
document that has other declarations because the Inclusive Canonicalization will copy them and the signature
will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• Output - Available if the Canonicalize action was selected from the XML Tools menu. It allows you to specify the

output file path where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in the editor.

Related information
Digital Signatures Overview on page 569

Signing Files

You can select the type of signature to be used for documents from a signature settings dialog box. To open this dialog
box, select the Sign action from the Source submenu when invoking the contextual menu in Text mode or from the
XML Tools menu.

Oxygen XML Editor plugin | Editing Documents | 572

Figure 371: Signature Settings Dialog Box

The following options are available:

Note: If Oxygen XML Editor plugin could not find a valid certificate, a link is provided at the top of the dialog
box that opens the XML Signing Certificates preferences page where you can configure a valid certificate.

• Input - Available if the Sign action was selected from the XML Tools menu. Specifies the location of the input
URL.

• Transformation Options - See the Digital Signature Overview section for more information about these options.

• None - If selected, no canonicalization algorithm is used.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are
a part of the XML syntax). It does not look into attribute values or element content, so the namespace
declarations required to process these are not copied. This is useful if you have a signed XML document
that you want to insert into other XML documents (or you need self-signed structures that support
placement within various XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope
of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security perspective because it requires no knowledge of the data that
are to be secured to safely sign them. A problem may occur if the signed document is moved into another

Oxygen XML Editor plugin | Editing Documents | 573

XML document that has other declarations because the Inclusive Canonicalization will copy them and
the signature will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.

• XPath - The XPath expression provides the fragments of the XML document to be signed.
• ID - Provides ID of the XML element to be signed.
• Envelope - If selected, the enveloped signature is used. See the Digital Signature Overview for more information.
• Detached - If selected, the detached signature is used. See the Digital Signature Overview for more information.
• Append KeyInfo - If this option is checked, the ds:KeyInfo element will be added in the signed document.
• Signature algorithm - The algorithm used for signing the document. The following options are available: RSA

with SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
• Output - Available if the Sign action was selected from the XML Tools menu. Specifies the path of the output file

where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in Oxygen XML Editor plugin.

Related tasks
Example of How to Digitally Sign XML Files or Content on page 574

Related information
Digital Signatures Overview on page 569

Verifying Signature on page 574

Verifying Signature

You can verify the signature of a file by selecting the Verify Signature action from the Source submenu when invoking
the contextual menu in Text mode or from the XML Tools menu. The Verify Signature dialog box then allows you to
specify the location of the file whose signature is verified.

If the signature is valid, a dialog box displays the name of the signer. Otherwise, an error shows details about the problem.

Related tasks
Example of How to Digitally Sign XML Files or Content on page 574

Related information
Digital Signatures Overview on page 569

Signing Files on page 572

Example of How to Digitally Sign XML Files or Content

Suppose you want to digitally sign an XML document, but more specifically, suppose you have multiple instances of
the same element in the document and you just want to sign a specific ID. Oxygen XML Editor plugin includes a signature
tool that allows you to digitally sign XML documents or specific content.

The Oxygen XML Editor plugin installation directory includes a samples folder that contains a file called
personal.xml. For the purposes of this example, this file will be used to demonstrate how to digitally sign specific
content. Notice that this file has multiple person elements inside the personnel element. Suppose you want to
digitally sign the specific person element that contains the id=robert.taylor. To do this, follow this procedure:

1. Open the personal.xml file in Oxygen XML Editor plugin in Text editing mode.

2. Right-click anywhere in the editor and select the Sign action from the Source submenu.
The Sign dialog box is displayed.

Tip: If you want to sign a file but create a new output file so that the original file remains unchanged, use
the Sign action from the XML Tools menu. Selecting the action from this menu will allow you to choose
an input file and output file in the Sign dialog box.

Oxygen XML Editor plugin | Editing Documents | 574

3. If Oxygen XML Editor plugin cannot find a valid certificate, click the link at the top of the dialog box to configure
a valid certificate. This opens the XML Signing Certificates preferences page that allows you to configure and
validate a certificate.

4. Once a valid certificate is recognized, continue to configure the Sign dialog box.

a) Select one of the Transformation Options. For the purposes of this example, select the Inclusive with comments
option.

b) Specify the appropriate XPath expression for the specific element that needs to be signed. For this example, type
/personnel/person in the XPath text box.

c) Enter the specific ID that needs to be signed. For this example, type robert.taylor in the ID field.
d) Select the Envelope option and leave the other options as their default values.

The digital signature is added at the end of the XML document, just before the end tag. It is always added at the end
of the document, even if you only sign specific content within the document.

5. You can verify the signature by choosing the Verify Signature action from the Source submenu of the contextual
menu.

Related information
Digital Signatures Overview on page 569

Signing Files on page 572

Verifying Signature on page 574

Oxygen XML Editor plugin | Editing Documents | 575

Chapter

8

Transforming Documents

This chapter presents the various transformation scenarios and outputs available
in Oxygen XML Editor plugin.

Topics:

• Transformation Scenarios
XML documents can be transformed into a variety of user-friendly output formats
that can be viewed by other users. This process is known as a transformation.

• WebHelp System Output

Oxygen XML Editor plugin allows you to use transformation scenarios to publish
XML content in various output formats (such as WebHelp, PDF, CHM, EPUB,
JavaHelp, Eclipse Help, XHTML, etc.)

For transformations that are not included in your installed version of Oxygen
XML Editor plugin, simply install the tool chain required to perform the specific
transformation and process the files in accordance with the processor instructions.
A multitude of target formats are possible. The basic condition for transformation
to any format is that your source document is well-formed.

Note: You need to use the appropriate stylesheet according to the source
definition and the desired output. For example, if you want to transform
into an HTML format using a DocBook stylesheet, your source XML
document should conform with the DocBook DTD.

Transformation Scenarios
A transformation scenario is a set of complex operations and settings that gives you the possibility to obtain outputs of
multiple types (XML, HTML, PDF, EPUB, etc.) from the same source of XML files and stylesheets.

Executing a transformation scenario implies multiple actions, such as:

• Validating the input file.
• Obtaining intermediate output files (for example, formatting objects for the XML to PDF transformation).
• Using transformation engines to produce the output.

Before transforming an XML document in Oxygen XML Editor plugin, you need to define a transformation scenario
to apply to that document. A scenario is a set of values for various parameters that define a transformation. It is not
related to a particular document, but rather to a document type. Types of transformation scenarios include:

• Scenarios that Apply to XML Files - This type of scenario contains the location of an XSLT stylesheet that is
applied on the edited XML document, as well as other transformation parameters.

• Scenarios that Apply to XSLT Files - This type of scenario contains the location of an XML document that the
edited XSLT stylesheet is applied to, as well as other transform parameters.

• Scenarios that Apply to XQuery Files - This type of scenario contains the location of an XML source, that the
edited XQuery file is applied to, as well as other transform parameters. When the XML source is a native XML
database, the XML source field of the scenario is empty because the XML data is read with XQuery-specific functions,
such as document(). When the XML source is a local XML file, the URL of the file is specified in the XML input
field of the scenario.

• Scenarios that Apply to SQL Files - This type of scenario specifies a database connection for the database server
that runs the SQL file that is associated with the scenario. The data processed by the SQL script is located in the
database.

• Scenarios that Apply to XProc Files - This type of scenario contains the location of an XProc script, as well as
other transform parameters.

• DITA-OT Scenarios - This type of scenario provides the parameters for an Ant transformation that executes a
DITA-OT build script. Oxygen XML Editor plugin includes a built-in version of Ant and a built-in version of
DITA-OT, although you can also set other versions in the scenario.

• ANT Scenarios - This type of scenario contains the location of an Ant build script, as well as other transform
parameters.

Note:

Status messages generated during the transformation process are displayed in the Console view (the Enable
oXygen consoles option must be enabled in the View preferences page).

Built-in Transformation Scenarios

Oxygen XML Editor plugin included preconfigured built-in transformation scenarios that are used for common

transformations. To obtain the desired output, use the Apply Transformation Scenario(s) (Alt + Shift + T, T
(Command + Alt + T, T on OS X)) action from the toolbar or the XML menu and choose one of the built-in scenarios
for the current document.

You can use the Apply Transformation Scenario(s) action even if the current document is not associated with a
transformation scenario.

If the document contains an xml-stylesheet processing instruction that refers to an XSLT stylesheet (commonly
used to display the document in web browsers), Oxygen XML Editor plugin prompts you to associate the document
with a built-in transformation scenario.

The default transformation scenario is suggested based on the processing instruction from the edited document. The
XSL URL field of the default transformation scenario contains the URL from the href attribute of the processing
instruction. By default, the Use xml-stylesheet declaration checkbox is enabled, Saxon is used as the transformation
engine, and no FO processing is performed. The result of the transformation is store in a file with the same URL as the

Oxygen XML Editor plugin | Transforming Documents | 578

edited document, but the extension is changed to html. The name and path are preserved because the output file name
is specified with the help of two editor variables: ${cfd} and ${cfn}.

DocBook 4 Transformation Scenarios

Default transformation scenarios allow you to convert DocBook 4 to DocBook 5 documents and transform DocBook
documents to WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk, EPUB and EPUB 3.

Related information
Configure Transformation Scenario(s) Dialog Box on page 640

Editing a Transformation Scenario on page 638

DocBook4 to WebHelp Output

DocBook 4 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 4 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DocBook WebHelp Classic scenario from the DocBook 4 section.
3. Click Apply associated.

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your default
browser.

WebHelp Classic with Feedback Output

To publish a DocBook 4 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 4 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens the
installation.html file. This file contains information about the output location, system requirements, installation
instructions, and deployment of the output. Follow the instructions to complete the system deployment. For more
information, see Deploying the WebHelp Classic with Feedback System on page 691.

To watch our video demonstration about the feedback-enabled WebHelp system, go to
http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output
To publish a DocBook 4 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 4 section.
3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in your
default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the following
most commonly used ones:

Oxygen XML Editor plugin | Transforming Documents | 579

http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

This parameter is used if the language is not detected in the DITA map. The default value is en-us.args.default.language

Deletes all files from the output folder before the transformation is performed (only no and yes values are valid and
the default value is no).

clean.output

This parameter is used to identify the correct stemmer that differs from language to language. For example, for English
the value of this parameter is en or for French it is fr, and so on.

l10n.gentext.default.language

Controls whether or not you want to include stemming search algorithms into the published output (default setting is
false).

use.stemming

Adds a small copyright text that appears at the end of the Table of Contents pane.webhelp.copyright

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the
WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to
integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file

webhelp.footer.file

must be well-formed, each widget must be in separate div or span element, and the code for each script element
is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The
following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id))
return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like" data-layout="standard" class="fb-like"/>

</div>

Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is
added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content

webhelp.footer.include

of that file is used as footer. If the webhelp.footer.file has no value then the default Oxygen XML Editor plugin
footer is inserted in each WebHelp page.

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this
address.

webhelp.logo.image.target.url

Specifies a path to an image displayed as a logo in the left side of the output header.webhelp.logo.image

This parameter specifies a short name for the documentation target, or product (for example,
mobile-phone-user-guide, hvac-installation-guide).

webhelp.product.id (available only for
Feedback-enabled systems)

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.webhelp.product.version (available only
for Feedback-enabled systems)

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML Editor plugin
uses for indexing Japanese content in the WebHelp pages. This indexer does not come bundled with Oxygen XML

webhelp.search.japanese.dictionary

Editor plugin or the Oxygen XML WebHelp plugin. To use it, you need to download it from

Oxygen XML Editor plugin | Transforming Documents | 580

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0 and add it in the
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results that are
displayed on the Search tab (default setting is true).

webhelp.search.ranking

Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined skin CSS from
the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp\predefined-skins
directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web application.

webhelp.skin.css

For more information about all the DocBook transformation parameters, go to
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html.

Related information
WebHelp System Output on page 652

DocBook to PDF Output Customization
Main steps for customization of PDF output generated from DocBook XML documents.

When the default layout and output look of the DocBook to PDF transformation need to be customized, the following
main steps should be followed. In this example a company logo image is added to the front matter of a book. Other types
of customizations should follow some similar steps.

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/titlepage.templates.xml and
customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
<mediaobject/>
<title

t:named-template="book.verso.title"
font-size="&hsize2;"
font-weight="bold"
font-family="{$title.font.family}"/>

<corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.

Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.

The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert logo image in the XML document.

The path to the logo image must be inserted in the book/info/mediaobject element of the XML document.

5. Apply the customization layer to the XML document.

A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML Editor
plugin and set the customization layer in the XSL URL property of the scenario.

Related information
http://www.sagehill.net/docbookxsl/PrintCustomEx.html

The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.

http://www.oxygenxml.com/demo/DocBook_Customization.html

Oxygen XML Editor plugin | Transforming Documents | 581

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
http://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html
http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile
http://www.oxygenxml.com/demo/DocBook_Customization.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/
http://www.oxygenxml.com/demo/DocBook_Customization.html

Video demonstration for creating a DocBook customization layer in Oxygen XML Editor plugin.

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when possible.
To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;
src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as in
the following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. In your DocBook to EPUB transformation, set the epub.embedded.fonts parameter to fonts/MyFont.otf.
If you need to provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.

DocBook to DITA Transformation

Oxygen XML Editor plugin includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation Scenario(s) (Alt
+ Shift + T, T (Command + Alt + T, T on OS X)) action from the toolbar or the XML menu.

• To customize the transformation or change the scenario that is associated with the document, use the Configure
Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action from the toolbar
or the XML menu.

2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements as
it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert XML
comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation errors,
adjust certain attributes, or split the content into individual topics.

DocBook 5 Transformation Scenarios

Default transformation scenarios allow you to transform DocBook 5 documents to WebHelp, PDF, HTML, HTML
Chunk, XHTML, XHTML Chunk, EPUB, and EPUB 3.

Related information
Configure Transformation Scenario(s) Dialog Box on page 640

Editing a Transformation Scenario on page 638

Oxygen XML Editor plugin | Transforming Documents | 582

https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

DocBook 5 to WebHelp Output

DocBook 5 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 5 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DocBook WebHelp Classic scenario from the DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your default
browser.

WebHelp Classic with Feedback Output

To publish a DocBook 5 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 5 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens the
installation.html file. This file contains information about the output location, system requirements, installation
instructions, and deployment of the output. Follow the instructions to complete the system deployment. For more
information, see Deploying the WebHelp Classic with Feedback System on page 691.

To watch our video demonstration about the feedback-enabled WebHelp system, go to
http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output
To publish a DocBook 5 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in your
default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the following
most commonly used ones:

This parameter is used if the language is not detected in the DITA map. The default value is en-us.args.default.language

Deletes all files from the output folder before the transformation is performed (only no and yes values are valid and
the default value is no).

clean.output

This parameter is used to identify the correct stemmer that differs from language to language. For example, for English
the value of this parameter is en or for French it is fr, and so on.

l10n.gentext.default.language

Controls whether or not you want to include stemming search algorithms into the published output (default setting is
false).

use.stemming

Adds a small copyright text that appears at the end of the Table of Contents pane.webhelp.copyright

Oxygen XML Editor plugin | Transforming Documents | 583

http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the
WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to
integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file

webhelp.footer.file

must be well-formed, each widget must be in separate div or span element, and the code for each script element
is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The
following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id))
return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like" data-layout="standard" class="fb-like"/>

</div>

Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is
added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content

webhelp.footer.include

of that file is used as footer. If the webhelp.footer.file has no value then the default Oxygen XML Editor plugin
footer is inserted in each WebHelp page.

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this
address.

webhelp.logo.image.target.url

Specifies a path to an image displayed as a logo in the left side of the output header.webhelp.logo.image

This parameter specifies a short name for the documentation target, or product (for example,
mobile-phone-user-guide, hvac-installation-guide).

webhelp.product.id (available only for
Feedback-enabled systems)

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.webhelp.product.version (available only
for Feedback-enabled systems)

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML Editor plugin
uses for indexing Japanese content in the WebHelp pages. This indexer does not come bundled with Oxygen XML

webhelp.search.japanese.dictionary

Editor plugin or the Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0 and add it in the
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results that are
displayed on the Search tab (default setting is true).

webhelp.search.ranking

Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined skin CSS from
the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp\predefined-skins
directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web application.

webhelp.skin.css

For more information about all the DocBook transformation parameters, go to
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html.

Oxygen XML Editor plugin | Transforming Documents | 584

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
http://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html

Related information
WebHelp System Output on page 652

DocBook to PDF Output Customization
Main steps for customization of PDF output generated from DocBook XML documents.

When the default layout and output look of the DocBook to PDF transformation need to be customized, the following
main steps should be followed. In this example a company logo image is added to the front matter of a book. Other types
of customizations should follow some similar steps.

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/titlepage.templates.xml and
customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
<mediaobject/>
<title

t:named-template="book.verso.title"
font-size="&hsize2;"
font-weight="bold"
font-family="{$title.font.family}"/>

<corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.

Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.

The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert logo image in the XML document.

The path to the logo image must be inserted in the book/info/mediaobject element of the XML document.

5. Apply the customization layer to the XML document.

A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML Editor
plugin and set the customization layer in the XSL URL property of the scenario.

Related information
http://www.sagehill.net/docbookxsl/PrintCustomEx.html

The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.

http://www.oxygenxml.com/demo/DocBook_Customization.html
Video demonstration for creating a DocBook customization layer in Oxygen XML Editor plugin.

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when possible.
To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;

Oxygen XML Editor plugin | Transforming Documents | 585

http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile
http://www.oxygenxml.com/demo/DocBook_Customization.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/
http://www.oxygenxml.com/demo/DocBook_Customization.html

src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as in
the following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. In your DocBook to EPUB transformation, set the epub.embedded.fonts parameter to fonts/MyFont.otf.
If you need to provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.

DocBook to DITA Transformation

Oxygen XML Editor plugin includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation Scenario(s) (Alt
+ Shift + T, T (Command + Alt + T, T on OS X)) action from the toolbar or the XML menu.

• To customize the transformation or change the scenario that is associated with the document, use the Configure
Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action from the toolbar
or the XML menu.

2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements as
it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert XML
comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation errors,
adjust certain attributes, or split the content into individual topics.

DITA Topic Transformation Scenarios

The following default transformation scenarios are available for DITA Topics:

• DITA XHTML - Transforms a DITA topic to XHTML using DITA Open Toolkit.
• DITA PDF - Transforms a DITA topic to PDF using the DITA Open Toolkit and the Apache FOP engine.

Related information
Configure Transformation Scenario(s) Dialog Box on page 640

Editing a Transformation Scenario on page 638

DITA Map Transformation Scenarios

The following default transformations scenarios are available:

• Predefined transformation scenarios allow you to transform a DITA map to a variety of outputs, such as PDF, ODF,
XHTML, WebHelp, EPUB, and CHM files.

• Run DITA-OT Integrator - Use this transformation scenario if you want to integrate a DITA-OT plugin. This
scenario runs an Ant task that integrates all the plugins from the DITA-OT/plugins directory.

Oxygen XML Editor plugin | Transforming Documents | 586

https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

• DITA Map Metrics Report - Use this transformation scenario if you want to generate a DITA map statistics report
containing information such as:

• The number of processed maps and topics.
• Content reuse percentage.
• Number of elements, attributes, words, and characters used in the entire DITA map structure.
• DITA conditional processing attributes used in the DITA maps.
• Words count.
• Information types such as number of containing maps, bookmaps, or topics.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

DITA Map to WebHelp Output

DITA maps can be transformed into a variety of WebHelp systems designed to suit your specific needs. This section
contains the procedures for obtaining the output for the variants of the WebHelp system.

Related information
WebHelp System Output on page 652

WebHelp Responsive Output

To publish a DITA map as a WebHelp Responsive system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.
2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in
the following tabs:

• Templates Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp system
output. See the Parameters section below for details about the most commonly used parameters for WebHelp
Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Responsive transformation is complete, the output is automatically opened in your
default browser.

Parameters for Customizing WebHelp Responsive Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used
ones:

This parameter is used if the language is not detected in the DITA map. The default
value is en-us.

args.default.language

Deletes all files from the output folder before the transformation is performed (only
no and yes values are valid and the default value is no).

clean.output

The DITA Open Toolkit usually has problems processing references that point to
locations outside of the directory of the processed DITA map. This parameter is used

fix.external.refs.com.oxygenxml
(Only supported when the DITA OT

Oxygen XML Editor plugin | Transforming Documents | 587

transformation process is started from Oxygen
XML Editor plugin)

to specify whether or not the application should try to fix such references in a temporary
files folder before the DITA Open Toolkit is invoked on the fixed references. The fix
has no impact on your edited DITA content. Allowed values: true or false (default).

Controls whether or not you want to include stemming search algorithms into the
published output (default setting is false).

use.stemming

The file path to a directory that contains resources files. All files from this directory
will be copied to the root of the WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Set this parameter to true if you have out of memory problems when generating
WebHelp. It will increase processing time but decrease the memory footprint. The
default value is false.

webhelp.reload.stylesheet

The file path of the dictionary that will be used by the Kuromoji morphological engine
that Oxygen XML Editor plugin uses for indexing Japanese content in the WebHelp

webhelp.search.japanese.dictionary

pages. This indexer does not come bundled with Oxygen XML Editor plugin or the
Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
and add it in the DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib
directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included
in the search results that are displayed on the Search tab (default setting is true).

webhelp.search.ranking

When set to yes, user comments, replies to comments, and tracked changes are
published in the WebHelp output. The default value is no.

webhelp.show.changes.and.comments

Base URL for all the loc elements in the generated sitemap.xml file. The value
of a loc element is computed as the relative file path from the href attribute of a

webhelp.sitemap.base.url

topicref element from the DITA map, appended to this base URL value. The loc
element is mandatory in sitemap.xml. If you leave this parameter set to its default
empty value, then the sitemap.xml file is not generated.

The value of the changefreq element in the generated sitemap.xml file. The
changefreq element is optional in sitemap.xml. If you leave this parameter

webhelp.sitemap.change.frequency

set to its default empty value, then the changefreq element is not added in
sitemap.xml. Allowed values: <empty string> (default), always, hourly,
daily, weekly, monthly, yearly, never.

The value of the priority element in the generated sitemap.xml file. It can be
set to any fractional number between 0.0 (least important priority) and 1.0 (most

webhelp.sitemap.priority

important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional
in sitemap.xml. If you leave this parameter set to its default empty value, then
the priority element is not added in sitemap.xml.

Parameters Specific to WebHelp Responsive Output

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the body in the output.

webhelp.fragment.after.body

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the logo and title in the output.

webhelp.fragment.after.logo_and_title

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the search field in the output.

webhelp.fragment.after.main.page.search

Oxygen XML Editor plugin | Transforming Documents | 588

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed

webhelp.fragment.after.toc_or_tiles

after the table of contents or tiles in the main page of the
output.

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed after the
top menu in the output.

webhelp.fragment.after.top_menu

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the body in the output.

webhelp.fragment.before.body

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the logo and title in the output.

webhelp.fragment.before.logo_and_title

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the search field in the output.

webhelp.fragment.before.main.page.search

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the table of contents or tiles in the main page of the output.

webhelp.fragment.before.toc_or_tiles

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the top menu in the output.

webhelp.fragment.before.top_menu

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as the
footer in the output

webhelp.fragment.footer

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as the
header in the output.

webhelp.fragment.head

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as a
welcome message (or title) in the output.

webhelp.fragment.welcome

Specifies if the breadcrumb component will be presented
in the output. The default value is yes.

webhelp.show.breadcrumb

Specifies if an icon that links to the index will be presented
in the output. The default value is yes.

webhelp.show.indexterms.link

Specifies if the tiles component will be presented in the
main page of the output. For a tree style layout, this
parameter should be set to no.

webhelp.show.main.page.tiles

Specifies if the table of contents will be presented in the
main page of the output. The default value is yes.

webhelp.show.main.page.toc

Specifies if navigation links will be presented in the output.
The default value is yes.

webhelp.show.navigation.links

Specifies if a print link or icon will be presented within
each topic in the output. The default value is yes.

webhelp.show.print.link

Specifies if a side table of contents will be presented on
the right side of each topic in the output. The default value
is yes.

webhelp.show.side.toc

Oxygen XML Editor plugin | Transforming Documents | 589

Specifies if a menu will be presented at the topic of the
main page in the output. The default value is yes.

webhelp.show.top.menu

Specifies the maximum depth level of the topics that will
be included in the top menu. The default value is 2.

webhelp.top.menu.depth

WebHelp Responsive with Feedback Output

To publish a DITA map as a WebHelp Responsive with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.
2. Select the DITA Map WebHelp Responsive with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in
the following tabs:

• Templates Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp system
output. See the Parameters section below for details about the most commonly used parameters for WebHelp
Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation

version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Responsive with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system deployment.

Parameters for Customizing WebHelp Responsive with Feedback Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used
ones:

This parameter is used if the language is not detected in the DITA map. The default
value is en-us.

args.default.language

Deletes all files from the output folder before the transformation is performed (only
no and yes values are valid and the default value is no).

clean.output

The DITA Open Toolkit usually has problems processing references that point to
locations outside of the directory of the processed DITA map. This parameter is used

fix.external.refs.com.oxygenxml
(Only supported when the DITA OT

to specify whether or not the application should try to fix such references in a temporarytransformation process is started from Oxygen
XML Editor plugin) files folder before the DITA Open Toolkit is invoked on the fixed references. The fix

has no impact on your edited DITA content. Allowed values: true or false (default).

Controls whether or not you want to include stemming search algorithms into the
published output (default setting is false).

use.stemming

The file path to a directory that contains resources files. All files from this directory
will be copied to the root of the WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Set this parameter to true if you have out of memory problems when generating
WebHelp. It will increase processing time but decrease the memory footprint. The
default value is false.

webhelp.reload.stylesheet

Oxygen XML Editor plugin | Transforming Documents | 590

The file path of the dictionary that will be used by the Kuromoji morphological engine
that Oxygen XML Editor plugin uses for indexing Japanese content in the WebHelp

webhelp.search.japanese.dictionary

pages. This indexer does not come bundled with Oxygen XML Editor plugin or the
Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
and add it in the DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib
directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included
in the search results that are displayed on the Search tab (default setting is true).

webhelp.search.ranking

When set to yes, user comments, replies to comments, and tracked changes are
published in the WebHelp output. The default value is no.

webhelp.show.changes.and.comments

Base URL for all the loc elements in the generated sitemap.xml file. The value
of a loc element is computed as the relative file path from the href attribute of a

webhelp.sitemap.base.url

topicref element from the DITA map, appended to this base URL value. The loc
element is mandatory in sitemap.xml. If you leave this parameter set to its default
empty value, then the sitemap.xml file is not generated.

The value of the changefreq element in the generated sitemap.xml file. The
changefreq element is optional in sitemap.xml. If you leave this parameter

webhelp.sitemap.change.frequency

set to its default empty value, then the changefreq element is not added in
sitemap.xml. Allowed values: <empty string> (default), always, hourly,
daily, weekly, monthly, yearly, never.

The value of the priority element in the generated sitemap.xml file. It can be
set to any fractional number between 0.0 (least important priority) and 1.0 (most

webhelp.sitemap.priority

important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional
in sitemap.xml. If you leave this parameter set to its default empty value, then
the priority element is not added in sitemap.xml.

Parameters Specific to WebHelp Responsive with Feedback Output

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the body in the output.

webhelp.fragment.after.body

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the logo and title in the output.

webhelp.fragment.after.logo_and_title

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the search field in the output.

webhelp.fragment.after.main.page.search

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed

webhelp.fragment.after.toc_or_tiles

after the table of contents or tiles in the main page of the
output.

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed after the
top menu in the output.

webhelp.fragment.after.top_menu

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the body in the output.

webhelp.fragment.before.body

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the logo and title in the output.

webhelp.fragment.before.logo_and_title

Oxygen XML Editor plugin | Transforming Documents | 591

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the search field in the output.

webhelp.fragment.before.main.page.search

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the table of contents or tiles in the main page of the output.

webhelp.fragment.before.toc_or_tiles

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the top menu in the output.

webhelp.fragment.before.top_menu

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as the
footer in the output

webhelp.fragment.footer

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as the
header in the output.

webhelp.fragment.head

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as a
welcome message (or title) in the output.

webhelp.fragment.welcome

Specifies if the breadcrumb component will be presented
in the output. The default value is yes.

webhelp.show.breadcrumb

Specifies if an icon that links to the index will be presented
in the output. The default value is yes.

webhelp.show.indexterms.link

Specifies if the tiles component will be presented in the
main page of the output. For a tree style layout, this
parameter should be set to no.

webhelp.show.main.page.tiles

Specifies if the table of contents will be presented in the
main page of the output. The default value is yes.

webhelp.show.main.page.toc

Specifies if navigation links will be presented in the output.
The default value is yes.

webhelp.show.navigation.links

Specifies if a print link or icon will be presented within
each topic in the output. The default value is yes.

webhelp.show.print.link

Specifies if a side table of contents will be presented on
the right side of each topic in the output. The default value
is yes.

webhelp.show.side.toc

Specifies if a menu will be presented at the topic of the
main page in the output. The default value is yes.

webhelp.show.top.menu

Specifies the maximum depth level of the topics that will
be included in the top menu. The default value is 2.

webhelp.top.menu.depth

WebHelp Classic Output

To publish a DITA map as a WebHelp Classic system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.
2. Select the DITA Map WebHelp Classic scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in
the following tabs:

Oxygen XML Editor plugin | Transforming Documents | 592

Skins Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp system
output.

•

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp system
output. See the Parameters section below for details about the most commonly used parameters for WebHelp
Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Classic transformation is complete, the output is automatically opened in your
default browser.

To further customize this transformation, you can edit various parameters, including the following most commonly used
ones:

Parameters for Customizing WebHelp Classic Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used
ones:

This parameter is used if the language is not detected in the DITA map. The default
value is en-us.

args.default.language

Deletes all files from the output folder before the transformation is performed (only
no and yes values are valid and the default value is no).

clean.output

The DITA Open Toolkit usually has problems processing references that point to
locations outside of the directory of the processed DITA map. This parameter is used

fix.external.refs.com.oxygenxml
(Only supported when the DITA OT

to specify whether or not the application should try to fix such references in a temporarytransformation process is started from Oxygen
XML Editor plugin) files folder before the DITA Open Toolkit is invoked on the fixed references. The fix

has no impact on your edited DITA content. Allowed values: true or false (default).

Controls whether or not you want to include stemming search algorithms into the
published output (default setting is false).

use.stemming

URL value that specifies the location of a well-formed XHTML file containing the
custom script that will be copied in the <body> section of every WebHelp page.

webhelp.body.script

Adds a small copyright text that appears at the end of the Table of Contents pane.webhelp.copyright

The file path to a directory that contains resources files. All files from this directory
will be copied to the root of the WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages.
You can use this parameter to integrate social media features (such as widgets for

webhelp.footer.file

Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed,
each widget must be in separate div or span element, and the code for each script
element is included in an XML comment (also, the start and end tags for the XML
comment must be on a separate line). The following code exert is an example for
adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs =
d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script',
'facebook-jssdk')); -->

</script>

Oxygen XML Editor plugin | Transforming Documents | 593

<div data-share="true" data-show-faces="true" data-action="like"
data-layout="standard" class="fb-like"/>
</div>

Specifies whether or not to include footer in each WebHelp page. Possible values:
yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the

webhelp.footer.include

webhelp.footer.file parameter has a value, then the content of that file is
used as footer. If the webhelp.footer.file has no value then the default Oxygen
XML Editor plugin footer is inserted in each WebHelp page.

URL value that specifies the location of a well-formed XHTML file containing the
Google Custom Search Engine element gcse:searchresults-only. You can

webhelp.google.search.results

use all supported attributes for this element. It is recommend to set the linkTarget
attribute to frm for frameless (iframe) version of WebHelp or to contentWin for
the frameset version of WebHelp. The default value for this attribute is _blank and
the search results will be loaded in a new window. If this parameter is not specified,
the following code will be used <gcse:searchresults-only
linkTarget="frm"></gcse:searchresults-only>

Specifies the location of a well-formed XHTML file containing the Custom Search
Engine script from Google. The value must be a URL.

webhelp.google.search.script

URL value that specifies the location of a well-formed XHTML file containing the
custom script that will be copied in the <head> section of every WebHelp page.

webhelp.head.script

Specifies a target URL that is set on the logo image. When you click the logo image,
you will be redirected to this address.

webhelp.logo.image.target.url

Specifies a path to an image displayed as a logo in the left side of the output header.webhelp.logo.image

Set this parameter to true if you have out of memory problems when generating
WebHelp. It will increase processing time but decrease the memory footprint. The
default value is false.

webhelp.reload.stylesheet

The file path of the dictionary that will be used by the Kuromoji morphological engine
that Oxygen XML Editor plugin uses for indexing Japanese content in the WebHelp

webhelp.search.japanese.dictionary

pages. This indexer does not come bundled with Oxygen XML Editor plugin or the
Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
and add it in the DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib
directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included
in the search results that are displayed on the Search tab (default setting is true).

webhelp.search.ranking

When set to yes, user comments, replies to comments, and tracked changes are
published in the WebHelp output. The default value is no.

webhelp.show.changes.and.comments

Base URL for all the loc elements in the generated sitemap.xml file. The value
of a loc element is computed as the relative file path from the href attribute of a

webhelp.sitemap.base.url

topicref element from the DITA map, appended to this base URL value. The loc
element is mandatory in sitemap.xml. If you leave this parameter set to its default
empty value, then the sitemap.xml file is not generated.

The value of the changefreq element in the generated sitemap.xml file. The
changefreq element is optional in sitemap.xml. If you leave this parameter

webhelp.sitemap.change.frequency

set to its default empty value, then the changefreq element is not added in
sitemap.xml. Allowed values: <empty string> (default), always, hourly,
daily, weekly, monthly, yearly, never.

The value of the priority element in the generated sitemap.xml file. It can be
set to any fractional number between 0.0 (least important priority) and 1.0 (most

webhelp.sitemap.priority

important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional

Oxygen XML Editor plugin | Transforming Documents | 594

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0

in sitemap.xml. If you leave this parameter set to its default empty value, then
the priority element is not added in sitemap.xml.

WebHelp Classic Mobile Output

To publish a DITA map as a WebHelp Classic Mobile system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.
2. Select the DITA Map WebHelp Classic Mobile scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in
the following tabs:

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp system
output. See the Parameters section below for details about the most commonly used parameters for WebHelp
Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Classic Mobile transformation is complete, the output is automatically opened in
your default browser.

Parameters for Customizing WebHelp Classic Mobile Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used
ones:

This parameter is used if the language is not detected in the DITA map. The default
value is en-us.

args.default.language

Deletes all files from the output folder before the transformation is performed (only
no and yes values are valid and the default value is no).

clean.output

The DITA Open Toolkit usually has problems processing references that point to
locations outside of the directory of the processed DITA map. This parameter is used

fix.external.refs.com.oxygenxml
(Only supported when the DITA OT

to specify whether or not the application should try to fix such references in a temporarytransformation process is started from Oxygen
XML Editor plugin) files folder before the DITA Open Toolkit is invoked on the fixed references. The fix

has no impact on your edited DITA content. Allowed values: true or false (default).

Controls whether or not you want to include stemming search algorithms into the
published output (default setting is false).

use.stemming

Adds a small copyright text that appears at the end of the Table of Contents pane.webhelp.copyright

The file path to a directory that contains resources files. All files from this directory
will be copied to the root of the WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages.
You can use this parameter to integrate social media features (such as widgets for

webhelp.footer.file

Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed,
each widget must be in separate div or span element, and the code for each script
element is included in an XML comment (also, the start and end tags for the XML

Oxygen XML Editor plugin | Transforming Documents | 595

comment must be on a separate line). The following code exert is an example for
adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs =
d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script',
'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like"

data-layout="standard" class="fb-like"/>
</div>

Specifies whether or not to include footer in each WebHelp page. Possible values:
yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the

webhelp.footer.include

webhelp.footer.file parameter has a value, then the content of that file is
used as footer. If the webhelp.footer.file has no value then the default Oxygen
XML Editor plugin footer is inserted in each WebHelp page.

URL value that specifies the location of a well-formed XHTML file containing the
Google Custom Search Engine element gcse:searchresults-only. You can

webhelp.google.search.results

use all supported attributes for this element. It is recommend to set the linkTarget
attribute to frm for frameless (iframe) version of WebHelp or to contentWin for
the frameset version of WebHelp. The default value for this attribute is _blank and
the search results will be loaded in a new window. If this parameter is not specified,
the following code will be used <gcse:searchresults-only
linkTarget="frm"></gcse:searchresults-only>

Specifies the location of a well-formed XHTML file containing the Custom Search
Engine script from Google. The value must be a URL.

webhelp.google.search.script

URL value that specifies the location of a well-formed XHTML file containing the
custom script that will be copied in the <head> section of every WebHelp page.

webhelp.head.script

Set this parameter to true if you have out of memory problems when generating
WebHelp. It will increase processing time but decrease the memory footprint. The
default value is false.

webhelp.reload.stylesheet

The file path of the dictionary that will be used by the Kuromoji morphological engine
that Oxygen XML Editor plugin uses for indexing Japanese content in the WebHelp

webhelp.search.japanese.dictionary

pages. This indexer does not come bundled with Oxygen XML Editor plugin or the
Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
and add it in the DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib
directory.

Base URL for all the loc elements in the generated sitemap.xml file. The value
of a loc element is computed as the relative file path from the href attribute of a

webhelp.sitemap.base.url

topicref element from the DITA map, appended to this base URL value. The loc
element is mandatory in sitemap.xml. If you leave this parameter set to its default
empty value, then the sitemap.xml file is not generated.

The value of the changefreq element in the generated sitemap.xml file. The
changefreq element is optional in sitemap.xml. If you leave this parameter

webhelp.sitemap.change.frequency

set to its default empty value, then the changefreq element is not added in
sitemap.xml. Allowed values: <empty string> (default), always, hourly,
daily, weekly, monthly, yearly, never.

The value of the priority element in the generated sitemap.xml file. It can be
set to any fractional number between 0.0 (least important priority) and 1.0 (most

webhelp.sitemap.priority

important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional

Oxygen XML Editor plugin | Transforming Documents | 596

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0

in sitemap.xml. If you leave this parameter set to its default empty value, then
the priority element is not added in sitemap.xml.

WebHelp Classic With Feedback Output

To publish a DITA map as a WebHelp Classic with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.
2. Select the DITA Map WebHelp Classic with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in
the following tabs:

• Skins Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp system
output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp system
output. See the Parameters section below for details about the most commonly used parameters for WebHelp
Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation

version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Classic with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system deployment.

To watch our video demonstration about the feedback-enabled WebHelp system, go to
http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

Parameters for Customizing WebHelp Classic with Feedback Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used
ones:

This parameter is used if the language is not detected in the DITA map. The default
value is en-us.

args.default.language

Deletes all files from the output folder before the transformation is performed (only
no and yes values are valid and the default value is no).

clean.output

The DITA Open Toolkit usually has problems processing references that point to
locations outside of the directory of the processed DITA map. This parameter is used

fix.external.refs.com.oxygenxml
(Only supported when the DITA OT

to specify whether or not the application should try to fix such references in a temporarytransformation process is started from Oxygen
XML Editor plugin) files folder before the DITA Open Toolkit is invoked on the fixed references. The fix

has no impact on your edited DITA content. Allowed values: true or false (default).

Controls whether or not you want to include stemming search algorithms into the
published output (default setting is false).

use.stemming

URL value that specifies the location of a well-formed XHTML file containing the
custom script that will be copied in the <body> section of every WebHelp page.

webhelp.body.script

Adds a small copyright text that appears at the end of the Table of Contents pane.webhelp.copyright

The file path to a directory that contains resources files. All files from this directory
will be copied to the root of the WebHelp output.

webhelp.custom.resources

Oxygen XML Editor plugin | Transforming Documents | 597

http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages.
You can use this parameter to integrate social media features (such as widgets for

webhelp.footer.file

Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed,
each widget must be in separate div or span element, and the code for each script
element is included in an XML comment (also, the start and end tags for the XML
comment must be on a separate line). The following code exert is an example for
adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs =
d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script',
'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like"

data-layout="standard" class="fb-like"/>
</div>

Specifies whether or not to include footer in each WebHelp page. Possible values:
yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the

webhelp.footer.include

webhelp.footer.file parameter has a value, then the content of that file is
used as footer. If the webhelp.footer.file has no value then the default Oxygen
XML Editor plugin footer is inserted in each WebHelp page.

URL value that specifies the location of a well-formed XHTML file containing the
Google Custom Search Engine element gcse:searchresults-only. You can

webhelp.google.search.results

use all supported attributes for this element. It is recommend to set the linkTarget
attribute to frm for frameless (iframe) version of WebHelp or to contentWin for
the frameset version of WebHelp. The default value for this attribute is _blank and
the search results will be loaded in a new window. If this parameter is not specified,
the following code will be used <gcse:searchresults-only
linkTarget="frm"></gcse:searchresults-only>

Specifies the location of a well-formed XHTML file containing the Custom Search
Engine script from Google. The value must be a URL.

webhelp.google.search.script

URL value that specifies the location of a well-formed XHTML file containing the
custom script that will be copied in the <head> section of every WebHelp page.

webhelp.head.script

Specifies a target URL that is set on the logo image. When you click the logo image,
you will be redirected to this address.

webhelp.logo.image.target.url

Specifies a path to an image displayed as a logo in the left side of the output header.webhelp.logo.image

Set this parameter to true if you have out of memory problems when generating
WebHelp. It will increase processing time but decrease the memory footprint. The
default value is false.

webhelp.reload.stylesheet

The file path of the dictionary that will be used by the Kuromoji morphological engine
that Oxygen XML Editor plugin uses for indexing Japanese content in the WebHelp

webhelp.search.japanese.dictionary

pages. This indexer does not come bundled with Oxygen XML Editor plugin or the
Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
and add it in the DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib
directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included
in the search results that are displayed on the Search tab (default setting is true).

webhelp.search.ranking

Oxygen XML Editor plugin | Transforming Documents | 598

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0

When set to yes, user comments, replies to comments, and tracked changes are
published in the WebHelp output. The default value is no.

webhelp.show.changes.and.comments

Base URL for all the loc elements in the generated sitemap.xml file. The value
of a loc element is computed as the relative file path from the href attribute of a

webhelp.sitemap.base.url

topicref element from the DITA map, appended to this base URL value. The loc
element is mandatory in sitemap.xml. If you leave this parameter set to its default
empty value, then the sitemap.xml file is not generated.

The value of the changefreq element in the generated sitemap.xml file. The
changefreq element is optional in sitemap.xml. If you leave this parameter

webhelp.sitemap.change.frequency

set to its default empty value, then the changefreq element is not added in
sitemap.xml. Allowed values: <empty string> (default), always, hourly,
daily, weekly, monthly, yearly, never.

The value of the priority element in the generated sitemap.xml file. It can be
set to any fractional number between 0.0 (least important priority) and 1.0 (most

webhelp.sitemap.priority

important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional
in sitemap.xml. If you leave this parameter set to its default empty value, then
the priority element is not added in sitemap.xml.

DITA Map to PDF WYSIWYG Transformation

Oxygen XML Editor plugin comes bundled with a DITA OT plugin that converts DITA maps to PDF using a CSS layout
processor. Oxygen XML Editor plugin supports the following processors (not included in the Oxygen XML Editor
plugin installation kit):

• Prince Print with CSS - A third-party component that needs to be purchased from http://www.princexml.com.
• Antenna House Formatter - A third-party component that needs to be purchased from

http://www.antennahouse.com/antenna1/formatter/.

The DITA-OT plugin is located in the following directory: DITA_OT_DIR/plugins/com.oxygenxml.pdf.css.

Although it includes a set of CSS files in its css subfolder, when this plugin is used in Oxygen XML Editor plugin, the
CSS files located in the ${frameworks} directory take precedence.

Creating the Transformation Scenario

To create an experimental DITA map to PDF WYSIWYG transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button from the Dita Maps Manager toolbar.
2. Select DITA Map PDF - WYSIWYG - Experimental.
3. When applied, this new transformation scenario uses the currently selected CSS files for the opened topic files. These

CSS files can be selected from the Styles drop-down menu from the toolbar.

Important: The author could open the map in the editor and change its style, but this is ignored in the
publishing stage. Since authors usually edit topics instead of the map, Oxygen XML Editor plugin uses the
styles selected in the opened topics.

4. In the Parameters tab, configure the following parameters:

• css.processor.path.prince (if you are using the Prince Print with CSS processor) - Specifies the path
to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default settings,
you can leave this blank.

• css.processor.path.antenna-house (if you are using the Antenna House Formatter processor) -
Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed
Antenna House using its default settings, you can leave this blank.

• webhelp.show.changes.and.comments - When set to yes, user comments, replies to comments, and
tracked changes are published in the WebHelp output. The default value is no.

Oxygen XML Editor plugin | Transforming Documents | 599

http://www.princexml.com/
http://www.antennahouse.com/antenna1/formatter/

Customizing the Styles (for Output and Editing)

If you need to change the styles in the associated CSS, make sure you install Oxygen XML Editor plugin in a folder in
which you have full read and write privileges (for instance, your user home directory). This is due to the fact that all the
installed files are usually read-only (for instance, in Windows, Oxygen XML Editor plugin is installed in the Program
Files folder where the users do not have change rights).

If you want to change the style of an element, open a document in the editor and select Inspect Styles from the contextual
menu. The CSS Inspector view that shows all the CSS rules that apply to the selected element will be displayed. Click
the link for the CSS selector that you need to change and Oxygen XML Editor plugin will open the CSS file and position
the cursor at that selector. Simply add the properties you need and to see the changes in the editor, press F5 to reload
the document. Once you are satisfied with how it looks, use the transformation scenario and check for the changes in
the PDF output.

Note: This experimental transformation scenario also allows you to present colored highlights in the PDF
output.

Compiled HTML Help (CHM) Output Format

To perform a Compiled HTML Help (CHM) transformation Oxygen XML Editor plugin needs Microsoft HTML
Help Workshop to be installed on your computer. Oxygen XML Editor plugin automatically detects HTML Help
Workshop and uses it.

Note: HTML Help Workshop might fail if the files used for transformation contain accents in their names,
due to different encodings used when writing the .hhp and .hhc files. If the transformation fails to produce the
CHM output but the .hhp (HTML Help Project) file is already generated, you can manually try to build the CHM
output using HTML Help Workshop.

Changing the Output Encoding

Oxygen XML Editor plugin uses the htmlhelp.locale parameter to correctly display specific characters of different
languages in the output of the Compiled HTML Help (CHM) transformation. The Compiled HTML Help (CHM)
default scenario that comes bundled with Oxygen XML Editor plugin has the htmlhelp.locale parameter set to
en-US.

The default value of the htmlhelp.locale is en-US. To customize this parameter, go to Configure

Transformation Scenarios and click the Edit button. In the parameter tab search for the htmlhelp.locale
parameter and change its value to the desired language tag.

The format of the htmlhelp.locale parameter is LL-CC, where LL represents the language code (en, for example)
and CC represents the country code (US, for example). The language codes are contained in the ISO 639-1 standard
and the country codes are contained in the ISO 3166-1 standard. For further details about language tags, go to
http://www.rfc-editor.org/rfc/rfc5646.txt.

Kindle Output Format

Oxygen XML Editor plugin requires KindleGento generate Kindle output from DITA maps. To install KindleGen for
use by Oxygen XML Editor plugin, follow these steps:

1. Go to www.amazon.com/kindleformat/kindlegen and download the zip file that matches your operating system.
2. Unzip the file on your local disk.
3. Start Oxygen XML Editor plugin and open a DITA map in the DITA Maps Manager view.

4. In the DITA Maps Manager view, open the Configure Transformation Scenario(s) dialog box.
5. Select the DITA Map Kindle transformation and press the Edit button to edit it.
6. Go to Parameters tab and set the kindlegen.executable parameter as the path to the KindleGen directory.
7. Accept the changes.

Oxygen XML Editor plugin | Transforming Documents | 600

http://www.rfc-editor.org/rfc/rfc5646.txt
http://www.amazon.com/gp/feature.html/?docId=1000765211

Migrating OOXML Documents to DITA

Oxygen XML Editor plugin integrates the entire DITA for Publishers plugins suite that allows you to migrate content
from Open Office XML documents to DITA.

You can use any of the following methods to migrate such documents to DITA:

• Open an OOXML document in Oxygen XML Editor plugin. The document is opened in the Archive Browser view.
• From the Archive Browser, open document.xml.

Note: document.xml holds the content of the document.

• Click Configure Transformation Scenario(s) on the toolbar and apply the DOCX DITA scenario. If you
encounter any issues with the transformation, click the link below for further details about the Word to DITA
Transformation Framework.

• Oxygen XML Editor plugin includes a Smart Paste feature that allows you to copy content from external sources
(such as web pages and Office-type documents) and paste it into a DITA topic.

Related information
http://dita4publishers.sourceforge.net/

Smart Paste Support on page 264

XHTML Transformation Scenarios

The following default transformation scenarios are available for XHTML:

• XHTML to DITA concept - Converts an XHTML document to a DITA concept document.
• XHTML to DITA reference - Converts an XHTML document to a DITA reference document.
• XHTML to DITA task - Converts an XHTML document to a DITA task document.
• XHTML to DITA topic - Converts an XHTML document to a DITA topic document.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

TEI ODD Transformation Scenarios

The following default transformations are available:

• TEI ODD XHTML - Transforms a TEI ODD document into an XHTML document
• TEI ODD PDF - Transforms a TEI ODD document into a PDF document using the Apache FOP engine
• TEI ODD EPUB - Transforms a TEI ODD document into an EPUB document
• TEI ODD DOCX - Transforms a TEI ODD document into a DOCX document
• TEI ODD ODT - Transforms a TEI ODD document into an ODT document
• TEI ODD RelaxNG XML - Transforms a TEI ODD document into a RelaxNG XML document
• TEI ODD to DTD - Transforms a TEI ODD document into a DTD document
• TEI ODD to XML Schema - Transforms a TEI ODD document into an XML Schema document
• TEI ODD to RelaxNG Compact - Transforms a TEI ODD document into an RelaxNG Compact document

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

TEI P4 Transformation Scenarios

The following default transformations are available:

• TEI HTML - Transforms a TEI document into an HTML document.
• TEI P4 - TEI P5 Conversion - Convert a TEI P4 document into a TEI P5 document.
• TEI PDF - Transforms a TEI document into a PDF document using the Apache FOP engine.

Oxygen XML Editor plugin | Transforming Documents | 601

http://dita4publishers.sourceforge.net/

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

TEI P5 Transformation Scenarios

The following default transformations are available:

• TEI P5 XHTML - transforms a TEI P5 document into an XHTML document.
• TEI P5 PDF - transforms a TEI P5 document into a PDF document using the Apache FOP engine.
• TEI EPUB - transforms a TEI P5 document into an EPUB output. The EPUB output will contain any images

referenced in the TEI XML document.
• TEI DOCX - transforms a TEI P5 document into a DOCX (OOXML) document. The DOCX document will contain

any images referenced in the TEI XML document.
• TEI ODT - transforms a TEI P5 document into an ODT (ODF) document. The ODT document will contain any

images referenced in the TEI XML document.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

JATS Transformation Scenarios

The following default transformation scenario is available for JATS documents:

• JATS Preview (simple HTML) - Converts a JATS document to a simple HTML document.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

Creating New Transformation Scenarios

Defining a transformation scenario is the first step in the process of transforming a document. This section includes
information on the types of scenarios that are available in Oxygen XML Editor plugin and how to create each type of
transformation.

XML Transformation with XSLT
This type of transformation specifies the transformation parameters and location of an XSLT stylesheet that is applied
to the edited XML document. This scenario is useful when you develop an XML document and the XSLT document is
in its final form.

To create an XML transformation with XSLT scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XML transformation with XSLT.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XML transformation with XSLT.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XML transformation with XSLT.

All three methods open the New Scenario dialog box.

Oxygen XML Editor plugin | Transforming Documents | 602

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XSLT Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XSLT tab contains the following options:

Specifies the source XML file. You can specify the path by using the text field, the Insert Editor
Variables button, or the browsing tools in the Browse drop-down list. This URL is resolved

XML URL

through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is
used directly from its remote location.

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver. If the transformer engine
is one of the built-in XSLT 2.0 / 3.0 engines and the name of an initial template is specified in the scenario, the
XML URL field can be empty. The XML URL field can also be empty if you use external XSLT processors.
Otherwise, a value is mandatory in this field.

Specifies the source XSL file that the transformation will use. You can specify the path by using
the text field, the Insert Editor Variables button, or the browsing tools in the Browse

XSL URL

drop-down list. This URL is resolved through the catalog resolver. If the catalog does not have
a mapping for the URL, the file is used directly from its remote location.

If enabled, the scenario applies the stylesheet specified explicitly in the XML document with
the xml-stylesheet processing instruction. By default, this option is disabled and the
transformation applies the XSLT stylesheet that is specified in the XSL URL field.

Use "xml-stylesheet"
declaration

This drop-down menu presents all the transformation engines available to Oxygen XML Editor
plugin for performing a transformation. These include the built-in engines and the external

Transformer

engines defined in the Custom Engines preferences page. The engine you choose is used as the
default transformation engine. Also, if an XSLT or XQuery document does not have an associated
validation scenario, this transformation engine is used in the validation process (if it provides
validation support).

Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current
transformation scenario. To configure the same options globally, go to the Saxon-HE/PE/EE

Advanced options

preferences page. For the current transformation scenario, these Advanced options override
the options configured in that preferences page.

Opens a Configure parameters dialog box that allows you to configure the XSLT parameters
used in the current transformation. In this dialog box, you can also configure the parameters for

Parameters

additional XSLT stylesheets. If the XSLT transformation engine is custom-defined, you can not
use this dialog box to configure the parameters sent to the custom engine. Instead, you can copy
all parameters from the dialog box using contextual menu actions and edit the custom XSLT
engine to include the necessary parameters in the command line that starts the transformation
process.

Opens a dialog box for configuring the XSLT extension jars or classes that define extension
Java functions or extension XSLT elements used in the transformation.

Extensions

Opens a dialog box for adding XSLT stylesheets that are applied on the main stylesheet specified
in the XSL URL field. This is useful when a chain of XSLT stylesheets must be applied to the
input XML document.

Additional XSLT
stylesheets

Oxygen XML Editor plugin | Transforming Documents | 603

XSLT Parameters

The global parameters of the XSLT stylesheet used in a transformation scenario can be configured by using the Parameters
button in the XSLT tab of a new or edited transformation scenario dialog box.

The resulting dialog box includes a table that displays all the parameters of the current XSLT stylesheet, all imported
and included stylesheets, and all additional stylesheets, along with their descriptions and current values. You can also
add, edit, and remove parameters, and you can use the Filter text box to search for a specific term in the entire parameters
collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is checked, the parameter value is evaluated as an XPath expression before starting the XSLT
transformation.

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XSL stylesheet location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations:
doc('${cfdu}/test.xml')//*

2. You cannot use XSLT Functions. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

New

Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

Edit

Resets the selected parameter to its default value. Available only for edited parameters with set values.Unset

Removes the selected parameter from the list. It is enabled only for new parameters that have been
added to the list.

Delete

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related information
Editor Variables on page 134

XSLT Extensions

The Extensions button is used to specify the jars and classes that contain extension functions called from the XSLT file
of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the extensions.

An extension function called from the XSLT file of the current transformation scenario will be searched, in the specified
extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and
press the Move up or Move down buttons.

Additional XSLT Stylesheets

Use the Additional XSLT Stylesheets button in the XSLT tab to display a list of additional XSLT stylesheets to be
used in the transformation and you can add files to the list or edit existing entries. The following actions are available:

Oxygen XML Editor plugin | Transforming Documents | 604

Adds a stylesheet in the Additional XSLT stylesheets list using a file browser dialog box. You
can type an editor variable in the file name field of the browser dialog box. The name of the
stylesheet will be added in the list after the current selection.

Add

Deletes the selected stylesheet from the Additional XSLT stylesheets list.Remove

Moves the selected stylesheet up in the list.Up

Moves the selected stylesheet down in the list.Down

Advanced Saxon HE/PE/EE XSLT Transformation Options

The XSLT transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home
Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the
Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options for each
transformation scenario, while the values set in the preferences page apply as global options. The advanced options
configured in a transformation scenario override the global options defined in the preferences page.

The advanced options for Saxon 9.6.0.7 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are
as follows:

A Saxon-specific option that sets the initial mode for the transformation.Mode ("-im")

A Saxon-specific option that sets the name of the initial XSLT template to be executed.Template ("-it")

Sets a Saxon 9.6.0.7 configuration file that is executed for XSLT transformation and
validation processes.

Use a configuration file
("-config")

Instructs the XSLT Debugger to step into XPath expressions.Debugger trace into XPath
expressions (applies to
debugging sessions)

Warns you when the transformation is applied to an XSLT 1.0 stylesheet.Version warnings
("-versmsg")

Line numbers where errors occur are included in the output messages.Line numbering ("-l")

Specifies whether or not the attributes defined in the associated DTD or XML Schema
are expanded in the output of the transformation you are executing.

Expand attributes defaults
("-expand")

Specifies whether or not the source document will be validated against their associated
DTD. You can choose from the following:

DTD validation of the source
("-dtd")

• On - Requests DTD validation of the source file and of any files read using the
document() function.

• Off - (default setting) Suppresses DTD validation.
• Recover - Performs DTD validation but treats the errors as non-fatal.

Note: Any external DTD is likely to be read even if not used for validation,
since DTDs can contain definitions of entities.

Allows you to choose how dynamic errors are handled. The following options can be
selected:

Recoverable errors
("-warnings")

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops

processing.

Allows you to choose how the strip whitespaces operation is handled. You can choose
one of the following values:

Strip whitespaces ("-strip")

• All ("all") - Strips all whitespace text nodes from source documents before any
further processing, regardless of any xml:space attributes in the source document.

Oxygen XML Editor plugin | Transforming Documents | 605

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source
documents before any further processing, regardless of any xml:space attributes
in the source document. Whitespace text nodes are ignorable if they appear in
elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Allows you to set the optimization level. It is the value is an integer in the range of 0
(no optimization) to 10 (full optimization). This option allows optimization to be

Optimization level ("-opt")

suppressed when reducing the compiling time is important, optimization conflicts with
debugging, or optimization causes extension functions with side-effects to behave
unpredictably.

Equivalent to the -init Saxon command-line argument. The value is the name of a
user-supplied class that implements the net.sf.saxon.lib.Initializer

Initializer class

interface. This initializer is called during the initialization process, and may be used to
set any options required on the configuration programmatically. It is particularly useful
for tasks such as registering extension functions, collations, or external object models,
especially in Saxon-HE where the option cannot be set via a configuration file. Saxon
only calls the initializer when running from the command line, but the same code may
be invoked to perform initialization when running user application code.

The following advanced options are specific for Saxon 9.6.0.7 Professional Edition (PE) and Enterprise Edition (EE)
only:

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet
using the Saxon 9.6.0.7 processors.

Register Saxon-CE
extension functions and
instructions

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web
browser. This means that you will use Oxygen XML Editor plugin only for
developing the Saxon-CE stylesheet, leaving the execution part to a web
browser. See more details about executing such a stylesheet on Saxonica's
website.

If checked, the stylesheet is allowed to call external Java functions. This does not affect
calls on integrated extension functions, including Saxon and EXSLT extension functions.

Allow calls on extension
functions ("-ext")

This option is useful when loading an untrusted stylesheet (such as from a remote site
using http://[URL]). It ensures that the stylesheet cannot call arbitrary Java methods
and thus gain privileged access to resources on your machine.

The advanced options that are specific for Saxon 9.6.0.7 Enterprise Edition (EE) are as follows:

Use this option to change the default XML Schema version for this transformation.
To change the default XML Schema version globally, open the Preferences dialog

XML Schema version

box and go to XML > XML Parser > XML Schema and use the Default XML
Schema version option.

Requests schema-based validation of the source file and of any files read using
document() or similar functions. It can have the following values:

Validation of the source file
("-val")

• Schema validation ("strict") - This mode requires an XML Schema and enables
parsing the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode
enables parsing the source documents with schema-validation enabled but the
validation will not fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should
be parsed with schema-validation disabled.

Oxygen XML Editor plugin | Transforming Documents | 606

http://www.saxonica.com/ce/index.xml
http://www.saxonica.com/ce/index.xml

Normally, if validation of result documents is requested, a validation error is fatal.
Enabling this option causes such validation failures to be treated as warnings.

Validation errors in the result
tree treated as warnings
("-outval") The validation messages for non-fatal errors

are written (wherever possible) as a comment
in the result document itself.

Write comments for non-fatal
validation errors of the result
document

If you enable this option, Saxon-EE attempts to generate Java bytecode for evaluation
of parts of a query or stylesheet that are amenable to such an action. For further

Generate bytecode
("--generateByteCode:(on|off)")

details regarding this option, go to
http://www.saxonica.com/documentation9.5/index.html#!javadoc.

FO Processor Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine
or an external engine defined in Preferences) during the transformation.

Perform FO
Processing

Choose between the following options to specify which input file to use:Input

• XSLT result as input - The FO processor is applied to the result of the XSLT
transformation that is defined in the XSLT tab.

• XML URL as input - The FO processor is applied to the input XML file.

The output format of the FO processing. The available options depend on the selected processor
type.

Method

Specifies the FO processor to be used for the transformation. It can be the built-in Apache
FOP processor or an external processor.

Processor

Output Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

At the end of the transformation, a file browser dialog box is displayed for specifying the path and
name of the file that stores the transformation result.

Prompt for file

The path of the file where the result of the transformation is stored. You can specify the path by

using the text field, the Insert Editor Variables button, or the Browse button.

Save As

If enabled, Oxygen XML Editor plugin automatically opens the result of the transformation in a
system application associated with the file type of the result (for example, in Windows PDF files
are often opened in Acrobat Reader).

Open in
Browser/System
Application

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to
Window > Preferences > General > Web Browser and specify it there.

• Output file - When Open in Browser/System Application is selected, you can use
this button to automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can
use this option to open the file specified in this field at the end of the transformation.
You can specify the path by using the text field, the Insert Editor Variables button,

or the Browse button.

Oxygen XML Editor plugin | Transforming Documents | 607

http://www.saxonica.com/documentation9.5/index.html#!javadoc

When this is enabled, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is
opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

Open in editor

You can choose to view the results in one of the following:Show in results
view as

• XML - If this is selected, Oxygen XML Editor plugin displays the transformation result in an
XML viewer panel at the bottom of the application window with syntax highlighting.

• XHTML - This option can only be selected if Open in Browser/System Application is disabled.
If selected, Oxygen XML Editor plugin displays the transformation result in a built-in XHTML
browser panel at the bottom of the application window.

Important: When transforming very large documents, you should be aware that
enabling this feature may result in very long processing times. This drawback is due
to the built-in Java XHTML browser implementation. To avoid delays for large
documents, if you want to see the XHTML result of the transformation, you should
use an external browser by selecting the Open in Browser/System Application option
instead.

• Image URLs are relative to - If Show in results view as XHTML is selected,
this option specifies the path used to resolve image paths contained in the
transformation result. You can specify the path by using the text field, the Insert

Editor Variables button, or the Browse button.

Oxygen XML Editor plugin Browser View

The Oxygen XML Editor plugin Browser view is automatically displayed in the views pane of the Eclipse window to
display HTML output from XSLT transformations. It contains a tab for each file with HTML results displayed in the
view.

Figure 372: Browser View

Oxygen XML Editor plugin Text View

The Oxygen XML Editor plugin Text view is automatically displayed in the views pane of the Eclipse window to display
text output from XSLT transformations, FO processor info, warnings, and error messages. It contains a tab for each file
with text results displayed in the view.

Oxygen XML Editor plugin | Transforming Documents | 608

Figure 373:Text View

XML Transformation with XQuery
This type of transformation specifies the transform parameters and location of an XQuery file that is applied to the edited
XML document.

Use the XML transformation with XQuery scenario to apply a transformation in which an XQuery file queries an
XML file for the output results.

To create an XML transformation with XQuery scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XML transformation with XQuery.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XML transformation with XQuery.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XML transformation with XQuery.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XQuery Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XQuery tab contains the following options:

Specifies the source XML file. You can specify the path by using the text field, the Insert Editor
Variables button, or the browsing tools in the Browse drop-down list. This URL is resolved

XML URL

through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is
used directly from its remote location.

Oxygen XML Editor plugin | Transforming Documents | 609

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver.

Specifies the source XQuery file to be used for the transformation. You can specify the path by
using the text field, the Insert Editor Variables button, or the browsing tools in the Browse

XQuery URL

drop-down list. This URL is resolved through the catalog resolver. If the catalog does not have a
mapping for the URL, the file is used directly from its remote location.

This drop-down menu presents all the transformation engines available to Oxygen XML Editor
plugin for performing a transformation. These include the built-in engines and the external engines

Transformer

defined in the Custom Engines preferences page. The engine you choose is used as the default
transformation engine. Also, if an XSLT or XQuery document does not have an associated validation
scenario, this transformation engine is used in the validation process (if it provides validation
support).

Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current
transformation scenario. To configure the same options globally, go to the Saxon-HE/PE/EE

Advanced
options

preferences page. For the current transformation scenario, these Advanced options override the
options configured in that preferences page.

Opens the Configure parameters dialog box for configuring the XQuery parameters. You can use
the buttons in this dialog box to add, edit, or remove parameters. If the XQuery transformation

Parameters

engine is custom-defined, you can not use this dialog box to set parameters. Instead, you can copy
all parameters from the dialog box using contextual menu actions and edit the custom XQuery
engine to include the necessary parameters in the command line that starts the transformation
process.

Opens a dialog box for configuring the XQuery extension jars or classes that define extension Java
functions or extension XSLT elements used in the transformation.

Extensions

XQuery Parameters

The global parameters of the XQuery file used in a transformation scenario can be configured by using the Parameters
button in the XQuery tab.

The resulting dialog box includes a table that displays all the parameters of the current XQuery file, along with their
descriptions and current values. You can also add, edit, and remove parameters, and use the Filter text box to search
for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is checked, the parameter value is evaluated as an XPath expression before starting the XQuery
transformation.

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XQuery file location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations:
doc('${cfdu}/test.xml')//*

2. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

New

Oxygen XML Editor plugin | Transforming Documents | 610

Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

Edit

Resets the selected parameter to its default value. Available only for edited parameters with set values.Unset

Removes the selected parameter from the list. It is enabled only for new parameters that have been
added to the list.

Delete

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related information
Editor Variables on page 134

XQuery Extensions

The Extensions button is used to specify the jars and classes that contain extension functions called from the XQuery
file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the extensions.

An extension function called from the XQuery file of the current transformation scenario will be searched, in the specified
extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and
press the Move up or Move down buttons.

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home
Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the
Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options for each
transformation scenario, while the values set in the preferences page apply as global options. The advanced options
configured in a transformation scenario override the global options defined in the preferences page.

The advanced options for Saxon 9.6.0.7 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are
as follows:

Allows you to choose how dynamic errors are handled. The following options can be
selected:

Recoverable errors
("-warnings")

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops

processing.

Allows you to choose how the strip whitespaces operation is handled. You can choose one
of the following values:

Strip whitespaces
("-strip")

• All ("all") - Strips all whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source
documents before any further processing, regardless of any xml:space attributes in
the source document. Whitespace text nodes are ignorable if they appear in elements
defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Allows you to set the optimization level. It is the value is an integer in the range of 0 (no
optimization) to 10 (full optimization). This option allows optimization to be suppressed

Optimization level
("-opt")

when reducing the compiling time is important, optimization conflicts with debugging, or
optimization causes extension functions with side-effects to behave unpredictably.

Oxygen XML Editor plugin | Transforming Documents | 611

This option activates the linked tree model.Use linked tree model
("-tree:linked")

If enabled (default value), Saxon runs the XQuery transformation with the XQuery 3.0
support.

Enable XQuery 3.0
support
("-qversion:(1.0|3.0)")

Equivalent to the -init Saxon command-line argument. The value is the name of a
user-supplied class that implements the net.sf.saxon.lib.Initializer interface.

Initializer class

This initializer is called during the initialization process, and may be used to set any options
required on the configuration programmatically. It is particularly useful for tasks such as
registering extension functions, collations, or external object models, especially in Saxon-HE
where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform
initialization when running user application code.

The following advanced options are specific for Saxon 9.6.0.7 Professional Edition (PE) and Enterprise Edition (EE)
only:

Sets a Saxon 9.6.0.7 configuration file that is used for XQuery transformation
and validation scenarios.

Use a configuration file ("-config")

If checked, calls on external functions are allowed. Checking this option is
recommended in an environment where untrusted stylesheets may be executed.

Allow calls on extension functions
("-ext")

It also disables user-defined extension elements and the writing of multiple output
files, both of which carry similar security risks.

The advanced options that are specific for Saxon 9.6.0.7 Enterprise Edition (EE) are as follows:

Requests schema-based validation of the source file and of any files read using
document() or similar functions. It can have the following values:

Validation of the source file
("-val")

• Schema validation ("strict") - This mode requires an XML Schema and enables
parsing the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode
enables parsing the source documents with schema-validation enabled but the
validation will not fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should
be parsed with schema-validation disabled.

Normally, if validation of result documents is requested, a validation error is fatal.
Enabling this option causes such validation failures to be treated as warnings.

Validation errors in the result
tree treated as warnings
("-outval") The validation messages for non-fatal errors

are written (wherever possible) as a comment
in the result document itself.

Write comments for non-fatal
validation errors of the result
document

If you enable this option, Saxon-EE attempts to generate Java bytecode for evaluation
of parts of a query or stylesheet that are amenable to such an action. For further

Generate bytecode
("--generateByteCode:(on|off)")

details regarding this option, go to
http://www.saxonica.com/documentation9.5/index.html#!javadoc.

This option controls whether or not XQuery update syntax is accepted. The default
value is off.

Enable XQuery update
("-update:(on|off)")

If checked, backup versions for any XML files
updated with an XQuery Update are generated. This

Backup files updated by
XQuery
("-backup:(on|off)") option is available when the Enable XQuery

update option is enabled.

Oxygen XML Editor plugin | Transforming Documents | 612

http://www.saxonica.com/documentation9.5/index.html#!javadoc

FO Processor Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine
or an external engine defined in Preferences) during the transformation.

Perform FO
Processing

Choose between the following options to specify which input file to use:Input

• XQuery result as input - The FO processor is applied to the result of the XQuery
transformation that is defined in the XQuery tab.

• XML URL as input - The FO processor is applied to the input XML file.

The output format of the FO processing. The available options depend on the selected processor
type.

Method

Specifies the FO processor to be used for the transformation. It can be the built-in Apache
FOP processor or an external processor.

Processor

Output Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

Enabling this option will reduce the time necessary to fetch the full results, as it will only fetch
the first chunk of the results.

Present as a
sequence

At the end of the transformation, a file browser dialog box is displayed for specifying the path
and name of the file that stores the transformation result.

Prompt for file

The path of the file where the result of the transformation is stored. You can specify the path by

using the text field, the Insert Editor Variables button, or the Browse button.

Save As

If enabled, Oxygen XML Editor plugin automatically opens the result of the transformation in a
system application associated with the file type of the result (for example, in Windows PDF files
are often opened in Acrobat Reader).

Open in
Browser/System
Application

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to
Window > Preferences > General > Web Browser and specify it there.

• Output file - When Open in Browser/System Application is selected, you can use
this button to automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can
use this option to open the file specified in this field at the end of the transformation.
You can specify the path by using the text field, the Insert Editor Variables button,

or the Browse button.

When this is enabled, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it

Open in editor

is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO
editor).

You can choose to view the results in one of the following:Show in results
view as

• XML - If this is selected, Oxygen XML Editor plugin displays the transformation result in an
XML viewer panel at the bottom of the application window with syntax highlighting.

Oxygen XML Editor plugin | Transforming Documents | 613

• XHTML - This option can only be selected if Open in Browser/System Application is
disabled. If selected, Oxygen XML Editor plugin displays the transformation result in a built-in
XHTML browser panel at the bottom of the application window.

Important: When transforming very large documents, you should be aware that
enabling this feature may result in very long processing times. This drawback is due
to the built-in Java XHTML browser implementation. To avoid delays for large
documents, if you want to see the XHTML result of the transformation, you should
use an external browser by selecting the Open in Browser/System Application
option instead.

• Image URLs are relative to - If Show in results view as XHTML is selected,
this option specifies the path used to resolve image paths contained in the
transformation result. You can specify the path by using the text field, the Insert

Editor Variables button, or the Browse button.

DITA OT Transformation
This type of transformation specifies the parameters for an Ant transformation that executes a DITA-OT build script.
Oxygen XML Editor plugin includes a built-in version of Ant and a built-in version of DITA-OT, but other versions
can be set in the scenario.

To create a DITA OT Transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select DITA OT Transformation.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select DITA OT Transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select DITA OT Transformation.

All three methods open the DITA Transformation Type dialog box that presents the list of possible outputs.

Figure 374: DITA Transformation Type Dialog Box

Select the desired type of output and click OK. This opens the New Scenario dialog box.

Oxygen XML Editor plugin | Transforming Documents | 614

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation. Some of these tabs are only available for certain output types (for example, a Skins tab is only available
for WebHelp Classic and WebHelp Classic with Feedback output types, a Templates tab is available only for WebHelp
Responsive and WebHelp Responsive with Feedback, and a FO Processor tab is available for PDF output).

Skins Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Skins tab is available for DITA OT transformations with WebHelp Classic or WebHelp Classic with Feedback
output types and it provides a set of predefined skins that you can use as a base for your WebHelp system output.

A skin is a collection of CSS properties that can alter the look of the output by changing colors, font types, borders,
margins, and paddings. This allows you to rapidly adapt the look and feel of your output.

Figure 375: Skins Tab

The Skins tab includes the following sections:

This sections presents the predefined skins that are included in Oxygen XML Editor plugin. The
predefined skins cover a wide range of chromatic themes, ranging from a very light one to a

Predefined Skins

high-contrast variant. To see how the skin looks when applied on a sample documentation project
that is stored on the Oxygen XML Editor plugin website, press the Online preview link.

You can use this section to customize the look of the output.Custom Skins

You can set this field to point to a custom CSS stylesheet or customized skin.
A custom CSS file will overwrite a skin selection.

CSS File

Note: The output can also be styled by setting the args.css
parameter in the Parameters tab. The properties taken from the
stylesheet referenced in this parameter take precedence over the
properties declared in the skin set in the Skins tab.

Use this link to open the WebHelp Skin Builder tool.Create custom
skin

Oxygen XML Editor plugin | Transforming Documents | 615

Templates Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Templates tab is available for DITA OT transformations with WebHelp Responsive or WebHelp Responsive
with Feedback output types and it provides a set of predefined skins that you can use as a base for the layout of your
WebHelp system output.

A skin is a collection of CSS properties that can alter the look of the output by changing colors, font types, borders,
margins, and paddings. This allows you to rapidly adapt the look and feel of your output. You can choose predefined
skins in a tile style of layout or a tree style of layout, and you can also add your own customized skins.

Figure 376:Templates Tab

The Templates tab comes by default with the following predefined collections of skins:

This sections presents the predefined skins that are arranged in a tiles style of layout. These predefined
skins include a variety of themes, ranging from a very light one to a high-contrast variant, and various

Tiles

styles. If you select Choose custom skin, you can select a custom CSS stylesheet to be used as your
template.

This sections presents the predefined skins that are arranged in a tree style of layout. These predefined
skins include a variety of themes, ranging from a very light one to a high-contrast variant, and various

Tree

styles. If you select Choose custom skin, you can select a custom CSS stylesheet to be used as your
template.

When you add a new collection of skins, this tab will list them.

Oxygen XML Editor plugin | Transforming Documents | 616

FO Processor Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab is available for DITA OT transformations with a PDF output type.

This tab allows you to select an FO Processor to be used for the transformation.

Figure 377: FO Processor Configuration Tab

You can choose one of the following processors:

The default processor that comes bundled with Oxygen XML Editor plugin.Apache FOP

The RenderX XEP processor. If XEP is already installed, Oxygen XML Editor plugin displays the
detected installation path under the drop-down menu. XEP is considered installed if it was detected
in one of the following sources:

XEP

• XEP was configured as an external FO Processor in the FO Processors option page.
• The system property com.oxygenxml.xep.location was set to point to the XEP executable file for

the platform (for example: xep.bat on Windows).
• XEP was installed in the DITA_OT_DIR/plugins/org.dita.pdf2/lib directory of the

Oxygen XML Editor plugin installation directory.

The Antenna House (AH Formatter) processor. If Antenna House is already installed, Oxygen XML
Editor plugindisplays the detected installation path under the drop-down menu. Antenna House is
considered installed if it was detected in one of the following sources:

Antenna
House

• Environment variable set by Antenna House installation (the newest installation version will be
used).

• Antenna House was added as an external FO Processor in the Oxygen XML Editor plugin
preferences pages.

To further customize the PDF output obtained from the Antenna House processor, follow these steps:

1. Edit the transformation scenario.
2. Open the Parameters tab.
3. Add the env.AXF_OPT parameter and point to the Antenna House configuration file.

Related information
FO Processors Preferences on page 124

XSL-FO Processors on page 648

Oxygen XML Editor plugin | Transforming Documents | 617

http://www.renderx.com/
http://www.antennahouse.com/

Parameters Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Parameters tab allows you to configure the parameters sent to the DITA-OT build file.

The table in this tab displays all the parameters that the DITA-OT documentation specifies as available for each chosen
type of transformation (for example, XHTML or PDF), along with their description and current values. You can find
more information about each parameter in the DITA OT Documentation. You can also add, edit, and remove parameters,
and you can use the text box to filter or search for a specific term in the entire parameters collection. Note that edited
parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

• A simple text field for simple parameter values.
• A combo box with some predefined values.
• A file chooser and an editor variable selector to simplify setting a file path as the value of a parameter.

Note: To input parameter values at runtime, use the ask editor variable in the Value column.

Below the table, the following actions are available for managing parameters:

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can

specify the Value of the parameter by using the Insert Editor Variables button or the Browse
button.

New

Resets the selected parameter to its default value. Available only for edited parameters with set
values.

Unset

Opens the Edit Parameter dialog box that allows you to change the value of the selected parameter
or its description.

Edit

Removes the selected parameter from the list. It is enabled only for new parameters that have been
added to the list.

Delete

Related information
DITA Open Toolkit Documentation

Filters Tab (DITA Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Filters tab allows you to add filters to remove certain content elements from the generated output.

Oxygen XML Editor plugin | Transforming Documents | 618

http://dita-ot.sourceforge.net/1.6/readme/dita-ot_ant_properties.html
http://www.dita-ot.org/

Figure 378: Edit Filters tab

You can choose one of the following options to define filters:

If you already have a DITAVAL file associated with the DITA map, you can specify
the file to be used when filtering content. You can specify the path by using the text

Use DITAVAL file

field, the history drop-down menu, the Insert Editor Variables button, or the

Browse button. You can find out more about constructing a DITAVAL file in the
DITA OT Documentation.

Attention: If a filter file is specified in the args.filter parameter (in
the Parameters tab), that file takes precedence over a DITAVAL file specified
here.

Sets the profiling condition set that will be applied to your transformation.Use profiling condition set

By using the New, Edit, or Delete buttons at the bottom of the pane, you
can configure a list of attributes (name and value) to exclude all elements that contain
any of these attributes from the output.

Exclude from output all
elements with any of the
following attributes

Advanced Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Advanced tab allows you to specify advanced options for the transformation scenario.

Oxygen XML Editor plugin | Transforming Documents | 619

http://docs.oasis-open.org/dita/v1.2/os/spec/common/about-ditaval.html

Figure 379: Advanced Settings Tab

You can specify the following parameters:

If you use a custom DITA-OT build file, you can specify the path to the customized build file.
If empty, the build.xml file from the dita.dir parameter that is configured in the Parameters

Custom build file

tab is used. You can specify the path by using the text field, the Insert Editor Variables

button, or the Browse button.

Optionally, you can specify a build target for the build file. If no target is specified, the default
init target is used.

Build target

You can specify additional command line arguments to be passed to the transformation (such
as -verbose).

Additional
arguments

You can choose between the default or custom Ant installation to run the transformation.Ant Home

You can choose between the default or custom Java installation to run the transformation. The
default path is the Java installation that is used by Oxygen XML Editor plugin.

Java Home

Note: It may be possible that the used Java version is incompatible with the DITA
Open Toolkit engine. For example, DITA OT 1.8.5 and older requires Java 1.6 or later,
while DITA OT 2.0 and newer requires Java 1.7 or newer. Thus, if you encounter
related errors running the transformation, consider installing a Java VM that is supported
by the DITA OT publishing engine and using it in the Java Home text field.

This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant.
For example, if it is set to -Xmx384m, the transformation process is allowed to use 384 megabytes

JVM Arguments

of memory. When performing a large transformation, you may want to increase the memory
allocated to the Java Virtual Machine. This will help avoid Out of Memory error messages
(OutOfMemoryError).

Oxygen XML Editor plugin | Transforming Documents | 620

By default, Oxygen XML Editor plugin adds libraries (as high priority) that are not
transformation-dependent and also patches for certain DITA Open Toolkit bugs. You can use

Libraries

this button to specify additional libraries (jar files or additional class paths) to be used by the
Ant transformer.

Output Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab allows you to configure options that are related to the location where the output is generated.

Figure 380: Output Settings Tab

You can specify the following parameters:

All the relative paths that appear as values in parameters are considered relative to the base
directory. The default value is the directory where the transformed map is located. You can

Base directory

specify the path by using the text field, the Insert Editor Variables button, or the Browse
button.

This directory is used to store pre-processed temporary files until the final output is obtained.
You can specify the path by using the text field, the Insert Editor Variables button, or the

Browse button.

Temporary files
directory

The folder where the content of the final output is stored. You can specify the path by using

the text field, the Insert Editor Variables button, or the Browse button.

Output directory

Note: If the DITA map or topic is opened from a remote location or a ZIP file, the
parameters must specify absolute paths.

Oxygen XML Editor plugin | Transforming Documents | 621

If enabled, Oxygen XML Editor plugin automatically opens the result of the transformation in
a system application associated with the file type of the result (for example, in Windows PDF
files are often opened in Acrobat Reader).

Open in
Browser/System
Application

Note: To set the web browser that is used for displaying HTML/XHTML pages, go
to Window > Preferences > General > Web Browser and specify it there.

• Output file - When Open in Browser/System Application is selected, you can
use this button to automatically open the default output file at the end of the
transformation.

• Other location - When Open in Browser/System Application is selected, you
can use this option to open the file specified in this field at the end of the
transformation. You can specify the path by using the text field, the Insert Editor

Variables button, or the Browse button.

When this is enabled, at the end of the transformation, the default output file is opened in a
new editor panel with the appropriate built-in editor type (for example, if the result is an XML

Open in editor

file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the
built-in FO editor).

Troubleshooting DITA Transformation Errors

If a DITA transformation results in errors or warnings, the information is displayed in the message panel at the bottom
of the editor. The information includes the severity, description of the problem, the name of the resource, and the path
of the resource.

To help prevent and solve DITA transformation problems, follow these steps:

1. Validate the DITA map by using the Validate and Check for Completeness action that is available on the DITA
Maps Manager toolbar and in the DITA Maps menu.

2. If this action results in validation errors, solve them prior to executing the transformation. Also, you should pay
attention to the warning messages because they may identify problems in the transformation.

3. Run the DITA transformation scenario.
4. If the transformation results in errors or warnings, they are displayed in the Transformation problems message

panel at the bottom of the editor. The following information is presented to help you troubleshoot the problems:

• Severity - The first column displays the following icons that indicate the severity of the problem:

• Informational - The transformation encountered a condition of which you should be aware.

• Warning - The transformation encountered a problem that should be corrected.

• Error - The transformation encountered a more severe problem, and the output is affected or cannot be
generated.

• Info - You can click the See More icon to open a web page that contains details about DITA-OT error messages.
• Description - A description of the problem.
• Resource - The name of the transformation resource.
• System ID - The path of the transformation resource.

5. Use this information or other resources from the online DITA-OT community to solve the transformation problems
before re-executing the transformation scenario.

Ant Transformation
This type of transformation allows you to configure the options and parameters of an Ant build script.

An Ant transformation scenario is usually associated with an Ant build script. Oxygen XML Editor plugin runs an Ant
transformation scenario as an external process that executes the Ant build script with the built-in Ant distribution (Apache
Ant version 1.8.2) that is included with the application, or optionally with a custom Ant distribution configured in the
scenario.

Oxygen XML Editor plugin | Transforming Documents | 622

To create an Ant transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select ANT transformation.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select ANT transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select ANT transformation.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

Options Tab (Ant Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Options tab allows you to specify the following options:

The path of the current directory of the Ant external process. You can specify the path by

using the text field, the Insert Editor Variables button, or the Browse button.

Working directory

The Ant script file that is the input of the Ant external process. You can specify the path by

using the text field, the Insert Editor Variables button, or the Browse button.

Build file

Optionally, you can specify a build target for the Ant script file. If no target is specified, the
Ant target that is specified as the default in the Ant script file is used.

Build target

You can specify additional command line arguments to be passed to the transformation (such
as -verbose).

Additional arguments

You can choose between the default or custom Ant installation to run the transformation.Ant Home

You can choose between the default or custom Java installation to run the transformation.
The default path is the Java installation that is used by Oxygen XML Editor plugin.

Java Home

This parameter allows you to set specific parameters for the Java Virtual Machine used by
Ant. For example, if it is set to -Xmx384m, the transformation process is allowed to use 384

JVM Arguments

megabytes of memory. When performing a large transformation, you may want to increase
the memory allocated to the Java Virtual Machine. This will help avoid Out of Memory error
messages (OutOfMemoryError).

By default, Oxygen XML Editor plugin adds libraries (as high priority) that are not
transformation-dependent and also patches for certain DITA Open Toolkit bugs. You can

Libraries

use this button to specify additional libraries (jar files or additional class paths) to be used
by the Ant transformer.

Parameters Tab (Ant Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Parameters tab allows you to configure the parameters that are accessible as Ant properties in the Ant build script.

Oxygen XML Editor plugin | Transforming Documents | 623

The table displays all the parameters that are available in the Ant build script, along with their description and current
values. You can also add, edit, and remove parameters, and use the Filter text box to search for a specific term in the
entire parameters collection. Note that edited parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

• A simple text field for simple parameter values.
• A combo box with some predefined values.
• A file chooser and an editor variable selector to simplify setting a file path as the value of a parameter.

Note: To input parameter values at runtime, use the ask editor variable in the Value column.

Below the table, the following actions are available for managing parameters:

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can

specify the Value of the parameter by using the Insert Editor Variables button or the Browse
button.

New

Opens the Edit Parameter dialog box that allows you to change the value of the selected parameter
or its description.

Edit

Removes the selected parameter from the list. It is enabled only for new parameters that have been
added to the list.

Delete

Output Tab (Ant Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

Allows you to specify the file to open automatically when the transformation is finished. This is
usually the output file of the Ant process. You can specify the path by using the text field, the Insert

Editor Variables button, or the Browse button.

Open

• In System Application - The file specified in the Open text box is opened in the system application
that is set in the operating system as the default application for that type of file (for example, in
Windows PDF files are often opened in Acrobat Reader).

• In Editor - The file specified in the Open text box is opened in a new editor panel with the
appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in
XML editor).

Allows you to specify when to display the console output log. The following options are available:Show console
output

• When build fails - displays the console output log if the build fails.
• Always - displays the console output log, regardless of whether or not the build fails.

XSLT Transformation
This type of transformation specifies the parameters and location of an XML document that the edited XSLT stylesheet
is applied on. This scenario is useful when you develop an XSLT document and the XML document is in its final form.

To create an XSLT transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XSLT transformation.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XSLT transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

Oxygen XML Editor plugin | Transforming Documents | 624

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XSLT transformation.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XSLT Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XSLT tab contains the following options:

Specifies the source XML file. You can specify the path by using the text field, the Insert Editor
Variables button, or the browsing tools in the Browse drop-down list. This URL is resolved

XML URL

through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is
used directly from its remote location.

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver. If the transformer engine
is one of the built-in XSLT 2.0 / 3.0 engines and the name of an initial template is specified in the scenario, the
XML URL field can be empty. The XML URL field can also be empty if you use external XSLT processors.
Otherwise, a value is mandatory in this field.

Specifies the source XSL file that the transformation will use. You can specify the path by using
the text field, the Insert Editor Variables button, or the browsing tools in the Browse

XSL URL

drop-down list. This URL is resolved through the catalog resolver. If the catalog does not have
a mapping for the URL, the file is used directly from its remote location.

If enabled, the scenario applies the stylesheet specified explicitly in the XML document with
the xml-stylesheet processing instruction. By default, this option is disabled and the
transformation applies the XSLT stylesheet that is specified in the XSL URL field.

Use "xml-stylesheet"
declaration

This drop-down menu presents all the transformation engines available to Oxygen XML Editor
plugin for performing a transformation. These include the built-in engines and the external

Transformer

engines defined in the Custom Engines preferences page. The engine you choose is used as the
default transformation engine. Also, if an XSLT or XQuery document does not have an associated
validation scenario, this transformation engine is used in the validation process (if it provides
validation support).

Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current
transformation scenario. To configure the same options globally, go to the Saxon-HE/PE/EE

Advanced options

preferences page. For the current transformation scenario, these Advanced options override
the options configured in that preferences page.

Opens a Configure parameters dialog box that allows you to configure the XSLT parameters
used in the current transformation. In this dialog box, you can also configure the parameters for

Parameters

additional XSLT stylesheets. If the XSLT transformation engine is custom-defined, you can not
use this dialog box to configure the parameters sent to the custom engine. Instead, you can copy
all parameters from the dialog box using contextual menu actions and edit the custom XSLT
engine to include the necessary parameters in the command line that starts the transformation
process.

Oxygen XML Editor plugin | Transforming Documents | 625

Opens a dialog box for configuring the XSLT extension jars or classes that define extension
Java functions or extension XSLT elements used in the transformation.

Extensions

Opens a dialog box for adding XSLT stylesheets that are applied on the main stylesheet specified
in the XSL URL field. This is useful when a chain of XSLT stylesheets must be applied to the
input XML document.

Additional XSLT
stylesheets

XSLT Parameters

The global parameters of the XSLT stylesheet used in a transformation scenario can be configured by using the Parameters
button in the XSLT tab of a new or edited transformation scenario dialog box.

The resulting dialog box includes a table that displays all the parameters of the current XSLT stylesheet, all imported
and included stylesheets, and all additional stylesheets, along with their descriptions and current values. You can also
add, edit, and remove parameters, and you can use the Filter text box to search for a specific term in the entire parameters
collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is checked, the parameter value is evaluated as an XPath expression before starting the XSLT
transformation.

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XSL stylesheet location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations:
doc('${cfdu}/test.xml')//*

2. You cannot use XSLT Functions. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

New

Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

Edit

Resets the selected parameter to its default value. Available only for edited parameters with set values.Unset

Removes the selected parameter from the list. It is enabled only for new parameters that have been
added to the list.

Delete

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related information
Editor Variables on page 134

XSLT Extensions

The Extensions button is used to specify the jars and classes that contain extension functions called from the XSLT file
of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the extensions.

Oxygen XML Editor plugin | Transforming Documents | 626

An extension function called from the XSLT file of the current transformation scenario will be searched, in the specified
extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and
press the Move up or Move down buttons.

Additional XSLT Stylesheets

Use the Additional XSLT Stylesheets button in the XSLT tab to display a list of additional XSLT stylesheets to be
used in the transformation and you can add files to the list or edit existing entries. The following actions are available:

Adds a stylesheet in the Additional XSLT stylesheets list using a file browser dialog box. You
can type an editor variable in the file name field of the browser dialog box. The name of the
stylesheet will be added in the list after the current selection.

Add

Deletes the selected stylesheet from the Additional XSLT stylesheets list.Remove

Moves the selected stylesheet up in the list.Up

Moves the selected stylesheet down in the list.Down

Advanced Saxon HE/PE/EE XSLT Transformation Options

The XSLT transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home
Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the
Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options for each
transformation scenario, while the values set in the preferences page apply as global options. The advanced options
configured in a transformation scenario override the global options defined in the preferences page.

The advanced options for Saxon 9.6.0.7 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are
as follows:

A Saxon-specific option that sets the initial mode for the transformation.Mode ("-im")

A Saxon-specific option that sets the name of the initial XSLT template to be executed.Template ("-it")

Sets a Saxon 9.6.0.7 configuration file that is executed for XSLT transformation and
validation processes.

Use a configuration file
("-config")

Instructs the XSLT Debugger to step into XPath expressions.Debugger trace into XPath
expressions (applies to
debugging sessions)

Warns you when the transformation is applied to an XSLT 1.0 stylesheet.Version warnings
("-versmsg")

Line numbers where errors occur are included in the output messages.Line numbering ("-l")

Specifies whether or not the attributes defined in the associated DTD or XML Schema
are expanded in the output of the transformation you are executing.

Expand attributes defaults
("-expand")

Specifies whether or not the source document will be validated against their associated
DTD. You can choose from the following:

DTD validation of the source
("-dtd")

• On - Requests DTD validation of the source file and of any files read using the
document() function.

• Off - (default setting) Suppresses DTD validation.
• Recover - Performs DTD validation but treats the errors as non-fatal.

Note: Any external DTD is likely to be read even if not used for validation,
since DTDs can contain definitions of entities.

Allows you to choose how dynamic errors are handled. The following options can be
selected:

Recoverable errors
("-warnings")

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.

Oxygen XML Editor plugin | Transforming Documents | 627

• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops
processing.

Allows you to choose how the strip whitespaces operation is handled. You can choose
one of the following values:

Strip whitespaces ("-strip")

• All ("all") - Strips all whitespace text nodes from source documents before any
further processing, regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source
documents before any further processing, regardless of any xml:space attributes
in the source document. Whitespace text nodes are ignorable if they appear in
elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Allows you to set the optimization level. It is the value is an integer in the range of 0
(no optimization) to 10 (full optimization). This option allows optimization to be

Optimization level ("-opt")

suppressed when reducing the compiling time is important, optimization conflicts with
debugging, or optimization causes extension functions with side-effects to behave
unpredictably.

Equivalent to the -init Saxon command-line argument. The value is the name of a
user-supplied class that implements the net.sf.saxon.lib.Initializer

Initializer class

interface. This initializer is called during the initialization process, and may be used to
set any options required on the configuration programmatically. It is particularly useful
for tasks such as registering extension functions, collations, or external object models,
especially in Saxon-HE where the option cannot be set via a configuration file. Saxon
only calls the initializer when running from the command line, but the same code may
be invoked to perform initialization when running user application code.

The following advanced options are specific for Saxon 9.6.0.7 Professional Edition (PE) and Enterprise Edition (EE)
only:

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet
using the Saxon 9.6.0.7 processors.

Register Saxon-CE
extension functions and
instructions

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web
browser. This means that you will use Oxygen XML Editor plugin only for
developing the Saxon-CE stylesheet, leaving the execution part to a web
browser. See more details about executing such a stylesheet on Saxonica's
website.

If checked, the stylesheet is allowed to call external Java functions. This does not affect
calls on integrated extension functions, including Saxon and EXSLT extension functions.

Allow calls on extension
functions ("-ext")

This option is useful when loading an untrusted stylesheet (such as from a remote site
using http://[URL]). It ensures that the stylesheet cannot call arbitrary Java methods
and thus gain privileged access to resources on your machine.

The advanced options that are specific for Saxon 9.6.0.7 Enterprise Edition (EE) are as follows:

Use this option to change the default XML Schema version for this transformation.
To change the default XML Schema version globally, open the Preferences dialog

XML Schema version

box and go to XML > XML Parser > XML Schema and use the Default XML
Schema version option.

Requests schema-based validation of the source file and of any files read using
document() or similar functions. It can have the following values:

Validation of the source file
("-val")

• Schema validation ("strict") - This mode requires an XML Schema and enables
parsing the source documents with strict schema-validation enabled.

Oxygen XML Editor plugin | Transforming Documents | 628

http://www.saxonica.com/ce/index.xml
http://www.saxonica.com/ce/index.xml

• Lax schema validation ("lax") - If an XML Schema is provided, this mode
enables parsing the source documents with schema-validation enabled but the
validation will not fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should
be parsed with schema-validation disabled.

Normally, if validation of result documents is requested, a validation error is fatal.
Enabling this option causes such validation failures to be treated as warnings.

Validation errors in the result
tree treated as warnings
("-outval") The validation messages for non-fatal errors

are written (wherever possible) as a comment
in the result document itself.

Write comments for non-fatal
validation errors of the result
document

If you enable this option, Saxon-EE attempts to generate Java bytecode for evaluation
of parts of a query or stylesheet that are amenable to such an action. For further

Generate bytecode
("--generateByteCode:(on|off)")

details regarding this option, go to
http://www.saxonica.com/documentation9.5/index.html#!javadoc.

FO Processor Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine
or an external engine defined in Preferences) during the transformation.

Perform FO
Processing

Choose between the following options to specify which input file to use:Input

• XSLT result as input - The FO processor is applied to the result of the XSLT
transformation that is defined in the XSLT tab.

• XML URL as input - The FO processor is applied to the input XML file.

The output format of the FO processing. The available options depend on the selected processor
type.

Method

Specifies the FO processor to be used for the transformation. It can be the built-in Apache
FOP processor or an external processor.

Processor

Output Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

At the end of the transformation, a file browser dialog box is displayed for specifying the path and
name of the file that stores the transformation result.

Prompt for file

The path of the file where the result of the transformation is stored. You can specify the path by

using the text field, the Insert Editor Variables button, or the Browse button.

Save As

If enabled, Oxygen XML Editor plugin automatically opens the result of the transformation in a
system application associated with the file type of the result (for example, in Windows PDF files
are often opened in Acrobat Reader).

Open in
Browser/System
Application

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to
Window > Preferences > General > Web Browser and specify it there.

• Output file - When Open in Browser/System Application is selected, you can use
this button to automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can
use this option to open the file specified in this field at the end of the transformation.

Oxygen XML Editor plugin | Transforming Documents | 629

http://www.saxonica.com/documentation9.5/index.html#!javadoc

You can specify the path by using the text field, the Insert Editor Variables button,

or the Browse button.

When this is enabled, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is
opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

Open in editor

You can choose to view the results in one of the following:Show in results
view as

• XML - If this is selected, Oxygen XML Editor plugin displays the transformation result in an
XML viewer panel at the bottom of the application window with syntax highlighting.

• XHTML - This option can only be selected if Open in Browser/System Application is disabled.
If selected, Oxygen XML Editor plugin displays the transformation result in a built-in XHTML
browser panel at the bottom of the application window.

Important: When transforming very large documents, you should be aware that
enabling this feature may result in very long processing times. This drawback is due
to the built-in Java XHTML browser implementation. To avoid delays for large
documents, if you want to see the XHTML result of the transformation, you should
use an external browser by selecting the Open in Browser/System Application option
instead.

• Image URLs are relative to - If Show in results view as XHTML is selected,
this option specifies the path used to resolve image paths contained in the
transformation result. You can specify the path by using the text field, the Insert

Editor Variables button, or the Browse button.

XProc Transformation
This type of transformation specifies the parameters and location of an XProc script.

A sequence of transformations described by an XProc script can be executed with an XProc transformation scenario.
To create an XProc transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XProc transformation.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XProc transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XProc transformation.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XProc Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

Oxygen XML Editor plugin | Transforming Documents | 630

The XProc tab contains the following options:

Specify the source XSL file to be used by the transformation. You can specify the path by using
the text field, the Insert Editor Variables button, or the browsing tools in the Browse

XProc URL

drop-down list. This URL is resolved through the catalog resolver. If the catalog does not have a
mapping for the URL, the file is used directly from its remote location.

Allows you to select the XProc engine to be used for the transformation. You can select the built-in
Calabash engine or a custom engine that is configured in the Preferences dialog box.

Processor

Inputs Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Inputs tab contains a list with the ports that the XProc script uses to read input data. Use the Filter text box to
search for a specific term in the entire ports collection.

Each input port has an assigned name in the XProc script. The XProc engine reads data from the URL specified in the
URL column.

The following actions are available for managing the input ports:

Opens an Edit dialog box that allows you to add a new port and its URL. The built-in editor variables
and custom editor variables can be used to specify the URL.

New

Opens an Edit dialog box that allows you to modify the selected port and its URL. The built-in
editor variables and custom editor variables can be used to specify the URL.

Edit

Removes the selected port from the list. It is enabled only for new ports that have been added to
the list.

Delete

Parameters Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Parameters tab presents a list of ports and parameters collected from the XProc script. The tab is divided into three
sections:

In this section, you can use the New and Delete buttons to add or remove ports.List of Ports

This section presents a list of parameters for each port and includes columns for the parameter
name, namespace URI, and its value. Use the Filter text box to search for a specific term

List of Parameters

in the entire parameters collection. You can use the New and Delete buttons to add or remove
parameters. You can edit the value of each cell in this table by double-clicking the cell. You
can also sort the parameters by clicking the column headers.

The built-in editor variables and custom editor variables can be used for specifying the
URI. The message pane at the bottom of the dialog box provides more information about
the editor variables that can be used.

Editor Variable
Information

Outputs Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Outputs tab displays a list of output ports (along with the URL) collected from the XProc script. Use the Filter
text box to search for a specific term in the entire ports collection. You can also sort the columns by clicking the column
headers.

The following actions are available for managing the output ports:

Opens an Edit dialog box that allows you to add a new output port and its URL. An editor variable can
be inserted for the URL by using the Insert Editor Variables button. There is also a Show in

New

Oxygen XML Editor plugin | Transforming Documents | 631

transformation results view option that allows you to select whether or not the results will be displayed
in the output results view.

Opens an Edit dialog box that allows you to edit an existing output port and its URL. An editor variable

can be inserted for the URL by using the Insert Editor Variables button. There is also a Show in
Edit

transformation results view option that allows you to select whether or not the results will be displayed
in the output results view.

Removes the selected output port from the list. It is enabled only for new ports that have been added to
the list.

Delete

Additional options that are available at the bottom of this tab include:

If this option is selected, the XProc transformation result is automatically opened in
an editor panel.

Open in Editor

If this option is selected, you can specify a file to be opened at the end of the XProc
transformation in the browser or system application that is associated with the file type.

Open in Browser/System
Application

You can specify the path by using the text field, the Insert Editor Variables button,
or the browsing tools in the Browse drop-down list.

Results

The result of the XProc transformation can be displayed as a sequence in an output view with two sections:

• A list with the output ports on the left side.
• The content that correspond to the selected output port on the right side.

Figure 381: XProc Transformation Results View

Options Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Options tab displays a list of the options collected from the XProc script. The tab is divided into two sections:

This section presents a list of options and includes columns for the option name, namespace
URI, and its value. Use the Filter text box to search for a specific term in the entire options

List of Options

collection. You can use the New and Delete buttons to add or remove options. You can edit
the value of each cell in this table by double-clicking the cell. You can also sort the parameters
by clicking the column headers. The names of edited options are displayed in bold.

The built-in editor variables and custom editor variables can be used for specifying the URI.
This section provides more information about the editor variables that can be used.

Editor Variable
Information

XQuery Transformation
This type of transformation specifies the parameters and location of an XML source that the edited XQuery file is applied
on.

Oxygen XML Editor plugin | Transforming Documents | 632

Note: When the XML source is a native XML database, the source field of the scenario is empty because the
XML data is read with XQuery-specific functions, such as document(). When the XML source is a local
XML file, the URL of the file is specified in the input field of the scenario.

To create an XQuery transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XQuery transformation.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select XQuery transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XQuery transformation.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XQuery Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XQuery tab contains the following options:

Specifies the source XML file. You can specify the path by using the text field, the Insert Editor
Variables button, or the browsing tools in the Browse drop-down list. This URL is resolved

XML URL

through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is
used directly from its remote location.

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver.

Specifies the source XQuery file to be used for the transformation. You can specify the path by
using the text field, the Insert Editor Variables button, or the browsing tools in the Browse

XQuery URL

drop-down list. This URL is resolved through the catalog resolver. If the catalog does not have a
mapping for the URL, the file is used directly from its remote location.

This drop-down menu presents all the transformation engines available to Oxygen XML Editor
plugin for performing a transformation. These include the built-in engines and the external engines

Transformer

defined in the Custom Engines preferences page. The engine you choose is used as the default
transformation engine. Also, if an XSLT or XQuery document does not have an associated validation
scenario, this transformation engine is used in the validation process (if it provides validation
support).

Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current
transformation scenario. To configure the same options globally, go to the Saxon-HE/PE/EE

Advanced
options

preferences page. For the current transformation scenario, these Advanced options override the
options configured in that preferences page.

Opens the Configure parameters dialog box for configuring the XQuery parameters. You can use
the buttons in this dialog box to add, edit, or remove parameters. If the XQuery transformation

Parameters

Oxygen XML Editor plugin | Transforming Documents | 633

engine is custom-defined, you can not use this dialog box to set parameters. Instead, you can copy
all parameters from the dialog box using contextual menu actions and edit the custom XQuery
engine to include the necessary parameters in the command line that starts the transformation
process.

Opens a dialog box for configuring the XQuery extension jars or classes that define extension Java
functions or extension XSLT elements used in the transformation.

Extensions

XQuery Parameters

The global parameters of the XQuery file used in a transformation scenario can be configured by using the Parameters
button in the XQuery tab.

The resulting dialog box includes a table that displays all the parameters of the current XQuery file, along with their
descriptions and current values. You can also add, edit, and remove parameters, and use the Filter text box to search
for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is checked, the parameter value is evaluated as an XPath expression before starting the XQuery
transformation.

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XQuery file location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations:
doc('${cfdu}/test.xml')//*

2. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

New

Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor

variable can be inserted in the text box using the Insert Editor Variables button. If the Evaluate
as XPath option is enabled, the parameter will be evaluated as an XPath expression.

Edit

Resets the selected parameter to its default value. Available only for edited parameters with set values.Unset

Removes the selected parameter from the list. It is enabled only for new parameters that have been
added to the list.

Delete

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related information
Editor Variables on page 134

XQuery Extensions

The Extensions button is used to specify the jars and classes that contain extension functions called from the XQuery
file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the extensions.

Oxygen XML Editor plugin | Transforming Documents | 634

An extension function called from the XQuery file of the current transformation scenario will be searched, in the specified
extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and
press the Move up or Move down buttons.

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home
Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the
Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options for each
transformation scenario, while the values set in the preferences page apply as global options. The advanced options
configured in a transformation scenario override the global options defined in the preferences page.

The advanced options for Saxon 9.6.0.7 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are
as follows:

Allows you to choose how dynamic errors are handled. The following options can be
selected:

Recoverable errors
("-warnings")

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops

processing.

Allows you to choose how the strip whitespaces operation is handled. You can choose one
of the following values:

Strip whitespaces
("-strip")

• All ("all") - Strips all whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source
documents before any further processing, regardless of any xml:space attributes in
the source document. Whitespace text nodes are ignorable if they appear in elements
defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Allows you to set the optimization level. It is the value is an integer in the range of 0 (no
optimization) to 10 (full optimization). This option allows optimization to be suppressed

Optimization level
("-opt")

when reducing the compiling time is important, optimization conflicts with debugging, or
optimization causes extension functions with side-effects to behave unpredictably.

This option activates the linked tree model.Use linked tree model
("-tree:linked")

If enabled (default value), Saxon runs the XQuery transformation with the XQuery 3.0
support.

Enable XQuery 3.0
support
("-qversion:(1.0|3.0)")

Equivalent to the -init Saxon command-line argument. The value is the name of a
user-supplied class that implements the net.sf.saxon.lib.Initializer interface.

Initializer class

This initializer is called during the initialization process, and may be used to set any options
required on the configuration programmatically. It is particularly useful for tasks such as
registering extension functions, collations, or external object models, especially in Saxon-HE
where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform
initialization when running user application code.

The following advanced options are specific for Saxon 9.6.0.7 Professional Edition (PE) and Enterprise Edition (EE)
only:

Sets a Saxon 9.6.0.7 configuration file that is used for XQuery transformation
and validation scenarios.

Use a configuration file ("-config")

Oxygen XML Editor plugin | Transforming Documents | 635

If checked, calls on external functions are allowed. Checking this option is
recommended in an environment where untrusted stylesheets may be executed.

Allow calls on extension functions
("-ext")

It also disables user-defined extension elements and the writing of multiple output
files, both of which carry similar security risks.

The advanced options that are specific for Saxon 9.6.0.7 Enterprise Edition (EE) are as follows:

Requests schema-based validation of the source file and of any files read using
document() or similar functions. It can have the following values:

Validation of the source file
("-val")

• Schema validation ("strict") - This mode requires an XML Schema and enables
parsing the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode
enables parsing the source documents with schema-validation enabled but the
validation will not fail if, for example, element declarations are not found.

• Disable schema validation - This specifies that the source documents should
be parsed with schema-validation disabled.

Normally, if validation of result documents is requested, a validation error is fatal.
Enabling this option causes such validation failures to be treated as warnings.

Validation errors in the result
tree treated as warnings
("-outval") The validation messages for non-fatal errors

are written (wherever possible) as a comment
in the result document itself.

Write comments for non-fatal
validation errors of the result
document

If you enable this option, Saxon-EE attempts to generate Java bytecode for evaluation
of parts of a query or stylesheet that are amenable to such an action. For further

Generate bytecode
("--generateByteCode:(on|off)")

details regarding this option, go to
http://www.saxonica.com/documentation9.5/index.html#!javadoc.

This option controls whether or not XQuery update syntax is accepted. The default
value is off.

Enable XQuery update
("-update:(on|off)")

If checked, backup versions for any XML files
updated with an XQuery Update are generated. This

Backup files updated by
XQuery
("-backup:(on|off)") option is available when the Enable XQuery

update option is enabled.

FO Processor Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine
or an external engine defined in Preferences) during the transformation.

Perform FO
Processing

Choose between the following options to specify which input file to use:Input

• XQuery result as input - The FO processor is applied to the result of the XQuery
transformation that is defined in the XQuery tab.

• XML URL as input - The FO processor is applied to the input XML file.

The output format of the FO processing. The available options depend on the selected processor
type.

Method

Specifies the FO processor to be used for the transformation. It can be the built-in Apache
FOP processor or an external processor.

Processor

Oxygen XML Editor plugin | Transforming Documents | 636

http://www.saxonica.com/documentation9.5/index.html#!javadoc

Output Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

Enabling this option will reduce the time necessary to fetch the full results, as it will only fetch
the first chunk of the results.

Present as a
sequence

At the end of the transformation, a file browser dialog box is displayed for specifying the path
and name of the file that stores the transformation result.

Prompt for file

The path of the file where the result of the transformation is stored. You can specify the path by

using the text field, the Insert Editor Variables button, or the Browse button.

Save As

If enabled, Oxygen XML Editor plugin automatically opens the result of the transformation in a
system application associated with the file type of the result (for example, in Windows PDF files
are often opened in Acrobat Reader).

Open in
Browser/System
Application

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to
Window > Preferences > General > Web Browser and specify it there.

• Output file - When Open in Browser/System Application is selected, you can use
this button to automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can
use this option to open the file specified in this field at the end of the transformation.
You can specify the path by using the text field, the Insert Editor Variables button,

or the Browse button.

When this is enabled, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it

Open in editor

is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO
editor).

You can choose to view the results in one of the following:Show in results
view as

• XML - If this is selected, Oxygen XML Editor plugin displays the transformation result in an
XML viewer panel at the bottom of the application window with syntax highlighting.

• XHTML - This option can only be selected if Open in Browser/System Application is
disabled. If selected, Oxygen XML Editor plugin displays the transformation result in a built-in
XHTML browser panel at the bottom of the application window.

Important: When transforming very large documents, you should be aware that
enabling this feature may result in very long processing times. This drawback is due
to the built-in Java XHTML browser implementation. To avoid delays for large
documents, if you want to see the XHTML result of the transformation, you should
use an external browser by selecting the Open in Browser/System Application
option instead.

• Image URLs are relative to - If Show in results view as XHTML is selected,
this option specifies the path used to resolve image paths contained in the
transformation result. You can specify the path by using the text field, the Insert

Editor Variables button, or the Browse button.

SQL Transformation
This type of transformation specifies a database connection for the database server that runs the SQL file associated
with the scenario. The data processed by the SQL script is located in the database.

Oxygen XML Editor plugin | Transforming Documents | 637

To create an SQL transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select SQL transformation.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select SQL transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select SQL transformation.

All three methods open the New Scenario dialog box. This dialog box allows you to configure the following options
that control the transformation:

The unique name of the SQL transformation scenario.Name

Allows you to specify the URL of the SQL script. You can specify the path by using the
text field, the Insert Editor Variables button, or the browsing tools in the Browse
drop-down list.

SQL URL

Allows you to select a connection from a drop-down list. To configure a connection, use

the Advanced options button to open the Data Source preferences page.

Connection

Allows you to add or configure parameters for the transformation.Parameters

Editing a Transformation Scenario

Editing a transformation scenario is useful if you need to configure some of its parameters.

Note: You can edit transformation scenarios that are defined at project level only. To edit a transformation
scenario that is associated with a predefined document type, duplicate it and edit the duplicated scenario.

To configure an existing transformation scenario, follow these steps:

1. Select the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X))
action from the toolbar or the XML menu.

Step Result: The Configure Transformation Scenario(s) dialog box is opened.

2. Select the particular transformation scenario and click the Edit button at the bottom of the dialog box or from the
contextual menu.

Tip: You could also select the scenario and the Edit button in the Transformation Scenarios view to
achieve the same result.

Result: This will open an Edit scenario configuration dialog box that allows you to configure various options in several
tabs, depending on the type of transformation scenario that was selected.

Transformation Types

The Configure Transformation Scenario(s) dialog box contains a Type column that shows you the transformation type
for each of the listed scenarios. Each type of transformation contains includes some tabs with various configuration
options.

Oxygen XML Editor plugin | Transforming Documents | 638

The following is a list of the transformation types and their particular tabs (click the name of each tab below to see
details about all the options that are available):

• DITA OT - This type of transformation includes configurable options in the following tabs:

• Skins Tab (Available for WebHelp Classic and WebHelp Classic with Feedback)
• Templates Tab (Available for WebHelp Responsive and WebHelp Responsive with Feedback)
• FO Processor Tab (Available for PDF output)
• Parameters Tab
• Filters Tab
• Advanced Tab
• Output Tab

• ANT - This type of transformation includes configurable options in the following tabs:

• Options Tab
• Parameters Tab
• Output Tab

• XSLT - This type of transformation includes configurable options in the following tabs:

• XSLT Tab
• FO Processor Tab
• Output Tab

• XProc - This type of transformation includes configurable options in the following tabs:

• XProc Tab
• Inputs Tab
• Parameters Tab
• Outputs Tab
• Options Tab

• XQuery - This type of transformation includes configurable options in the following tabs:

• XQuery Tab
• FO Processor Tab
• Output Tab

Related information
Creating New Transformation Scenarios on page 602

Duplicating a Transformation Scenario on page 639

Configure Transformation Scenario(s) Dialog Box on page 640

Duplicating a Transformation Scenario

Duplicating a transformation scenario is useful for creating a scenario that is similar to an existing one or to edit a
predefined transformation scenario.

To configure an existing transformation scenario, follow these steps:

1. Select the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X))
action from the toolbar or the XML menu.

Step Result: The Configure Transformation Scenario(s) dialog box is opened.

2. Select the particular transformation scenario and click the Duplicate button at the bottom of the dialog box or from
the contextual menu.

Oxygen XML Editor plugin | Transforming Documents | 639

Tip: You could also select the scenario and the Duplicate button in the Transformation Scenarios view
to achieve the same result.

Result: This will open an Edit scenario configuration dialog box that allows you to configure various options in several
tabs, depending on the type of transformation scenario that was selected. For information about all the specific options
in the various tabs, see the Transformation Types section.

Related information
Creating New Transformation Scenarios on page 602

Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box

You can use the Configure Transformation Scenarios(s) dialog box for editing exiting transformation scenarios or
creating new ones.

To open this dialog box, use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt +
T, C on OS X)) action from the toolbar or the XML menu.

Figure 382: Configure Transformation Scenario(s) Dialog Box

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the Settings
button allows you to configure the following options:

Select this option to display all the available scenarios, regardless of the document
they are associated with.

Show all scenarios

Select this option to only display the scenarios that Oxygen XML Editor plugin can
apply for the current document type.

Show only the scenarios
available for the editor

Select this option to only display the scenarios associated with the document you are
editing.

Show associated scenarios

This option opens the Import scenarios dialog box that allows you to select the
scenarios file that contains the scenarios you want to import. If one of the scenarios

Import scenarios

you import is identical to an existing scenario, Oxygen XML Editor plugin ignores it.
If a conflict appears (an imported scenario has the same name as an existing one), you
can choose between two options:

Oxygen XML Editor plugin | Transforming Documents | 640

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor plugin adds
imported to the name of the imported scenario.

Use this option to export selected scenarios individually. Oxygen XML Editor plugin
creates a scenarios file that contains the scenarios that you export. This is useful
if you want to share scenarios with others or export them to another computer.

Export selected scenarios

The middle section of the dialog box displays the scenarios that you can apply to the current document. You can view
both the scenarios associated with the current document type and the scenarios defined at project level. The following
columns are used to display the transformation scenarios:

• Association - The check-boxes in this column mark whether or not a transformation scenario is associated with the
current document.

• Scenario - This column presents the names of the transformation scenarios.
• Type - Displays the type of the transformation scenario. For further details about the types of transformation scenarios

that are available in Oxygen XML Editor plugin, see the Transformation Types section.
• Storage - Displays where a transformation scenario is stored (the Show Storage option must be enabled.)

To sort each column you can left-click its header. The contextual menu of each header also includes the following
actions:

Use this option to display the transformation type of each scenario.Show Type

Use this option to display the storage location of the scenarios.Show Storage

Select this option to group the scenarios by their type.Group by Type

Select this option to group the scenarios by their storage location.Group by Storage

Select this option to ungroup all the scenarios.Ungroup all

Select this option to restore the default settings of the layout.Reset Layout

The bottom section of the dialog box contains the following actions:

Enable this checkbox to automatically associate selected transformation scenarios with the
current document. This option can also be used for multiple selections.

Association follows
selection

Note: When this option is enabled, the Association column is hidden.

This button allows you to create a new transformation scenario.New

This button opens the Edit Scenario dialog box that allows you to configure the options of the
transformations scenario. For information about all the specific options in the various tabs, see
the Transformation Types section.

Edit

Note: If you try to edit a transformation scenario associated with a defined document
type, Oxygen XML Editor plugin displays a warning message to inform you that this
is not possible and gives you the option to create a duplicate transformation scenario
to edit instead.

Use this button to create a duplicate transformation scenario.Duplicate

Use this button to remove transformation scenarios.Remove

Note: Removing scenarios associated with a defined document type is not allowed.

The Edit, Duplicate, and Remove actions are also available in the contextual menu of the transformation scenarios

listed in the middle section of the dialog box (along with Import scenarios and Export selected scenarios).

Oxygen XML Editor plugin | Transforming Documents | 641

Related information
Editing a Transformation Scenario on page 638

Duplicating a Transformation Scenario on page 639

Apply Batch Transformations

A transformation action can be applied on a batch of selected files from the contextual menu of the Project view without
having to open the files involved in the transformation. You can apply the same scenario to a batch of files or multiple
scenarios to a single file or batch of files.

1. (Optional, but recommended) Organize the files you want to transform in logical folders.

a) Create a logical folder in the Project view by using the New > Logical Folder action from the contextual menu
of the root file.

b) Add files you want to transform to the logical folder by using the Add Files or Add Edited File actions
from the contextual menu of the logical folder.

Note: You can skip this step if the files are already in a dedicated folder that does not include any
additional files or folders. You can also manually select the individual files in the Project view each time
you want to transform them, but this can be tedious.

2. Right-click the newly created logical folder and select Transform > Configure Transformation Scenario(s) to
select one or more transformation scenarios to be applied on all the files in the logical folder.

Note: These types of transformation scenarios must be configured with the current file (${cf}) or current
file URL (${currentFileURL}) editor variables for the input file. This ensures that each file becomes
the current file when its turn arrives in the batch transformation process. Edit the transformation scenario to
make sure the appropriate editor variable is assigned for the input file. For example, for a DocBook PDF
transformation make sure the XML URL input box is set to the ${currentFileURL} editor variable.
For a DITA PDF transformation make sure the args.input parameter is set to the ${cf} editor variable.

3. Now that logical folder has been associated with one or more transformation scenarios, whenever you want to apply

the same batch transformation you can select Transform > Transform with from the contextual menu and the
same previously associated scenario(s) will be applied.

4. If you want a different type of transformation to be applied to each file inside the logical folder, associate individual

scenarios for each file and select Transform > Apply Transformation Scenario(s) from the contextual menu
of the logical folder.

Sharing the Transformation Scenarios

The transformation scenarios and their settings can be shared with other users by exporting them to a specialized scenarios
file that can then be imported.

Transformation Scenarios View

You can manage the transformation scenarios by using the Transformation Scenarios view. To open this view, select
Window > Show View > Transformation Scenarios.

Oxygen XML Editor plugin | Transforming Documents | 642

Figure 383:Transformation Scenarios view

Oxygen XML Editor plugin supports multiple scenarios association. To associate multiple scenarios with a document,
enable the check-boxes in front of each scenario. You can also associate multiple scenarios with a document from the
Configure Transformation Scenario(s) dialog box.

The Transformation Scenarios view presents both global and project-level scenarios. By default, Oxygen XML Editor
plugin presents the items in the following order:

1. Scenarios that match the current framework.
2. Scenarios that match the current project.
3. Scenarios that match other frameworks.

Toolbar/Contextual Menu Actions and Options

The following actions and options are available on the toolbar or in the contextual menu:

Select this option to run the current transformation scenario.Apply selected
scenarios

Select this option to switch to the Debugger perspective and initialize it with the parameters from
the scenario (the XML, XSLT, or XQuery input, the transformation engine, the XSLT parameters).

Debug selected
scenario

This drop-down menu contains a list of the scenarios that you can create. Oxygen XML Editor
plugin determines the most appropriate scenarios for the current type of file and displays them at
the beginning of the list, followed by the rest of the scenarios.

New

Adds a new scenario to the list that is a duplicate of the current scenario. It is useful for creating
a scenario that is similar to an existing one.

Duplicate

Oxygen XML Editor plugin | Transforming Documents | 643

Opens the dialog box that allows you to configure various options in several tabs, depending on
the type of transformation scenario that was selected. For information about all the specific options
in the various tabs, see the Transformation Types section.

Edit

Removes the current scenario from the list. This action is also available by using the Delete key.Remove

This option opens the Import scenarios dialog box that allows you to select the scenarios
file that contains the scenarios you want to import. If one of the scenarios you import is identical

Import
scenarios

to an existing scenario, Oxygen XML Editor plugin ignores it. If a conflict appears (an imported
scenario has the same name as an existing one), you can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor plugin adds imported
to the name of the imported scenario.

Use this option to export transformation and validation scenarios individually. Oxygen XML
Editor plugin creates a scenarios file that contains the scenarios that you export.

Export selected
scenarios

This drop-down menu allows you to configure the following options (many of these options are
also available if you right-click the name of a column):

Settings

Select this option to display all the available scenarios, regardless
of the document they are associated with.

Show all scenarios

Select this option to only display the scenarios that Oxygen XML
Editor plugin can apply for the current document type.

Show only the scenarios
available for the editor

Select this option to only display the scenarios associated with the
document you are editing.

Show associated
scenarios

This option opens the Import scenarios dialog box that allows you
to select the scenarios file that contains the scenarios you want

Import scenarios

to import. If one of the scenarios you import is identical to an existing
scenario, Oxygen XML Editor plugin ignores it. If a conflict appears
(an imported scenario has the same name as an existing one), you
can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML
Editor plugin adds imported to the name of the
imported scenario.

Use this option to export selected scenarios individually. Oxygen
XML Editor plugin creates a scenarios file that contains the

Export selected
scenarios

scenarios that you export. This is useful if you want to share
scenarios with others or export them to another computer.

Use this option to display the transformation type of each scenario.Show Type

Use this option to display the storage location of the scenarios.Show Storage

Select this option to group the scenarios by their type.Group by Type

Select this option to group the scenarios by their storage location.Group by Storage

Select this option to ungroup all the scenarios.Ungroup all

Select this option to restore the default settings of the layout.Reset Layout

Oxygen XML Editor plugin | Transforming Documents | 644

Related information
Editing a Transformation Scenario on page 638

Creating New Transformation Scenarios on page 602

Debugging PDF Transformations

To debug a DITA PDF transformation scenario using the XSLT Debugger follow these steps:

1. Open the Preferences dialog box , go to XML > XML Catalog, click Add, and select the file located at
DITA_OT_DIR\plugins\org.dita.pdf2\cfg\catalog.xml.

2. Open the map in the DITA Maps Manager and create a DITA Map PDF transformation scenario.

3. Edit the scenario, go to the Parameters tab and change the value of the clean.temp parameter to no.

4. Run the transformation scenario.

5. Open the stage1.xml file located in the temporary directory and format and indent it.

6. Create a transformation scenario for this XML file by associating the topic2fo_shell_fop.xsl stylesheet
located at DITA_OT_DIR\plugins\org.dita.pdf2\xsl\fo\topic2fo_shell_fop.xsl. If you are
specifically using the RenderX XEP or Antenna House FO processors to build the PDF output, you should use the
XSL stylesheets topic2fo_shell_xep.xsl or topic2fo_shell_axf.xsl located in the same folder.

7. In the transformation scenario edit the XSLT Processor combo box choose the Saxon EE XSLT processor (the same
processor used when the DITA OT transformation is executed).

8. In the transformation scenario edit the Parameters list and set the parameter locale with the value en_GB and the
parameter customizationDir.url to point either to your customization directory or to the default DITA OT customization
directory. Its value should have a URL syntax like this:
file://c:/path/to/DITA_OT_DIR/plugins/org.dita.pdf2/cfg.

9. Debug the transformation scenario.

Related information
Working with the XSLT / XQuery Debugger on page 818

Configuring Calabash with XEP

To generate PDF output from your XProc pipeline (when using the Calabash XProc processor), follow these steps:

1. Open the [OXYGEN_INSTALL_DIR]/lib/xproc/calabash/engine.xml file.

2. Uncomment the <system-property name="com.xmlcalabash.fo-processor"
value="com.xmlcalabash.util.FoXEP"/> system property.

3. Uncomment the <system-property name="com.renderx.xep.CONFIG"
file="../../../tools/xep/xep.xml"/> system property. Edit the file attribute to point to the
configuration file that is usually located in the XEP installation folder.

4. Uncomment the references to the XEP libraries. Edit them to point to the matching library names from the XEP
installation directory.

5. Restart Oxygen XML Editor plugin.

Integration of an External XProc Engine

The Javadoc documentation of the XProc API is available for download from the application website as a zip file
xprocAPI.zip. To create an XProc integration project, follow these steps:

1. Move the oxygen.jar file from [OXYGEN_INSTALL_DIR]/lib to the lib folder of your project.

2. Implement the ro.sync.xml.transformer.xproc.api.XProcTransformerInterface interface.

3. Create a Java archive (jar) from the classes you created.

4. Create a engine.xml file according with the engine.dtd file. The attributes of the engine element are as
follows:

1. name - The name of the XProc engine.

Oxygen XML Editor plugin | Transforming Documents | 645

http://www.oxygenxml.com/InstData/Editor/SDK/xprocAPI.zip

2. description - A short description of the XProc engine.
3. class - The complete name of the class that implements

ro.sync.xml.transformer.xproc.api.XProcTransformerInterface.
4. version - The version of the integration.
5. engineVersion - The version of the integrated engine.
6. vendor - The name of the vendor / implementer.
7. supportsValidation - true if the engine supports validation (otherwise, false).

The engine element has only one child, runtime. The runtime element contains several library elements
with the name attribute containing the relative or absolute location of the libraries necessary to run this integration.

5. Create a folder with the name of the integration in the [OXYGEN_INSTALL_DIR]/lib/xproc.

6. Place the engine.xml and all the libraries necessary to run the new integration in that folder.

XSLT Processors

This section explains how to configure an XSLT processor and extensions for such a processor in Oxygen XML Editor
plugin.

Supported XSLT Processors

Oxygen XML Editor plugin includes the following XSLT processors:

• Xalan 2.7.1 - Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or other XML
document types. It implements XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Version
1.0.

• Saxon 6.5.5 - Saxon 6.5.5 is an XSLT processor that implements the Version 1.0 XSLT and XPath with a number
of powerful extensions. This version of Saxon also includes many of the new features that were first defined in the
XSLT 1.1 working draft, but for conformance and portability reasons these are not available if the stylesheet header
specifies version="1.0".

• Saxon 9.6.0.7 Home Edition (HE), Professional Edition (PE) - Saxon-HE/PE implements the basic conformance
level for XSLT 2.0 / 3.0 and XQuery 1.0. The term basic XSLT 2.0 / 3.0 processor is defined in the draft XSLT 2.0
/ 3.0 specifications. It is a conformance level that requires support for all features of the language other than those
that involve schema processing. The HE product remains open source, but removes some of the more advanced
features that are present in Saxon-PE.

• Saxon 9.6.0.7 Enterprise Edition (EE) - Saxon EE is the schema-aware edition of Saxon and it is one of the built-in
processors included in Oxygen XML Editor plugin. Saxon EE includes an XML Schema processor, and schema-aware
XSLT, XQuery, and XPath processors.

The validation in schema aware transformations is done according to the W3C XML Schema 1.0 or 1.1. This can
be configured in Preferences.

Note: Oxygen XML Editor plugin implements a Saxon framework that allows you to create Saxon
configuration files. Two templates are available: Saxon collection catalog and Saxon configuration. Both
of these templates support content completion, element annotation, and attribute annotation.

Note: Saxon can use the ICU-J localization library (saxon9-icu.jar) to add support for sorting and
date/number formatting in a wide variety of languages. This library is not included in the Oxygen XML
Editor plugin installation kit. However, Saxon will use the default collation and localization support available
in the currently used JRE. To enable this capability follow these steps:

1. Download Saxon 9.6.0.7 Professional Edition (PE) or Enterprise Edition (EE) from
http://www.saxonica.com.

2. Unpack the downloaded archive.
3. Create a new XSLT transformation scenario (or edit an existing one). In the XSLT tab, click the

Extensions button to open the list of additional libraries used by the transformation process.
4. Click Add and browse to the folder where you unpacked the downloaded archive and choose the

saxon9-icu.jar file.

Oxygen XML Editor plugin | Transforming Documents | 646

http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sf.net/
http://www.saxonica.com/
http://www.saxonica.com

Note that the saxon9-icu.jar should NOT be added to the application library folder because it will
conflict with another version of the ICU-J library that comes bundled with Oxygen XML Editor plugin.

• Saxon-CE (Client Edition) is Saxonica's implementation of XSLT 2.0 for use on web browsers. Oxygen XML
Editor plugin provides support for editing stylesheets that contain Saxon-CE extension functions and instructions.
This support improves the validation, content completion, and syntax highlighting.

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you
will use Oxygen XML Editor plugin only for developing the Saxon-CE stylesheet, leaving the execution
part to a web browser. See more details about executing such a stylesheet on Saxonica's website.

Note: A specific template, named Saxon-CE stylesheet, is available in the New from Templates wizard.

• Xsltproc (libxslt) - Libxslt is the XSLT C library developed for the Gnome project. Libxslt is based on libxml2,
the XML C library developed for the Gnome project. It also implements most of the EXSLT set of processor-portable
extensions, functions, and some of Saxon's evaluate and expression extensions. The libxml2 version included in
Oxygen XML Editor plugin is 2.7.6 and the Libxslt version is 1.1.26.

Oxygen XML Editor plugin uses Libxslt through its command line tool (Xsltproc). The XSLT processor is
included in the distribution kit of the stand-alone version for Windows and Mac OS X. Since there are differences
between various Linux distributions, on Linux you must install Libxslt on your machine as a separate application
and set the PATH variable to contain the Xsltproc executable.

If you do not have the Libxslt library already installed, you should copy the following files from Oxygen XML
Editor plugin stand-alone installation directory to the root of the com.oxygenxml.editor_18.0 plugin:

• on Windows: xsltproc.exe, zlib1.dll,libxslt.dll,libxml2.dll, libexslt.dll,iconv.dll
• on Linux: xsltproc,libexslt.so.0, libxslt.so.1,libxsml2.so.2
• on Mac OS X: xsltproc.mac, libexslt, libxslt, libxml

Note: The Xsltproc processor can be configured from the XSLTPROC options page.

CAUTION: There is a known problem where file paths that contain spaces are not handled correctly in the
LIBXML processor. For example, the built-in XML catalog files of the predefined document types (DocBook,
TEI, DITA, etc.) are not handled properly by LIBXML if Oxygen XML Editor plugin is installed in the
default location on Windows (C:\Program Files). This is because the built-in XML catalog files are stored
in the [OXYGEN_INSTALL_DIR]/frameworks subdirectory of the installation directory, and in this
case it contains a space character.

• MSXML 4.0 - MSXML 4.0 is available only on Windows platforms. It can be used for transformation and validation
of XSLT stylesheets.

Oxygen XML Editor plugin uses the Microsoft XML parser through its command line tool msxsl.exe.

Since msxsl.exe is only a wrapper, Microsoft Core XML Services (MSXML) must be installed on the computer.
Otherwise, you will get a corresponding warning. You can get the latest Microsoft XML parser from Microsoft
web-site.

• MSXML .NET - MSXML .NET is available only on Windows platforms. It can be used for transformation and
validation of XSLT stylesheets.

Oxygen XML Editor plugin performs XSLT transformations and validations using .NET Framework's XSLT
implementation (System.Xml.Xsl.XslTransform class) through the nxslt command line utility. The nxslt
version included in Oxygen XML Editor plugin is 1.6.

You should have the .NET Framework version 1.0 already installed on your system. Otherwise, you will get the
following warning: MSXML.NET requires .NET Framework version 1.0 to be installed.
Exit code: 128.

You can get the .NET Framework version 1.0 from the Microsoft website.

Oxygen XML Editor plugin | Transforming Documents | 647

http://www.saxonica.com/ce/index.xml
http://xmlsoft.org/XSLT/
http://msdn.microsoft.com/xml/
http://microsoft.com/en-us/download/details.aspx?id=21714
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en

• .NET 1.0 - A transformer based on the System.Xml 1.0 library available in the .NET 1.0 and .NET 1.1 frameworks
from Microsoft (http://msdn.microsoft.com/xml/). It is available only on Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed on your system. Otherwise, you will get
the following warning: MSXML.NET requires .NET Framework version 1.0 to be installed.
Exit code: 128.

You can get the .NET Framework version 1.0 from the Microsoft website.

• .NET 2.0 - A transformer based on the System.Xml 2.0 library available in the .NET 2.0 framework from Microsoft.
It is available only on Windows.

You should have the .NET Framework version 2.0 already installed on your system. Otherwise, you will get the
following warning: MSXML.NET requires .NET Framework version 2.0 to be installed.
Exit code: 128.

You can get the .NET Framework version 2.0 from the Microsoft website.

Configuring Custom XSLT Processors

You can configure and run XSLT and XQuery transformations with processors other than the ones which come with the
Oxygen XML Editor plugin distribution.

Note: You can not use these custom engines in the Debugger perspective.

The output messages of a custom processor are displayed in an output view at the bottom of the application window. If
an output message follows the format of an Oxygen XML Editor plugin linked message, clicking it highlights the location
of the message in an editor panel containing the file referenced in the message.

Related information
Custom Engines Preferences on page 127

Configuring the XSLT Processor Extensions Paths

The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike a literal result
element, which the stylesheet simply transfers to the result tree, an extension element performs an action. The extension
is usually used because the XSLT stylesheet fails in providing adequate functions for accomplishing a more complex
task.

For more information about how to use extensions, see the following links:

• Xalan - http://xml.apache.org/xalan-j/extensions.html
• Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html
• Saxon 9.6.0.7 - http://www.saxonica.com/documentation9.5/index.html#!extensibility

To set an XSLT processor extension (a directory or a jar file), use the Extensions button in the Edit scenario dialog
box.

Note: The old way of setting an extension (using the parameter -Dcom.oxygenxml.additional.classpath) was
deprecated, and instead you should use the extension mechanism of the XSLT transformation scenario.

XSL-FO Processors

This section explains how to apply XSL-FO processors when transforming XML documents to various output formats
in Oxygen XML Editor plugin.

Built-in XSL-FO Processor

The Oxygen XML Editor plugin installation package is distributed with the Apache FOP that is a Formatting Objects
processor for rendering your XML documents to PDF. FOP is a print and output independent formatter driven by XSL
Formatting Objects. FOP is implemented as a Java application that reads a formatting object tree and renders the resulting
pages to a specified output.

Oxygen XML Editor plugin | Transforming Documents | 648

http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://xml.apache.org/xalan-j/extensions.html
http://saxon.sourceforge.net/saxon6.5.5/extensions.html
http://www.saxonica.com/documentation9.5/index.html#!extensibility
http://xml.apache.org/fop/index.html

Other FO processors can be configured in the Preferences dialog box.

Add a Font to the Built-in FO Processor - Simple Version

If the font that must be set to Apache FOP is one of the fonts that are installed in the operating system you should follow
the next steps for creating and setting a FOP configuration file that looks for the font that it needs in the system fonts.
It is a simplified version of the procedure for setting a custom font in Apache FOP.

1. Register the font in FOP configuration. (This is not necessary for DITA PDF transformations, skip to the next step)

a) Create a FOP configuration file that specifies that FOP should look for fonts in the installed fonts of the operating
system.

<fop version="1.0">
<renderers>
<renderer mime="application/pdf">

<fonts>
<auto-detect/>

</fonts>
</renderer>

</renderers>
</fop>

b) Open the Preferences dialog box , go to XML > XSLT/FO/XQuery > FO Processors, and enter the path of
the FOP configuration file in the Configuration file text field.

2. Set the font on the document content.

This is done usually with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.

• For DocBook documents you can start with the predefined scenario called DocBook PDF, edit the XSLT parameters
and set the font name (in our example the font family name is Arial Unicode MS) to the parameters
body.font.family and title.font.family.

• For TEI documents you can start with the predefined scenario called TEI PDF, edit the XSLT parameters and
set the font name (in our example Arial Unicode MS) to the parameters bodyFont and sansFont.

• For DITA transformations to PDF using DITA-OT you should modify the following two files:

• DITA_OT_DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml - The font-face
element included in each element physical-font having the attribute char-set="default"
must contain the name of the font (Arial Unicode MS in our example)

• DITA_OT_DIR/plugins/org.dita.pdf2/fop/conf/fop.xconf - An element auto-detect
must be inserted in the element fonts, which is inside the element renderer that has the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .

<fonts>
<auto-detect/>

</fonts>
 . . .
</renderer>

Add a Font to the Built-in FO Processor

If an XML document is transformed to PDF using the built-in Apache FOP processor but it contains some Unicode
characters that cannot be rendered by the default PDF fonts, then a special font that is capable to render these characters
must be configured and embedded in the PDF result.

Important: If this special font is installed in the operating system, there is a simple way of telling FOP to look
for it. See the simplified procedure for adding a font to FOP.

1. Locate the font.

First, find out the name of a font that has the glyphs for the special characters you used. One font that covers most
characters, including Japanese, Cyrillic, and Greek, is Arial Unicode MS.

Oxygen XML Editor plugin | Transforming Documents | 649

On Windows the fonts are located into the C:\Windows\Fonts directory. On Mac, they are placed in
/Library/Fonts. To install a new font on your system, is enough to copy it in the Fonts directory.

2. Generate a font metrics file from the font file.

a) Open a terminal.
b) Change the working directory to the Oxygen XML Editor plugin install directory.
c) Create the following script file in the Oxygen XML Editor plugin installation directory.

For OS X and Linux create a file ttfConvert.sh:

#!/bin/sh

export LIB=lib
export CP=$LIB/fop.jar
export CP=$CP:$LIB/avalon-framework-4.2.0.jar
export CP=$CP:$LIB/xercesImpl.jar
export CP=$CP:$LIB/commons-logging-1.1.3.jar
export CP=$CP:$LIB/commons-io-1.3.1.jar
export CP=$CP:$LIB/xmlgraphics-commons-1.5.jar
export CP=$CP:$LIB/xml-apis.jar
export CMD="java -cp $CP org.apache.fop.fonts.apps.TTFReader"
export FONT_DIR='.'

$CMD $FONT_DIR/Arialuni.ttf Arialuni.xml

For Windows create a file ttfConvert.bat:

@echo off
set LIB=lib
set CP=%LIB%\fop.jar
set CP=%CP%;%LIB%\avalon-framework-4.2.0.jar
set CP=%CP%;%LIB%\xercesImpl.jar
set CP=%CP%;%LIB%\commons-logging-1.1.3.jar
set CP=%CP%;%LIB%\commons-io-1.3.1.jar
set CP=%CP%;%LIB%\xmlgraphics-commons-1.5.jar
set CP=%CP%;%LIB%\xml-apis.jar
set CMD=java -cp "%CP%" org.apache.fop.fonts.apps.TTFReader
set FONT_DIR=C:\Windows\Fonts
%CMD% %FONT_DIR%\Arialuni.ttf Arialuni.xml

The paths specified in the file are relative to the Oxygen XML Editor plugin installation directory. If you decide
to create it in other directory, change the file paths accordingly.

The FONT_DIR can be something different on your system. Check that it points to the correct font directory. If
the Java executable is not in the PATH, specify the full path of the executable.

If the font has bold and italic variants, convert them too by adding two more lines to the script file:

• for OS X and Linux:

$CMD $FONT_DIR/Arialuni-Bold.ttf Arialuni-Bold.xml
$CMD $FONT_DIR/Arialuni-Italic.ttf Arialuni-Italic.xml

• for Windows:

%CMD% %FONT_DIR%\Arialuni-Bold.ttf Arialuni-Bold.xml
%CMD% %FONT_DIR%\Arialuni-Italic.ttf Arialuni-Italic.xml

d) Run the script.

On Linux and OS X, run the command sh ttfConvert.sh from the command line. On Windows, run the
command ttfConvert.bat from the command line or double-click the file ttfConvert.bat.

3. Register the font in FOP configuration. (This is not necessary for DITA PDF transformations, skip to the next step)

a) Create a FOP configuration file that specifies the font metrics file for your font.

<fop version="1.0">
<base>./</base>
<font-base>file:/C:/path/to/FOP/font/metrics/files/</font-base>
<source-resolution>72</source-resolution>
<target-resolution>72</target-resolution>
<default-page-settings height="11in" width="8.26in"/>

Oxygen XML Editor plugin | Transforming Documents | 650

<renderers>
<renderer mime="application/pdf">

<filterList>
<value>flate</value>

</filterList>
<fonts>

<font metrics-url="Arialuni.xml" kerning="yes"
embed-url="file:/Library/Fonts/Arialuni.ttf">

<font-triplet name="Arialuni" style="normal"
weight="normal"/>

</fonts>

</renderer>
</renderers>

</fop>

The embed-url attribute points to the font file to be embedded. Specify it using the URL convention. The
metrics-url attribute points to the font metrics file with a path relative to the base element. The triplet
refers to the unique combination of name, weight, and style (italic) for each variation of the font. In our case is
just one triplet, but if the font had variants, you would have to specify one for each variant. Here is an example
for Arial Unicode if it had italic and bold variants:

<fop version="1.0">
 ...

<fonts>
<font metrics-url="Arialuni.xml" kerning="yes"

embed-url="file:/Library/Fonts/Arialuni.ttf">
<font-triplet name="Arialuni" style="normal"

weight="normal"/>

<font metrics-url="Arialuni-Bold.xml" kerning="yes"

embed-url="file:/Library/Fonts/Arialuni-Bold.ttf">
<font-triplet name="Arialuni" style="normal"

weight="bold"/>

<font metrics-url="Arialuni-Italic.xml" kerning="yes"

embed-url="file:/Library/Fonts/Arialuni-Italic.ttf">
<font-triplet name="Arialuni" style="italic"

weight="normal"/>

</fonts>
 ...
</fop>

More details about the FOP configuration file are available on the FOP website.

b) Open the Preferences dialog box , go to XML > XSLT/FO/XQuery > FO Processors, and enter the path of
the FOP configuration file in the Configuration file text field.

4. Set the font on the document content.

This is usually done with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.

For DocBook documents, you can start with the predefined scenario called DocBook PDF, edit the XSLT parameters,
and set the font name (in our example Arialuni) to the parameters body.font.family and title.font.family.
For TEI documents, you can start with the predefined scenario called TEI PDF, edit the XSLT parameters, and set
the font name (in our example Arialuni) to the parameters bodyFont and sansFont.
For DITA to PDF transformations using DITA-OT modify the following two files:

• DITA_OT_DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml - The font-face
element included in each element physical-font having the attribute char-set="default" must
contain the name of the font (Arialuni in our example)

• DITA_OT_DIR/plugins/org.dita.pdf2/fop/conf/fop.xconf - An element font must be
inserted in the element fonts, which is inside the element renderer that has the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .

<fonts>
<font metrics-url="Arialuni.xml" kerning="yes"

embed-url="file:/Library/Fonts/Arialuni.ttf">
<font-triplet name="Arialuni" style="normal"

weight="normal"/>

Oxygen XML Editor plugin | Transforming Documents | 651

</fonts>
 . . .
</renderer>

Adding Libraries to the Built-in FO Processor (XML with XSLT and FO)

Adding Hyphenation Support for XML with XSLT Transformation Scenarios
You can extend the functionality of the built-in FO processor by dropping additional libraries in the
[OXYGEN_INSTALL_DIR]/lib/fop directory. To add support for hyphenation:

1. Create a folder called fop in the [OXYGEN_INSTALL_DIR]/lib folder.
2. Download the compiled JAR from OFFO.
3. Copy the fop-hyph.jar file into the [OXYGEN_INSTALL_DIR]/lib/fop folder.
4. Restart Oxygen XML Editor plugin.

Adding Support for PDF Images

1. Create a folder called fop in the [OXYGEN_INSTALL_DIR]/lib folder.
2. Download the fop-pdf-images JAR libraries.
3. Copy the libraries into the [OXYGEN_INSTALL_DIR]/lib/fop folder.
4. Restart Oxygen XML Editor plugin.

Adding Libraries to the Built-in FO Processor (DITA-OT)

To use additional libraries with the DITA-OT publishing engine, you need to edit the transformation scenario and add
the path to the new libraries in the Libraries section of the Advanced tab.

Adding Hyphenation Support for DITA-OT Transformation Scenarios

1. Download the pre-compiled JAR from OFFO.
2. Edit the DITA-OT transformation scenario and switch to the Advanced tab. Click the Libraries button and add the

path to the fop-hyph.jar library.

Adding Support for PDF Images

1. Download the fop-pdf-images JAR libraries.
2. Edit the DITA-OT transformation scenario and switch to the Advanced tab. Click the Libraries button and add the

path to the libraries.

WebHelp System Output
Oxygen XML Editor plugin allows you to obtain WebHelp Classic and WebHelp Responsive outputs. This section
contains information about the WebHelp system, its variants, and ways to customize it to better fit your specific needs.

WebHelp Responsive System

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include platform
independence, ability to update content continuously, and it can be viewed using a regular web browser. The Oxygen
XML Editor plugin WebHelp system includes several variants to suit your specific needs. The WebHelp Responsive
variant features a very flexible layout, is designed to adapt to any screen size, and is available for DITA document types.

Layout

The layout of the WebHelp Responsive system is platform independent and is able to adapt to any screen size. It is highly
customizable and relies on a template mechanism that allows you to control the position of various functional template
components to suit your particular requirements.

Oxygen XML Editor plugin | Transforming Documents | 652

https://sourceforge.net/projects/offo/
https://xmlgraphics.apache.org/fop/fop-pdf-images.html#download
https://sourceforge.net/projects/offo/
http://archive.apache.org/nonrelease/xmlgraphics/fop-pdf-images/binaries/

You can select from several different styles of layouts (for example, by default, you can select either a tiles or tree style
of layout). Furthermore, each of these layouts include a collection of skins that you can choose from, or you can customize
your own.

Figure 384: WebHelp Responsive Output on a Normal Screen

Oxygen XML Editor plugin | Transforming Documents | 653

Figure 385: WebHelp Responsive Output on a Narrow Screen

Search Feature

When you enter search terms in the Search field, the results are displayed in the results page. When you click on a result,
the topic is opened in the main pane and the search results are highlighted.

The Search feature is also enhanced with a rating mechanism that computes scores for every page that matches the
search criteria. These scores are then translated into a 5-star rating scheme. The search results are sorted depending on
the following:

• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title scores better than a word found in unformatted text). The search

ranking order, sorted by relevance is as follows:

• The search phrase is included in a meta keyword
• The search phrase is in the title of the page
• The search phrase is in bold text in a paragraph
• The search phrase is in normal text in a paragraph

Oxygen XML Editor plugin | Transforming Documents | 654

Rules that are applied during a search include:

• Boolean searches are supported using the following operators: and, or, not. When there are two adjacent search terms
without an operator, or is used as the default search operator (for example, grow flowers is the same as grow or
flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate keywords: grow
and flowers).

• Do not use quotes to perform an exact search for multiple word expressions (an expression such as "grow flowers",
returns no results since it searches for two separate words).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for example,
content inside keywords elements weighs twice as much as content inside an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".") characters
count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored). This rule
does not apply to CJK (Chinese, Japanese, Korean) languages.

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For information
about editing these values, see the Editing Scoring Values of Tag Elements in Search Results on page 680 topic.

This output format is compatible with the most recent versions of the following common browsers:

• Internet Explorer (IE 8 or newer)
• Chrome
• Firefox
• Safari
• Opera

WebHelp Responsive with Feedback System

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include platform
independence, ability to update content continuously, and it can be viewed using a regular web browser. The Oxygen
XML Editor plugin WebHelp system includes several variants to suit your specific needs. The WebHelp Responsive
with Feedback variant features a very flexible layout, is designed to adapt to any screen size, and includes a feedback
system that allows your users to make comments and allows you to manage and reply to them. This variant is available
for DITA document types.

Layout

The layout of the WebHelp Responsive with Feedback system is platform independent and is able to adapt to any screen
size. It is highly customizable and relies on a template mechanism that allows you to control the position of various
functional template components to suit your particular requirements.

You can select from several different styles of layouts (for example, by default, you can select either a tiles or tree style
of layout). Furthermore, each of these layouts include a collection of skins that you can choose from, or you can customize
your own.

The WebHelp Responsive with Feedback system also contains a Comments section at the bottom of the pane. This
section is where you can interact with users through a comment system.

Oxygen XML Editor plugin | Transforming Documents | 655

Figure 386: WebHelp Output

Managing Comments

To add a new comment, click the Add New Comment button, or click Reply to add a comment to an existing thread.
You can click on the Log in button on the right side of this bar to be authenticated as a user and your user name will be
included in any comments that you add. If you do not have a user name, you can click on the Sign Up button to create
a new user.

After you log in, your name and user name are displayed in the Comments bar, along with the Log off and Edit buttons.
Click the Edit button to open the User Profile dialog box where you can customize the following options:

• Your Name - You can use this field to edit the initial name that you used to create your user profile.
• Your email address - You can use this field to edit the initial email address that you used to create your profile.
• You can choose to receive an email in the following situations:

• When a comment is left on a page that you commented on.
• When a comment is left on any topic in the WebHelp Classic system.
• When a reply is left to one of my comments.

• New Password - Allows you to enter a new password for your user account.

Oxygen XML Editor plugin | Transforming Documents | 656

Note: The Current Password field from the top of the User Profile is mandatory if you want to save the
changes you make.

If you are an administrator, you can manage user information and comments. For more information, see the Managing
Users and Comments in a WebHelp Responsive with Feedback System on page 660 topic.

Search Feature

When you enter search terms in the Search field, the results are displayed in the results page. When you click on a result,
the topic is opened in the main pane and the search results are highlighted.

The Search feature is also enhanced with a rating mechanism that computes scores for every page that matches the
search criteria. These scores are then translated into a 5-star rating scheme. The search results are sorted depending on
the following:

• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title scores better than a word found in unformatted text). The search

ranking order, sorted by relevance is as follows:

• The search phrase is included in a meta keyword
• The search phrase is in the title of the page
• The search phrase is in bold text in a paragraph
• The search phrase is in normal text in a paragraph

Rules that are applied during a search include:

• Boolean searches are supported using the following operators: and, or, not. When there are two adjacent search terms
without an operator, or is used as the default search operator (for example, grow flowers is the same as grow or
flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate keywords: grow
and flowers).

• Do not use quotes to perform an exact search for multiple word expressions (an expression such as "grow flowers",
returns no results since it searches for two separate words).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for example,
content inside keywords elements weighs twice as much as content inside an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".") characters
count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored). This rule
does not apply to CJK (Chinese, Japanese, Korean) languages.

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For information
about editing these values, see the Editing Scoring Values of Tag Elements in Search Results on page 680 topic.

This output format is compatible with the most recent versions of the following common browsers:

• Internet Explorer (IE 8 or newer)
• Chrome
• Firefox
• Safari
• Opera

Deploying the WebHelp Responsive with Feedback System

System Requirements

The WebHelp Responsive with Feedback system of Oxygen XML Editor plugin requires a standard server deployment.
You can request this from your server admin and it needs the following system components:

• A Web server (such as Apache Web Server)

Oxygen XML Editor plugin | Transforming Documents | 657

• A MySQL or MariaDB database server
• A database admin tool (such as phpMyAdmin)
• PHP Version 5.1.6 or later

Oxygen XML WebHelp system supports most of the recent versions of the following browsers: Chrome, Firefox, Internet
Explorer, Safari, Opera.

Create WebHelp Responsive with Feedback Database
The WebHelp Responsive with Feedback system needs a database to store user details and the actual feedback, and a
user added to it with all privileges. After this is created, you should have the following information:

• Database name
• Username
• Password

Exactly how you create the database and user depends on your web host and your particular needs.

For example, the following procedure uses phpMyAdmin to create a MySQL database for the feedback
system and a MySQL user with privileges for that database. The feedback system uses these credentials
to connect to the database.

Using phpMyAdmin to create a database:

1. Access the phpMyAdmin instance running on your server.
2. Click Databases (in the right frame) and then create a database. You can give it any name you

want (for example comments).
3. Create a user with connection privileges for this database.
4. Under localhost, in the right frame, click Privileges and then at the bottom of the page click the

reload the privileges link.

Deploying the WebHelp Responsive with Feedback Output

If you have a web server configured with PHP and MySQL, you can deploy the WebHelp Responsive with Feedback
output by following these steps:

1. Connect to your server using an FTP client.
2. Locate the home directory (from now on, referred to as DOCUMENT_ROOT) of your server.
3. Copy the transformation output folder into the DOCUMENT_ROOT folder.
4. Rename it to something relevant (for example, myProductWebHelp).
5. Open the output folder (for example, http://[YOUR_SERVER]/myProductWebHelp/). You are redirected

to the installation wizard. Proceed with the installation as follows:

a. Verify that the prerequisites are met.
b. Press Start Installation.
c. Configure the Deployment Settings section. Default values are provided, but you should adjust them as needed.

Tip: You can change some of the options later. The installation creates a config.php file in
[OXYGEN_WEBHELP_INSTALL_DIR]/feedback/resources/php/config/config.php
where all your configuration options are stored.

d. Configure the MySql Database Connection Settings section. Use the information (database name, username,
password) from the Create WebHelp Responsive with Feedback Database section to fill-in the appropriate text
boxes.

Warning: Checking the Create new database structure option will overwrite any existing data in the
selected database, if it already exists. Therefore, it is useful the first time you install the WebHelp
Responsive with Feedback system, but you do not want to select this option on subsequent deployments.

Oxygen XML Editor plugin | Transforming Documents | 658

e. If you are using a domain (such as OpenLDAP or Active Directory) to manage users in your organization, check
the Enable LDAP Autehntication option. This will allow you to configure the LDAP server, which will provide
information and credentials for users who will access the WebHelp system. Also, this will allow you to choose
which of the domain users will have administrator privileges.

f. If the Create new database structure option is checked, the Create WebHelp Administrator Account section
becomes available. Here you can set the administrator account data. The administrator is able to moderate new
posts and manage WebHelp users.

The same database can be used to store comments for multiple WebHelp Responsive with Feedback deployments.
If a topic is available in multiple deployments and there are comments associated with it, you can choose to
display the comments in all deployments that share the database. To do this, enable the Display comments from
other products option. In the Display comments from section, a list with the deployments sharing the same
database is displayed. Select the deployments allowed to share common feedback.

Note: You can restrict the displayed comments of a product depending on its version. If you have two
products that use the same database and you restrict one of them to display comments starting from a
certain version, the comments of the other product are also displayed from the specified version onwards.

g. Press Next Step.
h. Remove the installation folder from your web server.

Important: When you publish subsequent iterations of your WebHelp Responsive with Feedback system,
you will not upload the /install folder in the output, as you only need it uploaded the first time you
create the installation. On subsequent uploads, you will just upload the other output files.

i. In your Web browser, go to your WebHelp Responsive with Feedback system main page.

Testing Your WebHelp Responsive with Feedback System
To test your system, create a user and post a comment. Check to see if the notification emails are delivered to your email
inbox.

Note: To read debug messages generated by the system:

1. Enable JavaScript logging by doing one of the following:

• Open the log.js file, locate the var log= new Log(Level.NONE); line, and change the logging
level to: Level.INFO, Level.DEBUG, Level.WARN, or Level.ERROR.

• Append ?log=true to the WebHelp URL.

2. Inspect the PHP and Apache server log files.

Documentation Product ID and Version

When you run a WebHelp Responsive with Feedback transformation scenario, by default you are prompted for a
documentation product ID and version number. This is needed when multiple WebHelp systems are deployed on the
same server. Think of your WebHelp output as a product. If you have three different WebHelp outputs, you have three
different products (each with their own unique documentation product ID). This identifier is included in a configuration
file so that comments are tied to a particular output (product ID and version number).

Note: The WebHelp Responsive with Feedback installation includes a configuration option (Display comments
from other products) that allows you to choose to have comments visible in other specified products.

Related information
Managing Users and Comments in a WebHelp Responsive with Feedback System on page 660

Refreshing the Content of a WebHelp Responsive with Feedback System

It is common to update the content of an existing installation of a WebHelp Responsive with Feedback system on a
regular basis. In this case, reinstalling the whole system is not a viable option since it might result in the loss of the

Oxygen XML Editor plugin | Transforming Documents | 659

comments associated with your topics. Also, reconfiguring the system every time you want to refresh it may be time
consuming.

Fortunately, you can refresh just the content without losing the comments or the initial system configuration. To do so,
follow these steps:

1. Execute the transformation scenario that produces the WebHelp Responsive with Feedback output directory.
2. Go to the output directory (specified in the Output tab of the transformation scenario), locate the

\feedback\resources\php\config\config.php file, and delete it.
3. Locate the \feedback\install directory and delete it.
4. Copy the remaining structure of the output folder and paste it into your WebHelp Responsive with Feedback system

installation directory, overwriting the existing content.

Managing Users and Comments in a WebHelp Responsive with Feedback System

When you installed the WebHelp Responsive with Feedback system the first time (assuming the Create new database
structure option was enabled), you should have been prompted to create an administrator account (or a user named
administrator was created by default). As an administrator, you have access to manage comments posted in your
feedback-enabled WebHelp Responsive system. You can also manage the user information (such as role, status, or
notification options).

To manage comments and user information, follow these steps:

1. At the bottom of each specific topic there is a Comments navigation bar and on the right side there is a Log in
button. Click this button and log in with your administrator credentials. This gives you access to an Admin Panel
button.

2. Click the Admin Panel button to display an administration page.

Figure 387: Administrative Page

3. Use this page to manage the following options:

Allows you to delete comments that are no longer associated with a topic in your WebHelp
system.

Delete Orphaned
Comments

Allows you to delete user accounts that you do not wish to activate.Delete Pending
Users

Allows you to view all the comments that are associated with topics in your WebHelp system.View All Posts

Allows you to export all posts associated with topics in your WebHelp system into an XML
file.

Export Comments

Use this action to display comments starting with a particular version.Set Version

To edit the details for a user, click on the corresponding row. This opens a window that
allows you to customize the following information associated with the user:

Manage User
Information

The full name of the user.Name

Oxygen XML Editor plugin | Transforming Documents | 660

Use this field to modify the privilege level (role) for the selected user.
You can choose from the following:

Level

• User - Regular user, able to post comments and receive e-mail
notifications.

• Moderator - In addition to the regular User rights, this type of user
has access to the Admin Panel where a moderator can view, delete,
export comments, and set the version of the feedback-enabled
WebHelp system.

• Admin - Full administrative privileges. Can manage
WebHelp-specific settings, users, and their comments.

The name of the organization associated with the user.Company

The contact email address for the user. This is also the address where
the WebHelp system sends notifications.

E-Mail

When enabled, the user receives notifications when comments are posted
anywhere in your feedback-enabled WebHelp system.

WebHelp
Notification

When enabled, the user receives notifications when comments are posted
as a reply to one of their comments.

Reply
Notification

When enabled, the user receives notifications when comments are posted
on a topic where they previously posted a comment.

Page Notification

The date the user registered is displayed.Date

Use this drop-down list to change the status of the user. You can choose
from the following:

Status

• Created - The user is created but does not yet have any rights for
the feedback-enabled WebHelp system.

• Validated - The user is able to use the feedback-enabled WebHelp
system.

• Suspended - The user has no rights for the feedback-enabled
WebHelp system.

Warning: The key used for identifying the page a comment is attached to is the relative file path to the output
page. Since the output file and folder names mirror the source, any change to the file name (or its folder) in the
source will affect the comments associated with that WebHelp page. If you change the file name or path, the
comment history for that topic will become orphaned (a change to the topic ID does not affect the comment
history).

WebHelp Responsive Template Mechanism

The WebHelp Responsive template mechanism is the base of the system and it is responsible for defining its output. It
consists of a set of HTML template pages and other additional resources (such as images, CSS, and JavaScript files).
Each HTML template file contains one or more template components (such as title, table of contents, search input, etc.)
whose placement inside the template will define the final layout of the output.

This mechanism allows you to create multiple layouts simply by creating templates that define the location of where
the various components will be displayed.

The section provides information about the four types of template pages, the various template components, and the
required template directory structure.

WebHelp Responsive Template Pages

The HTML pages that comprise the output of a WebHelp Responsive system are obtained after processing HTML
template pages.

Oxygen XML Editor plugin | Transforming Documents | 661

There are four types of template pages:

1. Main page template - Used to produce the home page of the WebHelp Responsive output.
2. Topic template - Used to generate the HTML pages associated with a topic.
3. Search results template - Used to generate the HTML page that presents the search results.
4. Index terms template - Used when generating the HTML page that presents the documentation index.

WebHelp Responsive Main Page Template

This template is used to generate the home page of the WebHelp Responsive output.

The main function of the home page is to display links that help you easily reach any of the top level topics of the
publication. These links can be rendered either in a tile or tree-like layout.

WebHelp Responsive Output with a Tile Layout

Description

The components that can be referenced from the main page are:

• Publication Title
• Publication Logo
• Search Input
• Print Link
• Main Page Menu
• Main Page Topic Tiles
• Main Page Table of Contents
• Index Terms Link

WebHelp Responsive Topic Template

This template is used when generating HTML files for each topic. Basically, the HTML produced for a topic consists
of the topic content which is wrapped by additional components such as: application title, navigation breadcrumb, or
a side TOC.

Oxygen XML Editor plugin | Transforming Documents | 662

A sample HTML topic is:

The components that can be referenced from the main page are:

• Publication Title
• Publication Logo
• Search Input
• Topic Breadcrumb
• Navigational Links
• Print Link
• Topic Content
• Topic Side TOC
• Topic Feedback
• Main Page Menu
• Index Terms Link

WebHelp Responsive Search Results Template

This template is used when generating HTML page used to present search results. This template should have a reference
to the component that specifies where the search results will be presented.

A sample HTML for search page is:

Oxygen XML Editor plugin | Transforming Documents | 663

The components that can be referenced from the search page are:

• Publication Title
• Publication Logo
• Search Input
• Print Link
• Main Page Menu
• Index Terms Link

WebHelp Responsive Index Terms Template

This template is used when generating the page used to present index terms. This template should have a reference to
the component that specifies where the index terms will be presented.

A sample index term page is:

Oxygen XML Editor plugin | Transforming Documents | 664

The components that can be used inside the search results page are:

• Publication Title
• Publication Logo
• Search Input
• Print Link
• Main Page Menu
• Index Terms Link

WebHelp Template Components

A WebHelp Responsive template component adds dynamics to the WebHelp template page. It is expanded differently
depending on the context where it is placed or the currently transformed DITA Map.

Some WebHelp Responsive template components could be used in all the template pages and some of them could be
used in all pages. For instance, the publication title could be used in all pages, but topic navigation breadcrumb could
be used only when expanding the WebHelp Responsive topic template.

To output such a component you have to refer a specific element in template pages. All the elements associated with a
template components should belong to the http://www.oxygenxml.com/webhelp/components namespace.

Components can be classified depending on where they can be used:

Publication Title [webhelp_publication_title]

This component is bound to the publication title and it can be used in all template pages.

To output this component in the WebHelp Responsive output you have to specify the element
webhelp_publication_title in a template page. This component can be specified in all template pages.

Sample

If you specify the next element in a template page:

<whc:webhelp_publication_title xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

you will find in the output an element with class webhelp_publication_title.

Oxygen XML Editor plugin | Transforming Documents | 665

Publication Logo [webhelp_logo]

This component can be used to emit a logo image in WebHelp Responsive output. It will be processed only when a logo
image is specified through the webhelp.logo.image transformation parameter.

Additionally, you can set the webhelp.logo.image.target.url parameter to generate a link to an URL when
you hover the logo image. If this parameter is not set, then a link to the home page will be automatically generated.

The element associated with this component is webhelp_logo and it can be specified in all template pages.

Sample

If you specify the next element in a template page:

<whc:webhelp_logo xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

and the transformation parameters:

$webhelp.logo.image = logo.png
$webhelp.logo.image.target.url = http://www.oxygenxml.com

you will find in the output an element with webhelp_logo class.

Search Input [webhelp_search_input]

This component is used to emit the input widget associated with search function. The element associated with this
component is webhelp_search_input and it can be specified in all template pages.

Sample

If you specify the next element in a template page:

<whc:webhelp_search_input xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

you will find in the output an element with webhelp_search_input class.

Search Results [webhelp_search_results]

This component can be used in the WebHelp search template page as a placeholder to signal where the search results
will be presented.

The element associated with this component is:

<whc:webhelp_search_results xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

and it will generate in the output an element with the webhelp_search_results class.

Topic Breadcrumb [webhelp_breadcrumb]

This component can be used to display the path in the documentation to the current topic. It can be used only in the
WebHelp Responsive Topic Template.

Sample

If you specify the next element in the WebHelp topic template page:

<whc:webhelp_breadcrumb xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

you will find in the output an element with webhelp_breadcrumb class. This element will contain a list with items
to the current topic. The first item in the list has a link to the main page with class home. The last item in the list
corresponds to the current topic and has set the active class.

Oxygen XML Editor plugin | Transforming Documents | 666

Navigational Links [webhelp_navigation_links]

This component can be used to generate in the documentation links to the next and previous topics. It is available only
in the WebHelp Responsive Topic Template.

Sample

If you specify the next element in the WebHelp topic template page:

<whc:webhelp_navigation_links xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

you will find in the output an element with webhelp_navigation_links class. This element will contain the links
to the next and previous topics.

Topic Content [webhelp_topic_content]

This component can be used in the WebHelp Responsive Topic Template to generate the raw content of the topic (without
any side components like breadcrumb or side TOC). For DITA, it represent the content of the HTML files as they are
produced by DITA-OT processor.

The element associated with this WebHelp template component is

<whc:webhelp_topic_content xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

It will generate in the output an element with webhelp_topic_content class.

Topic Side TOC [webhelp_side_toc]

This component can be used in the WebHelp Responsive Topic Template to generate a mini TOC for the current topic.
The mini TOC will contain links to the current topic's children, its siblings and all of its ancestors.

The element associated with this WebHelp template component is

<whc:webhelp_side_toc xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

It will generate in the output an element with webhelp_side_toc class and containing links to the topics that are
close to the current topic.

Topic Feedback [webhelp_feedback]

This component can be used in the WebHelp Responsive Topic Template to indicate the place where the feedback part
will be presented.

The element associated with this component is

<whc:webhelp_feedback xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Main Page Topic Tiles [webhelp_tiles]

This component can be used in the WebHelp main page template to generate the tiles section in the main page. This
section will contains a tile for each root topic of the published documentation. Each topic tile has three sections that
corresponds to topic title, short description and image.

The element associated with this WebHelp template component is

<whc:webhelp_tiles xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

It will generate in the output an element with webhelp_tiles class.

Oxygen XML Editor plugin | Transforming Documents | 667

If you want to control the HTML structure that is generated for a WebHelp tile you can also specify the template for a
tile by using the whc:webhelp_tile component. Such a tile template could be:

<whc:webhelp_tile class="col-md-4">
 <!-- Place holder for tile's image -->
 <whc:webhelp_tile_image/>

 <div class="webhelp_tile_text">
 <!-- Place holder for tile's title -->
 <whc:webhelp_tile_title/>

 <!-- Place holder for tile's shordesc -->
 <whc:webhelp_tile_shortdesc/>
 </div>
</whc:webhelp_tile>

Main Page Table of Contents [webhelp_main_page_toc]

This component can be used in the WebHelp main page template to generate a simplified Table of Content structure. It
is simplified because it contains only two levels from the documentation hierarchy.

The element associated with this WebHelp template component is

<whc:webhelp_main_page_toc xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

and will generate in the output an element with the webhelp_main_page_toc class.

Main Page Menu [webhelp_topics_menu]

This component can be used in the WebHelp main page template to generate a menu with all the documentation topics.

The user can control the maximum level of topics that will be included in the menu using the
webhelp.top.menu.depth transformation parameter.

The element associated with this WebHelp template component is

<whc:webhelp_topics_menu xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Print Link [webhelp_print_link]

This component can be used in all WebHelp template pages to generate a button that displays the browser's print dialog.

The element associated with this WebHelp template component is

<whc:webhelp_print_link xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

It will generate in the output an element with webhelp_print_link class.

Include HTML files [webhelp_include_html]

This component can be used in the all the WebHelp template pages to include custom HTML files.

The element associated with this WebHelp template component is

<whc:include_html href="${wh.param}"/>

Where the href can have the next values:

• any URL - in this case the file to be included is specified as an URL.
• {$oxygen-webhelp-template-dir}/file_to_include.html - to include resources that are part of the template.
• ${webhelp.param} - to include a resource of which path is specified through a WebHelp transformation scenario

parameter. The value of this parameter can be a simple HTML fragment, case when it will be copied to the output.

Oxygen XML Editor plugin | Transforming Documents | 668

Index Terms Link [webhelp_indexterms_link]

This component can be used in all the WebHelp template pages to generate a link to the index terms page,
indexterms.html. If the published documentation does not contains any index terms, then the link will not be
generated.

The element associated with this WebHelp template component is

<whc:webhelp_indexterms_link xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

It will generate in the output an element with the webhelp_indexterms_link class that contains a link to the
indexterms.html page.

WebHelp Template Resources

All templates are stored in the templates/dita folder located in the root folder of the oXygen XML WebHelp plugin.
The structure of an WebHelp Responsive template is the following:

At the first level of the template directory we can find the following predefined files and folders:

• resources folder - contains all additional resources used by the template, such as images, CSS, and JavaScript
files.

• variants folder - contains the template variants.
• template files:

• wt_index.html - Used to generate main page.
• wt_topic.html - Used to generate HTML pages for each topic.
• wt_search.html - Used to generate the HTML page for presenting the search result.
• wt_terms.html - Used to generate the page for index terms.

After the transformation scenario is executed, the resources and variants folders are copied in the output in the
{outDir}/oxygen-webhep/template directory.

Oxygen XML Editor plugin | Transforming Documents | 669

Template, Variant and Skin Concept

A template could be seen as a set of WebHelp components that are put in a predefined HTML layout.

If we want to display one or more template components we could obtain one or more variants of the template. So, a
WebHelp template variant is an instance of the template with a specific set of parameters. For instance, we could have
two variants of the WebHelp main page, one that displays the topics as tiles and another one that displays the topics in
a tree-like fashion.

Each variant has its own directory which gives the name of the variant. The name of the variant is also displayed in the
user interface when the template's variants are displayed.

The variant's directory could contain the following resources:

• params.properties - This file specifies the values for the parameters imposed by the variant.
• resources - Optional directory. It contains resources that are specific to the current variant (images, CSS files, etc).

They will be copied to the output directory.
• one or more skin directories that represent skins of the current variant.

A variant's skin represents a CSS that allows you to alter the styling of the template. This skin might need additional
resources (images, fonts) that must be stored in the resources directory in the skin's root folder. The name of the
skin directory will give the name of the skin and it will be displayed in the UI when you choose a variant's skin.

The CSS associated with a skin must be named skin.css and it must be stored as first child of the skin's directory.

The skin directory can also contain a skin.png preview image, that will be displayed in the UI, and a properties file
containing an URL for the online preview of the skin.

Customizing the WebHelp Responsive Output

To change the overall appearance of your WebHelp Responsive output, you can use several different customization
methods or a combination of methods. If you are familiar with CSS and coding, you can style your WebHelp output
through your own custom stylesheets. You can also customize your output by modifying existing templates, create your
own, or by configuring certain options and parameters in the transformation scenario.

This section includes topics that explain various ways to customize your WebHelp Responsive system output, such as
how to configure the tiles on the main page, add logos in the title area, integrate with social media, localizing the interface,
and much more.

WebHelp Responsive Customization Methods

There are several methods that you can use to customize your WebHelp Responsive output. Each method has its own
advantages and limitations. This topic provides information on each of the methods so that you can choose the best
possible method based upon your needs.

Insert Custom HTML Fragments in Predefined Placeholders

The WebHelp Responsive template contains a series of component placeholders. Some of these placeholders are left
empty in the default output configurations, but you can use them to display custom content. This method is useful if you
want to use an existing skin and simply make some minor changes or additions in certain locations within the final
output.

Advantages:

• This method is very easy, since the fragments for the placeholders can be specified in the transformation scenario.
• Advanced knowledge of CSS styling is not required for this method.

Each such placeholder has an associated parameter in the transformation scenario Parameters tab. These predefined
empty placeholder parameters are illustrated and described below:

Oxygen XML Editor plugin | Transforming Documents | 670

Figure 388: Predefined Placeholders Diagram

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as the
header in the output.

1- webhelp.fragment.head

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the body in the output.

2- webhelp.fragment.before.body

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the logo and title in the output.

3- webhelp.fragment.before.logo_and_title

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the logo and title in the output.

4- webhelp.fragment.after.logo_and_title

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the top menu in the output.

5- webhelp.fragment.before.top_menu

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed after the
top menu in the output.

6- webhelp.fragment.after.top_menu

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the search field in the output.

7-
webhelp.fragment.before.main.page.search

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as a
welcome message (or title) in the output.

8- webhelp.fragment.welcome

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the search field in the output.

9- webhelp.fragment.after.main.page.search

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed before
the table of contents or tiles in the main page of the output.

10- webhelp.fragment.before.toc_or_tiles

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed

11- webhelp.fragment.after.toc_or_tiles

Oxygen XML Editor plugin | Transforming Documents | 671

after the table of contents or tiles in the main page of the
output.

Specify an XML fragment (or a path to a file that contains
well formed XML content) that will be displayed as the
footer in the output

12- webhelp.fragment.footer

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be displayed
after the body in the output.

13- webhelp.fragment.after.body

EXAMPLE:
To insert a message above the search field component in the main page of the output, follow this procedure:

1. Edit the WebHelp Responsive transformation scenario.
2. Go to Parameters tab and find the parameter associated with the place holder that you want to use. In this case, it

is called webhelp.fragment.welcome.
3. Edit the parameter. Depending on the size of the content you want to add, you can insert one of the following:

• A small well-formed XHTML fragment, such as: <i>Welcome to our user guide</i>.
• A path to a file that contains well-formed XHTML content.

Customize WebHelp Output with a Custom CSS

This method is useful if you want to use an existing skin and it is very close to what you need, but you want to adjust
the styling of the final output. For example, this might be the case if you simply want to change a color, or adjust some
of the margins or paddings of certain components.

Advantages:

• This method could be used as a quick and easy way to make small styling changes.
• The custom CSS can be distributed with your project and shared with other members of your team.
• This method can be used for advanced and precise styling.

Additional Notes:

• The fonts, images, and other resources must be stored in a remote server location.
• This type of customization will not appear in the Templates tab of the transformation scenario. Instead, the custom

CSS needs to be set as a parameter of an existing transformation scenario.

To set a custom CSS to a transformation scenario:

1. Edit the WebHelp Responsive transformation scenario.
2. Open the Parameters tab.
3. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the

args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed. Also, if your customization CSS requires additional resources, you can copy
them to the generated output by specifying the webhelp.custom.resources parameter.

Create a New WebHelp Responsive Skin

This method is useful if you want a design that is not similar to any of the predefined skins, or if you want to make a
lot of changes to one of the existing skins. This method is also useful if you want to distribute additional resources (such
as fonts and images) together with a custom CSS.

Advantages:

• The customized skin will be available in the Templates tab of the transformation scenario.
• The resources are encapsulated into the skin directory and can be shared with other team members, along with a

custom CSS file.

Additional Notes:

Oxygen XML Editor plugin | Transforming Documents | 672

• This method requires access to the installation folder, or the use of an external DITA-OT engine (with the WebHelp
plugin installed).

To create a new WebHelp Responsive skin, follow this procedure:

1. Locate the following folder in your DITA-OT directory (DITA_OT_DIR):

DITA_OT_DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/variants/

2. Here you can see some subdirectories corresponding to different variants for the same template. For instance, the
default directories are tiles and tree.

3. In each of these variants, you will find a directory for each of the skins (for example, the default skins and their
corresponding directories are: flowers, green, light, mechano, orange, etc.)

4. Duplicate one of the skin folders and rename it to whatever you want your new skin to be identified as.
5. Edit the skin.css file and customize it the way you want. If your customization of the CSS file requires additional

resources (such as images, fonts, or other CSS files), they need to be placed in the resources folder at the same
level with the skin.css file.

Result:Your new skin should now be included in the list of skins in the Templates tab of the transformation scenario.

Tip: During development, you may want to regularly test your customization. To shorten the publishing time
of your tests, use a small project (you could use one of the Oxygen XML Editor plugin sample projects). Also,
you can use your web browser CSS inspector tool to lookup the CSS classes you want to modify.

Create a New WebHelp Responsive Template

This method can be used when you need to make significant structural changes to the WebHelp output. For example,
if you want to move some components to other positions, or if you want to use a different responsive front-end framework
than the default Bootstrap framework (for instance, if you want to switch to ZURB Foundation).

Advantages:

• This method allows you to fully customize the output.
• This method allows you to change the structure of the generated HTML files.
• You can create your own skins for the new template.

Additional Notes:

• This method requires access to the installation folder, or the use of an external DITA-OT engine (with the WebHelp
plugin installed).

To create a new WebHelp Responsive template, follow these steps:

1. Locate the following folder in your DITA-OT directory (DITA_OT_DIR):

DITA_OT_DIR/plugins/com.oxygenxml.webhelp/templates/dita/

2. Duplicate the bootstrap folder and rename it to whatever you want your new template to be identified as (for
example, myTemplate).

3. Customize the structure of the new template according to your needs. For example, if you only want to keep one of
the template variants, open the myTemplate/variants folder and delete all of its subdirectories, except for that
one (for instance, the tiles directory).

4. You can also customize the structure of the skins within the template variants. For example, if you only want to keep
one of the skins in the tiles variant, open the myTemplate/variants/tiles folder and delete all of its
subdirectory skins, except for that one (for instance, the light directory).

5. Edit the skin.css file that is located in the skin directory (for example,
myTemplate/variants/tiles/light) and customize it the way you want. If your customization of the CSS
file requires additional resources (such as images, fonts, or other CSS files), they need to be placed in the resources
folder at the same level with the skin.css file.

Result: Your new templates and skins should now be included in the Templates tab of the transformation scenario.

Oxygen XML Editor plugin | Transforming Documents | 673

http://getbootstrap.com/
http://foundation.zurb.com/

Tip: During development you regularly need to test your customization. To shorten the publishing time of your
test, use a small project (you could use one of the Oxygen XML Editor plugin sample projects). Also, you can
use your web browser CSS inspector tool to lookup the CSS classes you want to modify.

Adding a Logo Image in the Title Area

To customize the title area of your WebHelp output, follow this procedure:

1. Edit a WebHelp transformation scenario, then open the Parameters tab.
2. Specify the path to your logo in the webhelp.logo.image parameter.
3. If you also want to add a link to your website, set the URL in the webhelp.logo.image.target.url

parameter.
4. Run the transformation scenario.

How to set a Welcome Message in the Home Page

The main page of the Welcome Responsive output contains a set of empty placeholders that can be used to display
customized text fragments. These placeholders are available to you through the WebHelp Responsive transformation
scenario parameters. One of these placeholders (identified through the webhelp.fragment.welcome parameter)
was designed to display text content above the search box in the main page.

To add a customized welcome message in the main page of the WebHelp Responsive output, follow this procedure:

1. Edit a WebHelp Responsive transformation scenario.
2. Open the Templates tab and choose a skin that suits you best.
3. Open the Parameters tab and edit the webhelp.fragment.welcome parameter. The value of this parameter

can be one of the following:

• A small well-formed XHTML fragment, such as: <i>Welcome to our user guide</i>.
• Path to a file that contains well-formed XHTML content.

4. Click OK, then click the Apply associated button to execute the transformation scenario.

How to Configure the Main Page Tiles

The tiles version of the main page of the WebHelp Responsive output displays a tile for each topic found on the first
level of the DITA map source. However, you might want to customize the way they look or even to hide some of them.

Depending on your particular setup, you can choose to customize the these tiles either by setting metadata information
in the DITA map or by customizing the transformation scenario DITA map.

Hiding some of the tiles displayed in the main page

When the documentation is very large and the number of topics on the first level is very large, you might want to hide
some of them. Also, this might prove useful when you want to display in the first page only the topics that are most
relevant to your intended audience.

There are two methods of doing this: one of them involves editing the DITA map and marking the topics that do not
need to be displayed as tiles, and another one that uses a small CSS customization level to hide some tiles identified by
the id of the topic.

Editing the DITA Map

To control which topic on the first level of the DITA map will not be displayed as a tile:

1. Open the DITA map in the Text mode of Oxygen XML Editor plugin.
2. Add the following metadata information in the topicref element (or any of its specializations) for each first-level

topic you do not want to be displayed as a tile:

<topicmeta>
<data name="wh-tile">

<data name="hide" value="yes"/>
</data>

</topicmeta>

Oxygen XML Editor plugin | Transforming Documents | 674

Customizing the CSS

To control which topic on the first level of the DITA map will not be displayed as a tile:

1. Make sure you set an id to the topic you want to hide. For the purpose of this procedure, we suppose that the id you
set to a topic has the value growing-flowers.

2. Create a new CSS file that contains a rule that hides the tile generated for our topic (identified by the topic id
growing-flowers). The CSS file has the following content:

.wh_tile [data-id='growing-flowers'] {
 display:none;
}

3. Use the Customizing WebHelp Output with a Custom CSS method to pass the CSS file you just created to the
transformation scenario.

Setting an Image in the Tiles Displayed in the Main Page

There are two methods to set an image in a tile: one of them involves setting metainformation in a DITA map and the
other one that uses a CSS .

Editing the DITA Map

1. Open the DITA map in the Text mode of Oxygen XML Editor plugin.
2. Add the following metadata information in the topicref element (or any of its specializations) for each first-level

topic that will have an image displayed in the corresponding tile:

<topicmeta>
<data name="wh-tile">

<data name="image" href="img/tile-image.png" format="png">
<data name="attr-width" value="64"/>
<data name="attr-height" value="64"/>

</data>
</topicmeta>

Note: The attr-width and attr-height attributes can be used to control the size of the image, but
they are optional.

Using a Customized CSS

1. Make sure you set an id to the topic for which the tile will be decorated with an image. For the purpose of this
procedure, we suppose that the id you set to a topic has the value growing-flowers.

2. Create a new CSS file that contains a rule that associates an image with a specific tile. The CSS file has the following
content:

.wh_tile[data-id='growing-flowers']> div {
 background-image:url('resources/flower.png');
}

3. Use the Customizing WebHelp Output with a Custom CSS or the Create a WebHelp Responsive Skin method to pass
the CSS file you just created to the transformation scenario.

Customizing the Menu

By default, the menu component is displayed in all WebHelp Responsive pages. However, for some reasons you might
want to hide it completely, or, display only some of its menu entries.

Hiding Some Menu Entries

Editing the DITA map

1. Open the DITA map in the Text mode of Oxygen XML Editor plugin.

Oxygen XML Editor plugin | Transforming Documents | 675

2. Add the following metadata information in the topicref element (or any of its specializations) for each topic you
do not want to be displayed in the menu:

<topicmeta>
<data name="wh-menu">

<data name="hide" value="yes"/>
</data>

</topicmeta>

Customizing the CSS

To hide some of the menu entries:

1. Make sure you set an id to the topic for which you do not want to have a menu entry. For the purpose of this procedure,
we suppose that the id you set to a topic has the value growing-flowers.

2. Create a new CSS file that contains a rule that hides the menu entry generated for our topic (identified by the topic
id growing-flowers). The CSS file has the following content:

.wh_top_menu *[data-id='growing-flowers'] {
 display:none;
}

3. Use the Customizing WebHelp Output with a Custom CSS method to pass the CSS file you just created to the
transformation scenario.

Hiding the Entire Menu

If you do not need to include a main menu in the pages of the WebHelp Responsive output, you can instruct the
transformation scenario to skip the menu generation completely. Follow this procedure:

1. Edit a WebHelp Responsive transformation scenario.
2. Open the Templates tab and choose a skin that suits you best.
3. Open the Parameters tab and set the value of the webhelp.show.top.menu parameter to no.
4. Click OK, then click the Apply associated button to execute the transformation scenario.

Integrating Social Media and Google Tools in WebHelp Output

Oxygen XML Editor plugin includes support for integrating some of the most popular social media sites in WebHelp
output.

How to Integrate Google Analytics in WebHelp Output
See how you can integrate Google Analytics into WebHelp output.

To enable your WebHelp system to benefit from Google Analytics reports, follow these steps:

1. Create a new Google Analytics account (if you do not already have one) and log on.

2. Choose the Analytics solution that fits the needs of your website.

3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID.

A Tracking Code looks like this:

<script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');
 ga('send', 'pageview');
</script>

4. Save the Tracking Code (obtained in the previous step) in a new HTML file called googleAnalytics.html.

5. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

6. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without feedback,
or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

Oxygen XML Editor plugin | Transforming Documents | 676

7. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the
googleAnalytics.html file that you created earlier.

8. Click Ok.

9. Run the transformation scenario.

Related information
DITA Map to WebHelp Output on page 587

How to Add a Facebook Like Button in WebHelp Responsive Output
See how you can add a Facebook widget into your WebHelp Responsive output.

To add a Facebook™ Like widget to your WebHelp output, follow these steps:

1. Go to the Facebook Developers website.

2. Fill-in the displayed form, then click the Get Code button.
A dialog box that contains code snippets is displayed.

3. Copy the two code snippets and paste them into a <div> element inside an XML file called
facebook-widget.xml.

Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!--
 (function(d, s, id) {

var js, fjs = d.getElementsByTagName(s)[0];
if (d.getElementById(id)) return;

 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 -->
 </script>
 <div class="fb-like" data-layout="standard" data-action="like" data-show-faces="true"
 data-share="true"/>
</div>

4. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or without
feedback) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters that
begin with webhelp.fragment. Set that parameter to reference the facebook-widget.xml file that you
created earlier.

7. Click Ok.

8. Run the transformation scenario.

How to Add Tweet Button in WebHelp Responsive Output
See how you can add a Twitter widget into your WebHelp Responsive output.

To add a Twitter™ Tweet widget to your WebHelp Responsive output, follow these steps:

1. Go to the Tweet button generator page.

2. Fill-in the displayed form.
The Preview and code area displays the code.

3. Copy the code snippet displayed in the Preview and code area and paste it into a div element inside an XML file
called tweet-button.xml.

Make sure you follow these rules:

Oxygen XML Editor plugin | Transforming Documents | 677

https://developers.facebook.com/docs/plugins/like-button
https://about.twitter.com/resources/buttons#tweet

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">
 Tweet
 <script>
 <!--
 !function (d, s, id) {

var
 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location) ? 'http': 'https';

if (! d.getElementById(id)) {
 js = d.createElement(s);
 js.id = id;
 js.src = p + '://platform.twitter.com/widgets.js';
 fjs.parentNode.insertBefore(js, fjs);
 }
 }
 (document,

'script', 'twitter-wjs');
 -->
 </script>
</div>

4. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or without
feedback) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters that
begin with webhelp.fragment. Set that parameter to reference the tweet-button.xml file that you created
earlier.

7. Click Ok.

8. Run the transformation scenario.

Related information
DITA Map to WebHelp Output on page 587

How to Add a Google+ Button in WebHelp Responsive Output
See how you can add a Google+ widget into your WebHelp Responsive output.

To add a Google+ widget to your WebHelp Responsive output, follow these steps:

1. Go to the Google Developers website.

2. Fill-in the displayed form.
The preview area on the right side displays the code and a preview of the widget.

3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called
google-plus-button.xml.

Make sure that the content of the file is well-formed.

The content of the XML file should look like this:

<div id="google-plus">
 <!-- Place this tag in your head or just before your close body tag. -->
 <script src="https://apis.google.com/js/platform.js" async defer></script>

 <!-- Place this tag where you want the +1 button to render. -->
 <div class="g-plusone" data-annotation="inline" data-width="300"></div>
</div>

4. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or without
feedback) and click the Duplicate button to open the Edit Scenario dialog box.

Oxygen XML Editor plugin | Transforming Documents | 678

https://developers.google.com/+/web/+1button/

6. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters that
begin with webhelp.fragment. Set that parameter to reference the google-plus-button.xml file that
you created earlier.

7. Click Ok.

8. Run the transformation scenario.

Related information
DITA Map to WebHelp Output on page 587

How to Localize the Interface of WebHelp Output (for DITA Map Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
folder. Translation files have the strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language codes.
For example, the US English text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DITA map transformations, follow these steps:

1. Look for the strings-[lang1]-[lang2].xml file in
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
directory (for example, the Canadian French file would be: strings-fr-ca.xml). If it does not exist, create one starting
from the strings-en-us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the following
format: <str name="Label name">Caption</str>.

3. Make sure that the new XML file that you created in the previous two steps is listed in the file
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization/strings.xml.
In our example for the Canadian French file, it should be listed as: <lang xml:lang="fr-ca"
filename="strings-fr-ca.xml"/>.

4. Edit any of the DITA Map to WebHelp transformation scenarios (with or without feedback, or the mobile version)
and set the args.default.language parameter to the code of the language you want to localize (for example, fr-ca for
Canadian French).

5. Run the transformation scenario to produce the WebHelp output.

Related information
Creating New Transformation Scenarios on page 602

Localizing the Email Notifications of WebHelp with Feedback Systems

The WebHelp with Feedback system uses emails to notify users when comments are posted. These emails are based on
templates stored in the WebHelp directory. The default messages are in English, French, German, and Japanese. These
messages are copied into the WebHelp system deployment directory during the execution of the corresponding
transformation scenario.

Suppose that you want to localize the emails into Dutch (nl). Follow these steps:

DocBook WebHelp with Feedback

1. Create the following directory:

[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl

2. Copy all English template files from
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\en
and paste them into the directory you just created.

3. Edit the HTML files from the
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl
directory and translate the content into Dutch.

4. Start Oxygen XML Editor plugin and edit the DocBook WebHelp Classic with Feedback transformation scenario.

Oxygen XML Editor plugin | Transforming Documents | 679

5. In the Parameters tab, look for the l10n.gentext.default.language parameter and set its value to the
appropriate language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us),
the transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

DITA WebHelp with Feedback

1. Create the following directory:

DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl

2. Copy all English template files from
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\en
and paste them into the directory you just created.

3. Edit the HTML files from the
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl
directory and translate the content into Dutch.

4. Start Oxygen XML Editor plugin and edit the DITA Map WebHelp Classic with Feedback or DITA Map WebHelp
Responsive with Feedback transformation scenario.

5. In the Parameters tab, look for the args.default.language parameter and set its value to the appropriate
language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us),
the transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

Editing Scoring Values of Tag Elements in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that matches
the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated for the search results.
Oxygen XML Editor plugin includes a properties file that defines the scoring values for tag elements and this file can
be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

1. Edit the scoring properties file for DITA or DocBook WebHelp systems. The properties file includes instructions
and examples to help you with your customization.

a) For DITA WebHelp systems, edit the following file:
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\indexer\scoring.properties.

b) For DocBook WebHelp system, edit the following file:
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\indexer\scoring.properties.

The values that can be edited in the scoring.properties file:

h1 = 10
h2 = 9
h3 = 8
h4 = 7
h5 = 6
h6 = 5
b = 5
strong = 5
em = 3
i=3
u=3
div.toc=-10
title=20
div.ignore=ignored
meta_keywords = 20
meta_indexterms = 20
meta_description = 25
shortdesc=25

Oxygen XML Editor plugin | Transforming Documents | 680

2. Save your changes to the file.

3. Re-run your WebHelp system transformation scenario.

Adding Videos in the Output

Videos can be included and played in all HTML5-based output formats (such as WebHelp). For example, to add a
YouTube video in the WebHelp output generated from DITA or DocBook documents, follow the procedures below.

Adding Videos to WebHelp Generated from DITA Maps

1. Edit the DITA topic to reference the video using an object element, as in the following example:

<object outputclass="video">
<param name="src" value="http://www.youtube.com/watch/v/VideoName"/>

</object>

2. Apply a WebHelp or WebHelp with Feedback transformation scenario to obtain the output.

Adding a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp system by simply using a parameter in the transformation scenario to
point to your favicon image. This is available for DITA and DocBook WebHelp systems using WebHelp Responsive,
WebHelp Responsive with Feedback, WebHelp Classic, WebHelp Classic with Feedback, or WebHelp Classic
Mobile transformation scenarios.

To add a favicon, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.

2. Locate the webhelp.favicon parameter and enter the file path that points to the image that will be use as the
favicon.

3. Run the transformation scenario.

Change Numbering Styles for Ordered Lists

Ordered lists (ol) are usually numbered in XHTML output using numerals. If you want to change the numbering to
alphabetical, follow these steps:

1. Define a custom outputclass value and set it as an attribute of the ordered list, as in the following example:

<ol outputclass="number-alpha">
A
B
C

2. Add the following code snippet in a custom CSS file:

ol.number-alpha{
list-style-type:lower-alpha;

}

3. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

4. Run the transformation scenario.

WebHelp Responsive Runtime Additional Parameters

A deployed WebHelp Responsive system can accept the following GET parameters:

• contextId - The WebHelp JavaScript engine will look up the value of this parameter in the mapping file and load
the corresponding HTML help page. For more information, see the Context-Sensitive WebHelp System topic.

Oxygen XML Editor plugin | Transforming Documents | 681

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document.
For example, contextId=topicID#anchor.

• searchQuery - You can use this parameter to perform a search operation when WebHelp is loaded. For example,
if you want to open WebHelp showing all search results for growing flowers, the URL should look like this:
http://localhost/webhelp/index.html?searchQuery=growing%20flowers.

Flag DITA Content

Flagging content involves defining a set of images that will be used for marking content across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to be flagged.
Generally, flagging is supported for block-level elements (such as paragraphs), but not for phrase-level elements within
a paragraph. This ensures that the images that will flag the content are easily scanned by the reader, instead of being
buried in text.

Follow this procedure:

1. Create a DITA filter file in the directory where you want to add the file. Give the file a descriptive name, such as
audience-flag-build.ditaval.

2. Define the property of the element you want to be flagged. For example, if you want to flag elements that have the
audience attribute set to programmer, the content of the DITAVAL file should look like the following example:

<?xml version="1.0" encoding="UTF-8"?>
<val>

<prop att="audience" val="programmer" action="flag" img="D:\resource\delta.gif" alt="sample alt text"/>
</val>

Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in the
DITAVAL file.

3. Specify the DITAVAL file in the Filters tab of the transformation scenario.

4. Run the transformation scenario.

Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp

To activate support for RTL languages in WebHelp output, edit the DITA map and set the xml:lang attribute on its
root element (map). The corresponding attribute value can be set for following RTL languages:

• ar-eg - Arabic
• he-il - Hebrew
• ur-pk - Urdu

Search Engine Optimization for DITA WebHelp

A DITA Map WebHelp transformation scenario can be configured to produce a sitemap.xml file that is used by
search engines to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system and allows
webmasters to provide additional information about each page, such as the date it was last updated, change frequency,
and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>http://www.example.com/topics/introduction.html</loc>
<lastmod>2014-10-24</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>

</url>
<url>
<loc>http://www.example.com/topics/care.html#care</loc>
<lastmod>2014-10-24</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>

</url>
 . . .
</urlset>

Each page has a <url> element structure containing additional information, such as:

Oxygen XML Editor plugin | Transforming Documents | 682

• loc - the URL of the page. This URL must begin with the protocol (such as http), if required by your web server.
It is constructed from the value of the webhelp.sitemap.base.url parameter from the transformation scenario
and the relative path to the page (collected from the href attribute of a topicref element in the DITA map).

Note: The value must have fewer than 2,048 characters.

• lastmod - the date when the page was last modified. The date format is YYYY-MM-DD.
• changefreq - indicates how frequently the page is likely to change. This value provides general information to

assist search engines, but may not correlate exactly to how often they crawl the page. Valid values are: always,
hourly, daily, weekly, monthly, yearly, and never. The first time the sitemap.xml file is generated,
the value is set based upon the value of the webhelp.sitemap.change.frequency parameter in the DITA
WebHelp transformation scenario. You can change the value in each url element by editing the sitemap.xml
file.

Note: The value always should be used to describe documents that change each time they are accessed.
The value never should be used to describe archived URLs.

• priority - the priority of this page relative to other pages on your site. Valid values range from 0.0 to 1.0. This
value does not affect how your pages are compared to pages on other sites. It only lets the search engines know
which pages you deem most important for the crawlers. The first time the sitemap.xml file is generated, the
value is set based upon the value of the webhelp.sitemap.priority parameter in the DITA WebHelp
transformation scenario. You can change the value in each url element by editing the sitemap.xml file.

Note: lastmod, changefreq, and priority are optional elements.

Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-tune
search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the Edit DITA
Scenario dialog box.

2. Open the Parameters tab and set a value for the following parameters:

• webhelp.sitemap.base.url - the URL of the location where your WebHelp system is deployed

Note: This parameter is required for Oxygen XML Editor plugin to generate the sitemap.xml file.

• webhelp.sitemap.change.frequency - how frequently the WebHelp pages are likely to change (accepted
values are: always, hourly, daily, weekly, monthly, yearly, and never)

• webhelp.sitemap.priority - the priority of each page (value ranging from 0.0 to 1.0)

3. Run the transformation scenario.
4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the parameters of

each page, according to your needs.

Indexing Japanese Content for DITA WebHelp Pages

To optimize the indexing of Japanese content in WebHelp pages generated from DITA map transformations, the Kuromoji
analyzer can be used. This analyzer in not included in the Oxygen XML Editor plugin installation kit and must be
downloaded and added.

To use the Kuromoji analyzer to index Japanese content in your WebHelp system, follow these steps:

1. Download the analyzer jar file from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0.

2. Place the Kuromoji analyzer jar file in the following directory:
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib.

3. For the analyzer to work properly, search terms that are entered into your WebHelp pages must be separated by
spaces.

Oxygen XML Editor plugin | Transforming Documents | 683

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0

Optionally a Japanese user dictionary can be set with the webhelp.search.japanese.dictionary parameter.

Related information
DITA Map to WebHelp Output on page 587

WebHelp Classic System

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include platform
independence, ability to update content continuously, and it can be viewed using a regular web browser. The Oxygen
XML Editor plugin WebHelp system includes several variants to suit your specific needs. The WebHelp Classic variant
is designed for desktop systems when feedback from users is not necessary and it is available for DocBook and DITA
document types.

Layout of the WebHelp Classic System Interface

The layout of the WebHelp Classic system is comprised of the following components:

This section on the left side of the help system includes the following tabs:Left Pane or
Frame A typical table of contents style presentation of your content. You can use the

Expand all/ Collapse all buttons to expand or collapse all the topics
presented in the Table of Contents.

Content

Note: You can enhance the appearance of items in the Table of Contents.
See the Customizing WebHelp Classic Systems chapter for more details.

Presents the index terms for your content. If your content does not contain any
indexterm elements, this tab is not generated.

Index

This tab is generated when the Search field is used. It presents the search results
in the form of links to topics where the search terms are found, along with a rating
scheme for each result. For more details, see the Search Feature section.

Search Results

The upper section of the help system includes the following features:Upper Pane or
Frame Use this feature to perform searches in your content. When you enter search

terms in this field, the results are displayed in the Search Results tab in the
Search Field

left section of the help system, along with a rating scheme for each result.
For more details, see the Search Feature section.

Click on this option to display the output rendered in HTML frames.Frames Option

Opens a dialog box with various printing options and a print preview.Print Option

You can navigate through the content of your output using the navigation
links or arrows in the upper-right part of the page. These arrows allow you

Navigation Links

to move to the Parent topic, Previous topic, or Next topic. Links
to the parent topics of the currently opened topic are also presented at the
top of the page.

Note: You can edit the args.hide.parent.link parameter
to hide the Parent, Next, and Previous links.

The content of the help pages are rendered and displayed in this main section.Main Pane or
Frame

Oxygen XML Editor plugin | Transforming Documents | 684

Figure 389: WebHelp Classic Output

Search Feature

When you enter search terms in the Search field at the top of the help system, the results are displayed in the Search
Results tab in the left section, along with a rating scheme for each result. When you click on a result in the Search
Results tab, the search terms are highlighted in the main pane. If you click Enter with the Search field empty, the
highlights are removed.

The Search feature is also enhanced with a rating mechanism that computes scores for every page that matches the
search criteria. These scores are then translated into a 5-star rating scheme. The search results are sorted depending on
the following:

• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title scores better than a word found in unformatted text). The search

ranking order, sorted by relevance is as follows:

• The search phrase is included in a meta keyword
• The search phrase is in the title of the page
• The search phrase is in bold text in a paragraph
• The search phrase is in normal text in a paragraph

Oxygen XML Editor plugin | Transforming Documents | 685

Figure 390: WebHelp Classic Search Feature

Rules that are applied during a search include:

• Boolean searches are supported using the following operators: and, or, not. When there are two adjacent search terms
without an operator, or is used as the default search operator (for example, grow flowers is the same as grow or
flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate keywords: grow
and flowers).

• Do not use quotes to perform an exact search for multiple word expressions (an expression such as "grow flowers",
returns no results since it searches for two separate words).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for example,
content inside keywords elements weighs twice as much as content inside an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".") characters
count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored). This rule
does not apply to CJK (Chinese, Japanese, Korean) languages.

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For information
about editing these values, see the Editing Scoring Values of Tag Elements in Search Results on page 680 topic.

Oxygen XML Editor plugin | Transforming Documents | 686

This output format is compatible with the most recent versions of the following common browsers:

• Internet Explorer (IE 8 or newer)
• Chrome
• Firefox
• Safari
• Opera

Important: Due to some security restrictions in certain browsers (Google Chrome and Internet Explorer),
WebHelp Classic pages loaded from the local system (through URLs of the file:///... format) may not
work properly. We recommend that you load WebHelp Classic pages in Google Chrome or Internet Explorer
only from a web server (with a URL such as http://your.server.com/webhelp/index.html or
http://localhost/web_pages/index.html).

Warning: Due to some restrictions in web browsers in regards to JavaScript code, the frameless version
(index.html start page) of the WebHelp Classic system should only be loaded from a web server (with a
URL such as http://your.server.com/webhelp/index.html or
http://localhost/web_pages/index.html). When loading WebHelp Classic pages from the local
file system, the frameset version (index_frames.html start page) of the WebHelp Classic system should
be used instead (file:///...).

WebHelp Classic with Feedback System

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include platform
independence, ability to update content continuously, and a feedback mechanism that allows your authors and audience
to interact with one another through comments. The Oxygen XML Editor plugin WebHelp system includes several
variants to suit your specific needs. The WebHelp Classic with Feedback variant is designed for desktop systems, includes
a feedback system that allows your users to make comments and allows you to manage and reply to them, and it is
available for DocBook and DITA document types.

Layout

The layout of the WebHelp Classic with Feedback system is comprised of the following components:

This section on the left side of the help system includes the following tabs:Left Pane or
Frame A typical table of contents style presentation of your content. You can use the

Expand all/ Collapse all buttons to expand or collapse all the topics
presented in the Table of Contents.

Content

Note: You can enhance the appearance of items in the Table of
Contents. See the Customizing WebHelp Classic Systems chapter for
more details.

Presents the index terms for your content. If your content does not contain any
indexterm elements, this tab is not generated.

Index

This tab is generated when the Search field is used. It presents the search results
in the form of links to topics where the search terms are found, along with a
rating scheme for each result. For more details, see the Search Feature section.

Search Results

The upper section of the help system includes the following features:Upper Pane or
Frame Use this feature to perform searches in your content. When you enter search

terms in this field, the results are displayed in the Search Results tab in
Search Field

the left section of the help system, along with a rating scheme for each
result. For more details, see the Search Feature section.

Click on this option to display the output rendered in HTML frames.Frames Option

Oxygen XML Editor plugin | Transforming Documents | 687

Opens a dialog box with various printing options and a print preview.Print Option

You can navigate through the content of your output using the navigation
links or arrows in the upper-right part of the page. These arrows allow you

Navigation Links

to move to the Parent topic, Previous topic, or Next topic. Links
to the parent topics of the currently opened topic are also presented at the
top of the page.

Note: You can edit the args.hide.parent.link parameter
to hide the Parent, Next, and Previous links.

The content of the help pages are rendered and displayed in this main section.Main Pane or
Frame

The WebHelp Classic with Feedback system contains a Comments bar at the bottom of the main
pane. This section is where you can interact with users through a comment system.

Feedback Section

Figure 391: WebHelp Classic with Feedback System

Managing Comments

To add a new comment, click the Add New Comment button, or click Reply to add a comment to an existing thread.
You can click on the Log in button on the right side of this bar to be authenticated as a user and your user name will be
included in any comments that you add. If you do not have a user name, you can click on the Sign Up button to create
a new user.

After you log in, your name and user name are displayed in the Comments bar, along with the Log off and Edit buttons.
Click the Edit button to open the User Profile dialog box where you can customize the following options:

• Your Name - You can use this field to edit the initial name that you used to create your user profile.

Oxygen XML Editor plugin | Transforming Documents | 688

• Your email address - You can use this field to edit the initial email address that you used to create your profile.
• You can choose to receive an email in the following situations:

• When a comment is left on a page that you commented on.
• When a comment is left on any topic in the WebHelp Classic system.
• When a reply is left to one of my comments.

• New Password - Allows you to enter a new password for your user account.

Note: The Current Password field from the top of the User Profile is mandatory if you want to save the
changes you make.

If you are an administrator, you can manage user information and comments. For more information, see the Managing
Users and Comments in a WebHelp Classic with Feedback System on page 693 topic.

Search Feature

When you enter search terms in the Search field at the top of the help system, the results are displayed in the Search
Results tab in the left section, along with a rating scheme for each result. When you click on a result in the Search
Results tab, the search terms are highlighted in the main pane. If you click Enter with the Search field empty, the
highlights are removed.

The Search feature is also enhanced with a rating mechanism that computes scores for every page that matches the
search criteria. These scores are then translated into a 5-star rating scheme. The search results are sorted depending on
the following:

• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title scores better than a word found in unformatted text). The search

ranking order, sorted by relevance is as follows:

• The search phrase is included in a meta keyword
• The search phrase is in the title of the page
• The search phrase is in bold text in a paragraph
• The search phrase is in normal text in a paragraph

Oxygen XML Editor plugin | Transforming Documents | 689

Figure 392: WebHelp Classic Search Feature

Rules that are applied during a search include:

• Boolean searches are supported using the following operators: and, or, not. When there are two adjacent search terms
without an operator, or is used as the default search operator (for example, grow flowers is the same as grow or
flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate keywords: grow
and flowers).

• Do not use quotes to perform an exact search for multiple word expressions (an expression such as "grow flowers",
returns no results since it searches for two separate words).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for example,
content inside keywords elements weighs twice as much as content inside an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".") characters
count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored). This rule
does not apply to CJK (Chinese, Japanese, Korean) languages.

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For information
about editing these values, see the Editing Scoring Values of Tag Elements in Search Results on page 680 topic.

Oxygen XML Editor plugin | Transforming Documents | 690

This output format is compatible with the most recent versions of the following common browsers:

• Internet Explorer (IE 8 or newer)
• Chrome
• Firefox
• Safari
• Opera

Important: Due to some security restrictions in certain browsers (Google Chrome and Internet Explorer),
WebHelp Classic pages loaded from the local system (through URLs of the file:///... format) may not
work properly. We recommend that you load WebHelp Classic pages in Google Chrome or Internet Explorer
only from a web server (with a URL such as http://your.server.com/webhelp/index.html or
http://localhost/web_pages/index.html).

Deploying the WebHelp Classic with Feedback System

System Requirements

The WebHelp Classic with Feedback system of Oxygen XML Editor plugin requires a standard server deployment. You
can request this from your server admin and it needs the following system components:

• A Web server (such as Apache Web Server)
• A MySQL or MariaDB database server
• A database admin tool (such as phpMyAdmin)
• PHP Version 5.1.6 or later

Oxygen XML WebHelp system supports most of the recent versions of the following browsers: Chrome, Firefox, Internet
Explorer, Safari, Opera.

Create WebHelp Classic with Feedback Database
The WebHelp Classic with Feedback system needs a database to store user details and the actual feedback, and a user
added to it with all privileges. After this is created, you should have the following information:

• Database name
• Username
• Password

Exactly how you create the database and user depends on your web host and your particular needs.

For example, the following procedure uses phpMyAdmin to create a MySQL database for the feedback
system and a MySQL user with privileges for that database. The feedback system uses these credentials
to connect to the database.

Using phpMyAdmin to create a database:

1. Access the phpMyAdmin instance running on your server.
2. Click Databases (in the right frame) and then create a database. You can give it any name you

want (for example comments).
3. Create a user with connection privileges for this database.
4. Under localhost, in the right frame, click Privileges and then at the bottom of the page click the

reload the privileges link.

Deploying the WebHelp Classic with Feedback Output

If you have a web server configured with PHP and MySQL, you can deploy the WebHelp Classic with Feedback output
by following these steps:

1. Connect to your server using an FTP client.

Oxygen XML Editor plugin | Transforming Documents | 691

2. Locate the home directory (from now on, referred to as DOCUMENT_ROOT) of your server.
3. Copy the transformation output folder into the DOCUMENT_ROOT folder.
4. Rename it to something relevant (for example, myProductWebHelp).
5. Open the output folder (for example, http://[YOUR_SERVER]/myProductWebHelp/). You are redirected

to the installation wizard. Proceed with the installation as follows:

a. Verify that the prerequisites are met.
b. Press Start Installation.
c. Configure the Deployment Settings section. Default values are provided, but you should adjust them as needed.

Tip: You can change some of the options later. The installation creates a config.php file in
[OXYGEN_WEBHELP_INSTALL_DIR]/feedback/resources/php/config/config.php
where all your configuration options are stored.

d. Configure the MySql Database Connection Settings section. Use the information (database name, username,
password) from the Create WebHelp Classic with Feedback Database section to fill-in the appropriate text boxes.

Warning: Checking the Create new database structure option will overwrite any existing data in the
selected database, if it already exists. Therefore, it is useful the first time you install the WebHelp Classic
with Feedback system, but you do not want to select this option on subsequent deployments.

e. If you are using a domain (such as OpenLDAP or Active Directory) to manage users in your organization, check
the Enable LDAP Autehntication option. This will allow you to configure the LDAP server, which will provide
information and credentials for users who will access the WebHelp system. Also, this will allow you to choose
which of the domain users will have administrator privileges.

f. If the Create new database structure option is checked, the Create WebHelp Administrator Account section
becomes available. Here you can set the administrator account data. The administrator is able to moderate new
posts and manage WebHelp users.

The same database can be used to store comments for multiple WebHelp Classic with Feedback deployments. If
a topic is available in multiple deployments and there are comments associated with it, you can choose to display
the comments in all deployments that share the database. To do this, enable the Display comments from other
products option. In the Display comments from section, a list with the deployments sharing the same database
is displayed. Select the deployments allowed to share common feedback.

Note: You can restrict the displayed comments of a product depending on its version. If you have two
products that use the same database and you restrict one of them to display comments starting from a
certain version, the comments of the other product are also displayed from the specified version onwards.

g. Press Next Step.
h. Remove the installation folder from your web server.

Important: When you publish subsequent iterations of your WebHelp Classic with Feedback system,
you will not upload the /install folder in the output, as you only need it uploaded the first time you
create the installation. On subsequent uploads, you will just upload the other output files.

i. In your Web browser, go to your WebHelp Classic with Feedback system main page.

Testing Your WebHelp Classic with Feedback System
To test your system, create a user and post a comment. Check to see if the notification emails are delivered to your email
inbox.

Note: To read debug messages generated by the system:

1. Enable JavaScript logging by doing one of the following:

• Open the log.js file, locate the var log= new Log(Level.NONE); line, and change the logging
level to: Level.INFO, Level.DEBUG, Level.WARN, or Level.ERROR.

Oxygen XML Editor plugin | Transforming Documents | 692

• Append ?log=true to the WebHelp URL.

2. Inspect the PHP and Apache server log files.

Documentation Product ID and Version

When you run a WebHelp Classic with Feedback transformation scenario, by default you are prompted for a
documentation product ID and version number. This is needed when multiple WebHelp systems are deployed on the
same server. Think of your WebHelp output as a product. If you have three different WebHelp outputs, you have three
different products (each with their own unique documentation product ID). This identifier is included in a configuration
file so that comments are tied to a particular output (product ID and version number).

Note: The WebHelp Classic with Feedback installation includes a configuration option (Display comments
from other products) that allows you to choose to have comments visible in other specified products.

Related information
Managing Users and Comments in a WebHelp Classic with Feedback System on page 693

Refreshing the Content of a WebHelp Classic with Feedback System

It is common to update the content of an existing installation of a WebHelp Classic with Feedback system on a regular
basis. In this case, reinstalling the whole system is not a viable option since it might result in the loss of the comments
associated with your topics. Also, reconfiguring the system every time you want to refresh it may be time consuming.

Fortunately, you can refresh just the content without losing the comments or the initial system configuration. To do so,
follow these steps:

1. Execute the transformation scenario that produces the WebHelp Classic with Feedback output directory.
2. Go to the output directory (specified in the Output tab of the transformation scenario), locate the

\feedback\resources\php\config\config.php file, and delete it.
3. Locate the \feedback\install directory and delete it.
4. Copy the remaining structure of the output folder and paste it into your WebHelp Classic with Feedback system

installation directory, overwriting the existing content.

Managing Users and Comments in a WebHelp Classic with Feedback System

When you installed the WebHelp Classic with Feedback system the first time (assuming the Create new database
structure option was enabled), you should have been prompted to create an administrator account (or a user named
administrator was created by default). As an administrator, you have access to manage comments posted in your
feedback-enabled WebHelp Classic system. You can also manage the user information (such as role, status, or notification
options).

To manage comments and user information, follow these steps:

1. At the bottom of each specific topic there is a Comments navigation bar and on the right side there is a Log in
button. Click this button and log in with your administrator credentials. This gives you access to an Admin Panel
button.

2. Click the Admin Panel button to display an administration page.

Oxygen XML Editor plugin | Transforming Documents | 693

Figure 393: Administrative Page

3. Use this page to manage the following options:

Allows you to delete comments that are no longer associated with a topic in your WebHelp
system.

Delete Orphaned
Comments

Allows you to delete user accounts that you do not wish to activate.Delete Pending
Users

Allows you to view all the comments that are associated with topics in your WebHelp system.View All Posts

Allows you to export all posts associated with topics in your WebHelp system into an XML
file.

Export Comments

Use this action to display comments starting with a particular version.Set Version

To edit the details for a user, click on the corresponding row. This opens a window that
allows you to customize the following information associated with the user:

Manage User
Information

The full name of the user.Name

Use this field to modify the privilege level (role) for the selected user.
You can choose from the following:

Level

• User - Regular user, able to post comments and receive e-mail
notifications.

• Moderator - In addition to the regular User rights, this type of user
has access to the Admin Panel where a moderator can view, delete,
export comments, and set the version of the feedback-enabled
WebHelp system.

• Admin - Full administrative privileges. Can manage
WebHelp-specific settings, users, and their comments.

The name of the organization associated with the user.Company

The contact email address for the user. This is also the address where
the WebHelp system sends notifications.

E-Mail

When enabled, the user receives notifications when comments are posted
anywhere in your feedback-enabled WebHelp system.

WebHelp
Notification

When enabled, the user receives notifications when comments are posted
as a reply to one of their comments.

Reply
Notification

When enabled, the user receives notifications when comments are posted
on a topic where they previously posted a comment.

Page Notification

The date the user registered is displayed.Date

Oxygen XML Editor plugin | Transforming Documents | 694

Use this drop-down list to change the status of the user. You can choose
from the following:

Status

• Created - The user is created but does not yet have any rights for
the feedback-enabled WebHelp system.

• Validated - The user is able to use the feedback-enabled WebHelp
system.

• Suspended - The user has no rights for the feedback-enabled
WebHelp system.

Warning: The key used for identifying the page a comment is attached to is the relative file path to the output
page. Since the output file and folder names mirror the source, any change to the file name (or its folder) in the
source will affect the comments associated with that WebHelp page. If you change the file name or path, the
comment history for that topic will become orphaned (a change to the topic ID does not affect the comment
history).

Customizing WebHelp Classic Systems

To change the overall appearance of the WebHelp output, you can use the visual WebHelp Skin Builder tool, which does
not require knowledge of CSS language. If you are familiar with CSS and coding, you can style your WebHelp output
through your own custom stylesheets. You can also customize your output by modifying option and parameters in the
transformation scenario.

This section includes topics that explain various ways to customize your WebHelp system output, such as how to improve
the appearance of the Table of Contents, add logo images in the title area, integrate with social media, add custom
headers and footers, and much more.

Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp

To activate support for RTL languages in WebHelp output, edit the DITA map and set the xml:lang attribute on its
root element (map). The corresponding attribute value can be set for following RTL languages:

• ar-eg - Arabic
• he-il - Hebrew
• ur-pk - Urdu

Search Engine Optimization for DITA WebHelp

A DITA Map WebHelp transformation scenario can be configured to produce a sitemap.xml file that is used by
search engines to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system and allows
webmasters to provide additional information about each page, such as the date it was last updated, change frequency,
and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>http://www.example.com/topics/introduction.html</loc>
<lastmod>2014-10-24</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>

</url>
<url>
<loc>http://www.example.com/topics/care.html#care</loc>
<lastmod>2014-10-24</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>

</url>
 . . .
</urlset>

Each page has a <url> element structure containing additional information, such as:

Oxygen XML Editor plugin | Transforming Documents | 695

• loc - the URL of the page. This URL must begin with the protocol (such as http), if required by your web server.
It is constructed from the value of the webhelp.sitemap.base.url parameter from the transformation scenario
and the relative path to the page (collected from the href attribute of a topicref element in the DITA map).

Note: The value must have fewer than 2,048 characters.

• lastmod - the date when the page was last modified. The date format is YYYY-MM-DD.
• changefreq - indicates how frequently the page is likely to change. This value provides general information to

assist search engines, but may not correlate exactly to how often they crawl the page. Valid values are: always,
hourly, daily, weekly, monthly, yearly, and never. The first time the sitemap.xml file is generated,
the value is set based upon the value of the webhelp.sitemap.change.frequency parameter in the DITA
WebHelp transformation scenario. You can change the value in each url element by editing the sitemap.xml
file.

Note: The value always should be used to describe documents that change each time they are accessed.
The value never should be used to describe archived URLs.

• priority - the priority of this page relative to other pages on your site. Valid values range from 0.0 to 1.0. This
value does not affect how your pages are compared to pages on other sites. It only lets the search engines know
which pages you deem most important for the crawlers. The first time the sitemap.xml file is generated, the
value is set based upon the value of the webhelp.sitemap.priority parameter in the DITA WebHelp
transformation scenario. You can change the value in each url element by editing the sitemap.xml file.

Note: lastmod, changefreq, and priority are optional elements.

Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-tune
search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the Edit DITA
Scenario dialog box.

2. Open the Parameters tab and set a value for the following parameters:

• webhelp.sitemap.base.url - the URL of the location where your WebHelp system is deployed

Note: This parameter is required for Oxygen XML Editor plugin to generate the sitemap.xml file.

• webhelp.sitemap.change.frequency - how frequently the WebHelp pages are likely to change (accepted
values are: always, hourly, daily, weekly, monthly, yearly, and never)

• webhelp.sitemap.priority - the priority of each page (value ranging from 0.0 to 1.0)

3. Run the transformation scenario.
4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the parameters of

each page, according to your needs.

Indexing Japanese Content for DITA WebHelp Pages

To optimize the indexing of Japanese content in WebHelp pages generated from DITA map transformations, the Kuromoji
analyzer can be used. This analyzer in not included in the Oxygen XML Editor plugin installation kit and must be
downloaded and added.

To use the Kuromoji analyzer to index Japanese content in your WebHelp system, follow these steps:

1. Download the analyzer jar file from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0.

2. Place the Kuromoji analyzer jar file in the following directory:
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib.

3. For the analyzer to work properly, search terms that are entered into your WebHelp pages must be separated by
spaces.

Oxygen XML Editor plugin | Transforming Documents | 696

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0

Optionally a Japanese user dictionary can be set with the webhelp.search.japanese.dictionary parameter.

Related information
DITA Map to WebHelp Output on page 587

WebHelp Skin Builder

The WebHelp Skin Builder is a simple, easy-to-use tool, specially designed to assist users to visually customize the
look and feel of the WebHelp output. It is implemented as an online tool hosted on the Oxygen XML Editor plugin
website and allows you to experiment with various styles and colors over a documentation sample.

To be able to use the Skin Builder, you need:

• An Internet connection and unrestricted access to Oxygen XML Editor plugin website.
• A late version web browser.

To start the Skin Builder, do one of the following:

• For DocBook or DITA WebHelp systems, use a web browser to go to http://www.oxygenxml.com/webhelp-skin-builder.
• For DITA WebHelp systems, you can click the Online preview link in the Skins tab of a DITA OT transformation

scenario. In the upper section of the preview, click the Select Skin button, then choose Customize Skin.

Skin Builder Layout

The left side panel of the Skin Builder is divided into 3 sections:

• Actions - Contains the following two buttons:

• Import - Opens an Import CSS dialog box that allows you to load a CSS stylesheet and apply it over the
documentation sample.

• Export - Saves all properties as a CSS file.

• Settings - Includes a Highlight selection option that helps you identify the areas affected by a particular element
customization.

• When hovering an item in the customizable elements menu, the affected sample area is highlighted with a dotted
blue border.

• When an item in the customizable elements menu is selected, the affected sample area is highlighted with a solid
red border.

• Customize - Provides a series of customizable elements organized under four main categories:

• Header
• TOC Area
• Vertical Splitter
• Content

For each customizable element, you can alter properties such as background color or font face. Any alteration made
in the customizable elements menu is applied in real time over the sample area.

Create a Customization Skin

1. The starting point can be either one of the predefined skins or a CSS stylesheet applied over the sample using the
Import button.

2. Use the elements in the Customize section to set properties that modify the look of the skin. By default, all
customizable elements display a single property, but you can make more visible by clicking the Add button and
choosing from the available properties.

Note: If you want to revert a particular property to its initial value, press the Reset button.

3. When you are happy with the skin customizations you have made, press the Export button. All settings will be saved
in a CSS file.

Oxygen XML Editor plugin | Transforming Documents | 697

http://www.oxygenxml.com/webhelp-skin-builder

Apply a Customization Skin to a DITA Map to WebHelp Transformation Scenario

1. Start Oxygen XML Editor plugin.
2. Load the DITA map you want to produce as a WebHelp output.
3. Edit a DITA Map to WebHelp-type transformation scenario. Set the previously exported CSS file in the Custom

section of the Skins tab.
4. Run the transformation to obtain the WebHelp output.

Apply a Customization Skin to a DocBook to WebHelp Transformation Scenario

1. Start Oxygen XML Editor plugin.
2. Load the DocBook file you want to produce as a WebHelp output.
3. In the Parameters tab, set the webhelp.skin.css parameter to point to the previously exported CSS.
4. To customize the logo, use the following parameters: webhelp.logo.image and

webhelp.logo.image.target.url.
5. Run the transformation to obtain the WebHelp output.

Related information
Skins Tab (DITA OT Transformations) on page 615

DITA OT Transformation on page 614
This type of transformation specifies the parameters for an Ant transformation that executes a DITA-OT build script.
Oxygen XML Editor plugin includes a built-in version of Ant and a built-in version of DITA-OT, but other versions
can be set in the scenario.

Customizing WebHelp Output with a Custom CSS

By creating your own custom CSS stylesheet, you can customize the look and style of WebHelp output to fit your specific
needs.

To use a custom CSS in WebHelp output, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

2. Run the transformation scenario.

Integrating Social Media and Google Tools in WebHelp Output

Oxygen XML Editor plugin includes support for integrating some of the most popular social media sites in WebHelp
output.

How to Add a Facebook Like Button in WebHelp Output
See how you can add a Facebook widget into your WebHelp output.

To add a Facebook™ Like widget to your WebHelp output, follow these steps:

1. Go to the Facebook Developers website.

2. Fill-in the displayed form, then click the Get Code button.
A dialog box that contains code snippets is displayed.

3. Copy the two code snippets and paste them into a <div> element inside an XML file called
facebook-widget.xml.

Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

Oxygen XML Editor plugin | Transforming Documents | 698

https://developers.facebook.com/docs/plugins/like-button

The content of the XML file should look like this:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!--
 (function(d, s, id) {

var js, fjs = d.getElementsByTagName(s)[0];
if (d.getElementById(id)) return;

 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 -->
 </script>
 <div class="fb-like" data-layout="standard" data-action="like" data-show-faces="true"
 data-share="true"/>
</div>

4. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without feedback,
or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the
facebook-widget.xml file that you created earlier.

7. Click Ok.

8. Run the transformation scenario.

Related information
DITA Map to WebHelp Output on page 587

How to Add Tweet Button in WebHelp Output
See how you can add a Twitter widget into your WebHelp output.

To add a Twitter™ Tweet widget to your WebHelp output, follow these steps:

1. Go to the Tweet button generator page.

2. Fill-in the displayed form.
The Preview and code area displays the code.

3. Copy the code snippet displayed in the Preview and code area and paste it into a div element inside an XML file
called tweet-button.xml.

Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">
 Tweet
 <script>
 <!--
 !function (d, s, id) {

var
 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location) ? 'http': 'https';

if (! d.getElementById(id)) {
 js = d.createElement(s);
 js.id = id;
 js.src = p + '://platform.twitter.com/widgets.js';
 fjs.parentNode.insertBefore(js, fjs);
 }
 }
 (document,

'script', 'twitter-wjs');
 -->
 </script>
</div>

4. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

Oxygen XML Editor plugin | Transforming Documents | 699

https://about.twitter.com/resources/buttons#tweet

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without feedback,
or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the
tweet-button.xml file that you created earlier.

7. Click Ok.

8. Run the transformation scenario.

Related information
DITA Map to WebHelp Output on page 587

How to Add a Google+ Button in WebHelp Output
See how you can add a Google+ widget into your WebHelp output.

To add a Google+ widget to your WebHelp output, follow these steps:

1. Go to the Google Developers website.

2. Fill-in the displayed form.
The preview area on the right side displays the code and a preview of the widget.

3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called
google-plus-button.xml.

Make sure that the content of the file is well-formed.

The content of the XML file should look like this:

<div id="google-plus">
 <!-- Place this tag in your head or just before your close body tag. -->
 <script src="https://apis.google.com/js/platform.js" async defer></script>

 <!-- Place this tag where you want the +1 button to render. -->
 <div class="g-plusone" data-annotation="inline" data-width="300"></div>
</div>

4. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without feedback,
or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the
google-plus-button.xml file that you created earlier.

7. Click Ok.

8. Run the transformation scenario.

Related information
DITA Map to WebHelp Output on page 587

How to Integrate Google Search in WebHelp Output
See how you can integrate a Google Custom Search Engine into WebHelp output.

You can integrate Google Search into your WebHelp output.

To enable your WebHelp system to use Google Search, follow these steps:

1. Go to the Google Custom Search Engine page using your Google account.

2. Press the Create a custom search engine button.

3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should obtain
a code snippet.

A Google Search script looks like this:

<script>
 (function() {

var cx =
'000888210889775888983:8mn4x_mf-yg';

var gcse = document.createElement('script');

Oxygen XML Editor plugin | Transforming Documents | 700

https://developers.google.com/+/web/+1button/

 gcse.type = 'text/javascript';
 gcse.async = true;
 gcse.src = (document.location.protocol == 'https:' ?

'https:' : 'http:') + '//www.google.com/cse/cse.js?cx=' + cx;
var s = document.getElementsByTagName('script')[0];

 s.parentNode.insertBefore(gcse, s);
 }
)();
</script>

4. Save the script into a well-formed HTML file called googlecse.html.

5. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

6. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without feedback,
or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

7. Switch to the Parameters tab and edit the webhelp.google.search.script parameter to reference the
googlecse.html file that you created earlier.

8. You can also use the webhelp.google.search.results parameter to choose where to display the search
results.

a) Create an HTML file that contains the Google Custom Search Engine element gcse:searchresults-only.
It is recommended that you set the linkTarget attribute value to frm for frameless versions of the WebHelp
system or to contentWin for frameset versions of WebHelp. The default value is _blank and if you do not
specify a value the search results will be loaded in a new window.

b) Set the value of the webhelp.google.search.results parameter to the location of the file you just
created. If this parameter is not specified the following code is used: <gcse:searchresults-only
linkTarget="frm"></gcse:searchresults-only>.

9. Click Ok.

10. Run the transformation scenario.

Related information
Integrating Social Media and Google Tools in WebHelp Output on page 676

How to Integrate Google Analytics in WebHelp Output
See how you can integrate Google Analytics into WebHelp output.

To enable your WebHelp system to benefit from Google Analytics reports, follow these steps:

1. Create a new Google Analytics account (if you do not already have one) and log on.

2. Choose the Analytics solution that fits the needs of your website.

3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID.

A Tracking Code looks like this:

<script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');
 ga('send', 'pageview');
</script>

4. Save the Tracking Code (obtained in the previous step) in a new HTML file called googleAnalytics.html.

5. In Oxygen XML Editor plugin, click the Configure Transformation Scenario(s) action from the toolbar.

6. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without feedback,
or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

7. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the
googleAnalytics.html file that you created earlier.

8. Click Ok.

9. Run the transformation scenario.

Oxygen XML Editor plugin | Transforming Documents | 701

Related information
DITA Map to WebHelp Output on page 587

Localizing the Interface of WebHelp Output

You can localize the interface of WebHelp output for DITA or DocBook transformations.

How to Localize the Interface of WebHelp Output (for DITA Map Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
folder. Translation files have the strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language codes.
For example, the US English text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DITA map transformations, follow these steps:

1. Look for the strings-[lang1]-[lang2].xml file in
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
directory (for example, the Canadian French file would be: strings-fr-ca.xml). If it does not exist, create one starting
from the strings-en-us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the following
format: <str name="Label name">Caption</str>.

3. Make sure that the new XML file that you created in the previous two steps is listed in the file
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization/strings.xml.
In our example for the Canadian French file, it should be listed as: <lang xml:lang="fr-ca"
filename="strings-fr-ca.xml"/>.

4. Edit any of the DITA Map to WebHelp transformation scenarios (with or without feedback, or the mobile version)
and set the args.default.language parameter to the code of the language you want to localize (for example, fr-ca for
Canadian French).

5. Run the transformation scenario to produce the WebHelp output.

Related information
Creating New Transformation Scenarios on page 602

How to Localize the Interface of WebHelp Output (for DocBook Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
folder. Translation files have the strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language codes.
For example, the US English text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DocBook transformations, follow these steps:

1. Look for the strings-[lang1]-[lang2].xml file in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
directory (for example, the Canadian French file would be: strings-fr-ca.xml). If it does not exist, create one starting
from the strings-en-us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the following
format: <str name="Label name">Caption</str>.

3. Make sure that the new XML file that you created in the previous two steps is listed in the file
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization/strings.xml.
In our example for the Canadian French file, it should be listed as: <lang xml:lang="fr-ca"
filename="strings-fr-ca.xml"/>.

4. Edit any of the DocBook to WebHelp transformation scenarios (with or without feedback, or the mobile version)
and set the l10n.gentext.default.language parameter to the code of the language you want to localize (for example,
fr-ca for Canadian French).

5. Run the transformation scenario to produce the WebHelp output.

Oxygen XML Editor plugin | Transforming Documents | 702

Localizing the Email Notifications of WebHelp with Feedback Systems

The WebHelp with Feedback system uses emails to notify users when comments are posted. These emails are based on
templates stored in the WebHelp directory. The default messages are in English, French, German, and Japanese. These
messages are copied into the WebHelp system deployment directory during the execution of the corresponding
transformation scenario.

Suppose that you want to localize the emails into Dutch (nl). Follow these steps:

DocBook WebHelp with Feedback

1. Create the following directory:

[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl

2. Copy all English template files from
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\en
and paste them into the directory you just created.

3. Edit the HTML files from the
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl
directory and translate the content into Dutch.

4. Start Oxygen XML Editor plugin and edit the DocBook WebHelp Classic with Feedback transformation scenario.
5. In the Parameters tab, look for the l10n.gentext.default.language parameter and set its value to the

appropriate language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us),
the transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

DITA WebHelp with Feedback

1. Create the following directory:

DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl

2. Copy all English template files from
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\en
and paste them into the directory you just created.

3. Edit the HTML files from the
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl
directory and translate the content into Dutch.

4. Start Oxygen XML Editor plugin and edit the DITA Map WebHelp Classic with Feedback or DITA Map WebHelp
Responsive with Feedback transformation scenario.

5. In the Parameters tab, look for the args.default.language parameter and set its value to the appropriate
language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us),
the transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

Editing Scoring Values of Tag Elements in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that matches
the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated for the search results.
Oxygen XML Editor plugin includes a properties file that defines the scoring values for tag elements and this file can
be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

Oxygen XML Editor plugin | Transforming Documents | 703

1. Edit the scoring properties file for DITA or DocBook WebHelp systems. The properties file includes instructions
and examples to help you with your customization.

a) For DITA WebHelp systems, edit the following file:
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\indexer\scoring.properties.

b) For DocBook WebHelp system, edit the following file:
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\indexer\scoring.properties.

The values that can be edited in the scoring.properties file:

h1 = 10
h2 = 9
h3 = 8
h4 = 7
h5 = 6
h6 = 5
b = 5
strong = 5
em = 3
i=3
u=3
div.toc=-10
title=20
div.ignore=ignored
meta_keywords = 20
meta_indexterms = 20
meta_description = 25
shortdesc=25

2. Save your changes to the file.

3. Re-run your WebHelp system transformation scenario.

Adding Videos in the Output

Videos can be included and played in all HTML5-based output formats (such as WebHelp). For example, to add a
YouTube video in the WebHelp output generated from DITA or DocBook documents, follow the procedures below.

Adding Videos to WebHelp Generated from DITA Maps

1. Edit the DITA topic to reference the video using an object element, as in the following example:

<object outputclass="video">
<param name="src" value="http://www.youtube.com/watch/v/VideoName"/>

</object>

2. Apply a WebHelp or WebHelp with Feedback transformation scenario to obtain the output.

Adding Videos to WebHelp Generated from DocBook

1. Edit the DocBook document and reference the video using an mediaobject element, as in the following example:

<mediaobject>
<videoobject>

<videodata fileref="http://www.youtube.com/watch/v/VideoName"/>
</videoobject>

</mediaobject>

2. Apply a WebHelp or WebHelp with Feedback transformation scenario to obtain the output.

Changing the Icons in a WebHelp Table of Contents

You can change the icons that appear in a WebHelp table of contents by assigning new image files in a custom CSS
file. By default, the icons for the WebHelp table of contents are defined with the following CSS codes (the first example
is the icon that appears for a collapsed menu and the second for an expanded menu):

.hasSubMenuClosed{
background: url('../img/book_closed16.png') no-repeat;
padding-left: 16px;

Oxygen XML Editor plugin | Transforming Documents | 704

cursor: pointer;
}

.hasSubMenuOpened{
background: url('../img/book_opened16.png') no-repeat;
padding-left: 16px;
cursor: pointer;

}

To assign other icons, use the following procedure:

1. Create a custom CSS file that assigns your desired icons to the .hasSubMenuClosed and .hasSubMenuOpened
properties.

.hasSubMenuClosed{
background: url('TOC-my-closed-button.png') no-repeat;

}

.hasSubMenuOpened{
background: url('TOC-my-opened-button.png') no-repeat;

}

2. It is recommended that you store the image files in the same directory as the default icons.

a) For DITA transformations:
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\img\.

b) For DocBook transformations:
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\img\.

3. Edit the WebHelp transformation scenario and open the Parameters tab.

a) For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b) For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

4. Run the transformation scenario.

Customize the Appearance of Selected Items in the Table of Contents

The appearance of selected items in the Table of Contents can be enhanced.

For example, to highlight the background of the selected item, follow these steps:

1. Locate the toc.css file in the following directory:

a. For DITA transformations:
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\css.

b. For DocBook transformations:
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp\resources\css.

2. Edit that CSS file, find the menuItemSelected class, and change the value of the background property.

Note: You can also overwrite the same value from your own custom CSS and then specify the path to your
CSS in the transformation scenario (see step 3 in the Changing the Icons in a WebHelp Table of Contents topic.

Adding a Logo Image in the Title Area

To customize the title area of your WebHelp output, follow this procedure:

1. Edit a WebHelp transformation scenario, then open the Parameters tab.
2. Specify the path to your logo in the webhelp.logo.image parameter.
3. If you also want to add a link to your website, set the URL in the webhelp.logo.image.target.url

parameter.
4. Run the transformation scenario.

Oxygen XML Editor plugin | Transforming Documents | 705

Removing the Previous/Next Links from WebHelp Pages

The Previous and Next links that are created at the top area of each WebHelp page can be hidden with a CSS code.

To remove these links from WebHelp pages, follow these steps:

1. Add the following CSS code in a custom CSS stylesheet:

.navparent, .navprev, .navnext {
 visibility:hidden;
}

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

3. Run the transformation scenario.

Customizing the Header and Footer

In the transformation scenario, you can use the args.hdr and args.ftr parameters to point to resources that contain
your custom HTML <div> blocks. These are included in the header and footer of each generated topic.

As a practical example, to hide the horizontal separator line between the content and footer, follow these steps:

1. Create a custom CSS file that contains the following snippet:

.footer_separator {
 display:none;
}

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

3. Run the transformation scenario.

Adding a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp system by simply using a parameter in the transformation scenario to
point to your favicon image. This is available for DITA and DocBook WebHelp systems using WebHelp Responsive,
WebHelp Responsive with Feedback, WebHelp Classic, WebHelp Classic with Feedback, or WebHelp Classic
Mobile transformation scenarios.

To add a favicon, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.

2. Locate the webhelp.favicon parameter and enter the file path that points to the image that will be use as the
favicon.

3. Run the transformation scenario.

Change Numbering Styles for Ordered Lists

Ordered lists (ol) are usually numbered in XHTML output using numerals. If you want to change the numbering to
alphabetical, follow these steps:

1. Define a custom outputclass value and set it as an attribute of the ordered list, as in the following example:

<ol outputclass="number-alpha">
A
B

Oxygen XML Editor plugin | Transforming Documents | 706

C

2. Add the following code snippet in a custom CSS file:

ol.number-alpha{
list-style-type:lower-alpha;

}

3. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

4. Run the transformation scenario.

WebHelp Classic Runtime Additional Parameters

A deployed WebHelp system can accept the following GET parameters:

• log - The value can be true or false (default value). When set to true, it enables JavaScript debugging.
• contextId - The WebHelp JavaScript engine will look up the value of this parameter in the mapping file and load

the corresponding HTML help page. For more information, see the Context-Sensitive WebHelp System topic.

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document.
For example, contextId=topicID#anchor.

• toc.visible - The value can be true (default value) or false. When set to false, the table of contents will
be collapsed when you load the WebHelp page.

• searchQuery - You can use this parameter to perform a search operation when WebHelp is loaded. For example,
if you want to open WebHelp showing all search results for growing flowers, the URL should look like this:
http://localhost/webhelp/index.html?searchQuery=growing%20flowers.

Disable Caching in WebHelp Pages

In cases where a set of WebHelp pages need to be updated on a regular basis to deliver the latest version of the
documentation, the WebHelp pages should always be requested from the server upon re-loading it in a Web browser on
the client side, rather than re-using an outdated cached version in the browser.

To disable caching in WebHelp pages, follow this procedure:

1. Edit the following XSL file for DITA or DocBook WebHelp systems:

• For DITA WebHelp systems, edit the following file:
DITA_OT_DIR\plugins\com.oxygenxml.webhelp\xsl\createMainFiles.xsl.

• For DocBook WebHelp system, edit the following file:
[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\xsl\createMainFiles.xsl.

2. Locate the following template in the XSL file: <xsl:template name-"create-toc-common-file">
and add the following code snippet:

<meta http-equiv="Pragma" content="no-cache" />
<meta http-equiv="Expires" content="-1" />

Note: The code should look like this:

 <html>
 <head>
 <xsl:if test="$withFrames">
 <base target="contentwin"/>
 </xsl:if>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

 <!-- Disable caching of WebHelp pages in web browser. -->

Oxygen XML Editor plugin | Transforming Documents | 707

 <meta http-equiv="Pragma" content="no-cache" />
 <meta http-equiv="Expires" content="-1" />
....

3. Save your changes to the file.
4. Re-run your WebHelp system transformation scenario.

Adding a Button in Code Snippet Areas

This task will get you started on how to add an action (such as a button or link) in code snippet areas that are displayed
in WebHelp output. You can then attach your code that does the actual processing for the action.

Follow these steps:

1. Open the DITA_OT_DIR\plugins\org.dita.xhtml\xsl\xslhtml\dita2htmlImpl.xsl file.

2. Locate the <xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">
template to check the default behavior of this template.

3. Open the DITA_OT_DIR\plugins\com.oxygenxml.webhelp\xsl\dita\desktop\fixup.xsl file.

4. Create a <xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">
template to override the default processing.

5. This new template will include your code for creating the button. It will have the action code that does the actual
processing attached to it (this can be written in JavaScript, for example).

Example of a Select all button:

<xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">
<button onclick="SelectText(element)">Select all</button>
<script>

 function SelectText(element) {
 var text = document.getElementById(element);
 var range = document.body.createTextRange();
 range.moveToElementText(text);
 range.select();
 }

</script>
 </xsl:template>

Flag DITA Content

Flagging content involves defining a set of images that will be used for marking content across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to be flagged.
Generally, flagging is supported for block-level elements (such as paragraphs), but not for phrase-level elements within
a paragraph. This ensures that the images that will flag the content are easily scanned by the reader, instead of being
buried in text.

Follow this procedure:

1. Create a DITA filter file in the directory where you want to add the file. Give the file a descriptive name, such as
audience-flag-build.ditaval.

2. Define the property of the element you want to be flagged. For example, if you want to flag elements that have the
audience attribute set to programmer, the content of the DITAVAL file should look like the following example:

<?xml version="1.0" encoding="UTF-8"?>
<val>

<prop att="audience" val="programmer" action="flag" img="D:\resource\delta.gif" alt="sample alt text"/>
</val>

Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in the
DITAVAL file.

3. Specify the DITAVAL file in the Filters tab of the transformation scenario.

4. Run the transformation scenario.

Oxygen XML Editor plugin | Transforming Documents | 708

WebHelp Classic Mobile System

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include platform
independence, ability to update content continuously, and it can be viewed using a regular web browser. The Oxygen
XML Editor plugin WebHelp system includes several variants to suit your specific needs. The WebHelp Classic Mobile
variant works on multiple platforms (Android, iOS, BlackBerry, Windows Mobile) and is specially designed for mobile
devices when feedback from users is not necessary. It is available for DocBook and DITA document types. The
functionality of the desktop WebHelp Classic layout is preserved, is organized in an intuitive layout, and offers table of
contents, search capabilities, and index navigation.

Figure 394: WebHelp Classic Mobile

Important: Due to some security restrictions in certain browsers (Google Chrome and Internet Explorer),
WebHelp Classic pages loaded from the local system (through URLs of the file:///... format) may not
work properly. We recommend that you load WebHelp Classic pages in Google Chrome or Internet Explorer
only from a web server (with a URL such as http://your.server.com/webhelp/index.html or
http://localhost/web_pages/index.html).

Customizing WebHelp Classic Mobile Systems

If you are familiar with CSS and coding, you can style your WebHelp output through your own custom stylesheets. You
can also customize your output by modifying option and parameters in the transformation scenario. This section includes
topics that explain various ways to customize your WebHelp Classic Mobile system output.

Changing the Style of WebHelp Mobile Pages

You can change the style for your WebHelp Mobile pages by setting a custom theme created with a third-party tool.

To create a custom theme for WebHelp Mobile pages, use the following procedure:

1. Create a custom theme (the result will be a CSS stylesheet). Use a designer tool, such as the ThemeRoller for jQuery
Mobile, to create your own custom theme and then download the resulting CSS stylesheet.

Tip: If you are using ThemeRoller for jQuery Mobile, make sure you use a type C swatch.

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

Oxygen XML Editor plugin | Transforming Documents | 709

http://themeroller.jquerymobile.com/
http://themeroller.jquerymobile.com/

3. Make sure that the output folder is empty.
4. Run the transformation scenario.

Context-Sensitive WebHelp System

Context-sensitive help systems assist users by providing specific informational topics for certain components of a user
interface, such as a button or window. This mechanism works based on mappings between a unique ID defined in the
topic and a corresponding HTML page.

When WebHelp output is generated by Oxygen XML Editor plugin, the transformation process produces an XML
mapping file called context-help-map.xml and copies it in the output folder of the transformation. This XML
file maps an ID to a corresponding HTML page, as in the following example:

<map productID="oxy-webhelp" productVersion="1.1">
<appContext helpID="annotations-view" path="topics/annotations-view.html"/>
<appContext helpID="button-editor" path="concepts/button-editor.html"/>

 . . .
</map>

• helpID - Unique ID provided by a topic from two possible sources:

• The resourceid element set to it in the prolog section:

<prolog>
<resourceid id="context-sensitive-help-system"/>

</prolog>

Note: If you need multiple parts of the application (for instance, dialog boxes, views, or editing modes)
to open the same contextual help topic, all of the context ID values should be included in the same DITA
topic file. For example, if you need both a dialog box and a view to open the same WebHelp page, you
can assign both resource IDs in the same DTIA topic.

<prolog>
<resourceid id="dialog1"/>
<resourceid id="view1"/>

</prolog>

• The id attribute set on the topic root element.

Important: You should ensure that these defined IDs are unique in the context of the entire DITA
project. If the IDs are not unique, the transformation scenario will display warning messages in the
transformation console output. In this case, the help system will not work properly.

• path - Path to a corresponding WebHelp page. This path is relative to the location of the context-help-map.xml
mapping file.

• productID - ID of the product for which you are writing documentation. Applicable only if you are using the
feedback variants of WebHelp transformations.

• productVersion - Version of the product for which you are writing documentation. Applicable only if you are
using the feedback variants of WebHelp transformations.

There are two ways of implementing context-sensitive help in your system:

• The XML mapping file can be loaded by a PHP script on the server side. The script receives the contextId value
and will look it up in the XML file.

• Invoke one of the WebHelp system files index.html or index_frames.html and pass the contextId
parameter with a specific value. The WebHelp system will automatically open the help page associated with the
value of the contextId parameter.

Oxygen XML Editor plugin | Transforming Documents | 710

The following example will open a frameless version of the WebHelp system showing the page
associated with the id dialog1ID:

index.html?contextId=dialog1ID

The following example will open a frameset version of the WebHelp system showing the page
associated with the id view1ID:

index_frames.html?contextId=view1ID

Related information
WebHelp Classic Runtime Additional Parameters on page 707

Using the Oxygen XML WebHelp Plugin to Automate Output

Oxygen XML WebHelp plugin allows you to use a command line interface script to obtain WebHelp output from DITA
and DocBook documents. Note that the Oxygen XML WebHelp plugin is a standalone product with its own licensing
terms and cannot be used with a Oxygen XML Editor plugin license.

The WebHelp output files created with the Oxygen XML WebHelp plugin are the same as the output files produced
when you run DITA or DocBook to WebHelp transformation scenarios from within Oxygen XML Editor plugin.

When an automated process is required due to the amount of output needed, do the following:

1. Install the Oxygen XML WebHelp plugin.
2. Acquire a Oxygen XML WebHelp license from http://www.oxygenxml.com/buy_webhelp.html.
3. Integrate the Oxygen XML WebHelp plugin with DITA or DocBook.

Oxygen XML WebHelp Plugin for DITA

To transform DITA documents using the Oxygen XML WebHelp plugin, first integrate the plugin with the DITA Open
Toolkit. The purpose of the integration is to add the following transformation types to the DITA Open Toolkit:

• webhelp-responsive - The transformation that produces WebHelp Responsive and WebHelp Responsive with Feedback
output for desktop and mobile devices.

• webhelp - The transformation that produces WebHelp Classic output for desktop.
• webhelp-feedback - The transformation that produces feedback-enabled WebHelp Classic with Feedback for desktop.
• webhelp-mobile - The transformations that produces WebHelp Classic Mobile output for mobile devices.

Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit
This topic includes the procedure for integrating the Oxygen XML WebHelp plugin with the DITA Open Toolkit.

The requirements of the Oxygen XML WebHelp plugin for the DITA Open Toolkit are as follows:

• Java Virtual Machine 1.6 or later
• DITA Open toolkit 1.8 or 2.0 (Full Easy Install, includes Saxon 9.1.0.8 libraries)
• Saxon 9.1.0.8

To integrate the Oxygen XML WebHelp plugin with the DITA Open Toolkit, follow these steps:

1. Download and install a Java Virtual Machine 1.6 or later.

2. Download and install DITA Open Toolkit 1.8.x or 2.x.

3. Go to Oxygen XML WebHelp website, download the latest installation kit, and unzip it.

4. Copy the com.oxygenxml.webhelp and com.oxygenxml.highlight directories inside the plugins
directory of the DITA OT distribution. The com.oxygenxml.highlight directory adds syntax highlight
capabilities to your WebHelp output for codeblock sections that contain source code snippets (XML, Java,
JavaScript etc.).

Oxygen XML Editor plugin | Transforming Documents | 711

http://www.oxygenxml.com/buy_webhelp.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/
http://oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html

5. If you are using DITA-OT version 2.x, the WebHelp plugin contains a plugin_2.x.xml that needs to be renamed
to plugin.xml.

6. In the home directory of the DITA Open Toolkit, run ant -f integrator.xml.

Licensing the Oxygen XML WebHelp Plugin for DITA OT
This topic explains how to register the license for the Oxygen XML WebHelp plugin for the DITA Open Toolkit.

To register the license for the Oxygen XML WebHelp plugin for the DITA Open Toolkit, follow these steps:

1. Open the [OXYGEN_INSTALL_DIR]/frameworks/dita/DIT-OT/plugins/com.oxygenxml.webhelp
directory and create a file called licensekey.txt.

2. In this file, copy your license key that you purchased for your Oxygen XML WebHelp plugin.

The WebHelp transformation process reads the Oxygen XML Editor plugin license key from this file. In case the
file does not exit, or it contains an invalid license, an error message will be displayed.

Upgrading the Oxygen XML WebHelp Plugin for DITA OT
This topic describes the procedure for upgrading a Oxygen XML WebHelp plugin for the DITA Open Toolkit.

To upgrade your Oxygen XML WebHelp plugin for the DITA Open Toolkit, follow these steps:

1. Navigate to the plugins directory of your DITA OT distribution and delete the old Oxygen XML WebHelp plugin
files (oxygen_custom.xsl, oxygen_custom_html.xsl) and directories (com.oxygenxml.highlight,
com.oxygenxml.webhelp).

2. Go to Oxygen XML WebHelp website, download the latest installation kit, and unzip it.

3. Copy the com.oxygenxml.webhelp and com.oxygenxml.highlight directories inside the plugins
directory of the DITA OT distribution. The com.oxygenxml.highlight directory adds syntax highlight
capabilities to your WebHelp output for codeblock sections that contain source code snippets (XML, Java,
JavaScript etc.).

4. If you are using DITA-OT version 2.x, the WebHelp plugin contains a plugin_2.x.xml that needs to be renamed
to plugin.xml.

5. In the home directory of the DITA Open Toolkit, run ant -f integrator.xml.

Running an External DITA Transformation Using the Oxygen XML WebHelp Plugin
This topic explains how to run an external DITA to WebHelp transformation using the Oxygen XML WebHelp plugin.

To run a DITA to WebHelp (webhelp-responsive, webhelp, webhelp-feedback, webhelp-mobile) transformation using
the Oxygen XML WebHelp plugin, use the following:

DITA-OT 2.x versions

• DITA_OT_DIR\bin\dita.bat -i path_to_input.ditamap -f webhelp (Windows based systems)
• DITA_OT_DIR\bin\dita -i path_to_input.ditamap -f webhelp (Unix/Linux based systems)

DITA-OT 1.x versions

• WEBHELP_PLUGIN_HOME_DIR\dita.bat script file (Windows based systems)
• WEBHELP_PLUGIN_HOME_DIR\dita.sh script file (Unix/Linux based systems)

Warning: You can also invoke the DITA OT WebHelp publishing using a startup script but you will lose
certain small fixes and patches that Oxygen XML Editor plugin added to the automated DITA OT processing.

The dita.bat and the dita.sh files are located in the home directory of the Oxygen XML WebHelp Plugin. Before
using them to generate a WebHelp system, customize them to match the paths to the JVM, DITA Open Toolkit, and
Saxon engine, and also to set the transformation type. To do this, open the script file and edit the following variables
and parameters:

• JVM_INSTALL_DIR - Specifies the path to the Java Virtual Machine installation directory on your disk.
• DITA_OT_INSTALL_DIR - Specifies the path to DITA Open Toolkit installation directory on your disk.

Note: The dita.bat and dita.sh scripts reference the dost-patches-DITA-1.8.jar JAR file
containing DITA OT 1.8-specific patches. If you use DITA OT 1.7, update that reference to

Oxygen XML Editor plugin | Transforming Documents | 712

http://oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html

dost-patches-DITA-1.7.jar. If you use DITA OT 2.0, no patches are needed, so just remove the
reference.

• TRANSTYPE - Specifies the type of the transformation you want to apply. You can set it to webhelp,
webhelp-feedback and webhelp-mobile.

• DITA_MAP_BASE_DIR - Specifies the path to the directory where the input DITA map file is located.
• DITAMAP_FILE - Specifies the input DITA map file.
• DITAVAL_FILE - Specifies the .ditaval input filter that the transformation process applies to the input DITA

map file.
• DITAVAL_DIR - Specifies the path to the directory where the .ditaval file is located.
• -Doutput.dir - Specifies the output directory of the transformation.

The optional parameter -Dargs.filter can be used to specify a filter file to be used to include, exclude, or flag
content.

Additional Oxygen XML WebHelp Plugin Parameters for DITA

You can append the following parameters to the command line that runs the transformation:

Adds a small copyright text that appears at the end of the Table of Contents pane.-Dwebhelp.copyright

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the
WebHelp output.

-Dwebhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.-Dwebhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to
integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file

-Dwebhelp.footer.file (not available for
WebHelp Responsive systems)

must be well-formed, each widget must be in separate div or span element, and the code for each script element
is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The
following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id))
return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like" data-layout="standard" class="fb-like"/>

</div>

Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is
added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content

-Dwebhelp.footer.include (not available
for WebHelp Responsive systems)

of that file is used as footer. If the webhelp.footer.file has no value then the default Oxygen XML Editor plugin
footer is inserted in each WebHelp page.

URL value that specifies the location of a well-formed XHTML file containing the Google Custom Search Engine
element gcse:searchresults-only. You can use all supported attributes for this element. It is recommend to

-Dwebhelp.google.search.results

set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to contentWin for the frameset
version of WebHelp. The default value for this attribute is _blank and the search results will be loaded in a new
window. If this parameter is not specified, the following code will be used <gcse:searchresults-only
linkTarget="frm"></gcse:searchresults-only>

Specifies the location of a well-formed XHTML file containing the Custom Search Engine script from Google. The
value must be a URL.

-Dwebhelp.google.search.script

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this
address.

-Dwebhelp.logo.image.target.url (not
available for WebHelp Classic Mobile systems)

Specifies a path to an image displayed as a logo in the left side of the output header.-Dwebhelp.logo.image (not available for
WebHelp Classic Mobile systems)

Oxygen XML Editor plugin | Transforming Documents | 713

This parameter specifies a short name for the documentation target, or product (for example,
mobile-phone-user-guide, hvac-installation-guide).

-Dwebhelp.product.id (available only for
Feedback-enabled systems)

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.-Dwebhelp.product.version (available only
for Feedback-enabled systems)

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML Editor plugin
uses for indexing Japanese content in the WebHelp pages. This indexer does not come bundled with Oxygen XML

-Dwebhelp.search.japanese.dictionary

Editor plugin or the Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0 and add it in the
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results that are
displayed on the Search tab (default setting is true).

-Dwebhelp.search.ranking

When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp output. The
default value is no.

-Dwebhelp.show.changes.and.comments

Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is computed as
the relative file path from the href attribute of a topicref element from the DITA map, appended to this base URL

-Dwebhelp.sitemap.base.url

value. The loc element is mandatory in sitemap.xml. If you leave this parameter set to its default empty value, then
the sitemap.xml file is not generated.

The value of the changefreq element in the generated sitemap.xml file. The changefreq element is optional
in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq element is not

-Dwebhelp.sitemap.change.frequency

added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily, weekly, monthly,
yearly, never.

The value of the priority element in the generated sitemap.xml file. It can be set to any fractional number between
0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8. The priority element

-Dwebhelp.sitemap.priority

is optional in sitemap.xml. If you leave this parameter set to its default empty value, then the priority element
is not added in sitemap.xml.

Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined skin CSS from
the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp\predefined-skins
directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web application.

-Dwebhelp.skin.css (available only for
WebHelp Classic and WebHelp Classic with
Feedback systems)

Parameters Specific to WebHelp Responsive Output (available only for WebHelp Responsive and WebHelp
Responsive with Feedback systems)

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed after the body in the output.

-Dwebhelp.fragment.after.body

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed after the logo and title in the output.

-Dwebhelp.fragment.after.logo_and_title

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed after the search field in the output.

-Dwebhelp.fragment.after.main.page.search

Oxygen XML Editor plugin | Transforming Documents | 714

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
http://www.oxygenxml.com/webhelp-skin-builder

Specifies an XML fragment (or a path to a file that
contains well formed XML content) that will be

-Dwebhelp.fragment.after.toc_or_tiles

displayed after the table of contents or tiles in the main
page of the output.

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed after the top menu in the output.

-Dwebhelp.fragment.after.top_menu

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed before the body in the output.

-Dwebhelp.fragment.before.body

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed before the logo and title in the output.

-Dwebhelp.fragment.before.logo_and_title

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed before the search field in the output.

-Dwebhelp.fragment.before.main.page.search

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be

-Dwebhelp.fragment.before.toc_or_tiles

displayed before the table of contents or tiles in the
main page of the output.

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed before the top menu in the output.

-Dwebhelp.fragment.before.top_menu

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed as the footer in the output

-Dwebhelp.fragment.footer

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed as the header in the output.

-Dwebhelp.fragment.head

Specify an XML fragment (or a path to a file that
contains well formed XML content) that will be
displayed as a welcome message (or title) in the output.

-Dwebhelp.fragment.welcome

Specifies if the breadcrumb component will be
presented in the output. The default value is yes.

-Dwebhelp.show.breadcrumb

Specifies if an icon that links to the index will be
presented in the output. The default value is yes.

-Dwebhelp.show.indexterms.link

Specifies if the tiles component will be presented in
the main page of the output. For a tree style layout, this
parameter should be set to no.

-Dwebhelp.show.main.page.tiles

Specifies if the table of contents will be presented in
the main page of the output. The default value is yes.

-Dwebhelp.show.main.page.toc

Specifies if navigation links will be presented in the
output. The default value is yes.

-Dwebhelp.show.navigation.links

Specifies if a print link or icon will be presented within
each topic in the output. The default value is yes.

-Dwebhelp.show.print.link

Specifies if a side table of contents will be presented
on the right side of each topic in the output. The default
value is yes.

-Dwebhelp.show.side.toc

Oxygen XML Editor plugin | Transforming Documents | 715

Specifies if a menu will be presented at the topic of the
main page in the output. The default value is yes.

-Dwebhelp.show.top.menu

Specifies the maximum depth level of the topics that
will be included in the top menu. The default value is
2.

-Dwebhelp.top.menu.depth

Note: Note that the fix.external.refs.com.oxygenxml parameter is not supported in Oxygen XML
WebHelp plugin.

If you need to further customize the transformation process, you can append other DITA-OT parameters as well. Any
parameter that you want to append must follow the -D model of the above parameters. For example, to append the
args.hdr parameter, use:

-Dargs.hdr=[HEADER_FILE_DIR]

where [HEADER_FILE_DIR] is the location of the directory that contains the header file.

Database Configuration for DITA WebHelp Systems with Feedback
This topic explains where to find instructions for configuring the database that contains the user comments for a DITA
WebHelp Classic with Feedback or DITA WebHelp Responsive with Feedback system.

If you run the webhelp-responsive or webhelp-feedback transformation using the WebHelp plugin, you need to configure
the database that holds the user comments. The instructions for configuring the database are presented in the
installation.html file, located at
[DITA_MAP_BASE_DIR]/out/[TRANSFORM_TYPE]/oxygen-webhelp/resources. The
installation.html file is created by the transformation process.

Oxygen XML WebHelp Plugin for DocBook

To transform DocBook documents using the Oxygen XML WebHelp plugin, first integrate the plugin with the DocBook
XSL distribution. The purpose of the integration is to add the following transformation types to the DocBook XSL
distribution:

• webhelp - The transformation that produces WebHelp Classic output for desktop.
• webhelp-feedback - The transformation that produces feedback-enabled WebHelp Classic with Feedback for desktop.
• webhelp-mobile - The transformations that produces WebHelp Classic Mobile output for mobile devices.

Integrating the Oxygen XML WebHelp Plugin with the DocBook XSL Distribution
This topic includes the procedure for integrating the Oxygen XML WebHelp plugin with the DocBook XSL Distribution.

The WebHelp plugin transformations run as an Ant build script. The requirements are:

• Ant 1.8 or later
• Java Virtual Machine 1.6 later
• DocBook XSL 1.78.1 later
• Saxon 6.5.5
• Saxon 9.1.0.8

To integrate the Oxygen XML WebHelp plugin with the DocBook XSL distribution, follow these steps:

1. Download and install a Java Virtual Machine 1.6 or later.

2. Download and install Ant 8.0 or later.

3. Download and unzip on your computer the DocBook XSL distribution.

4. Unzip the Oxygen XML WebHelp distribution package in the DocBook XSL installation directory.
The DocBook XSL directory now contains a new subdirectory named com.oxygenxml.webhelp and two new
files, oxygen_custom.xsl and oxygen_custom_html.xsl.

5. Download and unzip saxon6-5-5.zip on your computer.

6. Download and unzip saxonb9-1-0-8j.zip on your computer.

Oxygen XML Editor plugin | Transforming Documents | 716

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.apache.org/dist/ant/binaries/
http://prdownloads.sourceforge.net/saxon/saxon6-5-5.zip
http://sourceforge.net/projects/saxon/files/Saxon-B/9.1.0.8/

Licensing the Oxygen XML WebHelp Plugin for DocBook
This topic explains how to register the license for the Oxygen XML WebHelp plugin for the DocBook XSL distribution.

To register the license for the Oxygen XML WebHelp plugin for the DocBook XSL distribution, follow these steps:

1. Create a .txt file named license in the com.oxygenxml.webhelp subdirectory of the DocBook XSL
directory.

2. In this file, copy the license key that you purchased for your Oxygen XML WebHelp plugin.

The WebHelp transformation process reads the Oxygen XML Editor plugin license key from this file. If the file does
not exit, or it contains an invalid license, an error message is displayed.

Upgrading the Oxygen XML WebHelp Plugin for DocBook
This topic describes the procedure for upgrading a Oxygen XML WebHelp plugin for DocBook.

To upgrade your Oxygen XML WebHelp plugin for DocBook, follow these steps:

1. Navigate to the [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl directory and delete the old Oxygen
XML WebHelp plugin files (oxygen_custom.xsl, oxygen_custom_html.xsl) and directory
(com.oxygenxml.webhelp).

2. Go to Oxygen XML WebHelp website, download the latest installation kit, and unzip it.

3. Copy the com.oxygenxml.webhelp directory in [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl.

Running an External DocBook Transformation Using the WebHelp Plugin
This topic explains how to run an external DocBook to WebHelp transformation using the Oxygen XML WebHelp
plugin.

To run a DocBook to WebHelp (webhelp, webhelp-feedback, webhelp-mobile) transformation using the Oxygen XML
WebHelp plugin, use:

• The docbook.bat script file for Windows based systems.
• The docbook.sh script file for Unix/Linux based systems.

Note: You can call these files in an automated process or from the command line.

The docbook.bat and the docbook.sh files are located in the home directory of the Oxygen XML WebHelp
Plugin. Before using them to generate an WebHelp system, customize them to match the paths to the JVM, DocBook
XSL distribution and Saxon engine, and also to set the transformation type. To do this, open a script file and edit the
following variables:

• JVM_INSTALL_DIR - Specifies the path to the Java Virtual Machine installation directory on your disk.
• ANT_INSTALL_DIR - Specifies the path to the installation directory of Ant.
• SAXON_6_DIR - Specifies the path to the installation directory of Saxon 6.5.5.
• SAXON_9_DIR - Specifies the path to the installation directory of Saxon 9.1.0.8.
• DOCBOOK_XSL_DIR - Specifies the path to the installation directory of the DocBook XSL distribution.
• TRANSTYPE - Specifies the type of the transformation you want to apply. You can set it to webhelp,

webhelp-feedback and webhelp-mobile.
• INPUT_DIR - Specifies the path to the input directory, containing the input XML file.
• XML_INPUT_FILE - Specifies the name of the input XML file.
• OUTPUT_DIR - Specifies the path to the output directory where the transformation output is generated.
• DOCBOOK_XSL_DIR_URL - Specifies the path to the directory of the DocBook XSL distribution in URL format.

Additional Oxygen XML WebHelp Plugin Parameters for DocBook

You can append the following parameters to the command line that runs the transformation:

Adds a small copyright text that appears at the end of the Table of Contents pane.-Dwebhelp.copyright

The file path that points to an image to be used as a favicon in the WebHelp
output.

-Dwebhelp.favicon

Oxygen XML Editor plugin | Transforming Documents | 717

http://oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html

Path to an XML file that includes the footer content for your WebHelp output
pages. You can use this parameter to integrate social media features (such as

-Dwebhelp.footer.file

widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file must
be well-formed, each widget must be in separate div or span element, and the
code for each script element is included in an XML comment (also, the start
and end tags for the XML comment must be on a separate line). The following
code exert is an example for adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs =
d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script',
'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like"

data-layout="standard" class="fb-like"/>
</div>

Specifies whether or not to include footer in each WebHelp page. Possible values:
yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes

-Dwebhelp.footer.include

and the webhelp.footer.file parameter has a value, then the content of
that file is used as footer. If the webhelp.footer.file has no value then
the default Oxygen XML Editor plugin footer is inserted in each WebHelp page.

This parameter specifies a short name for the documentation target, or product
(for example, mobile-phone-user-guide,
hvac-installation-guide).

-Dwebhelp.product.id
(available only for
Feedback-enabled systems)

Note: You can deploy documentation for multiple products on the same
server.

Restriction: The following characters are not allowed in the value of
this parameter: < > / \ ' () { } = ; * % + &.

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New
user comments are bound to this version.

-Dwebhelp.product.version
(available only for
Feedback-enabled systems)

Note: Multiple documentation versions can be deployed on the same
server.

Restriction: The following characters are not allowed in the value of
this parameter: < > / \ ' () { } = ; * % + &.

If you need to further customize your transformation, other DocBook XSL parameters can be appended. Any parameter
that you want to append must follow the -D model of the above parameters. For example, you can append the
html.stylesheet parameter in the following form:

-Dhtml.stylesheet=/path/to/directory/of/stylesheet.css

Database Configuration for DocBook WebHelp Classic with Feedback
This topic explains where to find instructions for configuring the database that contains the user comments for a DocBook
WebHelp Classic with Feedback system.

If you run the webhelp-feedback transformation using the WebHelp plugin, you need to configure the database that
holds the user comments. The instructions for configuring the database are presented in the installation.html
file, located at [OUTPUT_DIR]/oxygen-webhelp/resources/installation.html. The
installation.html file is created by the transformation process.

Chapter

9

Querying Documents

This chapter shows how to query XML documents in Oxygen XML Editor
plugin with XPath expressions and the XQuery language.

Topics:

• Running XPath Expressions
This chapter shows how to query XML documents in Oxygen XML Editor
plugin with XPath expressions and the XQuery language.

• Working with XQuery

Running XPath Expressions
This section covers the views, toolbars, and dialog boxes in Oxygen XML Editor plugin that are dedicated to running
XPath expressions.

What is XPath

XPath is a language for addressing specific parts of an XML document. XPath, such as the Document Object Model
(DOM), models an XML document as a tree of nodes. An XPath expression is a mechanism for navigating through and
selecting nodes from the XML document. An XPath expression is, in a way, analogous to an SQL query used to select
records from a database.

There are various types of nodes, including element nodes, attribute nodes, and text nodes. XPath defines a way to
compute a string-value for each type of node.

XPath defines a library of standard functions for working with strings, numbers and boolean expressions.

• child::* - Selects all children of the root node.
• .//name - Selects all elements having the name "name", descendants of the current node.
• /catalog/cd[price>10.80] - Selects all the cd elements that have a price element with

a value larger than 10.80.

To find out more about XPath, go to http://www.w3.org/TR/xpath.

XPath/XQuery Builder View

The XPath/XQuery Builder view allows you to compose complex XPath and XQuery expressions and execute them
over the currently edited XML document. For XPath 2.0 / 3.0, or XQuery expressions, you can use the doc() function
to specify the source file for which the expressions are executed. When you connect to a database, the expressions are
executed over that database. If you are using the XPath/XQuery Builder view and the current file is an XSLT document,
Oxygen XML Editor plugin executes the expressions over the XML document in the associated scenario.

If the view is not displayed, it can be opened from the Window > Show View menu.

The upper part of the view contains the following actions:

• A drop-down menu that allows you to select the type of the expression you want to execute. You can choose between:

• XPath 1.0 (Xerces-driven)
• XPath 2.0, XPath 2.0SA, XPath 3.0, XPath 3.0SA, XQuery 1.0, XQuery 3.0, Saxon-HE XQuery, Saxon-PE

XQuery, or Saxon-EE XQuery (all of them are Saxon-driven)
• Custom connection to XML databases that can execute XQuery expressions

Note: The results returned by XPath 2.0 SA and XPath 3.0 SA have a location limited to the line number
of the start element (there are no column information and no end specified).

Note: Oxygen XML Editor plugin uses Saxon to execute XPath 3.0 expressions. Since Saxon implements
a part of the 3.0 functions, when using a function that is not implemented, Oxygen XML Editor plugin
returns a compilation error.

• Execute XPath button - Press this button to start the execution of the XPath or XQuery expression you are editing.
The result of the execution is displayed in the Results view in a separate tab

• Favorites button - Allows you to save certain expressions that you can later reuse. To add an expression as a favorite,
press the star button and enter a name for it. The star turns yellow to confirm that the expression was saved. Expand
the drop-down menu next to the star button to see all your favorites. Oxygen XML Editor plugin automatically groups
favorites in folders named after the method of execution

Oxygen XML Editor plugin | Querying Documents | 720

http://www.w3.org/TR/xpath

• History drop-down menu - Keeps a list of the last 15 executed XPath or XQuery expressions. Use the Clear
history action from the bottom of the list to remove them

• Settings drop-down menu - Contains the following three options:

• Update on cursor move - When enabled and you navigate through a document, the XPath expression
corresponding to the XML node at the current cursor position is displayed.

• Evaluate as you type - When you select this option, the XPath expression you are composing is evaluated in
real time.

Note: The Evaluate as you type option and the automatic validation are disabled when the scope is
other than Current file.

• Options - Opens the Preferences page of the currently selected processing engine.

• XPath scope menu - Oxygen XML Editor plugin allows you to define a scope for which the XPath operation will
be executed. You can choose where the XPath expression will be executed:

• Current file - Current selected file only.

• Enclosing project - All the files of the project that encloses the current edited file.

• Workspace selected files - The files selected in the workspace. The files are collected from the last selected
resource provider view (Navigator, Project Explorer or Package Explorer).

• All opened files - All files opened in the application.

• Current DITA Map hierarchy - All resources referenced in the currently selected DITA map, opened in the
DITA Maps Manager view.

• Opened archive - Files open in the Archive Browser view.

• Working sets - The selected working sets.

At the bottom of the scope menu the following scope configuration actions are available:

• Configure XPath working sets - Allows you to configure and manage collections of files and folders,
encapsulated in logical containers called working sets.

• XPath file filter - You can filter the files from the selected scope for which the XPath expression will be
executed. By default, the XPath expression will be executed only on XML files, but you can also define a set of
patterns that will filter out files from the current scope.

Oxygen XML Editor plugin | Querying Documents | 721

Figure 395: XPath/XQuery Builder View

When you hover your cursor over the XPath/XQuery version icon , a tooltip is displayed to let you know what engine
Oxygen XML Editor plugin currently uses.

While you edit an XPath or XQuery expression, Oxygen XML Editor plugin assists you with the following features:

• Content Completion Assistant - It offers context-dependent proposals and takes into account the cursor position
in the document you are editing. The set of functions proposed by the Content Completion Assistant also depends
on the engine version. Select the engine version from the drop-down menu available in the toolbar.

• Syntax Highlight - Allows you to identify the components of an expression. To customize the colors of the components
of the expression, open the Preferences dialog box and go to Editor > Syntax Highlight.

• Automatic validation of the expression as you type.

Note: When you type invalid syntax a red serrated line underlines the invalid fragments.

• Function signature and documentation balloon, when the cursor is located inside a function.

Related information
XPath Expression Results on page 722

XPath Expression Results

When you run an XPath expression, Oxygen XML Editor plugin displays the results of its execution in the XPath
Results view.

This view contains the following columns:

• Description - The result thatOxygen XML Editor plugin displays when you run an XPath expression.

Oxygen XML Editor plugin | Querying Documents | 722

• XPath location - The path to the matched node.
• Resource - The name of the document that you run the XPath expression on.
• System ID - The path to the document itself.
• Location - The location of the result in the document.

To arrange the results depending on a column, click its header. If no information regarding location is available, Oxygen
XML Editor plugin displays Not available in the Location column. Oxygen XML Editor plugin displays the results in
a valid XPath expression format.

- /node[value]/node[value]/node[value] -

Figure 396: XPath Results Highlighted in Editor Panel with Character Precision

The following snippets are taken from a DocBook book based on the DocBook XML DTD. The book
contains a number of chapters. To return all the chapter nodes of the book, enter //chapter in the
XPath expression field and press (Enter). This action returns all the chapter nodes of the DocBook
book in the Results View. Click a record in the Results View to locate and highlight its corresponding
chapter element and all its children nodes in the document you are editing.

To find all example nodes contained in the sect2 nodes of a DocBook XML document, use the
following XPath expression: //chapter/sect1/sect2/example. Oxygen XML Editor plugin
adds a result in the Results View for each example node found in any sect2 node.

For example, if the result of the above XPath expression is:

- /chapter[1]/sect1[3]/sect2[7]/example[1]

it means that in the edited file, the example node is located in the first chapter, third section level
one, seventh section level 2.

Catalogs

The evaluation of the XPath expression tries to resolve the locations of documents referenced in the expression through
the XML catalogs. These catalogs are configured in the Preferences pages and the current XInclude preferences.

Oxygen XML Editor plugin | Querying Documents | 723

As an example, consider the evaluation of the collection(URIofCollection) function (XPath
2.0). To resolve the references from the files returned by the collection() function with an XML
catalog, specify the class name of the XML catalog enabled parser for parsing these collection files.
The class name is ro.sync.xml.parser.CatalogEnabledXMLReader. Specify it as it
follows:

let $docs := collection(iri-to-uri(
 "file:///D:/temp/test/XQuery-catalog/mydocsdir?recurse=yes;select=*.xml;
 parser=ro.sync.xml.parser.CatalogEnabledXMLReader"))

XPath Prefix Mapping

To define default mappings between prefixes (that you can use in the XPath toolbar) and namespace URIs go to the
XPath preferences page and enter the mappings in the Default prefix-namespace mappings table. The same preferences
panel allows you to configure the default namespace used in XPath 2.0 expressions.

Important: If you define a default namespace, Oxygen XML Editor plugin binds this namespace to the first
free prefix from the list: default, default1, default2, and so on. For example, if you define the default
namespace xmlns="something" and the prefix default is not associated with another namespace, you
can match tags without prefix in an XPath expression typed in the XPath toolbar by using the prefix default.
To find all the level elements when you define a default namespace in the root element, use this expression:
//default:level in the XPath toolbar.

Working with XQuery
This section explains how to edit and run XQuery queries in Oxygen XML Editor plugin.

What is XQuery

XQuery is the query language for XML and is officially defined by a W3C Recommendation document. The many
benefits of XQuery include:

• XQuery allows you to work in one common model no matter what type of data you are working with: relational,
XML, or object data.

• XQuery is ideal for queries that must represent results as XML, to query XML stored inside or outside the database,
and to span relational and XML sources.

• XQuery allows you to create many different types of XML representations of the same data.
• XQuery allows you to query both relational sources and XML sources, and create one XML result.

Syntax Highlight and Content Completion

To create an XQuery document, select File > New (Ctrl (Meta on Mac OS)+N) and when the New document wizard
appears, select XQuery entry.

Oxygen XML Editor plugin provides syntax highlight for keywords and all known XQuery functions and operators. A
Content Completion Assistant is also available and can be activated with the (Ctrl (Meta on Mac OS)+Space)
shortcut. The functions and operators are presented together with a description of the parameters and functionality. For
some supported database engines such as eXist and Berkeley DB, the content completion list offers the specific XQuery
functions implemented by that engine. This feature is available when the XQuery file has an associated transformation
scenario that uses one of these database engines or the XQuery validation engine is set to one of them via a validation
scenario or in the XQuery Preferences page.

The extension functions included in the Saxon product are available on content completion if one of the following
conditions are true:

Oxygen XML Editor plugin | Querying Documents | 724

http://www.w3.org/TR/xquery/

• The edited file has a transformation scenario associated that uses as transformation engine Saxon 9.6.0.7 PE or Saxon
9.6.0.7 EE.

• The edited file has a validation scenario associated that use as validation engine Saxon 9.6.0.7 PE or Saxon 9.6.0.7
EE.

• The validation engine specified in Preferences is Saxon 9.6.0.7 PE or Saxon 9.6.0.7 EE.

If the Saxon namespace (http://saxon.sf.net) is mapped to a prefix, the functions are presented using this prefix. Otherwise,
the default prefix for the Saxon namespace (saxon) is used.

If you want to use a function from a namespace mapped to a prefix, just type that prefix and the content completion
displays all the XQuery functions from that namespace. When the default namespace is mapped to a prefix, the XQuery
functions from this namespace offered by content completion are also prefixed. Otherwise, only the function name being
used.

The content completion pop-up window presents all the variables and functions from both the edited XQuery file and
its imports.

Figure 397: XQuery Content Completion

XQuery Outline View

The XQuery document structure is presented in the Outline view. The outline tree presents the list of all the components
(namespaces, imports, variables, and functions) from both the edited XQuery file and its imports and it allows quick
access to components. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be
opened from the Window > Show View menu.

Figure 398: XQuery Outline View

The following actions are available in the View menu on the Outline view action bar:

Controls the synchronization between Outline view and source document. The
selection in the Outline view can be synchronized with the cursor moves or the

Selection update on cursor
move

Oxygen XML Editor plugin | Querying Documents | 725

http://saxon.sf.net/

changes performed in the XQuery editor. Selecting one of the components from
the Outline view also selects the corresponding item in the source document.

Allows you to alphabetically sort the XQuery components.Sort

Displays all collected components starting from the current file. This option is set
by default.

Show all components

Displays the components defined in the current file only.Show only local components

Allows you to group the components by location, namespace, and type. When
grouping by namespace, the main XQuery module namespace is presented first
in the Outline view.

Group by
location/namespace/type

If you know the component name, you can search it in the Outline view by typing its name in the filter text field from
the top of the view or directly on the tree structure. When you type the component name in the filter text field you can
switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch from tree
structure to the filter text field, you can use (Tab), (Shift-Tab).

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a
text fragment in the filter box and only the components that match it are presented. For advanced usage you can use
wildcard characters (*, ?) and separate multiple patterns with commas.

XSLT/XQuery Input View

The structure of the XML document associated to the edited XSLT stylesheet, or the structure of the source documents
of the edited XQuery is displayed in a tree form in a view called XSLT/XQuery Input. If the view is not displayed, it
can be opened from the Window > Show View menu. The tree nodes represent the elements of the documents.

XQuery Input View

You use the XQuery Input view to drag and drop a node into the editing area to quickly insert XQuery expressions.

Figure 399: XQuery Input View

Oxygen XML Editor plugin | Querying Documents | 726

Create FLWOR by Drag and Drop

For the following XML documents:

<movies>
<movie id="1">
<title>The Green Mile</title>
<year>1999</year>
</movie>
<movie id="2">
<title>Taxi Driver</title>
<year>1976</year>
</movie>
</movies>

and

<reviews>
<review id="100" movie-id="1">
<rating>5</rating>
<comment>It is made after a great Stephen King book.
</comment>
<author>Paul</author>
</review>
<review id="101" movie-id="1">
<rating>3</rating>
<comment>Tom Hanks does a really nice acting.</comment>
<author>Beatrice</author>
</review>
<review id="104" movie-id="2">
<rating>4</rating>
<comment>Robert De Niro is my favorite actor.</comment>
<author>Maria</author>
</review>
</reviews>

and the following XQuery:

 let $review := doc("reviews.xml")
 for $movie in doc("movies.xml")/movies/movie
 let $movie-id := $movie/@id
 return
 <movie id="{$movie/@id}">
 {$movie/title}
 {$movie/year}
 <maxRating>
 {

 }
 </maxRating>
 </movie>

if you drag the review element and drop it between the braces, a pop-up menu will be displayed.

Figure 400: XQuery Input Drag and Drop Pop-up Menu

Select FLWOR rating and the result document will be:

Oxygen XML Editor plugin | Querying Documents | 727

Figure 401: XQuery Input Drag and Drop Result

XQuery Validation

With Oxygen XML Editor plugin, you can validate your documents before using them in your transformation scenarios.
The validation uses the Saxon 9.6.0.7 PE processor or the 9.6.0.7 EE, IBM DB2, eXist, Berkeley DB XML, Documentum
xDB (X-Hive/DB) 10, or MarkLogic (version 5 or newer) if you installed them. Any other XQuery processor that offers
an XQJ API implementation can also be used. This is in conformance with the XQuery Working Draft. The processor
is used in two cases: validation of the expression and execution. Although the execution implies a validation, it is faster
to check the expression syntactically, without executing it. The errors that occurred in the document are presented in
the messages view at the bottom of editor window, with a full description message. As with all error messages, if you
click an entry, the line where the error appeared is highlighted.

Figure 402: XQuery Validation

Note: If you choose a processor that does not support XQuery validation, Oxygen XML Editor plugin displays
a warning when trying to validate.

When you open an XQuery document from a connection that supports validation (for example, MarkLogic, or eXist),
by default Oxygen XML Editor plugin uses this connection for validation. If you open an XQuery file using a MarkLogic
connection, the validation better resolves imports.

Transforming XML Documents Using XQuery

XQuery is similar to XSL stylesheets, both being capable of transforming an XML input into another format. You specify
the input URL when you define the transformation scenario. The result can be saved and opened in the associated
application. You can even run a FO processor on the output of an XQuery. The transformation scenarios may be shared
between many XQuery files, are exported together with the XSLT scenarios and can be managed in the Configure
Transformation Scenario dialog box ,or in the Scenarios view. The transformation can be performed on the XML
document specified in the XML URL field, or, if this field is empty, the documents referenced from the query expression.
The parameters of XQuery transforms must be set in the Parameters dialog box. Parameters that are in a namespace

Oxygen XML Editor plugin | Querying Documents | 728

http://www.w3.org/TR/xquery/

must be specified using the qualified name (for example, a param parameter in the http://www.oxygenxml.com/ns
namespace must be set with the name {http://www.oxygenxml.com/ns}param).

The transformation uses one of the Saxon 9.6.0.7 HE, Saxon 9.6.0.7 PE, Saxon 9.6.0.7 EE processors, a database
connection (details can be found in the Working with Databases chapter - in the XQuery transformation section) or
any XQuery processor that provides an XQJ API implementation.

The Saxon 9.6.0.7 EE processor also supports XQuery 3.0 transformations.

XQJ Transformers

This section describes the necessary procedures before running an XQJ transformation.

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming XML
documents. An example of an XQuery engine that implements the XQJ API is Zorba.

1. If your XQJ Implementation is native, make sure the directory containing the native libraries of the engine is added
to your system environment variables: to PATH - on Windows, to LD_LIBRARY_PATH - on Linux, or to
DYLD_LIBRARY_PATH - on OS X. Restart Oxygen XML Editor plugin after configuring the environment variables.

2. Open the Preferences dialog box and go to Data Sources.

3. Click the New button in the Data Sources panel.

4. Enter a unique name for the data source.

5. Select XQuery API for Java(XQJ) in the Type combo box.

6. Press the Add button to add XQJ API-specific files.

You can manage the driver files using the Add, Remove, Detect, and Stop buttons.

Oxygen XML Editor plugin detects any implementation of javax.xml.xquery.XQDataSource and presents
it in Driver class field.

7. Select the most suited driver in the Driver class combo box.

8. Click the OK button to finish the data source configuration.

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for this connection.

4. Select one of the previously configured XQJ data sources in the Data Source combo box.

5. Fill-in the connection details.

The properties presented in the connection details table are automatically detected depending on the selected data
source.

6. Click the OK button.

Display XQuery Result in Sequence View

The result of an XQuery executed on a database can be very large and sometimes only a part of the full result is needed.
To avoid the long time necessary for fetching the full result, select the Present as a sequence option in the Output tab
of the Edit scenario dialog box. This option fetches only the first chunk of the result. Clicking the More results available
label that is displayed at the bottom of the Sequence view fetches the next chunk of results.

The size of a chunk can be set with the Size limit of Sequence view option. The XQuery options button from the
More results available label provides a quick access to this option by opening the XQuery preferences page where the
option can be modified.

Oxygen XML Editor plugin | Querying Documents | 729

http://www.zorba.io

Figure 403: XQuery transformation result displayed in Sequence view

A chunk of the XQuery transformation result is displayed in the Sequence view.

Figure 404: XQuery transformation result displayed in Sequence view

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home
Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the
Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options for each
transformation scenario, while the values set in the preferences page apply as global options. The advanced options
configured in a transformation scenario override the global options defined in the preferences page.

The advanced options for Saxon 9.6.0.7 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are
as follows:

Oxygen XML Editor plugin | Querying Documents | 730

Allows you to choose how dynamic errors are handled. The following options can be
selected:

Recoverable errors
("-warnings")

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops

processing.

Allows you to choose how the strip whitespaces operation is handled. You can choose one
of the following values:

Strip whitespaces
("-strip")

• All ("all") - Strips all whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source
documents before any further processing, regardless of any xml:space attributes in
the source document. Whitespace text nodes are ignorable if they appear in elements
defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Allows you to set the optimization level. It is the value is an integer in the range of 0 (no
optimization) to 10 (full optimization). This option allows optimization to be suppressed

Optimization level
("-opt")

when reducing the compiling time is important, optimization conflicts with debugging, or
optimization causes extension functions with side-effects to behave unpredictably.

This option activates the linked tree model.Use linked tree model
("-tree:linked")

If enabled (default value), Saxon runs the XQuery transformation with the XQuery 3.0
support.

Enable XQuery 3.0
support
("-qversion:(1.0|3.0)")

Equivalent to the -init Saxon command-line argument. The value is the name of a
user-supplied class that implements the net.sf.saxon.lib.Initializer interface.

Initializer class

This initializer is called during the initialization process, and may be used to set any options
required on the configuration programmatically. It is particularly useful for tasks such as
registering extension functions, collations, or external object models, especially in Saxon-HE
where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform
initialization when running user application code.

The following advanced options are specific for Saxon 9.6.0.7 Professional Edition (PE) and Enterprise Edition (EE)
only:

Sets a Saxon 9.6.0.7 configuration file that is used for XQuery transformation
and validation scenarios.

Use a configuration file ("-config")

If checked, calls on external functions are allowed. Checking this option is
recommended in an environment where untrusted stylesheets may be executed.

Allow calls on extension functions
("-ext")

It also disables user-defined extension elements and the writing of multiple output
files, both of which carry similar security risks.

The advanced options that are specific for Saxon 9.6.0.7 Enterprise Edition (EE) are as follows:

Requests schema-based validation of the source file and of any files read using
document() or similar functions. It can have the following values:

Validation of the source file
("-val")

• Schema validation ("strict") - This mode requires an XML Schema and enables
parsing the source documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode
enables parsing the source documents with schema-validation enabled but the
validation will not fail if, for example, element declarations are not found.

Oxygen XML Editor plugin | Querying Documents | 731

• Disable schema validation - This specifies that the source documents should
be parsed with schema-validation disabled.

Normally, if validation of result documents is requested, a validation error is fatal.
Enabling this option causes such validation failures to be treated as warnings.

Validation errors in the result
tree treated as warnings
("-outval") The validation messages for non-fatal errors

are written (wherever possible) as a comment
in the result document itself.

Write comments for non-fatal
validation errors of the result
document

If you enable this option, Saxon-EE attempts to generate Java bytecode for evaluation
of parts of a query or stylesheet that are amenable to such an action. For further

Generate bytecode
("--generateByteCode:(on|off)")

details regarding this option, go to
http://www.saxonica.com/documentation9.5/index.html#!javadoc.

This option controls whether or not XQuery update syntax is accepted. The default
value is off.

Enable XQuery update
("-update:(on|off)")

If checked, backup versions for any XML files
updated with an XQuery Update are generated. This

Backup files updated by
XQuery
("-backup:(on|off)") option is available when the Enable XQuery

update option is enabled.

Updating XML Documents using XQuery

Using the bundled Saxon 9.6.0.7 EE XQuery processor Oxygen XML Editor plugin offers support for XQuery Update
1.0. The XQuery Update Facility provides expressions that can be used to make persistent changes to instances of the
XQuery 1.0 and XPath 2.0 Data Model. Thus, besides querying XML documents, you can modify them using the various
insert/delete/modify/create methods available in the XQuery Update 1.0 standard.

Choose Saxon 9.6.0.7 EE as a transformer in the scenario associated with the XQuery files containing update statements
and Oxygen XML Editor plugin will notify you if the update was successful.

Using XQuery Update to modify a tag name in an XML file

rename node doc("books.xml")//publisher[1]//book[1] as "firstBook"

http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.w3.org/TR/xquery-update-10/#introduction

Chapter

10

Working with Archives

Describes the archive support available in Oxygen XML Editor plugin.Topics:

Oxygen XML Editor plugin offers the means to manipulate files directly from
ZIP type archives (for example, opening and saving files directly in archives,

• Browsing and Modifying Archives
• Working with EPUB

or browsing and modifying archive structures). The archive support is available
for all ZIP-type archives, including:• Editing Files From Archives

• ZIP archives
• EPUB books
• JAR archives
• Office Open XML (OOXML) files
• Open Document Format (ODF) files
• IDML files

This allows you to modify, transform, or validate files directly from OOXML
or ODF packages. The structure and content of an EPUB book, OOXML file,
or ODF file can be opened, edited, and saved, like any other ZIP archive.

You can transform, validate, and perform many other operations on files directly
from an archive. When selecting a URL for a specific operation (such as a

transformation or validation), you can click the Browse for archived file
button to navigate and choose the file from a particular archive.

Browsing and Modifying Archives
You can navigate archives either by opening them from the Navigator or by using the integration with the Eclipse File
System. For the EFS (Eclipse File System) integration you must right-click the archive in the Navigator and choose
Expand Zip Archive. All the standard Eclipse Navigator actions are available on the mounted archive. If you decide
to close the archive you can use the Collapse ZIP Archive action located in the contextual menu for the expanded
archive. Any file opened from the archive expanded in the EFS will be closed when the archive in unmounted.

If you open an archive as an Eclipse editor, the archive will be unmounted when the editor is closed.

Important: If a file is not recognized by Oxygen XML Editor plugin as a supported archive type, you can add
it from the Archive preferences page.

Figure 405: Browsing an Archive

Working with EPUB
EPUB is a free and open electronic book standard by the International Digital Publishing Forum (IDPF). It was designed
for reflowable content, meaning that the text display can be optimized for the particular display device used by the reader
of the EPUB-formatted book. Oxygen XML Editor plugin supports both EPUB 2.0 and EPUB 3.0.

Opening an EPUB file exposes all its internal components:

• Document content (XHTML and image files).
• Packaging files.
• Container files.

Oxygen XML Editor plugin | Working with Archives | 734

Figure 406: EPUB file displayed in Eclipse

Here you can edit, delete and add files that compose the EPUB structure. To check that the EPUB file you are editing

is valid, invoke the Validate and Check for Completeness action. Oxygen XML Editor plugin uses the open-source
EpubCheck validator to perform the validation. This validator detects many types of errors, including OCF container
structure, OPF and OPS mark-up, as well as internal reference consistency. All errors found during validation are
displayed in a separate tab in the Errors view.

Note: Invoke the Open in System Application action to see how the EPUB is rendered in your system
default EPUB reader application.

Note: All changes made to the structure of an EPUB, or to the contents of the files inside an EPUB are
immediately saved.

To watch our video demonstration about the EPUB support in Oxygen XML Editor plugin, go to
http://oxygenxml.com/demo/Epub.html.

Related information
The Archive Browser View on page 734

Create an EPUB

To begin writing an EPUB file from scratch, do the following:

1. Go to File > New , press Ctrl + N (Command + N on OS X) on your keyboard. or click New on the main toolbar.

2. Choose EPUB Book template. Click Create. Choose the name and location of the file. Click Save.
A skeleton EPUB file is saved on disk and open in the Archive Browser view.

3. Use the Archive Browser view specific actions to edit, add and remove resources from the archive.

4. Use the Validate and Check for Completeness action to verify the integrity of the EPUB archive.

Oxygen XML Editor plugin | Working with Archives | 735

http://oxygenxml.com/demo/Epub.html

Publish to EPUB

Oxygen XML Editor plugin includes built-in support for publishing DocBook and DITA XML documents directly to
EPUB.

1. Open the Configure Transformation Scenario(s) dialog box and select a predefined transformation scenario. To
publish from DITA, select the DITA Map EPUB transformation scenario. To publish from DocBook select the
DocBook EPUB transformation scenario.

2. Click Apply associated to run the transformation scenario.

Related information
Creating New Transformation Scenarios on page 602

Editing Files From Archives
You can open and edit files directly from an archive using the Archive Browser view. When saving the file back to
archive, you are prompted to choose if you want the application to make a backup copy of the archive before saving the
new content. If you choose Never ask me again, you will not be asked again to make backup copies. You can re-enable
the pop-up message from the Archive preferences page.

Note: All changes made to the structure of an archive, or to the contents of the files inside an archive are
immediately saved.

Chapter

11

Databases and CMS Integration

This chapter provides information about the support for various databases and
Content Management Systems.

Topics:

• Working with Databases
Oxygen XML Editor plugin provides support for various databases and content
management systems.

• Content Management System
(CMS) Integration

Working with Databases
Details about working with various database types in Oxygen XML Editor plugin.

XML is a storage and interchange format for structured data and is supported by all major database systems. Oxygen
XML Editor plugin offers the means for managing the interaction with some of the most commonly used databases
(both Relational and Native XML databases). Through this interaction, Oxygen XML Editor plugin helps users with
browsing, content editing, importing from databases, using XQuery with databases, SQL execution, and generating
XML Schema from a database structure.

Related information
Integration with Microsoft SharePoint on page 791

Data Source Explorer View

The Data Source Explorer view displays your database connections. You can connect to a database simply by expanding

the connection node (click the connection) . The database structure can be expanded to resource level, or even all the
way to column level for tables inside relational databases. Oxygen XML Editor plugin supports multiple simultaneous
database connections and the connection tree in the Data Source Explorer view provides an easy method for browsing
them.

Figure 407: Data Source Explorer View

The objects (nodes) that are displayed in the Data Source Explorer view depend on the connection type and structure
of the database. Various contextual menu actions are available for each hierarchical level and for some connections you
can add or move resources in a container by simply dragging them from the Project view, a file browsing application,
or another database.

Toolbar Actions

The following actions are available in the toolbar of this view:

Opens the Data Sources / Table Filters preferences page, allowing you to decide
which table types are displayed in the Data Source Explorer view.

Filters

Opens the Data Sources preferences page where you can configure both data
sources and connections.

Configure Database Sources

Oxygen XML Editor plugin | Databases and CMS Integration | 738

Database-Specific Contextual Menu Actions

Each specific type of database will also include its own specific contextual menu actions in the Data Source Explorer
view. The actions depend on the type of database, the type of node, or the hierarchical level of the node in which the
contextual menu is invoked.

For more information on the specific actions that are available, see the topics in this section for each specific type of
database.

Related information
Data Sources Preferences on page 53

Table Explorer View

Relational databases tables in the Data Source Explorer view can be displayed and edited in the Table Explorer view
by selecting the Edit action from the contextual menu of a Table node or by double-clicking one of its fields. To
modify the content of a cell, double-click it and start typing. When editing is complete, Oxygen XML Editor plugin
attempts to update the database with the new cell content.

Figure 408:Table Explorer View

You can sort the content of a table by one of its columns by clicking its column header.

Note the following:

• The first column is an index (not part of the table structure)
• Every column header contains the field name and its data type

• The primary key columns are marked with this symbol:
• Multiple tables are presented in a tabbed manner

For performance issues, you can set the maximum number of cells that are displayed in the Table Explorer view (using
the Limit the number of cells option in the Data Sources Preferences page). If a table that has more cells than the value
set in the options is displayed in the Table Explorer view, a warning dialog box informs you that the table is only
partially shown.

You are notified if the value you have entered in a cell is not valid (and thus cannot be updated).

• If the content of the edited cell does not belong to the data type of the column, an information dialog box appears,
notifying you that the value you have inserted cannot be converted to the SQL type of that field. For example, if you
have a column that contains LONG (numerical) values, and a character or string is inserted into one of its cells, you
would get the error message that a string value cannot be converted to the requested SQL type (NUMBER).

Oxygen XML Editor plugin | Databases and CMS Integration | 739

• If the constraints of the database are not met (for instance, primary key constraints), an information dialog box will
appear, notifying you of the reason the database has not been updated. For example, in the table below, trying to set
the second record in the primary key propID column to 8, results in a duplicate entry error since that value has
already been used in the first record:

Figure 409: Duplicate Entry for Primary Key

Table Explorer Contextual Menu Actions

Common editing actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the contextual menu of an edited
cell.

The contextual menu, available on every cell in the Table Explorer view, also includes the following actions:

Sets the content of the cell to null. This action is disabled for columns that cannot
have a value of null.

Set NULL

Inserts an empty row in the table.Insert row

Makes a copy of the selected row and adds it in the Table Explorer view. Note
that the new row will not be inserted in the database table until all conflicts are
resolved.

Duplicate row

Commits the selected row.Commit row

Deletes the selected row.Delete row

Copies the content of the cell.Copy

Pastes copied content into the selected cell.Paste

Table Explorer Toolbar Actions

The toolbar of the Table Explorer view also includes the following actions:

Opens the Export Criteria dialog box (a thorough description of this dialog box
can be found in the Import from database chapter) .

Export to XML

Performs a refresh for the sub-tree of the selected node.Refresh

Inserts an empty row in the table.Insert row

Oxygen XML Editor plugin | Databases and CMS Integration | 740

Makes a copy of the selected row and adds it in the Table Explorer view. Note
that the new row will not be inserted in the database table until all conflicts are
resolved.

Duplicate row

Commits the selected row.Commit row

Deletes the selected row.Delete row

Related information
Data Source Explorer View on page 738

Database Connection Support

Oxygen XML Editor plugin offers support for a variety of Relational and Native XML database connections. The database
drivers and connections for various types of database are configured in the Data Sources preferences page and once
configured, the database connections can be viewed and managed in the Data Source Explorer view. Oxygen XML
Editor plugin also includes a Database perspective that helps you to manage databases.

The database support in Oxygen XML Editor plugin offers a variety of capabilities, including:

• Browsing the structure of databases in the Data Source Explorer view.
• Viewing relational tables in the Table Explorer view.
• Executing SQL queries against databases.
• Calling stored procedures with input and output parameters.
• XQuery execution with databases.
• Exporting data from databases to XML.

Relational Database Support

Relational databases use a relational model and are based on tables linked by a common key. Oxygen XML Editor plugin
offers support for the most commonly used relational databases, including:

• IBM DB2
• Oracle 11g
• Microsoft SQL Server
• PostgreSQL
• MySQL

Oxygen XML Editor plugin also offers generic support (table browsing and execution of SQL queries) for any
JDBC-compliant database (for example, MariaDB).

To watch our video demonstration about the integration between the relational databases and Oxygen XML Editor
plugin, go to http://www.oxygenxml.com/demo/Author_Database_Integration.html.

Native XML Database Support

Native XML databases have an XML-based internal model and their fundamental unit of storage is XML. They use
XML as an interface to specify documents as tree structured data that may contain unstructured text, but on disk the
data is stored as optimized binary files. This makes query and retrieval processes faster. Oxygen XML Editor plugin
offers support for the most commonly used native XML databases, including:

• Berkeley DB XML
• eXist
• MarkLogic
• Documentum xDB (X-Hive/DB) 10
• Oracle XML DB
• Base X

Oxygen XML Editor plugin | Databases and CMS Integration | 741

http://www.oxygenxml.com/demo/Author_Database_Integration.html

To watch our video demonstration about the integration between the native XML databases and Oxygen XML Editor
plugin, go to http://www.oxygenxml.com/demo/Author_Database_XML_Native.html.

Related information
WebDAV Connections on page 778

Integration with Microsoft SharePoint on page 791

IBM DB2 Database Connections

Oxygen XML Editor plugin includes support for IBM DB2 database connections. Oxygen XML Editor plugin allows
you to browse the structure of an IBM DB2 database in the Data Source Explorer view, open tables in the Table Explorer
view, and perform various operations on the resources in the repository.

Figure 410: IBM DB2 Database Connection

Configuring an IBM DB2 Database Connection

To configure the support for the IBM DB2 database, follow this procedure:

1. Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver for JDBC and
SQLJ download link. Fill out the download form and download the zip file. Unzip the zip file and use the
db2jcc.jar and db2jcc_license_cu.jar files in Oxygen XML Editor plugin for configuring a DB2 data
source.

2. Configure IBM DB2 Data Source drivers.
3. Configure an IBM DB2 Server Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure IBM DB2 Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for connecting to an IBM DB2 server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Oxygen XML Editor plugin | Databases and CMS Integration | 742

http://www.oxygenxml.com/demo/Author_Database_XML_Native.html
http://www-306.ibm.com/software/data/db2/express/download.html

Figure 411: Data Source Drivers Configuration Dialog Box

3. Enter a unique name for the data source.

4. Select DB2 in the driver Type drop-down menu.

5. Add the driver files for IBM DB2 using the Add Files button.

The IBM DB2 driver files are:

• db2jcc.jar

• db2jcc_license_cisuz.jar

• db2jcc_license_cu.jar

The Driver files section lists download links for database drivers that are necessary for accessing IBM DB2 databases
in Oxygen XML Editor plugin.

6. Select the most appropriate Driver class.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure your IBM DB2 connection.

To watch our video demonstration about running XQuery against an IBM DB2 Pure XML database, go to
http://www.oxygenxml.com/demo/DB2.html.

How to Configure an IBM DB2 Connection

The support to create an IBM DB2 connection is available in the Enterprise edition only.

To configure a connection to an IBM DB2 server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

The dialog box for configuring a database connection is displayed.

Oxygen XML Editor plugin | Databases and CMS Integration | 743

http://www.oxygenxml.com/demo/DB2.html

Figure 412: Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select an IBM DB2 data source in the Data Source drop-down menu.

5. Enter the connection details.

a) Enter the URL to the installed IBM DB2 engine.
b) Enter the user name to access the IBM DB2 engine.
c) Enter the password to access the IBM DB2 engine.

6. Click the OK button to finish the configuration of the database connection.

To watch our video demonstration about running XQuery against an IBM DB2 Pure XML database, go to
http://www.oxygenxml.com/demo/DB2.html.
IBM DB2 Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source Explorer
view, depending on the node in which it is invoked:

Performs a refresh on the selected node.Refresh

Closes the current database connection. If a table is already open,
you are warned to close it before proceeding.

Disconnect (available on Connection nodes)

Opens the Data Sources preferences page where you can configure
both data sources and connections.

Configure Database Sources (available on
Connection nodes)

Opens the selected table in the Table Explorer view.Edit (available on Table nodes)

Opens the Export Criteria dialog box (a thorough description of this
dialog box can be found in the Import from Database chapter).

Export to XML (available on Table
nodes)

Oxygen XML Editor plugin | Databases and CMS Integration | 744

http://www.oxygenxml.com/demo/DB2.html

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view, the various nodes in IBM DB2
connections include the following additional contextual menu actions:

 XML Schema Repository
Level Nodes

Opens a dialog box for adding a new schema file in the DB XML
repository. In this dialog box, you enter a collection name and the
necessary schema files. Schema dependencies management can be
done by using the Add and Remove buttons.

Register

 Schema Level Nodes Removes the selected schema from the XML Schema
Repository.

Unregister

Opens the selected schema in Oxygen XML Editor plugin.View

Microsoft SQL Server Database Connections

Oxygen XML Editor plugin includes support for Microsoft SQL Server database connections. Oxygen XML Editor
plugin allows you to browse the structure of a SQL Server database in the Data Source Explorer view, open tables in
the Table Explorer view, and perform various operations on the resources in the repository.

Configuring a Microsoft SQL Server Connection

To configure the support for a Microsoft SQL Server database, follow this procedure:

1. Download the appropriate MS SQL JDBC driver from the Microsoft website. For SQL Server 2008 R2 and older
go to http://www.microsoft.com/en-us/download/details.aspx?id=21599. For SQL Server 2012 and 2014 go to
http://www.microsoft.com/en-us/download/details.aspx?id=11774.

2. Configure MS SQL Server Data Source drivers.
3. Configure a MS SQL Server Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure Microsoft SQL Server Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for connecting to a Microsoft SQL server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Oxygen XML Editor plugin | Databases and CMS Integration | 745

http://www.microsoft.com/en-us/download/details.aspx?id=21599
http://www.microsoft.com/en-us/download/details.aspx?id=11774

Figure 413: Data Source Drivers Configuration Dialog Box

3. Enter a unique name for the data source.

4. Select SQLServer in the driver Type drop-down menu.

5. Add the Microsoft SQL Server driver file using the Add Files button.

The SQL Server driver file is called sqljdbc.jar. In the The Driver files section lists download links for database
drivers that are necessary for accessing Microsoft SQL Server databases in Oxygen XML Editor plugin.

6. Select the most appropriate Driver class.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure your Microsoft SQL Server connection.

How to Configure a Microsoft SQL Server Connection

The support to configure a Microsoft SQL Server connection is available in the Enterprise edition only.

To configure a connection to a Microsoft SQL Server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

The dialog box for configuring a database connection is displayed.

Oxygen XML Editor plugin | Databases and CMS Integration | 746

Figure 414: Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the SQL Server data source in the Data Source drop-down menu.

5. Enter the connection details.

a) Enter the URL of the SQL Server server.

If you want to connect to the server using Windows integrated authentication, you must add
;integratedSecurity=true to the end of the URL. The URL will look like this:

jdbc:sqlserver://localhost;instanceName=SQLEXPRESS;integratedSecurity=true;

Note: For integrated authentication, leave the User and Password fields empty.

b) Enter the user name for the connection to the SQL Server.
c) Enter the password for the connection to the SQL Server.

6. Click the OK button to finish the configuration of the database connection.

Microsoft SQL Server Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source Explorer
view, depending on the node in which it is invoked:

Performs a refresh on the selected node.Refresh

Closes the current database connection. If a table is already open,
you are warned to close it before proceeding.

Disconnect (available on Connection nodes)

Opens the Data Sources preferences page where you can configure
both data sources and connections.

Configure Database Sources (available on
Connection nodes)

Opens the selected table in the Table Explorer view.Edit (available on Table nodes)

Oxygen XML Editor plugin | Databases and CMS Integration | 747

Opens the Export Criteria dialog box (a thorough description of this
dialog box can be found in the Import from Database chapter).

Export to XML (available on Table
nodes)

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view, the resource level nodes in
Microsoft SQL Server connections include the following additional contextual menu action:

 XML Schema Repository
Level Nodes

Opens a dialog box for adding a new schema file in the DB XML
repository. In this dialog box, you enter a collection name and the
necessary schema files. Schema dependencies management can be
done by using the Add and Remove buttons.

Register

 Schema Level Nodes Adds a new schema to the XML Schema files.Add

Removes the selected schema from the XML Schema
Repository.

Unregister

Opens the selected schema in Oxygen XML Editor plugin.View

Oracle Database Connections

The Oracle database is a common relational type of database system. Oxygen XML Editor plugin comes with built-in
support for the 11g version of the database system. The Oracle database also includes a Oracle XML DB component
that adds native XML support. Oxygen XML Editor plugin allows you to browse Oracle repositories in the Data Source
Explorer view, open tables in the Table Explorer view, and perform various operations on the resources in the repository.

Figure 415: Oracle Database Connection

Related information
Using XQuery with Oracle XML DB

Configuring an Oracle 11g Database Connection

To configure the support for a Oracle 11g database, follow this procedure:

1. Go to http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html and download the
Oracle 11g JDBC driver called ojdbc6.jar.

2. Configure Oracle 11g Data Source drivers.
3. Configure an Oracle 11g Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

Oxygen XML Editor plugin | Databases and CMS Integration | 748

http://docs.oracle.com/cd/B28359_01/appdev.111/b28369/xdb_xquery.htm#top
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

How to Configure Oracle 11g Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for connecting to an Oracle 11g server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Figure 416: Data Source Drivers Configuration Dialog Box

3. Enter a unique name for the data source.

4. Select Oracle in the driver Type drop-down menu.

5. Add the Oracle driver file using the Add Files button.

The Oracle driver file is called ojdbc5.jar. The Driver files section lists download links for database drivers
that are necessary for accessing Oracle databases in Oxygen XML Editor plugin.

6. Select the most appropriate Driver class.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure your Oracle connection.

How to Configure an Oracle 11g Connection

Available in the Enterprise edition only.

To configure a connection to an Oracle 11g server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

The dialog box for configuring a database connection is displayed.

Oxygen XML Editor plugin | Databases and CMS Integration | 749

Figure 417: Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the Oracle 11g data source in the Data Source drop-down menu.

5. Enter the connection details.

a) Enter the URL of the Oracle server.
b) Enter the user name for the connection to the Oracle server.
c) Enter the password for the connection to the Oracle server.

6. Click the OK button to finish the configuration of the database connection.

Oracle Database Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source Explorer
view, depending on the node in which it is invoked:

Performs a refresh on the selected node.Refresh

Closes the current database connection. If a table is already open,
you are warned to close it before proceeding.

Disconnect (available on Connection nodes)

Opens the Data Sources preferences page where you can configure
both data sources and connections.

Configure Database Sources (available on
Connection nodes)

Opens the selected table in the Table Explorer view.Edit (available on Table nodes)

Opens the Export Criteria dialog box (a thorough description of this
dialog box can be found in the Import from Database chapter).

Export to XML (available on Table
nodes)

Database-Specific Contextual Menu Actions
In addition to the general contextual menu actions in the Data Source Explorer view, the various nodes in Oracle
database connections include the following additional contextual menu actions:

Oxygen XML Editor plugin | Databases and CMS Integration | 750

XML Schema
Repository Level
Nodes

Opens a dialog box for adding a new schema file in the XML repository. To add an
XML Schema, enter the schema URI and location on your file system. Local scope
means that the schema is visible only to the user who registers it. Global scope means
that the schema is public.

Register

Note: Registering a schema may involve dropping/creating types. Hence
you need type-related privileges such as DROP TYPE, CREATE TYPE,
and ALTER TYPE. You need privileges to delete and register the XML
schemas involved in the registering process. You need all privileges on
XMLType tables that conform to the registered schemas. For XMLType
columns, the ALTER TABLE privilege is needed on corresponding tables.
If there are schema-based XMLType tables or columns in other database
schemas, you need privileges such as the following:

• CREATE ANY TABLE

• CREATE ANY INDEX

• SELECT ANY TABLE

• UPDATE ANY TABLE

• INSERT ANY TABLE

• DELETE ANY TABLE

• DROP ANY TABLE

• ALTER ANY TABLE

• DROP ANY INDEX

To avoid having to grant all these privileges to the schema owner, Oracle
recommends that the registration be performed by a DBA if there are XML
schema-based XMLType table or columns in other user database schemas.

 XML Repository
Level Nodes

Adds a new child container to the current one.Add container

Adds a new resource to the folder.Add resource

 Container Level
Nodes

Adds a new child container to the current one.Add container

Adds a new resource to the folder.Add resource

Deletes the current container.Delete

Shows various properties of the current container.Properties

 Resource Level
Nodes

Opens the selected resource in the editor.Open

Renames the current resourceRename

Moves the current resource to a new container (also available
through drag and drop).

Move

Deletes the current container.Delete

Allows you to copy (to the clipboard) an application-specific URL
for the resource that can then be used for various actions, such as
opening or transforming the resources.

Copy location

Shows various properties of the current container.Properties

Oxygen XML Editor plugin | Databases and CMS Integration | 751

Compares two selected resources.Compare

PostgreSQL Database Connections

Oxygen XML Editor plugin includes support for PostgreSQL database connections. Oxygen XML Editor plugin allows
you to browse the structure of a PostgreSQL database in the Data Source Explorer view, open tables in the Table
Explorer view, and perform various operations on the resources in the repository.

Figure 418: PostgreSQL Database Connection

Configuring a PostgreSQL Database Connection

To configure the support for a PostgreSQL database, follow this procedure:

1. Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3 JDBC3 driver.
2. Configure PostgreSQL Data Source drivers.
3. Configure a PostgreSQL Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure PostgreSQL 8.3 Data Source Drivers

To configure a data source for connecting to a PostgreSQL server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Oxygen XML Editor plugin | Databases and CMS Integration | 752

http://jdbc.postgresql.org/download.html

Figure 419: Data Source Drivers Configuration Dialog Box

Figure 420: Data Source Drivers Configuration Dialog Box

3. Enter a unique name for the data source.

4. Select PostgreSQL in the driver Type drop-down list.

Oxygen XML Editor plugin | Databases and CMS Integration | 753

5. Add the PostgreSQL driver file using the Add Files button.

The PostgreSQL driver file is called postgresql-8.3-603.jdbc3.jar. The Driver files section lists download
links for database drivers that are necessary for accessing PostgreSQL databases in Oxygen XML Editor plugin.

6. Select the most appropriate Driver class.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure your PostgreSQL connection.

How to Configure a PostgreSQL 8.3 Connection

To configure a connection to a PostgreSQL 8.3 server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

The dialog box for configuring a database connection is displayed.

Figure 421: Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the PostgreSQL 8.3 data source in the Data Source drop-down menu.

5. Enter the connection details.

a) Enter the URL of the PostgreSQL 8.3 server.
b) Enter the user name for the connection to the PostgreSQL 8.3 server.
c) Enter the password for the connection to the PostgreSQL 8.3 server.

6. Click the OK button to finish the configuration of the database connection.

PostgreSQL Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source Explorer
view, depending on the node in which it is invoked:

Performs a refresh on the selected node.Refresh

Oxygen XML Editor plugin | Databases and CMS Integration | 754

Closes the current database connection. If a table is already open,
you are warned to close it before proceeding.

Disconnect (available on Connection nodes)

Opens the Data Sources preferences page where you can configure
both data sources and connections.

Configure Database Sources (available on
Connection nodes)

Opens the selected table in the Table Explorer view.Edit (available on Table nodes)

Opens the Export Criteria dialog box (a thorough description of this
dialog box can be found in the Import from Database chapter).

Export to XML (available on Table
nodes)

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view, the resource level nodes in
PostgreSQL connections include the following additional contextual menu action:

 Resource Level Nodes Compares two selected resources.Compare

Berkeley DB XML Database Connections

Oxygen XML Editor plugin includes support for Berkeley DB XML database connections. Oxygen XML Editor plugin
allows you to browse the structure of a Berkeley DB XML database in the Data Source Explorer view and perform
various operations on the resources in the repository.

Oracle Berkeley DB XML is an open source, embeddable XML database with XQuery-based access to documents stored
in containers and indexed based on their content. It is built on top of the Oracle Berkeley DB and inherits its features
and attributes, along with native XML support. A detailed description can be found at:
http://www.oracle.com/us/products/database/berkeley-db/xml/overview/index.html.

Figure 422: Berkeley DB XML Connection

Configuring a Berkeley DB XML Database Connection

Follow this procedure to configure the support for a Berkeley DB XML database:

1. Configure Berkeley DB XML Data Source drivers.
2. Configure a Berkeley DB XML Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

Oxygen XML Editor plugin | Databases and CMS Integration | 755

http://www.oracle.com/us/products/database/berkeley-db/xml/overview/index.html

How to Configure Berkeley DB XML Data Source Drivers

Oxygen XML Editor plugin supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. To configure a data
source for a Berkeley DB XML database, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select Berkeley DBXML from the driver Type drop-down menu.

5. Click the Add button to add the Berkeley DB driver files.

The driver files for the Berkeley DB database are the following:

• db.jar (check for it in [DBXML_DIR]/lib or [DBXML_DIR]/jar)
• dbxml.jar (check for it in [DBXML_DIR]/lib or [DBXML_DIR]/jar)

Where [DBXML_DIR] is the Berkeley DB XML database root directory. For example, in Windows it is:
C:\Program Files\Oracle\Berkeley DB XML <version>.

6. Click the OK button to finish the data source configuration.

7. Continue on to configure your Berkeley DB XML connection.

How to Configure a Berkeley DB XML Connection

Oxygen XML Editor plugin supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. To configure a
connection to a Berkeley DB XML database, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source drop-down menu.

5. Enter the connection details.

a) Set the path to the Berkeley DB XML database directory in the Environment home directory field. Use a
directory with write access. DO NOT use the installation directory where Berkeley DB XML is installed if
you do not have write access to that directory.

b) Select the Verbosity level: DEBUG, INFO, WARNING, or ERROR.
c) Optionally, you can select the Join existing environment checkbox.

If checked, an attempt is made to join an existing environment in the specified home directory and all the original
environment settings are preserved. If that fails, try reconfiguring the connection with this option unchecked.

6. Click the OK button to finish the connection configuration.

Berkeley DB XML Contextual Menu Actions

While browsing Berkeley DB XML connections in the Data Source Explorer view, the various nodes include the
following contextual menu actions:

Connection

Opens the Data Sources preferences page where you can configure both data sources
and connections.

Configure
Database
SourcesLevel

Nodes
Stops the connection.Disconnect

Oxygen XML Editor plugin | Databases and CMS Integration | 756

Opens a Container configuration dialog box that allows you to adds a new container
in the repository.

Figure 423: Container Configuration Dialog Box

New Collection

This dialog box allows you to configure the following:

• Name - The name of the new container.
• Container type - At creation time, every container must have a type defined for it.

This container type identifies how XML documents are stored in the container. As
such, the container type can only be determined at container creation time. You
cannot change it when subsequent container opens. You can select one of the
following types:

• Node container - XML documents are stored as individual nodes in the
container. Each record in the underlying database contains a single leaf node,
its attributes and attribute values (if any), and its text nodes (if any). Berkeley
DB XML also keeps the information it requires to reassemble the document
from the individual nodes stored in the underlying databases. This is the default
selection and is the preferred container type.

• Whole document container - The container contains entire documents. The
documents are stored without any manipulation of line breaks or whitespace.

• Allow validation - If checked, documents will be validated when they are loaded
into the container. The default behavior is to not validate documents.

• Index nodes - If checked, indices for the container will return nodes rather than
documents. The default is to index at the document level. This property has no
meaning if the container type is Whole document container.

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the connection.Find/Replace
in Files

Container

Allows you to add a new file on the connection, in the current folder.Import Files

Allows you to export the folder on the remote connection to a local folder.Export
Level
Nodes Removes the current selection and places it in the clipboard.Cut

Pastes the copied selection.Paste

Renames the current resourceRename

Oxygen XML Editor plugin | Databases and CMS Integration | 757

Deletes the current container.Delete

Opens a Container Indices dialog box that allows you to configure indices properties for
the selected Berkeley container.

Figure 424: Container Indices Dialog Box

Edit indices

This dialog box allows you to configure the following properties:

• Granularity - A measure of the level of details of your data in the database. You can
select one of the following:

• Document level - Good option for retrieving large documents.
• Node level - Good option for retrieving nodes from within documents.

• Node - The name of the node.
• Namespace - The index namespace.
• Index type:

• Uniqueness - Indicates whether or not the indexed value must be unique within
the container.

• Path type - Drop-down menu that allows you to select from the following:

• node - Indicates that you want to index a single node in the path.
• edge - Indicates that you want to index the portion of the path where two nodes

meet.

• Node type - Drop-down menu that allows you to select from the following:

• element - An element node in the document content.
• attribute - An attribute node in the document content.
• metadata - A node found only in the metadata content of a document.

• Key type - Drop-down menu that allows you to select from the following:

Oxygen XML Editor plugin | Databases and CMS Integration | 758

equality - Improves the performances of tests that look for nodes with a specific
value.

•

• presence - Improves the performances of tests that look for the existence of a
node regardless of its value.

• substring - Improves the performance of tests that look for a node whose value
contains a given sub-string.

• Syntax - The syntax describes the type of data the index contains and is mostly
used to determine how indexed values are compared. The default value is string.

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the connection.Find/Replace
in Files

Resource

Opens the selected resource in the editor.Open

Removes the current selection and places it in the clipboard.CutLevel
Nodes Allows you to copy (to the clipboard) an application-specific URL for

the resource that can then be used for various actions, such as opening
or transforming the resources.

Copy location

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the connection.Find/Replace in Files

Compares two selected resources.Compare

Debugging with Berkeley DB XML

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is supported
in the Oxygen XML Editor plugin XQuery Debugger. The same restrictions and peculiarities apply for the Berkeley
debugger as for the MarkLogic debugger.

eXist Database Connections

Oxygen XML Editor plugin includes support for eXist database connections. Oxygen XML Editor plugin allows you
to browse the structure of a eXist database in the Data Source Explorer view and perform various operations on the
resources in the repository.

Oxygen XML Editor plugin | Databases and CMS Integration | 759

Figure 425: eXist Database Connection

Configuring an eXist Database Connection

There are two ways to configure the support for an eXist database:

1. Use the dedicated Create eXist-db XML connection connection wizard.

a. Open the Preferences dialog box , go to Data Sources and click the Create eXist-db XML connection link.
b. Enter your connection details in the connection wizard and click OK.

Important: To create an eXist connection using this wizard, Oxygen XML Editor plugin expects the
exist/webstart/exist.jnlp path to be accessible at the provided Host and Port.

c. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened
from the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

2. Use the Data Sources preferences page to configure your connection.

a. Configure eXist Data Source drivers.
b. Configure an eXist Connection.
c. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened

from the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure eXist Data Source Drivers

Oxygen XML Editor plugin supports eXist database server versions up to and including version 2.2. To configure a data
source for an eXist database, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select eXist from the driver Type drop-down menu.

5. Click the Add button to add the eXist driver files.

The following driver files should be added in the dialog box for setting up the eXist datasource. They are found in
the installation directory of the eXist database server. Make sure you copy the files from the installation of the eXist
server where you want to connect from Oxygen XML Editor plugin.

• exist.jar

Oxygen XML Editor plugin | Databases and CMS Integration | 760

• lib/core/xmldb.jar

• lib/core/xmlrpc-client-3.1.x.jar

• lib/core/xmlrpc-common-3.1.x.jar

• lib/core/ws-commons-util-1.0.x.jar

• lib/core/slf4j-api-1.x.x.jar (if available)
• lib/core/slf4j-log4j12-1.x.x.jar (if available)

The version number from the driver file names may be different for your eXist server installation.

6. Click the OK button to finish the data source configuration.

7. Continue on to configure your eXist connection.

To watch our video demonstration about running XQuery against an eXist XML database, go to
http://www.oxygenxml.com/demo/eXist_Database.html.

How to Configure an eXist Connection

To configure a connection to an eXist database, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source drop-down menu.

5. Enter the connection details.

a) Set the URI to the installed eXist engine in the XML DB URI field.
b) Set the user name in the User field.
c) Set the password in the Password field.
d) Enter the start collection in the Collection field.

eXist organizes all documents in hierarchical collections. Collections are like directories. They are used to group
related documents together. This text field allows the user to set the default collection name.

6. Click the OK button to finish the connection configuration.

To watch our video demonstration about running XQuery against an eXist XML database, go to
http://www.oxygenxml.com/demo/eXist_Database.html.

eXist Contextual Menu Actions

While browsing eXist database connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection
Level Nodes

Opens the Data Sources preferences page where you can
configure both data sources and connections.

Configure Database Sources

Stops the connection.Disconnect

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from
the connection.

Find/Replace in Files

 Container Level
Nodes

Creates a new file on the connection, in the current folder.New File

Creates a new collection on the connection.New Collection

Imports folders on the server.Import Folders

Allows you to add a new file on the connection, in the current
folder.

Import Files

Allows you to export the folder on the remote connection to a
local folder.

Export

Oxygen XML Editor plugin | Databases and CMS Integration | 761

http://www.oxygenxml.com/demo/eXist_Database.html
http://www.oxygenxml.com/demo/eXist_Database.html

Removes the current selection and places it in the clipboard.Cut

Pastes the copied selection.Paste

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Resource Level
Nodes

Opens the selected resource in the editor.Open

Allows you to save the selected resource as a file on disk.Save As

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Allows you to copy (to the clipboard) an application-specific URL
for the resource that can then be used for various actions, such as
opening or transforming the resources.

Copy location

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

Compares two selected resources.Compare

MarkLogic Database Connections

Oxygen XML Editor plugin includes support for MarkLogic database connections. Once you configure a MarkLogic
connection, you can use the Data Source Explorer view to display all the application servers that are configured on the
MarkLogic server. You can expand each application server and view all of its configured modules, and the Data Source
Explorer view allows you to open and edit these modules.

Note: To browse modules located in a database, directory properties must be associated with them. These
directory properties are generated automatically if the directory creation property of the database is set to
automatic. If this property is set to manual or manual-enforced, add the directory properties of the modules
manually, using the XQuery function xdmp:directory-create(). For example, for two documents with
the /code/modules/main.xqy and /code/modules/imports/import.xqy IDs, run the following
query:

(xdmp:directory-create('/code/modules/'), xdmp:directory-create('/code/modules/imports/'))

For more information about directory properties, go to:
http://blakeley.com/blogofile/2012/03/19/directory-assistance/.

MarkLogic and XQuery

MarkLogic connections can be used in conjunction with XQuery scripts to debug and solve problems with XQuery
transformations. XQuery modules can also be validated using a MarkLogic server to allow to you to spot possible issues
without the need of actually executing the XQuery script.

Oxygen XML Editor plugin | Databases and CMS Integration | 762

http://blakeley.com/blogofile/2012/03/19/directory-assistance/

When debugging XQuery files with MarkLogic, you can use the Data Source Explorer view to open the files from the
application server that is involved in the debugging process. By using the Data Source Explorer view, any imported
modules are better identified by the MarkLogic server. You can also use step actions and breakpoints in the modules
to help identify problems.

Modules Container

For each Application server (for example: Bill (HTTP port:8060)), you have access to the XQuery modules that are
visible to that server. When editing, executing, or debugging XQuery it is recommended to open the XQuery files from

this Modules container.

Note: You can also manage resources for a MarkLogic database through a WebDAV connection, although it
is not recommended if you work with XQuery files since imported modules may not be resolved correctly.

Requests Container

Each MarkLogic application server includes a Requests container. In this container, Oxygen XML Editor plugin
displays both queries that are stopped for debugging purposes and queries that are still running. To clean up the entire
Requests container at the end of your session, right-click it and use the Cancel all requests action.

Figure 426: MarkLogic Connection in Data Source Explorer

Configuring a MarkLogic Database Connection

Follow this procedure to configure the support for a MarkLogic database connection:

1. Download the MarkLogic driver from MarkLogic Community site.
2. Configure MarkLogic Data Source drivers.
3. Configure a MarkLogic Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

Related information
MarkLogic Development in Oxygen XML Editor plugin on page 764

How to Configure MarkLogic Data Source Drivers

Available in the Enterprise edition only.

Note: Oxygen XML Editor plugin supports MarkLogic version 4.0 or later.

To configure a data source for MarkLogic, follow this procedure:

Oxygen XML Editor plugin | Databases and CMS Integration | 763

http://community.marklogic.com/download

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select MarkLogic from the driver Type drop-down list.

5. Click the Add button to add the MarkLogic driver file (marklogic-xcc-{server_version}, where
{server_version} is the MarkLogic server version.)

You can download the driver file from: http://community.marklogic.com/download.

6. Click the OK button to finish the data source configuration.

7. Continue on to configure your MarkLogic Connection.

How to Configure a MarkLogic Connection

Available in the Enterprise edition only.

Note: Oxygen XML Editor plugin supports MarkLogic version 4.0 or later.

To configure a connection to a MarkLogic database, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source drop-down menu.

5. Enter the connection details.

a) The host name or IP address of the installed MarkLogic engine in the XDBC Host field.

Oxygen XML Editor plugin uses XCC connector to interact with MarkLogic XDBC server and requires the basic
authentication schema to be set. Starting with version MarkLogic 4.0 the default authentication method when
you create an HTTP or WebDAV Server is digest, so make sure to change it to basic.

b) Set the port number of the MarkLogic engine in the Port field. A MarkLogic XDBC application server must be
configured on the server on this port. This XDBC server will be used to process XQuery expressions against the
server. Later, if you want to change the XDBC server, instead of editing the configuration just use the Use it to
execute queries action from Data Source Explorer.

c) Set the user name to access the MarkLogic engine in the User field.
d) Set the password to access the MarkLogic engine in the Password field.
e) Optionally set the URL used for browsing the MarkLogic database in the Data Source Explorer view in the

WebDAV URL field.

The Database field specifies the database for which the XQuery expressions are executed. If you set this option
to default, the database associated to the application server of the configured port is used.

6. Click the OK button to finish the connection configuration.

MarkLogic Development in Oxygen XML Editor plugin

The Oxygen XML Editor plugin support for MarkLogic includes features designed for developers, such as debugging
XQuery transformations, remote and collaborative debugging, XQuery editing and validation, and an XQuery builder
that helps to improve productivity.

Working with XQuery Files

MarkLogic supports working with XQuery files to create queries over stored XML content. You can open an XQuery
file, configure a transformation scenario to match your MarkLogic connection, write the XQuery, and then execute it.

When editing XQuery modules stored on the MarkLogic server, the Outline view collects and displays all the functions
from all imported modules. The Content Completion Assistant also presents all of these functions along with the latest
built-in XQuery functions in accordance with the server version.

Oxygen XML Editor plugin | Databases and CMS Integration | 764

http://community.marklogic.com/download

When developing queries for MarkLogic, it is best to open the resources from the Data Source Explorer view. When
you execute or debug XQuery files opened from this view, imported modules can be resolved better by the MarkLogic
server. Another advantage is that validation is automatically performed on the MarkLogic server, including any imported
modules.

XQuery Debugging

Oxygen XML Editor plugin allows you to use MarkLogic connections to debug real applications that use XQuery (for
example, web applications that trigger XQuery executions). By setting the server in debug mode, you can intercept all
the XQuery scripts that run on that server. Oxygen XML Editor plugin connects to the MarkLogic server, shows you
the running XQuery scripts, and allows you to debug them. The remote debugging support also allows you to debug
collaboratively. Multiple users can participate in the same debugging session. You can start a debugging session and
another user can continue it, and vice versa.

Working with Modules

MarkLogic has a concept of two types of XQuery modules, library and main modules. A library module is used to
define functions. Library modules cannot be evaluated directly. They are imported, either from other library modules
or from main modules. A main module is used as an entry point that can be executed as an XQuery program. For more
information on these types of modules, see XQuery Library Modules and Main Modules.

When working with library modules, you need to create a validation scenario and associate it with the module. In the
validation scenario you need to specify a main module as the entry point for validation. The modules need to be deployed
on a MarkLogic server because Oxygen XML Editor plugin will request the server to validate the modules.

To validate library modules stored on a MarkLogic server, follow these steps:

1. Configure a MarkLogic database connection.
2. Expand the MarkLogic connection in the Data Source Explorer view and open the library modules. The main module

must also be opened from the Data Source Explorer view.
3. Configure a validation scenario for each library module. Specify the main module in the URL of the file to validate

field.

Result: Validation is done on the server that contains the main module. The main module and all other library
modules involved in the validation must be saved. Otherwise, the server will validate what was saved on the server,
without the uncommitted changes. Also, the Content Completion Assistant and the Outline view should now
present the functions from all the modules.

Related information
Debugging with MarkLogic on page 765

Configuring a MarkLogic Database Connection on page 763

Debugging with MarkLogic

Oxygen XML Editor plugin includes support for debugging XQuery transformations that are executed against a MarkLogic
database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source and a MarkLogic connection.
2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Editor plugin accesses.

On the server side, debugging must be activated in the XDBC server and in the Task Server section of the server
control console (the switch debug allow). If the debugging is not activated, the MarkLogic server reports a
DBG-TASKDEBUGALLOW error.

Note: An XDBC application server must be running to connect to the MarkLogic server and this XDBC
server will be used to process XQuery expressions against the server. You can change the XDBC application
server that Oxygen XML Editor plugin uses to process XQuery expressions by selecting the Use it to execute
queries action from the contextual menu in the Data Source Explorer view.

Oxygen XML Editor plugin | Databases and CMS Integration | 765

https://docs.marklogic.com/guide/app-dev/import_modules#id_45509

3. Open the XQuery file and start the debugging process.

• If you want to debug an XQuery file stored on the MarkLogic server, we recommend you to use the Data Source
Explorer view and open the file from the application server that is involved in the debugging process. This
improves the resolving of any imported modules.

• The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective. If you have a
MarkLogic validation scenario configured for the XQuery file, you can choose to debug the scenario directly.

• Otherwise, switch to the XQuery Debugger perspective, open the XQuery file in the editor, and select the
MarkLogic connection in the XQuery engine selector from the debug control toolbar.

For general information about how a debugging session is started and controlled, see the Working with the
Debugger section.

Note: Before starting a debugging session, it is recommend that you link the MarkLogic connection
with an Eclipse project. To do this, go to the Data Source Explorer view and select Link to project in
the contextual menu of the MarkLogic connection. The major benefit of linking a debugging session
with a project is that you can add breakpoints in the XQuery modules stored on the server. You are also
able to access these modules from the Eclipse Navigator view and run debugging sessions from them.

In a MarkLogic debugging session, you can use step actions and breakpoints to help identify problems. When you add
a breakpoint on a line where the debugger never stops, Oxygen XML Editor plugin displays a warning message. These
warnings are displayed for breakpoints you add either in the main XQuery (which you can open locally or from the
server) or for breakpoints you add in any XQuery that is opened from the connection that participates in the debugging
session. For more information, see Using Breakpoints for Debugging Queries that Import Modules with MarkLogic on
page 766.

Remote Debugging with MarkLogic

Oxygen XML Editor plugin allows you to debug remote applications that use XQuery (for example, web applications
that trigger XQuery executions). Oxygen XML Editor plugin connects to a MarkLogic server, shows you the running
XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the debugging queries
in the exact context of the application. You can also switch a server to debug mode to intercept all XQuery scripts.

Oxygen XML Editor plugin also supports collaborative debugging. This feature allows multiple users to participate in
the same debugging session. You can start a debugging session and at a certain point, another user can continue it.

Important: When using the remote debugging feature, the HTTP and the XDBC servers involved in the
debugging session must have the same module configuration.

To watch our video demonstration about the XQuery debugger for MarkLogic, go to
http://oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html.

Related information
MarkLogic Development in Oxygen XML Editor plugin on page 764

Configuring a MarkLogic Database Connection on page 763

Using Breakpoints for Debugging Queries that Import Modules with MarkLogic

When debugging queries that imports modules stored in the database, it is recommended to place breakpoints in the
modules. When starting a new debugging session, make sure that the modules that you will debug are already opened
in the editor. This is necessary so that the breakpoints in all the modules will be considered. Also, make sure that there
are no other opened modules that are not involved in the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view, open all the modules from the Modules container of the XDBC application
server that performs the debugging.

2. Set breakpoints in the module as needed.
3. Continue debugging the query.

Oxygen XML Editor plugin | Databases and CMS Integration | 766

http://oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html

If you get a warning that the breakpoints failed to initialize, try the following solutions:

• Check the Breakpoints view and make sure there are no older breakpoints (set on resources that are not part of the
current debugging context).

• Make sure you open the modules from the context of the application server that does the debugging and place
breakpoints there.

Related information
MarkLogic Database Connections on page 762

MarkLogic Development in Oxygen XML Editor plugin on page 764

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.
• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-ml' (inherited

from MarkLogic 3.2), '1.0-ml', and '1.0'.
• All declared variables are presented as strings. The Value column of the Variables view contains the expression

from the variable declaration. It can be evaluated by copying the expression with the Copy value action from the
contextual menu of the Variables view and pasting it in the XWatch view.

• There is no support for output to source mapping.
• There is no support for showing the trace.
• You can only set breakpoints in imported modules in one of the following cases:

• When you open the module from the context of the application server involved in the debugging, using the Data
Source Explorer view.

• When the debugger automatically opens the modules in the Editor.

• No breakpoints are set in modules from the same server that are not involved in the current debugging session.
• No support for profiling when an XQuery transformation is executed in the debugger.

MarkLogic Contextual Menu Actions

While browsing MarkLogic connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection Level Nodes Opens the Data Sources preferences page where you
can configure both data sources and connections.

Configure Database
Sources

Stops the connection.Disconnect

Links the connection to a project. This is helpful for
MarkLogic debugging sessions.

Link to Project

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files
from the connection.

Find/Replace in Files

 Container Level Nodes Switches the server to a debugging mode. For more
information, see MarkLogic debugging sessions.

Enable Debug Mode

The server will be used to process XQuery expressions
against it.

Use it to Execute Queries

Performs a refresh on the selected node.Refresh

 Module or Folder
Level Nodes

Allows you to export the folder on the remote connection to
a local folder.

Export

Performs a refresh on the selected node.Refresh

Oxygen XML Editor plugin | Databases and CMS Integration | 767

 Requests Level Nodes Performs a refresh on the selected node.Refresh

Cancels all queries that are either running or stopped on the
application server. You can use this action to clean up the entire
Requests container at the end of your sessions.

Cancel all requests

 Resource Level Nodes Opens the selected resource in the editor.Open

Allows you to copy (to the clipboard) an application-specific
URL for the resource that can then be used for various actions,
such as opening or transforming the resources.

Copy location

Performs a refresh on the selected node.Refresh

Compares two selected resources.Compare

Related information
Configuring a MarkLogic Database Connection on page 763

MarkLogic Development in Oxygen XML Editor plugin on page 764

Debugging with MarkLogic on page 765

Documentum xDB (X-Hive/DB) 10 Database Connections

Oxygen XML Editor plugin includes support for Documentum xDB (X-Hive/DB) 10 database connections. Oxygen
XML Editor plugin allows you to browse the structure of a Documentum xDB (X-Hive/DB) 10 database in the Data
Source Explorer view and perform various operations on the resources in the repository.

Figure 427: Documentum xDB (X-Hive/DB) 10 Connection

Configuring a Documentum xDB (X-Hive/DB) 10 Database Connection

Follow this procedure to configure the support for a Documentum xDB (X-Hive/DB) 10 database:

1. Configure Documentum xDB Data Source drivers.
2. Configure a Documentum xDB Connection.

Oxygen XML Editor plugin | Databases and CMS Integration | 768

3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from
the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure Documentum xDB (X-Hive/DB) 10 Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for Documentum xDB (X-Hive/DB) 10, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select Documentum xDB from the driver Type drop-down menu.

5. Click the Add button to add the driver files.

The driver files for the Documentum xDB (X-Hive/DB) 10 database are found in the Documentum xDB (X-Hive/DB)
10 lib directory from the server installation folder:

• antlr-runtime.jar

• aspectjrt.jar

• icu4j.jar

• xhive.jar

• google-collect.jar

6. Click the OK button to finish the data source configuration.

7. Continue on to configure your Documentum xDB (X-Hive/DB) 10 connection.

How to Configure an Documentum xDB (X-Hive/DB) 10 Connection

To configure a connection to a Documentum xDB (X-Hive/DB) 10 database, follow these steps:

Note: The bootstrap type of X-Hive/DB connections is not supported in Oxygen XML Editor plugin. The
following procedure explains the xhive:// protocol connection type.

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source drop-down menu.

5. Enter the connection details.

a) Set the URL property of the connection in the URL field.

If the property is a URL of the form xhive://host:port, the Documentum xDB (X-Hive/DB) 10 connection will
attempt to connect to a Documentum xDB (X-Hive/DB) 10 server running behind the specified TCP/IP port.

b) Set the user name to access the Documentum xDB (X-Hive/DB) 10 engine in the User field.
c) Set the password to access the Documentum xDB (X-Hive/DB) 10 engine in the Password field.
d) Set the name of the database to access from the Documentum xDB (X-Hive/DB) 10 engine in the Database field.
e) Check the Run XQuery in read / write session (with committing) checkbox if you want to end the session

with a commit. Otherwise, the session ends with a rollback.

6. Click the OK button to finish the connection configuration.

Documentum xDB (X-Hive/DB) 10 Contextual Menu Actions

While browsing Documentum xDB (X-Hive/DB) 10 connections in the Data Source Explorer view, the various nodes
include the following contextual menu actions:

 Connection
Level Nodes

Opens the Data Sources preferences page where you can
configure both data sources and connections.

Configure Database Sources

Oxygen XML Editor plugin | Databases and CMS Integration | 769

Stops the connection.Disconnect

Allows you to add a new library.Add Library

Allows you to add a new XML resource directly into the
database root. See Documentum xDB (X-Hive/DB) 10 Parser
Configuration for more details.

Insert XML Instance

Allows you to add a new non-XML resource directly in the
database root.

Insert non-XML Instance

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Catalog
Level Nodes

Allows you to add a new abstract schema model to the selected
catalog.

Add AS Models

Allows you to export the folder on the remote connection to a
local folder.

Export

Allows you to set a default DTD to be used for parsing. It is not
possible to set a default XML Schema.

Set Default Schema

Allows you to clear the default DTD. The action is available only
if there is a DTD set as default.

Clear Default Schema

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Container
(Library) Level
Nodes

Creates a new file on the connection, in the current folder.New File

Allows you to add a new library.Add Library

Imports folders on the server.Import Folders

Adds a catalog to the selected library. By default, only the
root-library has a catalog, and all models are stored there.

Add Local Catalog

Allows you to add a new XML resource directly into the database
root. See Documentum xDB (X-Hive/DB) 10 Parser Configuration
for more details.

Insert XML Instance

Allows you to add a new non-XML resource directly in the
database root.

Insert non-XML Instance

Allows you to export the folder on the remote connection to a
local folder.

Export

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Pastes the copied selection.Paste

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Oxygen XML Editor plugin | Databases and CMS Integration | 770

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Resource
Level Nodes

Opens the selected resource in the editor.Open

Allows you to save the selected resource as a file on disk.Save As

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Allows you to copy (to the clipboard) an application-specific URL
for the resource that can then be used for various actions, such as
opening or transforming the resources.

Copy location

Allows you to add an XML schema to the selected XML resource.Add AS model

Allows you to set an active AS model for the selected XML resource.Set AS model

Allows you to clear the active AS model of the selected XML
resource.

Clear AS model

Displays the resource properties. Available only for XML resources.Properties

Allows you to set the selected DTD to be used as default for parsing.
The action is available only for DTD.

Set Default Schema

Allows you to unset the selected DTD. The action is available only
if the selected DTD is the current default to be used for parsing.

Clear Default Schema

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

Compares two selected resources.Compare

Documentum xDB (X-Hive/DB) 10 Parser Configuration for Adding XML Instances

When an XML instance document is added to a Documentum xDB (X-Hive/DB) 10 connection or library, it is parsed
with an internal XML parser of the database server. The following options are available for configuring this parser:

• DOM Level 3 parser configuration parameters. More about each parameter can be found here: DOM Level 3
Configuration.

• Documentum xDB (X-Hive/DB) 10 specific parser parameters (for more information, consult the Documentum xDB
(X-Hive/DB) 10 manual):

• xhive-store-schema - If checked, the corresponding DTD or XML schemas are stored in the catalog during
validated parsing.

• xhive-store-schema-only-internal-subset - Stores only the internal sub-set of the document (not an external
sub-set). This option modifies the xhive-store-schema (only has a function when that parameter is set to true,
and when a DTD is involved). Select this option if you only want to store the internal sub-set of the document
(not the external sub-set).

• xhive-ignore-catalog - Ignores the corresponding DTD and XML schemas in the catalog during validated parsing.
• xhive-psvi - Stores psvi information about elements and attributes. Documents parsed with this feature turned

on give access to psvi information and enable support of data types by XQuery queries.

Oxygen XML Editor plugin | Databases and CMS Integration | 771

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration

• xhive-sync-features - With this convenience setting turned on, parameter settings of XhiveDocumentIf are
synchronized with the parameter settings of LSParser. Note that parameter settings xhive-psvi and
schema-location are always synchronized.

Troubleshooting Documentum xDB

Cannot save the file. DTD factory class org.apache.xerces.impl.dv.dtd.DTDDVFactoryImpl does
not extend from DTDDVFactory

Question:

I am able to access my XML Database in the Data Source Explorer and open files for reading but when I try to save
changes to a file back into the database, I receive the following error: "Cannot save the file. DTD factory class
org.apache.xerces.impl.dv.dtd.DTDDVFactoryImpl does not extend from DTDDVFactory." How
can I fix this?

Answer:

xhive.jar contains a MANIFEST.MF with a classpath:

Class-Path: core/antlr-runtime.jar core/aspectjrt.jar core/fastutil-shrinked.jar
 core/google-collect.jar core/icu4j.jar core/lucene-regex.jar core/lucene.jar
 core/serializer.jar core/xalan.jar core/xercesImpl.jar

Since the driver was configured to use xhive.jar directly from the xDB installation (where many other jars are
located), core/xercesImpl.jar from the xDB installation directory is loaded even though it is not specified in
the list of jars from the data source driver configuration (it is in the classpath from xhive.jar - MANIFEST.MF). A
simple workaround for this issue is to copy ONLY the jar files used in the driver configuration to a separate folder and
configure the data source driver to use them from there.

MySQL Database Connections

Oxygen XML Editor plugin includes support for MySQL database connections.

Configuring a MySQL Database Connection

To configure the support for a MySQL database, follow this procedure:

1. Configure MySQL Data Source drivers.
2. Configure a MySQL Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure MySQL Data Source Drivers

To connect to a MySQL server, you need to create a generic JDBC type data source based on the MySQL JDBC driver
available on the MySQL website.

To configure this data source, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Oxygen XML Editor plugin | Databases and CMS Integration | 772

http://www.mysql.com/downloads/connector/j/
http://www.mysql.com/downloads/connector/j/

Figure 428: Data Source Drivers Configuration Dialog Box

3. Enter a unique name for the data source.

4. Select Generic JDBC in the driver Type drop-down list.

5. Add the MySQL driver files using the Add Files button.

The driver file for the MySQL server is called mysql-com.jar. The Driver files section lists download links for
database drivers that are necessary for accessing MySQL databases in Oxygen XML Editor plugin.

6. Select the most appropriate Driver class.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure your MySQL connection.

How to Configure a MySQL Connection

To configure a connection to a MySQL server, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

The dialog box for configuring a database connection is displayed.

Oxygen XML Editor plugin | Databases and CMS Integration | 773

Figure 429: Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the MySQL data source in the Data Source drop-down list.

5. Enter the connection details.

a) Enter the URL of the MySQL server.
b) Enter the user name for the connection to the MySQL server.
c) Enter the password for the connection to the MySQL server.

6. Click the OK button to finish the configuration of the database connection.

Generic JDBC Database Connections

Oxygen XML Editor plugin includes support for Generic JDBC database connections.

Configuring a Generic JDBC Database Connection

To configure the support for a generic JDBC database, follow this procedure:

1. Configure Generic JDBC Data Source drivers.
2. Configure a Generic JDBC Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure Generic JDBC Data Source Drivers

Starting with version 17, Oxygen XML Editor plugin comes bundled with Java 8, which does not provide built-in access
to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC bridge or use a
platform-independent distribution of Oxygen XML Editor plugin along with a Java VM version 7 or 6.

To configure a generic JDBC data source, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

Oxygen XML Editor plugin | Databases and CMS Integration | 774

4. Select Generic JDBC in the driver Type drop-down list.

5. Add the driver file(s) using the Add Files button.

6. Select the most appropriate Driver class.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure a generic JDBC connection.

How to Configure a Generic JDBC Connection

To configure a connection to a generic JDBC database, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

3. Enter a unique name for the connection.

4. Select the Generic JDBC data source in the Data Source drop-down menu.

5. Enter the connection details.

a) Enter the URL of the generic JDBC database, with the following
format:jdbc: <subprotocol>: <subname>.

b) Enter the user name for the connection to the generic JDBC database.
c) Enter the password for the connection to the generic JDBC database.

6. Click the OK button to finish the configuration of the database connection.

JDBC-ODBC Database Connections

Oxygen XML Editor plugin includes support for JDBC-ODBC database connections.

How to Configure a JDBC-ODBC Connection

Starting with version 17, Oxygen XML Editor plugin comes bundled with Java 8, which does not provide built-in access
to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC bridge or use a
platform-independent distribution of Oxygen XML Editor plugin along with a Java VM version 7 or 6.

To configure a connection to an ODBC data source, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

The dialog box for configuring a database connection is displayed.

Oxygen XML Editor plugin | Databases and CMS Integration | 775

Figure 430: Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select JDBC-ODBC Bridge in the Data Source drop-down list.

5. Enter the connection details.

a) Enter the URL of the ODBC source.
b) Enter the user name of the ODBC source.
c) Enter the password of the ODBC source.

6. Click the OK button to finish the configuration of the database connection.

7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from
the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

BaseX Database Connections

Oxygen XML Editor plugin includes support for BaseX database connections using a WebDAV connection. BaseX is
a light-weight XML database engine and XQuery processor. Oxygen XML Editor plugin allows you to browse the
structure of a BaseX database in the Data Source Explorer view and perform XQuery executions.

How to Configure a BaseX Connection

To configure a BaseX connection, follow these steps:

1. First of all, make sure the BaseX HTTP Server is started. For details about starting the BaseX HTTP server, go to
http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server. The configuration file for the HTTP server is named
.basex and is located in the BaseX installation directory. This file helps you to find out which port the HTTP
server using. The default port for BaseX WebDAV is 8984.

2. To ensure that everything is functioning, open a WebDAV URL inside a browser and check to see if it works. For
example, the following URL retrieves a document from a database named TEST:
http://localhost:8984/webdav/TEST/etc/factbook.xml.

3. Once you are sure that the BaseX WebDAV service is working, you can configure the WebDAV connection in
Oxygen XML Editor plugin as described in How to Configure a WebDAV Connection on page 778. The WebDAV
URL should resemble this: http://{hostname }:{port}/webdav/. If the BaseX server is running on your
own machine and it has the default configuration, the data required by the WebDAV connection is:

Oxygen XML Editor plugin | Databases and CMS Integration | 776

http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server

• WebDAV URL: http://localhost:8984/webdav

• User: admin

• Password: admin

4. Once the WebDAV connection is created, to view your connection, go to the Data Source Explorer view (if the
view is not displayed, it can be opened from the Window > Show View menu) or switch to the Database Perspective
(available from Window > Open Perspective > Database).

BaseX Contextual Menu Actions

While browsing BaseX connections in the Data Source Explorer view, the various nodes include the following contextual
menu actions:

 Connection
Level Nodes

Opens the Data Sources preferences page where you can
configure both data sources and connections.

Configure Database Sources

Stops the connection.Disconnect

Creates a new folder on the connection.New Folder

Allows you to add a new file on the connection, in the current
folder.

Import Files

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Folder Level
Nodes

Creates a new file on the connection, in the current folder.New File

Creates a new folder on the connection.New Folder

Imports folders on the server.Import Folders

Allows you to add a new file on the connection, in the current
folder.

Import Files

Allows you to export the folder on the remote connection to a
local folder.

Export

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Pastes the copied selection.Paste

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Resource Level
Nodes

Opens the selected resource in the editor.Open

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Oxygen XML Editor plugin | Databases and CMS Integration | 777

Allows you to copy (to the clipboard) an application-specific URL
for the resource that can then be used for various actions, such as
opening or transforming the resources.

Copy location

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

Compares two selected resources.Compare

XQuery Execution

XQuery execution is possible in a BaseX connection through an XQJ connection.

BaseX XQJ Data Source

First of all, create an XQJ data source as described in How to Configure an XQJ Data Source on page 729. The BaseX
XQJ API-specific files that must be added in the configuration dialog box are xqj-api-1.0.jar, xqj2-0.1.0.jar
and basex-xqj-1.2.3.jar (the version names of the JAR file may differ). These libraries can be downloaded
from xqj.net/basex/basex-xqj-1.2.3.zip. As an alternative, you can also find the libraries in the BaseX
installation directory, in the lib sub-directory.

BaseX XQJ Connection

The next step is to create an XQJ connection as described in How to Configure an XQJ Connection on page 729.

For a default BaseX configuration, the following connection details apply (you can modify them when necessary):

• Port: 1984
• serverName: localhost
• user: admin
• password: admin

XQuery Execution

Now that the XQJ connection is configured, open the XQuery file you want to execute in Oxygen XML Editor plugin
and create a Transformation Scenario as described in XQuery Transformation on page 632. In the Transformer drop-down
menu, select the name of the XQJ connection you created. Apply the transformation scenario and the XQuery will be
executed.

WebDAV Connections

Oxygen XML Editor plugin includes support for WebDAV server connections. Oxygen XML Editor plugin allows you
to browse the structure of a WebDAV connection in the Data Source Explorer view and perform various operations on
the resources in the repository.

How to Configure a WebDAV Connection

By default, Oxygen XML Editor plugin contains built-in data source drivers for WebDAV connections. Based on this
data source, you can create a WebDAV connection for browsing and editing data from a database that provides a
WebDAV interface. The connection is available in the Data Source Explorer view.

To configure a WebDAV connection, follow these steps:

Oxygen XML Editor plugin | Databases and CMS Integration | 778

http://xqj.net/basex/basex-xqj-1.2.3.zip

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel, click the New button.

3. Enter a unique name for the connection.

4. Select one of the WebDAV data sources in the Data Source drop-down menu.

5. Enter the connection details:

a) Set the URL to the WebDAV repository in the field WebDAV URL.
b) Set the user name that is used to access the WebDAV repository in the User field.
c) Set the password that is used to access the WebDAV repository in the Password field.

6. Click the OK button.

7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from
the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

To watch our video demonstration about the WebDAV support in Oxygen XML Editor plugin, go to
http://www.oxygenxml.com/demo/WebDAV_Support.html.

WebDAV Contextual Menu Actions

While browsing WebDAV connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection
Level Nodes

Opens the Data Sources preferences page where you can
configure both data sources and connections.

Configure Database Sources

Stops the connection.Disconnect

Creates a new folder on the connection.New Folder

Allows you to add a new file on the connection, in the current
folder.

Import Files

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Folder Level
Nodes

Creates a new file on the connection, in the current folder.New File

Creates a new folder on the connection.New Folder

Imports folders on the server.Import Folders

Allows you to add a new file on the connection, in the current
folder.

Import Files

Allows you to export the folder on the remote connection to a
local folder.

Export

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Pastes the copied selection.Paste

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

Oxygen XML Editor plugin | Databases and CMS Integration | 779

http://www.oxygenxml.com/demo/WebDAV_Support.html

 Resource Level
Nodes

Opens the selected resource in the editor.Open

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Allows you to copy (to the clipboard) an application-specific URL
for the resource that can then be used for various actions, such as
opening or transforming the resources.

Copy location

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

Compares two selected resources.Compare

SQL Execution Support

The database support in Oxygen XML Editor plugin includes support for writing SQL statements, syntax highlighting,
folding, and dragging and dropping from the Data Source Explorer view. It also includes transformation scenarios for
executing the statements, and the results are displayed in the Table Explorer view.

Drag and Drop from Data Source Explorer View

Drag and drop operations from the Data Source Explorer view to the SQL Editor allows you to create SQL statements
quickly by inserting the names of tables and columns in the SQL statements.

1. Configure a database connection (see the specific procedure for your database server in the Database Connection
Support on page 741 section).

2. Browse to the table you will use in your statement.

3. Drag the table or a column of the table into the editor where a SQL file is open.

Drag and drop actions are available both on the table and on its fields. A pop-up menu is displayed in the SQL editor.

Oxygen XML Editor plugin | Databases and CMS Integration | 780

Figure 431: SQL Statement Editing with Drag and Drop

4. Select the type of statement from the pop-up menu.

Depending on your choice, dragging a table results in one of the following statements being inserted into the document:

• SELECT `field1`,`field2`, FROM `catalog`. `table` (for example: SELECT
`DEPT`,`DEPTNAME`,`LOCATION` FROM `camera`.`cameraDesc`)

• UPDATE `catalog`. `table` SET `field1`=, `field2`=,.... (for example: UPDATE `camera`.`cameraDesc`
SET `DEPT`=, `DEPTNAME`=, `LOCATION`=)

• INSERT INTO`catalog`. `table` (`field1`,`field2`,) VALUES (, ,) (for example: INSERT INTO
`camera`.`cameraDesc` (`DEPT`,`DEPTNAME`,`LOCATION`) VALUES (, ,))

• DELETE FROM `catalog`. `table` (for example: DELETE FROM `camera`.`cameraDesc`)

Depending on your choice, dragging a column results in one of the following statements being inserted into the
document:

• SELECT ̀ field` FROM ̀ catalog`. ̀ table` (for example: SELECT `DEPT` FROM `camera`.`cameraDesc`
)

• UPDATE ̀ catalog`. ̀ table` SET ̀ field`= (for example: UPDATE `camera`.`cameraDesc` SET `DEPT`=)
• INSERT INTO`catalog`. `table` (`field1) VALUES () (for example: INSERT INTO

`camera`.`cameraDesc` (`DEPT`) VALUES ())
• DELETE FROM `catalog`. `table` (for example: DELETE FROM `camera`.`cameraDesc` WHERE

`DEPT`=)

SQL Validation

SQL validation support is offered for IBM DB2. Note that if you choose a connection that does not support SQL
validation, you will receive a warning when trying to validate. The SQL document is validated using the connection
from the associated transformation scenario.

Oxygen XML Editor plugin | Databases and CMS Integration | 781

Executing SQL Statements

The steps for executing an SQL statement on a relational database are as follows:

1. Configure a transformation scenario using the Configure Transformation Scenario(s) action from the toolbar
or the XML menu.

A SQL transformation scenario needs a database connection. You can configure a connection using the Preferences
button from the SQL transformation dialog box.

The dialog box contains the list of existing scenarios that apply to SQL documents.

2. Set parameter values for SQL placeholders using the Parameters button from the SQL transformation dialog box.
For example, in SELECT * FROM `test`.`department` where DEPT = ? or DEPTNAME = ? the
two parameters can be configured for the place holders (?) in the transformation scenario.

When the SQL statement is executed, the first placeholder is replaced with the value set for the first parameter in
the scenario, the second placeholder is replaced by the second parameter value, and so on.

Restriction: When a stored procedure is called in an SQL statement executed on an SQL Server database,
mixing in-line parameter values with values specified using the Parameters button of the scenario dialog
box is not recommended. This is due to a limitation of the SQL Server driver for Java applications. An
example of stored procedure that is not recommended: call dbo.Test(22, ?).

3. Execute the SQL scenario by clicking the OK or Apply associated button.

The result of a SQL transformation is displayed in a view at the bottom of the Oxygen XML Editor plugin window.

4. View more complex return values of the SQL transformation in a separate editor panel.

A more complex value returned by the SQL query (for example, an XMLTYPE or CLOB value) cannot be displayed
entirely in the result table.

a) Right-click the cell containing the complex value.
b) Select the action Copy cell from the contextual menu.

The action copies the value in the clipboard.
c) Paste the value into an appropriate editor.

For example, you can paste the value in an opened XQuery editor panel of Oxygen XML Editor plugin.

XQuery and Databases

XQuery is a native XML query language that is useful for querying XML views of relational data to create XML results.
It also provides the mechanism to efficiently and easily extract information from Native XML Databases (NXD) and
relational data. The following database systems supported in Oxygen XML Editor plugin offer XQuery support:

• Native XML Databases:

• Berkeley DB XML
• eXist
• MarkLogic (validation support available starting with version 5)
• Documentum xDB (X-Hive/DB) 10

• Relational Databases:

• IBM DB2
• Microsoft SQL Server (validation support not available)
• Oracle (validation support not available)

Build Queries with Drag and Drop from the Data Source Explorer View

When a query is edited in the XQuery editor, the XPath expressions can be composed quickly by dragging them from
the Data Source Explorer view and dropping them into the editor panel.

1. Configure the data source drivers for the particular relational database in the Data Sources preferences page.

Oxygen XML Editor plugin | Databases and CMS Integration | 782

2. Configure the connection for the particular relational database in the Data Sources preferences page.

3. Browse the connection in the Data Source Explorer view, expanded to the table or column that you want to insert
in the query.

4. Drag the table or column name to the XQuery editor panel.

5. Drop the table or column name where the XPath expression is needed.

An XPath expression that selects the dragged name is inserted in the XQuery document at the cursor position.

XQuery Transformation for Databases

XQuery is designed to retrieve and interpret XML data from any source, whether it is a database or document. Data is
stored in relational databases but it is often required that the data be extracted and transformed as XML when interfacing
to other components and services. Also, it is an XPath-based querying language supported by most NXD vendors. To
perform a query, you need an XQuery transformation scenario.

1. Configure the data source drivers and the connection for the particular database.

2. Configure an XQuery transformation scenario.

a) Click the Configure Transformation Scenario toolbar button or go to menu Document > Transformation >
Configure Transformation Scenario.

The Configure Transformation Scenario dialog box is opened.

b) Click the New button toward the bottom of the dialog box.
c) Select XML Transformation with XQUERY.

The New Scenario dialog box for configuring an XQuery scenario is opened.

Figure 432: New Scenario Dialog Box

d) Insert the scenario name in the dialog box for editing the scenario.
e) Choose the database connection in the Transformer drop-down list.
f) Configure any other parameters as needed.

Oxygen XML Editor plugin | Databases and CMS Integration | 783

For an XQuery transformation, the output tab has an option called Sequence that allows you to run an XQuery
in lazy mode. The amount of data extracted from the database is controlled from the Size limit on Sequence view
option in the XQuery preferences page. If you choose Perform FO Processing in the FO Processor tab, the
Sequence option is ignored.

g) Click the OK button to finish editing the scenario.

Once the scenario is associated with the XQuery file, the query can include calls to specific XQuery functions that
are implemented by that engine. The available functions depend on the target database engine selected in the scenario.
For example, for eXist and Berkeley DB XML, the Content Completion Assistant lists the functions supported by
that database engine. This is useful for only inserting calls to the supported functions (standard XQuery functions
or extension ones) into the query .

Note: An XQuery transformation is executed against a Berkeley DB XML server as a transaction using the
query transaction support of the server.

3. Run the transformation scenario.

To view a more complex value returned by the query that cannot be entirely displayed in the XQuery query result
table at the bottom of the Oxygen XML Editor plugin window (for example, an XMLTYPE or CLOB value), do the
following:

• Right-click that table cell.
• Select the Copy cell action from the contextual menu to copy the value into the clipboard.
• Paste the value wherever you need it (for example, in an opened XQuery editor panel of Oxygen XML Editor

plugin).

Related information
XML Transformation with XQuery on page 609
This type of transformation specifies the transform parameters and location of an XQuery file that is applied to the edited
XML document.

XQuery Database Debugging

Oxygen XML Editor plugin includes a debugging interface that helps you to detect and solve problems with XQuery
transformations that are executed against MarkLogic and Berkeley DB XML databases.

For more information about the debugging support in Oxygen XML Editor plugin, see the Debugging XSLT Stylesheets
and XQuery Documents on page 805 section.

Debugging with MarkLogic

Oxygen XML Editor plugin includes support for debugging XQuery transformations that are executed against a MarkLogic
database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source and a MarkLogic connection.
2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Editor plugin accesses.

On the server side, debugging must be activated in the XDBC server and in the Task Server section of the server
control console (the switch debug allow). If the debugging is not activated, the MarkLogic server reports a
DBG-TASKDEBUGALLOW error.

Note: An XDBC application server must be running to connect to the MarkLogic server and this XDBC
server will be used to process XQuery expressions against the server. You can change the XDBC application
server that Oxygen XML Editor plugin uses to process XQuery expressions by selecting the Use it to execute
queries action from the contextual menu in the Data Source Explorer view.

3. Open the XQuery file and start the debugging process.

Oxygen XML Editor plugin | Databases and CMS Integration | 784

If you want to debug an XQuery file stored on the MarkLogic server, we recommend you to use the Data Source
Explorer view and open the file from the application server that is involved in the debugging process. This
improves the resolving of any imported modules.

•

• The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective. If you have a
MarkLogic validation scenario configured for the XQuery file, you can choose to debug the scenario directly.

• Otherwise, switch to the XQuery Debugger perspective, open the XQuery file in the editor, and select the
MarkLogic connection in the XQuery engine selector from the debug control toolbar.

For general information about how a debugging session is started and controlled, see the Working with the
Debugger section.

Note: Before starting a debugging session, it is recommend that you link the MarkLogic connection
with an Eclipse project. To do this, go to the Data Source Explorer view and select Link to project in
the contextual menu of the MarkLogic connection. The major benefit of linking a debugging session
with a project is that you can add breakpoints in the XQuery modules stored on the server. You are also
able to access these modules from the Eclipse Navigator view and run debugging sessions from them.

In a MarkLogic debugging session, you can use step actions and breakpoints to help identify problems. When you add
a breakpoint on a line where the debugger never stops, Oxygen XML Editor plugin displays a warning message. These
warnings are displayed for breakpoints you add either in the main XQuery (which you can open locally or from the
server) or for breakpoints you add in any XQuery that is opened from the connection that participates in the debugging
session. For more information, see Using Breakpoints for Debugging Queries that Import Modules with MarkLogic on
page 766.

Remote Debugging with MarkLogic

Oxygen XML Editor plugin allows you to debug remote applications that use XQuery (for example, web applications
that trigger XQuery executions). Oxygen XML Editor plugin connects to a MarkLogic server, shows you the running
XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the debugging queries
in the exact context of the application. You can also switch a server to debug mode to intercept all XQuery scripts.

Oxygen XML Editor plugin also supports collaborative debugging. This feature allows multiple users to participate in
the same debugging session. You can start a debugging session and at a certain point, another user can continue it.

Important: When using the remote debugging feature, the HTTP and the XDBC servers involved in the
debugging session must have the same module configuration.

To watch our video demonstration about the XQuery debugger for MarkLogic, go to
http://oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html.

Related information
MarkLogic Development in Oxygen XML Editor plugin on page 764

Configuring a MarkLogic Database Connection on page 763

Using Breakpoints for Debugging Queries that Import Modules with MarkLogic

When debugging queries that imports modules stored in the database, it is recommended to place breakpoints in the
modules. When starting a new debugging session, make sure that the modules that you will debug are already opened
in the editor. This is necessary so that the breakpoints in all the modules will be considered. Also, make sure that there
are no other opened modules that are not involved in the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view, open all the modules from the Modules container of the XDBC application
server that performs the debugging.

2. Set breakpoints in the module as needed.
3. Continue debugging the query.

If you get a warning that the breakpoints failed to initialize, try the following solutions:

Oxygen XML Editor plugin | Databases and CMS Integration | 785

http://oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html

• Check the Breakpoints view and make sure there are no older breakpoints (set on resources that are not part of the
current debugging context).

• Make sure you open the modules from the context of the application server that does the debugging and place
breakpoints there.

Related information
MarkLogic Database Connections on page 762

MarkLogic Development in Oxygen XML Editor plugin on page 764

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.
• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-ml' (inherited

from MarkLogic 3.2), '1.0-ml', and '1.0'.
• All declared variables are presented as strings. The Value column of the Variables view contains the expression

from the variable declaration. It can be evaluated by copying the expression with the Copy value action from the
contextual menu of the Variables view and pasting it in the XWatch view.

• There is no support for output to source mapping.
• There is no support for showing the trace.
• You can only set breakpoints in imported modules in one of the following cases:

• When you open the module from the context of the application server involved in the debugging, using the Data
Source Explorer view.

• When the debugger automatically opens the modules in the Editor.

• No breakpoints are set in modules from the same server that are not involved in the current debugging session.
• No support for profiling when an XQuery transformation is executed in the debugger.

Debugging with Berkeley DB XML

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is supported
in the Oxygen XML Editor plugin XQuery Debugger. The same restrictions and peculiarities apply for the Berkeley
debugger as for the MarkLogic debugger.

Content Management System (CMS) Integration
Describes how you can integrate Oxygen XML Editor plugin with content management systems.

This chapter explains how you can use Oxygen XML Editor plugin with Documentum CMS and Microsoft SharePoint.
.

All the major CMS vendors that are listed in the CMS Solution Partners section of our website also provide CMS
integration with Oxygen XML Editor plugin.

Related information
Working with Databases on page 738
Details about working with various database types in Oxygen XML Editor plugin.

Integration with Documentum (CMS) (deprecated)

Important: Starting with version 17.0, the support for Documentum (CMS) is deprecated and will no longer
be actively maintained.

Oxygen XML Editor plugin provides support for browsing and managing Documentum (CMS) connections in the Data
Source Explorer view. You can easily create new resources on the repository, copy and move them using contextual
actions or the drag and drop support, or edit and transform the documents in the editor.

Oxygen XML Editor plugin | Databases and CMS Integration | 786

http://www.oxygenxml.com/partners.html#solutionpartners%28cms%29

Oxygen XML Editor plugin supports Documentum (CMS) version 6.5 and 6.6 with Documentum Foundation Services
6.5 or 6.6 installed.

Attention: It is recommended to use the latest 1.6.x Java version. It is possible that the Documentum (CMS)
support will not work properly if you use other Java versions.

Figure 433: Documentum (CMS) Connection

Configuring a Documentum (CMS) Database Connection

Follow this procedure to configure the support for a Documentum (CMS) database:

1. Configure Documentum xDB Data Source drivers.
2. Configure a Documentum xDB Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened from

the Window > Show View menu) or switch to the Database Perspective (available from Window > Open
Perspective > Database).

How to Configure Documentum (CMS) Data Source Drivers

Available in the Enterprise edition only.

To configure a Documentum (CMS) data source you need the Documentum Foundation Services Software Development
Kit (DFS SDK) corresponding to your server version. The DFS SDK can be found in the Documentum (CMS) server
installation kit or it can be downloaded from EMC Community Network.

Note: The DFS SDK can be found in the form of an archive named for Documentum (CMS) 6.5 (for example,
emc-dfs-sdk-6.5.zip).

To configure a data source for Documentum (CMS), follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Data Sources panel click the New button.

3. Enter a unique name for the data source.

4. Select Documentum (CMS) from the driver type combo box.

5. Press the Choose DFS SDK Folder button.

Oxygen XML Editor plugin | Databases and CMS Integration | 787

http://www.emc.com/utilities/globalsiteselect.jhtml?checked=true

6. Select the folder where you have unpacked the DFS SDK archive file.

If you have indicated the correct folder the following Java libraries (jar files) will be added to the list (some variation
of the library names is possible in future versions of the DFS SDK):

• lib/java/emc-bpm-services-remote.jar

• lib/java/emc-ci-services-remote.jar

• lib/java/emc-collaboration-services-remote.jar

• lib/java/emc-dfs-rt-remote.jar

• lib/java/emc-dfs-services-remote.jar

• lib/java/emc-dfs-tools.jar

• lib/java/emc-search-services-remote.jar

• lib/java/ucf/client/ucf-installer.jar

• lib/java/commons/*.jar (multiple jar files)
• lib/java/jaxws/*.jar (multiple jar files)
• lib/java/utils/*.jar (multiple jar files)

Note: If for some reason the jar files are not found, you can add them manually by using the Add Files and
Add Recursively buttons and navigating to the lib/java folder from the DFS SDK.

7. Click the OK button to finish the data source configuration.

8. Continue on to configure your Documentum connection.

How to Configure a Documentum (CMS) Connection

Available in the Enterprise edition only.

To configure a connection for a Documentum (CMS) server, follow these steps::

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel click the New button.

3. Enter a unique name for the connection.

4. Select one of the previously configured Documentum (CMS) data sources in the Data Source combo box.

5. Fill-in the connection details:

• URL - The URL to the Documentum (CMS) server: http://<hostname>:<port>
• User - The user name to access the Documentum (CMS) repository.
• Password - The password to access the Documentum (CMS) repository.
• Repository - The name of the repository to log into.

6. Click the OK button to finish the configuration of the connection.

Known Issues with Documentum (CMS)

The following are known issues with the Documentum (CMS):

• There is a known problem in the UCF Client implementation for Mac OS X from Documentum 6.5 that prevents
you from viewing or editing XML documents from the repository on Mac OS X. The UCF Client is the component
responsible for file transfer between the repository and the local machine. This component is deployed automatically
from the server. Documentum 6.6 does not exhibit this problem.

Note: This issue was reproduced with Documentum 6.5 SP1. In Documentum 6.6 this is no longer
reproducing.

• For the Documentum driver to work faster on Linux, you need to specify to the JVM to use a weaker random
generator, instead of the very slow native implementation. This can be done by modifying in the Oxygen XML Editor
plugin startup scripts (or in the *.vmoptions file) the system property:

-Djava.security.egd=file:/dev/./urandom

Oxygen XML Editor plugin | Databases and CMS Integration | 788

Documentum (CMS) Contextual Menu Actions

While browsing Documentum (CMS) connections in the Data Source Explorer view, the various nodes include the
following contextual menu actions:

Connection

Opens the Data Sources preferences page where you can configure both
data sources and connections.

Configure Database
Sources

Level
Nodes Stops the connection.Disconnect

Creates a new cabinet in the repository. The cabinet properties are:New Cabinet

• Type - The type of the new cabinet (default is dm_cabinet).
• Name - The name of the new cabinet.
• Title - The title property of the cabinet.
• Subject - The subject property of the cabinet.

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the connection.Find/Replace in Files

Container

Creates a new folder in the current cabinet / folder. The folder properties are the
following:

New Folder

(Cabinet) • Path - Shows the path where the new folder will be created.
Level
Nodes

• Type - The type of the new folder (default is dm_folder).
• Name - The name of the new folder.
• Title - The title property of the folder.
• Subject - The subject property of the folder.

Creates a new document in the current cabinet / folder. The document properties
are the following:

New Document

• Path - Shows the path where the new document will be created.
• Name - The name of the new document.
• Type - The type of the new document (default is dm_document).
• Format - The document content type format.

Imports local files / folders in the selected cabinet / folder of the repository.
Actions available when performing an import:

Import

• Add Files - Opens a file browse dialog box and allows you to select files to
add to the list.

• Add Folders - Opens a folder browse dialog box that allows you to select
folders to add to the list. The subfolders will be added recursively.

• Edit - Opens a dialog box where you can change the properties of the selected
file / folder from the list.

• Remove - Removes the selected files / folders from the list.

Allows you to export the folder on the remote connection to a local folder.Export

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Oxygen XML Editor plugin | Databases and CMS Integration | 789

Allows you to find and replace text in multiple files from the connection.Find/Replace in
Files

Resource

Checks out and opens the selected resource in the editor (if it is not already checked
out).

Edit

Level
Nodes

Checks out and opens the selected resource in the specified editor or tool (if it is
not already checked out).

Edit with

Opens the selected resource in the editor.Open (Read-only)

Opens the selected resource in the specified editor or tool.Open with

Checks out the selected resource from the repository. The action is not available if
the resource is already checked out.

Check Out

Opens the Check In dialog box that allows you to check in the selected resource
(commits changes) into the repository and configure some properties for the resource.
The action is only available if the resource is checked out.

Figure 434: Check In Dialog Box

Check In

The following resource properties can be configured in this dialog box:

• Name - The resource name in the repository.
• Version - Allows you to choose what version the resource will have after being

checked in.
• Version label - The label of the updated version.
• Description - An optional description of the resource.
• Keep Locks - When this option is enabled, the updated resource is checked into

the repository but it also keeps it locked.
• Make this the current version - Makes the updated resource the current version

(will have the CURRENT version label).

Cancels the checkout process and loses all modifications since the checkout. Action
is only available if the resource is checked out.

Cancel Checkout

Allows you to export the folder on the remote connection to a local folder.Export

Oxygen XML Editor plugin | Databases and CMS Integration | 790

Copies the selected resource to another location in the tree. This action is not
available on virtual document descendants. This action can also be performed with
drag and drop while holding the Ctrl (Meta on OS X) key pressed.

Copy

Moves the selected resource to another location in the tree. Action is not available
on virtual document descendants and on checked out resources. This action can also
be performed with drag and drop.

Move

Allows you to copy (to the clipboard) an application-specific URL for the resource
that can then be used for various actions, such as opening or transforming the
resources.

Copy location

Renames the current resourceRename

Deletes the current container.Delete

Adds a new relationship for the selected resource. This action can also be performed
with drag and drop between resources.

Add Relationship

Allows you to convert a simple document to a virtual document. Action is available
only if the resource is a simple document.

Convert to Virtual
Document

Allows you to convert a virtual document to a simple document. Action is available
only if the resource is a virtual document with no descendants.

Convert to Simple
Document

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the connection.Find/Replace in
Files

Compares two selected resources.Compare

Integration with Microsoft SharePoint

Oxygen XML Editor plugin provides support for browsing and managing SharePoint connections in the Data Source
Explorer view. You can easily create new resources on the repository, copy and move them using contextual actions or
the drag and drop support, or edit and transform the documents in the editor.

Note: You can access documents stored on SharePoint Online for Office 365 sites that use either Cloud identity
(default) or Federated identity (ADFS) as the authentication method.

Restriction: The SharePoint connection is only available in the Enterprise edition of Oxygen XML Editor
plugin.

Oxygen XML Editor plugin | Databases and CMS Integration | 791

Figure 435: SharePoint Connection

Related information
Working with Databases on page 738
Details about working with various database types in Oxygen XML Editor plugin.

How to Configure a SharePoint Connection

By default, Oxygen XML Editor plugin contains built-in data source drivers for SharePoint. Use this data source to
create a connection to a SharePoint server that will be available in the Data Source Explorer view.

To configure a SharePoint connection, follow these steps:

1. Open the Preferences dialog box and go to Data Sources.

2. In the Connections panel click the New button.

3. Enter a unique name for the connection.

4. Select SharePoint in the Data Source combo box.

5. Fill-in the connection details:

a) Set the URL to the SharePoint repository in the field SharePoint URL.
b) Set the server domain in the Domain field. If you are using a SharePoint 365 account, leave this field empty.
c) Set the user name to access the SharePoint repository in the User field.
d) Set the password to access the SharePoint repository in the Password field.

To watch our video demonstration about connecting to repository located on a SharePoint server, go to
http://www.oxygenxml.com/demo/SharePoint_Support.html.

SharePoint Contextual Menu Actions

While browsing SharePoint connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection
Level Nodes

Opens the Data Sources preferences page where you can
configure both data sources and connections.

Configure Database Sources

Oxygen XML Editor plugin | Databases and CMS Integration | 792

http://www.oxygenxml.com/demo/SharePoint_Support.html

Stops the connection.Disconnect

Creates a new folder on the connection.New Folder

Allows you to add a new file on the connection, in the current
folder.

Import Files

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Folder Level
Nodes

Creates a new file on the connection, in the current folder.New File

Creates a new folder on the connection.New Folder

Imports folders on the server.Import Folders

Allows you to add a new file on the connection, in the current
folder.

Import Files

Allows you to export the folder on the remote connection to a
local folder.

Export

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Pastes the copied selection.Paste

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Allows you to find and replace text in multiple files from the
connection.

Find/Replace in Files

 Resource
Level Nodes

Opens the selected resource in the editor.Open

Removes the current selection and places it in the clipboard.Cut

Copies the current selection into the clipboard.Copy

Allows you to copy (to the clipboard) an application-specific URL for
the resource that can then be used for various actions, such as opening
or transforming the resources.

Copy location

Checks out the selected document on the server.Check Out

Checks in the selected document on the server. This action opens the
Check In dialog box. In this dialog box, the following options are
available:

Check In

• Minor Version - Increments the minor version of the file on the
server.

• Major Version - Increments the major version of the file on the
server.

• Overwrite - Overwrites the latest version of the file on the server.
• Comment - Allows you to comment on a file that you check in.

Discards the previous checkout operation, making the file available for
editing to other users.

Discard Check Out

Oxygen XML Editor plugin | Databases and CMS Integration | 793

Renames the current resourceRename

Deletes the current container.Delete

Performs a refresh on the selected node.Refresh

Shows various properties of the current container.Properties

Allows you to find and replace text in multiple files from the connection.Find/Replace in Files

Compares two selected resources.Compare

Chapter

12

Importing Data

This chapter explains how to import data from various sources into XML
documents.

Topics:

• Import from Text Files
Computer systems and databases contain data in incompatible formats and
exchanging data between these systems can be very time consuming. Converting

• Import from MS Excel Files
• Import Database Data as an XML

Document
the data to XML can greatly reduce the complexity and create data that can be
read by various types of applications.

• Import from HTML Files
Oxygen XML Editor plugin offers support for importing text files, MS Excel
files, Database Data, and HTML files into XML documents. The XML• Import Content Dynamically

documents can be further converted into other formats using the Transform
features.

Figure 436: Import Wizards of the Oxygen XML Editor plugin Plugin

Import from Text Files
To import a text file into an XML file, follow these steps:

1. Go to File > Import > Oxygen XML Editor plugin > Text File and click Next.
A Select text file dialog box is displayed.

2. Select the URL of the text file.

3. Select the encoding of the text file.

4. Click the Next button.
The Import from text file dialog box is displayed.

Figure 437: Import from Text File Dialog Box

5. Configure the settings for the conversion.

a) Select the Field delimiter for the import settings. You can choose between the following: Comma, Semicolon,
Tab, Space, or Pipe.

b) The Import settings section presents the input data in a tabular form. By default, all data items are converted to
element content (symbol), but this can be overridden by clicking the individual column headers. Clicking a
column header once causes the data from this column to be converted to attribute values (symbol). Clicking
a second time causes the column data to be ignored (symbol) when generating the XML file. You can cycle
through these three options by continuing to click the column header.

Oxygen XML Editor plugin | Importing Data | 796

c) First row contains field names - If this option is enabled, the default column headers are replaced (where such
information is available) by the content of the first row. In other words, the first row is interpreted as containing
the field names. The changes are also visible in the preview panel.

d) Customize - This button opens a Presentation Names dialog box that allows you to edit the name, XML name,
and conversion criterion for the root and row elements. The XML names can be edited by double-clicking the
desired item and entering the label. The conversion criteria can also be modified by selecting one of the following
option in the drop-down menu: ELEMENT, ATTRIBUTE, or SKIPPED.

e) Import Settings - Clicking this button opens the Import Preferences on page 129 page that allows you to
configure more import options.

f) The XML Import Preview panel contains an example of what the generated XML document looks like.
g) Save in file - If checked, the new XML document is saved in the specified path.

6. Click Finish to generate the XML document.

Import from MS Excel Files
By default, importing Excel 97/2000/XP/2003 formats are supported out-of-the-box. To import spreadsheet data from
Excel 2007 or newer, additional libraries are needed before using this procedure. See Import Data from MS Excel 2007
or Newer on page 799 for instructions on adding more libraries.

Oxygen XML Editor plugin offers support for importing MS Excel Files.

To import an Excel file into an XML file, follow these steps:

1. Go to File > Import > Oxygen XML Editor plugin > MS Excel file.

2. Select the URL of the Excel file.

The sheets of the document you are importing are presented in the Available Sheets section of this dialog box.

3. Click the Next button.
Opens the Import from Excel dialog box.

Oxygen XML Editor plugin | Importing Data | 797

Figure 438: Import from Excel Dialog Box

4. Configure the settings for the conversion.

a) The Import settings section presents the input data in a tabular form. By default, all data items are converted to
element content (symbol), but this can be overridden by clicking the individual column headers. Clicking a
column header once causes the data from this column to be converted to attribute values (symbol). Clicking
a second time causes the column data to be ignored (symbol) when generating the XML file. You can cycle
through these three options by continuing to click the column header.

b) First row contains field names - If this option is enabled, the default column headers are replaced (where such
information is available) by the content of the first row. In other words, the first row is interpreted as containing
the field names. The changes are also visible in the preview panel.

c) Customize - This button opens a Presentation Names dialog box that allows you to edit the name, XML name,
and conversion criterion for the root and row elements. The XML names can be edited by double-clicking the
desired item and entering the label. The conversion criteria can also be modified by selecting one of the following
option in the drop-down menu: ELEMENT, ATTRIBUTE, or SKIPPED.

d) Import Settings - Clicking this button opens the Import Preferences on page 129 page that allows you to
configure more import options.

e) Import formatted data (as displayed in Excel) - If this option is selected, the imported data retains the Excel
styling. If deselected, the data formatting is not imported.

f) The XML Import Preview panel contains an example of what the generated XML document looks like.
g) Save in file - If checked, the new XML document is saved in the specified path.

Oxygen XML Editor plugin | Importing Data | 798

5. Click Finish to generate the XML document.

Import Data from MS Excel 2007 or Newer

To import spreadsheet data from Excel 2007 or newer (.xlsx), Oxygen XML Editor plugin needs additional libraries
from the release 3.10 of the Apache POI project.

To add the libraries, follow these steps:

1. Download version 3.10 of the Apache POI project from http://archive.apache.org/dist/poi/release/bin/. The specific
ZIP file that you need is: poi-bin-3.10-FINAL-20140208.zip.

2. Unpack poi-bin-3.10-FINAL-20140208.zip.
3. Copy the following .jar files in the plugin.xml file of the Oxygen XML Editor plugin Eclipse plugin (if you

installed the plugin via the Eclipse update site, you will find it in the eclipse/plugins/com.oxygenxml...
folder, and if you installed it via the dropins ZIP distribution, it is located in the
eclipse/dropins/plugins/com.oxygenxml... folder):

• dom4j-1.6.1.jar

• poi-ooxml-3.10-FINAL-20140208.jar

• poi-ooxml-schemas-3.10-FINAL-20140208.jar

• xmlbeans-2.3.0.jar

Import Database Data as an XML Document
To import the data from a relational database table as an XML document, follow these steps:

1. Go to File > Import > oXygen / Database Data and click Next to start the Import wizard.

This opens a Select database table dialog box that lists all the defined database connections:

Oxygen XML Editor plugin | Importing Data | 799

http://archive.apache.org/dist/poi/release/bin/

Figure 439: Select Database Table Dialog Box

2. Select the connection to the database that contains the appropriate data.

Only connections configured in relational data sources can be used to import data.

3. If you want to edit, delete, or add a data source or connection, click the Configure Database Sources button.
The Preferences/Data Sources option page is opened.

4. Click Connect.

5. In the list of sources, expand a schema and choose the required table.

6. Click the Next button.

The Import Criteria dialog box is opened with a default query string in the SQL Query pane.

Oxygen XML Editor plugin | Importing Data | 800

Figure 440: Import from Database Criteria Dialog Box

7. Configure the settings for the conversion.

a) SQL Preview - If this button is pressed, the Import settings pane displays the labels that are used in the XML
document and the first five lines from the database. By default, all data items are converted to element content
(symbol), but this can be overridden by clicking the individual column headers. Clicking a column header
once causes the data from this column to be converted to attribute values (symbol). Clicking a second time
causes the column data to be ignored (symbol) when generating the XML file. You can cycle through these
three options by continuing to click the column header.

b) Customize - This button opens a Presentation Names dialog box that allows you to edit the name, XML name,
and conversion criterion for the root and row elements. The XML names can be edited by double-clicking the

Oxygen XML Editor plugin | Importing Data | 801

desired item and entering the label. The conversion criteria can also be modified by selecting one of the following
option in the drop-down menu: ELEMENT, ATTRIBUTE, or SKIPPED.

c) Import Settings - Clicking this button opens the Import Preferences on page 129 page that allows you to
configure more import options.

d) The XML Import Preview panel contains an example of what the generated XML document looks like.
e) Save in file - If checked, the new XML document is saved in the specified path.
f) Generate XML Schema - Allows you to specify the path of the generated XML Schema file.

8. Click Finish to generate the XML document.

Import from HTML Files
Oxygen XML Editor plugin offers support for importing HTML files as an XML document.

To import from HTML files, follow these steps:

1. Go to File > Import > Oxygen XML Editor plugin > HTML File.
The Import HTML wizard is displayed.

2. Select a parent folder and file name for the resulting XHTML document.

3. Enter the URL of the HTML document.

4. Select the type of the resulting XHTML document:

• XHTML 1.0 Transitional
• XHTML 1.0 Strict

5. Click the Finish button.

The resulting document is an XHTML file containing a DOCTYPE declaration that references the XHTML DTD
definition on the Web. The parsed content of the imported file is transformed to XHTML Transitional or XHTML Strict
depending on the option you chose when performing the import operation.

Import Content Dynamically
Along with the built-in support for various useful URL protocols (such as HTTP or FTP), Oxygen XML Editor plugin
also provides special support for a convert protocol that can be used to chain predefined processors to dynamically
import content from various sources.

A dynamic conversion URL chains various processors that can be applied, in sequence, on a target resource and has the
following general syntax:

convert:/processor=xslt;ss=urn:processors:excel2d.xsl/processor=excel!/urn:files:sample.xls

The previous example first applies a processor (excel) on a target identified by the identifier
(urn:files:sample.xls) and converts the Excel™ resource to XML. The second applied processor (xslt) applies
an XSLT stylesheet identified using the identifier (urn:processors:excel2d.xsl) over the resulting content
from the first applied processor. These identifiers are all mapped to real resources on disk via an XML catalog that is
configured in the application, as in the following example:

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
<rewriteURI uriStartString="urn:files:" rewritePrefix="./resources/"/>
<rewriteURI uriStartString="urn:processors:" rewritePrefix="./processors/"/>
</catalog>

The target resource part of the conversion URL must always follow the !/ pattern. It can be any of the following:

• An absolute URL that points to a resource.
• An identifier that will be resolved to an actual resource via the XML Catalog support in the application. In the

example above, the urn:files:sample.xls target resource is resolved via the XML catalog.

Oxygen XML Editor plugin | Importing Data | 802

• A relative location. This location can only be resolved to an actual resource URL when the application has enough
information about the location where the URL is referenced.

For example, for a DITA map with a topicref such as:

<topicref href="convert:/.../processor=excel!/resources/sample.xls"/>

the resources/sample.xls path will be resolved relative to the DITA map location.

This type of URL can be opened in the application by using the Open URL action from the File menu. It can also be
referenced from existing XML resources via xi:include or as a topic reference from a DITA map.

A GitHub project that contains various dynamic conversion samples for producing DITA content from various sources
(and then publishing it) can be found here: https://github.com/oxygenxml/dita-glass.

Conversion Processors

A set of predefined conversion processors is provided in Oxygen XML Editor plugin. Each processor has its own
parameters that can be set to control the behavior of the conversion process. All parameters that are resolved to resources
are passed through the XML catalog mapping.

The following predefined conversion processors are included:

• xslt Processor - Converts an XML input using XSLT 2.0 processing. The ss parameter indicates the stylesheet
resource to be loaded. All other specified parameters will be set as parameters to the XSLT transformation.

convert:/processor=xslt;ss=urn:processors:convert.xsl;p1=v1!/urn:files:sample.xml

• xquery Processor - Converts an XML input using XQuery processing. The ss parameter indicates the XQuery
script to be loaded. All other specified parameters will be set as parameters to the XSLT transformation.

convert:/processor=xquery;ss=urn:processors:convert.xquery;p1=v1!/urn:files:sample.xml

• excel Processor - Converts an Excel™ input to an XML format that can later be converted by other piped processors.
It has a single parameter sn, which indicates the name of the sheet that needs to be converted. If this parameter is
missing, the XML will contain the combined content of all sheets included in the Excel™ document.

convert:/processor=excel;sn=test!/urn:files:sample.xls

• java Processor - Converts an input to another format by applying a specific Java method. The jars parameter is
a comma-separated list of JAR libraries, or folders that libraries will be loaded from. The ccn parameter is the fully
qualified name of the conversion class that will be instantiated. The conversion class needs to have a method with
the following signature:

 public void convert(String systemID, String originalSourceSystemID, InputStream is,
OutputStream os, LinkedHashMap<String, String> properties) throws IOException

convert:/processor=java;jars=libs;ccn=test.JavaToXML!/
urn:files:java/WSEditorBase.java

• js Processor - Converts an input to another format by applying a JavaScript method. The js parameter indicates
the script that will be used. The fn parameter is the name of the method that will be called from the script. The
method must take a string as an argument and return a string. If any of the parameters are missing, an error is thrown
and the conversion stops.

convert:/processor=js;js=urn:processors:md.js;fn=convertExternal!/urn:files:sample.md

• json Processor - Converts a JSON input to XML. It has no parameters.

convert:/processor=json!/urn:files:personal.json

Oxygen XML Editor plugin | Importing Data | 803

https://github.com/oxygenxml/dita-glass

• xhtml Processor - Converts HTML content to well-formed XHTML. It has no parameters.

convert:/processor=xhtml!/urn:files:test.html

• wrap Processor - Wraps content in a tag name making it well-formed XML. The rn parameter indicates the name
of the root tag to use. By default, it is wrapper. The encoding parameter specifies the encoding that should be
used to read the content. By default, it is UTF8. As an example, this processor can be used if you want to process a
comma-separated values file with an XSLT stylesheet to produce XML content. The CSV file is first wrapped as
well-formed XML, which is then processed with an xslt processor.

convert:/processor=wrap!/urn:files:test.csv

• cache Processor - Caches the converted content obtained from the original document to a temporary file. The
cache will be used on subsequent uses of the same URL, thus increasing the speed for the application returning the
converted content. If the original URL points to the local disk, the cache will be automatically invalidated when the
original file content gets modified. Otherwise, if the original URL points to a remote resource, the cache will need

to be invalidated by reloading (File > Reload (F5)) the URL content that is opened in the editor.

convert:/processor=cache/processor=xslt;…..!/urn:files:test.csv

Reverse Conversion Processors

All processors defined above can also be used for saving content back to the target resource if they are defined in the
URL as reverse processors. Reverse processors are evaluated right to left. These reverse processors allow round-tripping
content to and from the target resource.

As an example, the following URL converts HTML to DITA when the URL is opened using the h2d.xsl stylesheet
and converts DITA to HTML when the content is saved in the application using the d2h.xsl stylesheet.

convert:/processor=xslt;ss=h2d.xsl/rprocessor=xslt;ss=d2h.xsl!/urn:files:sample.html

Important: If you are publishing a DITA map that has such conversion URL references inside, you need to
edit the transformation scenario and set the value of the parameter fix.external.refs.com.oxygenxml to true. This
will instruct Oxygen XML Editor plugin to resolve such references during a special pre-processing stage.
Depending on the conversion, you may also require additional libraries to be added using the Libaries button
in the Advanced tab of the transformation scenario.

Chapter

13

Debugging XSLT Stylesheets and XQuery Documents

Describes the debugging interface that helps you to detect and solve problems
with XSLT and XQuery transformations.

Topics:

• Layout
Oxygen XML Editor plugin includes a debugging interface that helps you to
detect and solve problems with XSLT and XQuery transformations.

• Working with the XSLT / XQuery
Debugger

XSLT Debugger Perspective

The XSLT Debugger perspective allows you to detect problems in an XSLT
transformation by executing the process step by step. To switch the focus to this

• Debugging Java Extensions
• Supported Processors for XSLT

/ XQuery Debugging
• Performance Profiling of XSLT

Stylesheets and XQuery
Documents

perspective, select Window > Open Perspective > Other > Oxygen XSLT
Debugger.

XQuery Debugger Perspective

The XQuery Debugger perspective allows you to detect problems in an XQuery
transformation process by executing the process step by step in a controlled
environment and inspecting the information provided in the special views. To
switch the focus to this perspective, select Window > Open Perspective >
Other > Oxygen XQuery Debugger.

XSLT/XQuery Debugging Overview

The XSLT Debugger and XQuery Debugger perspectives enable you to test
and debug XSLT 1.0 / 2.0 / 3.0 stylesheets and XQuery 1.0 / 3.0 documents
including complex XPath 2.0 / 3.0 expressions. The interface presents
simultaneous views of the source XML document, the XSLT/XQuery document
and the result document. As you go step by step through the XSLT/XQuery
document the corresponding output is generated step by step, and the
corresponding position in the XML file is highlighted. At the same time, special
views provide various types of debugging information and events useful to
understand the transformation process.

The following set of features allow you to test and solve XSLT/XQuery
problems:

• Support for XSLT 1.0 stylesheets (using Saxon 6.5.5 and Xalan XSLT
engines), XSLT 2.0 / 3.0 stylesheets and XPath 2.0 / 3.0 expressions that
are included in the stylesheets (using Saxon 9.6.0.7 XSLT engine) and
XQuery 1.0 / 3.0 (using Saxon 9.6.0.7 XQuery engine).

• Stepping capabilities: step in, step over, step out, run, run to cursor, run to
end, pause, stop.

• Output to source mapping between every line of output and the instruction
element / source context that generated it.

• Breakpoints on both source and XSLT/XQuery documents.
• Call stack on both source and XSLT/XQuery documents.
• Trace history on both source and XSLT/XQuery documents.

• Support for XPath expression evaluation during debugging.
• Step into imported/included stylesheets as well as included source entities.
• Available templates and hits count.
• Variables view.
• Dynamic output generation.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 806

Layout
The XML and XSL files are displayed in Text mode. The other modes (Author mode, Grid mode) are available only in
the Editor perspective.

The debugger perspective contains four sections:

• Source document view (XML) - Displays and allows the editing of XML files (documents).
• XSLT/XQuery document view (XSLT/XQuery) - Displays and allows the editing of XSL files(stylesheets) or

XQuery documents.
• Output document view - Displays the output that results from inputting a document (XML) and a stylesheet (XSL)

or XQuery document in the transformer. The transformation result is written dynamically while the transformation
is processed.

• Control view - The control view is used to configure and control the debugging operations. It also provides a set of
Information views types. This pane has two sections:

• Control toolbar
• Information views

Figure 441: Debugger Mode Interface

XML documents and XSL stylesheets or XQuery documents that were opened in the Editor perspective are automatically
sorted into the first two panes. When multiple files of each type are opened, the individual documents and stylesheets
are separated using the familiar tab management system of the Editor perspective. Selecting a tab brings the document
or stylesheet into focus and enables editing without the need to go back to the Editor perspective.

During debugging, the current execution node is highlighted in both document (XML) and XSLT/XQuery views.

Control Toolbar

The Control toolbar contains all the actions that you need to configure and control the debugging process. The following
actions are described as they appear in the toolbar from left to right.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 807

Figure 442: Control Toolbar

The current selection represents the source document used as input by the
transformation engine. The selection list contains all opened files (XML files being

XML source selector

emphasized). This option allows you to use other file types also as source documents.
In an XQuery debugging session this selection field can be set to the default value
NONE, because usually XQuery documents do not require an input source.

The current selection represents the stylesheet or XQuery document to be used by
the transformation engine. The selection list contains all opened files (XSLT / XQuery
files being emphasized).

XSL / XQuery selector

When enabled, the XML and XSLT/XQuery selectors display the names of the files
opened in the central editor panels. This button is disabled by default.

Link with editor

The selection represents the output file specified in the associated transformation
scenario. You can specify the path by using the text field, the Insert Editor
Variables button, or the Browse button.

Output selector

Opens a dialog box that allows you to configure the XSLT / XQuery parameters to
be used by the transformation.

Configure parameters

Allows you to add and remove the Java classes and jars used as XSLT extensions.Libraries

Enables / Disables current transformation profiling./ Turn on/off profiling

Enables the rendering of the output in the XHTML output view during the
transformation process. For performance issues, disable XHTML output when

Enable XHTML output

working with very large files. Note that only XHTML conformant documents can
be rendered by this view. To view the output result of other formats, such as HTML,
save the Text output area to a file and use an external browser for viewing.

When starting a debug session from the editor perspective using the Debug Scenario
action, the state of this toolbar button reflects the state of the Show as XHTML
output option from the scenario.

Enables or disables the output to source mapping between every line of output and
the instruction element / source context that generated it.

Turn on/off output to source
mapping

Quick link to Debugger preferences page.Debugger preferences

Lists the processors available for debugging XSLT and XQuery transformations.XSLT / XQuery engine selector

Advanced options available for Saxon 9.6.0.7.XSLT / XQuery engine
advanced options

Starts the debugging process and runs until the next instruction is encountered.Step into F7

Run until the current instruction and its sub-instructions are over. Usually this will
advance to the next sibling instruction.

Step over F8 (Alt + F8 on OS
X)

Run until the parent of the current instruction is over. Usually this will advance to
the next sibling of the parent instruction.

Step out Shift + F7
(Command + F8 on OS X)

Starts the debugging process. The execution of the process is paused when a
breakpoint is encountered or the transformation ends.

Run

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 808

Starts the debugging process and runs until one of the following conditions occur:
the line of cursor is reached, a valid breakpoint is reached or the execution ends.

Run to cursor Ctrl + F5

Runs the transformation until the end, without taking into account enabled
breakpoints, if any.

Run to end Alt + F5

Request to pause the current transformation as soon as possible.Pause Shift + F6

Request to stop the current transformation without completing its execution.Stop F6

Reveals the current debugger context showing both the current instruction and the
current node in the XML source. Possible displayed states:

Show current execution nodes

• Entering () or leaving () an XML execution node.

• Entering () or leaving () an XSL execution node.

• Entering () or leaving () an XPath execution node.

Note: When you set a MarkLogic server as a processor, the Show
current execution nodes button is named Refresh current session
context from server. Click this button to refresh the information in all
the views.

Note: For some of the XSLT processors (Saxon-HE/PE/EE) the debugger could be configured to step into the
XPath expressions affecting the behavior of the following debugger actions: Step into, Step over or Step Out.

Related information
Advanced Saxon HE/PE/EE XQuery Transformation Options on page 611

Debugging Information Views

The information views at the bottom of the editor is comprised of two panes that are used to display various types of
information used to understand the transformation process. For each information type there is a corresponding tab. While
running a transformation, relevant events are displayed in the various information views. This enables the developer to
obtain a clear view of the transformation progress. By using the debug controls, developers can easily isolate parts of
stylesheet. Therefore, they may be more easily understood and modified. The information types include the following:

Left side information views

• Context node view
• XWatch view
• Breakpoints view
• Messages view (XSLT only)
• Variables view
• Invocation Tree view

Right side information views

• Stack view
• Output Mapping Stack view
• Trace view
• Templates view (XSLT only)
• Nodes/Values Set view
• Hotspots view

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 809

Context Node View

The context node is valid only for XSLT debugging sessions and is a source node corresponding to the XSL expression
that is evaluated. It is also called the context of execution. The context node implicitly changes as the processor hits
various steps (at the point where XPath expressions are evaluated). This node has the same value as evaluating '.' (dot)
XPath expression in XWatch view. The value of the context node is presented as a tree in the Context Node view. If
the view is not displayed, it can be opened from the Window > Show View menu.

Figure 443: Context node view

The context node is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed
using the qualified name. If the namespace is not bound to a prefix, the namespace URI is presented before the node
name. The value of the selected attribute or node is displayed in the right side panel. The Context view also presents
the current mode of the XSLT processor if this mode differs from the default one.

XPath Watch (XWatch) View

The XWatch view shows XPath expressions evaluated during the debugging process. If the view is not displayed, it
can be opened from the Window > Show View menu.

Expressions are evaluated dynamically as the processor changes its source context. When you type an XPath expression
in the Expression column, Oxygen XML Editor plugin supports you with syntax highlight and content completion
assistance.

Figure 444: XPath Watch View

Table 8: XWatch columns

DescriptionColumn

XPath expression to be evaluated (XPath 1.0 or 2.0 / 3.0
compliant).

Expression

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 810

DescriptionColumn

Result of XPath expression evaluation. Value has a type
(see the possible values in the section Variables View on
page 817). For Node Set results, the number of nodes in the
set is shown in parenthesis.

Value

Important: Remarks about working with the XWatch view:

• Expressions that reference variable names are not evaluated.
• The expression list is not deleted at the end of the transformation (it is preserved between debugging sessions).
• To insert a new expression, click the first empty line of the Expression column and start typing.
• To delete an expression, click its Expression column and delete its content.
• If the expression result type is a Node Set, click it (Value column) and its value is displayed in the

Nodes/Values Set view.
•

Breakpoints View

The Breakpoints view lists all breakpoints that are set on opened documents. If the view is not displayed, it can be
opened from the Window > Show View menu.

Once you insert a breakpoint it is automatically added in this list. Breakpoints can be set in XSLT/XQuery documents
and XML documents in XSLT/XQuery debugging sessions. A breakpoint can have an associated break condition that
represents an XPath expression evaluated in the current debugger context. In order to be processed, their evaluation
result should be a boolean value. A breakpoint with an associated condition only stops the execution of the Debugger
if the breakpoint condition is evaluated as true.

Figure 445: Breakpoints View

The Breakpoints view contains the following columns:

• Enabled - If checked, the current condition is evaluated and taken into account.
• Resource - Resource file and number of the line where the breakpoint is set.
• Condition - XSLT/XQuery expression to be evaluated during debugging. The expression will be evaluated at every

debug step.

Clicking a record highlights the breakpoint line in the document.

Note: The breakpoints list is not deleted at the end of a transformation (it is preserved between debugging
sessions).

The following actions are available in the contextual menu of the table:

Moves the cursor to the source of the breakpoint.Go to

Runs the debugger up to the point of this particular breakpoint and ignores the
others (regardless of whether they were previously enabled or disabled).

Run to Breakpoint

Enables the breakpoint.Enable

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 811

Disables the breakpoint. A disabled breakpoint will not be evaluated by the
Debugger.

Disable

Allows you to add a new breakpoint and breakpoint condition.Add

Allows you to edit an existing breakpoint.Edit

Deletes the selected breakpoint.Remove

Enables all breakpoints.Enable all

Disables all breakpoints.Disable all

Removes all breakpoints.Remove all

Messages View

xsl:message instructions are one way to signal special situations encountered during transformation as well as a raw
way of doing the debugging. The Messages view is available only for XSLT debugging sessions and shows all
xsl:message calls executed by the XSLT processor during transformation. If the view is not displayed, it can be
opened from the Window > Show View menu.

Figure 446: Messages View

Table 9: Messages columns

DescriptionColumn

Message content.Message

Signals if processor terminates the transformation or not
once it encounters the message (yes/no respectively).

Terminate

Resource file where xsl:message instruction is defined
and the message line number.

Resource

The following actions are available in the contextual menu:

Highlight the XSL fragment that generated the message.Go to

Copies to clipboard message details (system ID, severity info, description, start location,
terminate state).

Copy

Important: Remarks

• Clicking a record from the table highlights the xsl:message declaration line.
• Message table values can be sorted by clicking the corresponding column header. Clicking the column header

switches the sorting order between: ascending, descending, no sort.

Stack View

The Stack view shows the current execution stack of both source and XSLT/XQuery nodes. If the view is not displayed,
it can be opened from the Window > Show View menu.

During transformation two stacks are managed: one of source nodes being processed and the other for XSLT/XQuery
nodes being processed. Oxygen XML Editor plugin shows both node types into one common stack. The source (XML)
nodes are preceded by a red color icon while XSLT/XQuery nodes are preceded by a green color icon. The advantage

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 812

of this approach is that you can always see the source scope on which an XSLT/XQuery instruction is executed (the last
red color node on the stack). The stack is oriented upside down.

Figure 447: Stack View

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT element that is displayed on the selected line from the view.

Table 10: Stack columns

DescriptionColumn

Order number, represents the depth of the node (0 is the
stack base).

#

Node from source or stylesheet document currently being
processed. One particular stack node is the document root,
noted as #document.

XML/XSLT/XQuery Node

Attributes of the node (a list of id="value" pairs).Attributes

Resource file where the node is located.Resource

Important: Remarks:

• Clicking a record from the stack highlights that node's location inside resource.
• Using Saxon, the stylesheet elements are qualified with XSL proxy, while using Xalan you only see their

names. (example: xsl:template using Saxon and template using Xalan).
• Only the Saxon processor shows element attributes.
• The Xalan processor shows also the built-in rules.

Output Mapping Stack View

The Output Mapping Stack view displays context data and presents the XSLT templates/XQuery elements that generated
specific areas of the output. If the view is not displayed, it can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 813

Figure 448: Output Mapping Stack view

The Go to action of the contextual menu takes you in the editor panel at the line containing the XSLT element displayed
in the Output Mapping Stack view.

Table 11: Output Mapping Stack columns

DescriptionColumn

The order number in the stack of XSLT templates/XQuery
elements. Number 0 corresponds to the bottom of the stack
in the status of the XSLT/XQuery processor. The highest
number corresponds to the top of the stack.

#

The name of an XSLT template/XQuery element that
participated in the generation of the selected output area.

XSL/XQuery Node

The attributes of the XSLT template/XQuery node.Attributes

The name of the file containing the XSLT template/XQuery
element.

Resource

Important: Remarks:

• Clicking a record highlights that XSLT template definition/XQuery element inside the resource (XSLT
stylesheet file/XQuery file).

• Saxon only shows the applied XSLT templates having at least one hit from the processor. Xalan shows all
defined XSLT templates, with or without hits.

• The table can be sorted by clicking the corresponding column header. When clicking a column header the
sorting order switches between: ascending, descending, no sort.

• Xalan shows also the built-in XSLT rules.

Related tasks
Determining What XSLT / XQuery Expression Generated Particular Output on page 820

Related information
Stack View on page 812

Trace History View on page 814

Templates View on page 815

Trace History View

Usually the XSLT/XQuery processors signal the following events during transformation:

• - Entering a source (XML) node.
• - Leaving a source (XML) node.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 814

• - Entering an XSLT/XQuery node.
• - Leaving an XSLT/XQuery node.

The Trace History view catches all these events, so you can see how the process evolved. If the view is not displayed,
it can be opened from the Window > Show View menu.

The red icon lines denote source nodes while the green icon lines denote XSLT/XQuery nodes. It is possible to save the
element trace in a structured XML document. The action is available on the contextual menu of the view. Thus, you
have the possibility of comparing the trace results from multiple debug sessions.

Figure 449:Trace History View

The contextual menu contains the following actions:

Moves the selection in the editor panel to the line containing the XSLT element or XML
element that is displayed on the selected line from the view;

Go to

Saves the entire trace list into XML format.Export to XML

Table 12:Trace History columns

DescriptionColumn

Shows you how deep the node is nested in the XML or
stylesheet structure. The bigger the number, the more nested
the node is. A depth 0 node is the document root.

Depth

Represents the node from the processed source or stylesheet
document. One particular node is the document root, noted
as #document. Every node is preceded by an arrow that
represents what action was performed on it (entering or
leaving the node).

XML/XSLT/XQuery Node

Attributes of the node (a list of id="value" pairs).Attributes

Resource file where the node is located.Resource

Important: Remarks:

• Clicking a record highlights that node's location inside the
resource.

• Only the Saxon processor shows the element attributes.
• The Xalan processor shows also the built-in rules.

Templates View

The xsl:template is the basic element for stylesheets transformation. The Templates view is only available during
XSLT debugging sessions and shows all xsl:template instructions used by the transformation. If the view is not
displayed, it can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 815

Being able to see the number of hits for each of the templates allows you to get an idea of the stylesheet coverage by
template rules with respect to the input source.

Figure 450:Templates view

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT template that is displayed on the selected line from the view.

Table 13:Templates columns

DescriptionColumn

The match attribute of the xsl:template.Match

The number of hits for the xsl:template. Shows how
many times the XSLT processor used this particular
template.

Hits

The template priority as established by XSLT processor.Priority

The mode attribute of the xsl:template.Mode

The name attribute of the xsl:template.Name

The resource file where the template is located.Resource

Important: Remarks:

• Clicking a record highlights that template definition inside the resource.
• Saxon only shows the applied templates having at least one hit from the processor. Xalan shows all defined

templates, with or without hits.
• Template table values can be sorted by clicking the corresponding column header. When clicking a column

header the sorting order switches between: ascending, descending, no sort.
• Xalan shows also the built-in rules.

Nodes/Values Set View

The Nodes/Values Set view is always used in relation with The Variables view and the XWatch view. If the view is not
displayed, it can be opened from the Window > Show View menu. It shows an XSLT node set value in a tree form.
The node set view is updated as response to the following events:

• You click a variable having a node set value in one of the above 2 views.
• You click a tree fragment in one of the above 2 views.
• You click an XPath expression evaluated to a node set in one of the above 2 views.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 816

Figure 451: Node Set view

The nodes / values set is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed
using the qualified name. If the namespace is not bound to a prefix the namespace URI is presented before the node
name. The value of the selected attribute or node is displayed in the right side panel.

Important: Remarks:

• For longer values in the right side panel, the interface displays it with an ellipsis (...) at the end. A more
detailed value is available as a tooltip when hovering over it.

• Clicking a record highlights the location of that node in the source or stylesheet view.

Variables View

The Variables view displays variables and parameters (local and global), along with their values. If the view is not
displayed, it can be opened from the Window > Show View menu.

Variables and parameters play an important role during an XSLT/XQuery transformation. Oxygen XML Editor plugin
uses the following icons to differentiate variables and parameters:

• - Global variable.
• - Local variable.

• - Global parameter.
• - Local parameter.

The following value types are available:

• Boolean
• String
• Date - XSLT 2.0 / 3.0 only.
• Number
• Set
• Object
• Fragment - Tree fragment.
• Any
• Undefined - The value was not yet set, or it is not accessible.

Note:

When Saxon 6.5 is used, if the value is unavailable, then the following message is displayed in the Value
field: "The variable value is unavailable".

When Saxon 9 is used:

• If the variable is not used, the Value field displays "The variable is declared but never used".
• If the variable value cannot be evaluated, the Value field displays "The variable value is unavailable".

• Document
• Element

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 817

• Attribute
• ProcessingInstruction
• Comment
• Text
• Namespace
• Evaluating - Value under evaluation.
• Not Known - Unknown types.

Figure 452: Variables View

Table 14: Variables columns

DescriptionColumn

Name of variable / parameter.Name

Type of variable/parameter.Value type

Current value of variable / parameter.Value

The value of a variable (the Value column) can be copied to the clipboard for pasting it to other editor area with the
action Copy value from the contextual menu of the table from the view. This is useful in case of long and complex
values that are not easy to remember by looking at them once.

Important: Remarks:

• Local variables and parameters are the first entries presented in the table.
• Clicking a record highlights the variable definition line.
• Variable values could differ depending on the transformation engine used or stylesheet version set.
• If the value of the variable is a node set or a tree fragment, clicking it causes the Node Set view to be shown

with the corresponding set of values.
• Variable table values can be sorted by clicking the corresponding column header. Clicking the column header

switches between the orders: ascending, descending, no sort.

Multiple Output Documents in XSLT 2.0 and XSLT 3.0

For XSLT 2.0 and XSLT 3.0 stylesheets that store the output in multiple files by using the xsl:result-document
instruction the content of the file created in this way is displayed dynamically while the transformation is running in an
output view. There is one view for each xsl:result-document instruction so that the output is not mixed while
still being presented in multiple views.

Working with the XSLT / XQuery Debugger
This section describes how to work with the debugger in the most common use cases.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 818

To watch our video demonstration about how you can use the XSLT Debugger, go to
http://oxygenxml.com/demo/XSLT_Debugger.html.

Steps in a Typical Debugging Process

To debug a stylesheet or XQuery document, follow this procedure:

1. Open the source XML document and the XSLT/XQuery document.

2. If you are in the Editor perspective, switch to the XSLT Debugger or XQuery Debugger perspective with one of the
following actions:

• Select Window > Open Perspective > Other > Oxygen XSLT Debugger/XQuery Debugger.

• Select the Debug scenario action on the toolbar.. This action initializes the Debugger perspective with the
parameters of the transformation scenario. Any modification applied to the scenario parameters (the transformer
engine, XSLT parameters, transformer extensions, etc.) will be saved back in the scenario when exiting from the
Debugger perspective.

3. Select the source XML document in the XML source selector of the Control toolbar. In the case of XQuery debugging,
if your XQuery document has no implicit source, set the source selector value to NONE.

4. Select the XSLT/XQuery document in the XSLT/XQuery selector of the Control toolbar.

5. Set XSLT/XQuery parameters from the button available on the Control toolbar.

6. Set one or more breakpoints.

7. Step through the stylesheet using the following buttons available on the Control toolbar:

• Step into

• Step over

• Step out

• Run

• Run to cursor

• Run to end

• Pause

• Stop

8. Examine the information in the information views to find the bug in the transformation process.

You may find the procedure for determining the XSLT template/XQuery element that generated an output section
useful for fixing bugs in the transformation.

Related tasks
Determining What XSLT / XQuery Expression Generated Particular Output on page 820

Using Breakpoints

The Oxygen XML Editor plugin XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to gather
information about variables and processor execution at particular points. To ensure breakpoints are persistent between
work sessions, they are saved at project level. You can set a maximum of 100 breakpoints per project.

Inserting Breakpoints

To insert a breakpoint, follow these steps:

1. Click the line where you want to insert the breakpoint in the XML source document or the XSLT/XQuery document.

You can only set breakpoints on the XML source in XSLT or XQuery debugging sessions.

Breakpoints are automatically created on the ending line of a start tag, even if you click a different line.

2. Right-click the vertical stripe on the left side of the editor panel and select Add breakpoint.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 819

http://oxygenxml.com/demo/XSLT_Debugger.html

Figure 453: Example: Breakpoints

Removing Breakpoints

Only one action is required to remove a breakpoint:

Right-click the breakpoint icon in the vertical stripe on the left side of the editor panel and select Remove breakpoint.

Determining What XSLT / XQuery Expression Generated Particular Output

To quickly spot the XSLT templates or XQuery expressions with problems it is important to know what XSLT template
in the XSLT stylesheet (or XQuery expression in the XQuery document) and what element in the source XML document
generated a specified area in the output.

Some of the debugging capabilities (for example, Step in) can be used for this purpose. Using Step in you can see how
output is generated and link it with the XSLT/XQuery element being executed in the current source context. However,
this can become difficult on complex XSLT stylesheets or XQuery documents that generate a large output.

You can click the text from the Text output view or XHTML output view and the editor will select the XML source
context and the XSLT template/XQuery element that generated the text. Also, inspecting the whole stack of XSLT
templates/XQuery elements that determined the state of the XSLT/XQuery processor at the moment of generating the
specified output area speeds up the debugging process.

1. Switch to the XSLT Debugger or XQuery Debugger perspective with one of the following actions:

• Select Window > Open Perspective > Other > Oxygen XSLT Debugger/XQuery Debugger.

• Select the Debug scenario action on the toolbar.. This action initializes the Debugger perspective with the
parameters of the transformation scenario. Any modification applied to the scenario parameters (the transformer
engine, XSLT parameters, transformer extensions, etc.) will be saved back in the scenario when exiting from the
Debugger perspective.

2. Select the source XML document in the XML source selector of the Control toolbar. In the case of XQuery debugging
without an implicit source choose the NONE value.

3. Select the XSLT/XQuery document in the XSLT/XQuery selector of the Control toolbar.

4. Select the XSLT/XQuery engine in the XSLT/XQuery engine selector of the Control toolbar.

5. Set XSLT/XQuery parameters from the button available on the Control toolbar.

6. Apply the XSLT stylesheet or XQuery transformation using the Run to end button that is available on the Control
toolbar.

7. Inspect the mapping by clicking a section of the output from the Output view of the Oxygen XML Editor plugin
XSLT Debugger or Oxygen XML Editor plugin XQuery Debugger perspectives.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 820

Figure 454:Text Output to Source Mapping

This action will highlight the XSLT / XQuery element and the XML source context. This XSLT template/XQuery
element that is highlighted in the XSLT/XQuery editor represents only the top of the stack of XSLT templates/XQuery
elements that determined the state of the XSLT/XQuery processor at the moment of generating the clicked output
section. In the case of complex transformations inspecting the whole stack of XSLT templates/XQuery elements
speeds up the debugging process. This stack is available in the Output Mapping Stack view.

Related information
Output Mapping Stack View on page 813

Trace History View on page 814

Templates View on page 815

Debugging Java Extensions
The XSLT/XQuery debugger does not step into Java classes that are configured as XSLT/XQuery extensions of the
transformation. To step into Java classes, inspect variable values, and set breakpoints in Java methods, you can set up
a Java debug configuration in an IDE (such as the Eclipse SDK) as described in the following steps:

1. Create a debug configuration.

a) Set at least 256 MB as heap memory for the Java virtual machine (recommended 512 MB) by setting the -Xmx
parameter in the debug configuration (for example, “-Xmx512m”).

b) Make sure the [OXYGEN_INSTALL_DIR]/lib/oxygen.jar file and your Java extension classes are on
the Java classpath.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 821

The Java extension classes should be the same classes that were set as an extension of the XSLT/XQuery
transformation in the debugging perspective.

c) Set the class ro.sync.exml.Oxygen as the main Java class of the configuration.

The main Java class ro.sync.exml.Oxygen is located in the oxygen.jar file.

2. Start the debug configuration.

Now you can set breakpoints and inspect Java variables as in any Java debugging process executed in the selected
IDE (Eclipse SDK, and so on.).

Supported Processors for XSLT / XQuery Debugging
The following built-in XSLT processors are integrated in the debugger and can be selected in the Control Toolbar:

• Saxon 9.6.0.7 HE (Home Edition) - a limited version of the Saxon 9 processor, capable of running XSLT 1.0, XSLT
2.0 / 3.0 basic and XQuery 1.0 transformations, available in both the XSLT debugger and the XQuery one,

• Saxon 9.6.0.7 PE (Professional Edition) - capable of running XSLT 1.0 transformations, XSLT 2.0 basic ones and
XQuery 1.0 ones, available in both the XSLT debugger and the XQuery one,

• Saxon 9.6.0.7 EE (Enterprise Edition) - a schema aware processor, capable of running XSLT 1.0 transformations,
XSLT 2.0 /3.0 basic ones, XSLT 2.0 / 3.0 schema aware ones and XQuery 1.0 / 3.0 ones, available in both the XSLT
debugger and the XQuery debugger,

• Saxon 6.5.5 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger,
• Xalan 2.7.1 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger.

Performance Profiling of XSLT Stylesheets and XQuery Documents
This chapter explains the user interface and how to use the profiler for finding performance problems in XSLT
transformations and XQuery ones.

This chapter explains the user interface and how to use the profiler for finding performance problems in XSLT
transformations and XQuery ones.

XSLT/XQuery Performance Profiling Overview

Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery transformation
to not meet customer expectations or you are trying to proactively identify issues prior to deploying your XSLT/XQuery
transformation, using the XSLT/XQuery profiler feature is essential to helping you save time and ultimately ensure a
better performing, more scalable XSLT/XQuery transformation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processors that could be used for debugging
and it is available from the debugging perspective.

Enabling and disabling the profiler is controlled by the / Profiler button from the debugger control toolbar. The
XSLT/XQuery profiler is off by default. This option is not available during a debugger session so you should set it
before starting the transformation.

Viewing Profiling Information

This section explains the views that display the profiling data collected by the profiles during the transformation.

Invocation Tree View

The Invocation Tree view shows a top-down call tree that represents how XSLT instructions or XQuery expressions
are processed. If the view is not displayed, it can be opened from the Window > Show View menu.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 822

Figure 455: Invocation Tree View

The entries in the invocation tree include a few possible icons that indicate the following:

• - Points to a call whose inherent time is insignificant compared to its total time.

• - Points to a call whose inherent time is significant compared to its total time (greater than 1/3rd of its total time).

Every entry in the invocation tree includes textual information that depends on the XSLT/XQuery profiler settings:

• A percentage number of the total time that is calculated with respect to either the root of the tree or the calling
instruction.

• A total time measurement in milliseconds or microseconds. This is the total execution time that includes calls into
other instructions.

• A percentage number of the inherent time that is calculated with respect to either the root of the tree or the calling
instruction.

• An inherent time measurement in milliseconds or microseconds. This is the inherent execution time of the instruction.
• An invocation count that shows how often the instruction has been invoked on this call-path.
• An instruction name that contains also the attributes description.

Hotspots View

The Hotspots view displays a list of all instruction calls that lie above the threshold defined in the XSLT/XQuery profiler
settings. If the view is not displayed, it can be opened from the Window > Show View menu.

Figure 456: Hotspots View

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calculated and shown.

Every hotspot is described by the values from the following columns:

• Instruction - The name of the instruction.
• Percentage - The percentage number for this hotspot entry with respect to the total time.
• Time - The inherent time in milliseconds or microseconds of how much time has been spent in the hotspot. All calls

into this instruction are summed up regardless of the particular call sequence.
• Calls - The invocation count of the hotspot entry.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 823

If you click the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it that depends on the XSLT/XQuery profiler
settings:

• A percentage number that is calculated with respect to either the total time or the called instruction.
• A time measured in milliseconds or microseconds of how much time has been contributed to the parent hotspot on

this call-path.
• An invocation count that shows how often the hotspot has been invoked on this call-path.

Note: This is not the number of invocations of this instruction.

• An instruction name that also contains its attributes.

Working with XSLT/XQuery Profiler

Profiling activity is linked with debugging activity, so the first step in profiling is to switch to the debugging perspective
and follow the corresponding procedure for debugging (see Steps in a Typical Debugging Process on page 819).

Immediately after turning the profiler on two new information views are added to the current debugger information
views:

• Invocation tree view on left side
• Hotspots view on right side

Profiling data is available only after the transformation ends successfully.

Looking to the right side (Hotspots view), you can immediately spot the time the processor spent in each instruction.
As an instruction usually calls other instructions the used time of the called instruction is extracted from the duration
time of the caller (the hotspot only presents the inherent time of the instruction).

Looking to the left side (Invocation tree view), you can examine how style instructions are processed. This result view
is also named call-tree, as it represents the order of style processing. The profiling result shows the duration time for
each of the style-instruction including the time needed for its called children.

Figure 457: Source backmapping

In any of the above views you can use the backmapping feature to find the XSLT stylesheet or XQuery expression
definition. Clicking the selected item cause Oxygen XML Editor plugin to highlight the XSLT stylesheet or XQuery
expression source line where the instruction is defined.

When navigating through the trees by opening instruction calls, Oxygen XML Editor plugin automatically expands
instructions that are only called by one other instruction themselves.

The profiling data can be saved into XML and HTML format. On any of the above views, use the contextual menu and
select the corresponding choice. Basically saving HTML means saving XML and applying an XSLT stylesheet to render
the report as XML. These stylesheets are included in the Oxygen XML Editor plugin distribution (see the subfolder

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 824

[OXYGEN_INSTALL_DIR]/frameworks/profiler/) so you can make your own report based on the profiling
raw data.

If you want to change the XSLT/XQuery profiler settings, use the contextual menu and choose the corresponding View
settings entry.

CAUTION: Profiling exhaustive transformation may run into an OutOfMemory error due to the large amount
of information being collected. If this is the case you can close unused projects when running the profiling or
use high values for Java VM options -Xms and -Xmx. If this does not help you can shorten your source XML
file and try again.

To watch our video demonstration about the XSLT/XQuery Profiler, go to
http://oxygenxml.com/demo/XSLT_Profiling.html.

Oxygen XML Editor plugin | Debugging XSLT Stylesheets and XQuery Documents | 825

http://oxygenxml.com/demo/XSLT_Profiling.html

Chapter

14

Document Types (Frameworks)

Presents the built-in support for various document types.Topics:

A document type or framework is associated to an XML file according to a set
of rules. It also includes a variety of settings that improve editing capabilities
in the Author mode for its particular file type. These settings include:

• Predefined Document Types
(Frameworks)

• A default grammar used for validation and content completion in both Author
mode and Text mode.

• CSS stylesheets for rendering XML documents in Author mode.
• User actions invoked from toolbars or menus in Author mode.
• Predefined scenarios used for transformations for the class of XML

documents defined by the document type.
• XML catalogs.
• Directories with file templates.
• User-defined extensions for customizing the interaction with the content

author in Author mode.

Oxygen XML Editor plugin includes built-in support for many common
document types. Each document type is defined in a framework. You can create
new frameworks or make changes to existing frameworks to suit your individual
requirements.

To see a video on configuring a framework in Oxygen XML Editor plugin, go
to http://oxygenxml.com/demo/FrameworkConfiguration.html.

http://oxygenxml.com/demo/FrameworkConfiguration.html

Predefined Document Types (Frameworks)

Predefined Document Types
The following predefined document types (frameworks) are fully supported in Oxygen XML Editor plugin and each of
these document types include built-in transformation scenarios, validation, content completion, file templates , default
CSS files for rendering content in Author mode, and default actions for editing in Author mode:

• DocBook 4 - A document type standard for books, articles, and other prose documents (particularly technical
documentation).

• DocBook 5 - An enhanced (version 5) document type standard designed for a variety of documents (particularly
technical documentation).

• DITA - An XML-based architecture designed for authoring, producing, and delivering technical information.
• DITA Map - A document type that collects and organizes references to DITA topics or other maps.
• XHTML - Extensible HyperText Markup Language includes the same depth of expression as HTML, but also conforms

to XML syntax.
• TEI ODD - Text Encoding Initiative One Document Does it all is an XML-conformant specification that allows you

to create TEI P5 schema in a literate programming style.
• TEI P4 - The Text Encoding Initiative guidelines is a standard for the academic community that collectively define

an XML format for text that is primarily semantic rather than presentational.
• TEI P5 - The Text Encoding Initiative guidelines is a standard for the academic community that collectively define

an XML format for text that is primarily semantic rather than presentational.
• JATS - The NISO Journal Article Tag Suite is a technical standard that defines an XML format for scientific literature.

Other Document Types
Oxygen XML Editor plugin also provides limited support (including file templates) for a variety of other document
types, including:

• EPUB (NCX, OCF, OPF 2.0 & 3.0) - A standard for e-book files.
• DocBook Targetset - For resolving cross-references when using olinks.
• XSLT Stylesheets - A document type that provides a visual mode for editing XSLT stylesheets.
• WSDL - Web Services Description Language is an XML language for describing the functionality offered by a web

service.
• Schematron - For making assertions about the presence or absence of patterns in XML documents. This document

type applies to the ISO Schematron version.
• Schematron Quick Fixes (SQF) - An extension of the ISO standard Schematron, allows developers to define QuickFixes

for Schematron errors.
• StratML (Part 1 & 2) - Part 1 and 2 of the Strategy Markup Language specification.
• XProc - A document type for processing XProc script files.
• XML Schema - Documents that provide support for editing annotations.
• MathML - Mathematical Markup Language (2.0 and 3.0) is an application of XML for describing mathematical

notations.
• XLIFF (1.2 & 2.0) - XML Localization Interchange File Format is a standard for passing data between tools during

a localization process.
• XQuery - The common query language for XML.
• CSS - Cascading Style Sheets is a language used for describing the look and formatting of a document.
• LESS - A dynamic style sheet language that can be compiled into CSS.
• Relax NG Schema - A schema language that specifies a pattern for the structure and content of an XML document.
• NVDL Schema - Namespace Validation Dispatching Language allows you to specify sections of XML documents

to be validated against various schemas.
• JSON - JavaScript Object Notation is a lightweight data-interchange format.
• JavaScript - Programming language of HTML and the Web.
• XML Spec - A markup language for W3C specifications and other technical reports.

Oxygen XML Editor plugin | Document Types (Frameworks) | 828

• DITAVAL - DITA conditional processing profile to identify the values you want to conditionally process for a
particular output, build, or other purpose.

• Daisy - A technical standard for digital audio books, periodicals, and computerized text. It is designed to be an audio
substitute for print material.

• EAD - Encoded Archival Description is an XML standard for encoding archival finding aids.
• KML - Keyhole Markup Language is an XML notation for expressing geographic visualization in maps and browsers.
• Maven Project & Settings - Project or settings file for Maven build automation tool that is primarily used for Java

projects.
• Oasis XML Catalog - A document that describes a mapping between external entity references and locally-cached

equivalents.

Related information
Advanced Customization Tutorial - Document Type Associations on page 896

Document Type Association Preferences on page 58

DocBook 4 Document Type

DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly technical
documentation.

A file is considered to be a DocBook 4 document when one of the following conditions are true:

• The root element name is book or article.
• The PUBLIC ID of the document contains the string -//OASIS//DTD DocBook XML.

The default schema that is used if one is not detected in the DocBook 4 file is docbookxi.dtd and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/4.5/dtd/.

The default CSS files used for rendering DocBook content in Author mode are stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/css/.

The default XML catalog, catalog.xml, is stored in [OXYGEN_INSTALL_DIR]/frameworks/docbook/.

To watch our video demonstration about editing DocBook documents, go to
http://oxygenxml.com/demo/DocBook_Editing_in_Author.html.

DocBook 4 Author Mode Actions

A variety of actions are available in the DocBook 4 framework that can be added to the DocBook4 menu, the Author
Custom Actions toolbar, the contextual menu, and the Content Completion Assistant.

DocBook 4 Toolbar Actions
The following default actions are readily available on the DocBook (Author Custom Actions) toolbar when editing in
Author mode (by default, most of them are also available in the DocBook4 menu and in various submenus of the
contextual menu):

Emphasizes the selected text by surrounding it with <emphasis role="bold"> tag. You can
use this action on multiple non-contiguous selections.

Bold

Emphasizes the selected text by surrounding it with <emphasis role="italic"> tag. You
can use this action on multiple non-contiguous selections.

Italic

Emphasizes the selected text by surrounding it with <emphasis role="underline"> tag.
You can use this action on multiple non-contiguous selections.

Underline

The following link actions are available from this menu:Link
Actions Opens a dialog box that allows you to select a target to insert as a hypertext link.Cross

reference
(link)

Drop-Down
Menu

Oxygen XML Editor plugin | Document Types (Frameworks) | 829

http://oxygenxml.com/demo/DocBook_Editing_in_Author.html

Inserts a cross reference to other parts of the document.Cross
reference
(xref)

Inserts a link that addresses its target with a URL (Universal Resource Locator).Web
Link
(ulink)

Opens an OLink dialog box that allows you to insert a link that addresses its target
indirectly, using the targetdoc and targetptr values that are present in a Targetset
file.

Figure 458: Insert OLink Dialog Box

Insert
OLink

After you choose the Targetset URL, the structure of the target documents is presented.
For each target document (targetdoc), its content is displayed allowing you to easily
identify the targetptr for the olink element that will be inserted. You can also use
the search fields to quickly identify a target. If you already know the values for targetdoc
and targetptr, you can insert them directly in the corresponding fields. You can also edit
an olink using the Edit OLink action that is available on the contextual menu. The last
used Targetset URL will be used to identify the edited target.

To insert XREF text into the olink, enter the text in the xreftext field and make sure
the Insert xreftext in the OLink option is enabled.

Inserts a URI element. The URI identifies a Uniform Resource Identifier (URI) in content.Insert
URI

Inserts an image reference at the cursor position. Depending on the current location, an image-type
element is inserted.

Insert Image

Opens a dialog box that allows you to browse and select content to be included and automatically
generates the corresponding XInclude instruction.

Insert
XInclude

Oxygen XML Editor plugin | Document Types (Frameworks) | 830

The following actions are available from this menu:Section
Drop-Down
Menu

Inserts a new section or subsection in the document,
depending on the current context. For example, if the

Insert Section

current context is sect1, then a sect2 is inserted. By
default, this action also inserts a para element as a child
node. The para element can be deleted if it is not
needed.

Promotes the current node as a sibling of the parent node.Promote Section (Ctrl + Alt +
LeftArrow (Command + Alt +
LeftArrow on OS X))

Demotes the current node a child of the previous node.Demote Section (Ctrl + Alt +
RightArrow (Command + Alt +
RightArrow on OS X))

Insert a new paragraph element at current cursor position.Insert
Paragraph

Opens the XML Fragment Editor that allows you to insert and edit MathML notations.Insert
Equation

Inserts a list item in the current list type.Insert List
Item

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by
default.

Insert
Ordered List

Inserts an itemized list at the cursor position. A child list item is also automatically inserted by
default.

Insert
Itemized List

Inserts a DocBook variable list. A child list item is also inserted automatically by default.Insert
Variable List

Inserts a DocBook procedure element. A step child item is also inserted automatically.Insert
Procedure List

Sorts cells or list items in a table.Sort

Opens a dialog box that allows you to configure and insert a table. You can generate a header and
footer, set the number of rows and columns of the table and decide how the table is framed.

Insert Table

Inserts a new table row with empty cells below the current row. This action is available when the
cursor is positioned inside a table.

Insert Row
Below

Deletes the table row located at cursor position or multiple rows in a selection.Delete Row(s)

Inserts a new table column with empty cells after the current column. This action is available when
the cursor is positioned inside a table.

Insert Column
After

Deletes the table column located at cursor position or multiple columns in a selection.Delete
Column(s)

Opens the Table properties dialog box that allows you to configure properties of a table (such as
frame borders).

Table
Properties

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Oxygen XML Editor plugin | Document Types (Frameworks) | 831

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects more than one option
to split the cell, a dialog box will be displayed that allows you to select the number of rows or
columns to split the cell into.

Split Cell

DocBook4 Menu Actions
In addition, the following default actions are available in the DocBook4 menu when editing in Author mode:

This submenu includes the following special paste actions that are specific to the DocBook 4
framework:

Paste special
submenu

Allows you to create an xi:include element that references a
DocBook element copied from Author mode. The operation fails if the
copied element does not have a declared ID.

Paste As XInclude

Allows you to create a link element that references a DocBook element
copied from Author mode. The operation fails if the copied element
does not have a declared ID.

Paste as link

Allows you to create an xref element that references a DocBook
element copied from Author mode. The operation fails if the copied
element does not have a declared ID.

Paste as xref

In addition to the table actions available on the toolbar, the following actions are available in
this submenu:

Table submenu

Inserts a new table row with empty cells above the current row. This
action is available when the cursor is positioned inside a table.

Insert Row Above

Opens a dialog box that allows you to insert any number of rows and
specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Inserts a column before the current one.Insert Column
Before

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or Below
the current column).

Insert Columns

Inserts a new empty cell depending on the current context. If the
cursor is positioned between two cells, Oxygen XML Editor plugin

Insert Cell

a new cell at cursor position. If the cursor is inside a cell, the new
cell is created after the current cell.

Opens the ID Options dialog box that allows you to configure options for generating IDs in
Author mode. The dialog box includes the following:

ID Options

The pattern for the ID values that will be generated. This text
field can be customized using constant strings or any of the
Oxygen XML Editor plugin Editor Variables on page 134.

ID Pattern

The elements for which ID values will be generated, specified
using class attribute values. To customize the list, use the Add,
Edit, or Remove buttons.

Element name or class
value to generate ID for

If enabled, Oxygen XML Editor plugin will automatically
generate unique IDs for the elements listed in this dialog box
when they are created in Author mode.

Auto generate IDs for
elements

When copying and pasting content in the same document, this
option allows you to control whether or not pasted elements that

Remove IDs when copying
content in the same
document

Oxygen XML Editor plugin | Document Types (Frameworks) | 832

are listed in this dialog box should retain their existing IDs. To
retain the element IDs, disable this option.

Note: This option does not have an effect on content
that is cut and pasted.

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements
and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

DocBook 4 Contextual Menu Actions
In addition to many of the DocBook 4 toolbar actions and the general Author mode contextual menu actions, the
following DocBook 4 framework-specific actions are also available in the contextual menu when editing in Author
mode:

Oxygen XML Editor plugin | Document Types (Frameworks) | 833

This submenu includes the following special paste actions that are specific to the DocBook 4
framework:

Paste special
submenu

Allows you to create an xi:include element that references a DocBook
element copied from Author mode. The operation fails if the copied element
does not have a declared ID.

Paste As XInclude

Allows you to create a link element that references a DocBook element
copied from Author mode. The operation fails if the copied element does
not have a declared ID.

Paste as link

Allows you to create an xref element that references a DocBook element
copied from Author mode. The operation fails if the copied element does
not have a declared ID.

Paste as xref

This action is available in the contextual menu when it is invoked on an image. This action applies
an image map to the current image (if one does not already exist) and opens the Image Map Editor

Image Map
Editor

dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link
to various destinations.

The following table editing actions are available in the contextual menu when it is invoked on a
table:

Table Actions

Opens a dialog box that allows you to insert any number of rows and
specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Deletes the table row located at cursor position or multiple rows in a
selection.

Delete Row(s)

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or Below
the current column).

Insert Columns

Deletes the table column located at cursor position or multiple columns
in a selection.

Delete Column(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin
detects more than one option to split the cell, a dialog box will be

Split Cell

displayed that allows you to select the number of rows or columns to
split the cell into.

Sorts cells or list items in a table.Sort

Opens the Table properties dialog box that allows you to configure
properties of a table (such as frame borders).

Table Properties

This submenu give you access to all the usual contextual menu actions.Other Actions submenu

Opens a dialog box that allows you edit an existing OLink. See the Insert OLink action for more
information.

Link > Edit
OLink

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements and
elements from the list in the ID Options dialog box that are found in the current selection.

Oxygen XML Editor plugin | Document Types (Frameworks) | 834

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

DocBook 4 Drag/Drop Actions

Dragging a file from the Project view or DITA Maps Manager view and dropping it into a DocBook 4 document that
is edited in Author mode, creates a link to the dragged file (the ulink DocBook element) at the drop location. Dragging
an image file from the default file system application (Windows Explorer on Windows or Finder on Mac OS X, for
example) and dropping it into a DocBook 4 document inserts an image element (for example, the inlinegraphic
DocBook element with a fileref attribute) at the drop location, similar to the Insert Image toolbar action.

DocBook 4 Transformation Scenarios

Default transformation scenarios allow you to convert DocBook 4 to DocBook 5 documents and transform DocBook
documents to WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk, EPUB and EPUB 3.

Related information
Configure Transformation Scenario(s) Dialog Box on page 640

Editing a Transformation Scenario on page 638

DocBook4 to WebHelp Output

DocBook 4 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 4 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DocBook WebHelp Classic scenario from the DocBook 4 section.
3. Click Apply associated.

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your default
browser.

WebHelp Classic with Feedback Output

To publish a DocBook 4 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 4 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens the
installation.html file. This file contains information about the output location, system requirements, installation
instructions, and deployment of the output. Follow the instructions to complete the system deployment. For more
information, see Deploying the WebHelp Classic with Feedback System on page 691.

To watch our video demonstration about the feedback-enabled WebHelp system, go to
http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output
To publish a DocBook 4 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 4 section.

Oxygen XML Editor plugin | Document Types (Frameworks) | 835

http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in your
default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the following
most commonly used ones:

This parameter is used if the language is not detected in the DITA map. The default value is en-us.args.default.language

Deletes all files from the output folder before the transformation is performed (only no and yes values are valid and
the default value is no).

clean.output

This parameter is used to identify the correct stemmer that differs from language to language. For example, for English
the value of this parameter is en or for French it is fr, and so on.

l10n.gentext.default.language

Controls whether or not you want to include stemming search algorithms into the published output (default setting is
false).

use.stemming

Adds a small copyright text that appears at the end of the Table of Contents pane.webhelp.copyright

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the
WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to
integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file

webhelp.footer.file

must be well-formed, each widget must be in separate div or span element, and the code for each script element
is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The
following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id))
return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like" data-layout="standard" class="fb-like"/>

</div>

Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is
added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content

webhelp.footer.include

of that file is used as footer. If the webhelp.footer.file has no value then the default Oxygen XML Editor plugin
footer is inserted in each WebHelp page.

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this
address.

webhelp.logo.image.target.url

Specifies a path to an image displayed as a logo in the left side of the output header.webhelp.logo.image

This parameter specifies a short name for the documentation target, or product (for example,
mobile-phone-user-guide, hvac-installation-guide).

webhelp.product.id (available only for
Feedback-enabled systems)

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.webhelp.product.version (available only
for Feedback-enabled systems)

Note: Multiple documentation versions can be deployed on the same server.

Oxygen XML Editor plugin | Document Types (Frameworks) | 836

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML Editor plugin
uses for indexing Japanese content in the WebHelp pages. This indexer does not come bundled with Oxygen XML

webhelp.search.japanese.dictionary

Editor plugin or the Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0 and add it in the
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results that are
displayed on the Search tab (default setting is true).

webhelp.search.ranking

Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined skin CSS from
the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp\predefined-skins
directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web application.

webhelp.skin.css

For more information about all the DocBook transformation parameters, go to
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html.

Related information
WebHelp System Output on page 652

DocBook to PDF Output Customization
Main steps for customization of PDF output generated from DocBook XML documents.

When the default layout and output look of the DocBook to PDF transformation need to be customized, the following
main steps should be followed. In this example a company logo image is added to the front matter of a book. Other types
of customizations should follow some similar steps.

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/titlepage.templates.xml and
customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
<mediaobject/>
<title

t:named-template="book.verso.title"
font-size="&hsize2;"
font-weight="bold"
font-family="{$title.font.family}"/>

<corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.

Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.

The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert logo image in the XML document.

The path to the logo image must be inserted in the book/info/mediaobject element of the XML document.

5. Apply the customization layer to the XML document.

A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML Editor
plugin and set the customization layer in the XSL URL property of the scenario.

Oxygen XML Editor plugin | Document Types (Frameworks) | 837

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
http://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html
http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile
http://www.oxygenxml.com/demo/DocBook_Customization.html

Related information
http://www.sagehill.net/docbookxsl/PrintCustomEx.html

The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.

http://www.oxygenxml.com/demo/DocBook_Customization.html
Video demonstration for creating a DocBook customization layer in Oxygen XML Editor plugin.

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when possible.
To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;
src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as in
the following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. In your DocBook to EPUB transformation, set the epub.embedded.fonts parameter to fonts/MyFont.otf.
If you need to provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.

DocBook to DITA Transformation

Oxygen XML Editor plugin includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation Scenario(s) (Alt
+ Shift + T, T (Command + Alt + T, T on OS X)) action from the toolbar or the XML menu.

• To customize the transformation or change the scenario that is associated with the document, use the Configure
Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action from the toolbar
or the XML menu.

2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements as
it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert XML
comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation errors,
adjust certain attributes, or split the content into individual topics.

Oxygen XML Editor plugin | Document Types (Frameworks) | 838

http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/
http://www.oxygenxml.com/demo/DocBook_Customization.html
https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

DocBook 4 Templates

Default templates are available in the New File wizard. You and can use them to create a skeletal form of a DocBook
4 book or article. These templates are stored in the
[OXYGEN_INSTALL_DIR]/frameworks/docbook/templates/DocBook 4 folder.

Here are some of the DocBook 4 templates available when creating new documents from templates:

• Article
• Article with MathML
• Article with SVG
• Article with XInclude
• Book
• Book with XInclude
• Chapter
• Section
• Set of Books

Inserting an olink in DocBook Documents

The olink element is used for linking to resources outside the current DocBook document. The targetdoc attribute
is used for the document ID that contains the target element and the targetptr attribute for the ID of the target
element (the value of an id or xml:id attribute). The combination of those two attributes provides a unique identifier
to locate cross references.

For example, a Mail Administrator Guide with the document ID MailAdminGuide might contain a chapter about
user accounts, like this:

<chapter id="user_accounts">
<title>Administering User Accounts</title>
<para>blah blah</para>

You can form a cross reference to that chapter by adding an olink, as in the following example:

You may need to update your
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts
</olink>
when you get a new machine.

To use an olink to create links between documents, follow these steps:

1. Decide which documents are to be included in the domain for cross referencing.

A unique ID must be assigned to each document that will be referenced with an olink. It is usually added as an
id (or xml:id for DocBook5) attribute to the root element of the document.

2. Decide on your output hierarchy.

For creating links between documents, the relative locations of the output documents must be known. Before going
further you must decide the names and locations of the output directories for all the documents from the domain.
Each directory will be represented by an element: <dir name="directory_name">, in the target database
document.

3. Create the target database document.

Each collection of documents has a master target database document that is used to resolve all olinks from that
collection. The target database document is an XML file that is created once. It provides a framework that pulls in
the target data for each document. The database document is static and all the document data is pulled in dynamically.

The following is an example of a target database document. It structures a collection of documents in a sitemap
element that provides the relative locations of the outputs (HTML in this example). Then it pulls in the individual
target data using system entity references to target data files that will be created in the next step.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset [
<!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">
<!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">
<!ENTITY reftargets SYSTEM "file:///doc/man/target.db">
]>

Oxygen XML Editor plugin | Document Types (Frameworks) | 839

<targetset>
<targetsetinfo>

 Description of this target database document,
 which is for the examples in olink doc.

</targetsetinfo>

<!-- Site map for generating relative paths between documents -->
<sitemap>

<dir name="documentation">
<dir name="guides">

<dir name="mailuser">
<document targetdoc="MailUserGuide"

baseuri="userguide.html">
 &ugtargets;

</document>
</dir>
<dir name="mailadmin">
<document targetdoc="MailAdminGuide">

 &agtargets;
</document>

</dir>
</dir>
<dir name="reference">

<dir name="mailref">
<document targetdoc="MailReference">

 &reftargets;
</document>

</dir>
</dir>

</dir>
</sitemap>

</targetset>

4. Generate the target data files by executing a DocBook transformation scenario.

Before applying the transformation, you need to edit the transformation scenario, go to the Parameters tab, and
make sure the value of the collect.xref.targets parameter is set to yes. The default name of a target data
file is target.db, but it can be changed by setting an absolute file path in the targets.filename parameter.

An example of a target.db file:

<div element="book" href="#MailAdminGuide" number="1" targetptr="user_accounts">

 <ttl>Administering User Accounts</ttl>
 <xreftext>How to administer user accounts</xreftext>
 <div element="part" href="#d5e4" number="I">
 <ttl>First Part</ttl>
 <xreftext>Part I, “First Part”</xreftext>
 <div element="chapter" href="#d5e6" number="1">
 <ttl>Chapter Title</ttl>
 <xreftext>Chapter 1, Chapter Title</xreftext>
 <div element="sect1" href="#src_chapter" number="1"
targetptr="src_chapter">
 <ttl>Section1 Title</ttl>
 <xreftext>xreflabel_here</xreftext>
 </div>
 </div>
 </div>
</div>

5. Insert olink elements in the DocBook documents.

When editing a DocBook XML document in Author mode, the Insert OLink action is available in the Link
drop-down menu from the toolbar. This action opens the Insert OLink dialog box that allows you to select the target
of an olink from the list of all possible targets from a specified target database document (specified in the Targetset
URL field). Once a Targetset URL is selected, the structure of the target documents is presented. For each target
document (targetdoc), its content is displayed, allowing you to easily identify the appropriate targetptr. You
can also use the search fields to quickly identify a target. If you already know the values for the targetdoc and
targetptr attributes, you can insert them directly in the corresponding fields.

In the following image, the target database document is called target.xml, dbadmin is selected for the target
document (targetdoc), and bldinit is selected as the value for the targetptr attribute. Notice that you can also
add XREF text into the olink by using the xreftext field.

Oxygen XML Editor plugin | Document Types (Frameworks) | 840

Figure 459: Insert OLink Dialog Box

6. Process a DocBook transformation for each document to generate the output.

a) Edit the transformation scenario and set the value of the target.database.document parameter to be the
URL of the target database document.

b) Apply the transformation scenario.

DocBook 5 Document Type

A file is considered to be a DocBook 5 document when the namespace is http://docbook.org/ns/docbook.

The default schema that is used if one is not detected in the DocBook 5 file is docbookxi.rng and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/5.0/rng/. Other types of schemas are also located in
various folders inside the [OXYGEN_INSTALL_DIR]/frameworks/docbook/5.0/ directory (for example,
XML Schema files are located in the xsd folder).

The default CSS files used for rendering DocBook content in Author mode is stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/css/.

The default XML catalog, catalog.xml, is stored in [OXYGEN_INSTALL_DIR]/frameworks/docbook/5.0/.

Note: A default XML catalog and schema files for experimental DocBook 5.1 documents are also available in
the [OXYGEN_INSTALL_DIR]/frameworks/docbook/5.1/ directory.

To watch our video demonstration about editing DocBook documents, go to
http://oxygenxml.com/demo/DocBook_Editing_in_Author.html.

DocBook 5 Author Mode Actions

A variety of actions are available in the DocBook 5 framework that can be added to the DocBook5 menu, the Author
Custom Actions toolbar, the contextual menu, and the Content Completion Assistant.

Oxygen XML Editor plugin | Document Types (Frameworks) | 841

http://oxygenxml.com/demo/DocBook_Editing_in_Author.html

DocBook 5 Toolbar Actions
The following default actions are readily available on the DocBook (Author Custom Actions) toolbar when editing in
Author mode (by default, most of them are also available in the DocBook5 menu and in various submenus of the
contextual menu):

Emphasizes the selected text by surrounding it with <emphasis role="bold"> tag. You can
use this action on multiple non-contiguous selections.

Bold

Emphasizes the selected text by surrounding it with <emphasis role="italic"> tag. You
can use this action on multiple non-contiguous selections.

Italic

Emphasizes the selected text by surrounding it with <emphasis role="underline"> tag.
You can use this action on multiple non-contiguous selections.

Underline

The following link actions are available from this menu:Link
Actions Opens a dialog box that allows you to select a target to insert as a hypertext link.Cross

reference
(link)

Drop-Down
Menu

Inserts a cross reference to other parts of the document.Cross
reference
(xref)

Inserts a link that addresses its target with a URL (Universal Resource Locator).Web
Link
(ulink)

Opens an OLink dialog box that allows you to insert a link that addresses its target
indirectly, using the targetdoc and targetptr values that are present in a Targetset
file.

Figure 460: Insert OLink Dialog Box

Insert
OLink

After you choose the Targetset URL, the structure of the target documents is presented.
For each target document (targetdoc), its content is displayed allowing you to easily

Oxygen XML Editor plugin | Document Types (Frameworks) | 842

identify the targetptr for the olink element that will be inserted. You can also use
the search fields to quickly identify a target. If you already know the values for targetdoc
and targetptr, you can insert them directly in the corresponding fields. You can also edit
an olink using the Edit OLink action that is available on the contextual menu. The last
used Targetset URL will be used to identify the edited target.

To insert XREF text into the olink, enter the text in the xreftext field and make sure
the Insert xreftext in the OLink option is enabled.

Inserts a URI element. The URI identifies a Uniform Resource Identifier (URI) in content.Insert
URI

Inserts an image reference at the cursor position. Depending on the current location, an image-type
element is inserted.

Insert Image

Opens a dialog box that allows you to browse and select content to be included and automatically
generates the corresponding XInclude instruction.

Insert
XInclude

The following actions are available from this menu:Section
Drop-Down
Menu

Inserts a new section or subsection in the document,
depending on the current context. For example, if the

Insert Section

current context is sect1, then a sect2 is inserted. By
default, this action also inserts a para element as a child
node. The para element can be deleted if it is not
needed.

Promotes the current node as a sibling of the parent node.Promote Section (Ctrl + Alt +
LeftArrow (Command + Alt +
LeftArrow on OS X))

Demotes the current node a child of the previous node.Demote Section (Ctrl + Alt +
RightArrow (Command + Alt +
RightArrow on OS X))

Insert a new paragraph element at current cursor position.Insert
Paragraph

Opens the XML Fragment Editor that allows you to insert and edit MathML notations.Insert
Equation

Inserts a list item in the current list type.Insert List
Item

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by
default.

Insert
Ordered List

Inserts an itemized list at the cursor position. A child list item is also automatically inserted by
default.

Insert
Itemized List

Inserts a DocBook variable list. A child list item is also inserted automatically by default.Insert
Variable List

Inserts a DocBook procedure element. A step child item is also inserted automatically.Insert
Procedure List

Sorts cells or list items in a table.Sort

Opens a dialog box that allows you to configure and insert a table. You can generate a header and
footer, set the number of rows and columns of the table and decide how the table is framed.

Insert Table

Oxygen XML Editor plugin | Document Types (Frameworks) | 843

Inserts a new table row with empty cells below the current row. This action is available when the
cursor is positioned inside a table.

Insert Row
Below

Deletes the table row located at cursor position or multiple rows in a selection.Delete Row(s)

Inserts a new table column with empty cells after the current column. This action is available when
the cursor is positioned inside a table.

Insert Column
After

Deletes the table column located at cursor position or multiple columns in a selection.Delete
Column(s)

Opens the Table properties dialog box that allows you to configure properties of a table (such as
frame borders).

Table
Properties

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects more than one option
to split the cell, a dialog box will be displayed that allows you to select the number of rows or
columns to split the cell into.

Split Cell

DocBook5 Menu Actions
In addition, the following default actions are available in the DocBook5 menu when editing in Author mode:

This submenu includes the following special paste actions that are specific to the DocBook 5
framework:

Paste special
submenu

Allows you to create an xi:include element that references a
DocBook element copied from Author mode. The operation fails if the
copied element does not have a declared ID.

Paste As XInclude

Allows you to create a link element that references a DocBook element
copied from Author mode. The operation fails if the copied element
does not have a declared ID.

Paste as link

Allows you to create an xref element that references a DocBook
element copied from Author mode. The operation fails if the copied
element does not have a declared ID.

Paste as xref

In addition to the table actions available on the toolbar, the following actions are available in
this submenu:

Table submenu

Inserts a new table row with empty cells above the current row. This
action is available when the cursor is positioned inside a table.

Insert Row Above

Opens a dialog box that allows you to insert any number of rows and
specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Inserts a column before the current one.Insert Column
Before

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or Below
the current column).

Insert Columns

Inserts a new empty cell depending on the current context. If the
cursor is positioned between two cells, Oxygen XML Editor plugin

Insert Cell

a new cell at cursor position. If the cursor is inside a cell, the new
cell is created after the current cell.

Oxygen XML Editor plugin | Document Types (Frameworks) | 844

Opens the ID Options dialog box that allows you to configure options for generating IDs in
Author mode. The dialog box includes the following:

ID Options

The pattern for the ID values that will be generated. This text
field can be customized using constant strings or any of the
Oxygen XML Editor plugin Editor Variables on page 134.

ID Pattern

The elements for which ID values will be generated, specified
using class attribute values. To customize the list, use the Add,
Edit, or Remove buttons.

Element name or class
value to generate ID for

If enabled, Oxygen XML Editor plugin will automatically
generate unique IDs for the elements listed in this dialog box
when they are created in Author mode.

Auto generate IDs for
elements

When copying and pasting content in the same document, this
option allows you to control whether or not pasted elements that

Remove IDs when copying
content in the same
document are listed in this dialog box should retain their existing IDs. To

retain the element IDs, disable this option.

Note: This option does not have an effect on content
that is cut and pasted.

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements
and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Oxygen XML Editor plugin | Document Types (Frameworks) | 845

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

DocBook 5 Contextual Menu Actions
In addition to many of the DocBook 5 toolbar actions and the general Author mode contextual menu actions, the
following DocBook 5 framework-specific actions are also available in the contextual menu when editing in Author
mode:

This submenu includes the following special paste actions that are specific to the DocBook 5
framework:

Paste special
submenu

Allows you to create an xi:include element that references a DocBook
element copied from Author mode. The operation fails if the copied element
does not have a declared ID.

Paste As XInclude

Allows you to create a link element that references a DocBook element
copied from Author mode. The operation fails if the copied element does
not have a declared ID.

Paste as link

Allows you to create an xref element that references a DocBook element
copied from Author mode. The operation fails if the copied element does
not have a declared ID.

Paste as xref

This action is available in the contextual menu when it is invoked on an image. This action applies
an image map to the current image (if one does not already exist) and opens the Image Map Editor

Image Map
Editor

dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link
to various destinations.

The following table editing actions are available in the contextual menu when it is invoked on a
table:

Table Actions

Opens a dialog box that allows you to insert any number of rows and
specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Deletes the table row located at cursor position or multiple rows in a
selection.

Delete Row(s)

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or Below
the current column).

Insert Columns

Deletes the table column located at cursor position or multiple columns
in a selection.

Delete Column(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin
detects more than one option to split the cell, a dialog box will be

Split Cell

displayed that allows you to select the number of rows or columns to
split the cell into.

Sorts cells or list items in a table.Sort

Oxygen XML Editor plugin | Document Types (Frameworks) | 846

Opens the Table properties dialog box that allows you to configure
properties of a table (such as frame borders).

Table Properties

This submenu give you access to all the usual contextual menu actions.Other Actions submenu

Opens a dialog box that allows you edit an existing OLink. See the Insert OLink action for more
information.

Link > Edit
OLink

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements and
elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

DocBook 5 Drag/Drop Actions

Dragging a file from the Project view or DITA Maps Manager view and dropping it into a DocBook 5 document that
is edited in Author mode, creates a link to the dragged file (the link DocBook element) at the drop location. Dragging
an image file from the default file system application (Windows Explorer on Windows or Finder on Mac OS X, for
example) and dropping it into a DocBook 5 document inserts an image element (the imageobject DocBook element
with an imagedata child element and a fileref attribute) at the drop location, similar to the Insert Image toolbar
action.

DocBook 5 Transformation Scenarios

Default transformation scenarios allow you to transform DocBook 5 documents to WebHelp, PDF, HTML, HTML
Chunk, XHTML, XHTML Chunk, EPUB, and EPUB 3.

Related information
Configure Transformation Scenario(s) Dialog Box on page 640

Editing a Transformation Scenario on page 638

DocBook 5 to WebHelp Output

DocBook 5 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 5 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DocBook WebHelp Classic scenario from the DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your default
browser.

WebHelp Classic with Feedback Output

To publish a DocBook 5 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 5 section.

Oxygen XML Editor plugin | Document Types (Frameworks) | 847

3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens the
installation.html file. This file contains information about the output location, system requirements, installation
instructions, and deployment of the output. Follow the instructions to complete the system deployment. For more
information, see Deploying the WebHelp Classic with Feedback System on page 691.

To watch our video demonstration about the feedback-enabled WebHelp system, go to
http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output
To publish a DocBook 5 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in your
default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the following
most commonly used ones:

This parameter is used if the language is not detected in the DITA map. The default value is en-us.args.default.language

Deletes all files from the output folder before the transformation is performed (only no and yes values are valid and
the default value is no).

clean.output

This parameter is used to identify the correct stemmer that differs from language to language. For example, for English
the value of this parameter is en or for French it is fr, and so on.

l10n.gentext.default.language

Controls whether or not you want to include stemming search algorithms into the published output (default setting is
false).

use.stemming

Adds a small copyright text that appears at the end of the Table of Contents pane.webhelp.copyright

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the
WebHelp output.

webhelp.custom.resources

The file path that points to an image to be used as a favicon in the WebHelp output.webhelp.favicon

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to
integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file

webhelp.footer.file

must be well-formed, each widget must be in separate div or span element, and the code for each script element
is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The
following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
<div id="fb-root"/>
<script>

<!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id))
return;
 js = d.createElement(s); js.id = id; js.src =
"//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); -->

</script>
<div data-share="true" data-show-faces="true" data-action="like" data-layout="standard" class="fb-like"/>

</div>

Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is
added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content

webhelp.footer.include

Oxygen XML Editor plugin | Document Types (Frameworks) | 848

http://oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

of that file is used as footer. If the webhelp.footer.file has no value then the default Oxygen XML Editor plugin
footer is inserted in each WebHelp page.

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this
address.

webhelp.logo.image.target.url

Specifies a path to an image displayed as a logo in the left side of the output header.webhelp.logo.image

This parameter specifies a short name for the documentation target, or product (for example,
mobile-phone-user-guide, hvac-installation-guide).

webhelp.product.id (available only for
Feedback-enabled systems)

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.webhelp.product.version (available only
for Feedback-enabled systems)

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () {
} = ; * % + &.

The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML Editor plugin
uses for indexing Japanese content in the WebHelp pages. This indexer does not come bundled with Oxygen XML

webhelp.search.japanese.dictionary

Editor plugin or the Oxygen XML WebHelp plugin. To use it, you need to download it from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0 and add it in the
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib directory.

If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results that are
displayed on the Search tab (default setting is true).

webhelp.search.ranking

Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined skin CSS from
the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp\predefined-skins
directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web application.

webhelp.skin.css

For more information about all the DocBook transformation parameters, go to
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html.

Related information
WebHelp System Output on page 652

DocBook to PDF Output Customization
Main steps for customization of PDF output generated from DocBook XML documents.

When the default layout and output look of the DocBook to PDF transformation need to be customized, the following
main steps should be followed. In this example a company logo image is added to the front matter of a book. Other types
of customizations should follow some similar steps.

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/titlepage.templates.xml and
customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
<mediaobject/>
<title

t:named-template="book.verso.title"
font-size="&hsize2;"
font-weight="bold"
font-family="{$title.font.family}"/>

Oxygen XML Editor plugin | Document Types (Frameworks) | 849

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
http://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html
http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile

<corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.

Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.

The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert logo image in the XML document.

The path to the logo image must be inserted in the book/info/mediaobject element of the XML document.

5. Apply the customization layer to the XML document.

A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML Editor
plugin and set the customization layer in the XSL URL property of the scenario.

Related information
http://www.sagehill.net/docbookxsl/PrintCustomEx.html

The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.

http://www.oxygenxml.com/demo/DocBook_Customization.html
Video demonstration for creating a DocBook customization layer in Oxygen XML Editor plugin.

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when possible.
To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;
src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as in
the following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. In your DocBook to EPUB transformation, set the epub.embedded.fonts parameter to fonts/MyFont.otf.
If you need to provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.

DocBook to DITA Transformation

Oxygen XML Editor plugin includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

Oxygen XML Editor plugin | Document Types (Frameworks) | 850

http://www.oxygenxml.com/demo/DocBook_Customization.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/
http://www.oxygenxml.com/demo/DocBook_Customization.html
https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation Scenario(s) (Alt
+ Shift + T, T (Command + Alt + T, T on OS X)) action from the toolbar or the XML menu.

• To customize the transformation or change the scenario that is associated with the document, use the Configure
Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action from the toolbar
or the XML menu.

2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements as
it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert XML
comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation errors,
adjust certain attributes, or split the content into individual topics.

DocBook 5 Templates

Default templates are available in the New File wizard and can be used for easily creating a skeletal form of a DocBook
5 book or article. These templates are stored in the
[OXYGEN_INSTALL_DIR]/frameworks/docbook/templates/DocBook 5 folder.

Here are some of the DocBook 5 templates available when creating new documents from templates:

• Article
• Article with MathML
• Article with SVG
• Article with XInclude
• Book
• Book with XInclude
• Chapter
• Section
• Set of Books

Some experimental DocBook 5.1 templates are also available and are stored in the
[OXYGEN_INSTALL_DIR]/frameworks/docbook/templates/DocBook 5.1 (Experimental) folder.
They include the following:

• Assembly
• Topic

Inserting an olink in DocBook Documents

The olink element is used for linking to resources outside the current DocBook document. The targetdoc attribute
is used for the document ID that contains the target element and the targetptr attribute for the ID of the target
element (the value of an id or xml:id attribute). The combination of those two attributes provides a unique identifier
to locate cross references.

For example, a Mail Administrator Guide with the document ID MailAdminGuide might contain a chapter about
user accounts, like this:

<chapter id="user_accounts">
<title>Administering User Accounts</title>
<para>blah blah</para>

You can form a cross reference to that chapter by adding an olink, as in the following example:

You may need to update your
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts
</olink>
when you get a new machine.

Oxygen XML Editor plugin | Document Types (Frameworks) | 851

To use an olink to create links between documents, follow these steps:

1. Decide which documents are to be included in the domain for cross referencing.

A unique ID must be assigned to each document that will be referenced with an olink. It is usually added as an
id (or xml:id for DocBook5) attribute to the root element of the document.

2. Decide on your output hierarchy.

For creating links between documents, the relative locations of the output documents must be known. Before going
further you must decide the names and locations of the output directories for all the documents from the domain.
Each directory will be represented by an element: <dir name="directory_name">, in the target database
document.

3. Create the target database document.

Each collection of documents has a master target database document that is used to resolve all olinks from that
collection. The target database document is an XML file that is created once. It provides a framework that pulls in
the target data for each document. The database document is static and all the document data is pulled in dynamically.

The following is an example of a target database document. It structures a collection of documents in a sitemap
element that provides the relative locations of the outputs (HTML in this example). Then it pulls in the individual
target data using system entity references to target data files that will be created in the next step.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset [
<!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">
<!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">
<!ENTITY reftargets SYSTEM "file:///doc/man/target.db">
]>
<targetset>

<targetsetinfo>
 Description of this target database document,
 which is for the examples in olink doc.

</targetsetinfo>

<!-- Site map for generating relative paths between documents -->
<sitemap>

<dir name="documentation">
<dir name="guides">

<dir name="mailuser">
<document targetdoc="MailUserGuide"

baseuri="userguide.html">
 &ugtargets;

</document>
</dir>
<dir name="mailadmin">
<document targetdoc="MailAdminGuide">

 &agtargets;
</document>

</dir>
</dir>
<dir name="reference">

<dir name="mailref">
<document targetdoc="MailReference">

 &reftargets;
</document>

</dir>
</dir>

</dir>
</sitemap>

</targetset>

4. Generate the target data files by executing a DocBook transformation scenario.

Before applying the transformation, you need to edit the transformation scenario, go to the Parameters tab, and
make sure the value of the collect.xref.targets parameter is set to yes. The default name of a target data
file is target.db, but it can be changed by setting an absolute file path in the targets.filename parameter.

An example of a target.db file:

<div element="book" href="#MailAdminGuide" number="1" targetptr="user_accounts">

 <ttl>Administering User Accounts</ttl>
 <xreftext>How to administer user accounts</xreftext>
 <div element="part" href="#d5e4" number="I">
 <ttl>First Part</ttl>

Oxygen XML Editor plugin | Document Types (Frameworks) | 852

 <xreftext>Part I, “First Part”</xreftext>
 <div element="chapter" href="#d5e6" number="1">
 <ttl>Chapter Title</ttl>
 <xreftext>Chapter 1, Chapter Title</xreftext>
 <div element="sect1" href="#src_chapter" number="1"
targetptr="src_chapter">
 <ttl>Section1 Title</ttl>
 <xreftext>xreflabel_here</xreftext>
 </div>
 </div>
 </div>
</div>

5. Insert olink elements in the DocBook documents.

When editing a DocBook XML document in Author mode, the Insert OLink action is available in the Link
drop-down menu from the toolbar. This action opens the Insert OLink dialog box that allows you to select the target
of an olink from the list of all possible targets from a specified target database document (specified in the Targetset
URL field). Once a Targetset URL is selected, the structure of the target documents is presented. For each target
document (targetdoc), its content is displayed, allowing you to easily identify the appropriate targetptr. You
can also use the search fields to quickly identify a target. If you already know the values for the targetdoc and
targetptr attributes, you can insert them directly in the corresponding fields.

In the following image, the target database document is called target.xml, dbadmin is selected for the target
document (targetdoc), and bldinit is selected as the value for the targetptr attribute. Notice that you can also
add XREF text into the olink by using the xreftext field.

Figure 461: Insert OLink Dialog Box

6. Process a DocBook transformation for each document to generate the output.

a) Edit the transformation scenario and set the value of the target.database.document parameter to be the
URL of the target database document.

b) Apply the transformation scenario.

Oxygen XML Editor plugin | Document Types (Frameworks) | 853

DITA Topics Document Type

The Darwin Information Typing Architecture (DITA) is an XML-based architecture oriented to authoring, producing,
and delivering technical information. It divides content into small, self-contained topics that you can reuse in various
deliverables. The extensibility of DITA permits organizations to define specific information structures while still using
standard tools to work with them. Oxygen XML Editor plugin provides schema-driven (DTD, RNG, XSD) templates
for DITA documents.

A file is considered to be a DITA topic document when one of the following conditions are true:

• The root element name is one of the following: concept, task, reference, dita, or topic.
• The PUBLIC ID of the document is a PUBLIC ID for the elements listed above.
• The root element of the file has an attribute named DITAArchVersion for the

“http://dita.oasis-open.org/architecture/2005/” namespace. This enhanced case of matching is only applied when the
Enable DTD/XML Schema processing in document type detection option is enabled from the Document Type
Association preferences page.

Default schemas that are used if one is not detected in the DITA documents are stored in the various folders inside
DITA_OT_DIR/dtd/ or DITA_OT_DIR/schema/.

The default CSS files used for rendering DITA content in Author mode are stored in
[OXYGEN_INSTALL_DIR]/frameworks/dita/css/.

The default catalogs for the DITA topic document type are as follows:

• DITA_OT_DIR/catalog-dita.xml

• [OXYGEN_INSTALL_DIR]/frameworks/dita/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/dita/plugin/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/dita/styleguide/catalog.xml

DITA Author Mode Actions

A variety of actions are available in the DITA framework that can be added to the DITA menu, the Author Custom
Actions toolbar, the contextual menu, and the Content Completion Assistant.

DITA Toolbar Actions
The following default actions are readily available on the DITA (Author Custom Actions) toolbar when editing in
Author mode (by default, most of them are also available in the DITA menu and in various submenus of the contextual
menu):

Surrounds the selected text with a b tag. You can use this action on multiple non-contiguous
selections.

Bold

Surrounds the selected text with an i tag. You can use this action on multiple non-contiguous
selections.

Italic

Surrounds the selected text with a u tag. You can use this action on multiple non-contiguous
selections.

Underline

The following link actions are available from this menu:Link Actions
Drop-Down Menu Opens the Cross Reference (xref) dialog box that allows you to insert a

link to a target resource at the current location within a document. The
Cross
Reference

target resource can be the location of a file or a key that is already defined
in your DITA map structure. Once the target resource has been selected,
you can also target specific elements within that resource. For more
information, see the Linking in DITA Topics on page 1180 topic.

Opens the File Reference dialog box that allows you to insert a link to a
target file resource at the current location within a document. The target

File Reference

resource can be the location of a file or a key that is already defined in your

Oxygen XML Editor plugin | Document Types (Frameworks) | 854

DITA map structure. For more information, see the Linking in DITA Topics
on page 1180 topic.

Opens the Web Link dialog box that allows you to insert a link to a target
web-related resource at the current location within a document. The target

Web Link

resource can be a URL or a key that is already defined in your DITA map
structure. For more information, see the Linking in DITA Topics on page
1180 topic.

Opens the Cross Reference (xref) dialog box that allows you to insert a
link to a target resource in a related links section at the bottom of the current

Related Link
to Topic

document. The target resource can be the location of a file or a key that is
already defined in your DITA map structure. Once the target resource has
been selected, you can also target specific elements within that resource.
If a related links section does not already exist, this action creates one. For
more information, see the Linking in DITA Topics on page 1180 topic.

Opens the File Reference dialog box that allows you to insert a link to a
target file resource in a related links section at the bottom of the current

Related Link
to File

document. The target resource can be the location of a file or a key that is
already defined in your DITA map structure. If a related links section does
not already exist, this action creates one. For more information, see the
Linking in DITA Topics on page 1180 topic.

Opens the Web Link dialog box that allows you to insert a link to a target
web-related resource in a related links section at the bottom of the current

Related Link
to Web Page

document. The target resource can be a URL or a key that is already defined
in your DITA map structure. If a related links section does not already
exist, this action creates one. For more information, see the Linking in DITA
Topics on page 1180 topic.

Opens the Insert Image dialog box that allows you to configure the properties of an image
to be inserted into a DITA document at the cursor position.

Insert Image

The following insert actions are available from this menu:Insert Section
Drop-Down Menu Inserts a new section element in the document, depending on the

current context.
Insert Section

Inserts a new concept element, depending on the current context.
Concepts provide background information that users must know
before they can successfully work with a product or interface.

Insert Concept

Inserts a new task element, depending on the current context. Tasks
are the main building blocks for task-oriented user assistance. They

Insert Task

generally provide step-by-step instructions that will enable a user to
perform a task.

Inserts a new topic element, depending on the current context.
Topics are the basic units of DITA content and are usually organized
around a single subject.

Insert Topic

Inserts a new reference element, depending on the current context.
A reference is a top-level container for a reference topic.

Insert Reference

Inserts a new paragraph at current cursor position.Insert Paragraph

This action provides a mechanism for reusing content fragments. It opens the Reuse Content
dialog box that allows you to insert several types of references to reusable content at the

Reuse Content

cursor position. The types of references that you can insert using this dialog box include

Oxygen XML Editor plugin | Document Types (Frameworks) | 855

content references (conref), content key references (conkeyref), or key references to
metadata (keyref).

Inserts a new list or step item in the current list type.Insert step or list
item

Inserts an unordered list at the cursor position. A child list item is also automatically inserted
by default.

Insert Unordered
List

Inserts an ordered list at the cursor position. A child list item is also automatically inserted
by default.

Insert Ordered List

Sorts cells or list items in a table.Sort

Opens a dialog box that allows you to configure and insert a table. You can generate a header
and footer, set the number of rows and columns of the table and decide how the table is framed.

Insert Table

Inserts a new table row with empty cells below the current row. This action is available when
the cursor is positioned inside a table.

Insert Row Below

Deletes the table row located at cursor position or multiple rows in a selection.Delete Row(s)

Inserts a new table column with empty cells after the current column. This action is available
when the cursor is positioned inside a table.

Insert Column After

Deletes the table column located at cursor position or multiple columns in a selection.Delete Column(s)

Opens the Table properties dialog box that allows you to configure properties of a table
(such as frame borders).

Table Properties

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects more than one
option to split the cell, a dialog box will be displayed that allows you to select the number of
rows or columns to split the cell into.

Split Cell

DITA Menu Actions
In addition to the DITA toolbar actions, the following default actions are available in the DITA menu when editing in
Author mode:

This action provides a mechanism for reusing content fragments. It opens the Reuse Content
dialog box that allows you to insert several types of references to reusable content at the cursor

Reuse Content

position. The types of references that you can insert using this dialog box include content
references (conref), content key references (conkeyref), or key references to metadata
(keyref).

Opens the Push current element dialog box that allows content from a source topic to be inserted
into another topic without any special coding in the topic where the content will be re-used.

Push Current
Element

This action is available for elements with a conref or conkeyref attribute. it opens the Edit
Content Reference dialog box that allows you to edit the source location (or key) and source

Edit Content
Reference

element of a content reference (or content key reference), and the reference details
(conref/conkeyref and conrefend attributes). See the Reuse Content Dialog Box on
page 1170 topic for more information.

Replaces the referenced fragment (conref or conkeyref) at the cursor position with its
content. This action is useful if you want to make changes to the content in the currently edited
document without changing the referenced fragment in its source location.

Replace Reference
with content

Removes the content reference (conref or conkeyref) inside the element at the cursor
position.

Remove Content
Reference

Oxygen XML Editor plugin | Document Types (Frameworks) | 856

Creates a reusable component from the selected fragment of text. For more information, see
Creating a Reusable Content Component on page 1177.

Create Reusable
Component

Inserts a reusable component at cursor location. For more information, see Inserting a Reusable
Content Component on page 1178.

Insert Reusable
Component

This submenu includes the following special paste actions that are specific to the DITA
framework:

Paste special
submenu

Inserts a content reference (a DITA element with a conref attribute) to the
DITA XML element from the clipboard. An entire DITA XML element with

Paste as
content
reference an ID attribute must be present in the clipboard when the action is invoked.

The conref attribute will point to this ID value.

Allows you to indirectly reference content using the conkeyref attribute.
When the DITA content is processed, the key references are resolved using

Paste as
content key
reference key definitions from DITA maps. To use this action, you must first do the

following:

1. Make sure the DITA element that contains the copied content has an ID
attribute assigned to it.

2. In the DITA Maps Manager view, make sure that the Root map combo
box points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has
a key assigned to it. To assign a key, right-click the topic with its parent
map opened in the DITA Maps Manager, select Edit Properties, and
enter a value in the Keys field.

Inserts a link element or an xref (depending on the location of the paste
operation) that points to the DITA XML element from the clipboard. An

Paste as link

entire DITA XML element with an ID attribute must be present in the
clipboard when the action is invoked. The href attribute of link/href
will point to this ID value.

Inserts a link to the element that you want to reference. To use this action,
you must first do the following:

Paste as link
(keyref)

1. Make sure the DITA element that contains the copied content has an ID
attribute assigned to it.

2. In the DITA Maps Manager view, make sure that the Root map combo
box points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has
a key assigned to it. To assign a key, right-click the topic with its parent
map opened in the DITA Maps Manager, select Edit Properties, and
enter a value in the Keys field.

In addition to the table actions available on the toolbar, the following actions are available in
this submenu:

Table submenu

Inserts a new table row with empty cells above the current row. This
action is available when the cursor is positioned inside a table.

Insert Row Above

Opens a dialog box that allows you to insert any number of rows and
specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Inserts a column before the current one.Insert Column
Before

Oxygen XML Editor plugin | Document Types (Frameworks) | 857

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or Below
the current column).

Insert Columns

Inserts a new empty cell depending on the current context. If the
cursor is positioned between two cells, Oxygen XML Editor plugin

Insert Cell

a new cell at cursor position. If the cursor is inside a cell, the new
cell is created after the current cell.

Opens the XML Fragment Editor that allows you to insert and edit MathML notations.Insert > Insert
Equation

Opens the ID Options dialog box that allows you to configure options for generating IDs in
Author mode. The dialog box includes the following:

ID Options

The pattern for the ID values that will be generated. This text
field can be customized using constant strings or any of the
Oxygen XML Editor plugin Editor Variables on page 134.

ID Pattern

The elements for which ID values will be generated, specified
using class attribute values. To customize the list, use the Add,
Edit, or Remove buttons.

Element name or class
value to generate ID for

If enabled, Oxygen XML Editor plugin will automatically
generate unique IDs for the elements listed in this dialog box
when they are created in Author mode.

Auto generate IDs for
elements

When copying and pasting content in the same document, this
option allows you to control whether or not pasted elements that

Remove IDs when copying
content in the same
document are listed in this dialog box should retain their existing IDs. To

retain the element IDs, disable this option.

Note: This option does not have an effect on content
that is cut and pasted.

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements
and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

Opens the DITA Style Guide Best Practices for Authors in your browser and displays a topic
that is relevant to the element at the cursor position. When editing DITA documents, this action

Style Guide

is available in the contextual menu of the editing area (under the About Element sub-menu),
in the DITA menu, and in some of the documentation tips that are displayed by the Content
Completion Assistant.

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Oxygen XML Editor plugin | Document Types (Frameworks) | 858

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

DITA Contextual Menu Actions
In addition to many of the DITA toolbar actions and the general Author mode contextual menu actions, the following
DITA framework-specific actions are also available in the contextual menu when editing in Author mode:

This submenu includes the following special paste actions that are specific to the DITA framework:Paste
special
submenu

Inserts a content reference (a DITA element with a conref attribute) to the DITA
XML element from the clipboard. An entire DITA XML element with an ID
attribute must be present in the clipboard when the action is invoked. The conref
attribute will point to this ID value.

Paste as content
reference

Allows you to indirectly reference content using the conkeyref attribute. When
the DITA content is processed, the key references are resolved using key definitions
from DITA maps. To use this action, you must first do the following:

Paste as content
key reference

1. Make sure the DITA element that contains the copied content has an ID attribute
assigned to it.

2. In the DITA Maps Manager view, make sure that the Root map combo box
points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has a key
assigned to it. To assign a key, right-click the topic with its parent map opened
in the DITA Maps Manager, select Edit Properties, and enter a value in the
Keys field.

Inserts a link element or an xref (depending on the location of the paste
operation) that points to the DITA XML element from the clipboard. An entire

Paste as link

DITA XML element with an ID attribute must be present in the clipboard when
the action is invoked. The href attribute of link/href will point to this ID
value.

Oxygen XML Editor plugin | Document Types (Frameworks) | 859

Inserts a link to the element that you want to reference. To use this action, you
must first do the following:

Paste as link
(keyref)

1. Make sure the DITA element that contains the copied content has an ID attribute
assigned to it.

2. In the DITA Maps Manager view, make sure that the Root map combo box
points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has a key
assigned to it. To assign a key, right-click the topic with its parent map opened
in the DITA Maps Manager, select Edit Properties, and enter a value in the
Keys field.

This action is available in the contextual menu when it is invoked on an image. This action applies an
image map to the current image (if one does not already exist) and opens the Image Map Editor

Image Map
Editor

dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link to
various destinations.

The following table editing actions are available in the contextual menu when it is invoked on a table:Table Actions

Opens a dialog box that allows you to insert any number of rows and
specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Deletes the table row located at cursor position or multiple rows in a
selection.

Delete Row(s)

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or Below
the current column).

Insert Columns

Deletes the table column located at cursor position or multiple columns
in a selection.

Delete Column(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin
detects more than one option to split the cell, a dialog box will be

Split Cell

displayed that allows you to select the number of rows or columns to
split the cell into.

Sorts cells or list items in a table.Sort

Opens the Table properties dialog box that allows you to configure
properties of a table (such as frame borders).

Table Properties

This submenu give you access to all the usual contextual menu actions.Other Actions submenu

Opens the XML Fragment Editor that allows you to insert and edit MathML notations.Insert >
Insert

Equation

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending on
how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements and
elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects elements
that do not already have an id attribute.

Oxygen XML Editor plugin | Document Types (Frameworks) | 860

This submenu includes the following actions in regards to reusing content in DITA:Reuse
submenu Opens the Push current element dialog box that allows content from a

source topic to be inserted into another topic without any special coding
in the topic where the content will be re-used.

Push Current Element

This action is available for elements with a conref or conkeyref
attribute. it opens the Edit Content Reference dialog box that allows

Edit Content Reference

you to edit the source location (or key) and source element of a content
reference (or content key reference), and the reference details
(conref/conkeyref and conrefend attributes). See the Reuse
Content Dialog Box on page 1170 topic for more information.

Replaces the referenced fragment (conref or conkeyref) at the cursor
position with its content. This action is useful if you want to make changes

Replace Reference with
content

to the content in the currently edited document without changing the
referenced fragment in its source location.

Removes the content reference (conref or conkeyref) inside the
element at the cursor position.

Remove Content
Reference

Creates a reusable component from the selected fragment of text. For
more information, see Creating a Reusable Content Component on page
1177.

Create Reusable
Component

Inserts a reusable component at cursor location. For more information,
see Inserting a Reusable Content Component on page 1178.

Insert Reusable
Component

Finds the references to the id attribute value for the element at the current cursor position, in all the
topics contained in the current DITA map (opened in the DITA Maps Manager view). If no references

Search
References

are found for the current element, a dialog box will be displayed that offers you the option of searching
for references to its ancestor elements.

Figure 462: Search References to Ancestors Dialog Box

(Ctrl + Shift +
G)

This submenu includes the following actions:About
Element
submenu

Opens the DITA Style Guide Best Practices for Authors in your browser
and displays a topic that is relevant to the element at the cursor position.

Style Guide

When editing DITA documents, this action is available in the contextual
menu of the editing area (under the About Element sub-menu), in the
DITA menu, and in some of the documentation tips that are displayed by
the Content Completion Assistant.

Opens a reference to the documentation of the XML element closest to the
cursor position in a web browser.

Browse reference
manual

Moves the cursor to the definition of the current element.Show Definition

Oxygen XML Editor plugin | Document Types (Frameworks) | 861

DITA Drag/Drop Actions

Dragging a file from the Project view or DITA Maps Manager view and dropping it into a DITA document that is edited
in Author mode, creates a link to the dragged file (the xref DITA element with the href attribute) at the drop location.
Dragging an image file from the default file system application (Windows Explorer on Windows or Finder on Mac OS
X, for example) and dropping it into a DITA document inserts an image element (the image DITA element with the
href attribute) at the drop location.

DITA Topic Transformation Scenarios

The following default transformation scenarios are available for DITA Topics:

• DITA XHTML - Transforms a DITA topic to XHTML using DITA Open Toolkit.
• DITA PDF - Transforms a DITA topic to PDF using the DITA Open Toolkit and the Apache FOP engine.

Related information
Configure Transformation Scenario(s) Dialog Box on page 640

Editing a Transformation Scenario on page 638

DITA Templates

The default templates available for DITA topics are stored in various sub-folders inside the
[OXYGEN_INSTALL_DIR]/frameworks/dita/templates/ folder. They can be used for easily creating a
DITA concept, reference, task, topic, or other DITA documents.

Here are some of the DITA templates available when creating new documents from templates:

• Composite - New DITA Composite
• Concept - New DITA Concept
• General Task - New DITA Task
• Glossentry - New DITA Glossentry
• Glossgroup - New DITA Glossgroup
• Machinery Task - New DITA Machinery Task
• Reference - New DITA Reference
• Task - New DITA Task
• Topic - New DITA Topic
• Learning Assessment - New DITA Learning Assessment (learning specialization in DITA 1.2)
• Learning Content - New DITA Learning Content (learning specialization in DITA 1.2)
• Learning Summary - New DITA Learning Summary (learning specialization in DITA 1.2)
• Learning Overview - New DITA Learning Overview (learning specialization in DITA 1.2)
• Learning Plan - New DITA Learning Plan (learning specialization in DITA 1.2)
• Troubleshooting - DITA 1.3 Troubleshooting specialization

DITA for Publishers topic specialization templates (available only when using the built-in DITA-OT 1.8 version):

• D4P Article - New DITA for Publishers article
• D4P Chapter - New DITA for Publishers chapter
• D4P Concept - New DITA for Publishers concept
• D4P Conversion Configuration - New DITA for Publishers conversion configuration
• D4P Cover - New DITA for Publishers cover
• D4P Part - New DITA for Publishers part
• D4P Sidebar - New DITA for Publishers sidebar
• D4P Subsection - New DITA for Publishers subsection
• D4P Topic - New DITA for Publishers topic

Oxygen XML Editor plugin | Document Types (Frameworks) | 862

DITA Map Document Type

DITA maps are documents that collect and organize references to DITA topics to indicate the relationships between the
topics. They can also serve as outlines or tables of contents for DITA deliverables and as build manifests for DITA
projects.

Maps allow scalable reuse of content across multiple contexts. They can be used by information architects, authors, and
publishers to plan, develop, and deliver content.

A file is considered to be a DITA map document when either of the following is true:

• The root element name is one of the following: map, bookmap.
• The public id of the document is -//OASIS//DTD DITA Map or -//OASIS//DTD DITA BookMap.
• The root element of the file has an attribute named class that contains the value map/map and a

DITAArchVersion attribute from the http://dita.oasis-open.org/architecture/2005/ namespace. This enhanced
case of matching is only applied when the Enable DTD/XML Schema processing in document type detection option
from the Document Type Association preferences page is enabled.

Default schemas that are used if one is not detected in the DITA map document are stored in the various folders inside
DITA_OT_DIR/dtd/ or DITA_OT_DIR/schema/.

The default CSS files used for rendering DITA content in Author mode are stored in
[OXYGEN_INSTALL_DIR]/frameworks/dita/css/.

The default catalogs for the DITA Map document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/dita/catalog.xml

• DITA_OT_DIR/catalog-dita.xml

Related information
Selecting a Root Map on page 1126

DITA Map Author Mode Actions

A variety of actions are available in the DITA Map framework that can be added to the DITA menu, the Author Custom
Actions toolbar, the contextual menu, and the Content Completion Assistant.

DITA Map Toolbar and Menu Actions
When a DITA map is opened in Author mode, the following default actions are available on the DITA Map Author
Custom Actions toolbar (by default, they are also available in the DITA menu and in various submenus of the contextual
menu):

Opens a New DITA topic dialog box that allows you to create a new topic and
inserts a reference to it at the cursor position.

Insert New Topic

Opens the Insert Reference dialog box that allows you to insert and configure
a reference to a topic at the cursor position.

Insert Topic Reference

Opens the Reuse Content dialog box that allows you to insert and configure a
content reference (conref), or a content key reference (conkeyref) at the
cursor position.

Reuse Content

Opens the Insert Reference dialog box that allows you to insert a topic heading
at the cursor position.

Insert Topic Heading

Opens the Insert Reference dialog box that allows you to insert a topic group
at the cursor position.

Insert Topic Group

Opens a dialog box that allows you to configure the relationship table to be
inserted. The dialog box allows you to configure the number of rows and

Insert Relationship Table

columns of the relationship table, if the header will be generated and if the title
will be added.

Oxygen XML Editor plugin | Document Types (Frameworks) | 863

Allows you to change the properties of rows in relationship tables.Relationship Table Properties

Inserts a new table row with empty cells. The action is available when the cursor
position is inside a table.

Insert Relationship Row

Inserts a new table column with empty cells after the current column. The action
is available when the cursor position is inside a table.

Insert Relationship Column

Deletes the table column where the cursor is located.Delete Relationship Column

Deletes the table row where the cursor is located.Delete Relationship Row

DITA Menu Actions
In addition, the following default actions are available in the DITA menu when editing a DITA map in Author mode:

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

DITA Map Contextual Menu Actions
In addition to many of the DITA Map toolbar actions and the general Author mode contextual menu actions, the following
DITA map framework-specific actions are also available in the contextual menu when editing in Author mode:

Opens the Edit Properties dialog box that allows you to configure the properties of a
selected node. You can find more details about this dialog box in the Edit Properties Dialog
Box on page 1137 topic.

 Edit Properties

Oxygen XML Editor plugin | Document Types (Frameworks) | 864

Finds the references to the href or keys attribute value of the topic/map reference element
at the current cursor position, in all the topics from the current DITA map (opened in the

Search References

DITA Maps Manager view). The current topic/map reference element must have an href
or keys attribute defined to complete the search.

DITA Map Drag/Drop Actions
Dragging a file from the Project view or DITA Maps Manager view and dropping it into a DITA map document that is
edited in Author mode creates a link to the dragged file (a topicref element, chapter, part, etc.) at the drop
location.

DITA Map Transformation Scenarios

The following default transformations scenarios are available:

• Predefined transformation scenarios allow you to transform a DITA map to a variety of outputs, such as PDF, ODF,
XHTML, WebHelp, EPUB, and CHM files.

• Run DITA-OT Integrator - Use this transformation scenario if you want to integrate a DITA-OT plugin. This
scenario runs an Ant task that integrates all the plugins from the DITA-OT/plugins directory.

• DITA Map Metrics Report - Use this transformation scenario if you want to generate a DITA map statistics report
containing information such as:

• The number of processed maps and topics.
• Content reuse percentage.
• Number of elements, attributes, words, and characters used in the entire DITA map structure.
• DITA conditional processing attributes used in the DITA maps.
• Words count.
• Information types such as number of containing maps, bookmaps, or topics.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

DITA Map to WebHelp Output

DITA maps can be transformed into a variety of WebHelp systems designed to suit your specific needs. This section
contains the procedures for obtaining the output for the variants of the WebHelp system.

Related information
WebHelp System Output on page 652

Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp

To activate support for RTL languages in WebHelp output, edit the DITA map and set the xml:lang attribute on its
root element (map). The corresponding attribute value can be set for following RTL languages:

• ar-eg - Arabic
• he-il - Hebrew
• ur-pk - Urdu

Search Engine Optimization for DITA WebHelp

A DITA Map WebHelp transformation scenario can be configured to produce a sitemap.xml file that is used by
search engines to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system and allows
webmasters to provide additional information about each page, such as the date it was last updated, change frequency,
and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>

Oxygen XML Editor plugin | Document Types (Frameworks) | 865

<loc>http://www.example.com/topics/introduction.html</loc>
<lastmod>2014-10-24</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>

</url>
<url>
<loc>http://www.example.com/topics/care.html#care</loc>
<lastmod>2014-10-24</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>

</url>
 . . .
</urlset>

Each page has a <url> element structure containing additional information, such as:

• loc - the URL of the page. This URL must begin with the protocol (such as http), if required by your web server.
It is constructed from the value of the webhelp.sitemap.base.url parameter from the transformation scenario
and the relative path to the page (collected from the href attribute of a topicref element in the DITA map).

Note: The value must have fewer than 2,048 characters.

• lastmod - the date when the page was last modified. The date format is YYYY-MM-DD.
• changefreq - indicates how frequently the page is likely to change. This value provides general information to

assist search engines, but may not correlate exactly to how often they crawl the page. Valid values are: always,
hourly, daily, weekly, monthly, yearly, and never. The first time the sitemap.xml file is generated,
the value is set based upon the value of the webhelp.sitemap.change.frequency parameter in the DITA
WebHelp transformation scenario. You can change the value in each url element by editing the sitemap.xml
file.

Note: The value always should be used to describe documents that change each time they are accessed.
The value never should be used to describe archived URLs.

• priority - the priority of this page relative to other pages on your site. Valid values range from 0.0 to 1.0. This
value does not affect how your pages are compared to pages on other sites. It only lets the search engines know
which pages you deem most important for the crawlers. The first time the sitemap.xml file is generated, the
value is set based upon the value of the webhelp.sitemap.priority parameter in the DITA WebHelp
transformation scenario. You can change the value in each url element by editing the sitemap.xml file.

Note: lastmod, changefreq, and priority are optional elements.

Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-tune
search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the Edit DITA
Scenario dialog box.

2. Open the Parameters tab and set a value for the following parameters:

• webhelp.sitemap.base.url - the URL of the location where your WebHelp system is deployed

Note: This parameter is required for Oxygen XML Editor plugin to generate the sitemap.xml file.

• webhelp.sitemap.change.frequency - how frequently the WebHelp pages are likely to change (accepted
values are: always, hourly, daily, weekly, monthly, yearly, and never)

• webhelp.sitemap.priority - the priority of each page (value ranging from 0.0 to 1.0)

3. Run the transformation scenario.
4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the parameters of

each page, according to your needs.

Oxygen XML Editor plugin | Document Types (Frameworks) | 866

Indexing Japanese Content for DITA WebHelp Pages

To optimize the indexing of Japanese content in WebHelp pages generated from DITA map transformations, the Kuromoji
analyzer can be used. This analyzer in not included in the Oxygen XML Editor plugin installation kit and must be
downloaded and added.

To use the Kuromoji analyzer to index Japanese content in your WebHelp system, follow these steps:

1. Download the analyzer jar file from
http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0.

2. Place the Kuromoji analyzer jar file in the following directory:
DITA_OT_DIR/plugins/com.oxygenxml.webhelp/lib.

3. For the analyzer to work properly, search terms that are entered into your WebHelp pages must be separated by
spaces.

Optionally a Japanese user dictionary can be set with the webhelp.search.japanese.dictionary parameter.

Related information
DITA Map to WebHelp Output on page 587

Compiled HTML Help (CHM) Output Format

To perform a Compiled HTML Help (CHM) transformation Oxygen XML Editor plugin needs Microsoft HTML
Help Workshop to be installed on your computer. Oxygen XML Editor plugin automatically detects HTML Help
Workshop and uses it.

Note: HTML Help Workshop might fail if the files used for transformation contain accents in their names,
due to different encodings used when writing the .hhp and .hhc files. If the transformation fails to produce the
CHM output but the .hhp (HTML Help Project) file is already generated, you can manually try to build the CHM
output using HTML Help Workshop.

Changing the Output Encoding

Oxygen XML Editor plugin uses the htmlhelp.locale parameter to correctly display specific characters of different
languages in the output of the Compiled HTML Help (CHM) transformation. The Compiled HTML Help (CHM)
default scenario that comes bundled with Oxygen XML Editor plugin has the htmlhelp.locale parameter set to
en-US.

The default value of the htmlhelp.locale is en-US. To customize this parameter, go to Configure

Transformation Scenarios and click the Edit button. In the parameter tab search for the htmlhelp.locale
parameter and change its value to the desired language tag.

The format of the htmlhelp.locale parameter is LL-CC, where LL represents the language code (en, for example)
and CC represents the country code (US, for example). The language codes are contained in the ISO 639-1 standard
and the country codes are contained in the ISO 3166-1 standard. For further details about language tags, go to
http://www.rfc-editor.org/rfc/rfc5646.txt.

Kindle Output Format

Oxygen XML Editor plugin requires KindleGento generate Kindle output from DITA maps. To install KindleGen for
use by Oxygen XML Editor plugin, follow these steps:

1. Go to www.amazon.com/kindleformat/kindlegen and download the zip file that matches your operating system.
2. Unzip the file on your local disk.
3. Start Oxygen XML Editor plugin and open a DITA map in the DITA Maps Manager view.

4. In the DITA Maps Manager view, open the Configure Transformation Scenario(s) dialog box.
5. Select the DITA Map Kindle transformation and press the Edit button to edit it.
6. Go to Parameters tab and set the kindlegen.executable parameter as the path to the KindleGen directory.
7. Accept the changes.

Oxygen XML Editor plugin | Document Types (Frameworks) | 867

http://mvnrepository.com/artifact/org.apache.lucene/lucene-analyzers-kuromoji/4.0.0
http://www.rfc-editor.org/rfc/rfc5646.txt
http://www.amazon.com/gp/feature.html/?docId=1000765211

Migrating OOXML Documents to DITA

Oxygen XML Editor plugin integrates the entire DITA for Publishers plugins suite that allows you to migrate content
from Open Office XML documents to DITA.

You can use any of the following methods to migrate such documents to DITA:

• Open an OOXML document in Oxygen XML Editor plugin. The document is opened in the Archive Browser view.
• From the Archive Browser, open document.xml.

Note: document.xml holds the content of the document.

• Click Configure Transformation Scenario(s) on the toolbar and apply the DOCX DITA scenario. If you
encounter any issues with the transformation, click the link below for further details about the Word to DITA
Transformation Framework.

• Oxygen XML Editor plugin includes a Smart Paste feature that allows you to copy content from external sources
(such as web pages and Office-type documents) and paste it into a DITA topic.

Related information
http://dita4publishers.sourceforge.net/

Smart Paste Support on page 264

DITA Map Templates

The default templates available for DITA maps are stored in
[OXYGEN_INSTALL_DIR]/frameworks/dita/templates/map folder.

Here are some of the DITA map templates available when creating new documents from templates:

• DITA Map - Bookmap - New DITA Bookmap.
• DITA Map - Map - New DITA map.
• DITA Map - Learning Map - New DITA learning and training content specialization map.
• DITA Map - Learning Bookmap - New DITA learning and training content specialization bookmap.
• DITA Map - Eclipse Map - IBM specialization of DITA map used for producing Eclipse Help plugins.

DITA for Publishers Map specialization templates:

• D4P Map - New DITA for Publishers map.
• D4P Pub-component-map - New DITA for Publishers pub-component-map.
• D4P Pubmap - New DITA for Publishers pubmap.

XHTML Document Type

The Extensible HyperText Markup Language (XHTML), is a markup language that has the same depth of expression
as HTML, but also conforms to XML syntax.

A file is considered to be an XHTML document when the root element name is html.

Default schemas that are used if one is not detected in the XHTML file are stored in the following locations:

• XHTML 1.0 - [OXYGEN_INSTALL_DIR]/frameworks/xhtml/dtd/ or
[OXYGEN_INSTALL_DIR]/frameworks/xhtml/nvdl/.

• XHTML 1.1 - [OXYGEN_INSTALL_DIR]/frameworks/xhtml11/dtd/ or
[OXYGEN_INSTALL_DIR]/frameworks/xhtml11/schema/.

• XHTML 5 - [OXYGEN_INSTALL_DIR]/frameworks/xhtml/xhtml5 (epub3)/.

The CSS options for the XHTML document type are set to merge the CSS stylesheets specified in the document with
the CSS stylesheets defined in the XHTML document type.

The default CSS files used for rendering XHTML content in Author mode are stored in
[OXYGEN_INSTALL_DIR]/frameworks/xhtml/css/.

Oxygen XML Editor plugin | Document Types (Frameworks) | 868

http://dita4publishers.sourceforge.net/

The default catalogs for the XHTML document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/xhtml/dtd/xhtmlcatalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/relaxng/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/nvdl/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/xhtml11/dtd/xhtmlcatalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/xhtml11/schema/xhtmlcatalog.xml

• [OXYGEN_INSTALL_DIR]/xhtml5 (epub3)/catalog-compat.xml

XHTML Author Mode Actions

A variety of actions are available in the XHTML framework that can be added to the XHTML menu, the Author
Custom Actions toolbar, the contextual menu, and the Content Completion Assistant.

XHTML Toolbar Actions
The following default actions are readily available on the XHTML (Author Custom Actions) toolbar when editing in
Author mode (by default, they are also available in the XHTML menu and some of them are in various submenus of
the contextual menu):

Changes the style of the selected text to bold by surrounding it with b tag. You can
use this action on multiple non-contiguous selections.

Bold

Changes the style of the selected text to italic by surrounding it with i tag. You
can use this action on multiple non-contiguous selections.

Italic

Changes the style of the selected text to underline by surrounding it with u tag.
You can use this action on multiple non-contiguous selections.

Underline

Inserts an a element with an href attribute at the cursor position. You can type the
URL of the reference you want to insert or use the Browse drop-down menu to
select it using one of the following options:

Link

• Browse for local file - Displays the Open dialog box to select a local file.
• Browse for remote file - Displays the Open URL dialog box to select a remote

file.
• Browse for archived file - Opens the Archive Browser to select a file from an

archive.
• Browse Data Source Explorer - Open the Data Source Explorer to select a file

from a connected data source.
• Search for file - Opens the Find Resource dialog box to search for a file.

Inserts a graphic object at the cursor position. This is done by inserting an img element
regardless of the current context. The following graphical formats are supported: GIF,
JPG, JPEG, BMP, PNG, SVG.

Insert Image

A drop-down menu that includes actions for inserting h1, h2, h3, h4, h5, h6 elements.Headings Drop-down
Menu

Insert a new paragraph element at current cursor position.Insert Paragraph

Opens the XML Fragment Editor that allows you to insert and edit MathML notations.Insert Equation

Inserts a list item in the current list type.Insert List Item

Inserts an unordered list at the cursor position. A child list item is also automatically
inserted by default.

Insert Unordered List

Inserts an ordered list at the cursor position. A child list item is also automatically
inserted by default.

Insert Ordered List

Oxygen XML Editor plugin | Document Types (Frameworks) | 869

Inserts a definition list (dl element) with one list item (a dt child element and a dd
child element).

Insert a definition list at
the cursor position

Sorts cells or list items in a table.Sort

Opens a dialog box that allows you to configure and insert a table. You can generate
a header and footer, set the number of rows and columns of the table and decide how
the table is framed.

Insert Table

Inserts a new table row with empty cells below the current row. This action is available
when the cursor is positioned inside a table.

Insert Row Below

Inserts a new table row with empty cells above the current row. This action is available
when the cursor is positioned inside a table.

Insert Row Above

Inserts a new table column with empty cells after the current column. This action is
available when the cursor is positioned inside a table.

Insert Column After

Inserts a new empty cell depending on the current context. If the cursor is positioned
between two cells, Oxygen XML Editor plugin a new cell at cursor position. If the
cursor is inside a cell, the new cell is created after the current cell.

Insert Cell

Deletes the table column located at cursor position or multiple columns in a selection.Delete Column(s)

Deletes the table row located at cursor position or multiple rows in a selection.Delete Row(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects more than
one option to split the cell, a dialog box will be displayed that allows you to select the
number of rows or columns to split the cell into.

Split Cell

XHTML Menu Actions
In addition, the following default actions are available in the XHTML menu when editing in Author mode (some of
them are also available in the contextual menu):

In addition to the table actions available on the toolbar, the following actions are available in
this submenu:

Table submenu

Opens a dialog box that allows you to insert any number of rows
and specify the position where they will be inserted (Above or
Below the current row).

Insert Rows

Inserts a column before the current one.Insert Column Before

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or
Below the current column).

Insert Columns

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Oxygen XML Editor plugin | Document Types (Frameworks) | 870

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

XHTML Contextual Menu Actions
In addition to many of the XHTML toolbar actions and the general Author mode contextual menu actions, the following
XHTML framework-specific actions are also available in the contextual menu when editing in Author mode:

This action is available in the contextual menu when it is invoked on an image. This action applies an
image map to the current image (if one does not already exist) and opens the Image Map Editor dialog

Image Map
Editor

box. This feature allows you to create hyperlinks in specific areas of an image that will link to various
destinations.

The following table editing actions are available in the contextual menu when it is invoked on a table:Table
Actions Opens a dialog box that allows you to insert any number of rows and

specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Deletes the table row located at cursor position or multiple rows in a
selection.

Delete Row(s)

Opens a dialog box that allows you to insert any number of columns and
specify the position where they will be inserted (Above or Below the
current column).

Insert Columns

Deletes the table column located at cursor position or multiple columns
in a selection.

Delete Column(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects
more than one option to split the cell, a dialog box will be displayed that
allows you to select the number of rows or columns to split the cell into.

Split Cell

Sorts cells or list items in a table.Sort

Opens the Table properties dialog box that allows you to configure
properties of a table (such as frame borders).

Table Properties

This submenu give you access to all the usual contextual menu actions.Other Actions submenu

Oxygen XML Editor plugin | Document Types (Frameworks) | 871

XHTML Drag/Drop Actions
Dragging a file from the Project view or DITA Maps Manager view and dropping it into an XHTML document that is
edited in Author mode creates a link to the dragged file (the a element with the href attribute) at the drop location.
Dragging an image file from the default file system application (Windows Explorer on Windows or Finder on Mac OS
X, for example) and dropping it into an XHTML document inserts an image element (the img element with the src
attribute) at the drop location, similar to the Insert Image toolbar action.

XHTML Transformation Scenarios

The following default transformation scenarios are available for XHTML:

• XHTML to DITA concept - Converts an XHTML document to a DITA concept document.
• XHTML to DITA reference - Converts an XHTML document to a DITA reference document.
• XHTML to DITA task - Converts an XHTML document to a DITA task document.
• XHTML to DITA topic - Converts an XHTML document to a DITA topic document.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

XHTML Templates

Default templates are available for XHTML. They are stored in
[OXYGEN_INSTALL_DIR]/frameworks/xhtml/templates folder and they can be used for easily creating
basic XHTML documents.

Here are some of the XHTML templates available when creating new documents from templates.

• XHTML - 1.0 Strict - New Strict XHTML 1.0
• XHTML - 1.0 Transitional - New Transitional XHTML 1.0
• XHTML - 1.1 DTD Based - New DTD based XHTML 1.1
• XHTML - 1.1 DTD Based + MathML 2.0 + SVG 1.1 - New XHTML 1.1 with MathML and SVG insertions
• XHTML - 1.1 Schema based - New XHTML 1.1 XML Schema based

TEI ODD Document Type

The Text Encoding Initiative - One Document Does it all (TEI ODD) is a TEI XML-conformant specification format
that allows you to create a custom TEI P5 schema in a literate programming fashion. A system of XSLT stylesheets
called Roma was created by the TEI Consortium for manipulating the ODD files.

A file is considered to be a TEI ODD document when the following conditions are true:

• The file extension is .odd.
• The document namespace is http://www.tei-c.org/ns/1.0.

The default schema that is used if one is not detected in the TEI ODD document is tei_odds.rng and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/relaxng/.

The default CSS files used for rendering TEI ODD content in Author mode are stored in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/css/.

The default catalogs for the TEI ODD document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/schema/catalog.xml

To watch our video demonstration about TEI editing, go to http://oxygenxml.com/demo/WYSIWYG_TEI_Editing.html.

TEI ODD Author Mode Actions

A variety of actions are available in the TEI ODD framework that can be added to the TEI ODD menu, the Author
Custom Actions toolbar, the contextual menu, and the Content Completion Assistant.

Oxygen XML Editor plugin | Document Types (Frameworks) | 872

http://www.tei-c.org/Guidelines/Customization/odds.xml
http://wiki.tei-c.org/index.php/Roma
http://oxygenxml.com/demo/WYSIWYG_TEI_Editing.html

TEI ODD Toolbar Actions
The following default actions are readily available on the TEI ODD (Author Custom Actions) toolbar when editing
in Author mode (by default, they are also available in the TEI ODD menu and some of them are in various submenus
of the contextual menu):

Changes the style of the selected text to bold by surrounding it with hi tag and setting
the rend attribute to bold. You can use this action on multiple non-contiguous
selections.

Bold

Changes the style of the selected text to italic by surrounding it with hi tag and
setting the rend attribute to italic. You can use this action on multiple
non-contiguous selections.

Italic

Changes the style of the selected text to underline by surrounding it with hi tag
and setting the rend attribute to ul. You can use this action on multiple non-contiguous
selections.

Underline

Inserts a new section or subsection, depending on the current context. For example, if
the current context is div1, then a div2 is inserted. By default, this action also inserts
a paragraph element as a child node.

Insert Section

Insert a new paragraph element at current cursor position.Insert Paragraph

Inserts an image reference at the cursor position. Depending on the current location,
an image-type element is inserted.

Insert Image

Inserts a list item in the current list type.Insert List Item

Inserts an ordered list at the cursor position. A child list item is also automatically
inserted by default.

Insert Ordered List

Inserts an itemized list at the cursor position. A child list item is also automatically
inserted by default.

Insert Itemized List

Opens a dialog box that allows you to configure and insert a table. You can generate
a header and footer, set the number of rows and columns of the table and decide how
the table is framed.

Insert Table

Inserts a new table row with empty cells below the current row. This action is available
when the cursor is positioned inside a table.

Insert Row Below

Inserts a new table column with empty cells after the current column. This action is
available when the cursor is positioned inside a table.

Insert Column After

Inserts a new empty cell depending on the current context. If the cursor is positioned
between two cells, Oxygen XML Editor plugin a new cell at cursor position. If the
cursor is inside a cell, the new cell is created after the current cell.

Insert Cell

Deletes the table column located at cursor position or multiple columns in a selection.Delete Column(s)

Deletes the table row located at cursor position or multiple rows in a selection.Delete Row(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects more than
one option to split the cell, a dialog box will be displayed that allows you to select the
number of rows or columns to split the cell into.

Split Cell

TEI ODD Menu Actions
In addition, the following default actions are available in the TEI ODD menu when editing in Author mode (some of
them are also available in the contextual menu):

Oxygen XML Editor plugin | Document Types (Frameworks) | 873

In addition to the table actions available on the toolbar, the following actions are available in
this submenu:

Table submenu

Inserts a new table row with empty cells above the current row.
This action is available when the cursor is positioned inside a table.

Insert Row Above

Opens a dialog box that allows you to insert any number of rows
and specify the position where they will be inserted (Above or
Below the current row).

Insert Rows

Inserts a column before the current one.Insert Column Before

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or
Below the current column).

Insert Columns

Opens the ID Options dialog box that allows you to configure options for generating IDs in
Author mode. The dialog box includes the following:

ID Options

The pattern for the ID values that will be generated. This text
field can be customized using constant strings or any of the
Oxygen XML Editor plugin Editor Variables on page 134.

ID Pattern

The elements for which ID values will be generated, specified
using class attribute values. To customize the list, use the Add,
Edit, or Remove buttons.

Element name or class
value to generate ID for

If enabled, Oxygen XML Editor plugin will automatically
generate unique IDs for the elements listed in this dialog box
when they are created in Author mode.

Auto generate IDs for
elements

When copying and pasting content in the same document, this
option allows you to control whether or not pasted elements that

Remove IDs when copying
content in the same
document are listed in this dialog box should retain their existing IDs. To

retain the element IDs, disable this option.

Note: This option does not have an effect on content
that is cut and pasted.

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements
and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Oxygen XML Editor plugin | Document Types (Frameworks) | 874

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

TEI Contextual Menu Actions
In addition to many of the TEI toolbar actions and the general Author mode contextual menu actions, the following
TEI framework-specific actions are also available in the contextual menu when editing in Author mode:

The following table editing actions are available in the contextual menu when it is invoked on a table:Table
Actions Opens a dialog box that allows you to insert any number of rows and specify

the position where they will be inserted (Above or Below the current row).
Insert Rows

Deletes the table row located at cursor position or multiple rows in a
selection.

Delete Row(s)

Opens a dialog box that allows you to insert any number of columns and
specify the position where they will be inserted (Above or Below the current
column).

Insert Columns

Deletes the table column located at cursor position or multiple columns in
a selection.

Delete Column(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects
more than one option to split the cell, a dialog box will be displayed that
allows you to select the number of rows or columns to split the cell into.

Split Cell

Sorts cells or list items in a table.Sort

Opens the Table properties dialog box that allows you to configure
properties of a table (such as frame borders).

Table Properties

This submenu give you access to all the usual contextual menu actions.Other Actions submenu

Oxygen XML Editor plugin | Document Types (Frameworks) | 875

TEI ODD Drag/Drop Actions
Dragging a file from the Project view or DITA Maps Manager view and dropping it into a TEI ODD document that is
edited in Author mode, creates a link to the dragged file (the ptr element with the target attribute) at the drop
location.

TEI ODD Transformation Scenarios

The following default transformations are available:

• TEI ODD XHTML - Transforms a TEI ODD document into an XHTML document
• TEI ODD PDF - Transforms a TEI ODD document into a PDF document using the Apache FOP engine
• TEI ODD EPUB - Transforms a TEI ODD document into an EPUB document
• TEI ODD DOCX - Transforms a TEI ODD document into a DOCX document
• TEI ODD ODT - Transforms a TEI ODD document into an ODT document
• TEI ODD RelaxNG XML - Transforms a TEI ODD document into a RelaxNG XML document
• TEI ODD to DTD - Transforms a TEI ODD document into a DTD document
• TEI ODD to XML Schema - Transforms a TEI ODD document into an XML Schema document
• TEI ODD to RelaxNG Compact - Transforms a TEI ODD document into an RelaxNG Compact document

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

TEI ODD Templates

There is only one default template that is stored in the
[OXYGEN_INSTALL_DIR]/frameworks/tei/templates/TEI ODD folder and can be used for easily creating
a basic TEI ODD document. This template is available when creating new documents from templates.

• TEI ODD - New TEI ODD document

TEI P4 Document Type

The Text Encoding Initiative (TEI) Guidelines is an international and interdisciplinary standard that enables libraries,
museums, publishers, and individual scholars to represent a variety of literary and linguistic texts for online research,
teaching, and preservation.

A file is considered to be a TEI P4 document when one of the following conditions are true:

• The local name of the root is TEI.2.
• The public id of the document is -//TEI P4.

The default schema that is used if one is not detected in the TEI P4 document is tei2.dtd and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/teip4/schema/dtd/.

The default CSS files used for rendering TEI P4 content in Author mode is stored in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/css/.

The default catalogs for the TEI P4 document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/teip4/schema/dtd/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/teip4/custom/schema/dtd/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/teip4/stylesheet/catalog.xml

To watch our video demonstration about TEI editing, go to http://oxygenxml.com/demo/WYSIWYG_TEI_Editing.html.

TEI P4 Author Mode Actions

A variety of actions are available in the TEI P4 framework that can be added to the TEI P4 menu, the Author Custom
Actions toolbar, the contextual menu, and the Content Completion Assistant.

Oxygen XML Editor plugin | Document Types (Frameworks) | 876

http://oxygenxml.com/demo/WYSIWYG_TEI_Editing.html

TEI P4 Toolbar Actions
The following default actions are readily available on the TEI P4 (Author Custom Actions) toolbar when editing in
Author mode (by default, they are also available in the TEI P4 menu and some of them are in various submenus of the
contextual menu):

Changes the style of the selected text to bold by surrounding it with hi tag and setting
the rend attribute to bold. You can use this action on multiple non-contiguous
selections.

Bold

Changes the style of the selected text to italic by surrounding it with hi tag and
setting the rend attribute to italic. You can use this action on multiple
non-contiguous selections.

Italic

Changes the style of the selected text to underline by surrounding it with hi tag
and setting the rend attribute to ul. You can use this action on multiple non-contiguous
selections.

Underline

Inserts a new section or subsection, depending on the current context. For example, if
the current context is div1, then a div2 is inserted. By default, this action also inserts
a paragraph element as a child node.

Insert Section

Insert a new paragraph element at current cursor position.Insert Paragraph

Inserts a list item in the current list type.Insert List Item

Inserts an ordered list at the cursor position. A child list item is also automatically
inserted by default.

Insert Ordered List

Inserts an itemized list at the cursor position. A child list item is also automatically
inserted by default.

Insert Itemized List

Sorts cells or list items in a table.Sort

Opens a dialog box that allows you to configure and insert a table. You can generate
a header and footer, set the number of rows and columns of the table and decide how
the table is framed.

Insert Table

Inserts a new table row with empty cells below the current row. This action is available
when the cursor is positioned inside a table.

Insert Row Below

Inserts a new table column with empty cells after the current column. This action is
available when the cursor is positioned inside a table.

Insert Column After

Inserts a new empty cell depending on the current context. If the cursor is positioned
between two cells, Oxygen XML Editor plugin a new cell at cursor position. If the
cursor is inside a cell, the new cell is created after the current cell.

Insert Cell

Deletes the table column located at cursor position or multiple columns in a selection.Delete Column(s)

Deletes the table row located at cursor position or multiple rows in a selection.Delete Row(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects more than
one option to split the cell, a dialog box will be displayed that allows you to select the
number of rows or columns to split the cell into.

Split Cell

TEI P4 Menu Actions
In addition, the following default actions are available in the TEI P4 menu when editing in Author mode (some of them
are also available in the contextual menu):

Oxygen XML Editor plugin | Document Types (Frameworks) | 877

In addition to the table actions available on the toolbar, the following actions are available in
this submenu:

Table submenu

Inserts a new table row with empty cells above the current row.
This action is available when the cursor is positioned inside a table.

Insert Row Above

Opens a dialog box that allows you to insert any number of rows
and specify the position where they will be inserted (Above or
Below the current row).

Insert Rows

Inserts a column before the current one.Insert Column Before

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or
Below the current column).

Insert Columns

Opens the ID Options dialog box that allows you to configure options for generating IDs in
Author mode. The dialog box includes the following:

ID Options

The pattern for the ID values that will be generated. This text
field can be customized using constant strings or any of the
Oxygen XML Editor plugin Editor Variables on page 134.

ID Pattern

The elements for which ID values will be generated, specified
using class attribute values. To customize the list, use the Add,
Edit, or Remove buttons.

Element name or class
value to generate ID for

If enabled, Oxygen XML Editor plugin will automatically
generate unique IDs for the elements listed in this dialog box
when they are created in Author mode.

Auto generate IDs for
elements

When copying and pasting content in the same document, this
option allows you to control whether or not pasted elements that

Remove IDs when copying
content in the same
document are listed in this dialog box should retain their existing IDs. To

retain the element IDs, disable this option.

Note: This option does not have an effect on content
that is cut and pasted.

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements
and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Oxygen XML Editor plugin | Document Types (Frameworks) | 878

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

TEI Contextual Menu Actions
In addition to many of the TEI toolbar actions and the general Author mode contextual menu actions, the following
TEI framework-specific actions are also available in the contextual menu when editing in Author mode:

The following table editing actions are available in the contextual menu when it is invoked on a table:Table
Actions Opens a dialog box that allows you to insert any number of rows and specify

the position where they will be inserted (Above or Below the current row).
Insert Rows

Deletes the table row located at cursor position or multiple rows in a
selection.

Delete Row(s)

Opens a dialog box that allows you to insert any number of columns and
specify the position where they will be inserted (Above or Below the current
column).

Insert Columns

Deletes the table column located at cursor position or multiple columns in
a selection.

Delete Column(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects
more than one option to split the cell, a dialog box will be displayed that
allows you to select the number of rows or columns to split the cell into.

Split Cell

Sorts cells or list items in a table.Sort

Opens the Table properties dialog box that allows you to configure
properties of a table (such as frame borders).

Table Properties

This submenu give you access to all the usual contextual menu actions.Other Actions submenu

Oxygen XML Editor plugin | Document Types (Frameworks) | 879

TEI P4 Drag/Drop Actions
Dragging a file from the Project view or DITA Maps Manager view and dropping it into a TEI P4 document that is
edited in Author mode, creates a link to the dragged file (the ptr element with the target attribute) at the drop
location.

TEI P4 Transformation Scenarios

The following default transformations are available:

• TEI HTML - Transforms a TEI document into an HTML document.
• TEI P4 - TEI P5 Conversion - Convert a TEI P4 document into a TEI P5 document.
• TEI PDF - Transforms a TEI document into a PDF document using the Apache FOP engine.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

TEI P4 Templates

The default templates are stored in [OXYGEN_INSTALL_DIR]/frameworks/tei/templates/TEI P4 folder
and they can be used for easily creating basic TEI P4 documents. These templates are available when creating new
documents from templates.

• TEI P4 - Lite - New TEI P4 Lite
• TEI P4 - New Document - New TEI P4 standard document

Customization of TEI Frameworks Using the Latest Sources

The TEI P4 and TEI P5 frameworks are available as a public project at the following SVN repository:
https://github.com/TEIC/oxygen-tei

This project is the base for customizing a TEI framework.

1. Check out the project on a local computer from the SVN repository.

This action is done with an SVN client application that creates a working copy of the SVN repository on a local
computer.

2. Customize the TEI framework in Oxygen XML Editor plugin.

a) Set the Oxygen XML Editor plugin frameworks folder to the oxygen/frameworks subfolder of the folder
of the SVN working copy.

Open the Preferences dialog box , go to Global, and set the path of the SVN working copy in the Use custom
frameworks option.

b) Open the Preferences dialog box , go to Document Type Association > Locations, and select Custom.

3. Build a jar file with the TEI framework.

The SVN project includes a build.xml file that can be used for building a jar file using the Ant tool. The command
that should be used:

ant -f build.xml

4. Distribute the jar file to the users that need the customized TEI framework.

The command from the above step creates a file tei.zip in the dist subfolder of the SVN project. Each user
that needs the customized TEI framework will receive the tei.zip file and will unzip it in the frameworks
folder of the Oxygen XML Editor plugin install folder.

Oxygen XML Editor plugin | Document Types (Frameworks) | 880

https://github.com/TEIC/oxygen-tei

TEI P5 Document Type

The Text Encoding Initiative (TEI) Guidelines is an international and interdisciplinary standard that enables libraries,
museums, publishers, and individual scholars to represent a variety of literary and linguistic texts for online research,
teaching, and preservation.

A file is considered to be a TEI P5 document when one of the following conditions are true:

• The document namespace is http://www.tei-c.org/ns/1.0.
• The public id of the document is -//TEI P5.

The default schema that is used if one is not detected in the TEI P5 document is tei_all.rng and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/relaxng/.

The CSS file used for rendering TEI P5 content in Author mode is located in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/css/tei_oxygen.css.

The default catalogs for the TEI P5 document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/schema/dtd/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/dtd/catalog.xml

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/stylesheet/catalog.xml

To watch our video demonstration about TEI editing, go to http://oxygenxml.com/demo/WYSIWYG_TEI_Editing.html.

TEI P5 Author Mode Actions

A variety of actions are available in the TEI P5 framework that can be added to the TEI P5 menu, the Author Custom
Actions toolbar, the contextual menu, and the Content Completion Assistant.

TEI P5 Toolbar Actions
The following default actions are readily available on the TEI P5 (Author Custom Actions) toolbar when editing in
Author mode (by default, they are also available in the TEI P5 menu and some of them are in various submenus of the
contextual menu):

Changes the style of the selected text to bold by surrounding it with hi tag and setting
the rend attribute to bold. You can use this action on multiple non-contiguous
selections.

Bold

Changes the style of the selected text to italic by surrounding it with hi tag and
setting the rend attribute to italic. You can use this action on multiple
non-contiguous selections.

Italic

Changes the style of the selected text to underline by surrounding it with hi tag
and setting the rend attribute to ul. You can use this action on multiple non-contiguous
selections.

Underline

Inserts a new section or subsection, depending on the current context. For example, if
the current context is div1, then a div2 is inserted. By default, this action also inserts
a paragraph element as a child node.

Insert Section

Insert a new paragraph element at current cursor position.Insert Paragraph

Inserts an image reference at the cursor position. Depending on the current location,
an image-type element is inserted.

Insert Image

Inserts a list item in the current list type.Insert List Item

Inserts an ordered list at the cursor position. A child list item is also automatically
inserted by default.

Insert Ordered List

Inserts an itemized list at the cursor position. A child list item is also automatically
inserted by default.

Insert Itemized List

Oxygen XML Editor plugin | Document Types (Frameworks) | 881

http://oxygenxml.com/demo/WYSIWYG_TEI_Editing.html

Sorts cells or list items in a table.Sort

Opens a dialog box that allows you to configure and insert a table. You can generate
a header and footer, set the number of rows and columns of the table and decide how
the table is framed.

Insert Table

Inserts a new table row with empty cells below the current row. This action is available
when the cursor is positioned inside a table.

Insert Row Below

Inserts a new table column with empty cells after the current column. This action is
available when the cursor is positioned inside a table.

Insert Column After

Inserts a new empty cell depending on the current context. If the cursor is positioned
between two cells, Oxygen XML Editor plugin a new cell at cursor position. If the
cursor is inside a cell, the new cell is created after the current cell.

Insert Cell

Deletes the table column located at cursor position or multiple columns in a selection.Delete Column(s)

Deletes the table row located at cursor position or multiple rows in a selection.Delete Row(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects more than
one option to split the cell, a dialog box will be displayed that allows you to select the
number of rows or columns to split the cell into.

Split Cell

TEI P5 Menu Actions
In addition, the following default actions are available in the TEI P5 menu when editing in Author mode (some of them
are also available in the contextual menu):

In addition to the table actions available on the toolbar, the following actions are available in
this submenu:

Table submenu

Inserts a new table row with empty cells above the current row.
This action is available when the cursor is positioned inside a table.

Insert Row Above

Opens a dialog box that allows you to insert any number of rows
and specify the position where they will be inserted (Above or
Below the current row).

Insert Rows

Inserts a column before the current one.Insert Column Before

Opens a dialog box that allows you to insert any number of columns
and specify the position where they will be inserted (Above or
Below the current column).

Insert Columns

Opens the ID Options dialog box that allows you to configure options for generating IDs in
Author mode. The dialog box includes the following:

ID Options

The pattern for the ID values that will be generated. This text
field can be customized using constant strings or any of the
Oxygen XML Editor plugin Editor Variables on page 134.

ID Pattern

The elements for which ID values will be generated, specified
using class attribute values. To customize the list, use the Add,
Edit, or Remove buttons.

Element name or class
value to generate ID for

If enabled, Oxygen XML Editor plugin will automatically
generate unique IDs for the elements listed in this dialog box
when they are created in Author mode.

Auto generate IDs for
elements

Oxygen XML Editor plugin | Document Types (Frameworks) | 882

When copying and pasting content in the same document, this
option allows you to control whether or not pasted elements that

Remove IDs when copying
content in the same
document are listed in this dialog box should retain their existing IDs. To

retain the element IDs, disable this option.

Note: This option does not have an effect on content
that is cut and pasted.

Oxygen XML Editor plugin generates unique IDs for the current element (or elements), depending
on how the action is invoked:

Generate IDs

• When invoked on a single selection, an ID is generated for the selected element at the cursor
position.

• When invoked on a block of selected content, IDs are generated for all top-level elements
and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects
elements that do not already have an id attribute.

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

TEI Contextual Menu Actions
In addition to many of the TEI toolbar actions and the general Author mode contextual menu actions, the following
TEI framework-specific actions are also available in the contextual menu when editing in Author mode:

Oxygen XML Editor plugin | Document Types (Frameworks) | 883

This action is available in the contextual menu when it is invoked on an image. This action applies an
image map to the current image (if one does not already exist) and opens the Image Map Editor dialog

Image Map
Editor

box. This feature allows you to create hyperlinks in specific areas of an image that will link to various
destinations.

The following table editing actions are available in the contextual menu when it is invoked on a table:Table
Actions Opens a dialog box that allows you to insert any number of rows and

specify the position where they will be inserted (Above or Below the
current row).

Insert Rows

Deletes the table row located at cursor position or multiple rows in a
selection.

Delete Row(s)

Opens a dialog box that allows you to insert any number of columns and
specify the position where they will be inserted (Above or Below the
current column).

Insert Columns

Deletes the table column located at cursor position or multiple columns
in a selection.

Delete Column(s)

Joins the content of the selected cells (both horizontally and vertically).Join Cells

Splits the cell at the cursor location. If Oxygen XML Editor plugin detects
more than one option to split the cell, a dialog box will be displayed that
allows you to select the number of rows or columns to split the cell into.

Split Cell

Sorts cells or list items in a table.Sort

Opens the Table properties dialog box that allows you to configure
properties of a table (such as frame borders).

Table Properties

This submenu give you access to all the usual contextual menu actions.Other Actions submenu

TEI P5 Drag/Drop Actions
Dragging a file from the Project view or DITA Maps Manager view and dropping it into a TEI P5 document that is
edited in Author mode, creates a link to the dragged file (the ptr element with the target attribute) at the drop
location. Dragging an image file from the default file system application (Windows Explorer on Windows or Finder on
Mac OS X, for example) and dropping it into a TEI P5 document inserts a graphic element (the graphic element with
the url attribute) at the drop location, similar to the Insert Image toolbar action.

TEI P5 Transformation Scenarios

The following default transformations are available:

• TEI P5 XHTML - transforms a TEI P5 document into an XHTML document.
• TEI P5 PDF - transforms a TEI P5 document into a PDF document using the Apache FOP engine.
• TEI EPUB - transforms a TEI P5 document into an EPUB output. The EPUB output will contain any images

referenced in the TEI XML document.
• TEI DOCX - transforms a TEI P5 document into a DOCX (OOXML) document. The DOCX document will contain

any images referenced in the TEI XML document.
• TEI ODT - transforms a TEI P5 document into an ODT (ODF) document. The ODT document will contain any

images referenced in the TEI XML document.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

Oxygen XML Editor plugin | Document Types (Frameworks) | 884

TEI P5 Templates

The default templates are stored in [OXYGEN_INSTALL_DIR]/frameworks/tei/templates/TEI P5 folder
and they can be used for easily creating basic TEI P5 documents. These templates are available when creating new
documents from templates:

• TEI P5 - All - New TEI P5 All.
• TEI P5 - Bare - New TEI P5 Bare.
• TEI P5 - Lite - New TEI P5 Lite.
• TEI P5 - Math - New TEI P5 Math.
• TEI P5 - Speech - New TEI P5 Speech.
• TEI P5 - SVG - New TEI P5 with SVG extensions.
• TEI P5 - XInclude - New TEI P5 XInclude aware.

Customization of TEI Frameworks Using the Latest Sources

The TEI P4 and TEI P5 frameworks are available as a public project at the following SVN repository:
https://github.com/TEIC/oxygen-tei

This project is the base for customizing a TEI framework.

1. Check out the project on a local computer from the SVN repository.

This action is done with an SVN client application that creates a working copy of the SVN repository on a local
computer.

2. Customize the TEI framework in Oxygen XML Editor plugin.

a) Set the Oxygen XML Editor plugin frameworks folder to the oxygen/frameworks subfolder of the folder
of the SVN working copy.

Open the Preferences dialog box , go to Global, and set the path of the SVN working copy in the Use custom
frameworks option.

b) Open the Preferences dialog box , go to Document Type Association > Locations, and select Custom.

3. Build a jar file with the TEI framework.

The SVN project includes a build.xml file that can be used for building a jar file using the Ant tool. The command
that should be used:

ant -f build.xml

4. Distribute the jar file to the users that need the customized TEI framework.

The command from the above step creates a file tei.zip in the dist subfolder of the SVN project. Each user
that needs the customized TEI framework will receive the tei.zip file and will unzip it in the frameworks
folder of the Oxygen XML Editor plugin install folder.

Customization of TEI Frameworks Using the Compiled Sources

The following procedure describes how to update to the latest stable version of TEI Schema and TEI XSL, already
integrated in the TEI framework for Oxygen XML Editor plugin.

1. Go to https://code.google.com/p/oxygen-tei/;

2. Go to Downloads;

3. Download the latest uploaded .zip file;

4. Unpack the .zip file and copy its content in the Oxygen XML Editor plugin frameworks folder.

JATS Document Type

The JATS (NISO Journal Article Tag Suite) document type is a technical standard that defines an XML format for
scientific literature.

Oxygen XML Editor plugin | Document Types (Frameworks) | 885

https://github.com/TEIC/oxygen-tei
https://code.google.com/p/oxygen-tei/

A file is considered to be a JATS document when the PUBLIC ID of the document contains the string -//NLM//DTD.

Default schemas that are used if one is not detected in the JATS document are stored in
[OXYGEN_INSTALL_DIR]/frameworks/jats/O2-DTD/.

The default CSS files used for rendering JATS content in Author mode are stored in
[OXYGEN_INSTALL_DIR]/frameworks/jats/css/.

The default XML catalog, JATS-catalog-O2.xml, is stored in
[OXYGEN_INSTALL_DIR]/frameworks/O2-DTD/.

JATS Author Mode Actions

A variety of actions are available in the JATS framework that can be added to the JATS menu, the Author Custom
Actions toolbar, the contextual menu, and the Content Completion Assistant.

JATS Toolbar Actions
The following default actions are readily available on the JATS (Author Custom Actions) toolbar when editing in
Author mode (by default, they are also available in the JATS menu and in various submenus of the contextual menu):

Surrounds the selected text with a bold tag. You can use this action on multiple
non-contiguous selections.

Bold

Surrounds the selected text with an italic tag. You can use this action on multiple
non-contiguous selections.

Italic

Surrounds the selected text with an underline tag. You can use this action on
multiple non-contiguous selections.

Underline

Insert a new paragraph element at current cursor position.Insert Paragraph

Inserts an image reference at the cursor position. Depending on the current location,
an image-type element is inserted.

Insert Image

Inserts a list item in the current list type.Insert List Item

Inserts an unordered list at the cursor position. A child list item is also automatically
inserted by default.

Insert Unordered List

Inserts an ordered list at the cursor position. A child list item is also automatically
inserted by default.

Insert Ordered List

JATS Menu Actions
In addition, the following default actions are available in the JATS menu when editing in Author mode:

You can use this action to manually trigger a refresh and update of all referenced resources.Refresh
References

Full Tags with Attributes - Displays full tag names with attributes for both block level and
in-line level elements.

Tags display mode
Submenu

Full Tags - Displays full tag names without attributes for both block level and in-line level
elements.

Block Tags - Displays full tag names for block level elements and simple tags without names
for in-line level elements.

Inline Tags - Displays full tag names for inline level elements, while block level elements
are not displayed.

Partial Tags - Displays simple tags without names for in-line level elements, while block
level elements are not displayed.

No Tags - No tags are displayed. This is the most compact mode and is as close as possible
to a word-processor view.

Oxygen XML Editor plugin | Document Types (Frameworks) | 886

Edit Profiling Attributes - Allows you to configure the profiling attributes and their values.Profiling/Conditional
Text Submenu Show Profiling Colors and Styles - Select this option to turn on conditional styling.

Show Profiling Attributes - Select this option to turn on conditional text markers. They are
displayed at the end of conditional text blocks, as a list of attribute name and their currently set
values.

Show Excluded Content - When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently applied
condition set, disable this option.

List of all profiling condition sets that match the current document type - You can click a
listed condition set to activate it.

Profiling Settings - Opens the profiling options preferences page, where you can manage
profiling attributes and profiling conditions sets. You can also configure the profiling styles and
colors options from the colors/styles preferences page and the attributes rendering preferences
page.

JATS Drag/Drop Actions

Dragging a file from the Project view or DITA Maps Manager view and dropping it into a JATS document that is edited
in Author mode, creates a link to the dragged file (the ext-link element with the xlink:href attribute) at the
drop location. Dragging an image file from the default file system application (Windows Explorer on Windows or Finder
on Mac OS X, for example) and dropping it into a JATS document inserts an image element (the inline-graphic
element with the xlink:href attribute) at the drop location, similar to the Insert Image toolbar action.

JATS Transformation Scenarios

The following default transformation scenario is available for JATS documents:

• JATS Preview (simple HTML) - Converts a JATS document to a simple HTML document.

Related information
Editing a Transformation Scenario on page 638

Configure Transformation Scenario(s) Dialog Box on page 640

JATS Templates

Default templates are available for JATS documents. They are stored in
[OXYGEN_INSTALL_DIR]/frameworks/jats/templates folder and they can be used for easily creating
basic JATS documents.

The default JATS templates that are available when creating new documents from templates are as follows:

• Archiving - JATS archiving tag set version 1.1.
• Authoring - JATS authoring tag set version 1.1.
• Book - JATS book tag set version 1.1.
• Publishing - JATS publishing tag set version 1.1.

EPUB Document Type

Three distinct frameworks are supported for the EPUB document type:

• NCX - A declarative global navigation definition.
• OCF - The Open Container Format (OCF) defines a mechanism by which all components of an Open Publication

Structure (OPS) can be combined into a single file system entity.
• OPF - The Open Packaging Format (OPF) defines the mechanism by which all components of a published work

that conforms to the Open Publication Structure (OPS) standard (including metadata, reading order, and navigational
information) are packaged in an OPS Publication.

Oxygen XML Editor plugin | Document Types (Frameworks) | 887

Note: Oxygen XML Editor plugin supports both OPF 2.0 and OPF 3.0.

Document Templates

The default templates for the NCX document types are located in the
[OXYGEN_INSTALL_DIR]/frameworks/ncx/templates folder.

The default templates for the OCF document types are located in the
[OXYGEN_INSTALL_DIR]/frameworks/ocf/templates folder.

The default template for the OPF 2.0 document type is located in the
[OXYGEN_INSTALL_DIR]/frameworks/opf/templates/2.0 folder.

The default template for the OPF 3.0 document type is located in the
[OXYGEN_INSTALL_DIR]/frameworks/opf/templates/3.0 folder.

The following EPUB templates are available when creating new documents from templates:

• NCX - Toc - New table of contents.
• OCF - Container - New container based OCF.
• OCF - Encryption - New encryption based OCF.
• OCF - Signatures - New signature based OCF.
• OPF 2.0 - Content (2.0) - New OPF 2.0 content.
• OPF 3.0 - Content (3.0) - New OPF 3.0 content.

DocBook Targetset Document Type

DocBook Targetset documents are used to resolve cross references with the DocBook olink.

A file is considered to be a Targetset when the root name is targetset.

The default schema, targetdatabase.dtd, for this type of document is stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/common/.

Document Templates

The default template for DocBook Targetset documents is located in the
[OXYGEN_INSTALL_DIR]/frameworks/docbook/templates/Targetset folder.

The following DocBook Targetset template is available when creating new documents from templates:

• DocBook Targetset - Map - New Targetset map.

Chapter

15

Author Mode Customization

This chapter provides details for customizing Author mode.Topics:

This section contains an Author Mode Customization Guide on page 890, CSS
Support in Author Mode on page 982, a collection of Frequently Asked Questions

• Author Mode Customization
Guide

regarding the Oxygen XML Editor plugin API, and other topics in regards to
customizing the Author mode.• CSS Support in Author Mode

• Creating and Running Automated
Tests

• API Frequently Asked Questions
(API FAQ)

Author Mode Customization Guide
The Author mode editor of Oxygen XML Editor plugin was designed to provide a friendly user interface for editing
XML documents. Author combines the power of source editing with the intuitive interface of a word processor. You
can customize the Author mode editor to support new custom XML formats or to change how standard XML formats
are edited.

Figure 463: Oxygen XML Editor plugin Author Visual Editor

Although Oxygen XML Editor plugin includes built-in, configured frameworks for DocBook, DITA, TEI, and XHTML
you might need to create a customization of the editor to handle other types of documents. A common use case is when
your organization holds a collection of XML document types used to define the structure of internal documents and they
need to be visually edited by people with no experience working with XML files.

There are several ways to customize the editor:

1. Create a CSS file defining styles for the XML elements you will work with, and create XML files that reference the
CSS through an xml-stylesheet processing instruction.

2. Fully configure a document type association. This involves putting together the CSS stylesheets, XML schemas,
actions, menus, bundling them, and distributing an archive. The CSS and GUI elements are settings for the Oxygen
XML Editor plugin Author mode. The other settings such as the templates, catalogs, and transformation scenarios
are general settings and are enabled whenever the association is active, regardless of the editing mode (Text, Grid,
or Author).

Simple Customization Tutorial

The most important elements of a document type customization are represented by an XML Schema to define the XML
structure, the CSS to render the information and the XML instance template that links the first two together.

Oxygen XML Editor plugin | Author Mode Customization | 890

XML Schema
To provide as-you-type validation and to compute valid insertion proposals, Oxygen XML Editor plugin needs an XML
grammar (XML Schema, DTD, or RelaxNG) associated to the XML. The grammar specifies how the internal structure
of the XML is defined.

Consider a use-case in which several users are testing a system and must send report results to a content management
system. The customization should provide a visual editor for these kind of documents. The following XML Schema,
test_report.xsd defines a report with results of a testing session. The report consists of a title, few lines describing
the test suite that was run, and a list of test results (each with a name and a boolean value indicating if the test passed
or failed).

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="report">
<xs:complexType>

<xs:sequence>
<xs:element ref="title"/>
<xs:element ref="description"/>
<xs:element ref="results"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="title" type="xs:string"/>
<xs:element name="description">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element name="line">
<xs:complexType mixed="true">

<xs:sequence minOccurs="0"
maxOccurs="unbounded">
<xs:element name="important"
type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="results">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">
<xs:element name="entry">

<xs:complexType>
<xs:sequence>

<xs:element name="test_name"
type="xs:string"/>

<xs:element name="passed"
type="xs:boolean"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

CSS Stylesheet
A set of rules must be defined for describing how the XML document is to be rendered in Author mode. This is done
using Cascading Style Sheets (CSS). CSS is a language used to describe how an HTML or XML document should be
formatted by a browser. CSS is widely used in the majority of websites.

The elements from an XML document are displayed in the layout as a series of boxes. Some of the boxes contain text
and may flow one after the other, from left to right. These are called in-line boxes. There are also other type of boxes
that flow one below the other (such as paragraphs). These are called block boxes.

For example, consider the way a traditional text editor arranges the text. A paragraph is a block, because it contains a
vertical list of lines. The lines are also blocks. However, blocks that contains in-line boxes arrange its children in a
horizontal flow. That is why the paragraph lines are also blocks, while the traditional "bold" and "italic" sections are
represented as in-line boxes.

The CSS allows us to specify that some elements are displayed as tables. In CSS, a table is a complex structure and
consists of rows and cells. The table element must have children that have a table-row style. Similarly, the row
elements must contain elements with a table-cell style.

Oxygen XML Editor plugin | Author Mode Customization | 891

To make it easy to understand, the following section describes how each element from a schema is formatted using a
CSS file. Note that this is just one of infinite possibilities for formatting the content.

This element is the root element of a report document. It should be rendered as a box that contains
all other elements. To achieve this the display type is set to block. Additionally, some margins
are set for it. The CSS rule that matches this element is:

report{
display:block;

report

margin:1em;
}

The title of the report. Usually titles have a large font. The block display is used so that the
subsequent elements will be placed below it, and its font is changed to double the size of the
normal text.

title {
display:block;

title

font-size:2em;
}

This element contains several lines of text describing the report. The lines of text are displayed
one below the other, so the description has the block display. Also, the background color is
changed to make it standout.

description {
display:block;

description

background-color:#EEEEFF;
color:black;

}

A line of text in the description. A specific aspect is not defined and it just indicates that the
display should be block style.

line {
display:block;

}

line

The important element defines important text from the description. Since it can be mixed with
text, its display property must be set to inline. Also, the text is emphasized with boldto make it
easier to spot.

important {
display:inline;

important

font-weight:bold;
}

The results element displays the list of test_names and the results for each one. To make it
easier to read, it is displayed as a table, with a green border and margins.

results{
display:table;

results

margin:2em;
border:1px solid green;

}

An item in the results element. The results are displayed as a table so the entry is a row in the
table. Thus, the display is table-row.

entry {
display:table-row;

}

entry

Oxygen XML Editor plugin | Author Mode Customization | 892

The name of the individual test, and its result. They are cells in the results table with the display
set to table-cell. Padding and a border are added to emphasize the table grid.

test_name, passed{

test_name,
passed

display:table-cell;
border:1px solid green;
padding:20px;

}

passed{
font-weight:bold;

}

The full content of the CSS file test_report.css is:

report {
display:block;
margin:1em;

}

description {
display:block;
background-color:#EEEEFF;
color:black;

}

line {
display:block;

}

important {
display:inline;
font-weight:bold;

}

title {
display:block;
font-size:2em;

}

results{
display:table;
margin:2em;
border:1px solid green;

}

entry {
display:table-row;

}

test_name, passed{
display:table-cell;
border:1px solid green;
padding:20px;

}

passed{
font-weight:bold;

}

Oxygen XML Editor plugin | Author Mode Customization | 893

Figure 464: Report Rendered in Author Mode

Note: You can edit attributes in-place in the Author mode using form-based controls.

Associating a Stylesheet with an XML Document

The rendering of an XML document in the Author mode is driven by a CSS stylesheet that conforms to the version 2.1
of the CSS specification from the W3C consortium. Some CSS 3 features, such as namespaces and custom extensions,
of the CSS specification are also supported. Oxygen XML Editor plugin also supports stylesheets coded with the LESS
dynamic stylesheet language.

There are several methods for associating a stylesheet (CSS or LESS) with an XML document:

1. Insert the xml-stylesheet processing instruction with the type attribute at the beginning of the XML document.
If you do not want to alter your XML documents, you should create a new document type (framework).

CSS example:

<?xml-stylesheet type="text/css" href="test.css"?>

LESS example:

<?xml-stylesheet type="text/css" href="test.less"?>

Note: XHTML documents need a link element, with the href and type attributes in the head child
element, as specified in the W3C CSS specification. XHTML example:

<link href="/style/screen.css" rel="stylesheet" type="text/css"/>

Tip: You can also insert the xml-stylesheet processing instruction by using the Associate XSLT/CSS
Stylesheet action that is available on the toolbar or in the XML menu.

2. Configure a Document Type Association by adding a new CSS or LESS file in the settings. To do so, open the
Preferences dialog box and go to Document Type Association. Edit the appropriate framework, open the Author

tab, then the CSS tab. Press the New button to add a new CSS or LESS file.

Note: The Document Type Associations are read-only, so you need to extend an existing one.

Oxygen XML Editor plugin | Author Mode Customization | 894

http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

You can read more about associating a CSS to a document in the section about customizing the CSS of a document type.

If a document has no CSS association or the referenced stylesheet files cannot be loaded, a default one is used. A warning
message is also displayed at the beginning of the document, presenting the reason why the CSS cannot be loaded.

Figure 465: Document with no CSS association default rendering

XML Instance Template
Based on the XML Schema and CSS file Oxygen XML Editor plugin can help the content author in loading, editing,
and validating the test reports. An XML file template must be created as a kind of skeleton that the users can use as a
starting point for creating new test reports. The template must be generic enough and reference the XML Schema file
and the CSS stylesheet.

This is an example:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="test_report.css"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="test_report.xsd">
<title>Automated test report</title>
<description>
<line>This is the report of the test automatically ran. Each test suite is ran at 20:00h each

 day. Please <important>check</important> the failed ones!</line>
</description>
<results>
<entry>

<test_name>Database connection test</test_name>
<passed>true</passed>

</entry>
<entry>

<test_name>XSLT Transformation test</test_name>
<passed>true</passed>

</entry>
<entry>

<test_name>DTD validation test</test_name>
<passed>false</passed>

</entry>
</results>

</report>

The processing instruction xml-stylesheet associates the CSS stylesheet to the XML file. The href pseudo
attribute contains the URI reference to the stylesheet file. In our case the CSS is in the same directory as the XML file.

The next step is to place the XSD file and the CSS file on a web server and modify the template to use the HTTP URLs,
like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css"
 href="http://www.mysite.com/reports/test_report.css"?>

Oxygen XML Editor plugin | Author Mode Customization | 895

<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www.mysite.com/reports/test_report.xsd">

<title>Test report title</title>
<description>

.......

The alternative is to create an archive containing the test_report.xml, test_report.css and
test_report.xsd and send it to the content authors.

Advanced Customization Tutorial - Document Type Associations

Oxygen XML Editor plugin supports individual document types and classes of document types through frameworks. A
framework associates a document type or a class of documents with CSS stylesheets, validation schemas, catalog files,
new files templates, transformation scenarios and custom actions.

In this tutorial, we create a framework for a set of documents. As an example, we create a light documentation framework
(similar to DocBook), then we set up a complete customization of the Author mode.

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Related information
Document Types (Frameworks) on page 827

Predefined Document Types (Frameworks) on page 828

Adding or Editing a Document Type Association (Framework)

To add or edit a Document Type Association, open the Preferences dialog box and go to Document Type Association.
From this Document Type Association preferences page you can use the New, Edit, Duplicate, or Extend buttons to
open a Document Type configuration dialog box that allows you to customize a new or existing document type
(framework).

Figure 466: Document Type Configuration Dialog Box

You can specify the following properties for a document type:

• Name - The name of the document type.

Oxygen XML Editor plugin | Author Mode Customization | 896

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

• Priority - When multiple document types match the same document, the priority determines the order in which they
are applied. It can be one of the following: Lowest, Low, Normal, High, Highest. The predefined document types
that are already configured when the application is installed on the computer have the default Low priority.

Note: Frameworks that have the same priority are sorted alphabetically.

• Description - The document type description displayed as a tool tip in the Document Type Association preferences
page.

• Storage - The location where the document type is saved. If you select the External storage option, the document
type is saved in the specified file with a mandatory framework extension, located in a subdirectory of the current
frameworks directory. If you select the Internal storage option, the document type data is saved in the current
.xpr Oxygen XML Editor plugin project file (for Project-level Document Type Association options) or in the
Oxygen XML Editor plugin internal options (for Global-level Document Type Association Options). You can change
the Document Type Association options level in the Document Type Association preferences page.

• Initial edit mode - Allows you to select the initial editing mode for this document type: Editor specific, Text,
Author, Grid and Design (available only for the W3C XML Schema editor). If the Editor specific option is selected,
the initial editing mode is determined based upon the editor type. You can find the mapping between editors and
edit modes in the Edit modes preferences page. You can impose an initial mode for opening files that match the
association rules of the document type. For example, if the files are usually edited in the Author mode you can set
it in the Initial edit mode combo box.

Note: You can also customize the initial mode for a document type in the Edit modes preferences page. Open
the Preferences dialog box and go to Editor > Edit modes.

You can specify the Association rules used for determining a document type for an opened XML document. A rule can
define one or more conditions. All conditions need to be fulfilled for a specific rule to be chosen. Conditions can specify:

• Namespace - The namespace of the document that matches the document type.
• Root local name of document - The local name of the document that matches the document type.
• File name - The file name (including the extension) of the document that matches the document type.
• Public ID (for DTDs) - The PUBLIC identifier of the document that matches the document type.
• Attribute - This field allows you to associate a document type depending on a certain value of the attribute in the

root.
• Java class - Name of the Java class that is called to determine if the document type should be used for an XML

document. Java class must either implement the
ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher interface or extend the
ro.sync.ecss.extensions.api.DocumentTypeAdvancedCustomRuleMatcher abstract class from
the Author API.

In the Schema tab, you can specify the type and URI of schema used for validation and content completion of all
documents from the document type, when there is no schema detected in the document.

You can choose one of the following schema types:

• DTD
• Relax NG schema (XML syntax)
• Relax NG schema (XML syntax) + Schematron
• Relax NG schema (compact syntax)
• XML Schema
• XML Schema + Schematron rules
• NVDL schema

Related tasks
Customizing the Main CSS of a Document Type on page 964

Related information
Selecting and Combining Multiple CSS Styles on page 982

Oxygen XML Editor plugin | Author Mode Customization | 897

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/DocumentTypeCustomRuleMatcher.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/DocumentTypeAdvancedCustomRuleMatcher.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html

Configure Actions, Menus, and Toolbars for a Framework

You can configure actions, menus, and toolbars that are specific to a document type in the Author mode to gain a
productive editing experience, by using the Document Type configuration dialog box.

To add or configure actions, menus, or toolbars follow this procedure:

1. Open the Preferences dialog box , go to Document Types Association, and click the framework for which you
want to create an action.

2. Click Edit and in the Document Type configuration dialog box go to the Author tab, then go to Actions.

3. Click the New button and use the Action dialog box to create an action.

Configure the Insert Section Action for a Framework

This section presents all the steps that you need to follow, to define the Insert Section action. It is assumed that the icon

files, (Section16.gif) for the menu item and (Section20.gif) for the toolbar, are already available.
Although you could use the same icon size for both the menu and toolbar, usually the icons from the toolbars are larger
than the ones found in the menus. These files should be placed in the frameworks/sdf directory.

Figure 467: Action Dialog Box

1. Set the ID field to insert_section. This is a unique action identifier.

Oxygen XML Editor plugin | Author Mode Customization | 898

2. Set the Name field to Insert Section. This will be the action's name, displayed as a tooltip when the action is placed
in the toolbar, or as the menu item name.

3. Set the Menu access key to i. On Windows, the menu items can be accessed using ALT+letter keys combination,
when the menu is visible. The letter is visually represented by underlining the first letter from the menu item name
having the same value.

4. Set the Description field to Insert a section at cursor position.

5. Set the Large icon (20x20) field to ${frameworks}/sdf/Section20.gif. A good practice is to store the
image files inside the framework directory and use editor variable ${framework} to make the image relative to the
framework location.

If the images are bundled in a jar archive together with some Java operations implementation, for instance, it might
be convenient for you to reference the images not by the file name, but by their relative path location in the class-path.

If the image file Section20.gif is located in the images directory inside the jar archive, you can reference it by
using /images/Section20.gif. The jar file must be added into the Classpath list.

6. Set the Small icon (16x16) field to ${frameworks}/sdf/Section16.gif.

7. Click the text field next to Shortcut key and set it to Ctrl (Meta on Mac OS)+Shift+S. This will be the key
combination to trigger the action using the keyboard only.

The shortcut is enabled only by adding the action to the main menu of Author mode, which contains all the actions
that the author will have in a menu for the current document type.

8. At this time the action has no functionality added to it. Next you must define how this action operates. An action
can have multiple operation modes. The first action mode enabled by the evaluation of its associated XPath expression
will be executed when the action is triggered by the user. The Xpath expression needs to be version 2.0 and its scope
must be only element and attribute nodes of the edited document. Otherwise, the expression will not return a match
and will not trigger the action. If the expression is left empty, the action will be enabled anywhere in the scope of
the root element. For this example we'll suppose you want allow the action to add a section only if the current element
is either a book, article or another section.

a) Set the XPath expression field to:

local-name()='section' or local-name()='book' or
 local-name()='article'

b) Set the invoke operation field to InsertFragmentOperation built-in operation, designed to insert an
XML fragment at cursor position. This belongs to a set of built-in operations, a complete list of which can be
found in the Author Default Operations section. This set can be expanded with your own Java operation
implementations.

c) Configure the arguments section as follows:

<section xmlns=
"http://www.oxygenxml.com/sample/documentation">

<title/>
</section>

insertLocation - leave it empty. This means the location will be at the cursor position.

insertPosition - select "Inside".

Configure the Insert Table Action for a Framework

The procedure described below will create an action that inserts a table with three rows and three columns into a document.
The first row is the table header. As with the insert section action, you will use the InsertFragmentOperation
built-in operation.

Place the icon files for the menu item, and for the toolbar, in the frameworks/sdf directory.

1. Set ID field to insert_table.

2. Set Name field to Insert table.

3. Set Menu access key field to t.

Oxygen XML Editor plugin | Author Mode Customization | 899

4. Set Description field to Adds a table element.

5. Set Toolbar icon to ${framework} / toolbarIcon.png.

6. Set Menu icon to ${framework} / menuIcon.png.

7. Set Shortcut key to Ctrl + Shift + T (Command + Shift + T on OS X).

8. Set up the action's functionality:

a) Set XPath expression field to true().

true() is equivalent with leaving this field empty.

b) Set Invoke operation to use InsertFragmentOperation built-in operation that inserts an XML fragment to the
cursor position.

c) Configure operation's arguments as follows:

fragment - set it to:

<table xmlns=
"http://www.oxygenxml.com/sample/documentation">

<header><td/><td/><td/></header>
<tr><td/><td/><td/></tr>
<tr><td/><td/><td/></tr>

</table>

insertLocation - to add tables at the end of the section use the following code:

ancestor::section/*[last()]

insertPosition - Select After.

Configure the Main Menu for a Framework

Defined actions can be grouped into customized menus in the Oxygen XML Editor plugin menu bar.

1. Open the Document Type configuration dialog box for the SDF framework and go to the Author tab.

2. Go to the Menu subtab. In the left side you have the list of actions and some special entries:

• Submenu - Creates a submenu. You can nest an unlimited number of menus.
• Separator - Creates a separator into a menu. This way you can logically separate the menu entries.

3. The right side of the panel displays the menu tree with Menu entry as root. To change its name, click this label to

select it, then press the Edit button. Enter SD Framework as name, and D as menu access key.

4. Select the Submenu label in the left panel section and the SD Framework label in the right panel section, then press

the Add as child button. Change the submenu name to Table, using the Edit button.

5. Select the Insert section action in the left panel section and the Table label in the right panel section, then press the

Add as sibling button.

6. Now select the Insert table action in the left panel section and the Table in the right panel section. Press the Add
as child button.

Oxygen XML Editor plugin | Author Mode Customization | 900

Figure 468: Configuring the Menu

When opening a custom framework test document in Author mode, the menu you created is displayed in the editor
menu bar, between the Tools and the Document menus. The upper part of the menu contains generic Author mode
actions (common to all document types) and the two actions created previously (with Insert table under the Table
submenu).

Figure 469: Author Mode Menu

Configure the Contextual Menu for a Framework

The contextual menu is displayed when you right-click in the Author editing area. You can only configure the bottom
part of the menu, since the top part is reserved for a list of generic actions (such as Copy, Paste, Undo, etc.)

1. Open the Document Type configuration dialog box for the particular framework and go to the Author tab. Next, go
to the Contextual Menu subtab.

2. Follow the same steps as explained in the Configuring the Main Menu, except changing the menu name because the
contextual menu does not have a name.

Note: You can choose to reuse a submenu that contains general authoring actions. In this case, all actions
(both general and document type-specific ones) are grouped together under the same submenu.

Figure 470: Configuring the Contextual Menu

Oxygen XML Editor plugin | Author Mode Customization | 901

To test it, open the test file, and open the contextual menu. In the lower part there is shown the Table sub-menu and the
Insert section action.
Configure the Toolbars for a Framework

The procedure below describes how to add defined actions to a toolbar. These steps use examples from the two previous
help topics that described how to define the Insert Section and Insert Table actions. You can also configure additional
toolbars to add other custom actions.

1. Open the Document Type configuration dialog box for the SDF framework and select the Author tab. Next, go to
the Toolbar subtab.

Figure 471: Configuring the Toolbar

The panel is divided in two sections: the left side contains a list of actions, while the right one contains an action
tree, displaying the list of actions added in the toolbar. The special entry called Separator allows you to visually
separate the actions in the toolbar.

2. Select the Insert section action in the left panel section and the Toolbar label in the right panel section, then press

the Add as child button.

3. Select the Insert table action in the left panel section and the Insert section in the right panel section. Press the

Add as sibling button.
When opening a document of the particular framework in Author mode, the toolbar with the new buttons will be
displayed in the toolbar area.

Tip: If you have many custom toolbar actions, or want to group actions according to their category, add
more toolbars with custom names and split the actions to better suit your purpose. If your toolbar is not
displayed when switching to the Author mode, right-click the main toolbar, select Configure Toolbars,
and make sure the appropriate toolbar (such as the Author Custom Actions toolbar) is enabled.

Configure Content Completion for a Framework

You can customize the content of the following Author controls, adding items (which, when invoked, perform custom
actions) or filtering the default contributed ones:

• Content Completion window
• Elements view
• Element Insert menus (from the Outline view or breadcrumb contextual menus)

You can use the content completion customization support in a custom framework by following this procedure:

Oxygen XML Editor plugin | Author Mode Customization | 902

1. Open the Document type configuration dialog box for the SDF framework and select the Author tab. Next, go to
the Content Completion tab.

Figure 472: Customize Content Completion

The top side of the Content Completion section contains the list with all the actions defined within the custom
framework and the list of actions that you decided to include in the Content Completion Assistant list of proposals.
The bottom side contains the list with all the items that you decided to remove from the Content Completion
Assistant list of proposals.

2. If you want to add a custom action to the list of current Content Completion items, select the action item from the

Available actions list and press the Add as child or Add as sibling button to include it in the Current
actions list. An Insert Action dialog box appears, giving you the possibility to select where to provide the selected
action.

Figure 473: Insert Action Dialog Box

3. If you want to exclude a certain item from the Content Completion items list, you can use the Add button from
the Filter - Remove content completion items list. The Remove item dialog box is displayed, allowing you to
input the item name and to choose the controls that filter it. The Item name combo box accepts wildcards.

Oxygen XML Editor plugin | Author Mode Customization | 903

Figure 474: Remove Item Dialog Box

Author Mode Default Operations

The default operations for the Author mode, along with their arguments are as follows:

• InsertFragmentOperation

Inserts an XML fragment at the current cursor position. The selection - if there is one, remains unchanged. The
fragment will be inserted in the current context of the cursor position meaning that if the current XML document
uses some namespace declarations then the inserted fragment must use the same declarations. The namespace
declarations of the inserted fragment will be adapted to the existing namespace declarations of the XML document.
For more details about its list of parameters, see Arguments of InsertFragmentOperation Operation on page 914.

• InsertOrReplaceFragmentOperation

Similar to InsertFragmentOperation, except it removes the selected content before inserting the fragment.
For more details about its list of parameters, see Arguments of InsertFragmentOperation Operation on page 914.

• InsertOrReplaceTextOperation

Inserts a text at current position removing the selected content, if any. The argument of this operation is:

• text - The text section to insert.

• SurroundWithFragmentOperation

Surrounds the selected content with a text fragment. Since the fragment can have multiple nodes, the surrounded
content will be always placed in the first leaf element. If there is no selection, the operation will simply insert the
fragment at the cursor position. For more details about the list of parameters go to Arguments of
SurroundWithFragmentOperation on page 915.

• SurroundWithTextOperation

This operation has two arguments (two text values) that will be inserted before and after the selected content. If there
is no selected content, the two sections will be inserted at the cursor position. The arguments of the operation are:

• header - The text that is placed before the selection.
• footer - The text that is placed after the selection.

• InsertEquationOperation

Inserts a fragment containing a MathML equation at the cursor offset. The argument of this operation is:

• fragment - The XML fragment containing the MathML content that should be inserted.

• OpenInSystemAppOperation

Opens a resource in the system application that is associated with the resource in the operating system. The arguments
of this operation is:

Oxygen XML Editor plugin | Author Mode Customization | 904

resourcePath - An XPath expression that, when executed, returns the path of the resource to be opened.
Editor variables are expanded in the value of this parameter, before the expression is executed.

•

• isUnparsedEntity - Possible values are true or false. If the value is true, the value of the
resourcePath argument is treated as the name of an unparsed entity.

• ChangeAttributeOperation

This operation allows you to add/modify/remove an attribute. You can use this operation in your own custom Author
mode action to modify the value for a certain attribute on a specific XML element. The arguments of the operation
are:

• name - The attribute local name.
• namespace - The attribute namespace.
• elementLocation - The XPath location that identifies the element.
• value - The new value for the attribute. If empty or null the attribute will be removed.
• editAttribute - If an in-place editor exists for this attribute, it will automatically activate the in-place editor

and start editing.
• removeIfEmpty - The possible values are true and false. True means that the attribute should be removed

if an empty value is provided. The default behavior is to remove it.

• UnwrapTagsOperation

This operation allows removing the element tags either from the current element or for an element identified with
an XPath location. The argument of the operation is

• unwrapElementLocation - An XPath expression indicating the element to unwrap. If it is not defined, the
element at the cursor position is unwrapped.

• ToggleSurroundWithElementOperation

This operation allows wrapping and unwrapping content in a specific wrapper element that can have certain attributes
specified on it. It is useful to implement toggle actions such as highlighting text as bold, italic, or underline. The
operation supports processing multiple selection intervals, such as multiple cells within a table column selection.
The arguments of the operation are:

• element - The element to wrap or unwrap content.
• schemaAware - This argument applies only on the surround with element operation and controls whether or

not the insertion is valid, based upon the schema. If the insertion is not valid, then wrapping action will be broken
up into smaller intervals until the wrapping action is valid. For example, if you try to wrap a paragraph element
with a bold element, it would not be valid, so the operation will wrap the text inside the paragraph instead, since
it would be valid at that position.

• RenameElementOperation

This operation allows you to rename all occurrences of the elements identified by an XPath expression. The operation
requires two parameters:

• elementName - The new element name
• elementLocation - The XPath expression that identifies the element occurrences to be renamed. If this

parameter is missing, the operation renames the element at current cursor position.

• ExecuteTransformationScenariosOperation

This operation allows running one or more transformation scenarios defined in the current document type association.
It is useful to add to the toolbar buttons that trigger publishing to various output formats. The argument of the
operation is:

• scenarioNames - The list of scenario names that will be executed, separated by new lines.

• XSLTOperation and XQueryOperation

Applies an XSLT or XQuery script on a source element and then replaces or inserts the result in a specified target
element.

Oxygen XML Editor plugin | Author Mode Customization | 905

Notice: For the Oxygen XML WebApp Component, these operations cannot be invoked using the JavaScript
API.

These operations have the following parameters:

• sourceLocation

An XPath expression indicating the element that the script will be applied on. If it is not defined, then the element
at the cursor position will be used.

There may be situations in which you want to look at an ancestor of the current element and take decisions in
the script based on this. To do this, you can set the sourceLocation to point to an ancestor node then declare
a parameter called currentElementLocation in your script and use it to re-position in the current element,
as in the following example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"
xpath-default-namespace="http://docbook.org/ns/docbook"
xmlns:saxon="http://saxon.sf.net/" exclude-result-prefixes="saxon">
<!-- This is an XPath location which will be sent by the operation to the script -->

 <xsl:param name="currentElementLocation"/>

 <xsl:template match="/">
<!-- Evaluate the XPath of the current element location -->

 <xsl:apply-templates
select="saxon:eval(saxon:expression($currentElementLocation))"/>

 </xsl:template>

 <xsl:template match="para">
<!-- And the context is again inside the current element,

 but we can use information from the entire XML -->
 <xsl:variable

name="keyImage" select="//imagedata[@fileref='images/lake.jpeg']
 /ancestor::inlinemediaobject/@xml:id/string()"/>

<xref linkend="{$keyImage}" role="key_include"
xmlns="http://docbook.org/ns/docbook">

 <xsl:value-of
select="$currentElementLocation"></xsl:value-of>

</xref>
 </xsl:template>
</xsl:stylesheet>

• targetLocation

An XPath expression indicating the insert location for the result of the transformation. If it is not defined then
the insert location will be at the cursor location.

• script

The script content (XSLT or XQuery). The base system ID for this will be the framework file, so any include/import
reference will be resolved relative to the .framework file that contains this action definition.

For example, for the following script, the imported xslt_operation.xsl needs to be located in the current
framework directory.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

 <xsl:import href="xslt_operation.xsl"/>
</xsl:stylesheet>

You can also use a path for an included or imported reference. When using a path, the following apply:

• A relative path is resolved to the framework directory.
• The ${framework} editor variable can also be used to reference resources from the framework directory.
• The path is passed through the catalog mappings. It helps to use an absolute URL (for instance,

http://www.oxygenxml.com/fr/testy.xsl) and map it in the catalog.xml file from the
framework directory to a resource from the framework.

• action

The insert action relative to the node determined by the target XPath expression. It can be: Replace, At cursor
position, Before, After, Inside as first child or Inside as last child.

Oxygen XML Editor plugin | Author Mode Customization | 906

• caretPosition

The position of the cursor after the action is executed. It can be: Preserve, Before, Start, First
editable position, End, or After. If this parameter is not set, you can still indicate the position of the
cursor by using the ${caret} editor variable in the inserted content.

• expandEditorVariables

Parameter controlling the expansion of editor variables returned by the script processing. Expansion is enabled
by default.

• XQueryUpdateOperation

Allows you to execute an XQuery Update script directly over content in Author mode.

Notice: This operation is not applicable to the Oxygen XML Author Component or the Oxygen XML
WebApp Component.

It has one argument:

• script

The XQuery Update script to be executed. The value can either be an XQuery script or a URL that points to the
XQuery Update script. You can use the ${framework} or ${frameworkDir} editor variables to refer the
scripts from the framework directory.

The script will be executed in the context of the node at the cursor position. If the script declares the following
variable, it will also receive the selected nodes (assuming that entire nodes are selected):

declare variable $oxyxq:selection external;

An example of an XQuery Update Script that converts paragraphs to list items:

declare namespace oxyxq = "http://www.oxygenxml.com/ns/xqu";
(: This variable will be linked to the selected nodes assuming that there are
actually fully selected nodes. For example this selection will returnnull:
<p>{SEL_START}text{SEL_END} in para</p>
but this will give two "p" elements:
{SEL_END}<p>text</p><p>text2</p>{SEL_END}

If a multiple selection exists it will also be processed and forwarded. Again, only fully selected nodes will
 be passed.
:)
declare variable $oxyxq:selection external;

(: We will process either the selection or the context node :)
let $toProcess := if (empty($oxyxq:selection)) then
 (.)
else
 ($oxyxq:selection)

returnif (not(empty($toProcess))) then
 (
 (: Create the list :)
 let $ul :=

 {
 for $sel in $toProcess
 return
 {$sel}
 }

 return
 (
 (: Delete the processed nodes :)
 for $sel in $toProcess
 return
 delete node $sel,
 (: Inserts the constructed list :)
 insert node $ul
 before $toProcess[1]
)
)
 else
 ()

Oxygen XML Editor plugin | Author Mode Customization | 907

• JSOperation

Allows you to call the Java API from custom JavaScript content.

Notice: For the Oxygen XML WebApp Component, this operation cannot be invoked using the JavaScript
API.

This operation accepts the following parameter:

• script

The JavaScript content to execute. It must have a function called doOperation(), which can use the predefined
authorAccess variable. The authorAccess variable has access to the entire
ro.sync.ecss.extensions.api.AuthorAccess Java API.

The following example is a script that retrieves the current value of the type attribute on the current
element, allows the end user to edit its new value and sets the new value in the document:

function doOperation(){
//The current node is either entirely selected...

 currentNode = authorAccess.getEditorAccess().getFullySelectedNode();
if(currentNode == null){
//or the cursor is placed in it

 caretOffset = authorAccess.getEditorAccess().getCaretOffset();
 currentNode = authorAccess.getDocumentController().getNodeAtOffset(caretOffset);
 }
//Get current value of the @type attribute
 currentTypeValue = "";
 currentTypeValueAttr = currentNode.getAttribute("type");

if(currentTypeValueAttr != null){
 currentTypeValue = currentTypeValueAttr.getValue();
 }
//Ask user for new value for attribute.
 newTypeValue = javax.swing.JOptionPane.showInputDialog("Input @type value", currentTypeValue);

if(newTypeValue != null){
//Create and set the new attribute value for the @type attribute.

 attrValue = new Packages.ro.sync.ecss.extensions.api.node.AttrValue(newTypeValue);
 authorAccess.getDocumentController().setAttribute("type", attrValue, currentNode);
 }
}

Note: If you have a script called commons.js in the framework directory, you
can call functions defined inside it from your custom script content so that you can
use that external script file as a library of functions.

• ExecuteMultipleActionsOperation

This operation allows the execution of a sequence of actions, defined as a list of action IDs. The actions must be
defined by the corresponding framework, or one of the common actions for all frameworks supplied by Oxygen
XML Editor plugin.

• actionIDs - The action IDs list that will be executed in sequence, the list must be a string sequence containing
the IDs separated by new lines.

• MoveElementOperation

Flexible operation for moving an XML element to another location from the same document. XPath expressions are
used to identify the source element and the target location. The operation takes the following parameters:

• sourceLocation - XPath expression that identifies the content to be moved.
• deleteLocation - XPath expression that identifies the node to be removed. This parameter is optional. If

missing, the sourceLocation parameter will also identify the node to be deleted.
• surroundFragment - A string representation of an XML fragment. The moved node will be wrapped in this

string before moving it in the destination.
• targetLocation - XPath expression that identifies the location where the node must be moved to.

Oxygen XML Editor plugin | Author Mode Customization | 908

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html

• insertPosition - Argument that indicates the insert position.
• moveOnlySourceContentNodes - When true, only the content of the source element is moved.
• processTrackedChangesForXpathLocations - When nodes are located via an XPath expression and

the nodes are deleted with change tracking enabled, they are considered as being present by default (thus, the
change tracking is ignored). If you set this argument to true and change tracking is enabled, deleted nodes will
be ignored when the XPath locations are computed (thus, the change tracking is NOT ignored).

• ChangePseudoClassesOperation

Operation that sets a list of pseudo-class values to nodes identified by an XPath expression. It can also remove a list
of values from nodes identified by an XPath expression. The operation accepts the following parameters:

• setLocations - An XPath expression indicating a list of nodes for which the specified list of pseudo-classes
will be set. If it is not defined, then the element at the cursor position will be used.

• setPseudoClassNames - A space-separated list of pseudo-class names that will be set on the matched nodes.
• removeLocations - An XPath expression indicating a list of nodes from which the specified list of

pseudo-classes will be removed. If it is not defined, then the element at the cursor position will be used.
• removePseudoClassNames - A space-separated list of pseudo-class names that will be removed from the

matched nodes.

• SetPseudoClassOperation

An operation that sets a pseudo-class to an element. The operation accepts the following parameters:

• elementLocation - An XPath expression indicating the element for which the pseudo-class will be set. If it
is not defined, then the element at cursor position will be used.

• name - The pseudo-class local name.

• ShowElementDocumentationOperation

Opens the associated specification HTML page for the current element. The operation accepts as parameter a URL
pattern that points to the HTML page containing the documentation.

• RemovePseudoClassOperation

An operation that removes a pseudo-class from an element. Accepts the following parameters:

• name - Name of the pseudo-class to be removed.

• elementLocation - The XPath location that identifies the element. Leave it empty for the current element.

Let's consider that there is a pseudo-class called myClass on the element paragraph and there
are CSS styles matching the pseudo-class.

paragraph:myClass{
font-size:2em;
color:red;

}
paragraph{

color:blue;
}

In the previous example, by removing the pseudo-class, the layout of the paragraph is rebuilt by
matching the other rules (in this case, the foreground color of the paragraph element will become
blue.

• TogglePseudoClassOperation

An implementation of an operation to toggle on/off the pseudo-class of an element. Accepts the following parameters:

• name - Name of the pseudo-class to be toggled on/off.

Oxygen XML Editor plugin | Author Mode Customization | 909

• elementLocation - The XPath location that identifies the element. Leave it empty for the current element.

paragraph:myClass{
color:red;

}
paragraph{

color:blue;
}

By default, the paragraph content is rendered in blue. Suppose that we have a
TogglePseudoClassOperation configured for the myClass pseudo-class. Invoking it the
first time will set the myClass pseudo-class and the paragraph will be rendered in red. Invoking the
operation again, will remove the pseudo-class and the visible result will be a blue rendered paragraph
element.

• ExecuteMultipleWebappCompatibleActionsOperation

An implementation of an operation that runs a sequence of Oxygen XML WebApp Component-compatible actions,
defined as a list of IDs.

• DeleteElementsOperation

Deletes the nodes indicated by the elementLocations parameter XPath expression. If missing, the operation
will delete the node at the cursor location.

• DeleteElementOperation

Deletes the node indicated by the elementLocation parameter XPath expression. If missing, the operation will
delete the node at the cursor location.

• InsertXIncludeOperation

Insert an XInclude element at the cursor offset. Opens a dialog box that allows you to browse and select content
to be included in your document and automatically generates the corresponding XInclude instruction.

Author mode operations can include parameters that contain the following editor variables:

• ${caret} - The position where the cursor is located. This variable can be used in a code template, in Author mode
operations, or in a selection plugin.

• ${selection} - The current selected text content in the current edited document. This variable can be used in a code
template, in Author mode operations, or in a selection plugin.

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default_value')} - To
prompt for values at runtime, use the ask('message', type, ('real_value1':'rendered_value1';
'real_value2':'rendered_value2'; ...), 'default-value'') editor variable. You can set the following parameters:

• 'message' - The displayed message. Note the quotes that enclose the message.
• type - Optional parameter, with one of the following values:

Parameter

Format: ${ask('message', url, 'default_value')}url

Description: Input is considered a URL. Oxygen XML Editor plugin checks that the
provided URL is valid.

Example:

• ${ask('Input URL', url)} - The displayed dialog box has the name Input
URL. The expected input type is URL.

• ${ask('Input URL', url, 'http://www.example.com')} - The
displayed dialog box has the name Input URL. The expected input type is URL.
The input field displays the default value http://www.example.com.

Oxygen XML Editor plugin | Author Mode Customization | 910

Parameter

Format: ${ask('message', password, 'default')}password

Description: The input is hidden with bullet characters.

Example:

• ${ask('Input password', password)} - The displayed dialog box has
the name 'Input password' and the input is hidden with bullet symbols.

• ${ask('Input password', password, 'abcd')} - The displayed
dialog box has the name 'Input password' and the input hidden with bullet
symbols. The input field already contains the default abcd value.

Format: ${ask('message', generic, 'default')}generic

Description: The input is considered to be generic text that requires no special handling.

Example:

• ${ask('Hello world!')} - The dialog box has a Hello world! message
displayed.

• ${ask('Hello world!', generic, 'Hello again!')} - The dialog
box has a Hello world! message displayed and the value displayed in the input
box is 'Hello again!'.

Format: ${ask('message', relative_url, 'default')}relative_url

Description: Input is considered a URL. Oxygen XML Editor plugin tries to make the
URL relative to that of the document you are editing.

Note: If the $ask editor variable is expanded in content that is not yet saved
(such as an untitled file, whose path cannot be determined), then Oxygen XML
Editor plugin will transform it into an absolute URL.

Example:

• ${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has the name
'File location'. The URL inserted in the input box is made relative to the
current edited document location.

Oxygen XML Editor plugin | Author Mode Customization | 911

Parameter

Format: ${ask('message', combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

combobox

Description: Displays a dialog box that offers a drop-down menu. The drop-down menu
is populated with the given rendered_value values. Choosing such a value will
return its associated value (real_value).

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} -
The dialog box has the name 'Operating System'. The drop-down menu
displays the three given operating systems. The associated value will be returned
based upon your selection.

Note: In this example, the default value is indicated by the osx key.
However, the same result could be obtained if the default value is indicated
by Mac OS X, as in the following example: ${ask('Operating
System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'Mac
OS X')}

• ${ask('Mobile OS', combobox, ('win':'Windows
Mobile';'ios':'iOS';'and':'Android'), 'Android')}

Format: ${ask('message', editable_combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

editable_combobox

Description: Displays a dialog box that offers a drop-down menu with editable elements.
The drop-down menu is populated with the given rendered_value values. Choosing
such a value will return its associated real value (real_value) or the value inserted
when you edit a list entry.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', editable_combobox,
('win':'Microsoft Windows';'osx':'Mac OS
X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has the name
'Operating System'. The drop-down menu displays the three given operating
systems and also allows you to edit the entry. The associated value will be returned
based upon your selection or the text you input.

Oxygen XML Editor plugin | Author Mode Customization | 912

Parameter

Format: ${ask('message', radio,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

radio

Description: Displays a dialog box that offers a series of radio buttons. Each radio
button displays a 'rendered_value and will return an associated real_value.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', radio, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} -
The dialog box has the name 'Operating System'. The radio button group
allows you to choose between the three operating systems.

Note: In this example Mac OS X is the default selected value and if
selected it would return osx for the output.

• 'default-value' - optional parameter. Provides a default value.

• ${timeStamp} - Time stamp, that is the current time in Unix format. For example, it can be used to save transformation
results in multiple output files on each transformation.

• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID
class.

• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not guaranteed to
be universally unique.

• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently opened
and selected.

• ${cfne} - Current file name with extension. The current file is the one currently opened and selected.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent

folder.
• ${frameworksDir} - The path (as file path) of the [OXYGEN_INSTALL_DIR]/frameworksdirectory.
• ${pd} - Current project folder as file path. Usually the current folder selected in the Project View.
• ${oxygenInstallDir} - Oxygen XML Editor plugin installation folder as file path.
• ${homeDir} - The path (as file path) of the user home folder.
• ${pn} - Current project name.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed by

the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor variable.
• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified

in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for operating
system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat class.
Example: yyyy-MM-dd;

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to
http://www.w3.org/TR/xmlschema-2/#dateTime.

Related information
Arguments of InsertFragmentOperation Operation on page 914

Oxygen XML Editor plugin | Author Mode Customization | 913

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime

Arguments of SurroundWithFragmentOperation on page 915

Arguments of InsertFragmentOperation Operation

This argument has a textual value. This value is parsed by Oxygen XML Editor
plugin as it was already in the document at the cursor position. You can use entity

fragment

references declared in the document and it is namespace aware. The fragment may
have multiple roots.

You can even use namespace prefixes that are not declared in the inserted fragment,
if they are declared in the document where the insertion is done. For the sake of
clarity, you should always prefix and declare namespaces in the inserted fragment!

If the fragment contains namespace declarations that are identical to those found
in the document, the namespace declaration attributes will be removed from
elements contained by the inserted fragment.

There are two possible scenarios:

1. Prefixes that are not bound explicitly

For instance, the fragment:

<x:item id="dty2"/>
&ent;
<x:item id="dty3"/>

Can be correctly inserted in the document: ('|' marks the insertion point):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE x:root [
 <!ENTITY ent "entity">
]>

<x:root xmlns:x="nsp">
 |
</x:root>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE x:root [
 <!ENTITY ent "entity">
]>
<x:root xmlns:x="nsp">

<x:item id="dty2"/>
 &ent;

<x:item id="dty3"/>
</x:root>

2. Default namespaces

If there is a default namespace declared in the document and the document fragment
does not declare a namespace, the elements from the fragment are considered to
be in no namespace.

For instance, the fragment:

<item id="dty2"/>
<item id="dty3"/>

Inserted in the document:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">
|
</root>

Oxygen XML Editor plugin | Author Mode Customization | 914

Gives the result document:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">

<item xmlns="" id="dty2"/>
<item xmlns="" id="dty3"/>

</root>

An XPath expression that is relative to the current node. It selects the reference
node for the fragment insertion. When missing, the fragment will be inserted at
the cursor position.

insertLocation

Specifies where the insertion is made relative to the reference node selected by
the insertLocation. It can be one of the following constants:

insertPosition

• Inside as first child (default value) - The fragment is inserted as first child of
the reference node.

• Inside as last child - The fragment is inserted as the last child of the reference
node.

• After - The fragment is inserted after the reference node.
• Before - The fragment is inserted before the reference node.

After inserting the fragment, the first editable position is detected and the cursor
is placed at that location. It handles any in-place editors used to edit attributes. It

goToNextEditablePosition

will be ignored if the fragment specifies a cursor position using the cursor editor
variable. The possible values of this action are true and false.

This argument applies only on the surround with element operation and controls
whether or not the insertion is valid, based upon the schema. If the insertion is not

schemaAware

valid, then wrapping action will be broken up into smaller intervals until the
wrapping action is valid. For example, if you try to wrap a paragraph element
with a bold element, it would not be valid, so the operation will wrap the text inside
the paragraph instead, since it would be valid at that position.

Arguments of SurroundWithFragmentOperation

The Author mode operation SurroundWithFragmentOperation has only one argument:

• fragment

The XML fragment that will surround the selection. For example, consider the fragment:

<F>
<A>

<C></C>

</F>

and the document:

<doc>
<X></X>
<Y></Y>
<Z></Z>

<doc>

Considering the selected content to be surrounded is the sequence of elements X and Y, then the result is:

<doc>
<F>

<A>
<X></X>
<Y></Y>

<C></C>

Oxygen XML Editor plugin | Author Mode Customization | 915

</F>
<Z></Z>

<doc>

Since the element A was the first leaf in the fragment, it received the selected content. The fragment was then inserted
in the place of the selection.

Add a Custom Operation to an Existing Framework

This task explains how to add a custom Author mode operation to an existing document type.

1. Setup a sample project by following the instructions for installing the SDK. The framework project is
oxygen-sample-framework.

2. A number of classes in the simple.documentation.framework.operations package implement the
ro.sync.ecss.extensions.api.AuthorOperation interface. Depending on your use-case, modify one
of these classes.

3. Pack the operation class inside a Java jar library.

4. Copy the jar library to the [OXYGEN_INSTALL_DIR]/frameworks/[FRAMEWORK_DIR] directory.

5. Open the Preferences dialog box , go to Document Type Association, and edit the document type (you need write
access to the [OXYGEN_INSTALL_DIR]) to open the Document Type configuration dialog box.

a) In the Classpath tab, add a new entry similar to: ${framework}/customAction.jar.
b) In the Author tab, add a new action that uses your custom operation.
c) Mount the action to the toolbars or menus.

6. Share the modifications with your colleagues. The files that should be shared are your customAction.jar library
and the .framework configuration file from the
[OXYGEN_INSTALL_DIR]/frameworks/[FRAMEWORK_DIR] directory.

Related information
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Using Retina/HiDPI Images in Author Mode

Oxygen XML Editor plugin provides support for Retina and HiDPI images through simple naming conventions. The
higher resolution images are stored in the same images folder as the normal resolution images and they are identified
by a scaling factor that is included in the name of the image files. For instance, images with a Retina scaling factor of
2 will include @2x in the name (for example, myImage@2x.png).

You can reference an image to style an element in a CSS by using the url function in the content property, as in the
following example:

listItem:before{
 content: url('../img/myImage.png');
}

This would place the image that is loaded from the myImage.png file just before the listItem element. However,
if you are using a Retina display (on a Mac), the icon looks a bit blurry as it automatically gets scaled, or if you are using
an HiDPI display (on a Windows-based PC), the icon remains at the original size, thus it will look very small. To solve
this rendering problem, you need to be able to reference both a normal DPI image and a high DPI image. However,
referencing both of them from the CSS is not practical, as there is no standard way of doing this.

Starting with version 17, Oxygen XML Editor plugin interprets the argument of the url function as key rather than a
fixed URL. Therefore, when running on a system with a Retina or HiDPI display, Oxygen XML Editor plugin will first
try to find the image file that corresponds to the retina scaling factor. For instance, using the previous example, Oxygen
XML Editor plugin would first try to find myImage@2x.png. If this file is not found, it defaults back to the normal
resolution image file (myImage.png).

Oxygen XML Editor plugin also supports dark color themes. This means that the background of the editor area can be
of a dark color and the foreground a lighter color. On a dark background, you may find it useful to invert the colors of
images. Again, this can be done with simple naming conventions. If an image designed for a dark background is not
found, the normal image is used.

Oxygen XML Editor plugin | Author Mode Customization | 916

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Retina/HiDPI Naming Convention

Refer to the following table for examples of the Retina/HiDPI image naming convention that is used in Oxygen XML
Editor plugin:

Triple Density Image FileDouble Density Image FileReferred Image FileColor Theme

../img/myImage@3x.png../img/myImage@2x.png../img/myImage.pngnormal

../img/myImage_dark@3x.png../img/myImage_dark@2x.png../img/myImage_dark.pngdark

Adding Retina/HiDPI Icons in a Framework

Higher resolution icons can also be included in customized frameworks for rendering them in a Retina or HiDPI display.
The icons can be referenced directly from the Document Type customization (from the Action dialog box) or from an
API (ro.sync.exml.workspace.api.node.customizer.XMLNodeRendererCustomizer).

As with any image, the higher resolution icons are stored in the same images folder as the normal resolution images and
they are identified by a scaling factor that is included in the name of the image files. For instance, icons with a Retina
scaling factor of 2 will include @2x in the name (for example, myIcon@2x.png).

Developers should not specify the path of the alternate icons (@2x or @3x) in the Action dialog box or the
XMLNodeRendererCustomizer API. When using a Retina or HiDPI display, Oxygen XML Editor plugin
automatically searches the folder of the normal icon for a corresponding image file with a Retina scaling factor in the
name. If the higher resolution icon file does not exist, the normal icon is scaled and used instead.

Java API - Extending Author Functionality through Java

Oxygen XML Editor plugin Author mode has a built-in set of operations covering the insertion of text and XML
fragments (see the Author Default Operations) and the execution of XPath expressions on the current document edited
in Author mode. However, there are situations in which you need to extend this set. The following examples are just a
few of the possible situations:

• You need to enter an element whose attributes will be edited by the user through a graphical user interface.
• The user must send selected element content (or the whole document) to a server for some kind of processing.
• Content authors need to extract pieces of information from a server and insert it directly into the edited XML

document.
• You need to apply an XPath expression on the current document and process the nodes of the resulting node set.

To extend the Oxygen XML Editor plugin Author mode functionality through Java, you will need the Oxygen SDK
available on the Oxygen XML Editor plugin website. It includes the source code of the Author mode operations in the
predefined document types and the full documentation (in Javadoc format) of the public API available for Author mode
custom actions.

The subsequent Java examples make use of AWT classes. If you are developing extensions for the Oxygen XML Editor
plugin XML Editor plugin for Eclipse, you will have to use their SWT counterparts.

Attention: Make sure the Java classes of your custom Author mode operations are compiled with the same
Java version used by Oxygen XML Editor plugin. Otherwise, the classes may not be loaded by the Java virtual
machine. For example, if you run Oxygen XML Editor plugin with a Java 1.6 virtual machine but the Java
classes of your custom Author mode operations are compiled with a Java 1.7 virtual machine then the custom
operations cannot be loaded and used by the Java 1.6 virtual machine.

Related information
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Example 1- Simple Use of a Dialog Box from an Author Mode Operation

In this example, we start adding functionality for inserting images in the Simple Documentation Framework. The
images are represented by the image element. The location of the image file is represented by the value of the href
attribute. In the Java implementation, a dialog box will be displayed with a text field, in which the user can enter a full
URL or browse for a local file.

Oxygen XML Editor plugin | Author Mode Customization | 917

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

1. Setup a sample project following this set of instructions. The framework project is oxygen-sample-framework.

2. Modify the simple.documentation.framework.InsertImageOperation class that implements the
ro.sync.ecss.extensions.api.AuthorOperation interface. This interface defines three methods:
doOperation, getArguments and getDescription

A short description of these methods follows:

• The doOperation method is invoked when the action is performed either by pressing the toolbar button, by
selecting the menu item or by pressing the shortcut key. The arguments taken by this methods can be one of the
following combinations:

• an object of type ro.sync.ecss.extensions.api.AuthorAccess and a map
• argument names and values

• The getArguments method is used by Oxygen XML Editor plugin when the action is configured. It returns
the list of arguments (name and type) that are accepted by the operation.

• The getDescription method is used by Oxygen XML Editor plugin when the operation is configured. It
returns a description of the operation.

Here is the implementation of these three methods:

/**
 * Performs the operation.
 */
public void doOperation(
 AuthorAccess authorAccess,
 ArgumentsMap arguments)
throws IllegalArgumentException,

 AuthorOperationException {

 JFrame oxygenFrame = (JFrame) authorAccess.getWorkspaceAccess().getParentFrame();
 String href = displayURLDialog(oxygenFrame);
if (href.length() != 0) {

// Creates the image XML fragment.
 String imageFragment =

"<image xmlns='http://www.oxygenxml.com/sample/documentation' href='"
 + href + "'/>";

// Inserts this fragment at the cursor position.
int caretPosition = authorAccess.getEditorAccess().getCaretOffset();

 authorAccess.getDocumentController().insertXMLFragment(imageFragment, caretPosition);
 }
}

/**
 * Has no arguments.
 *
 * @return null.
 */
public ArgumentDescriptor[] getArguments() {
return null;

}

/**
 * @return A description of the operation.
 */
public String getDescription() {
return "Inserts an image element. Asks the user for a URL reference.";

}

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven
archetype on the Oxygen XML Editor plugin website.

Important:

Make sure you always specify the namespace of the inserted fragments.

<image xmlns='http://www.oxygenxml.com/sample/documentation'
href='path/to/image.png'/>

Oxygen XML Editor plugin | Author Mode Customization | 918

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

3. Package the compiled class into a jar file. An example of an Ant script that packages the classes folder content
into a jar archive named sdf.jar is listed below:

<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="dist">

<target name="dist">
<jar destfile="sdf.jar" basedir="classes">
<fileset dir="classes">
<include name="**/*"/>
</fileset>

</jar>
</target>

</project>

4. Copy the sdf.jar file into the frameworks/sdf folder.

5. Add the sdf.jar to the class path. To do this, open the Preferences dialog box , go to Document Type Association,
select SDF, and press the Edit button.

6. Select the Classpath tab in the lower part of the Document Type configuration dialog box and press the Add
button . In the displayed dialog box, enter the location of the jar file, relative to the Oxygen XML Editor plugin
frameworks folder.

7. We now create the action that will use the defined operation. Go to the Actions subtab. Copy the icon files for the
menu item and for the toolbar in the frameworks/sdf folder.

8. Define the action's properties:

• Set ID to insert_image.
• Set Name to Insert image.
• Set Menu access key to letter i.
• Set Toolbar action to ${framework}/toolbarImage.png.
• Set Menu icon to ${framework}/menuImage.png.
• Set Shortcut key to Ctrl (Meta on Mac OS)+Shift+i.

9. Next, we set up the operation. You want to add images only if the current element is a section, book or article.

• Set the value of XPath expression to

local-name()='section' or local-name()='book'
 or local-name()='article'

• Set the Invoke operation field to simple.documentation.framework.InsertImageOperation.

Oxygen XML Editor plugin | Author Mode Customization | 919

Figure 475: Selecting the Operation

10. Add the action to the toolbar, using the Toolbar panel.

To test the action, you can open the sdf_sample.xml sample, then place the cursor inside a section between two
para elements (for instance). Press the button associated with the action from the toolbar. In the dialog box, select an
image URL and press OK. The image is inserted into the document.

Example 2- Operations with Arguments. Report from Database Operation

In this example you will create an operation that connects to a relational database and executes an SQL statement. The
result should be inserted in the edited XML document as a table. To make the operation fully configurable, it will
have arguments for the database connection string, the user name, the password and the SQL expression.

1. Setup a sample project following this set of instructions. The framework project is oxygen-sample-framework.

2. Create the class simple.documentation.framework.QueryDatabaseOperation. This class must
implements the ro.sync.ecss.extensions.api.AuthorOperation interface.

import ro.sync.ecss.extensions.api.ArgumentDescriptor;
import ro.sync.ecss.extensions.api.ArgumentsMap;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperation;
import ro.sync.ecss.extensions.api.AuthorOperationException;

public class QueryDatabaseOperation implements AuthorOperation{

3. Now define the operation's arguments. For each of them you will use a String constant representing the argument
name:

private static final String ARG_JDBC_DRIVER ="jdbc_driver";
private static final String ARG_USER ="user";
private static final String ARG_PASSWORD ="password";
private static final String ARG_SQL ="sql";
private static final String ARG_CONNECTION ="connection";

Oxygen XML Editor plugin | Author Mode Customization | 920

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

4. You must describe each of the argument name and type. To do this, implement the getArguments method that
will return an array of argument descriptors:

public ArgumentDescriptor[] getArguments() {
 ArgumentDescriptor args[] = new ArgumentDescriptor[] {

new ArgumentDescriptor(
 ARG_JDBC_DRIVER,
 ArgumentDescriptor.TYPE_STRING,

"The name of the Java class that is the JDBC driver."),
new ArgumentDescriptor(

 ARG_CONNECTION,
 ArgumentDescriptor.TYPE_STRING,

"The database URL connection string."),
new ArgumentDescriptor(

 ARG_USER,
 ArgumentDescriptor.TYPE_STRING,

"The name of the database user."),
new ArgumentDescriptor(

 ARG_PASSWORD,
 ArgumentDescriptor.TYPE_STRING,

"The database password."),
new ArgumentDescriptor(

 ARG_SQL,
 ArgumentDescriptor.TYPE_STRING,

"The SQL statement to be executed.")
 };

return args;
 }

These names, types and descriptions will be listed in the Arguments table when the operation is configured.

5. When the operation is invoked, the implementation of the doOperation method extracts the arguments, forwards
them to the method that connects to the database and generates the XML fragment. The XML fragment is then
inserted at the cursor position.

public void doOperation(AuthorAccess authorAccess, ArgumentsMap map)
throws IllegalArgumentException, AuthorOperationException {

// Collects the arguments.
 String jdbcDriver =
 (String)map.getArgumentValue(ARG_JDBC_DRIVER);
 String connection =
 (String)map.getArgumentValue(ARG_CONNECTION);
 String user =
 (String)map.getArgumentValue(ARG_USER);
 String password =
 (String)map.getArgumentValue(ARG_PASSWORD);
 String sql =
 (String)map.getArgumentValue(ARG_SQL);

int caretPosition = authorAccess.getCaretOffset();
try {

 authorAccess.getDocumentController().insertXMLFragment(
 getFragment(jdbcDriver, connection, user, password, sql),
 caretPosition);
 } catch (SQLException e) {

throw new AuthorOperationException(
"The operation failed due to the following database error: "

 + e.getMessage(), e);
 } catch (ClassNotFoundException e) {

throw new AuthorOperationException(
"The JDBC database driver was not found. Tried to load ' "

 + jdbcDriver + "'", e);
 }
 }

6. The getFragment method loads the JDBC driver, connects to the database and extracts the data. The result is a
table element from the http://www.oxygenxml.com/sample/documentation namespace. The
header element contains the names of the SQL columns. All the text from the XML fragment is escaped. This
means that the '<' and '&' characters are replaced with the '<' and '&' character entities to ensure the fragment
is well-formed.

private String getFragment(
 String jdbcDriver,
 String connectionURL,
 String user,
 String password,
 String sql) throws
 SQLException,
 ClassNotFoundException {

Oxygen XML Editor plugin | Author Mode Customization | 921

 Properties pr = new Properties();
 pr.put("characterEncoding", "UTF8");
 pr.put("useUnicode", "TRUE");
 pr.put("user", user);
 pr.put("password", password);

// Loads the database driver.
 Class.forName(jdbcDriver);

// Opens the connection
 Connection connection =
 DriverManager.getConnection(connectionURL, pr);
 java.sql.Statement statement =
 connection.createStatement();
 ResultSet resultSet =
 statement.executeQuery(sql);

 StringBuffer fragmentBuffer = new StringBuffer();
 fragmentBuffer.append(

"<table xmlns=" +
"'http://www.oxygenxml.com/sample/documentation'>");

//
// Creates the table header.
//

 fragmentBuffer.append("<header>");
 ResultSetMetaData metaData = resultSet.getMetaData();

int columnCount = metaData.getColumnCount();
for (int i = 1; i <= columnCount; i++) {

 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(metaData.getColumnName(i)));
 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</header>");

//
// Creates the table content.
//
while (resultSet.next()) {

 fragmentBuffer.append("<tr>");
for (int i = 1; i <= columnCount; i++) {

 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(resultSet.getObject(i)));
 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</tr>");
 }

 fragmentBuffer.append("</table>");

// Cleanup
 resultSet.close();
 statement.close();
 connection.close();

return fragmentBuffer.toString();
}

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven
archetype on the Oxygen XML Editor plugin website.

7. Package the compiled class into a jar file.

8. Copy the jar file and the JDBC driver files into the frameworks/sdf directory.

9. Add the jars to the class path. To do this, open the Document Type Association preferences page, select SDF and
press the Edit button. Select the Classpath tab in the lower part of the Document Type configuration dialog box

and press the Add button . In the displayed dialog box, enter the location of the jar file, relative to the Oxygen
XML Editor plugin frameworks folder.

10. Go to the Actions subtab. The action properties are:

• Set ID to clients_report.
• Set Name to Clients Report.
• Set Menu access key to letter r.
• Set Description to Connects to the database and collects the list of clients.

Oxygen XML Editor plugin | Author Mode Customization | 922

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

• Set Toolbar icon to ${framework}/TableDB20.png (image TableDB20.png is already stored in the
frameworks / sdf folder).

• Leave empty the Menu icon.
• Set shortcut key to Ctrl + Shift + C (Command + Shift + C on OS X).

11. The action will work only if the current element is a section. Set up the operation as follows:

• Set XPath expression to:

local-name()='section'

• Use the Java operation defined earlier to set the Invoke operation field. Press the Choose button, then select
simple.documentation.framework.QueryDatabaseOperation. Once selected, the list of arguments
is displayed. In the figure below the first argument, jdbc_driver, represents the class name of the MySQL JDBC
driver. The connection string has the URL syntax : jdbc://<database_host>:<database_port>/<database_name>.

The SQL expression used in the example follows, but it can be any valid SELECT expression that can be applied
to the database:

SELECT userID, email FROM users

12. Add the action to the toolbar, using the Toolbar panel.

Figure 476: Java Operation Arguments Setup

To test the action, you can open the sdf_sample.xml sample and place the cursor inside a section between two

para elements (for instance). Press the Create Report button from the toolbar. You can see below the toolbar with
the action button and sample table inserted by the Clients Report action.

Oxygen XML Editor plugin | Author Mode Customization | 923

Figure 477:Table Content Extracted from the Database

Localizing Frameworks

Oxygen XML Editor plugin supports framework localization (translating framework actions, buttons, and menu entries
to various languages). This lets you develop and distribute a framework to users that speak other languages without
changing the distributed framework.

To localize the content of a framework, create a translation.xml file that contains all the translation (key, value)
mappings. The translation.xml has the following format:

<translation>
<languageList>

<language description="English" lang="en_US"/>
<language description="German" lang="de_DE"/>
<language description="French" lang="fr_FR"/>

</languageList>
<key value="list">

<comment>List menu item name.</comment>
<val lang="en_US">List</val>
<val lang="de_DE">Liste</val>
<val lang="fr_FR">Liste</val>

</key>
......................
</translation>

Oxygen XML Editor plugin matches the GUI language with the language set in the translation.xml file. If this
language is not found, the first available language declared in the languagelist tag for the corresponding framework
is used.

Add the directory where this file is located to the Classpath list corresponding to the edited document type.

After you create this file, you can use the keys defined in it to customize the name and description of the following:

• Framework actions
• Menu entries
• Contextual menus
• Toolbars
• Static CSS content

For example, if you want to localize the bold action, open the Preferences dialog box and go to Document Type
Association. Use the New or Edit button to open the Document type configuration dialog box, go to Author > Actions,
and rename the bold action to ${i18n(translation_key)}. Actions with a name format other than
${i18n(translation_key)} are not localized. Translation_key corresponds to the key from the
translation.xml file.

Oxygen XML Editor plugin | Author Mode Customization | 924

Now open the translation.xml file and edit the translation entry if it exists or create one if it does not exist. This
example presents an entry in the translation.xml file:

<key value="translation_key">
<comment>Bold action name.</comment>
<val lang="en_US">Bold</val>
<val lang="de_DE">Bold</val>
<val lang="fr_FR">Bold</val>

</key>

To use a description from the translation.xml file in the Java code used by your custom framework, use the new
ro.sync.ecss.extensions.api.AuthorAccess.getAuthorResourceBundle()API method to
request the associated value for a certain key. This allows all the dialog boxes that you present from your custom
operations to have labels translated in multiple languages.

You can also reference a key directly in the CSS content:

title:before{
content:"${i18n(title.key)} : ";

}

Note: You can enter any language you want in the languagelist tag and any number of keys.

The translation.xml file for the DocBook framework is located
here:[OXYGEN_INSTALL_DIR]/frameworks/docbook/i18n/translation.xml. In
the Classpath list corresponding to the DocBook document type the following entry was added:
${framework}/i18n/.

To see how the DocBook actions are defined to use these keys for their name and description, open
the Preferences dialog box and go to Document Type Association > Author > Actions. If you look
in the Java class
ro.sync.ecss.extensions.docbook.table.SADocbookTableCustomizerDialog
available in the oxygen-sample-framework module of the Oxygen SDK Maven archetype, you can see
how the new ro.sync.ecss.extensions.api.AuthorResourceBundleAPI is used to
retrieve localized descriptions for various keys.

Creating the Basic Association

Let us go through an example of creating a custom document type (framework) and editing an XML document of this
type. We will call our document type Simple Documentation Framework.

First Step - XML Schema

Our sample custom framework is very simple. The documents are either articles or books, both composed of
sections. The sections may contain titles, paragraphs, figures, tables, and other sections. To
complete the picture, each section includes a def element from another namespace.

The first schema file:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.oxygenxml.com/sample/documentation"
xmlns:doc="http://www.oxygenxml.com/sample/documentation"
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
elementFormDefault="qualified">

<xs:import namespace=
"http://www.oxygenxml.com/sample/documentation/abstracts"
schemaLocation=

"abs.xsd"/>

The namespace of the documents will be http://www.oxygenxml.com/sample/documentation. The
namespace of the def element is http://www.oxygenxml.com/sample/documentation/abstracts.

Oxygen XML Editor plugin | Author Mode Customization | 925

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html
http://www.oxygenxml.com/oxygen_sdk_maven.html

Next, we define the structure of the sections. They all start with a title, then have the optional def element then either
a sequence of other sections, or a mixture of paragraphs, images and tables.

<xs:element name="book" type="doc:sectionType"/>
<xs:element name="article" type="doc:sectionType"/>
<xs:element name="section" type="doc:sectionType"/>

<xs:complexType name="sectionType">
<xs:sequence>

<xs:element name="title" type="xs:string"/>
<xs:element ref="abs:def" minOccurs="0"/>
<xs:choice>

<xs:sequence>
<xs:element ref="doc:section" maxOccurs="unbounded"/>

</xs:sequence>
<xs:choice maxOccurs="unbounded">

<xs:element ref="doc:para"/>
<xs:element ref="doc:image"/>
<xs:element ref="doc:table"/>

</xs:choice>
</xs:choice>

</xs:sequence>
</xs:complexType>

The paragraph contains text and other styling markup, such as bold (b) and italic (i) elements.

<xs:element name="para" type="doc:paragraphType"/>

<xs:complexType name="paragraphType" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="b"/>
<xs:element name="i"/>

</xs:choice>
</xs:complexType>

The image element has an attribute with a reference to the file containing image data.

<xs:element name="image">
<xs:complexType>

<xs:attribute name="href" type="xs:anyURI" use="required"/>
</xs:complexType>

</xs:element>

The table contains a header row and then a sequence of rows (tr elements) each of them containing the cells. Each
cell has the same content as the paragraphs.

<xs:element name="table">
<xs:complexType>

<xs:sequence>
<xs:element name="header">

<xs:complexType>
<xs:sequence>

<xs:element name="td" maxOccurs="unbounded"
type="doc:paragraphType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="tr" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="td" type="doc:tdType"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:complexType name="tdType">
<xs:complexContent>

<xs:extension base="doc:paragraphType">
<xs:attribute name="row_span" type="xs:integer"/>
<xs:attribute name="column_span" type="xs:integer"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Oxygen XML Editor plugin | Author Mode Customization | 926

The def element is defined as a text only element in the imported schema abs.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace=
"http://www.oxygenxml.com/sample/documentation/abstracts">

<xs:element name="def" type="xs:string"/>
</xs:schema>

Now the XML data structure will be styled.

Schema Settings

In the bottom section of the Document Type configuration dialog box, there are a series of tabs. The first one refers to
the schema that is used for validation of the documents that match the defined Association Rules.

Important: If the document refers a schema using a DOCTYPE declaration or a xsi:schemaLocation
attribute, the schema from the document type association will not be used when validating.

Select from the combo box the value XML Schema.Schema Type

Enter the value of the schema location (for example,
${frameworks}/sdf/schema/sdf.xsd). Use the ${frameworks} editor variable in the

Schema URI

schema URI path instead of a full path to be valid for multiple Oxygen XML Editor plugin
installations.

Important: The ${frameworks} variable is expanded at the validation time into the
absolute location of the directory containing the frameworks.

Second Step - CSS

If you read the Simple Customization Tutorial then you already have some basic notions about creating simple styles.
The example document contains elements from various namespaces, so you need to use CSS Level 3 extensions (supported
by the Author mode layout engine) to associate specific properties with that element.

Defining the General Layout

Now the basic layout of the rendered documents is created.

Elements that are stacked one on top of the other are: book, article, section, title, figure, table, image.
These elements are marked as having block style for display. Elements that are placed one after the other in a flowing
sequence are: b, i. These will have inline display.

/* Vertical flow */
book,
section,
para,
title,
image,
ref {

display:block;
}

/* Horizontal flow */
b,i {

display:inline;
}

Important: Having block display children in an inline display parent results in Oxygen XML Editor plugin
changing the style of the parent to block display.

Oxygen XML Editor plugin | Author Mode Customization | 927

Styling the section Element

The title of any section must be bold and smaller than the title of the parent section. To create this effect, a sequence of
CSS rules must be created. The * operator matches any element, it can be used to match titles having progressive depths
in the document.

title{
font-size: 2.4em;
font-weight:bold;

}
* * title{

font-size: 2.0em;
}
* * * title{

font-size: 1.6em;
}
* * * * title{

font-size: 1.2em;
}

It's useful to have before the title a constant text, indicating that it refers to a section. This text can include also the
current section number. The :before and :after pseudo elements will be used, plus the CSS counters.

First declare a counter named sect for each book or article. The counter is set to zero at the beginning of each
such element:

book,
article{

counter-reset:sect;
}

The sect counter is incremented with each section, that is a direct child of a book or an article element.

book > section,
article > section{

counter-increment:sect;
}

The "static" text that will prefix the section title is composed of the constant "Section ", followed by the decimal value
of the sect counter and a dot.

book > section > title:before,
article > section > title:before{

content: "Section " counter(sect) ". ";
}

To make the documents easy to read, you add a margin to the sections. In this way the higher nesting level, the larger
the left side indent. The margin is expressed relatively to the parent bounds:

section{
margin-left:1em;
margin-top:1em;

}

Oxygen XML Editor plugin | Author Mode Customization | 928

Figure 478: A sample of nested sections and their titles.

In the above screenshot you can see a sample XML document rendered by the CSS stylesheet. The selection "avoids"
the text that is generated by the CSS "content" property. This happens because the CSS generated text is not present in
the XML document and is just a visual aid.

Styling the Inline Elements

The "bold" style is obtained by using the font-weight CSS property with the value bold, while the "italic" style is
specified by the font-style property:

b {
 font-weight:bold;
}

i {
 font-style:italic;
}

Styling Images

The CSS 2.1 does not specify how an element can be rendered as an image. To overpass this limitation, Oxygen XML
Editor plugin supports a CSS Level 3 extension allowing to load image data from a URL. The URL of the image must
be specified by one of the element attributes and it is resolved through the catalogs specified in Oxygen XML Editor
plugin.

image{
display:block;
content: attr(href, url);
margin-left:2em;

}

Our image element has the required attribute href of type xs:anyURI. The href attribute contains an image
location so the rendered content is obtained by using the function:

attr(href, url)

The first argument is the name of the attribute pointing to the image file. The second argument of the attr function
specifies the type of the content. If the type has the url value, then Oxygen XML Editor plugin identifies the content
as being an image. If the type is missing, then the content will be the text representing the attribute value.

Oxygen XML Editor plugin handles both absolute and relative specified URLs. If the image has an absolute URL
location (for example: "http://www.oasis-open.org/images/standards/oasis_standard.jpg") then it is loaded directly from
this location. If the image URL is relative specified to the XML document (for example: "images/my_screenshot.jpg")
then the location is obtained by adding this value to the location of the edited XML document.

Oxygen XML Editor plugin | Author Mode Customization | 929

An image can also be referenced by the name of a DTD entity that specifies the location of the image file. For example,
if the document declares an entity graphic that points to a JPEG image file:

<!ENTITY graphic SYSTEM "depo/keyboard_shortcut.jpg" NDATA JPEG>

and the image is referenced in the XML document by specifying the name of the entity as the value of an attribute:

<mediaobject>
<imageobject>

<imagedata entityref="graphic" scale="50"/>
</imageobject>

</mediaobject>

The CSS should use the functions url, attr and unparsed-entity-uri for displaying the image in the Author
mode:

imagedata[entityref]{
content: url(unparsed-entity-uri(attr(entityref)));

}

To take into account the value of the width attribute of the imagedata and use it for resizing the image, the CSS
can define the following rule:

imagedata[width]{
width:attr(width, length);

}

Figure 479: Samples of images in Author

Testing the Document Type Association

To test the new Document Type create an XML instance that is conforming with the Simple Documentation Framework
association rules. You will not specify an XML Schema location directly in the document, using an
xsi:schemaLocation attribute; Oxygen XML Editor plugin will detect instead its associated document type and
use the specified schema.

<book xmlns="http://www.oxygenxml.com/sample/documentation"
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">

<title>My Technical Book</title>
<section>

<title>XML</title>
<abs:def>Extensible Markup Language</abs:def>
<para>In this section of the book I will

 explain different XML applications.</para>
</section>

</book>

Oxygen XML Editor plugin | Author Mode Customization | 930

When trying to validate the document there should be no errors. Now modify the title to title2. Validate again.
This time there should be one error:

 cvc-complex-type.2.4.a: Invalid content was found starting with element
 'title2'. One of '{"http://www.oxygenxml.com/sample/documentation":title}'
 is expected.

Undo the tag name change. Press on the Author button at the bottom of the editing area. Oxygen XML Editor plugin
should load the CSS from the document type association and create a layout similar to this:

Figure 480: Example: Document Type Association

Organizing the Framework Files

First, create a new folder called sdf (for "Simple Documentation Framework") in
[OXYGEN_INSTALL_DIR]/frameworks. This folder will be used to store all files related to the documentation
framework. The following folder structure will be created:

oxygen
 frameworks
 sdf
 schema
 css

The frameworks directory is the container where all the Oxygen XML Editor plugin framework customizations are
located. Each subdirectory contains files related to a specific type of XML documents (schemas, catalogs, stylesheets,
CSS stylesheets, etc.) Distributing a framework means delivering a framework directory.

It is assumed that you have the right to create files and folder inside the Oxygen XML Editor plugin installation directory.
If you do not have this right, you will have to install another copy of the program in a folder you have access to, the
home directory for instance, or your desktop. You can download the "all platforms" distribution from the Oxygen XML
Editor plugin website and extract it in the chosen folder.

To test your framework distribution, copy it in the frameworks directory of the newly installed application and start
Oxygen XML Editor plugin by running the provided start-up script files.

You should copy the created schema files abs.xsd and sdf.xsd, sdf.xsd being the master schema, to the schema
directory and the CSS file sdf.css to the css directory.

Packaging and Deploying

Using a file explorer, go to the Oxygen XML Editor plugin [OXYGEN_INSTALL_DIR]/frameworks directory.
Select the sdf directory and make an archive from it. Move it to another Oxygen XML Editor plugin installation
(eventually on another computer). Extract it in the [OXYGEN_INSTALL_DIR]/frameworks directory. Start Oxygen
XML Editor plugin and test the association as explained above.

If you create multiple document type associations and you have a complex directory structure it might be easy from the
deployment point of view to use an Oxygen XML Editor plugin All Platforms distribution. Add your framework files
to it, repackage it and send it to the content authors.

Oxygen XML Editor plugin | Author Mode Customization | 931

Attention: When deploying your customized sdf directory, make sure that your sdf directory contains the
sdf.framework file (that is the file defined as External Storage in the Document Type Association preferences
page shall always be stored inside the sdf directory). If your external storage points somewhere else Oxygen
XML Editor plugin will not be able to update the Document Type Association options automatically on the
deployed computers.

Configuring New File Templates

Describes how to create a set of document templates that the content authors will use as a starting point for creating
books and articles.

Each Document Type Association can point to a directory, usually named templates, that contains the file templates.
All files found here are considered templates for the respective document type. The template name is taken from the
file name, and the template type is detected from the file extension.

1. Go to your custom framework directory
([OXYGEN_INSTALL_DIR]\frameworks\[CUSTOM_FRAMEWORK_DIR]) and create a directory named
templates.
The directory tree of the documentation framework should be something like this:

[OXYGEN_INSTALL_DIR]
 frameworks
 [CUSTOM_FRAMEWORK_DIR]
 schema
 css
 templates

2. In the templates directory, create two files. A file for the book template and another one for the article template.

An example for the Book.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">

<title>Book Template Title</title>
<section>

<title>Section Title</title>
<abs:def/>
<para>This content is copyrighted:</para>
<table>

<header>
<td>Company</td>
<td>Date</td>

</header>
<tr>

<td/>
<td/>

</tr>
</table>

</section>
</book>

An example for the Article.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<article

xmlns="http://www.oxygenxml.com/sample/documentation"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<title></title>
<section>

<title></title>
<para></para>
<para></para>

</section>
</article>

You can also use editor variables in the content of the template files and they will be expanded when the files are
opened.

Note: You should avoid using the ${cfd},${cf},${currentFileURL}, and ${cfdu} editor variables
when you save your documents in a data base.

Oxygen XML Editor plugin | Author Mode Customization | 932

3. Open the Document Type configuration dialog box for your custom framework and click the Templates tab. In the
Templates directory text field, introduce the ${frameworkDir}/templates path. It is recommended that all
the file references made from a Document Type Association to be relative to the ${frameworkDir} directory. Binding
a Document Type Association to an absolute file (e. g.: C:\some_dir\templates) makes the association
difficult to share between users.

4. To test the templates settings, go to File > New to display the New document dialog box. You should see the new
templates in the folder for your custom framework (in the Framework templates section). The names of the two
templates are prefixed with the name of the framework. Selecting one of them should create a new XML file with
the content specified in the template file.

Related information
Editor Variables on page 134

Custom Editor Variables on page 139

Configuring XML Catalogs

In the XML sample file for SDF you did not use a xsi:schemaLocation attribute, but instead you let the editor use the
schema from the association. However, there are cases in which you must reference the location of a schema file from
a remote web location and an Internet connection may not be available. In such cases an XML catalog may be used to
map the web location to a local file system entry. The following procedure presents an example of using an XML
catalogs, by modifying our sdf.xsd XML Schema file from the Example Files Listings.

1. Create a catalog file that will help the parser locate the schema for validating the XML document. The file must map
the location of the schema to a local version of the schema.

Create a new XML file called catalog.xml and save it into the [OXYGEN_INSTALL_DIR]/frameworks/sdf
directory. The content of the file should be:

<?xml version="1.0"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

<uri name="http://www.oxygenxml.com/SDF/abs.xsd"
uri="schema/abs.xsd"/>

<uri name="http://www.oxygenxml.com/SDF/abs.xsd"
uri="schema/abs.xsd"/>

</catalog>

2. Add catalog files to your Document Type Association using the Catalogs tab from the Document Type configuration
dialog box.

To test the catalog settings, restart Oxygen XML Editor plugin and try to validate a new sample custom framework
document. There should be no errors.

The sdf.xsd schema that validates the document refers the other file abs.xsd through an import
element:

<xs:import namespace=
"http://www.oxygenxml.com/sample/documentation/abstracts"
schemaLocation="http://www.oxygenxml.com/SDF/abs.xsd"/>

The schemaLocation attribute references the abs.xsd file:

xsi:schemaLocation="http://www.oxygenxml.com/sample/documentation/abstracts"
http://www.oxygenxml.com/SDF/abs.xsd"/>

The catalog mapping is:

http://www.oxygenxml.com/SDF/abs.xsd -> schema/abs.xsd

This means that all the references to http://www.oxygenxml.com/SDF/abs.xsd must be resolved to
the abs.xsd file located in the schema directory. The URI element is used by URI resolvers (for
example, to resolve a URI reference used in an XSLT stylesheet).

Oxygen XML Editor plugin | Author Mode Customization | 933

Configuring Transformation Scenarios for a Framework

When distributing a framework to the users, it is a good idea to have the transformation scenarios already configured.
This helps the content authors publish their work in various formats. Being contained in the Document Type Association,
the scenarios can be distributed along with the actions, menus, toolbars, and catalogs.

These are the steps that allow you to create a transformation scenario for your framework.

1. Create an xsl folder inside the frameworks/sdf folder.

The folder structure for the documentation framework should be:

oxygen
 frameworks
 sdf
 schema
 css
 templates
 xsl

2. Create the sdf.xsl file in the xsl folder. The complete content of the sdf.xsl file is found in the Example
Files Listings.

3. Open the Preferences dialog box and go to Document Type Associations. Open the Document Type dialog for

the SDF framework then choose the Transformation tab. Click the New button and choose the appropriate type
of transformation (for example, XML transformation with XSLT).

In the New scenario dialog box, fill in the following fields:

• Fill in the Name field with SDF to HTML. This will be the name of your transformation scenario.
• Set the XSL URL field to ${framework}/xsl/sdf.xsl.

Figure 481: Configuring a New XSLT Transformation Scenario

4. Change to the Output tab. Configure the fields as follows:

• Set the Save as field to ${cfd}/${cfn}.html. This means the transformation output file will have the name
of the XML file and the html extension and will be stored in the same folder.

• Enable the Open in Browser/System Application option.

Oxygen XML Editor plugin | Author Mode Customization | 934

Note: To set the browser or system application that will be used, go to Window > Preferences >
General > Web Browser and specify it there. This will take precedence over the default system application
settings.

• Enable the Saved file option.

5. Click the OK button to save the new scenario.

Now the scenario is listed in the Transformation tab:

Figure 482:Transformation Tab

To test the transformation scenario that you just created, open the SDF XML sample from the Example Files Listings.

Click the Apply Transformation Scenario(s) button to display the Transform with dialog box. The scenario list
contains the scenario you defined earlier . Select the SDF to HTML scenario that you just defined and click the Apply
associated button. The HTML file is saved in the same folder as the XML file and displayed in the browser.

Configuring Validation Scenarios for a Framework

You can distribute a framework with a series of already configured validation scenarios. Also, this provides enhanced
validation support that allows you to use multiple grammars to check the document. For example, you can use Schematron
rules to impose guidelines that are otherwise impossible to enforce using conventional validation.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file are
used and take precedence over the default scenarios defined for the particular framework. For more information
on master files, see the Defining Master Files at Project Level on page 221 section or Working with Modular
XML Files in the Master Files Context on page 378.

To associate a validation scenario with a specific framework, follow these steps:

1. Open the Preferences dialog box and go to Document Type Association.

2. Select the document type and click the Edit button to open the Document Type configuration dialog box, then choose
the Validation tab. This tab displays a list of document types in which you can define validation scenarios. To set
one or more of the validation scenarios listed in this tab to be used as the default validation scenario (when another
one is not specified in the validation process) for a specific document type, check the Default box for that specific
document type.

3. To add a new scenario, press the New button.
The New scenarios dialog box is displayed. It lists all the validation units for the scenario.

Oxygen XML Editor plugin | Author Mode Customization | 935

Figure 483: Create New Validation Scenario

This scenario configuration dialog box allows you to configure the following information and options:

The name of the validation scenario.Name

The URL of the main module that includes the current module. It is also the entry module of
the validation process when the current one is validated. To edit the URL, click its cell and
specify the URL of the main module by doing one of the following:

URL of the file to
validate

• Enter the URL in the text field or select it from the drop-down list.

• Use the Browse drop-down button to browse for a local, remote, or archived file.

• Use the Insert Editor Variable button to insert an editor variable or a custom editor
variable.

Figure 484: Insert an Editor Variable

The type of the document that is validated in the current validation unit. Oxygen XML Editor
plugin automatically selects the file type depending on the value of the URL of the file to
validate field.

File type

You can select one of the engines available in Oxygen XML Editor plugin for validation of
the particular document type.

Default engine means that the default engine is used to run the validation for the current
document type, as specified in the preferences page for that type of document (for example,
XSLT preferences page, XQuery preferences page, XML Schema preferences page).

Validation engine

The DITA Validation engine performs DITA-specific checks in the context of the specifications

(it is similar to the checks done with the DITA map Validate and Check for Completeness
action, but for a local file rather than an entire DITA map).

Oxygen XML Editor plugin | Author Mode Customization | 936

The Table Layout Validation engine looks for table layout problems (for more information,
see Report table layout problems on page 1145).

If this option is checked, the validation operation defined by this row is also applied by the
automatic validation feature. If the Automatic validation feature is disabled in the Document

Automatic
validation

Checking preferences page, then this option is ignored, as the preference setting has a higher
priority.

This option becomes active when you set the File type to XML Document and allows you to
specify the schema used for the validation unit.

Schema

Opens the Specify Schema dialog box that allows you to set a schema for validating XML
documents, or a list of extensions for validating XSL or XQuery documents. You can also set
a default phase for validation with a Schematron schema.

Settings

Moves the selected scenario up one spot in the list.Move Up

Moves the selected scenario down one spot in the list.Move Down

Adds a new validation unit to the list.Add

Removes an existing validation unit from the list.Remove

4. Configure any of the existing validation units according to the information above, and you can use the buttons at the
bottom of the table to add, remove, or move validation units. Note that if you add a Schematron validation unit, you
can also select the validation phase.

5. Press Ok.
The newly created validation scenario is now included in the list of scenarios in the Validation tab. You can use the
Default checkbox to specify that the new scenario be used as the default validation scenario when another specific
scenario is not specified in the validation process.

Configuring Extensions

You can add extensions to your frameworks (Document Type Association) by using the Extensions tab from the
Document Type configuration dialog box.
Configuring an Extensions Bundle

All extensions that are provided by Oxygen XML Editor plugin are includes in a single bundle.

Note: The individual extensions can still be set (open the Preferences dialog box , go to Document Type
Association, double-click a document type, and go to the extension tab), and if present, they take precedence
over the single provider. However, this practice is discouraged and the single provider should be used instead.

The extensions bundle is represented by the ro.sync.ecss.extensions.api.ExtensionsBundle class.
The provided implementation of the ExtensionsBundle is instantiated when the rules of the Document Type
Association defined for the custom framework matches a document opened in the editor. Therefore, references to objects
that need to be persistent throughout the application running session must not be kept in the bundle because the next
detection event can result in creating another ExtensionsBundle instance.

To configure an extensions bundle, follow this procedure:

1. Create a new Java project in your IDE. Create a lib folder in the Java project folder and copy in it the oxygen.jar
file from the [OXYGEN_INSTALL_DIR]/lib folder.

2. Create the class (for example, simple.documentation.framework.SDFExtensionsBundle) to extend
the abstract class ro.sync.ecss.extensions.api.ExtensionsBundle.

For example:

public class SDFExtensionsBundle extends ExtensionsBundle {

3. A Document Type ID and a short description should be defined first by implementing the methods
getDocumentTypeID and getDescription. The Document Type ID is used to uniquely identify the current

Oxygen XML Editor plugin | Author Mode Customization | 937

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html

framework. Such an ID must be provided especially if options related to the framework need to be persistently stored
and retrieved between sessions.

For example:

public String getDocumentTypeID() {
return "Simple.Document.Framework.document.type";

 }

public String getDescription() {
return "A custom extensions bundle used for the Simple Document" +

"Framework document type";
 }

4. To be notified about the activation of the custom Author Extension in relation with an opened document,
ro.sync.ecss.extensions.api.AuthorExtensionStateListener should be implemented. The
activation and deactivation events received by this listener should be used to perform custom initializations and to
register or remove listeners such as ro.sync.ecss.extensions.api.AuthorListener,
ro.sync.ecss.extensions.api.AuthorMouseListener, or
ro.sync.ecss.extensions.api.AuthorCaretListener. The custom Author Extension state listener
should be provided by implementing the createAuthorExtensionStateListener method.

For example:

public AuthorExtensionStateListener createAuthorExtensionStateListener() {
return new SDFAuthorExtensionStateListener();

 }

The AuthorExtensionStateListener is instantiated and notified about the activation of the framework
when the rules of the Document Type Association match a document opened in the Author editing mode. The listener
is notified about the deactivation when another framework is activated for the same document, the user switches to
another mode or the editor is closed. A complete description and implementation of
ro.sync.ecss.extensions.api.AuthorExtensionStateListener can be found in Implementing
an Author Extension State Listener.

If Schema Aware mode is active in Oxygen XML Editor plugin, all actions that can generate invalid content will be
redirected toward the ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler. The
handler can resolve a specific case, let the default implementation take place, or reject the edit entirely by throwing
an ro.sync.ecss.extensions.api.InvalidEditException. The actions that are forwarded to this
handler include typing, delete, or paste.

See Implementing a Schema-Aware Editing Handler Adapter on page 941 for more details about this handler.

5. Customizations of the content completion proposals are permitted by creating a schema manager filter extension.
The interface that declares the methods used for content completion proposals filtering is
ro.sync.contentcompletion.xml.SchemaManagerFilter. The filter can be applied on elements,
attributes, or on their values. The createSchemaManagerFilter method is responsible for creating the content
completion filter. A new SchemaManagerFilter will be created each time a document matches the rules defined
by the Document Type Association that contains the filter declaration.

For example:

public SchemaManagerFilter createSchemaManagerFilter() {
return new SDFSchemaManagerFilter();

 }

A detailed presentation of the schema manager filter can be found in the Configuring a Content Completion Handler
section.

6. The Author mode supports link-based navigation between documents and document sections. Therefore, if the
document contains elements defined as links to other elements (for example, links based on the id attributes), the
extension should provide the means to find the referenced content. To do this, an implementation of the
ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface should be returned by
the createElementLocatorProvider method. Each time an element pointed by a link needs to be located,
the method is invoked.

Oxygen XML Editor plugin | Author Mode Customization | 938

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExtensionStateListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorMouseListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/InvalidEditException.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/SchemaManagerFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html

For example:

public ElementLocatorProvider createElementLocatorProvider() {
return new DefaultElementLocatorProvider();

 }

For more information on how to implement an element locator provider, see the Configuring a Link Target Element
Finder section.

7. The drag and drop functionality can be extended by implementing the
ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener interface. Relevant methods
from the listener are invoked when the mouse is dragged, moved over, or exits the Author editing mode, when the
drop action changes, and when the drop occurs. Each method receives the DropTargetEvent containing information
about the drag and drop operation. The drag and drop extensions are available in Author mode for both Oxygen
XML Editor plugin Eclipse plugin and standalone application. The Text mode corresponding listener is available
only for Oxygen XML Editor plugin Eclipse plugin. The methods corresponding to each implementation are:
createAuthorAWTDndListener, createTextSWTDndListener, and
createAuthorSWTDndListener.

public AuthorDnDListener createAuthorAWTDndListener() {
return new SDFAuthorDndListener();

 }

For more details about the Author mode drag and drop listeners, see the Configuring a custom Drag and Drop
Listener section.

8. Another extension that can be included in the bundle is the reference resolver. In our example, the references are
represented by the ref element and the attribute indicating the referenced resource is location. To be able to obtain
the content of the referenced resources you will have to implement a Java extension class that implements
ro.sync.ecss.extensions.api.AuthorReferenceResolver. The method responsible for creating
the custom references resolver is createAuthorReferenceResolver. The method is called each time a
document opened in an Author editing mode matches the Document Type Association where the extensions bundle
is defined. The instantiated references resolver object is kept and used until another extensions bundle corresponding
to another Document Type is activated as result of the detection process.

For example:

public AuthorReferenceResolver createAuthorReferenceResolver() {
return new ReferencesResolver();

 }

A more detailed description of the references resolver can be found in the Configuring a References Resolver section.

9. To be able to dynamically customize the default CSS styles for a certain
ro.sync.ecss.extensions.api.node.AuthorNode, an implementation of
ro.sync.ecss.extensions.api.StylesFilter can be provided. The extensions bundle method responsible
for creating the StylesFilter is createAuthorStylesFilter. The method is called each time a document
opened in an Author editing mode matches the Document Type Association where the extensions bundle is defined.
The instantiated filter object is kept and used until another extensions bundle corresponding to another Document
Type is activated as a result of the detection process.

For example:

public StylesFilter createAuthorStylesFilter() {
return new SDFStylesFilter();

 }

See the Configuring CSS Styles Filter section for more details about the styles filter extension.

10. To edit data in custom tabular format, implementations of the
ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider and the
ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interfaces should be provided.

Oxygen XML Editor plugin | Author Mode Customization | 939

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/com/oxygenxml/editor/editors/author/AuthorDnDListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReferenceResolver.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorNode.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSpanProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html

The two methods from the ExtensionsBundle specifying these two extension points are
createAuthorTableCellSpanProvider and createAuthorTableColumnWidthProvider.

For example:

public AuthorTableCellSpanProvider createAuthorTableCellSpanProvider() {
return new TableCellSpanProvider();

 }

public AuthorTableColumnWidthProvider
 createAuthorTableColumnWidthProvider() {

return new TableColumnWidthProvider();
 }

The two table information providers are not reused for different tables. The methods are called for each table in the
document so new instances should be provided every time. Read more about the cell span and column width
information providers in Configuring a Table Cell Span Provider and Configuring a Table Column Width Provider
sections.

If the functionality related to one of the previous extension point does not need to be modified, then the developed
ro.sync.ecss.extensions.api.ExtensionsBundle should not override the corresponding method
and leave the default base implementation to return null.

11. An XML vocabulary can contain links to various areas of a document. If the document contains elements defined
as links, you can choose to present a more relevant text description for each link. To do this, an implementation of
the ro.sync.ecss.extensions.api.link.LinkTextResolver interface should be returned by the
createLinkTextResolver method. This implementation is used each time the oxy_link-text()
function is encountered in the CSS styles associated with an element.

For example:

public LinkTextResolver createLinkTextResolver() {
return new DitaLinkTextResolver();

}

Oxygen XML Editor plugin offers built-in implementations for DITA and DocBook:
ro.sync.ecss.extensions.dita.link.DitaLinkTextResolver and
ro.sync.ecss.extensions.docbook.link.DocbookLinkTextResolver respectively.

12. Pack the compiled class into a jar file.

13. Copy the jar file into your custom framework directory (for example, frameworks/sdf).

14. Add the jar file to the class path. To do this, open the Preferences dialog box , go to Document Type Association,

select the document type (for example, SDF), press the Edit button, select the Classpath tab, and press the Add
button . In the displayed dialog box, enter the location of the jar file relative to the Oxygen XML Editor plugin
frameworks folder.

15. Register the Java class by going to the Extensions tab. Press the Choose button and select the name of the class (for
example, SDFExtensionsBundle).

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven
archetype on the Oxygen XML Editor plugin website.

Related information
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html

Customize Profiling Conditions

For each document type, you can configure the phrase-type elements that wrap the profiled content by setting a custom
ro.sync.ecss.extensions.api.ProfilingConditionalTextProvider. This configuration is set by
default for DITA and DocBook frameworks.

Oxygen XML Editor plugin | Author Mode Customization | 940

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/LinkTextResolver.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/dita/link/DitaLinkTextResolver.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/docbook/link/DocbookLinkTextResolver.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ProfilingConditionalTextProvider.html

Customizing Smart Paste Support

The Smart Paste feature preserves certain style and structure information when copying content from some of the most
common applications and pasting into document types that support Smart Paste in Oxygen XML Editor plugin. For
other document types, the default behavior of the paste operation is to keep only the text content without the styling.

The style of the pasted content can be customized by editing an XSLT stylesheet for a particular document type
(framework). The XSLT stylesheet must accept an XHTML flavor of the copied content as input, and transform it to
the equivalent XML markup that is appropriate for the target document type of the paste operation.

How to Customize the Smart Paste Mapping
To customize the mapping between the markup of the copied content and the markup of the pasted content for a particular
document type, follow these steps:

1. Make sure the particular framework contains a folder named resources in the following path structure:

[OXYGEN_INSTALL_DIR]/frameworks/[Document Type]/resources

2. Create an XSLT file named xhtml2content.xsl and save it in the resources folder for the particular
framework.

For example: [OXYGEN_INSTALL_DIR]/frameworks/dita/resources/xhtml2content.xsl.

3. Add your customized styling in the XSLT file.
4. You can test modifications done in the stylesheet by pasting content without having to restart Oxygen XML Editor

plugin.

Result: When you paste content from external applications (such as a web browser or and Office document) to a document
that is opened in Author mode, and that matches the particular framework, the styling from the xhtml2content.xsl
stylesheet will be applied on the clipboard contents.

Related information
Smart Paste Support on page 264

oXygen XML Blog: How Special Paste Works in oXygen

Implementing a Schema-Aware Editing Handler Adapter

The AuthorSchemaAwareEditingHandlerAdapter extension point allows you to handle certain Author mode
actions in various ways. For example, implementing the AuthorSchemaAwareEditingHandlerAdapter makes
it possible to handle events such as typing, the keyboard delete event at a given offset (using Delete or Backspace keys),
delete element tags, delete selection, join elements, or paste fragment. It also makes it possible to improve solutions that
are proposed by the paste mechanism in Oxygen XML Editor plugin when pasting content (through the use of some
specific methods).

How to Implement an AuthorSchemaAwareEditingHandlerAdapter

For this handler to be called, the Schema Aware Editing option must be set to On or Custom in the Schema-Aware
preferences page. The handler can either resolve a specific case, let the default implementation take place, or reject the
edit entirely by throwing an InvalidEditException.

To implement your own AuthorSchemaAwareEditingHandlerAdapter, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandlerAdapter
extension.

2. To instruct Oxygen XML Editor plugin to use this newly created implementation, configure an extensions bundle
and return the AuthorSchemaAwareEditingHandlerAdapter implementation using the
ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorSchemaAwareEditingHandlerAdapter()
method.

Oxygen XML Editor plugin | Author Mode Customization | 941

http://blog.oxygenxml.com/2015/10/how-special-paste-works-in-oxygen.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html

Example

Typing events can be handled using the handleTyping method. For example, the
AuthorSchemaAwareEditingHandler checks if the schema is not a learned one, was loaded successfully, and
if the Smart paste and drag and drop option is enabled. If these conditions are met, the event will be handled.

public class AuthorSchemaAwareEditingHandlerAdapter extends AuthorSchemaAwareEditingHandler {

/**
 * @see ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleTyping(int, char,
ro.sync.ecss.extensions.api.AuthorAccess)
 */
public boolean handleTyping(int offset, char ch, AuthorAccess authorAccess)
throws InvalidEditException {

boolean handleTyping = false;
 AuthorSchemaManager authorSchemaManager = authorAccess.getDocumentController().getAuthorSchemaManager();

if (!authorSchemaManager.isLearnSchema() &&
 !authorSchemaManager.hasLoadingErrors() &&
 authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartTyping()) {

try {
 AuthorDocumentFragment characterFragment =
 authorAccess.getDocumentController().createNewDocumentTextFragment(String.valueOf(ch));
 handleTyping = handleInsertionEvent(offset, new AuthorDocumentFragment[] {characterFragment}, authorAccess);

 } catch (AuthorOperationException e) {
throw new InvalidEditException(e.getMessage(), "Invalid typing event: " + e.getMessage(), e, false);

 }
 }

return handleTyping;
}

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Methods for Improving the Paste Mechanism

When pasting content in Author mode, if the result causes the document to
become invalid, Oxygen XML Editor plugin will propose solutions to make

getAncestorDetectionOptions

it valid. As a possible solution, Oxygen XML Editor plugin might surround
the pasted content in a sequence of ancestor elements. This
getAncestorDetectionOptions method allows you to choose which
parent elements might be a possible solution.

Allows you to improve solutions that might be proposed by the paste
mechanism when pasting content in Oxygen XML Editor plugin. For example,

canBeReplaced

when pasting an element inside an empty element with the same name, this
canBeReplaced method allows Oxygen XML Editor plugin to replace the
empty node rather than pasting it after or before the empty node. The callback
could also reject this behavior if, for instance, the replacement node contains
attributes.

Related information
AuthorDocumentFragment Class

Implementing an Edit Properties Handler for Author Mode

The EditPropertiesHandler extension point allows you to present a specialized dialog box when the action of
double-clicking an element tag is intercepted in Author mode. For example, you could use it to present a dialog box
that allows the user to editing the properties of an image.

How to Implement an EditPropertiesHandler

To implement your own EditPropertiesHandler, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.EditPropertiesHandler interface.
2. To instruct Oxygen XML Editor plugin to use this newly created implementation, use either of the following methods:

Oxygen XML Editor plugin | Author Mode Customization | 942

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html

If you have configured an extensions bundle, you can return the EditPropertiesHandler implementation
using the

a.

ro.sync.ecss.extensions.api.ExtensionsBundle.createEditPropertiesHandler()
method.

b. Specify the EditPropertiesHandler in the Author edit properties handler individual extension in the
Extensions tab of the Document Type configuration dialog box for your particular document type.

Example

The following example illustrates an implementation for presenting a simple properties editing dialog box when a user
double-clicks an image tag in Author mode (with tags displayed from the Tags display mode drop-down menu):

public class CustomEditPropertiesHandler implements EditPropertiesHandler {

/**
 * @see ro.sync.ecss.extensions.api.Extension#getDescription()
 */

@Override
public String getDescription() {
return "A sample implementation that handles the properties for a table element.";

 }

/**
 * @see
ro.sync.ecss.extensions.api.EditPropertiesHandler#canEditProperties(ro.sync.ecss.extensions.api.node.AuthorNode)

 */
@Override
public boolean canEditProperties(AuthorNode authorNode) {
// If this node is an image element we can edit its properties.
return "image".equals(authorNode.getDisplayName());

 }

/**
 * @see
ro.sync.ecss.extensions.api.EditPropertiesHandler#editProperties(ro.sync.ecss.extensions.api.node.AuthorNode,
ro.sync.ecss.extensions.api.AuthorAccess)
 */

@Override
public void editProperties(AuthorNode authorNode, AuthorAccess authorAccess) {
// If we receive this call then it surely an image.

 AuthorElement imageElement = (AuthorElement) authorNode;
 String currentValue = "";
 AttrValue altValue = imageElement.getAttribute("alt");

if (altValue != null) {
 currentValue = altValue.getValue();
 }
 String newValue = JOptionPane.showInputDialog(
 (Component) authorAccess.getWorkspaceAccess().getParentFrame(),

"Alternate text",
 currentValue);

if (newValue != null) {
 authorAccess.getDocumentController().setAttribute("alt", new AttrValue(newValue), imageElement);
 }
 }
}

Example result: If a user were to double-click an image tag icon () in Author mode, the following dialog box
would be displayed that allows the user to edit the alternate text property for the image:

Implementing an Author Mode Action Event Handler

The AuthorActionEventHandler extension point allows you to handle certain Author mode actions in a special
way. For example, a specific use-case would be if you want to insert new lines when you press Enter instead of it
opening the Content Completion Assistant.

Oxygen XML Editor plugin | Author Mode Customization | 943

How to Implement an AuthorActionEventHandler

To implement your own AuthorActionEventHandler, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorActionEventHandler interface.
2. To instruct Oxygen XML Editor plugin to use this newly created implementation, use either of the following methods:

a. If you have configured an extensions bundle, you can return the AuthorActionEventHandler implementation
using the
ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorActionEventHandler()
method.

b. Specify the AuthorActionEventHandler in the Author action event handler individual extension in the
Extensions tab of the Document Type configuration dialog box for your particular document type.

Example

The following example illustrates the use-case mentioned in the introduction, that is an implementation for inserting a
new line when the user presses Enter in Author mode. It uses the canHandleEvent method to make sure the insertion
will be performed in an element that will preserve the new-line character. Then the handleEvent method inserts
the new line at the current cursor position.

public class CustomAuthorActionEventHandler implements AuthorActionEventHandler {

/**
 * @see ro.sync.ecss.extensions.api.AuthorActionEventHandler#canHandleEvent(AuthorAccess, AuthorActionEventType)

 */
@Override
public boolean canHandleEvent(AuthorAccess authorAccess, AuthorActionEventType type) {
boolean canHandle = false;

if (type == AuthorActionEventType.ENTER) {
 AuthorDocumentController documentController = authorAccess.getDocumentController();

int caretOffset = authorAccess.getEditorAccess().getCaretOffset();
try {

 AuthorNode nodeAtOffset = documentController.getNodeAtOffset(caretOffset);
if (nodeAtOffset instanceof AuthorElement) {

 AuthorElement elementAtOffset = (AuthorElement) nodeAtOffset;
 AttrValue xmlSpace = elementAtOffset.getAttribute("xml:space");

if (xmlSpace != null && xmlSpace.getValue().equals("preserve")) {
 canHandle = true;
 }
 }
 } catch (BadLocationException ex) {

if (logger.isDebugEnabled()) {
 logger.error(ex.getMessage(), ex);
 }
 }
 }

return canHandle;
 }

/**
 * @see ro.sync.ecss.extensions.api.AuthorActionEventHandler#handleEvent(ro.sync.ecss.extensions.api.AuthorAccess,
 ro.sync.ecss.extensions.api.AuthorActionEventHandler.AuthorActionEventType)
 */

@Override
public boolean handleEvent(AuthorAccess authorAccess, AuthorActionEventType eventType) {
int caretOffset = authorAccess.getEditorAccess().getCaretOffset();
// Insert a new line

 authorAccess.getDocumentController().insertText(caretOffset, "\n");
return true;

 }

/**
 * @see ro.sync.ecss.extensions.api.Extension#getDescription()
 */

@Override
public String getDescription() {
return "Insert a new line";

 }
}

Oxygen XML Editor plugin | Author Mode Customization | 944

Implementing an Image Decorator for Author Mode

The AuthorImageDecorator extension point allows you to add a custom decorator over images in Author mode.
For example, you could use it to add a message over an image informing the user that they can double-click the image
to edit it.

How to Implement an AuthorImageDecorator

To implement your own AuthorImageDecorator, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorImageDecorator interface.
2. To instruct Oxygen XML Editor plugin to use this newly created implementation, use either of the following methods:

a. If you have configured an extensions bundle, you can return the AuthorImageDecorator implementation
using the ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorImageDecorator()
method.

b. Specify the AuthorImageDecorator in the Author image decorator individual extension in the Extensions
tab of the Document Type configuration dialog box for your particular document type.

Example

The following example illustrates an implementation for presenting a simple message over an image that informs the
user that they can double-click the image to edit it:

/**
 * Custom Author image decorator for drawing string over images.
 */
public class CustomAuthorImageDecorator extends AuthorImageDecorator {

/**
 * @see ro.sync.ecss.extensions.api.AuthorImageDecorator#paint(ro.sync.exml.view.graphics.Graphics, int, int,
 int, int, ro.sync.exml.view.graphics.Rectangle, ro.sync.ecss.extensions.api.node.AuthorNode,
ro.sync.ecss.extensions.api.AuthorAccess, boolean)
 */

@Override
public void paint(Graphics g, int x, int y, int imageWidth, int imageHeight,

 Rectangle originalSize, AuthorNode element, AuthorAccess authorAccess, boolean wasAnnotated) {
if ("image".equals(CommonsOperationsUtil.getLocalName(element.getName()))) {

 g.drawString(
"[Double-click to edit image]",
// Draw near the top-left corner

 x + 15,
 y + 15);
 }
 }

Example result: In the top-left corner of the image, the following message will be displayed: [Double-click to
edit image].

Implementing a State Listener for Author Mode

The ro.sync.ecss.extensions.api.AuthorExtensionStateListener implementation is notified
when the Author mode extension (where the listener is defined) is activated or deactivated in the Document Type
detection process.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorExtensionStateListener;

public class SDFAuthorExtensionStateListener implements
 AuthorExtensionStateListener {

private AuthorListener sdfAuthorDocumentListener;
private AuthorMouseListener sdfMouseListener;
private AuthorCaretListener sdfCaretListener;
private OptionListener sdfOptionListener;

When the rules of the Document Type Association match a document opened in the Author editing mode, the activation
event received by this listener should be used to perform custom initializations and to register listeners such as
ro.sync.ecss.extensions.api.AuthorListener,

Oxygen XML Editor plugin | Author Mode Customization | 945

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExtensionStateListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorListener.html

ro.sync.ecss.extensions.api.AuthorMouseListener, or
ro.sync.ecss.extensions.api.AuthorCaretListener.

public void activated(AuthorAccess authorAccess) {
// Get the value of the option.

 String option = authorAccess.getOptionsStorage().getOption(
"sdf.custom.option.key", "");

// Use the option for some initializations...

// Add an OptionListener.
 authorAccess.getOptionsStorage().addOptionListener(sdfOptionListener);

// Add author DocumentListeners.
 sdfAuthorDocumentListener = new SDFAuthorListener();
 authorAccess.getDocumentController().addAuthorListener(
 sdfAuthorDocumentListener);

// Add MouseListener.
 sdfMouseListener = new SDFAuthorMouseListener();
 authorAccess.getEditorAccess().addAuthorMouseListener(sdfMouseListener);

// Add CaretListener.
 sdfCaretListener = new SDFAuthorCaretListener();
 authorAccess.getEditorAccess().addAuthorCaretListener(sdfCaretListener);

// Other custom initializations...

 }

The authorAccess parameter received by the activated method can be used to gain access to specific Author mode
actions and informations related to components such as the editor, document, workspace, tables, or the change tracking
manager.

If options specific to the custom developed Author Extension need to be stored or retrieved, a reference to the
ro.sync.ecss.extensions.api.OptionsStorage can be obtained by calling the getOptionsStorage
method from the authorAccess. The same object can be used to register
ro.sync.ecss.extensions.api.OptionListener listeners. An option listener is registered in relation with
an option key and will be notified about the value changes of that option.

An AuthorListener can be used if events related to the Author mode document modifications are of interest. The
listener can be added to the ro.sync.ecss.extensions.api.AuthorDocumentController. A reference
to the document controller is returned by the getDocumentController method from the authorAccess. The
document controller can also be used to perform operations involving document modifications.

To provide access to the Author mode component-related functionality and information, the authorAccess has a reference
to the ro.sync.ecss.extensions.api.access.AuthorEditorAccess that can be obtained when calling
the getEditorAccess method. At this level, AuthorMouseListener and AuthorCaretListener can be
added to provide notification of mouse and cursor events that occur in the Author editor mode.

The deactivation event is received when another framework is activated for the same document, the user switches to
another editor mode or the editor is closed. The deactivate method is typically used to unregister the listeners
previously added on the activate method and to perform other actions. For example, options related to the deactivated
Author Extension can be saved at this point.

public void deactivated(AuthorAccess authorAccess) {
// Store the option.

 authorAccess.getOptionsStorage().setOption(
"sdf.custom.option.key", optionValue);

// Remove the OptionListener.
 authorAccess.getOptionsStorage().removeOptionListener(sdfOptionListener);

// Remove DocumentListeners.
 authorAccess.getDocumentController().removeAuthorListener(
 sdfAuthorDocumentListener);

// Remove MouseListener.
 authorAccess.getEditorAccess().removeAuthorMouseListener(sdfMouseListener);

// Remove CaretListener.
 authorAccess.getEditorAccess().removeAuthorCaretListener(sdfCaretListener);

// Other actions...

 }

Oxygen XML Editor plugin | Author Mode Customization | 946

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorMouseListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/OptionsStorage.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/OptionListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/access/AuthorEditorAccess.html

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring a Content Completion Handler

You can filter or contribute to items offered for content completion by implementing the
ro.sync.contentcompletion.xml.SchemaManagerFilter interface.

import java.util.List;

import ro.sync.contentcompletion.xml.CIAttribute;
import ro.sync.contentcompletion.xml.CIElement;
import ro.sync.contentcompletion.xml.CIValue;
import ro.sync.contentcompletion.xml.Context;
import ro.sync.contentcompletion.xml.SchemaManagerFilter;
import ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatPossibleValuesHasAttributeContext;

public class SDFSchemaManagerFilter implements SchemaManagerFilter {

You can implement the various callbacks of the interface either by returning the default values given by Oxygen XML
Editor plugin or by contributing to the list of proposals. The filter can be applied on elements, attributes or on their
values. Attributes filtering can be implemented using the filterAttributes method and changing the default
content completion list of ro.sync.contentcompletion.xml.CIAttribute for the element provided by the
current ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext context. For example,
the SDFSchemaManagerFilter checks if the element from the current context is the table element and adds the
frame attribute to the table list of attributes.

/**
 * Filter attributes of the "table" element.
 */
public List<CIAttribute> filterAttributes(List<CIAttribute> attributes,
 WhatAttributesCanGoHereContext context) {

// If the element from the current context is the 'table' element add the
// attribute named 'frame' to the list of default content completion proposals
if (context != null) {

 ContextElement contextElement = context.getParentElement();
if ("table".equals(contextElement.getQName())) {

 CIAttribute frameAttribute = new CIAttribute();
 frameAttribute.setName("frame");
 frameAttribute.setRequired(false);
 frameAttribute.setFixed(false);
 frameAttribute.setDefaultValue("void");

if (attributes == null) {
 attributes = new ArrayList<CIAttribute>();
 }
 attributes.add(frameAttribute);
 }
 }

return attributes;
}

The elements that can be inserted in a specific context can be filtered using the filterElements method. The
SDFSchemaManagerFilter uses this method to replace the td child element with the th element when header
is the current context element.

public List<CIElement> filterElements(List<CIElement> elements,
 WhatElementsCanGoHereContext context) {

// If the element from the current context is the 'header' element remove the
// 'td' element from the list of content completion proposals and add the
// 'th' element.
if (context != null) {

 Stack<ContextElement> elementStack = context.getElementStack();
if (elementStack != null) {

 ContextElement contextElement = context.getElementStack().peek();
if ("header".equals(contextElement.getQName())) {

if (elements != null) {
for (Iterator<CIElement> iterator = elements.iterator(); iterator.hasNext();) {

 CIElement element = iterator.next();
// Remove the 'td' element
if ("td".equals(element.getQName())) {

 elements.remove(element);
break;

 }
 }

Oxygen XML Editor plugin | Author Mode Customization | 947

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/SchemaManagerFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/CIAttribute.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/WhatAttributesCanGoHereContext.html

 } else {
 elements = new ArrayList<CIElement>();
 }

// Insert the 'th' element in the list of content completion proposals
 CIElement thElement = new SDFElement();
 thElement.setName("th");
 elements.add(thElement);
 }
 }
 } else {

// If the given context is null then the given list of content completion elements contains
// global elements.

 }
return elements;

}

The elements or attributes values can be filtered using the filterElementValues or filterAttributeValues
methods.

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring a Link Target Element Finder

The link target reference finder represents the support for finding references from links that indicate specific elements
inside an XML document. This support will only be available if a schema is associated with the document type.

If you do not define a custom link target reference finder, the DefaultElementLocatorProvider implementation
will be used by default. The interface that should be implemented for a custom link target reference finder is
ro.sync.ecss.extensions.api.link.ElementLocatorProvider. As an alternative, the
ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider implementation can also be
extended.

The used ElementLocatorProvider will be queried for an ElementLocator when a link location must be
determined (when a link is clicked). Then, to find the corresponding (linked) element, the obtained ElementLocator
will be queried for each element from the document.

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

DefaultElementLocatorProvider Implementation

The DefaultElementLocatorProvider implementation offers support for the most common types of links:

• Links based on ID attribute values.

• XPointer element() scheme.

The method getElementLocator determines what ElementLocator should be used. In the default implementation,
it checks if the link is an XPointer element() scheme. Otherwise, it assumes it is an ID. A non-null IDTypeVerifier
will always be provided if a schema is associated with the document type.

The link string argument is the "anchor" part of the of the URL that is composed from the value of the link property
specified for the link element in the CSS.

public ElementLocator getElementLocator(IDTypeVerifier idVerifier,
 String link) {
 ElementLocator elementLocator = null;

try {
if(link.startsWith("element(")){

// xpointer element() scheme
 elementLocator = new XPointerElementLocator(idVerifier, link);
 } else {

// Locate link element by ID
 elementLocator = new IDElementLocator(idVerifier, link);
 }
 } catch (ElementLocatorException e) {
 logger.warn("Exception when create element locator for link: "

Oxygen XML Editor plugin | Author Mode Customization | 948

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

 + link + ". Cause: " + e, e);
 }

return elementLocator;
}

XPointerElementLocator Implementation

XPointerElementLocator is an implementation of the abstract class
ro.sync.ecss.extensions.api.link.ElementLocator for links that have one of the following XPointer
element() scheme patterns:

Locate the element with the specified id.element(elementID)

A child sequence appearing alone identifies an element by means of stepwise
navigation, which is directed by a sequence of integers separated by slashes (/). Each
integer n locates the nth child element of the previously located element.

element(/1/2/3)

A child sequence appearing after a NCName identifies an element by means of stepwise
navigation, starting from the element located by the given name.

element(elementID/3/4)

The constructor separates the id/integers, which are delimited by slashes(/) into a sequence of identifiers (an XPointer
path). It will also check that the link has one of the supported patterns of the XPointer element() scheme.

public XPointerElementLocator(IDTypeVerifier idVerifier, String link)
throws ElementLocatorException {

super(link);
this.idVerifier = idVerifier;

 link = link.substring("element(".length(), link.length() - 1);

 StringTokenizer stringTokenizer = new StringTokenizer(link, "/", false);
 xpointerPath = new String[stringTokenizer.countTokens()];

int i = 0;
while (stringTokenizer.hasMoreTokens()) {

 xpointerPath[i] = stringTokenizer.nextToken();
boolean invalidFormat = false;

// Empty xpointer component is not supported
if(xpointerPath[i].length() == 0){

 invalidFormat = true;
 }

if(i > 0){
try {

 Integer.parseInt(xpointerPath[i]);
 } catch (NumberFormatException e) {
 invalidFormat = true;
 }
 }

if(invalidFormat){
throw new ElementLocatorException(

"Only the element() scheme is supported when locating XPointer links."
 + "Supported formats: element(elementID), element(/1/2/3),
 element(elemID/2/3/4).");
 }
 i++;
 }

if(Character.isDigit(xpointerPath[0].charAt(0))){
// This is the case when xpointer have the following pattern /1/5/7

 xpointerPathDepth = xpointerPath.length;
 } else {

// This is the case when xpointer starts with an element ID
 xpointerPathDepth = -1;
 startWithElementID = true;
 }
}

The method startElement will be invoked at the beginning of every element in the XML document(even when the
element is empty). The arguments it takes are

The namespace URI, or the empty string if the element has no namespace URI or if
namespace processing is disabled.

uri

Local name of the element.localName

Oxygen XML Editor plugin | Author Mode Customization | 949

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html

Qualified name of the element.qName

Attributes attached to the element. If there are no attributes, this argument will be empty.atts

The method returns true if the processed element is found to be the one indicated by the link.

The XPointerElementLocator implementation of the startElement will update the depth of the current
element and keep the index of the element in its parent. If the xpointerPath starts with an element ID then the
current element ID is verified to match the specified ID. If this is the case the depth of the XPointer is updated taking
into account the depth of the current element.

If the XPointer path depth is the same as the current element depth then the kept indices of the current element path are
compared to the indices in the XPointer path. If all of them match then the element has been found.

public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {

boolean linkLocated = false;
// Increase current element document depth

 startElementDepth ++;

if (endElementDepth != startElementDepth) {
// The current element is the first child of the parent

 currentElementIndexStack.push(new Integer(1));
 } else {

// Another element in the parent element
 currentElementIndexStack.push(new Integer(lastIndexInParent + 1));
 }

if (startWithElementID) {
// This the case when xpointer path starts with an element ID.

 String xpointerElement = xpointerPath[0];
for (int i = 0; i < atts.length; i++) {

if(xpointerElement.equals(atts[i].getValue())){
if(idVerifier.hasIDType(

 localName, uri, atts[i].getQName(), atts[i].getNamespace())){
 xpointerPathDepth = startElementDepth + xpointerPath.length - 1;

break;
 }
 }
 }
 }

if (xpointerPathDepth == startElementDepth){
// check if xpointer path matches with the current element path

 linkLocated = true;
try {

int xpointerIdx = xpointerPath.length - 1;
int stackIdx = currentElementIndexStack.size() - 1;
int stopIdx = startWithElementID ? 1 : 0;
while (xpointerIdx >= stopIdx && stackIdx >= 0) {

int xpointerIndex = Integer.parseInt(xpointerPath[xpointerIdx]);
int currentElementIndex =

 ((Integer)currentElementIndexStack.get(stackIdx)).intValue();
if(xpointerIndex != currentElementIndex) {

 linkLocated = false;
break;

 }

 xpointerIdx--;
 stackIdx--;
 }

 } catch (NumberFormatException e) {
 logger.warn(e,e);
 }
 }

return linkLocated;
}

The method endElement will be invoked at the end of every element in the XML document (even when the element
is empty).

The XPointerElementLocator implementation of the endElement updates the depth of the current element
path and the index of the element in its parent.

public void endElement(String uri, String localName, String name) {
 endElementDepth = startElementDepth;
 startElementDepth --;
 lastIndexInParent = ((Integer)currentElementIndexStack.pop()).intValue();
}

Oxygen XML Editor plugin | Author Mode Customization | 950

IDElementLocator Implementation

The IDElementLocator is an implementation of the abstract class
ro.sync.ecss.extensions.api.link.ElementLocator for links that use an id.

The constructor only assigns field values and the method endElement is empty for this implementation.

The method startElement checks each of the element's attribute values and when one matches the link, it considers
the element found if one of the following conditions is satisfied:

• the qualified name of the attribute is xml:id

• the attribute type is ID

The attribute type is checked with the help of the method IDTypeVerifier.hasIDType.

public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {

boolean elementFound = false;
for (int i = 0; i < atts.length; i++) {
if (link.equals(atts[i].getValue())) {

if("xml:id".equals(atts[i].getQName())) {
// xml:id attribute

 elementFound = true;
 } else {

// check if attribute has ID type
 String attrLocalName =
 ExtensionUtil.getLocalName(atts[i].getQName());
 String attrUri = atts[i].getNamespace();

if (idVerifier.hasIDType(localName, uri, attrLocalName, attrUri)) {
 elementFound = true;
 }
 }
 }
 }

return elementFound;
}

Creating a customized link target reference finder

If you need to create a custom link target reference finder you can do so by creating the class that will implement the
ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface. As an alternative, your
class could extend ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider, the
default implementation.

Note: The complete source code of the
ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider,
ro.sync.ecss.extensions.commons.IDElementLocator or
ro.sync.ecss.extensions.commons.XPointerElementLocator can be found in the
oxygen-sample-framework project.

Configuring a Custom Drag and Drop Listener

Sometimes it is useful to perform various operations when certain objects are dropped from outside sources in the editing
area. You can choose from three interfaces to implement depending on whether you are using the framework with the
Eclipse plugin or the standalone version of the application or if you want to add the handler for the Text or Author
modes.

Table 15: Interfaces for the Drag and Drop listener

DescriptionInterface

Receives callbacks from the standalone application for
Drag And Drop in Author mode.

ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener

Receives callbacks from the Eclipse plugin for Drag And
Drop in Author mode.

com.oxygenxml.editor.editors.author.AuthorDnDListener

Oxygen XML Editor plugin | Author Mode Customization | 951

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/IDElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/XPointerElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/editor/xmleditor/pageauthor/AuthorDnDListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/com/oxygenxml/editor/editors/author/AuthorDnDListener.html

DescriptionInterface

Receives callbacks from the Eclipse plugin for Drag And
Drop in Text mode.

com.oxygenxml.editor.editors.TextDnDListener

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring a References Resolver

You need to provide a handler for resolving references and obtain the content they reference. In our case the element
that has references is ref and the attribute indicating the referenced resource is location. You will have to implement a
Java extension class for obtaining the referenced resources.

1. Create the class simple.documentation.framework.ReferencesResolver. This class must implement
the ro.sync.ecss.extensions.api.AuthorReferenceResolver interface.

import ro.sync.ecss.extensions.api.AuthorReferenceResolver;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;
import ro.sync.ecss.extensions.api.node.AuthorNode;

public class ReferencesResolver
implements AuthorReferenceResolver {

2. The hasReferences method verifies if the handler considers the node to have references. It takes as argument
an AuthorNode that represents the node that will be verified. The method will return true if the node is considered
to have references. In our case, to be a reference the node must be an element with the name ref and it must have an
attribute named location.

public boolean hasReferences(AuthorNode node) {
boolean hasReferences = false;
if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {

 AuthorElement element = (AuthorElement) node;
if ("ref".equals(element.getLocalName())) {

 AttrValue attrValue = element.getAttribute("location");
 hasReferences = attrValue != null;
 }
 }

return hasReferences;
}

3. The method getDisplayName returns the display name of the node that contains the expanded referenced content.
It takes as argument an AuthorNode that represents the node for which the display name is needed. The referenced
content engine will ask this AuthorReferenceResolver implementation for the display name for each node
that is considered a reference. In our case, the display name is the value of the location attribute from the ref element.

public String getDisplayName(AuthorNode node) {
 String displayName = "ref-fragment";

if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;

if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");

if (attrValue != null) {
 displayName = attrValue.getValue();
 }
 }
 }

return displayName;
}

4. The method resolveReference resolves the reference of the node and returns a SAXSource with the parser
and its input source. It takes as arguments an AuthorNode that represents the node for which the reference needs
resolving, the systemID of the node, the AuthorAccess with access methods to the Author mode data model and
a SAX EntityResolver that resolves resources that are already opened in another editor or resolve resources

Oxygen XML Editor plugin | Author Mode Customization | 952

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/com/oxygenxml/editor/editors/TextDnDListener.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReferenceResolver.html

through the XML catalog. In the implementation you need to resolve the reference relative to the systemID, and
create a parser and an input source over the resolved reference.

public SAXSource resolveReference(
 AuthorNode node,
 String systemID,
 AuthorAccess authorAccess,
 EntityResolver entityResolver) {
 SAXSource saxSource = null;

if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;

if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");

if (attrValue != null) {
 String attrStringVal = attrValue.getValue();

try {
 URL absoluteUrl = new URL(new URL(systemID),
 authorAccess.getUtilAccess().correctURL(attrStringVal));

 InputSource inputSource = entityResolver.resolveEntity(null,
 absoluteUrl.toString());

if(inputSource == null) {
 inputSource = new InputSource(absoluteUrl.toString());
 }

 XMLReader xmlReader = authorAccess.newNonValidatingXMLReader();
 xmlReader.setEntityResolver(entityResolver);

 saxSource = new SAXSource(xmlReader, inputSource);
 } catch (MalformedURLException e) {
 logger.error(e, e);
 } catch (SAXException e) {
 logger.error(e, e);
 } catch (IOException e) {
 logger.error(e, e);
 }
 }
 }
 }

return saxSource;
}

5. The method getReferenceUniqueID should return a unique identifier for the node reference. The unique
identifier is used to avoid resolving the references recursively. The method takes as argument an AuthorNode that
represents the node with the reference. In the implementation the unique identifier is the value of the location attribute
from the ref element.

public String getReferenceUniqueID(AuthorNode node) {
 String id = null;

if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;

if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");

if (attrValue != null) {
 id = attrValue.getValue();
 }
 }
 }

return id;
}

6. The method getReferenceSystemIDshould return the systemID of the referenced content. It takes as arguments
an AuthorNode that represents the node with the reference and the AuthorAccess with access methods to the
Author mode data model. In the implementation you use the value of the location attribute from the ref element and
resolve it relatively to the XML base URL of the node.

public String getReferenceSystemID(AuthorNode node,
 AuthorAccess authorAccess) {
 String systemID = null;

if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;

if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");

if (attrValue != null) {
 String attrStringVal = attrValue.getValue();

try {
 URL absoluteUrl = new URL(node.getXMLBaseURL(),
 authorAccess.getUtilAccess().correctURL(attrStringVal));
 systemID = absoluteUrl.toString();

Oxygen XML Editor plugin | Author Mode Customization | 953

 } catch (MalformedURLException e) {
 logger.error(e, e);
 }
 }
 }
 }

return systemID;
}

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven
archetype on the Oxygen XML Editor plugin website.

In the listing below, the XML document contains the ref element:

<ref location="referenced.xml">Reference</ref>

When no reference resolver is specified, the reference has the following layout:

Figure 485: Reference with no specified reference resolver

When the above implementation is configured, the reference has the expected layout:

Figure 486: Reference with reference resolver

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring CSS Styles Filter

You can modify the CSS styles for each ro.sync.ecss.extensions.api.node.AuthorNode rendered in
the Author mode using an implementation of ro.sync.ecss.extensions.api.StylesFilter. You can
implement the various callbacks of the interface either by returning the default value given by Oxygen XML Editor
plugin or by contributing to the value. The received styles ro.sync.ecss.css.Styles can be processed and
values can be overwritten with your own. For example, you can override the KEY_BACKGROUND_COLOR style to
return your own implementation of ro.sync.exml.view.graphics.Color or override the KEY_FONT style
to return your own implementation of ro.sync.exml.view.graphics.Font.

For instance, in our simple document example the filter can change the value of the KEY_FONT property for the table
element:

package simple.documentation.framework;

import ro.sync.ecss.css.Styles;
import ro.sync.ecss.extensions.api.StylesFilter;
import ro.sync.ecss.extensions.api.node.AuthorNode;
import ro.sync.exml.view.graphics.Font;

public class SDFStylesFilter implements StylesFilter {

public Styles filter(Styles styles, AuthorNode authorNode) {
if (AuthorNode.NODE_TYPE_ELEMENT == authorNode.getType()

 && "table".equals(authorNode.getName())) {
 styles.setProperty(Styles.KEY_FONT, new Font(null, Font.BOLD, 12));

Oxygen XML Editor plugin | Author Mode Customization | 954

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorNode.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/css/Styles.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/view/graphics/Color.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/view/graphics/Font.html

 }
return styles;

 }
}

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring Tables

There are standard CSS properties used to indicate what elements are tables, table rows and table cells. What CSS is
missing is the possibility to indicate the cell spanning, row separators or the column widths. Oxygen XML Editor plugin
offers support for adding extensions to solve these problems.

The table in this example is a simple one. The header must be formatted in a different way than the ordinary rows, so it
will have a background color.

table{
display:table;
border:1px solid navy;
margin:1em;
max-width:1000px;
min-width:150px;

}

table[width]{
width:attr(width, length);

}

tr, header{
display:table-row;

}

header{
background-color: silver;
color:inherit

}

td{
display:table-cell;
border:1px solid navy;
padding:1em;

}

Since in the schema, the td tag has the attributes row_span and column_span that are not automatically recognized
by Oxygen XML Editor plugin, a Java extension will be implemented that will provide information about the cell
spanning. See the section Configuring a Table Cell Span Provider.

The column widths are specified by the attributes width of the elements customcol that are not automatically recognized
by Oxygen XML Editor plugin. It is necessary to implement a Java extension that will provide information about the
column widths. See the section Configuring a Table Column Width Provider.

The table from our example does not make use of the attributes colsep and rowsep (which are automatically
recognized) but we still want the rows to be separated by horizontal lines. It is necessary to implement a Java extension
that will provide information about the row and column separators. See the section Configuring a Table Cell Row and
Column Separator Provider on page 961.

Configuring a Table Column Width Provider

In a custom framework, the table element as well as the table columns can have specified widths. For these widths
to be considered by Author mode we need to provide the means to determine them. As explained in the Configuring
Tables on page 955, if you use the table element attribute width Oxygen XML Editor plugin can determine the table
width automatically. In this example the table has col elements with width attributes that are not recognized by default.
You will need to implement a Java extension class to determine the column widths.

1. Create the class simple.documentation.framework.TableColumnWidthProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interface.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperationException;

Oxygen XML Editor plugin | Author Mode Customization | 955

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html

import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;
import ro.sync.ecss.extensions.api.WidthRepresentation;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableColumnWidthProvider
implements AuthorTableColumnWidthProvider {

2. Method init is taking as argument an ro.sync.ecss.extensions.api.node.AuthorElement that
represents the XML table element. In our case the column widths are specified in col elements from the table
element. In such cases you must collect the span information by analyzing the table element.

public void init(AuthorElement tableElement) {
this.tableElement = tableElement;

 AuthorElement[] colChildren = tableElement.getElementsByLocalName("customcol");
if (colChildren != null && colChildren.length > 0) {
for (int i = 0; i < colChildren.length; i++) {

 AuthorElement colChild = colChildren[i];
if (i == 0) {

 colsStartOffset = colChild.getStartOffset();
 }

if (i == colChildren.length - 1) {
 colsEndOffset = colChild.getEndOffset();
 }

// Determine the 'width' for this col.
 AttrValue colWidthAttribute = colChild.getAttribute("width");
 String colWidth = null;

if (colWidthAttribute != null) {
 colWidth = colWidthAttribute.getValue();

// Add WidthRepresentation objects for the columns this 'customcol' specification
// spans over.

 colWidthSpecs.add(new WidthRepresentation(colWidth, true));
 }
 }
 }
 }

3. The method isTableAcceptingWidth should check if the table cells are td.

public boolean isTableAcceptingWidth(String tableCellsTagName) {
return "td".equals(tableCellsTagName);

}

4. The method isTableAndColumnsResizable should check if the table cells are td. This method determines
if the table and its columns can be resized by dragging the edge of a column.

public boolean isTableAndColumnsResizable(String tableCellsTagName) {
return "td".equals(tableCellsTagName);

}

5. Methods getTableWidth and getCellWidth are used to determine the table and column width. The table
layout engine will ask this ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider
implementation what is the table width for each table element and the cell width for each cell element from the table
that was marked as cell in the CSS using the property display:table-cell. The implementation is simple and
just parses the value of the width attribute. The methods must return null for the tables / cells that do not have a
specified width.

public WidthRepresentation getTableWidth(String tableCellsTagName) {
 WidthRepresentation toReturn = null;

if (tableElement != null && "td".equals(tableCellsTagName)) {
 AttrValue widthAttr = tableElement.getAttribute("width");

if (widthAttr != null) {
 String width = widthAttr.getValue();

if (width != null) {
 toReturn = new WidthRepresentation(width, true);
 }
 }
 }

return toReturn;
 }

public List<WidthRepresentation> getCellWidth(AuthorElement cellElement, int colNumberStart,
int colSpan) {

 List<WidthRepresentation> toReturn = null;
int size = colWidthSpecs.size();
if (size >= colNumberStart && size >= colNumberStart + colSpan) {

 toReturn = new ArrayList<WidthRepresentation>(colSpan);

Oxygen XML Editor plugin | Author Mode Customization | 956

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html

for (int i = colNumberStart; i < colNumberStart + colSpan; i ++) {
// Add the column widths

 toReturn.add(colWidthSpecs.get(i));
 }
 }

return toReturn;
 }

6. Methods commitTableWidthModification and commitColumnWidthModifications are used to
commit changes made to the width of the table or its columns when using the mouse drag gestures.

public void commitTableWidthModification(AuthorDocumentController authorDocumentController,
int newTableWidth, String tableCellsTagName) throws AuthorOperationException {

if ("td".equals(tableCellsTagName)) {
if (newTableWidth > 0) {
if (tableElement != null) {

 String newWidth = String.valueOf(newTableWidth);

 authorDocumentController.setAttribute(
"width",
new AttrValue(newWidth),

 tableElement);
 } else {

throw new AuthorOperationException("Cannot find the element representing the table.");
 }
 }
 }
 }

public void commitColumnWidthModifications(AuthorDocumentController authorDocumentController,
 WidthRepresentation[] colWidths, String tableCellsTagName) throws AuthorOperationException {

if ("td".equals(tableCellsTagName)) {
if (colWidths != null && tableElement != null) {
if (colsStartOffset >= 0 && colsEndOffset >= 0 && colsStartOffset < colsEndOffset) {

 authorDocumentController.delete(colsStartOffset,
 colsEndOffset);
 }
 String xmlFragment = createXMLFragment(colWidths);

int offset = -1;
 AuthorElement[] header = tableElement.getElementsByLocalName("header");

if (header != null && header.length > 0) {
// Insert the cols elements before the 'header' element

 offset = header[0].getStartOffset();
 }

if (offset == -1) {
throw new AuthorOperationException("No valid offset to insert the columns width specification.");

 }
 authorDocumentController.insertXMLFragment(xmlFragment, offset);
 }
 }
 }

private String createXMLFragment(WidthRepresentation[] widthRepresentations) {
 StringBuffer fragment = new StringBuffer();
 String ns = tableElement.getNamespace();

for (int i = 0; i < widthRepresentations.length; i++) {
 WidthRepresentation width = widthRepresentations[i];
 fragment.append("<customcol");
 String strRepresentation = width.getWidthRepresentation();

if (strRepresentation != null) {
 fragment.append(" width=\"" + width.getWidthRepresentation() + "\"");
 }

if (ns != null && ns.length() > 0) {
 fragment.append(" xmlns=\"" + ns + "\"");
 }
 fragment.append("/>");
 }

return fragment.toString();
 }

7. The following three methods are used to determine what type of column width specifications the table column width
provider support. In our case all types of specifications are allowed:

public boolean isAcceptingFixedColumnWidths(String tableCellsTagName) {
return true;

 }

public boolean isAcceptingPercentageColumnWidths(String tableCellsTagName) {
return true;

 }

public boolean isAcceptingProportionalColumnWidths(String tableCellsTagName) {

Oxygen XML Editor plugin | Author Mode Customization | 957

return true;
 }

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven
archetype on the Oxygen XML Editor plugin website.

In the listing below, the XML document contains the table element:

<table width="300">
<customcol width="50.0px"/>
<customcol width="1*"/>
<customcol width="2*"/>
<customcol width="20%"/>
<header>

<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>

</header>
<tr>

<td>cs=1, rs=1</td>
<td>cs=1, rs=1</td>
<td row_span="2">cs=1, rs=2</td>
<td row_span="3">cs=1, rs=3</td>

</tr>
<tr>

<td>cs=1, rs=1</td>
<td>cs=1, rs=1</td>

</tr>
<tr>

<td column_span="3">cs=3, rs=1</td>
</tr>

</table>

When no table column width provider is specified, the table has the following layout:

Figure 487:Table layout when no column width provider is specified

When the above implementation is configured, the table has the correct layout:

Oxygen XML Editor plugin | Author Mode Customization | 958

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

Figure 488: Columns with custom widths

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring a Table Cell Span Provider

In a custom framework, the table element can have cells that span over multiple columns and rows. As explained in
Configuring Tables on page 955, you need to indicate Oxygen XML Editor plugin a method to determine the cell spanning.
If you use the cell element attributes rowspan and colspan or rows and cols, Oxygen XML Editor plugin can
determine the cell spanning automatically. In our example the td element uses the attributes row_span and
column_span that are not recognized by default. You will need to implement a Java extension class for defining the
cell spanning.

1. Create the class simple.documentation.framework.TableCellSpanProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSpanProvider
implements AuthorTableCellSpanProvider {

2. The init method is taking as argument the ro.sync.ecss.extensions.api.node.AuthorElement
that represents the XML table element. In our case the cell span is specified for each of the cells so you leave this
method empty. However, there are cases (such as the CALS table model) when the cell spanning is specified in the
table element. In such cases, you must collect the span information by analyzing the table element.

public void init(AuthorElement table) {
}

3. The getColSpan method is taking as argument the table cell. The table layout engine will ask this
AuthorTableSpanSupport implementation what is the column span and the row span for each XML element
from the table that was marked as cell in the CSS using the property display:table-cell. The implementation
is simple and just parses the value of column_span attribute. The method must return null for all the cells that do
not change the span specification.

public Integer getColSpan(AuthorElement cell) {
 Integer colSpan = null;

 AttrValue attrValue = cell.getAttribute("column_span");
if(attrValue != null) {

// The attribute was found.
 String cs = attrValue.getValue();

if(cs != null) {
try {

 colSpan = new Integer(cs);
 } catch (NumberFormatException ex) {

// The attribute value was not a number.

Oxygen XML Editor plugin | Author Mode Customization | 959

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSpanProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html

 }
 }
 }

return colSpan;
}

4. The row span is determined in a similar manner:

public Integer getRowSpan(AuthorElement cell) {
 Integer rowSpan = null;

 AttrValue attrValue = cell.getAttribute("row_span");
if(attrValue != null) {

// The attribute was found.
 String rs = attrValue.getValue();

if(rs != null) {
try {

 rowSpan = new Integer(rs);
 } catch (NumberFormatException ex) {

// The attribute value was not a number.
 }
 }
 }

return rowSpan;
}

5. The method hasColumnSpecifications always returns true considering column specifications always
available.

public boolean hasColumnSpecifications(AuthorElement tableElement) {
return true;

}

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven
archetype on the Oxygen XML Editor plugin website.

6. In the listing below, the XML document contains the table element:

<table>
<header>

<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>

</header>
<tr>

<td>cs=1, rs=1</td>
<td column_span="2" row_span="2">cs=2, rs=2</td>
<td row_span="3">cs=1, rs=3</td>

</tr>
<tr>

<td>cs=1, rs=1</td>
</tr>
<tr>

<td column_span="3">cs=3, rs=1</td>
</tr>

</table>

When no table cell span provider is specified, the table has the following layout:

Oxygen XML Editor plugin | Author Mode Customization | 960

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

Figure 489:Table layout when no cell span provider is specified

When the above implementation is configured, the table has the correct layout:

Figure 490: Cells spanning multiple rows and columns.

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring a Table Cell Row and Column Separator Provider

In a custom framework, the table element has separators between rows. As explained in Configuring Tables on page
955 section that describes the CSS properties needed for defining a table, you need to indicate Oxygen XML Editor
plugin a method to determine the way rows and columns are separated. If you use the rowsep and colsep cell element
attributes, or your table is conforming to the CALS table model, Oxygen XML Editor plugin can determine the cell

Oxygen XML Editor plugin | Author Mode Customization | 961

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

separators. In the example there are no attributes defining the separators but we still want the rows to be separated. You
will need to implement a Java extension.

1. Create the class simple.documentation.framework.TableCellSepProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableCellSepProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSepProvider;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSepProvider implements AuthorTableCellSepProvider{

2. The init method is taking as argument the ro.sync.ecss.extensions.api.node.AuthorElement
that represents the XML table element. In our case the separator information is implicit, it does not depend on the
current table, so you leave this method empty. However, there are cases (such as the CALS table model) when the
cell separators are specified in the table element. In such cases, you should initialize your provider based on the
given argument.

public void init(AuthorElement table) {
}

3. The getColSep method is taking as argument the table cell. The table layout engine will ask this
AuthorTableCellSepProvider implementation if there is a column separator for each XML element from
the table that was marked as cell in the CSS using the property display:table-cell. In our case we choose
to return false since we do not need column separators.

/**
 * @return false - No column separator at the right of the cell.
 */

@Override
public boolean getColSep(AuthorElement cellElement, int columnIndex) {

return false;
 }

4. The row separators are determined in a similar manner. This time the method returns true, forcing a separator between
the rows.

/**
 * @return true - A row separator below each cell.
 */

@Override
public boolean getRowSep(AuthorElement cellElement, int columnIndex) {

return true;
 }

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven
archetype on the Oxygen XML Editor plugin website.

5. In the listing below, the XML document contains the table element:

<table>
<header>

<td>H1</td>
<td>H2</td>
<td>H3</td>
<td>H4</td>

</header>
<tr>

<td>C11</td>
<td>C12</td>
<td>C13</td>
<td>C14</td>

</tr>
<tr>

<td>C21</td>
<td>C22</td>
<td>C23</td>
<td>C24</td>

</tr>
<tr>

<td>C31</td>
<td>C32</td>
<td>C33</td>

Oxygen XML Editor plugin | Author Mode Customization | 962

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSepProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

<td>C34</td>
</tr>

</table>

When the borders for the td element are removed from the CSS, the row separators become visible:

Figure 491: Row separators provided by the Java implementation.

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring a Unique Attributes Recognizer

The ro.sync.ecss.extensions.api.UniqueAttributesRecognizer interface can be implemented if
you want to provide for your framework the following features:

• Automatic ID generation - You can automatically generate unique IDs for newly inserted elements. Implementations
are already available for the DITA and DocBook frameworks. The following methods can be implemented to
accomplish this: assignUniqueIDs(int startOffset, int endOffset),
isAutoIDGenerationActive()

• Avoiding copying unique attributes when "Split" is called inside an element - You can split the current block
element by pressing the "Enter" key and then choosing "Split". This is a very useful way to create new paragraphs,
for example. All attributes are by default copied on the new element but if those attributes are IDs you sometimes
want to avoid creating validation errors in the editor. Implementing the following method, you can decide whether
or not an attribute should be copied during the split: boolean copyAttributeOnSplit(String
attrQName, AuthorElement element)

Tip: The
ro.sync.ecss.extensions.commons.id.DefaultUniqueAttributesRecognizer class
is an implementation of the interface that can be extended by your customization to provide easy assignation
of IDs in your framework. You can also check out the DITA and DocBook implementations of
ro.sync.ecss.extensions.api.UniqueAttributesRecognizer to see how they were
implemented and connected to the extensions bundle.

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Configuring an XML Node Renderer Customizer

You can use this API extension to customize the way an XML node is rendered in the Author Outline view, Author
breadcrumb navigation bar, Text mode Outline view, content completion assistant window or DITA Maps Manager
view.

Note: Oxygen XML Editor plugin uses XMLNodeRendererCustomizer implementations for the following
frameworks: DITA, DITA Map, DocBook 4, DocBook 5, TEI P4, TEI P5, XHTML, XSLT, and XML Schema.

Oxygen XML Editor plugin | Author Mode Customization | 963

http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/UniqueAttributesRecognizer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/id/DefaultUniqueAttributesRecognizer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/UniqueAttributesRecognizer.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

There are two methods to provide an implementation of
ro.sync.exml.workspace.api.node.customizer.XMLNodeRendererCustomizer:

• As a part of a bundle, returning it from the createXMLNodeCustomizer() method of the ExtensionsBundle
associated with your document type in the Document type configuration dialog box (Extensions bundle field in the
Extensions tab).

• As an individual extension, associated with your document type in the Document type configuration dialog box
(XML node renderer customizer field in the Individual extensions section of the Extensions tab).

Support for Retina/HiDPI Displays

To support Retina or HiDPI displays, the icons provided by the XMLNodeRendererCustomizer should be backed
up by a copy of larger size using the proper Retina/HiDPI naming convention.

For example, for the title element, if the XMLNodeRendererCustomizer returns the path
${framework}/images/myImg.png, then to support Retina images with a scaling factor of 2, an extra file
(myImg@2x.png)should be added to the same images directory (${framework}/images/myImg@2x.png). If
the higher resolution icon (the @2x file) does not exist, the normal icon is scaled and used instead.

For more information about using Retina/HiDPI images, refer to the Using Retina/HiDPI Images in Author Mode section.

Note: The complete source code for the examples can be found in the Simple Documentation Framework
project, included in the oxygen-sample-framework module of the Oxygen SDK , available as a Maven archetype
on the Oxygen XML Editor plugin website.

Related information
Customizing the Rendering of Elements on page 974

Customizing the Main CSS of a Document Type

The easiest way to customize the main CSS stylesheet of a document type is to create a new CSS stylesheet, save it as
an alternate CSS file that will be applied as an additional layer to the main CSS, and then select it from the Styles
drop-down menu in Author mode.

For example, suppose that you want to customize the main CSS for DITA documents. To do this, follow these steps:

1. First, create a new CSS stylesheet and save it in the [OXYGEN_INSTALL_DIR]/frameworks/dita/css/edit
folder (where the default main stylesheet named style-basic.css is located).

2. Edit the DITA framework and go to its CSS subtab:

a) Open the Preferences dialog box and go to Document Type Association.
b) Select the DITA document type and press the Edit button.
c) Go to the CSS subtab of the Author tab.

Oxygen XML Editor plugin | Author Mode Customization | 964

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/node/customizer/XMLNodeRendererCustomizer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/oxygen_sdk_maven.html
http://www.oxygenxml.com/developer.html

Figure 492: CSS Subtab of the Document Type Association Author Tab

3. Add the new stylesheet as an alternate CSS stylesheet:

a) Click the Add button to open a dialog box that allows you to specify the URI and Title for your newly created
stylesheet.

b) Check the Alternate option to define it as an alternate stylesheet that will applied as an additional layer to the
main CSS.

Figure 493: Add CSS Stylesheet Dialog Box

4. Press OK in all the dialog boxes to validate the changes.

5. Select your newly created CSS stylesheet from the Styles drop-down menu on the toolbar in Author mode.
You can now edit DITA documents based on the new CSS stylesheet. You can also edit the new CSS stylesheet

itself and see its effects on rendering DITA documents in the Author mode by using the Refresh action that is
available on the Author toolbar and in the DITA menu.

Related information
Selecting and Combining Multiple CSS Styles on page 982

Sharing a Document Type (Framework)

Oxygen XML Editor plugin allows you to share customizations of a specific XML type by creating your own Document
Type (framework) in the Document Type Association preferences page.

A document type (framework) can be shared with other authors by using the following method:

Save it in a Custom Folder
To share your customized framework with other members of your team, you can save it to a separate folder inside the
[OXYGEN_INSTALL_DIR]/frameworks directory by following these steps:

Oxygen XML Editor plugin | Author Mode Customization | 965

Important: For this approach to work, the application must be installed in a folder with full write access.

1. Go to [OXYGEN_INSTALL_DIR]/frameworks and create a directory for your new framework (for example,
custom_framework). This directory will contain the resources for your customized framework. See the DocBook
framework structure from [OXYGEN_INSTALL_DIR]/frameworks/docbook as an example.

2. Create your custom document type (framework) and specify the custom_framework directory for the External
storage option.

3. Configure the custom document type according to your needs. Take special care to make all file references relative
to the [OXYGEN_INSTALL_DIR]/frameworks directory by using the ${frameworks} editor variable. See
the Author Mode Customization Guide on page 890 section for more details on creating and configuring a new
document type (framework).

4. Add any additional resources (CSS files, new file templates, schemas used for validation, catalogs, etc.) to the
directory you created in step 1.

5. After completing your customizations in the Document Type Association preferences page, you should have a new
configuration file saved in:
[OXYGEN_INSTALL_DIR]/frameworks/custom_framework/custom.framework.

6. To share the new framework directory with other users, have them copy it to their
[OXYGEN_INSTALL_DIR]/frameworks directory. The new framework will be available in the list of Document
Types when Oxygen XML Editor plugin starts.

Note: If you have a frameworks directory stored on your local drive, you can also go to the Document
Type Association > Locations preferences page and add your frameworks directory in the Additional
frameworks directories list.

Related information
Sharing an Extended Document Type (Framework) on page 966

Sharing an Extended Document Type (Framework)

You can extend a predefined, built-in document type (such as DITA or DocBook) using the Document Type Association
preferences page, make modifications to it, and then share the extension with your team.

Extending a Framework to be Shared
For the purpose of providing specific instructions for sharing an extended framework, suppose that you want to share
an extension of the DITA framework in which you have removed certain elements from the content completion list.
The follow steps describe how you can create an extended framework that can be shared with others:

1. In a location where you have full write access, create a folder structure similar to this:
custom_frameworks/dita-extension.

2. Open the Preferences dialog box and go to Document Type Association > Locations. In this preferences page, add
the path to your custom_frameworks folder in the Additional frameworks directories list.

3. Go to the Document Type Association preferences page and select the DITA document type configuration and use
the Extend button to create an extension for it.

4. Give the extension an appropriate name (for example, DITA - Custom), select External for the Storage option,
and specify an appropriate path (for example,
path/to/.../custom_frameworks/dita-extension/dita-extension.framework).

5. Make your changes to the extension. For example, you could go to the Content Completion subtab of the Author
tab and in the Filter - Remove content completion items list, add elements that you do not want to be presented to
the end users.

6. Click OK to close the dialog box and then OK or Apply to save the changes to the Document Type Association
preferences page.

Results

After you perform these steps you will have a fully functional framework in the dita-extension folder and it
can be shared with others.

Oxygen XML Editor plugin | Author Mode Customization | 966

Sharing the Extended Framework

There are several ways that you can share the extended framework with others:

• Copy it to their [OXYGEN_INSTALL_DIR]/frameworks directory.
• Create a custom_frameworks folder (anywhere on disk) and copy the extended framework into it. Then add the

path to your custom_frameworks folder in the Additional frameworks directories list in the Document Type
Association > Locations preferences page.

After your team members install the framework they can check the list of Document Types in the Document Type
Association preferences page to see if the framework is present and if it appears before the bundled DITA framework
(meaning that it has higher priority).

Adding Custom Persistent Highlights

The Author API includes a class that allows you to create or remove custom persistent highlights, set new properties
for the highlights, and customize their appearance. An example of a possible use case would be if you want to implement
your own way of editing review comments. The custom persistent highlights get serialized in the XML document as
processing instructions, with the following format:

<?oxy_custom_start prop1="val1"....?> xml content <?oxy_custom_end?>

This functionality is available through the AuthorPersistentHighlighter class that is accessible through the
AuthorEditorAccess#getPersistentHighlighter() method.

For more information, see the JavaDoc details for this class at
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html.

Providing Additional Annotations for XML Elements and Attributes

Oxygen XML Editor plugin gathers documentation from the associated schemas (DTD, XML Schema, RelaxNG) and
presents it for each element or attribute. For example, if you open the Content Completion Assistant for a recognized
XML vocabulary, documentation is displayed for each element provided by the associated schema. Similar information
is displayed when you hover over tag names presented in the Elements view. If you hover over attributes in the Attributes
view you also see information about each attribute, gathered from the same schema.

If you have a document type configuration set up for your XML vocabulary, there is a special XML configuration file
that can be added to provide additional documentation information or links to specification web pages for certain elements
and attributes. To provide this additional information, follow these steps:

1. Create a new folder in the configuration directory for the document type.
OXYGEN_INSTALL_DIR/frameworks/dita/styleguide

2. Use the New document wizard to create a file using the Oxygen content completion styleguide file
template.

3. Save the file in the folder created in step 1, using the fixed name: contentCompletionElementsMap.xml.

4. Open the Preferences dialog box , go to Document Type Association, and edit the document type configuration
for your XML vocabulary. Now you need to indicate where Oxygen XML Editor plugin will locate your mapping
file by doing one of the following:

• In the Classpath tab add a link to the newly created folder.
• In the Catalogs tab add a new catalog file. The selected file needs to contain the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN"
"http://www.oasis-open.org/committees/entity/release/1.1/catalog.dtd">
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

<uri name="http://www.oxygenxml.com/{processed_dt_name}/styleguide/contentCompletionElementsMap.xml"
uri="contentCompletionElementsMap.xml"/>
</catalog>

where {processed_dt_name} is the name of the document type in lower case and with spaces replaced by
underscores.

Oxygen XML Editor plugin | Author Mode Customization | 967

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/package-summary.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/author/WSAuthorEditorPageBase.html#getPersistentHighlighter()
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html

Note: If Oxygen XML Editor plugin finds a mapping file in both locations, the one in the Catalogs tab
takes precedence.

5. Make the appropriate changes to your custom mapping file.
You can look at how the DITA mapping file is
configured:OXYGEN_INSTALL_DIR/frameworks/dita/styleguide/contentCompletionElementsMap.xml

The associated XML Schema contains additional details about how each element and attribute is used in the mapping
file.

6. Re-open the application and open an XML document.

In the Content Completion Assistant you should see the additional annotations for each element.
Related information
Customizing the Rendering of Elements on page 974

Customizing the Content Completion Assistant

Oxygen XML Editor plugin gathers information from the associated schemas (DTDs, XML Schema, RelaxNG) to
determine the proposals that appear in the Content Completion Assistant. Oxygen XML Editor plugin also includes
support that allows you to customize the Content Completion Assistant to suit your specific needs.

There are two ways to customize the Content Completion Assistant in Oxygen XML Editor plugin:

• You can add, modify, or remove actions that are proposed for each particular document type (framework) by using
the Content Completion subtab in the Document Type Association configuration dialog box. To access this subtab,
open the Preferences dialog box , go to Document Type Association, use the New, Edit, Duplicate, or Extend
button, click on the Author tab, and then the Content Completion subtab.

• You can use a cc_config.xml configuration file that is specific to each document type (framework) to configure
the values that are proposed in certain contexts, to customize the attributes or elements that are proposed, or to
customize how certain aspects of the proposals are rendered in the interface. The rest of the topics in this section
explain how you can use this configuration file to customize the content completion.

Configuring the List of Attribute and Element Values

Oxygen XML Editor plugin includes support for configuring the proposed values that appear in the Content Completion
Assistant. To do so, a configuration file is used, along with the associated schema, to add or replace possible values for
attributes or elements that are proposed in the Content Completion Assistant.

For an example of a specific use-case, suppose that you want the Content Completion Assistant to propose several
possible values for the language code when you use an xml:lang attribute.

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant, follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the particular document
type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box and go to Document Type Association. Select the particular document type, click
the Edit button, and in the Classpath tab add a link to that resources folder (if it does not already exist).

3. Create a new configuration file or edit an existing one.

a. To easily create a new configuration file, you can use the Content Completion Configuration file template that
is included in Oxygen XML Editor plugin (File > New > New from Templates > Framework templates >
Oxygen Extensions > Content Completion Configuration). The file template includes details about how each
element and attribute is used in the configuration file.

b. If a configuration file (cc_config.xml) already exists for the particular document type (in the resources
folder), you can modify this existing file.

4. Make the appropriate changes to your custom configuration file.

Oxygen XML Editor plugin | Author Mode Customization | 968

5. Save the file in the resources folder for the particular document type, using the fixed name: cc_config.xml
(for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/cc_config.xml).

6. Restart the application and open an XML document. In the Content Completion Assistant you should see your
customizations.

Tip: In some cases, you can simply use the Refresh (F5) action to test your customizations, without
having to restart the application.

Configuring Proposed Values

For the purposes of adding or replacing the values that are proposed, the configuration file (cc_config.xml) includes
a series of match instructions that will either match an element or attribute name. A new value is specified inside one
or more item elements, which are grouped inside an items element. The behavior of the items element is specified
with the help of the action attribute, which can have any of the following values:

• append - Adds new values to appear in the proposals list (default value).
• addIfEmpty - Adds new values to the proposals list only if no other values are contributed by the schema.
• replace - Replaces the values contributed by the schema with new values to appear in the proposals list.

The values in the configuration file can be specified either directly or by calling an external XSLT file that will extract
data from an external source.

Other Important Notes About the Configuration File

Important:

• This configuration file only affects the content completion assistance, not validation.
• To test the effects of your changes, you should restart the application.

Example: Specifying Values Directly

If you want to specify the values directly, the configuration file should look like this:

<!-- Replaces the values for an element with the local name "lg", from the given namespace -->
<match elementName="lg" elementNS="http://www.oxygenxml.com/ns/samples">

<items action="replace">
<item value="stanza"/>
<item value="refrain"/>

</items>
</match>

<!-- Adds two values for an attribute with the local name "type", from any namespace -->
<match attributeName="type">

<items>
<item value="stanza"/>
<item value="refrain"/>

</items>
</match>

Example: Calling an External XSLT Script

If you want to collect values from an external XSLT script, the configuration file should include something like this:

<xslt href="../xsl/get_values_from_db.xsl" useCache="false" action="replace"/>

In this example, the get_values_from_db.xsl is executed to extract values from a database.

Note: A comprehensive XSLT sample is included in the Content Completion Configuration file template.

Configuring Proposed Values in the Context that the Content Completion was Invoked

A more complex scenario is if you want to choose the possible values to propose, depending on the context of the element
in which the content completion was invoked.

Oxygen XML Editor plugin | Author Mode Customization | 969

Suppose that you want to propose certain possible values for one property (for example, color) and other values for
another property (for example, shape). If the property represents a color, then the values should represent applicable
colors, while if the property represents a shape, then the values should represent applicable shapes. See the following
code snippets:

Your main document:

<sampleArticle>
<!-- The possible values for @value should be "red" and "blue" -->
<property name="color" value=""/>
<!-- The possible values for @value should be "square" and "rectangle" -->
<property name="shape" value=""/>

</sampleArticle>

The content completion configuration file:

<config xmlns="http://www.oxygenxml.com/ns/ccfilter/config">
<match elementName="property" attributeName="value">

<xslt href="get_values.xsl" useCache="false" action="replace"/>
</match>

</config>

The stylesheet that defines the possible values based on the context of the property on which the content completion
was invoked:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:saxon="http://saxon.sf.net/"
exclude-result-prefixes="xs"
version="2.0">

 <xsl:param name="documentSystemID" as="xs:string"></xsl:param>
 <xsl:param name="contextElementXPathExpression" as="xs:string"></xsl:param>

 <xsl:template name="start">
 <xsl:apply-templates select="doc($documentSystemID)"/>
 </xsl:template>

 <xsl:template match="/">
 <xsl:variable name="propertyElement"

select="saxon:eval(saxon:expression($contextElementXPathExpression, ./*))"/>

<items>
 <xsl:if test="$propertyElement/@name = 'color'">

<item value='red'/>
<item value='blue'/>

 </xsl:if>
 <xsl:if test="$propertyElement/@name = 'shape'">

<item value='rectangle'/>
<item value='square'/>

 </xsl:if>
</items>

 </xsl:template>
</xsl:stylesheet>

The contextElementXPathExpression parameter will be bound to an XPath expression that identifies the
element in the context for which the content completion was invoked.
Related information
Configuring the Proposals for Elements on page 970

Customizing the Rendering of Elements on page 974

Configuring the Proposals for Elements

There are many cases where elements have a relaxed content model and can accept a large number of child elements.
For example, the DITA list item element (li) accepts more than 60 child elements. Oxygen XML Editor plugin includes
support to allow the content architect to put some constraints on the possible elements or attributes, or to impose some
best practices in the way content is edited.

For an example of a specific use-case, suppose that you want restrict DITA list item elements (li) to only accept
paragraph elements (p). In this case, the Content Completion Assistant should not offer any other element other than
a paragraph (p) when a list item (li) is inserted into a document. It would also be helpful if the required child element
(p) was automatically inserted whenever a list item (li) is inserted.

Oxygen XML Editor plugin | Author Mode Customization | 970

One method of changing the content model is to alter the element definition in the associated schema (XML Schema,
DTD, RelaxNG), but this may be quite complicated in some cases. Fortunately, Oxygen XML Editor plugin offers a
simple, alternative method of using a configuration file to customize the content completion proposals for each element.

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant, follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the particular document
type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box and go to Document Type Association. Select the particular document type, click
the Edit button, and in the Classpath tab add a link to that resources folder (if it does not already exist).

3. Create a new configuration file or edit an existing one.

a. To easily create a new configuration file, you can use the Content Completion Configuration file template that
is included in Oxygen XML Editor plugin (File > New > New from Templates > Framework templates >
Oxygen Extensions > Content Completion Configuration). The file template includes details about how each
element and attribute is used in the configuration file.

b. If a configuration file (cc_config.xml) already exists for the particular document type (in the resources
folder), you can modify this existing file.

4. Make the appropriate changes to your custom configuration file.
5. Save the file in the resources folder for the particular document type, using the fixed name: cc_config.xml

(for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/cc_config.xml).
6. Restart the application and open an XML document. In the Content Completion Assistant you should see your

customizations.

Tip: In some cases, you can simply use the Refresh (F5) action to test your customizations, without
having to restart the application.

Configuring Elements or Attributes that are Proposed for Each Element

For the purposes of customizing the elements or attributes that are proposed for each individual element, the configuration
file (cc_config.xml) uses elementProposals elements. This element allows you to customize or filter the child
elements and attributes for an element.

Elements:

To control the elements that are proposed for an element, you can use the following attributes for the
elementProposals element:

• path - A path within the document that matches the element that will have its content completion proposals changed.
For example, "title" matches all the title elements in the document, while "chapter/title" matches
only the title elements that are direct children of the chapter element.

Note: If this attribute is missing, the customization will apply to the proposals for all elements. You can
intentionally omit this attribute and use possibleElements or rejectElements to specify or restrict
elements for an entire framework.

For example, suppose that in your DITA documents, you want to restrict your users from using image
elements (image) because you do not want images to be included in your output. The configuration file
should look like this:

<elementProposals rejectElements="image" />

Since the path attribute is missing, the specified element will be filtered out from the proposals for the
entire framework.

Oxygen XML Editor plugin | Author Mode Customization | 971

• insertElements - A space-separated sequence of child element names. Each time the element specified in the
path attribute is inserted into the document, these child elements will also be inserted in the order that they are
listed. For example, insertElements="b i" will insert exactly one b element, followed by an i element. An
empty value ("") means that no child elements should be inserted.

Note: If this attribute is missing, the default required child elements will be inserted, as specified in the
associated schema for the document.

• possibleElements - A space-separated list of element names that will be shown in the content completion list
when invoked inside an element that is specified in the path attribute. For example, "bold italic codeph
ph" means that the Content Completion Assistant will contain these four elements when invoked on the element
specified in the path attribute. The following other possible values are also supported:

• NONE - There will be no proposals in the content completion list.
• ALL - All the possible elements specified in the associated schema will be presented in the content completion

list. This is also the default behavior if this attribute is missing.
• INSERTED - The proposals will be the same list of elements that are defined in the insertElements attribute.

• rejectElements - A space-separated list of element names that will be filtered out from the list of proposals
that are presented in the content completion list. Each time the element specified in the path attribute is inserted
into the document, the list of proposals in the Content Completion Assistant will include the entries that are defined
in the associated schema, minus the elements specified in this attribute.

Attributes:

To control the attributes that are proposed for an element, you can use the following attributes for the
elementProposals element:

• path - A path within the document that matches the element that will have its attribute proposals changed. For
example, "title" matches all the title elements in the document, while "chapter/title" matches only
the title elements that are direct children of the chapter element.

Note: If this attribute is missing, the customization will apply to the proposals for all elements. You can
intentionally omit this attribute and use possibleAttributes or rejectAttributes to specify or
restrict attributes for an entire framework.

For example, suppose that you only want to allow a limited set of attributes in a customized framework. The
configuration file should look like this:

<elementProposals possibleAttributes="
 id domains href scope format type conref
 props keyref class"/>

Since the path attribute is missing, this applies to the entire framework and only the specified attributes
will be proposed.

• insertAttributes - A space-separated sequence of attribute names that will be inserted along with the element.
• possibleAttributes - A space-separated list of attribute names that will be shown in the content completion

list when invoked inside an element that is specified in the path attribute.
• rejectAttributes - A space-separated list of attribute names that will be filtered out from the list of proposals

that are presented in the content completion list. Each time the element specified in the path attribute is inserted
into the document, the list of proposals in the Content Completion Assistant will include the entries that are defined
in the associated schema, minus the attributes specified in this attribute.

Other Important Notes About the Configuration File

Important:

• By default, the element names that do not have a namespace prefix are considered from no-namespace.
Consider declaring the namespace mapping on the root of the configuration file and prefixing the element
names from the elementPath and model attributes.

Oxygen XML Editor plugin | Author Mode Customization | 972

• This configuration file only affects the content completion assistance, not validation.
• To test the effects of your changes, you should restart the application, although in some cases, you can simply

use the Refresh (F5) action to test your customizations.
• When an XML element from the document is matched against a list of configured elementProposals,

the first one in sequence takes precedence. Therefore, make sure you place the more specific
elementProposals (those with a longer path) first in your configuration file.

• Regular expression patterns can be used in the following attributes: possibleElements,
rejectElements, possibleAttributes, and rejectAttributes. For example, code*,
*block, con*ref, _*.

• Only simple recursion cases are detected and avoided by the editor, and logged to the console. Therefore, if
complex elementProposals patterns are defined, you should avoid infinite recursions.

Examples: Configuring the Element Proposals

• Example 1: Automatically Insert Elements

Suppose that you want to automatically insert a paragraph element (p) whenever a DITA ordered list item element
(ol/li) is inserted, and also to not allow any other element besides a paragraph inside the ordered list items.

To achieve this, the configuration file should include the following:

<elementProposals path="ol/li" insertElements="p" possibleElements="_INSERTED_"/>

• Example 2: Insert Complex Element Structure

For a more complex example, suppose that you want to insert a complex structure whenever a DITA prolog element
is inserted.

For instance, if you need to insert the following structure inside prolog elements:

<prolog>
<author></author>
<metadata>

<keywords>
<keyword></keyword>
<keyword></keyword>

</keywords>
</metadata>

</prolog>

The configuration file should include the following:

<elementProposals path="prolog" insertElements="author metadata"/>
<elementProposals path="prolog/metadata" insertElements="keywords"/>
<elementProposals path="prolog/metadata/keywords" insertElements="keyword, keyword"/>

• Example 3: Limit Possible Elements

Suppose that you also want to limit the proposals for the keywords element to only allow the user to insert
audience or keyword elements. The configuration file should include the following:

<elementProposals path="prolog/metadata" insertElements="keywords" possibleElements="audience keywords"/>

Suppose that you want to simply restrict your users from inserting image elements inside DITA list item elements
(li), but still propose all the other elements that are defined in the associated schema. The configuration file should
look like this:

<elementProposals path="li" rejectElements="image" />

Examples: Configuring the Attributes Proposals

• Example 1: Automatically Insert Attributes

Oxygen XML Editor plugin | Author Mode Customization | 973

Suppose that you want to insert an id attribute (with an empty value) whenever a DITA list item element (li) is
inserted. The configuration file should include the following:

<elementProposals path="li" insertAttributes="id"/>

• Example 2: Limit Possible Attributes

Suppose that you also want to limit the number of choices for attributes that are presented to the user whenever a
DITA list item element (li) is inserted. The configuration file should look like this:

<elementProposals path="li" insertAttributes="id" possibleAttributes="id product platform audience"/>

Suppose that you want to simply restrict your users from inserting conref attributes inside DITA topics (topic
element), but still propose all the other attributes that are defined in the associated schema. The configuration file
should look like this:

<elementProposals path="topic" rejectAttributes="conref" />

Related information
Configuring the List of Attribute and Element Values on page 968

Customizing the Rendering of Elements on page 974

Customizing the Rendering of Elements

In addition to the support for configuring the proposals that appear in the Content Completion Assistant, Oxygen XML
Editor plugin also includes support for customizing how the elements are rendered. You can do this by using the
XMLNodeRendererCustomizer API extension, but you can also use the same configuration file that is used to
configure the content completion proposals.

For an example of a specific use-case, suppose that in DITA you want the names of paragraph elements (p) to be rendered
as "Paragraph" instead of "p" in the various components in Author mode (such as in the Outline view, Elements
view, Attributes view, and the breadcrumb navigation bar). To achieve this, you can use the elementRenderings
element in the configuration file.

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant, follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the particular document
type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box and go to Document Type Association. Select the particular document type, click
the Edit button, and in the Classpath tab add a link to that resources folder (if it does not already exist).

3. Create a new configuration file or edit an existing one.

a. To easily create a new configuration file, you can use the Content Completion Configuration file template that
is included in Oxygen XML Editor plugin (File > New > New from Templates > Framework templates >
Oxygen Extensions > Content Completion Configuration). The file template includes details about how each
element and attribute is used in the configuration file.

b. If a configuration file (cc_config.xml) already exists for the particular document type (in the resources
folder), you can modify this existing file.

4. Make the appropriate changes to your custom configuration file.
5. Save the file in the resources folder for the particular document type, using the fixed name: cc_config.xml

(for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/cc_config.xml).
6. Restart the application and open an XML document. In the Content Completion Assistant you should see your

customizations.

Tip: In some cases, you can simply use the Refresh (F5) action to test your customizations, without
having to restart the application.

Oxygen XML Editor plugin | Author Mode Customization | 974

Changing the Rendering of Elements (Their Names, Annotations, and Icons)

For the purposes of customizing how the content completion elements are rendered, you can use the render element
inside a elementRenderings element to specify how element names, their annotations, and their icons are rendered.

You can use the following attributes for the render element:

• element - Identifies the element to be customized, in the form of a qualified name. If it does not have a prefix, it
is considered to be from noNamespace.

• as - Provides the name (label) that will be displayed for the element in various components in Author mode (such
as in the Content Completion Assistant, the breadcrumb navigation bar, the Full Tags display mode, and the
Outline, Elements, and Attributes views). This attribute is optional. If it is missing, the name of the element is
used.

• iconPath - Optional attribute that specifies the icon for the element. This is shown in the Content Completion
Assistant and the Outline view in Author mode. If it is a relative path, the full path of the icon image file will be
computed starting from the directory of the configuration file (for example, a value of "myImg.png" will cause
Oxygen XML Editor plugin to load "frameworks/$ {framework}/resources/myImg.png"). If you
want to access a built-in resource, the value can begin with a forward slash "/", and the image file will be searched
for in the Oxygen XML Editor plugin classpath resources (for example,"/images/OrderedList16.png" will
load an icon from the built-in Oxygen XML Editor plugin JAR file resources.

• xml:lang - Optional attribute that could be used to render the same element differently, depending on the language.
If there are multiple render elements for the same element attribute (element name) and the xml:lang attribute
is missing on one of them, that one will be considered the default fallback value to be used if none of the others
match the language specified in the interface.

Note: The default entry should be listed first, since the application tries to match them in sequence and the
last match found is the one that is used.

For example, suppose that you want the name of DITA paragraph elements (p) to be rendered as "Paragraphe" if
the language is French, "Absatz" if the language is German, and "Paragraph" if the language is English (or any other
language). Your configuration file should look something like this:

<elementRenderings>
<render element="p" as="Paragraph"/>
<render element="p" as="Paragraphe" xml:lang="fr"/>
<render element="p" as="Absatz" xml:lang="de"/>

</elementRenderings>

You can also use the configuration file to customize the annotations for elements. For this purpose, the render element
also accepts the following element to change the tooltip annotations for an element (in both Author mode and Text
mode):

• annotation - This element can be used within the render element to customize the tooltip annotations that are
displayed for the element in various components in Author mode (such as tooltips shown in the Content Completion
Assistant documentation window, the breadcrumb navigation bar, the Full Tags display mode, and the Outline,
Elements, and Attributes views), as well as the tooltips that are displayed when you hover over elements in Text
mode. You can use HTML content to style the annotations (see the example below).

Note: If this element is missing, the styling for the annotations for that element is collected from the associated
schema.

Other Important Notes About the Configuration File for Rendering Elements

Important:

• This configuration file only affects the content completion assistance, not validation.
• To test the effects of your changes, you should restart the application, although in some cases, you can simply

use the Refresh (F5) action to test your customizations.

Oxygen XML Editor plugin | Author Mode Customization | 975

• If the framework has an associated styleguide, then the annotations defined in the configuration file will take
precedence over those defined in the styleguide. To check to see if your framework uses a styleguide, look
for the following folder: ${oXygenInstallDir}frameworks/${framework}/styleguide/.
If that folder exists, it is recommended that you make your annotation changes directly in the styleguide,
rather than in the configuration file.

• If an XMLNodeRendererCustomizer API extension has been implemented for the framework and a
configuration file is also used, the rendering customization for an element will be the result of merging the
two. For example, if the XMLNodeRendererCustomizer implementation customizes the element name,
while the configuration file specifies an icon for the element, the properties of both customizations will be
rendered. However, if both implementations define the same property (for example, both specify the rendering
of an element name), the customizations defined in the configuration file take precedence.

• The rendering customizations defined in the configuration file also applies to aspects of the Oxygen XML
WebApp Component interface.

Example: Changing the Rendering of an Element

Suppose that you want to render the name of the DITA title element to begin with a capital letter, use a custom icon
for it, and provide specific documentation for that element in the various components in Author mode. The configuration
file should look like this:

<elementRenderings>
<render element="title" as="Title" iconPath="cimg/AcceptAll16.png">

<annotation>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Documentation for the Title Element</title>
</head>
<body>

<p>A <i>heading</i> or label for the main parts of a topic</p>
</body>
</html>

</annotation>
</render>

</elementRenderings>

Related tasks
Providing Additional Annotations for XML Elements and Attributes on page 967

Related information
Configuring the List of Attribute and Element Values on page 968

Configuring the Proposals for Elements on page 970

Configuring an XML Node Renderer Customizer on page 963

Schema Annotations in Author Mode on page 268

Example Files for a Custom Framework

This section lists the files used in the customization tutorials: the XML Schema, CSS files, XML files, XSLT stylesheets.

XML Schema

XML Schema file listings.

sdf.xsd

This sample file can also be found in the Oxygen SDK distribution in the
[OXYGEN_SDK_SAMPLES_PROJECT]\oxygen-sample-framework\frameworkFiles\schema directory.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.oxygenxml.com/sample/documentation"
xmlns:doc="http://www.oxygenxml.com/sample/documentation"
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
elementFormDefault="qualified">

<xs:import
namespace="http://www.oxygenxml.com/sample/documentation/abstracts"

Oxygen XML Editor plugin | Author Mode Customization | 976

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

schemaLocation="abs.xsd"/>

<xs:element name="book" type="doc:sectionType"/>
<xs:element name="article" type="doc:sectionType"/>
<xs:element name="section" type="doc:sectionType"/>

<xs:complexType name="sectionType">
<xs:sequence>

<xs:element name="title" type="xs:string"/>
<xs:element ref="abs:def" minOccurs="0"/>
<xs:choice>

<xs:sequence>
<xs:element ref="doc:section"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:choice maxOccurs="unbounded">

<xs:element ref="doc:para"/>
<xs:element ref="doc:ref"/>
<xs:element ref="doc:image"/>
<xs:element ref="doc:table"/>

</xs:choice>
</xs:choice>

</xs:sequence>
</xs:complexType>

<xs:element name="para" type="doc:paragraphType"/>

<xs:complexType name="paragraphType" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="b"/>
<xs:element name="i"/>
<xs:element name="link"/>

</xs:choice>
</xs:complexType>

<xs:element name="ref">
<xs:complexType>

<xs:attribute name="location" type="xs:anyURI"
use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="image">
<xs:complexType>

<xs:attribute name="href" type="xs:anyURI"
use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="table">
<xs:complexType>

<xs:sequence>
<xs:element name="customcol" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="width" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="header">

<xs:complexType>
<xs:sequence>

<xs:element name="td"
maxOccurs="unbounded"
type="doc:paragraphType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="tr" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="td"
type="doc:tdType"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="width" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:complexType name="tdType">
<xs:complexContent>

<xs:extension base="doc:paragraphType">
<xs:attribute name="row_span"

type="xs:integer"/>
<xs:attribute name="column_span"

type="xs:integer"/>
</xs:extension>

Oxygen XML Editor plugin | Author Mode Customization | 977

</xs:complexContent>
</xs:complexType>

</xs:schema>

abs.xsd

This sample file can also be found in the Oxygen SDK distribution in the
[OXYGEN_SDK_SAMPLES_PROJECT]\oxygen-sample-framework\frameworkFiles\schema directory.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace=
"http://www.oxygenxml.com/sample/documentation/abstracts">

<xs:element name="def" type="xs:string"/>
</xs:schema>

CSS

CSS file listing.

sdf.css

This sample file can also be found in the Oxygen SDK distribution in the
[OXYGEN_SDK_SAMPLES_PROJECT]\oxygen-sample-framework\frameworkFiles\css directory.

/* Element from another namespace */
@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";

abs|def{
font-family:monospace;
font-size:smaller;

}
abs|def:before{

content:"Definition:";
color:gray;

}

/* Vertical flow */
book,
section,
para,
title,
image,
ref {

display:block;
}

/* Horizontal flow */
b,i {

display:inline;
}

section{
margin-left:1em;
margin-top:1em;

}

section{
 -oxy-foldable:true;
 -oxy-not-foldable-child: title;
}

link[href]:before{
display:inline;

 link:attr(href);
content: "Click to open: " attr(href);

}

/* Title rendering*/
title{

font-size: 2.4em;
font-weight:bold;

}

* * title{
font-size: 2.0em;

}
* * * title{

font-size: 1.6em;
}
* * * * title{

font-size: 1.2em;

Oxygen XML Editor plugin | Author Mode Customization | 978

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK
http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

}

book,
article{

counter-reset:sect;
}
book > section,
article > section{

counter-increment:sect;
}
book > section > title:before,
article > section > title:before{

content: "Section: " counter(sect) " ";
}

/* Inlines rendering*/
b {

font-weight:bold;
}

i {
font-style:italic;

}

/*Table rendering */
table{

display:table;
border:1px solid navy;
margin:1em;
max-width:1000px;
min-width:150px;

}

table[width]{
width:attr(width, length);

}

tr, header{
display:table-row;

}

header{
background-color: silver;
color:inherit

}

td{
display:table-cell;
border:1px solid navy;
padding:1em;

}

image{
display:block;
content: attr(href, url);
margin-left:2em;

}

XML

XML file listing.

sdf_sample.xml

This sample file can also be found in the Oxygen SDK distribution in the
[OXYGEN_SDK_SAMPLES_PROJECT]\oxygen-sample-framework\frameworkFiles directory.

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
<title>My Technical Book</title>
<section>

<title>XML</title>
<abs:def>Extensible Markup Language</abs:def>
<para>In this section of the book I will explain

 different XML applications.</para>
</section>
<section>

<title>Accessing XML data.</title>
<section>

<title>XSLT</title>
<abs:def>Extensible stylesheet language

 transformation (XSLT) is a language for
 transforming XML documents into other XML

Oxygen XML Editor plugin | Author Mode Customization | 979

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

 documents.</abs:def>
<para>A list of XSL elements and what they do..</para>
<table>

<header>
<td>XSLT Elements</td>
<td>Description</td>

</header>
<tr>

<td>
xsl:stylesheet

</td>
<td>The <i>xsl:stylesheet</i> element is

 always the top-level element of an
 XSL stylesheet. The name

<i>xsl:transform</i> may be used
 as a synonym.</td>

</tr>
<tr>

<td>
xsl:template

</td>
<td>The <i>xsl:template</i> element has

 an optional mode attribute. If this
 is present, the template will only
 be matched when the same mode is
 used in the invoking

<i>xsl:apply-templates</i>
 element.</td>

</tr>
<tr>

<td>
for-each

</td>
<td>The xsl:for-each element causes

 iteration over the nodes selected by
 a node-set expression.</td>

</tr>
<tr>

<td column_span="2">End of the list</td>
</tr>

</table>
</section>
<section>

<title>XPath</title>
<abs:def>XPath (XML Path Language) is a terse

 (non-XML) syntax for addressing portions of
 an XML document. </abs:def>

<para>Some of the XPath functions.</para>
<table>

<header>
<td>Function</td>
<td>Description</td>

</header>
<tr>

<td>format-number</td>
<td>The <i>format-number</i> function

 converts its first argument to a
 string using the format pattern
 string specified by the second
 argument and the decimal-format
 named by the third argument, or the
 default decimal-format, if there is
 no third argument</td>

</tr>
<tr>

<td>current</td>
<td>The <i>current</i> function returns

 a node-set that has the current node
 as its only member.</td>

</tr>
<tr>

<td>generate-id</td>
<td>The <i>generate-id</i> function

 returns a string that uniquely
 identifies the node in the argument
 node-set that is first in document
 order.</td>

</tr>
</table>

</section>
</section>
<section>

<title>Documentation frameworks</title>
<para>One of the most important documentation

 frameworks is DocBook.</para>
<image

href="http://www.xmlhack.com/images/docbook.png"/>
<para>The other is the topic oriented DITA, promoted

 by OASIS.</para>

Oxygen XML Editor plugin | Author Mode Customization | 980

<image
href="http://www.oasis-open.org/images/standards/oasis_standard.jpg"
 />

</section>
</book>

XSL

XSL file listing.

sdf.xsl

This sample file can also be found in the Oxygen SDK distribution in the
[OXYGEN_SDK_SAMPLES_PROJECT]\oxygen-sample-framework\frameworkFiles\xsl directory.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"
xpath-default-namespace=
"http://www.oxygenxml.com/sample/documentation">

 <xsl:template match="/">
<html><xsl:apply-templates/></html>

 </xsl:template>

 <xsl:template match="section">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="image">

 </xsl:template>

 <xsl:template match="para">
<p>

 <xsl:apply-templates/>
</p>

 </xsl:template>

 <xsl:template match="abs:def"
xmlns:abs=
"http://www.oxygenxml.com/sample/documentation/abstracts">
<p>

<u><xsl:apply-templates/></u>
</p>

 </xsl:template>

 <xsl:template match="title">
<h1><xsl:apply-templates/></h1>

 </xsl:template>

 <xsl:template match="b">
<xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="i">
<i><xsl:apply-templates/></i>

 </xsl:template>

 <xsl:template match="table">
<table frame="box" border="1px">

 <xsl:apply-templates/>
</table>

 </xsl:template>

 <xsl:template match="header">
<tr>

 <xsl:apply-templates/>
</tr>

 </xsl:template>

 <xsl:template match="tr">
<tr>

 <xsl:apply-templates/>
</tr>

 </xsl:template>

 <xsl:template match="td">
<td>

 <xsl:apply-templates/>
</td>

 </xsl:template>

 <xsl:template match="header/header/td">
<th>

Oxygen XML Editor plugin | Author Mode Customization | 981

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

 <xsl:apply-templates/>
</th>

 </xsl:template>

</xsl:stylesheet>

CSS Support in Author Mode
Author editing mode supports most CSS 2.1 selectors, numerous CSS 2.1 properties, and some CSS 3 selectors. Oxygen
XML Editor plugin also supports stylesheets coded with the LESS dynamic stylesheet language. Also, some custom
functions and properties that extend the W3C CSS specification, and are useful for URL and string manipulation, are
available to developers who create Author editing frameworks.

Handling CSS Imports

When a CSS document contains imports to other CSS documents, the references are also passed through the XML
catalog URI mappings to determine an indirect CSS referenced location.

For example, if you can have a CSS import, such as:

@import "http://host/path/to/location/custom.css";

and then add your own XML catalog file that maps the location to a custom CSS in the XML Catalog
preferences page:

<uri name="http://host/path/to/location/custom.css" uri="path/to/custom.css"/>

Add a Custom Default CSS for Every XML Document

To add a custom CSS that is applied to every XML document, add a mapping in your XML Catalog file that looks like
this:

<uri name="http://www.oxygenxml.com/extensions/author/css/userCustom.css" uri="path/to/custom.css"/>

This extra mapped CSS location will be parsed every time the application processes the CSS stylesheets used to render
the opened XML document in the visual Author editing mode. This allows your custom CSS to be used without the
need to modify all other CSS stylesheets contributed in the document type configuration.

Editor Variables in CSS Imports

You can use various editor variables in CSS imports. When editing an XML document with an associated CSS in Author
mode, the editor variables will be expanded and resolved.

For example, the following editor variable:

@import "${framework(DITA)}/custom.css";

is resolved in the DITA framework folder where the custom.css is placed.

Selecting and Combining Multiple CSS Styles

Oxygen XML Editor plugin provides a Styles drop-down menu on the Author Styles toolbar that allows you to select
one main (non-alternate) CSS style and multiple alternate CSS styles. An option in the preferences can be enabled to
allow the alternate styles to behave like layers and be combined with the main CSS style. This makes it easy to change
the look of the document.

Oxygen XML Editor plugin | Author Mode Customization | 982

An example of a common use case is when content authors want to use custom styling within a document. You can
select a main CSS stylesheet that styles the whole document and then apply alternate styles, as layers, to specific parts
of the document.

The main and alternate styles that are listed in the Styles drop-down menu can be controlled in the Document Type
configuration dialog box. To access it, follow these steps:

1. Open the Preferences dialog box .
2. Go to Document Type Association.
3. Select the appropriate document type and press the Edit button.

The CSS styles (CSS files) associated with the particular document type are listed in the CSS subtab of the Author tab.

You can Add, Edit, or Delete styles from this dialog box to control the main and alternate styles associated
to the particular document type. You can also change the order of the styles by using the Move Up and Move Down
buttons. This will also change the order that they appear in the Styles drop-down menu. The alternate styles are combined
with the main CSS sequentially, in the order that they appear in this list. Therefore, if the same style rules are included
in multiple CSS files, the rules that are defined in the last alternate style in this list will take precedence, since it is the
last one to be combined (applied as a layer).

The CSS styles (and their order) shown in the following figure will match the styles listed in the Styles drop-down menu.

Figure 494: Main and Alternate CSS Styles in the Document Type Association Dialog Box

The URI column shows the path of each CSS file. The names listed in the Styles drop-down menu match the values in
the Title column. The value in the Alternate column determines whether it is a main or alternate CSS. If the value is
no it is a main CSS. If the value is yes it is an alternate CSS and the style can be combined with a main CSS or other
alternate styles when using the Styles drop-down menu.

Note: To group alternate styles into categories (submenus), use a vertical bar character (|) in the Title column.
You can use multiple vertical bars for multiple submenus. The text before each vertical bar will be rendered as

Oxygen XML Editor plugin | Author Mode Customization | 983

the name of a submenu entry in the Styles drop-down menu, while the text after the final vertical bar will be
rendered as the name of the style inside the submenu.

Example: Suppose that you want to add two alternate stylesheets in separate submenus, with the Title column
set to My Styles|User Assistance|Hints and My Styles|User Actions|Inline Actions,
respectively.

Oxygen XML Editor plugin will add a My Styles submenu with two submenus (User Assistance that
contains the Hints style, and User Actions that contains the Inline Actions style) in the Styles
drop-down menu.

The Enable multiple selection of alternate CSSs box at the bottom of the pane must be checked for the alternate styles
to be combined. They are applied like layers and you can activate any number of them. If this option is disabled, the
alternate styles are treated like main CSS styles and you can only select one at a time. By default, this option is enabled
for DITA documents. There are also a few options that allow you to specify how to handle the CSS if there are CSS
styles specified in the document. You can choose to ignore or merge them.

The following rules apply for merging CSS styles:

• CSS files with the same title will be merged.
• CSS files without a title will contribute to all others.
• They are merged sequentially, in the order that they appear in the list.

The selections from the Styles drop-down menu are persistent, meaning that Oxygen XML Editor plugin will remember
the selections when subsequent documents are opened.

Note: The application also supports working directly with LESS stylesheets, instead of CSS.

CSS Styles in DITA

Oxygen XML Editor plugin comes with a set of predefined CSS layer stylesheets for DITA documents
(including maps). In the subsequent figure, a DITA document has the Century style selected for the
main CSS and the alternate styles Full width, Show table column specification, Hints, and Inline
actions are combined for additive styling to specific parts of the document.

Tip: The Hints style displays tooltips throughout DITA documents that offer
additional information to help you with the DITA structure. The Inline actions style
displays possible elements that are allowed to be inserted at various locations
throughout DITA documents.

Oxygen XML Editor plugin | Author Mode Customization | 984

Figure 495: Styles Drop-down Menu in a DITA Document

Related tasks
Customizing the Main CSS of a Document Type on page 964

Related information
CSS Subtab on page 62

Document Type Association CSS Subtab

oxygen Media Type

The CSS stylesheets can specify how a document is presented on different types of media (on the screen, paper, etc.)
You can specify that some of the selectors from your CSS should be taken into account only in the Oxygen XML Editor
plugin Author mode and ignored in other media types. This can be accomplished by using the oxygen media type.

b{
font-weight:bold;
display:inline;
}

@media oxygen{
 b{

text-decoration:underline;
 }
}

Oxygen XML Editor plugin | Author Mode Customization | 985

This example results in the text being bold if the document is opened in a web browser that does not recognize @media
oxygen, while the text is bold and underlined when opened in Oxygen XML Editor plugin Author mode.

You can also use the oxygen media type to specify CSS selectors to be applied in certain operating systems or platforms
by using the os and platform properties. For example, you can specify one set of style rules for displaying Oxygen
XML Editor plugin in Windows, and another set of style rules for Mac OS. The supported properties are as follows:

• os - The possible values are: win, linux, or mac.
• platform - The possible values are: standalone, eclipse, or webapp.

@media oxygen AND (os:"win") AND (platform:"standalone") {
 p{

content:"PPP";
 }
}

Related information
@media Rule on page 986

CSS At-Rules

Oxygen XML Editor plugin supports some of the standard at-rules specified by CSS Level 2.1 and 3. The @media rule
also include support for some style rules that are specific to Oxygen XML Editor plugin.

@font-face At-Rule

Oxygen XML Editor plugin allows you to use custom fonts in the Author mode by specifying them in the CSS using
the @font-face media type. Only the src and font-family CSS properties can be used for this media type.

@font-face{
font-family:"Baroque Script";
/*The location of the loaded TTF font must be relative to the CSS*/

 src:url("BaroqueScript.ttf");
}

The specified font-family must match the name of the font declared in the .ttf file.

@media Rule

The @media rule allows you to set different style rules for multiple types of media in the same stylesheet. For example,
you can set the font size to be different on the screen than on paper. Oxygen XML Editor plugin supports several media
types, allowing you to set the style rules for presenting a document on various media (on screen, paper, etc.)

Supported Media Types

• screen - The styles marked with this media type are used only for rendering a document on screen.
• print - The styles marked with this media type are used only for printing a document.
• all - The styles marked with this media type are used for rendering a document in all supported types of media.
• oxygen - The styles marked with this media type are used only for rendering a document in the Oxygen XML

Editor plugin Author mode. For more information, see oxygen Media Type on page 985 section.
• oxygen-dark-theme - The styles marked with this media type are used only for rendering a document in the

Oxygen XML Editor plugin Author mode when a dark theme is used (for example, Graphite).
• oxygen-high-contrast-black - The styles marked with this media type are used only for rendering a

document in the Oxygen XML Editor plugin Author mode on a Windows High Contrast Theme with a black
background.

Oxygen XML Editor plugin | Author Mode Customization | 986

• oxygen-high-contrast-white - The styles marked with this media type are used only for rendering a
document in the Oxygen XML Editor plugin Author mode on a Windows High Contrast Theme with a white
background.

@media oxygen{
 b{

text-decoration:underline;
 }
}
@media oxygen-high-contrast-white{
 b{

font-weight:bold;
 }
}

Supported Properties

Oxygen XML Editor plugin also supports a few properties to set specific style rules that depend upon the size of the
visible area in Author mode. These supported properties are as follows:

• min-width - The styles selected in this property are applied if the visible area in Author mode is equal to or greater
than the specified value.

• max-width - The styles selected in this property are applied if the visible area in Author mode is less than or equal
to the specified value.

@media (min-width:500px){
 p{

content:'XXX';
 }
}
@media (max-width:700px){
 p:after{

content:'yyy';
 }
}

Related information
oxygen Media Type on page 985

Standard W3C CSS Supported Features

Oxygen XML Editor plugin supports most of the CSS Level 3 selectors and most of the CSS Level 2.1 properties

Supported CSS Selectors

Description / ExampleCSS LevelNameExpression

Matches any elementCSS Level 2Universal selector*

Matches any E element (i. e. an element
with the local name E)

CSS Level 2Type selectorE

Matches any F element that is a
descendant of an E element.

CSS Level 2Descendant selectorE F

Matches any F element that is a child of
an element E.

CSS Level 2Child selectorsE > F

Matches element of type E if it is in
(human) language c (the document

CSS Level 2Language pseudo-classE:lang(c)

language specifies how language is
determined).

Matches any F element immediately
preceded by a sibling element E.

CSS Level 2Adjacent selectorE + F

Oxygen XML Editor plugin | Author Mode Customization | 987

Description / ExampleCSS LevelNameExpression

Matches any F element preceded by a
sibling element E.

CSS Level 3General sibling selectorE ~ F

Matches any E element with the "foo"
attribute set (whatever the value).

CSS Level 2Attribute selectorE[foo]

Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

CSS Level 2Attribute selector with valueE[foo="warning"]

Matches any E element whose "foo"
attribute value is a list of space-separated

CSS Level 2Attribute selector containing valueE[foo~="warning"]

values, one of which is exactly equal to
"warning".

Matches any E element whose "lang"
attribute has a hyphen-separated list of

CSS Level 2Attribute selector containing
hyphen separated values

E[lang|="en"]

values beginning (from the left) with
"en".

The ':before' and ':after'
pseudo-elements can be used to insert

CSS Level 2Pseudo elementsE:before and
E:after

generated content before or after an
element's content.

Multiple ':before(n)' and
':after(n)' pseudo-elements can be

CSS Level 3Pseudo elementsE:before(n) and
E:after(n)

used to insert content before or after the
content of an element (or other
pseudo-element).

For more information, see the W3C CSS3
pseudo elements site.

Matches element E when E is the first
child of its parent.

CSS Level 2The first-child pseudo-classE:first-child

An E element that does not match simple
selector s.

CSS Level 2Negation pseudo-classE:not(s)

The :has() relational pseudo-class is a
functional pseudo-class that takes a
relative selector as an argument.

CSS Level 4Relational pseudo-classE:has

For more information, see :has Relational
Pseudo-Class on page 992.

The :hover pseudo-class applies while
the user designates an element with a

CSS Level 2The hover pseudo-classE:hover

pointing device, but does not necessarily
activate it. When moving the pointing
device over an element, all the parent
elements up to the root are taken into
account.

The :focus pseudo-class applies while
an element has the focus (accepts
keyboard input).

CSS Level 2The focus pseudo-classE:focus

Oxygen XML Editor plugin | Author Mode Customization | 988

http://www.w3.org/TR/css3-content/#pseudo-elements
http://www.w3.org/TR/css3-content/#pseudo-elements

Description / ExampleCSS LevelNameExpression

The :focus-within pseudo-class
applies to elements for which the

CSS Level 4The generalized input focus
pseudo-class

E:focus-within

:focus pseudo-class applies.
Additionally, the ancestors of an element
that matches :focus-within also
match.

Matches any E element with ID equal to
"myid".

CSS Level 2The ID selectorE#myid

Important: Limitation: In
Oxygen XML Editor plugin the
match is performed only taking
into account the attributes with
the exact name: "id".

An E element whose att attribute value
begins exactly with the string val.

CSS Level 3Substring matching attribute
selector

E[att^="val"]

An E element whose att attribute value
ends exactly with the string val.

CSS Level 3Substring matching attribute
selector

E[att$="val"]

An E element whose att attribute value
contains the substring val.

CSS Level 3Substring matching attribute
selector

E[att*="val"]

Matches the root element of the
document. In HTML, the root element is
always the HTML element.

CSS Level 3Root pseudo-classE:root

An E element that has no text or child
elements.

CSS Level 3Empty pseudo-classE:empty

An E element, the nth child of its parent.CSS Level 3The nth-child pseudo-classE:nth-child(n)

An E element, the nth child of its parent,
counting from the last one.

CSS Level 3The nth-last-child pseudo-classE:nth-last-child(n)

An E element, the nth sibling of its type.CSS Level 3The nth-of-type pseudo-classE:nth-of-type(n)

An E element, the nth sibling of its type,
counting from the last one.

CSS Level 3The nth-last-of-type pseudo-classE:nth-last-of-type(n)

An E element, last child of its parent.CSS Level 3The last-child pseudo-classE:last-child

An E element, first sibling of its type.CSS Level 3The first-of-type pseudo-classE:first-of-type

An E element, last sibling of its type.CSS Level 3The last-of-type pseudo-classE:last-of-type

An E element, only child of its parent.CSS Level 3The only-child pseudo-classE:only-child

An E element, only sibling of its type.CSS Level 3The only-of-type pseudo-classE:only-of-type

An element that has the local name E and
the namespace given by the prefix ns.

CSS Level 3Element namespace selectorns|E

The namespace prefix can be bound to a
URI by the at-rule:

@namespace ns
"http://some_namespace_uri";

Oxygen XML Editor plugin | Author Mode Customization | 989

Description / ExampleCSS LevelNameExpression

See Namespace Selector on page 990.

An element that has the local name E and
has a child F. See Subject Selector on
page 991.

CSS Level 4
(experimental)

The subject selectorE!>F

Namespace Selector

In the CSS 2.1 standard, the element selectors ignore the namespaces of the elements they are matching. Only the local
name of the elements are considered in the selector matching process.

Oxygen XML Editor plugin uses a different approach that is similar to the CSS Level 3 specification. If the element
name from the CSS selector is not preceded by a namespace prefix it is considered to match an element with the same
local name as the selector value and ANY namespace. Otherwise, the element must match both the local name and the
namespace.

In CSS up to version 2.1 the name tokens from selectors are matching all elements from ANY namespace that have the
same local name. Example:

<x:b xmlns:x="ns_x"/>
<y:b xmlns:y="ns_y"/>

Are both matched by the rule:

b {font-weight:bold}

Starting with CSS Level 3 you can create selectors that are namespace aware.

Defining both prefixed namespaces and the default namespace

Given the namespace declarations:

@namespace sync "http://sync.example.org";
@namespace "http://example.com/foo";

In a context where the default namespace applies:

represents the name A in the http://sync.example.org namespace.sync|A

represents the name B that belongs to NO NAMESPACE.|B

represents the name C in ANY namespace, including NO NAMESPACE.*|C

represents the name D in the http://example.com/foo namespace.D

Defining only prefixed namespaces

Given the namespace declaration:

@namespace sync "http://sync.example.org";

Then:

represents the name A in the http://sync.example.org namespace.sync|A

represents the name B that belongs to NO NAMESPACE.|B

represents the name C in ANY namespace, including NO NAMESPACE.*|C

represents the name D in ANY namespace, including NO NAMESPACE.D

Oxygen XML Editor plugin | Author Mode Customization | 990

Defining prefixed namespaces combined with pseudo-elements

To match the def element its namespace will be declared, bind it to the abs prefix, and then write a
CSS rule:

@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";

Then:

represents the name "def" in the
http://www.oxygenxml.com/sample/documentation/abstracts
namespace.

abs|def

represents the :before pseudo-element of the "def" element from the
http://www.oxygenxml.com/sample/documentation/abstracts
namespace.

abs|def:before

Subject Selector

Oxygen XML Editor plugin supports the subject selector described in CSS Level 4 (currently a working draft at W3C
http://www.w3.org/TR/selectors4/). This selector matches a structure of the document, but unlike a compound selector,
the styling properties are applied to the subject element (the one marked with "!") instead of the last element from the
path.

The subject of the selector can be explicitly identified by appending an exclamation mark (!) to one of the compound
selectors in a selector. Although the element structure that the selector represents is the same with or without the
exclamation mark, indicating the subject in this way can change which compound selector represents the subject in that
structure.

table! > caption {
border: 1px solid red;

}

A border will be drawn to the table elements that contain a caption, as direct child.

This is different from:

table > caption {
border: 1px solid red;

}

This draws a border around the caption.

Taking Processing Instructions into Account in CSS Subject Selectors

You can test for the existence of specific processing instructions (PI) in the child hierarchy of a subject selector.

For example:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

chapter! > oxy|processing-instruction[important][level="high"]{
color:red;

}

This would change the color of a DocBook chapter to red if it contains the important processing instruction:

<chapter>
<title>A title</title>
<?important level='high'?>

</chapter>

Oxygen XML Editor plugin | Author Mode Customization | 991

http://www.w3.org/TR/selectors4/

Descendant Selectors Limitation

Important: The current implementation has a known limitation. The general descendant selectors are taken
into account as direct child selectors. For example, the following two CSS selectors are considered equivalent:

a! b c

and:

a! > b > c

Related information
:has Relational Pseudo-Class on page 992

:has Relational Pseudo-Class

Oxygen XML Editor plugin supports the CSS Level 4 subject selector (currently a working draft at W3C
http://www.w3.org/TR/selectors4/), as described in the Subject Selector on page 991 topic. Oxygen XML Editor plugin
also supports the :has relational pseudo-class that has similar functionality and it can match an element by taking its
child elements into account. For more information, see https://drafts.csswg.org/selectors-4/#relational.

You can create conditions that take into account the structure of the matching element.

For example:

table:has(tbody > thead){
 border: 1px solid red;
}

This will result in a border being drawn for the table elements that contain at least a thead element
in the tbody element.

Taking Processing Instructions into Account in CSS Subject Selectors

You can test for the existence of specific processing instructions (PI) in the child hierarchy of a subject selector.

For example:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

chapter! > oxy|processing-instruction[important][level="high"]{
color:red;

}

This would change the color of a DocBook chapter to red if it contains the important processing instruction:

<chapter>
<title>A title</title>
<?important level='high'?>

</chapter>

Descendant Selectors Limitation

Important: The current implementation has a known limitation. The general descendant selectors are taken
into account as direct child selectors. For example, the following two CSS selectors are considered equivalent:

a! b c

and:

a! > b > c

Oxygen XML Editor plugin | Author Mode Customization | 992

http://www.w3.org/TR/selectors4/
https://drafts.csswg.org/selectors-4/#relational

Supported CSS Properties

Oxygen XML Editor plugin validates all CSS 2.1 properties, but does not render aural and paged categories properties
in Author mode, as well as some of the values of the visual category that are listed below under the Ignored Values
column. For the Oxygen XML Editor plugin-specific (extension) CSS properties, go to Oxygen XML Editor plugin CSS
Extensions on page 999.

Ignored ValuesRendered ValuesName

NONE'background-attachment'

transparent<color> | inherit'background-color'

<uri> | none | inherit'background-image'

<percentage> | <length>top | right | bottom |
left | center

'background-position'

repeat | repeat-x |
repeat-y | no-repeat |
inherit

'background-repeat'

NONE'background'

NONE'border-collapse'

transparent<color> | inherit'border-color'

NONE'border-spacing'

<border-style> | inherit'border-style'

[<border-width> ||
<border-style> ||
<border-color>] | inherit

'border-top' 'border-right'
'border-bottom'
'border-left'

transparent<color> | inherit'border-top-color'
'border-right-color'
'border-bottom-color'
'border-left-color'

<border-style> | inherit'border-top-style'
'border-right-style'
'border-bottom-style'
'border-left-style'

<border-width> | inherit'border-top-width'
'border-right-width'
'border-bottom-width'
'border-left-width'

<border-width> | inherit'border-width'

[<border-width> ||
<border-style> ||
<border-color>] | inherit

'border'

auto<length> | <percentage> |
inherit

'bottom'

NONE'caption-side'

NONE'clear'

NONE'clip'

Oxygen XML Editor plugin | Author Mode Customization | 993

Ignored ValuesRendered ValuesName

<color> | inherit'color'

no-open-quote |
no-close-quote

normal | none | [<string>
| <URI> | <counter> |
attr(<identifier>) |

'content'

open-quote | close-quote
]+ | inherit

[<identifier> <integer>
?]+ | none | inherit

'counter-increment'

[<identifier> <integer>
?]+ | none | inherit

'counter-reset'

NONE'cursor'

ltr| rtl | inherit'direction'

run-in | inline-block |
inline-table - considered
block

inline | block | list-item
| table | table-row-group
| table-header-group |
table-footer-group |

'display'

table-row |
table-column-group |
table-column | table-cell
| table-caption | none |
inherit

show | hide | inherit'empty-cells'

NONE'float'

[[<family-name> |
<generic-family>] [,

'font-family'

<family-name> |
<generic-family>]*] |
inherit

<absolute-size> |
<relative-size> | <length>
| <percentage> | inherit

'font-size'

normal | italic | oblique
| inherit

'font-style'

NONE'font-variant'

normal | bold | bolder |
lighter | 100 | 200 | 300

'font-weight'

| 400 | 500 | 600 | 700 |
800 | 900 | inherit

'font-variant'
'line-height' caption |

[['font-style' ||
'font-weight']?

'font'

icon | menu | message-box'font-size' [/
| small-caption |
status-bar

'line-height']?
'font-family'] | inherit

NONE'height'

Oxygen XML Editor plugin | Author Mode Customization | 994

Ignored ValuesRendered ValuesName

auto<length> | <percentage> |
inherit

'left'

NONE'letter-spacing'

normal | <number> |
<length> | <percentage> |
inherit

'line-height'

NONE'list-style-image'

NONE'list-style-position'

lower-greek | armenian |
georgian

disc | circle | square |
decimal | lower-roman |
upper-roman | lower-latin

'list-style-type'

| upper-latin |
lower-alpha | upper-alpha
| -oxy-lower-cyrillic-ru
| -oxy-lower-cyrillic-uk
| -oxy-upper-cyrillic-ru
| -oxy-upper-cyrillic-uk
| box | diamond | check |
hyphen | none | inherit

'list-style-position' ||
'list-style-image'

['list-style-type'] |
inherit

'list-style'

<margin-width> | inherit
| auto

'margin-right' 'margin-left'

<margin-width> | inherit'margin-top' 'margin-bottom'

<margin-width> | inherit
| auto

'margin'

NONE'max-height'

<length> | <percentage> |
none | inherit - supported for

'max-width'

inline, block-level, and replaced
elements (such as images, tables, table
cells)

Values proportional to the parent
element height, such as 30%

Absolute values, such as 230px, 1in,
7pt, 12em.

'min-height'

<length> | <percentage> |
inherit - supported for inline,

'min-width'

block-level, and replaced elements
(such as images, tables, table cells)

[<color> | invert |
inherit

'outline-color'

[<border-style> | inherit'outline-style'

[<border-width> | inherit'outline-width'

[<outline-width> ||
<outline-style> ||

'outline'

Oxygen XML Editor plugin | Author Mode Customization | 995

Ignored ValuesRendered ValuesName

<outline-color>] |
inherit

NONE'overflow'

<padding-width> | inherit'padding-top'
'padding-right'
'padding-bottom'
'padding-left'

<padding-width> | inherit'padding'

absolute | fixed not
supported for inline display elements

absolute | fixed - supported
for block display elements, relative
- supported for block and inline display
elements

'position'

NONE'quotes'

auto<length> | <percentage> |
inherit

'right'

fixed | inheritauto'table-layout'

justifyleft | right | center |
inherit

'text-align'

blinknone | [underline ||
overline || line-through
] | inherit

'text-decoration'

solid | double | dotted |
dashed | wavy | inherit

'text-decoration-style'

<length> | <percentage> |
inherit

'text-indent'

none | capitalize |
uppercase | lowercase |
inherit

'text-transform'

auto<length> | <percentage> |
inherit

'top'

bidi-override| normal|
embed| inherit

'unicode-bidi'

<percentage> | <length>baseline | sub | super |
top | text-top | middle |

'vertical-align'

bottom | text-bottom |
inherit

collapsevisible | hidden | inherit
| -oxy-collapse-text

'visibility'

normal | pre | nowrap |
pre-wrap | pre-line

'white-space'

<length> | <percentage> |
auto | inherit - supported for

'width'

inline, block-level, and replaced

Oxygen XML Editor plugin | Author Mode Customization | 996

Ignored ValuesRendered ValuesName

elements (such as images, tables, table
cells)

NONE'word-spacing'

NONE'z-index'

<length> - Refers to distance measurements and is expressed in units such as mm, cm, in, em, rem, ex, pc, pt, px.
For more information, see the W3 CSS Level 3 length type specifications.

Related concepts
Oxygen XML Editor plugin CSS Extensions on page 999

Transparent Colors

CSS3 supports RGBA colors. The RGBA declaration allows you to set opacity (via the Alpha channel) as part of the
color value. A value of 0 corresponds to a completely transparent color, while a value of 1 corresponds to a completely
opaque color. To specify a value, you can use either a real number between 0 and 1, or a percent.

RGBA color

personnel:before {
display:block;
padding: 1em;
font-size: 1.8em;
content: "Employees";
font-weight: bold;
color:#EEEEEE;
background-color: rgba(50, 50, 50, 0.6);

}

attr() Function: Properties Values Collected from the Edited Document

In CSS Level 2.1 you may collect attribute values and use them as content only for the pseudo-elements. For instance,
the :before pseudo-element can be used to insert some content before an element. This is valid in CSS 2.1:

title:before{
content: "Title id=(" attr(id) ")";

}

If the title element from the XML document is:

<title id="title12">My title.</title>

Then the title will be displayed as:

Title id=(title12) My title.

In Oxygen XML Editor plugin, the use of attr() function is available not only for the content property, but also
for any other property. This is similar to the CSS Level 3 working draft:
http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional. The arguments of the function are:

attr (attribute_name , attribute_type , default_value)

The attribute name. This argument is required.attribute_name

The attribute type. This argument is optional. If it is missing, argument's type is considered
string. This argument indicates what is the meaning of the attribute value and helps to perform
conversions of this value. Oxygen XML Editor plugin accepts one of the following types:

attribute_type

The value represents a color. The attribute may specify a color in various
formats. Oxygen XML Editor plugin supports colors specified either by name
(red, blue, green, etc.) or as an RGB hexadecimal value #FFEEFF.

color

Oxygen XML Editor plugin | Author Mode Customization | 997

http://www.w3.org/TR/css3-values/#lengths
http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional

The value is a URL pointing to a media object. Oxygen XML Editor plugin
supports only images. The attribute value can be a complete URL, or a relative

url

one to the XML document. Note that this URL is also resolved through the
catalog resolver.

The value must be interpreted as an integer.integer

The value must be interpreted as a float number.number

The value must be interpreted as an integer.length

The value must be interpreted relative to another value (length, size) expressed
in percents.

percentage

The value must be interpreted as a size. 1 em is equal to the font-size of the
relevant font.

em

The value must be interpreted as a size. 1 ex is equal to the height of the x
character of the relevant font.

ex

The value must be interpreted as a size expressed in pixels relative to the
viewing device.

px

The value must be interpreted as a size expressed in millimeters.mm

The value must be interpreted as a size expressed in centimeters.cm

The value must be interpreted as a size expressed in inches. 1 inch is equal to
2.54 centimeters.

in

The value must be interpreted as a size expressed in points. The points used
by CSS2 are equal to 1/72th of an inch.

pt

The value must be interpreted as a size expressed in picas. 1 pica is equal to
12 points.

pc

This argument specifies a value that is used by default if the attribute value is missing. This
argument is optional.

default_value

Usage samples for the attr() function

Consider the following XML instance:

<sample>
<para bg_color="#AAAAFF">Blue paragraph.</para>
<para bg_color="red">Red paragraph.</para>
<para bg_color="red" font_size="2">Red paragraph with large font.</para>
<para bg_color="#00AA00" font_size="0.8" space="4">

 Green paragraph with small font and margin.</para>
</sample>

The para elements have bg_color attributes with RGB color values (such as #AAAAFF). You can
use the attr() function to change the elements appearance in the editor based on the value of this
attribute:

background-color:attr(bg_color, color);

The attribute font_size represents the font size in em units. You can use this value to change the
style of the element:

font-size:attr(font_size, em);

Oxygen XML Editor plugin | Author Mode Customization | 998

The complete CSS rule is:

para{
display:block;
background-color:attr(bg_color, color);
font-size:attr(font_size, em);
margin:attr(space, em);
}

The document is rendered as:

Oxygen XML Editor plugin CSS Extensions

CSS stylesheets provide support for displaying documents. When editing non-standard documents, Oxygen XML Editor
plugin CSS extensions are useful.

Examples of how they can be used:

• Property for marking foldable elements in large files.
• Enforcing a display mode for the XML tags, regardless of the current mode selected by the user.
• Constructing a URL from a relative path location.
• String processing functions.

Additional CSS Selectors

Oxygen XML Editor plugin provides support for selecting additional types of nodes. These custom selectors apply to:
document, doctype sections, processing-instructions, comments, CDATA sections, reference sections, and entities.
Processing-instructions are not displayed by default. To display them, open the Preferences dialog box , go to Editor >
Author, and select Show processing instructions.

Note: The custom selectors are presented in the default CSS for Author mode and all of their properties are
marked with an !important flag. For this reason, you have to set the !important flag on each property of the
custom selectors from your CSS to be applicable.

For the custom selectors to work in your CSS stylesheets, declare the Author mode extensions namespace at the beginning
of the stylesheet documents:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');

Oxygen XML Editor plugin | Author Mode Customization | 999

• The oxy|document selector matches the entire document:

oxy|document {
display:block !important;

}

• The following example changes the rendering of doctype sections:

oxy|doctype {
display:block !important;
color:blue !important;
background-color:transparent !important;

}

• To match the processing instructions, you can use the oxy|processing-instruction selector:

oxy|processing-instruction {
display:block !important;
color:purple !important;
background-color:transparent !important;

}

A processing instruction usually has a target and one or more pseudo attributes:

<?target_name data="b"?>

You can match a processing instruction with a particular target from the CSS using the construct:

oxy|processing-instruction[target_name]

You can also match the processing instructions having a certain target and pseudo attribute value, such as:

oxy|processing-instruction[target_name][data="b"]

• The XML comments display in Author mode can be changed using the oxy|comment selector:

oxy|comment {
display:block !important;
color:green !important;
background-color:transparent !important;

}

• The oxy|cdata selector matches CDATA sections:

oxy|cdata{
display:block !important;
color:gray !important;
background-color:transparent !important;

}

• The oxy|entity selector matches the entities content:

oxy|entity {
display:morph !important;

 editable:false !important;
color:orange !important;
background-color:transparent !important;

}

To match particular entities, use the oxy|entity selector in expressions such as:

oxy|entity[name='amp'],
oxy|entity[name='lt'],
oxy|entity[name='gt'],
oxy|entity[name='quot'],
oxy|entity[name='apos'],
oxy|entity[name^='#']{
 -oxy-display-tags: none;
}

• The references to entities, XInclude, and DITA conrefs and conkeyrefs are expanded by default in Author mode and
the referenced content is displayed. The referenced resources are displayed inside the element or entity that refers
to them.

Oxygen XML Editor plugin | Author Mode Customization | 1000

You can use the reference property to customize the way these references are rendered in Author mode:

oxy|reference {
border:1px solid gray !important;

}

•

In the Author mode, content is highlighted when text contains comments and changes (if Track Changes was active
when the content was modified).

If this content is referenced, the Author mode does not display the highlighted areas in the new context. If you want
to mark the existence of this comments and changes you can use the oxy|reference[comments],
oxy|reference[changeTracking], and oxy|reference[changeTracking][comments] selectors.

Note: Two artificial attributes (comments and changeTracking) are set on the reference node, containing
information about the number of comments and track changes in the content.

• The following example represents the customization of the reference fragments that contain comments:

oxy|reference[comments]:before {
content: "Comments: " attr(comments) !important;

}

• To match reference fragments based on the fact that they contain change tracking inside, use the
oxy|reference[changeTracking] selector.

oxy|reference[changeTracking]:before {
content: "Change tracking: " attr(changeTracking) !important;

}

• Here is an example of how you can set a custom color to the reference containing both track changes and comments:

oxy|reference[changeTracking][comments]:before {
content: "Change tracking: " attr(changeTracking) " and comments: " attr(comments) !important;

}

Oxygen XML Editor plugin | Author Mode Customization | 1001

Figure 496: Example: A Document Rendered Using these Rules

Additional CSS Properties

Oxygen XML Editor plugin offers an extension of the standard CSS properties suited for content editing.

Folding Elements: -oxy-foldable, -oxy-not-foldable-child and -oxy-folded Properties

Oxygen XML Editor plugin allows you to declare some elements to be foldable (collapsible). This is especially useful
when working with large documents organized in logical blocks, editing a large DocBook article or book, for instance.
Oxygen XML Editor plugin marks the foldable content with a small blue triangle. When you hover with your mouse
pointer over this marker, a dotted line borders the collapsible content. The following actions are available in the Folding
submenu of the contextual menu:

Toggles the state of the current fold.Toggle Fold

Folds all the elements except the current element.Collapse Other Folds (Ctrl + NumPad/ (Command +
NumPad/ on OS X))

Folds the elements indented with one level inside the
current element.

Collapse Child Folds (Ctrl + NumPad- (Command +
NumPad- on OS X))

Unfolds all child elements of the currently selected
element.

Expand Child Folds (Ctrl + NumPad+ (Command +
NumPad+ on OS X))

Unfolds all elements in the current document.Expand All (Ctrl + NumPad* (Command + NumPad*
on OS X))

To define the element whose content can be folded by the user, you must use the property: -oxy-foldable:true;.
To define the elements that are folded by default, use the -oxy-folded:true property.

Oxygen XML Editor plugin | Author Mode Customization | 1002

Note: The -oxy-folded property works in conjunction with the -oxy-foldable property. Thus, the
folded property is ignored if the -oxy-foldable property is not set on the same element.

When collapsing an element, it is useful to keep some of its content visible (for example, a short description of the
collapsed region). The property -oxy-not-foldable-child is used to identify the child element that is kept
visible. It accepts as value an element name or a list of comma separated element names. The first child element from
the XML document that appears in the list of element names will be identified as the not foldable child and displayed.
If the element is marked as foldable (-oxy-foldable:true;) but it doesn't have the property
-oxy-not-foldable-child or none of the specified non-foldable children exists, then the element is still foldable.
In this case the element kept visible when folded will be the before pseudo-element.

Note: Deprecated properties foldable, not-foldable-child, and folded are also supported.

Folding DocBook Elements

All the elements below can have a title child element and are considered to be logical sections.
You mark them as being foldable leaving the title element visible.

set,
book,
part,
reference,
chapter,
preface,
article,
sect1,
sect2,
sect3,
sect4,
section,
appendix,
figure,
example,
table {
 -oxy-foldable:true;
 -oxy-not-foldable-child: title;
}

Placeholders for Empty Elements: -oxy-show-placeholder and -oxy-placeholder-content
Properties

Oxygen XML Editor plugin displays the element name as pseudo-content for empty elements, if the Show placeholders
for empty elements option is enabled in the Author preferences page and there is no before or after content set in the
CSS for this type of element.

-oxy-placeholder-content CSS Property
To control the displayed pseudo-content for empty elements, you can use the -oxy-placeholder-content CSS
property.

The following example would change the keyword element to be displayed as key:

keyword{
 -oxy-placeholder-content:"key";
}

-oxy-show-placeholder CSS Property
The -oxy-show-placeholder property allows you to decide whether or not the placeholder will be shown. The
possible values are:

• always - Always display placeholders.
• default - Always display placeholders if before or after content are not set is CSS.
• inherit - The placeholders are displayed according to the Show placeholders for empty elements option (if

before and after content is not declared).

Note: Deprecated properties show-placeholder and placeholder-content are also supported.

Oxygen XML Editor plugin | Author Mode Customization | 1003

Read-only elements: -oxy-editable property

If you want to inhibit editing a certain element content, you can set the -oxy-editable (deprecated property
editable is also supported) CSS property to false.

Display Elements: -oxy-morphValue

Oxygen XML Editor plugin allows you to specify that an element has an -oxy-morph display type (deprecated morph
property is also supported), meaning that the element is inline if all its children are inline.

For example, suppose we have a wrapper XML element that allows users to set a number of attributes
on all sub-elements. This element should have an inline or block behavior, depending on the behavior
of its child elements:

wrapper{
display:-oxy-morph;
}

whitespace Property: -oxy-trim-when-ws-onlyValue

Oxygen XML Editor plugin allows you to set the whitespace property to -oxy-trim-when-ws-only, meaning
that the leading and trailing whitespaces are removed.

visibility Property: -oxy-collapse-text

Oxygen XML Editor plugin allows you to set the value of the visibility property to -oxy-collapse-text,
meaning that the text content of that element is not rendered. If an element is marked as -oxy-collapse-text you
are not able to position the cursor inside it and edit it. The purpose of -oxy-collapse-text is to make the text
value of an element editable only through a form control.

The text value of an XML element will be edited using a text field form control. In this case, we want
the text content not to be directly present in the Author visual editing mode:

title{
content: oxy_textfield(edit, '#text', columns, 40);
visibility:-oxy-collapse-text;
}

Cyrillic Counters: list-style-typeValues (-oxy-lower-cyrillic)

Oxygen XML Editor plugin allows you to set the value of the list-style-type property to
-oxy-lower-cyrillic-ru, -oxy-lower-cyrillic-uk, -oxy-upper-cyrillic-ru or
-oxy-upper-cyrillic-uk, meaning that you can have Russian and Ukrainian counters.

Counting list items with Cyrillic symbols:

li{
display:list-item;
list-style-type:-oxy-lower-cyrillic-ru;

}

link Property

Oxygen XML Editor plugin allows you to declare some elements to be links. This is especially useful when working
with many documents that reference each other. The links allow for an easy way to get from one document to another.
Clicking the link marker will open the referenced resource in an editor.

To define the element that should be considered a link, you must use the link property on the before or after
pseudo element. The value of the property indicates the location of the linked resource. Since links are usually indicated
by the value of an attribute in most cases it will have a value similar to attr(href)

Oxygen XML Editor plugin | Author Mode Customization | 1004

DocBook Link Elements

The following elements are defined to be links on the before pseudo element and their values are
defined by the value of an attribute.

*[href]:before{
 link:attr(href);

content: "Click " attr(href) " for opening" ;
}

ulink[url]:before{
 link:attr(url);

content: "Click to open: " attr(url);
}

olink[targetdoc]:before{
 -oxy-link: attr(targetdoc);

content: "Click to open: " attr(targetdoc);
}

Display Tag Markers: -oxy-display-tags

Oxygen XML Editor plugin allows you to choose whether tag markers of an element should never be presented or the
current display mode should be respected. This is especially useful when working with :before and :after
pseudo-elements, in which case the element range is already visually defined so the tag markers are redundant.

The property is named -oxy-display-tags, with the following possible values:

• none - Tags markers must not be presented regardless of the current display mode..

• default - The tag markers will be created depending on the current display mode..

• inherit - The value of the property is inherited from an ancestor element.

-oxy-display-tags
 Value: none | default | inherit
 Initial: default
 Applies to: all nodes(comments, elements, CDATA, etc.)
 Inherited: false
 Media: all

DocBook Para elements

In this example, the para element from DocBook uses a :before and :after element and its tag
markers will not be visible.

para:before{
content: "{";

}

para:after{
content: "}";

}

para{
 -oxy-display-tags: none;

display:block;
margin: 0.5em 0;

}

Append Content Properties: -oxy-append-content and -oxy-prepend-content

-oxy-append-content Property

This property appends the specified content to the content generated by other matching CSS rules of lesser specificity.
Unlike the content property, where only the value from the rule with the greatest specificity is taken into account,
the -oxy-append-conent property adds content to that generated by the lesser specificity rules into a new compound
content.

Oxygen XML Editor plugin | Author Mode Customization | 1005

-oxy-append-content

element:before{
 content: "Hello";
}
element:before{
 -oxy-append-content: " World!";
}

The content shown before the element will be Hello World!.

-oxy-prepend-content Property
Prepends the specified content to the content generated by other matching CSS rules of lesser specificity. Unlike the
content property, where only the value from the rule with the greatest specificity is taken into account, the
-oxy-prepend-conent prepends content to that generated by the lesser specificity rules into a new compound
content.

-oxy-prepend-content

element:before{
 content: "Hello!";
}
element:before{
 -oxy-prepend-content: "said: ";
}
element:before{
 -oxy-prepend-content: "I ";
}

The content shown before the element will be I said: Hello!.

Custom colors for element tags: -oxy-tags-color and -oxy-tags-background-color

By default, Oxygen XML Editor plugin does not display element tags. You can use the Partial Tags button from the
Author tool bar to control the amount of displayed markup.

To configure the default background and foreground colors of the tags, go to Editor > Edit modes > Author. The
-oxy-tags-background-color and -oxy-tags-color properties allow you to control the background and
foreground colors for any particular XML element.

para {
 -oxy-tags-color:white;
 -oxy-tags-background-color:green;
}
title {
 -oxy-tags-color:yellow;
 -oxy-tags-background-color:black;
}

Custom CSS Functions

The visual Author editing mode supports also a wide range of custom CSS extension functions.

oxy_local-name() Function
The oxy_local-name() function evaluates the local name of the current node.

It does not have any arguments.

To insert as static text content before each element its local name, use this CSS selector:

*:before{
content: oxy_local-name() ": ";

}

Oxygen XML Editor plugin | Author Mode Customization | 1006

oxy_name() Function
The oxy_name() function evaluates the qualified name of the current node.

It does not have any arguments.

To insert as static text content before each element its qualified name, use this CSS selector:

*:before{
content: oxy_name() ": ";

}

oxy_url() Function
The oxy_url() function extends the standard CSS url() function by allowing you to specify additional relative path
components (parameters loc_1 to loc_n).

Oxygen XML Editor plugin uses all these parameters to construct an absolute location. Note that any of the parameters
that are passed to the function can be either relative or absolute locations. These locations can be expressed as String
objects, functions, or editor variables (built-in or custom).

oxy_url (base_location , loc_1 , loc_2)

String representing the base location. If not absolute, will be solved relative
to the CSS file URL.

base_location

Strings representing relative location path components.loc_1 ... loc_n (optional)

The following function receives String objects as input parameters:

oxy_url('http://www.oxygenxml.com/css/test.css', '../dir1/', 'dir2/dir3/',
'../../dir4/dir5/test.xml')

and returns:

'http://www.oxygenxml.com/dir1/dir4/dir5/test.xml'

The following function receives the result of the evaluation of two other functions as parameters:

image[href]{
content:oxy_url(oxy_base-uri(), oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}

You can use the above example when you have image references and you want to see thumbnail
images stored in the same folder.

The following function uses an editor variable as the first parameter to point to the Oxygen XML
Editor plugin installation location:

image[href] {
content: oxy_url('${oxygenHome}', 'logo.png');

}

Related information
Editor Variables on page 134

oxy_base-uri() Function
The oxy_base-uri() function evaluates the base URL in the context of the current node.

It does not have any arguments and takes into account the xml:base context of the current node. See the XML Base
specification for more details.

Oxygen XML Editor plugin | Author Mode Customization | 1007

http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/

Suppose you have some image references but you want to see other thumbnail images that reside in
the same folder in the visual Author editing mode:

image[href]{
content:oxy_url(oxy_base-uri(), oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}

oxy_parent-url() Function
The oxy_parent-url() function evaluates the parent URL of a URL received as string.
oxy_parent-url (URL)

The URL as string.URL

oxy_capitalize() Function
The oxy_capitalize function capitalizes the first letter of the text received as argument.
oxy_capitalize (text)

The text in which the first letter will be capitalized.text

To insert as static text content before each element its capitalized qualified name, use this CSS selector:

*:before{
 content: oxy_capitalize(oxy_name()) ": ";
}

oxy_uppercase() Function
The oxy_uppercase() function transforms to upper case the text received as argument.
oxy_uppercase (text)

The text to be capitalized.text

To insert as static text content before each element its upper-cased qualified name, use this CSS
selector:

*:before{
content: oxy_uppercase(oxy_name()) ": ";

}

oxy_lowercase() Function
The oxy_lowercase() function transforms to lower case the text received as argument.
oxy_lowercase (text)

The text to be lower cased.text

To insert as static text content before each element its lower-cased qualified name, use this CSS
selector:

*:before{
content: oxy_lowercase(oxy_name()) ": ";

}

oxy_concat() Function
The oxy_concat() function concatenates the received string arguments.
oxy_concat (str_1 , str_2)

The string arguments to be concatenated.str_1 … str_n

Oxygen XML Editor plugin | Author Mode Customization | 1008

If an XML element has an attribute called padding-left:

<p padding-left="20">...

and you want to add a padding before it with that specific amount specified in the attribute value:

*[padding-left]{
padding-left:oxy_concat(attr(padding-left), "px");
}

oxy_replace() Function
The oxy_replace function is used to replace a string of text.

The oxy_replace() function has two signatures:

• oxy_replace (text , target , replacement)

This function replaces each substring of the text that matches the literal target string with the specified literal
replacement string.

The text in which the replace will occur.text

The target string to be replaced.target

The string replacement.replacement

• oxy_replace (text , target , replacement , isRegExp)

This function replaces each substring of the text that matches the target string with the specified replacement string.

The text in which the replace will occur.text

The target string to be replaced.target

The string replacement.replacement

If true the target and replacement arguments are considered regular expressions,
if false they are considered literal strings.

isRegExp

Suppose that you have image references but you want to see other thumbnail images that reside in the
same folder in the visual Author editing mode:

image[href]{
content:oxy_url(oxy_base-uri(), oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}

oxy_unparsed-entity-uri() Function
The oxy_unparsed-entity-uri() function returns the URI value of an unparsed entity name.
oxy_unparsed-entity-uri (unparsedEntityName)

The name of an unparsed entity defined in the DTD.unparsedEntityName

This function can be useful to display images that are referenced with unparsed entity names.

CSS for displaying the image in Author for an imagedata with entityref to an
unparsed entity

imagedata[entityref]{
content: oxy_url(oxy_unparsed-entity-uri(attr(entityref)));
}

oxy_attributes() Function
The oxy_attributes() function concatenates the attributes for an element and returns the serialization.

Oxygen XML Editor plugin | Author Mode Customization | 1009

oxy_attributes ()

oxy_attributes()

For the following XML fragment:<element att1="x" xmlns:a="2" x="""/>
the CSS selector

element{
content:oxy_attributes();

}

will displayatt1="x" xmlns:a="2" x=""".

oxy_substring() Function
The oxy_substring() function is used to return a string of text.

The oxy_substring() function has two signatures:

• oxy_substring (text , startOffset)

Returns a new string that is a substring of the original text string. It begins with the character at the specified index
and extends to the end of text string.

The original string.text

The beginning index, inclusivestartOffset

• substring (text , startOffset , endOffset)

Returns a new string that is a substring of the original text string. The substring begins at the specified startOffset
and extends to the character at index endOffset - 1.

The original string.text

The beginning index, inclusivestartOffset

The ending index, exclusive.endOffset

oxy_substring('abcd', 1) returns the string 'bcd'.

oxy_substring('abcd', 4) returns an empty string.

oxy_substring('abcd', 1, 3) returns the string 'bc'.

If we only want to display part of an attribute value, the part that comes before an Appendix string:

image[longdesc]{
content: oxy_substring(attr(longdesc), 0, oxy_indexof(attr(longdesc), "Appendix"));
}

oxy_getSomeText(text, length) Function
The oxy_getSomeText(text, length) function allows you to truncate a long string and to set a maximum
number of displayed characters.

The following properties are supported:

• text - Displays the actual text.
• length - Sets the maximum number of characters that are displayed.
• endsWithPoints - Specifies if the truncated text ends with ellipsis.

Oxygen XML Editor plugin | Author Mode Customization | 1010

If an attribute value is very large, we can trim its content before it is displayed as static content:

*[longdesc]:before{
content: oxy_getSomeText(attr(longdesc), 200);

}

oxy_indexof() Function
The oxy_indexof() function is used to define searches.

The oxy_indexof() function has two signatures:

• oxy_indexof (text , toFind)

Returns the index within text string of the first occurrence of the toFind substring.

Text to search in.text

The searched substring.toFind

• oxy_indexof (text , toFind , fromOffset)

Returns the index within text string of the first occurrence of the toFind substring. The search starts from fromOffset
index.

Text to search in.text

The searched substring.toFind

The index to start the search from.fromOffset

oxy_indexof('abcd', 'bc') returns 1.

oxy_indexof('abcdbc', 'bc', 2) returns 4.

If we only want to display part of an attribute value, the part that comes before an Appendix string:

image[longdesc]{
content: oxy_substring(attr(longdesc), 0, oxy_indexof(attr(longdesc), "Appendix"));
}

oxy_lastindexof() Function
The oxy_lastindexof() function is used to define last occurrence searches.

The oxy_lastindexof() function has two signatures:

• oxy_lastindexof (text , toFind)

Returns the index within text string of the rightmost occurrence of the toFind substring.

Text to search in.text

The searched substring.toFind

• oxy_lastindexof (text , toFind , fromOffset)

The search starts from fromOffset index. Returns the index within text string of the last occurrence of the toFind
substring, searching backwards starting from the fromOffset index.

Text to search in.text

The searched substring.toFind

The index to start the search backwards from.fromOffset

Oxygen XML Editor plugin | Author Mode Customization | 1011

oxy_lastindexof('abcdbc', 'bc') returns 4.

oxy_lastindexof('abcdbccdbc', 'bc', 2) returns 1.

If we only want to display part of an attribute value, the part that comes before an Appendix string:

image[longdesc]{
content: oxy_substring(attr(longdesc), 0, oxy_lastindexof(attr(longdesc), "Appendix"));
}

oxy_xpath() Function
The oxy_xpath() function is used to evaluate XPath expressions.

The oxy_xpath() function has the following signature:

• oxy_xpath (XPathExpression [, processChangeMarkers , value] [, evaluate , value
])

It evaluates the given XPath 2.0 expression using Saxon 9 and returns the result. XPath expressions that depend on
the cursor location can be successfully evaluated only when the cursor is located in the actual XML content. Evaluation
fails when the current editing context is inside a referenced xi:include section or inside artificially referenced content
(for example, DITA conref or topicref references).

The parameters of the function are as follows:

• A required expression parameter, which is the XPath expression to be evaluated.
• An optional processChangeMarkers parameter, followed by its value, which can be either true or false

(default value). When you set the parameter to true, the function returns the resulting text with all the change
markers accepted (delete changes are removed and insert changes are preserved).

• An optional evaluate parameter, followed by its value, which can be one of the following:

• dynamic - Evaluates the XPath each time there are changes in the document.
• dynamic-once - Separately evaluates the XPath for each node that matches the CSS selector. It will not

re-evaluate the expression when changes are made to other nodes in the document. This will lead to improved
performance, but the displayed content may not be updated to reflect the actual document content.

• static - If the same XPath is evaluated on several nodes, the result for the first evaluation will be used for
all other matches. Use this only if the XPath does not contain a relationship with the node on which the CSS
property is evaluated. This will lead to improved performance, but the static displayed content may not be
updated to reflect the actual document content.

Note: When XPath expressions are evaluated, the entities and xi:include elements are replaced with the
actual content that is referenced. For example, consider the following code snippet:

<article>
<xi:include href="section1.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>

</article>

where section1.xml contains the following content:

<section>
<p>Referenced content</p>

</section>

The latter will be the actual content in which the XPath expression is executed.

An Example of the oxy_xpath() Function

The following example counts the number of words from a paragraph (including tracked changes)
and displays the result in front of it:

para:before{
content:

Oxygen XML Editor plugin | Author Mode Customization | 1012

 concat("|Number of words:",
 oxy_xpath(

"count(tokenize(normalize-space(string-join(text(), '')), ' '))",
 processChangeMarkers,
 true),

"| ");
}

Form Controls
Oxygen XML Editor plugin provides a variety of built-in form controls that allow users to interact with documents with
familiar user interface objects.

Oxygen XML Editor plugin provides the following built-in form controls:

• Text Field - A graphical user interface box that allows you to enter a single line of text.
• Combo Box - A graphical user interface object that can be a drop-down menu or a combination of a drop-down menu

and a single-line text field.
• Checkbox - A graphical user interface box that you can click to select or deselect a value.
• Pop-up - A contextual menu that provides quick access to various actions.
• Button - A graphical user interface object that performs a specific action.
• Button Group - A graphical user interface group of buttons (such as radio buttons) that perform specific actions.
• Text Area - A box that allows you to enter multiple lines of text.
• URL Chooser - A dialog box that allows you to select the location of local or remote resources.
• Date Picker - A form control object that allows you to select a date in a specified format.
• HTML Content - A graphical user interface box that is used for rendering HTML content.

For customization purposes, Oxygen XML Editor plugin also supports custom form controls in Java.

To watch our video demonstration in regards to form controls, go to http://oxygenxml.com/demo/Form_Controls.html.

Related information
Dynamically Adding Form Controls Using a StylesFilter on page 1058

Text Field Form Control
The oxy_textfield built-in form control is used for entering a single line of text in a graphical user interface box.
A text field may include optional content completion capabilities, used to present and edit the value of an attribute or
an element.

The oxy_textfield form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This
property can have the following values:

• @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the
value of the property must be a QName and the CSS must have a namespace declaration for the prefix.

• #text - Specifies that the presented/edited value is the simple text value of an element.

Note: You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The
values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

Oxygen XML Editor plugin | Author Mode Customization | 1013

http://oxygenxml.com/demo/Form_Controls.html

• values - Specifies the values that populate the content completion list of proposals. If these values are not specified
in the CSS, they are collected from the associated XML Schema.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of tooltip
messages separated by commas. If you want the tooltip to display a comma, use the ${comma} variable.

• tooltip - Specifies a tooltip to be displayed when you hover over the form control.
• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the

form control has the same color as the element in which it is inserted.
• hasMultipleValues - Specifies if the text field allows multiple values separated by spaces or just a single value.

Note: If the value is false, the Content Completion Assistant considers the entire text as the prefix for
its proposals. If the value is true (the default value), the space is the delimiter for the values and thus it is
not included in the prefix (the prefix will be whatever comes after the space).

For example, suppose the possible values for your text field are: value a, value b, and other values.
If the hasMultipleValues property is set to true and the user enters "value " (notice the space
character after 'value') in the text field, the Content Completion Assistant will suggest all three values
because the prefix is whatever comes after the space, and in this case the user did not enter anything after
the space. If the hasMultipleValues property was set to false for our example, the Content
Completion Assistant would only suggest value a and value b because the space is considered part
of the prefix.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_textfield(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

Text Field Form Control

element {
content: "Label: "

 oxy_textfield(
 edit, "@my_attr",
 values, "value1, value2",

color, "red",
 columns, 40);
}

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_textfield form control, invoke the Content Completion Assistant by
pressing Ctrl + Space (Command + Space on OS X) and select the oxy_textfield code template.

Combo Box Form Control
The oxy_combobox built-in form control is used for providing a graphical user interface object that is a drop-down
menu of proposed values. This form control can also be used for a combination of a drop-down menu and an editable
single-line text field.

The oxy_combobox form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This
property can have the following values:

• @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the
value of the property must be a QName and the CSS must have a namespace declaration for the prefix.

Oxygen XML Editor plugin | Author Mode Customization | 1014

• #text - Specifies that the presented/edited value is the simple text value of an element.

Note: You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• editable - This property accepts the true and false values. In addition to a drop-down menu, the true value also
generates an editable text field box that allows you to insert other values than the proposed ones. The false value
generates a drop-down menu that only accepts the proposed values.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of tooltip
messages separated by commas. If you want the tooltip to display a comma, use the ${comma} variable.

• values - Specifies the values that populate the content completion list of proposals. If these values are not specified
in the CSS, they are collected from the associated XML Schema..

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The
values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true.

• labels - This property must have the same number of items as the values property. Each item provides a literal
description of the items listed in the values property. These labels can be translated using the ${i18n()} editor
variable.

Note: This property is only available for read-only combo boxes (the editable property is set to false).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the
form control has the same color as the element in which it is inserted.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_combobox(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

• canRemoveValue - If the value is set to true and the combo box is not editable, then a new <Empty> value is
added in that combo box. This clears or removes the value being edited, depending on if it edits an element or
attribute.

Combo Box Form Control

comboBox:before {
content: "A combo box that edits an attribute value. The possible values are provided from

 CSS:"
 oxy_combobox(
 edit, "@attribute",
 editable, true,
 values, "value1, value2, value3",
 labels, "Value no1, Value no2, Value no3");
}

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Oxygen XML Editor plugin | Author Mode Customization | 1015

Tip: To insert a sample of the oxy_combobox form control, invoke the Content Completion Assistant by
pressing Ctrl + Space (Command + Space on OS X) and select the oxy_combobox code template.

Checkbox Form Control
The oxy_checkbox built-in form control is used for a graphical user interface box that you can click to enable or
disable an option. A single checkbox or multiple check-boxes can be used to present and edit the value on an attribute
or element.

The oxy_checkbox form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This
property can have the following values:

• @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the
value of the property must be a QName and the CSS must have a namespace declaration for the prefix.

• #text - Specifies that the presented/edited value is the simple text value of an element.

Note: You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

• resultSeparator - If multiple check-boxes are used, the separator is used to compose the final result. If not
specified, the space character is used.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of tooltip
messages separated by commas. If you want the tooltip to display a comma, use the ${comma} variable.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• values - Specifies the values that are committed when the check-boxes are selected. If these values are not specified
in the CSS, they are collected from the associated XML Schema.

Note: Typically, when you use a comma in the values of a form control, the content that follows a comma
is considered a new value. If you want to include a comma in the values, precede the comma with two
backslashes. For example, oxy_combobox(values, '1\\, 2\\, 3, 4, edit, false) will
display a combo box having the first value 1, 2, 3 and the second value 4.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The
values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true..

• uncheckedValues - Specifies the values that are committed when check-boxes are not selected.
• labels - This property must have the same number of items as the values property. Each item provides a literal

description of the items listed in the values property. These labels can be translated using the ${i18n()} editor
variable.. If this property is not specified, the values property is used as the label.

• columns - Controls the width of the form control. The unit size is the width of the w character.
• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form

control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_checkbox(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

Single Checkbox Form Control

checkBox[attribute]:before {
content: "A check box editor that edits a two valued attribute (On/Off).

 The values are specified in the CSS:"
 oxy_checkbox(

Oxygen XML Editor plugin | Author Mode Customization | 1016

 edit, "@attribute",
 values, "On",
 uncheckedValues, "Off",
 labels, "On/Off");
}

Multiple Check-boxes Form Control

multipleCheckBox[attribute]:before {
content: "Multiple checkboxes editor that edits an attribute value.

 Depending whether the check-box is selected a different value is committed:"
 oxy_checkbox(
 edit, "@attribute",
 values, "true, yes, on",
 uncheckedValues, "false, no, off",
 resultSeparator, ","
 labels, "Present, Working, Started");
}

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_checkbox form control, invoke the Content Completion Assistant by
pressing Ctrl + Space (Command + Space on OS X) and select the oxy_checkbox code template.

Pop-up Form Control
The oxy_popup built-in form control is used to offer a contextual menu that provides quick access to various actions.
A pop-up form control can display single or multiple selections.

The oxy_popup form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This
property can have the following values:

• @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the
value of the property must be a QName and the CSS must have a namespace declaration for the prefix.

• #text - Specifies that the presented/edited value is the simple text value of an element.

Note: You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

• rows - This property specifies the number of rows that the form control presents.

Note: If the value of the rows property is not specified, the default value of 12 is used.

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the
form control has the same color as the element in which it is inserted.

Note: This property is used for rendering in the Author mode.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of tooltip
messages separated by commas. If you want the tooltip to display a comma, use the ${comma} variable.

Example:

link:before{
content: oxy_popup(

 edit, '@href',
 values, "Spring Flowers, Summer Flowers, Autumn Flowers, Winter Flowers",

Oxygen XML Editor plugin | Author Mode Customization | 1017

 tooltips, "Iris${comma}Snowdrop, Gardenia${comma}Liliac, Chrysanthemum${comma}Salvia, Gerbera",
 selectionMode, single);
}

• values - Specifies the values that are committed when the check-boxes are selected. If these values are not specified
in the CSS, they are collected from the associated XML Schema.

Note: Typically, when you use a comma in the values of a form control, the content that follows a comma
is considered a new value. If you want to include a comma in the values, precede the comma with two
backslashes. For example, oxy_combobox(values, '1\\, 2\\, 3, 4, edit, false) will
display a combo box having the first value 1, 2, 3 and the second value 4.

• resultSeparator - If multiple check-boxes are used, the separator is used to compose the final result. If not
specified, the space character is used.

Note: The value of the resultSeparator property cannot exceed one character.

• selectionMode - Specifies whether the form control allows the selection of a single value or multiple values.
The predefined values of this property are single (default value) and multiple.

• labels - Specifies the label associated with each entry used for presentation. If this property is not specified, the
values property is used instead.

• columns - Controls the width of the form control. The unit size is the width of the w character. This property is
used for the visual representation of the form control.

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and
percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• rendererSort - Allows you to sort the values rendered on the form control label. The possible values of this
property are ascending and descending.

• editorSort - Allows you to sort the values rendered on the form control. The possible values of this property are
ascending and descending.

• rendererSeparator - Defines a separator used when multiple values are rendered. If not specified, the value
of the resultSeparator property is used.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The
values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_popup(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

Pop-up Form Control

popupWithMultipleSelection:before {
content: " This editor edits an attribute value. The possible values are specified

 inside the CSS: "
 oxy_popup(
 edit, "@attribute",
 values, "value1, value2, value3, value4, value5",
 labels, "Value no1, Value no2, Value no3, Value no4, Value no5",
 resultSeparator, "|",
 columns, 10,
 selectionMode, "multiple",

color, "blue",
 fontInherit, true);

font-size:30px;
}

Oxygen XML Editor plugin | Author Mode Customization | 1018

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_popup form control, invoke the Content Completion Assistant by pressing
Ctrl + Space (Command + Space on OS X) and select the oxy_popup code template.

Button Form Control
The oxy_button built-in form control is used for graphical user interface objects that invokes a custom Author mode
action (defined in the associated Document Type) referencing it by its ID, or directly in the CSS.

The oxy_button form control supports the following properties:

• actionContext - Specifies the context in which the action associated with the form control is executed. Its
possible values are element (default value) and caret. If you select the element value, the context is the
element that holds the form control. If you select the caret value, the action is invoked at the cursor location. If
the cursor is not inside the element that holds the form control, the element value is selected automatically.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The
values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true.

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the
form control has the same color as the element in which it is inserted.

• actionID - The ID of the action, specified in the associated document type framework, that is invoked when you
click the button.

Note: The element that contains the form control represents the context where the action is invoked.

• action - Defines an action directly, rather than using the actionID parameter to reference an action from the
associated document type framework. This property is defined using the oxy_action function.

oxy_button(action, oxy_action(
 name, 'Insert',
 description, 'Insert an element after the current one',
 icon, url('insert.png'),
 operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',
 arg-fragment, '<element>${caret}</element>',
 arg-insertLocation, '.',
 arg-insertPosition, 'After'
))

Tip: You can also create a button form control directly from an oxy_action function.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• transparent - Flattens the aspect of the button form control, removing its border and background. The values
of this property can be true or false (default value).

• showText - Specifies if the action text should be displayed on the button form control. If this property is missing
then the button displays the icon only if it is available, or the text if the icon is not available. The values of this
property can be true or false.

element {
content: oxy_button(actionID, 'remove.attribute', showText, true);

}

• showIcon - Specifies if the action icon should be displayed on the button form control. If this property is missing
then the button displays the icon only if it is available, or the text if the icon is not available. The values of this
property can be true or false.

element {
content: oxy_button(actionID, 'remove.attribute', showIcon, true);

}

Oxygen XML Editor plugin | Author Mode Customization | 1019

• enableInReadOnlyContext - To enable button form controls or groups of buttons form controls this property
needs to be set to true. This property can be used to specify areas as read-only (by setting the -oxy-editable
property to false). This is useful when you want to use an action that does not modify the context.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_button(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

Button Form Control

button:before {
content: "Label:"

 oxy_button(
/* This action is declared in the document type associated with the XML document.

 */
 actionID, "insert.popupWithMultipleSelection");
}

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_button form control, invoke the Content Completion Assistant by
pressing Ctrl + Space (Command + Space on OS X) and select the oxy_button code template. Also, an
oxy_button_in_place_action code template is available that inserts an oxy_button function that

includes an action parameter.

Button Group Form Control
The oxy_buttonGroup built-in form control is used for a graphical user interface group of buttons that invokes one
of several custom Author mode actions (defined in the associated Document Type) referencing it by its ID, or directly
in the CSS.

The oxy_buttonGroup form control supports the following properties:

• actionIDs - The IDs of the actions that will be presented in the group of buttons.
• actionID - The ID of the action, specified in the associated document type framework, that is invoked when you

click the button.

Note: The element that contains the form control represents the context where the action is invoked.

• action_list - Defines a list of actions directly, rather than using the actionID parameter to reference actions
from the associated document type framework. This property is defined using the oxy_action_list function.

oxy_buttonGroup(
 label, 'A group of actions',
 icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),
 actions,
 oxy_action_list(
 oxy_action(
 name, 'Insert',
 description, 'Insert an element after the current one',
 operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',
 arg-fragment, '<element></element>',
 arg-insertLocation, '.',
 arg-insertPosition, 'After'
),
 oxy_action(
 name, 'Delete',
 description, 'Deletes the current element',
 operation, 'ro.sync.ecss.extensions.commons.operations.DeleteElementOperation'
)

Oxygen XML Editor plugin | Author Mode Customization | 1020

)
)

Tip: A code template is available to make it easy to add the oxy_action_list function.

• label - Specifies the label to be displayed on the button. This label can be translated using the ${i18n()} editor
variable.

• icon - The path to the icon to be displayed on the button.
• actionContext - Specifies the context in which the action associated with the form control is executed. Its

possible values are element (default value) and caret. If you select the element value, the context is the
element that holds the form control. If you select the caret value, the action is invoked at the cursor location. If
the cursor is not inside the element that holds the form control, the element value is selected automatically.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• actionStyle - Specifies what to display for an action in the form control. The values of this property can be
text (default value), icon, or both.

• tooltip - Specifies a tooltip to be displayed when you hover over the form control.
• transparent - Makes the button transparent without any borders or background colors. The values of this property

can be true or false.
• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The

values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true.

• enableInReadOnlyContext - To enable button form controls or groups of buttons form controls this property
needs to be set to true. This property can be used to specify areas as read-only (by setting the -oxy-editable
property to false). This is useful when you want to use an action that does not modify the context.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_buttonGroup(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

Button Group Form Control

buttongroup:before {
content:

 oxy_label(text, "Button Group:", width, 150px, text-align, left)
 oxy_buttonGroup(
 label, 'A group of actions',

/* The action IDs are declared in the document type associated with the XML
document. */
 actionIDs, "insert.popupWithMultipleSelection,insert.popupWithSingleSelection",
 actionStyle, "both");
}

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_buttonGroup form control, invoke the Content Completion Assistant
by pressing Ctrl + Space (Command + Space on OS X) and select the oxy_buttonGroup code template.
Also, an oxy_buttonGroup_in_place_action code template is available that inserts an
oxy_buttonGroup function that includes an oxy_action_list function.

Oxygen XML Editor plugin | Author Mode Customization | 1021

Text Area Form Control
The oxy_textArea built-in form control is used for entering multiple lines of text in a graphical user interface box.
A text area may include optional syntax highlight capabilities to present the form control.

The oxy_textArea form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This
property can have the following values:

• @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the
value of the property must be a QName and the CSS must have a namespace declaration for the prefix.

• #text - Specifies that the presented/edited value is the simple text value of an element.

Note: You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

• #content - This parameter is useful when an element has mixed or element-only content and you want to edit its
content inside a text area form control.

For example, if you have the following XML content:

<codeblock outputclass="language-xml">START_TEXT<ph>phase</ph><apiname><text>API</text></apiname></codeblock>

and your CSS includes the following snippet:

codeblock:before{
content:
 oxy_textArea(
 edit, '#content',
 contentType, 'text/xml');
}

then the text area form control will edit the following fragment:

START_TEXT<ph>phase</ph><apiname><text>API</text></apiname>

Note: When the value of the edit property is #content, the text area form control will also offer
content completion proposals.

• #content - This parameter is useful when an element has mixed or element-only content and you want to edit its
content inside a text area form control.

For example, if you have the following XML content:

<codeblock outputclass="language-xml">START_TEXT<ph>phase</ph><apiname><text>API</text></apiname></codeblock>

and your CSS includes the following snippet:

codeblock:before{
content:
 oxy_textArea(
 edit, '#content',
 contentType, 'text/xml');
}

then the text area form control will edit the following fragment:

START_TEXT<ph>phase</ph><apiname><text>API</text></apiname>

Note: When the value of the edit property is #content, the text area form control will also offer content
completion proposals.

• columns - Controls the width of the form control. The unit size is the width of the w character.

Oxygen XML Editor plugin | Author Mode Customization | 1022

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and
percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The
values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• rows - This property specifies the number of rows that the form control presents. If the form control has more lines,
you can scroll and see them all.

• contentType - Specifies the type of content for which the form control offers syntax highlighting. The following
values are supported: text/css; text/shell; text/cc; text/xquery; text/xml;
text/python; text/xsd; text/c; text/xpath; text/javascript; text/xsl; text/wsdl;
text/html; text/xproc; text/properties; text/sql; text/rng; text/sch; text/json;
text/perl; text/php; text/java; text/batch; text/rnc; text/dtd; text/nvdl;
text/plain.

• indentOnTab - Specifies the behavior of the Tab key. If the value of this property is set to true (default value),
the Tab key inserts characters. If it is set to false, Tab is used for navigation, jumping to the next editable position
in the document.

• The white-space CSS property influences the value that you edit, as well as the from control size:

• pre - The whitespaces and new lines of the value are preserved and edited. If the rows and columns properties
are not specifies, the form control calculates its size on its own so that all the text is visible.

• pre-wrap - The long lines are wrapped to avoid horizontal scrolling.

Note: The rows and columns properties must be specified. If these are not specified, the form control
considers the value to be pre.

• normal - The white spaces and new lines are normalized.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_textArea(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

The following example presents a text area with CSS syntax highlighting that calculates its own
dimension, and a second one with XML syntax highlighting with defined dimension.

textArea {
visibility: -oxy-collapse-text;
white-space: pre;

}

textArea[language="CSS"]:before {
content: oxy_textArea(

 edit, '#text',
 contentType, 'text/css');
}

textArea[language="XML"]:before {
content: oxy_textArea(

 edit, '#text',
 contentType, 'text/xml',
 rows, 10,
 columns, 30);
}

Oxygen XML Editor plugin | Author Mode Customization | 1023

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_textArea form control, invoke the Content Completion Assistant by
pressing Ctrl + Space (Command + Space on OS X) and select the oxy_textArea code template.

URL Chooser Form Control
The oxy_urlChooser built-in form control is used for a dialog box that allows you to select the location of local or
remote resources. The inserted reference is made relative to the URL of the currently opened editor.

The oxy_urlChooser editor supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This
property can have the following values:

• @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the
value of the property must be a QName and the CSS must have a namespace declaration for the prefix.

• #text - Specifies that the presented/edited value is the simple text value of an element.

Note: You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the
form control has the same color as the element in which it is inserted.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The
values of this property can be true or false (default value). To make the form control inherit its font from its
parent element, set the fontInherit property to true.

• fileFilter - string value that holds comma-separated file extensions. The URL chooser uses these extensions
to filter the displayed files. A value such as "jpg,png,gif" is mapped to three filters that will display all jpg,
png, and gif files respectively.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_urlChooser(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

URL Chooser Form Control

urlChooser[file]:before {
content: "A URL chooser editor that allows browsing for a URL. The selected URL is made

relative to the currently edited file:"
 oxy_urlChooser(
 edit, "@file",
 columns 25);
}

Oxygen XML Editor plugin | Author Mode Customization | 1024

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_urlChooser form control, invoke the Content Completion Assistant
by pressing Ctrl + Space (Command + Space on OS X) and select the oxy_urlChooser code template.

Date Picker Form Control
The oxy_datePicker built-in form control is used for offering a text field with a calendar browser that allows to
choose a certain date in a specified format.

The oxy_datePicker form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This
property can have the following values:

• @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the
value of the property must be a QName and the CSS must have a namespace declaration for the prefix.

• #text - Specifies that the presented/edited value is the simple text value of an element.

Note: You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the
form control has the same color as the element in which it is inserted.

• format - This property specifies the format of the inserted date. The pattern value must be a valid Java date (or
date-time) format. If missing, the type of the date is determined from the associated schema.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true
(default value) and false.

• validateInput - Specifies if the form control is validated. If you introduce a date that does not respect the format,
the datePicker form control is rendered with a red foreground. By default, the input is validated. To disable the
validation, set this property to false.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_datePicker(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

Date Picker Form Control

date {
content:

 oxy_label(text, "Date time attribute with format defined in CSS: ", width, 300px)
 oxy_datePicker(
 columns, 16,
 edit, "@attribute",
 format, "yyyy-MM-dd");
}

Oxygen XML Editor plugin | Author Mode Customization | 1025

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_datePicker form control, invoke the Content Completion Assistant
by pressing Ctrl + Space (Command + Space on OS X) and select the oxy_datePicker code template.

HTML Content Form Control
The oxy_htmlContent built-in form control is used for rendering HTML content. This HTML content is displayed
as a graphical element shaped as a box. The shape of the box is determined by a given width and the height is computed
based upon the length of the text.

The oxy_htmlContent form control supports the following properties:

• href - The absolute or relative location of a resource. The resource needs to be a well-formed HTML file.
• id - The unique identifier of an item. This is a div element that has a unique id and is a child of the body element.

The div element is the container of the HTML content to be rendered by the form control.
• content - An alternative to the href and id pair of elements. It provides the HTML content that will be displayed

in the form control.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form
control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class
will be set on the element that contains the form control.

p:before {
content: oxy_htmlContent(hoverPseudoclassName, 'showBorder')

}
p:showBorder {

border: 1px solid red;
}

You can customize the style of the content using CSS that is either referenced by the file identified by the href property
or is defined in-line. If you change the HTML content or CSS and you want your changes to be reflected in the XML
that renders the form control, then you need to refresh the XML file. If the HTML does not have an associated style,
then a default text and background color will be applied.

In the following example, the form control collects the content from the p_description div element
found in the descriptions.html file. The box is 400 pixels wide and is displayed before a paragraph
identified by the intro_id attribute value.

p#intro_id:before {
content:

 oxy_htmlContent(
 href, "descriptions.html",
 id, "p_description",

width, 400px);
}

An alternative example, using the content property:

p#intro_id:before {
content:

 oxy_htmlContent(
content, "<div style='font-weight:bold;'>My content</div>",
width, 400px);

}

Note: Anchor HTML elements are displayed but the links are inactive.

Oxygen XML Editor plugin | Author Mode Customization | 1026

Note: You can use the Content Completion Assistant in the CSS or LESS editor to easily insert a sample of
the form control by selecting the corresponding code template. The form control code templates are displayed
with a symbol in the content complete list.

Tip: To insert a sample of the oxy_htmlContent form control, invoke the Content Completion Assistant
by pressing Ctrl + Space (Command + Space on OS X) and select the oxy_htmlContent code template.

Implementing Custom Form Controls
If the built-in form controls are not sufficient for your needs, you can implement custom form controls in Java.

Custom Form Controls Implementation
You can specify custom form controls using the following properties:

• rendererClassName - The name of the class that draws the edited value. It must be an implementation of
ro.sync.ecss.extensions.api.editor.InplaceRenderer. The renderer has to be a SWING
implementation and can be used both in the standalone and Eclipse distributions.

• swingEditorClassName - You can use this property for the standalone (Swing-based) distribution to specify the
name of the class used for editing. It is a Swing implementation of
ro.sync.ecss.extensions.api.editor.InplaceEditor.

• swtEditorClassName - You can use this property for the Eclipse plugin distribution to specify the name of the class
used for editing. It is a SWT implementation of the
ro.sync.ecss.extensions.api.editor.InplaceEditor.

Note: If the custom form control is intended to work in the Oxygen XML Editor plugin standalone
distribution, the declaration of swtEditorClassName is not required. The renderer (the class that draws the
value) has different properties from the editor (the class that edits the value) because you can present a value
in one way and edit it in another.

• classpath - You can use this property to specify the location of the classes used for a custom form control. The value
of the classpath property is an enumeration of URLs separated by comma.

• edit - If your form control edits the value of an attribute or the text value of an element, you can use the
@attribute_name and #text predefined values and Oxygen XML Editor plugin will perform the commit logic
by itself. You can use the custom value to perform the commit logic yourself.

The following is a sample Java code for implementing a custom combo box form control that inserts an XML element
in the content when the editing stops:

public class ComboBoxEditor extends AbstractInplaceEditor {
/**

 * @see ro.sync.ecss.extensions.api.editor.InplaceEditor#stopEditing()
 */

@Override
public void stopEditing() {

 Runnable customCommit = new Runnable() {
@Override
public void run() {

 AuthorDocumentController documentController = context.getAuthorAccess().getDocumentController();
 documentController.insertXMLFragment("<custom/>", offset);
 }
 };
 EditingEvent event = new EditingEvent(customCommit, true);
 fireEditingStopped(event);
 }

The custom form controls can use any of the predefined properties of the built-in form controls, as well as specified
custom properties.

This following is an example of how to specify a custom form control in the CSS:

myElement {
content: oxy_editor(

 rendererClassName, "com.custom.editors.CustomRenderer",
 swingEditorClassName, "com.custom.editors.SwingCustomEditor",
 swtEditorClassName, "com.custom.editors.SwtCustomEditor",
 edit, "@my_attr",
 customProperty1, "customValue1",

Oxygen XML Editor plugin | Author Mode Customization | 1027

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceRenderer.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceEditor.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceEditor.html

 customProperty2, "customValue2"
)
}

How to Implement Custom Form Controls

To implement a custom form control, follow these steps:

1. Download the Oxygen XML Editor plugin SDK at http://oxygenxml.com/oxygen_sdk_maven.html.
2. Implement the custom form control by extending

ro.sync.ecss.extensions.api.editor.InplaceEditorRendererAdapter. You could also use
ro.sync.ecss.extensions.api.editor.AbstractInplaceEditor, which offers some default
implementations and listeners management.

3. Pack the previous implementation in a Java JAR library.
4. Copy the JAR library to the [OXYGEN_INSTALL_DIR]/frameworks/[FRAMEWORK_DIR] directory.
5. In Oxygen XML Editor plugin, open the Preferences dialog box , go to Document Type Association, edit the

appropriate framework, and add the JAR library in the Classpath tab.
6. Specify the custom form control in your CSS, as described above.

Editing Processing Instructions Using Form Controls
Oxygen XML Editor plugin allows you to edit processing instructions, comments, and CDATA by using the built-in
editors.

Oxygen XML Editor plugin allows you to edit processing instructions, comments, and CDATA by using the built-in
editors.

Note: You can edit both the content and the attribute value from a processing instruction.

Editing an Attribute from a Processing Instruction

PI content

<?pi_target attr="val"?>

CSS

oxy|processing-instruction:before {
display:inline;
content:

"EDIT attribute: " oxy_textfield(edit, '@attr', columns, 15);
visibility:visible;

}
oxy|processing-instruction{

visibility:-oxy-collapse-text;
}

oxy_action() Function
The oxy_action() function allows you to define actions directly in the CSS, rather than referencing them from the
associated framework.

The oxy_action() function is frequently used from the oxy_button() function.

The arguments received by the oxy_action() function are a list of properties that define an action. The following
properties are supported:

• name - The name of the action. It will be displayed as the label for the button or menu item.
• description (optional) - A short description with details about the result of the action.
• icon (optional) - A path relative to the CSS pointing to an image (the icon for the action). The path can point to

resources that are packed in Oxygen XML Editor plugin (oxygen.jar) by starting its value with / (for example,
/images/Remove16.png). It can also be expressed as editor variables.

Oxygen XML Editor plugin | Author Mode Customization | 1028

http://oxygenxml.com/oxygen_sdk_maven.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/InplaceEditorRendererAdapter.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/editor/AbstractInplaceEditor.html

• operation - The name of the Java class implementing the
ro.sync.ecss.extensions.api.AuthorOperation interface. There is also a variety of predefined
operations that can be used.

Note: If the name of the operation specified in the CSS is not qualified (has no Java package name), then
it is considered to be one of the built-in Oxygen XML Editor plugin operations from
ro.sync.ecss.extensions.commons.operations package. If the class is not found in this
package, then it will be loaded using the specified name.

• arg-<string> - All arguments with the arg- prefix are passed to the operation (the string that follows the arg-
prefix is passed).

• ID - (optional) - The ID of the action from the framework. If this is specified, all others parameters are disregarded.

oxy_button(
 action, oxy_action(
 name, 'Insert',
 description, 'Insert an element after the current one',
 icon, url('insert.png'),
 operation,

'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',
 arg-fragment, '<element>${caret}</element>',
 arg-insertLocation, '.',
 arg-insertPosition, 'After'),
 showIcon, true)

You can also create a button form control directly from an oxy_action function:

oxy_action(
 name, 'Insert',
 description, 'Insert an element after the current one',
 operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',

 arg-fragment, '<element>${caret}</element>',
 arg-insertLocation, '.',
 arg-insertPosition, 'After')

Tip: A code template is available to make it easy to add the oxy_action function
with the Content Completion Assistant by pressing Ctrl + Space (Command +
Space on OS X) and select the oxy_action code template..

Related information
Button Form Control on page 1019
The oxy_button built-in form control is used for graphical user interface objects that invokes a custom Author mode
action (defined in the associated Document Type) referencing it by its ID, or directly in the CSS.

oxy_action_list() Function
The oxy_action_list() function allows you to define a list of actions directly in the CSS, rather than referencing
them from the associated framework.

The oxy_action_list() function is used from the oxy_buttonGroup() function.

The arguments received by the oxy_action_list() function are a list of actions that are defined with the
oxy_action() function. The following properties are supported in the oxy_action_list() function:

• name - The name of the action. It will be displayed as the label for the button or menu item.
• description (optional) - A short description with details about the result of the action.
• icon (optional) - A path relative to the CSS pointing to an image (the icon for the action). The path can point to

resources that are packed in Oxygen XML Editor plugin (oxygen.jar) by starting its value with / (for example,
/images/Remove16.png). It can also be expressed as editor variables.

• operation - The name of the Java class implementing the
ro.sync.ecss.extensions.api.AuthorOperation interface. There is also a variety of predefined
operations that can be used.

Oxygen XML Editor plugin | Author Mode Customization | 1029

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html

Note: If the name of the operation specified in the CSS is not qualified (has no Java package name), then
it is considered to be one of the built-in Oxygen XML Editor plugin operations from
ro.sync.ecss.extensions.commons.operations package. If the class is not found in this
package, then it will be loaded using the specified name.

• arg-<string> - All arguments with the arg- prefix are passed to the operation (the string that follows the arg-
prefix is passed).

• ID - (optional) - The ID of the action from the framework. If this is specified, all others parameters are disregarded.

oxy_action_list(
 oxy_action(
 name, 'Insert',
 description, 'Insert an element after the current one',
 operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',

 arg-fragment, '<element></element>',
 arg-insertLocation, '.',
 arg-insertPosition, 'After'
),
 oxy_action(
 name, 'Delete',
 description, 'Deletes the current element',
 operation, 'ro.sync.ecss.extensions.commons.operations.DeleteElementOperation'

)
)

Tip: A code template is available to make it easy to add the oxy_action_list
function with the Content Completion Assistant by pressing Ctrl + Space
(Command + Space on OS X) and select the oxy_action_list code template.

Related concepts
oxy_action() Function on page 1028
The oxy_action() function allows you to define actions directly in the CSS, rather than referencing them from the
associated framework.

Related information
Button Group Form Control on page 1020
The oxy_buttonGroup built-in form control is used for a graphical user interface group of buttons that invokes one
of several custom Author mode actions (defined in the associated Document Type) referencing it by its ID, or directly
in the CSS.

oxy_label() Function
The oxy_label() function can be used in conjunction with the CSS content property to change the style of
generated text.

The arguments of the function are property name - property value pairs. The following properties are supported:

• text - This property specifies the built-in form control you are using.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and

percentage (followed by the % character) length units. The width property takes precedence over the columns
property (if the two are used together).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the
form control has the same color as the element in which it is inserted.

• background-color - Specifies the background color of the form control. If the value of the background-color
property is inherit, the form control has the same color as the element in which it is inserted.

• styles - Specifies styles for the form control. The values of this property are a set of CSS properties:

• font-weight, font-size, font-style, font
• text-align, text-decoration
• width

• color, background-color

Oxygen XML Editor plugin | Author Mode Customization | 1030

• link - For more information about this property see the link property section.

element{
content: oxy_label(text, "Label Text", styles,

"font-size:2em;color:red;link:attr(href);");
}

Instead of using the values of the styles property individually, you can define them in a CSS file as in the following
example:

* {
width: 40%;
text-align:center;

}

Then refer that file with an import directive, as follows:

elem {
content: oxy_label(text, 'my_label', styles, "@import 'labels.css';")

}

CAUTION: Extensive use of the styles property may lead to performance issues.

If the text from an oxy_label() function contains new lines, for example oxy_label(text, 'LINE1\A
LINE2', width, 100px), the text is split in two. Each of the two new lines has the specified width of 100 pixels.

Note: The text is split after \A, which represents a new line character.

You can use the oxy_label() function together with a built-in form control function to create a form control based
layouts.

An example of a use case is if you have multiple attributes on a single element and you want use form
controls on separate lines and style them differently. Consider the following CSS rule:

person:before {
 content: "Name:*" oxy_textfield(edit, '@name', columns, 20) "\A Address:" oxy_textfield(edit,
 '@address', columns, 20)
}

Suppose you only want the Name label to be set to bold, while you want both labels aligned to look
like a table (the first column with labels and the second with a text field). To achieve this, you can use
the oxy_label() to style each label differently.

person:before {
 content: oxy_label(text, "Name:*", styles, "font-weight:bold;width:200px") oxy_textfield(edit,
 '@name', columns, 20) "\A "
 oxy_label(text, "Address:", styles, "width:200px") oxy_textfield(edit, '@address',
 columns, 20)
}

Tip: A code template is available to make it easy to add the oxy_label function
with the Content Completion Assistant by pressing Ctrl + Space (Command +
Space on OS X) and select the oxy_label code template..

oxy_link-text() Function
You can use the oxy_link-text() function on the CSS content property to obtain a text description from the
source of a reference.

By default, the oxy_link-text() function resolves DITA and DocBook references. For further details about how
you can also extend this functionality to other frameworks, go to Configuring an Extensions Bundle.

Oxygen XML Editor plugin | Author Mode Customization | 1031

DITA Support

For DITA, the oxy_link-text() function resolves the xref element and the elements that have a keyref attribute.
The text description is the same as the one presented in the final output for those elements. If you use this function for
a topicref element that has the navtitle and locktitle attributes set, the function returns the value of the
navtitle attribute.

DocBook Support

For DocBook, the oxy_link-text() function resolves the xref element that defines a link in the same document.
The text description is the same as the one presented in the final output for those elements.

For the following XML and associated CSS fragments the oxy_link-text() function is resolved
to the value of the xreflabel attribute.

<para><code id="para.id" xreflabel="The reference label">my code</code></para>
<para><xref linkend="para.id"/></para>

xref {
content: oxy_link-text();

}

If the text from the target cannot extracted (for instance, if the href is not valid), you can use an
optional argument to display fallback text.

*[class~="map/topicref"]:before{
content: oxy_link-text("Cannot find the topic reference");

 link:attr(href);
}

oxy_unescapeURLValue(string) Function
The oxy_unescapeURLValue() function returns the unescaped value of a URL-like string given as a parameter.

For example, if the value contains %20 it will be converted to a simple space character.

oxy_unescapeURLValue("http://www.example.com/a%20simple%20example.html")
returns the http://www.example.com/a simple example.html value.

Arithmetic Functions
Arithmetic Functions are supported.

You can use any of the arithmetic functions implemented in the java.lang.Math class:
http://download.oracle.com/javase/6/docs/api/java/lang/Math.html.

In addition to that, the following functions are available:

DetailsSyntax

Adds the values of all parameters from param1 to paramN.oxy_add(param1, ... , paramN,
'returnType')

Subtracts the values of parameters param2 to paramN from param1.oxy_subtract(param1, param2, ... ,
paramN, 'returnType')

Multiplies the values of parameters from param1 to paramN.oxy_multiply(param1, ... , paramN,
'returnType')

Performs the division of param1 to param2.oxy_divide(param1, param2,
'returnType')

Returns the reminder of the division of param1 to param2.oxy_modulo(param1, param2,
'returnType')

Oxygen XML Editor plugin | Author Mode Customization | 1032

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html

Note: The returnType can be 'integer', 'number', or any of the supported CSS measuring types.

If we have an image with width and height specified on it we can compute the number of pixels on
it:

image:before{
content: "Number of pixels: " oxy_multiply(attr(width), attr(height), "px");
}

Custom CSS Pseudo-classes

You can set your custom CSS pseudo-classes on the nodes from the AuthorDocument model. These are similar to
the normal XML attributes, with the important difference that they are not serialized, and by changing them the document
does not create undo and redo edits - the document is considered unmodified. You can use custom pseudo-classes for
changing the style of an element (and its children) without altering the document.

In Oxygen XML Editor plugin they are used to hide/show the colspec elements from CALS tables. To take a look
at the implementation, see:

1. [OXYGEN_INSTALL_DIR]/frameworks/docbook/css/cals_table.css (Search for
-oxy-visible-colspecs)

2. The definition of action table.toggle.colspec from the DocBook 4 framework makes use of the pre-defined
TogglePseudoClassOperation Author mode operation.

Here are some examples:

Controlling the visibility of a section using a pseudo-class

You can use a non standard (custom) pseudo-class to impose a style change on a specific element.
For instance, you can have CSS styles matching the custom pseudo-class access-control-user,
like the one below:

section {
 display:none;
}

section:access-control-user {
 display:block;
}

By setting the pseudo-class access-control-user, the element section will become visible by
matching the second CSS selector.

Coloring the elements at the current cursor location
*:caret-visited {
 color:red;
}

You could create an AuthorCaretListener that sets the caret-visited pseudo-class to the
element at the cursor location. The effect will be that all the elements traversed by the cursor become
red.

The API that you can use from the CaretListener:

ro.sync.ecss.extensions.api.AuthorDocumentController#setPseudoClass(java.lang.String,
 ro.sync.ecss.extensions.api.node.AuthorElement)
ro.sync.ecss.extensions.api.AuthorDocumentController#removePseudoClass(java.lang.String,
 ro.sync.ecss.extensions.api.node.AuthorElement)

Pre-defined Author mode operations can be used directly in your framework to work with custom pseudo-classes:

1. TogglePseudoClassOperation

2. SetPseudoClassOperation

Oxygen XML Editor plugin | Author Mode Customization | 1033

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocument.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/TogglePseudoClassOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#setPseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#setPseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#removePseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#removePseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/TogglePseudoClassOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/SetPseudoClassOperation.html

3. RemovePseudoClassOperation

Built-in CSS Stylesheet

When Oxygen XML Editor plugin renders content in the Author mode, it adds built-in CSS selectors (in addition to
the CSS stylesheets linked in the XML or specified in the document type associated to the XML document). These
built-in CSS selectors are processed before all other CSS content, but they can be overwritten if the CSS developer
wants to modify a default behavior.

List of CSS Selector Contributed by Oxygen XML Editor plugin

@namespace oxy "http://www.oxygenxml.com/extensions/author";
@namespace xi "http://www.w3.org/2001/XInclude";
@namespace xlink "http://www.w3.org/1999/xlink";
@namespace svg "http://www.w3.org/2000/svg";
@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {
display:block !important;

}

oxy|cdata {
display:-oxy-morph !important;
white-space:pre-wrap !important;
border-width:0px !important;
margin:0px !important;
padding: 0px !important;

}

oxy|processing-instruction {
display:-oxy-morph !important;
color: rgb(139, 38, 201) !important;
white-space:pre-wrap !important;
border-width:0px !important;
margin:0px !important;
padding: 0px !important;

}

oxy|processing-instruction[Pub],
oxy|processing-instruction[PubTbl],
oxy|processing-instruction[xm-replace_text],
oxy|processing-instruction[xm-deletion_mark],
oxy|processing-instruction[xm-insertion_mark_start],
oxy|processing-instruction[xm-insertion_mark_end],
oxy|processing-instruction[xml-model],
oxy|processing-instruction[xml-stylesheet]
{

display:none !important;
}

oxy|comment {
display:-oxy-morph !important;
color: rgb(0, 100, 0) !important;
background-color:rgb(255, 255, 210) !important;
white-space:pre-wrap !important;
border-width:0px !important;
margin:0px !important;
padding: 0px !important;

}

oxy|reference:before,
oxy|entity[href]:before{
 link: attr(href) !important;

text-decoration: underline !important;
color: navy !important;

margin: 2px !important;
padding: 0px !important;
margin-right:0px !important;
padding-right:2px !important;

}

oxy|reference:before {
display: -oxy-morph !important;
content: url(../images/editContent.gif) !important;

}

oxy|entity[href]:before{
display: -oxy-morph !important;
content: url(../images/editContent.gif) !important;

}

oxy|reference,
oxy|entity {

Oxygen XML Editor plugin | Author Mode Customization | 1034

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/RemovePseudoClassOperation.html

 -oxy-editable:false !important;
background-color: rgb(240, 240, 240) !important;
margin:0px !important;
padding: 0px !important;

}

oxy|reference {
display:-oxy-morph !important;
/*EXM-28674 No need to present tags for these artificial references.*/

 -oxy-display-tags: none;
}

oxy|entity {
display:-oxy-morph !important;

}

oxy|entity[name='amp'],
oxy|entity[name='lt'],
oxy|entity[name='gt'],
oxy|entity[name='quot'],
oxy|entity[name='apos'],
oxy|entity[name^='#']{

/*EXM-32236 Do not present tags for character entity references.*/
 -oxy-display-tags: none;
}

oxy|entity[href] {
border: 1px solid rgb(175, 175, 175) !important;
padding: 0.2em !important;

}

xi|include {
display:-oxy-morph !important;
margin-bottom: 0.5em !important;
padding: 2px !important;

}
xi|include:before,
xi|include:after{

display:inline !important;
background-color:inherit !important;
color:#444444 !important;
font-weight:bold !important;

}

xi|include:before {
content:url(../images/link.png) attr(href) !important;

 link: attr(href) !important;
}
xi|include[parse="text"]:before {

content:url(../images/link.png) !important;
}
xi|include[xpointer]:before {

content:url(../images/link.png) attr(href) " " attr(xpointer) !important;
 link: oxy_concat(attr(href), "#", attr(xpointer)) !important;
}

xi|fallback {
display:-oxy-morph !important;
margin: 2px !important;
border: 1px solid #CB0039 !important;

}

xi|fallback:before {
display:-oxy-morph !important;
content:"XInclude fallback: " !important;
color:#CB0039 !important;

}

oxy|doctype {
display:block !important;
background-color: transparent !important;
color:blue !important;
border-width:0px !important;
margin:0px !important;
padding: 2px !important;

}

@media oxygen-high-contrast-black, oxygen-dark-theme{
 oxy|doctype {

color:#D0E2F4 !important;
 }
}

oxy|error {
display:-oxy-morph !important;

 -oxy-editable:false !important;
white-space:pre !important;
font-weight:bold !important;

Oxygen XML Editor plugin | Author Mode Customization | 1035

color: rgb(178, 0, 0) !important;
 -oxy-display-tags: none;
}

oxy|error:before {
content:url(../images/ReferenceError.png) "[" !important;
color: rgb(178, 0, 0) !important;

}
oxy|error[level='warn']:before {

content:url(../images/ReferenceWarn.png) "[" !important;
color: rgb(200, 185, 0) !important;

}

oxy|error[level='warn'] {
color: rgb(200, 185, 0) !important;

}

oxy|error:after {
content:"]" !important;

}

*[xlink|href]:before {
content:url(../images/link.png);

 link: attr(xlink|href) !important;
}

/*No direct display of the MathML and SVG images.*/
svg|svg{
display:inline !important;

white-space: -oxy-trim-when-ws-only !important;
}

svg|svg * {
display:none !important;
white-space:normal !important;

}

mml|math{
display:inline !important;

white-space: -oxy-trim-when-ws-only !important;
}
mml|math mml|*{

display:none !important;
white-space: normal !important;

}

/*Text direction attributes*/
*[dir='rtl'] { direction:rtl; unicode-bidi:embed; }
*[dir='rlo'] { direction:rtl; unicode-bidi:bidi-override; }

*[dir='ltr'] { direction:ltr; unicode-bidi:embed; }
*[dir='lro'] { direction:ltr; unicode-bidi:bidi-override; }

@media oxygen-high-contrast-black, oxygen-dark-theme{
 xi|include:before,
 xi|include:after{

color:#808080 !important;
 }
}

To show all entities in the Author mode as transparent, without a gray background, first define in
your CSS after all imports the namespace:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

and then add the following selector:

oxy|entity {
background-color: inherit !important;

}

Debugging CSS Stylesheets

To assist you with debugging and customizing CSS stylesheets the Author mode includes a CSS Inspector view to
examine the CSS rules that match the currently selected element.

Oxygen XML Editor plugin | Author Mode Customization | 1036

This tool is similar to the Inspect Element development tool that is found in most browsers. The CSS Inspector view
allows you to see how the CSS rules are applied and the properties defined. Each rule that is displayed in this view
includes a link to the line in the CSS file that defines the styles for the element that matches the rule. You can use the
link to open the appropriate CSS file and edit the style rules. Once you have found the rule you want to edit, you can
click the link in the top-right corner of that rule to open the CSS file in the editor.

Figure 497: CSS Inspector View

There are two ways to open the CSS Inspector view:

1. Select CSS Inspector from the Window > Show View menu.
2. Select the Inspect Styles action from the contextual menu in Author mode.

Related information
CSS Inspector View on page 187

Creating and Running Automated Tests
If you have developed complex custom plugins or document types, the best way to test your implementation and ensure
that further changes will not interfere with the current behavior is to make automated tests for your customization.

An Oxygen XML Editor plugin standalone installation includes a main oxygen.jar library located in the
[OXYGEN_INSTALL_DIR]. That JAR library contains a base class for testing developer customizations named:
ro.sync.exml.workspace.api.PluginWorkspaceTCBase.

To develop JUnit tests for your customizations using the Eclipse workbench, follow these steps:

1. Create a new Eclipse Java project and copy to it the entire contents of the [OXYGEN_INSTALL_DIR].
2. Add all JAR libraries present in the [OXYGEN_INSTALL_DIR]/lib directory to the Java Build Path->Libraries

tab. Make sure that the main JAR library oxygen.jar or oxygenAuthor.jar is the first one in the Java
classpath by moving it up in the Order and Export tab.

3. Click Add Library and add the JUnit and JFCUnit libraries.
4. Create a new Java class that extends ro.sync.exml.workspace.api.PluginWorkspaceTCBase.
5. Pass the following parameters on to the constructor of the super class:

• File installationFolder - The file path to the main application installation directory. If not specified,
it defaults to the folder where the test is started.

• File frameworksFolder - The file path to the frameworks directory. It can point to a custom frameworks
directory where the custom framework resides.

• File pluginsFolder - The file path to the plugins directory. It can point to a custom plugins directory
where the custom plugins resides.

• File optionsFolder - The folder that contains the application options. If not specified, the application will
auto-detect the location based on the started product ID.

• String licenseKey - The license key used to license the test class.
• int productID - The ID of the product and should be one of the following:

PluginWorkspaceTCBase.XML_AUTHOR_PRODUCT,
PluginWorkspaceTCBase.XML_EDITOR_PRODUCT, or
PluginWorkspaceTCBase.XML_DEVELOPER_PRODUCT.

Oxygen XML Editor plugin | Author Mode Customization | 1037

https://github.com/junit-team/junit/wiki/Download-and-Install
https://sourceforge.net/projects/jfcunit/

6. Create test methods that use the API in the base class to open XML files and perform various actions on them. Your
test class could look something like this:

public class MyTestClass extends PluginWorkspaceTCBase {

/**
 * Constructor.
 */
public MyTestClass() throws Exception {
super(null, new File("frameworks"), new File("plugins"), null,

"------START-LICENSE-KEY------\n" +
"\n" +
"Registration_Name=Developer\n" +
"\n" +
"Company=\n" +
"\n" +
"Category=Enterprise\n" +
"\n" +
"Component=XML-Editor, XSLT-Debugger, Saxon-SA\n" +
"\n" +
"Version=14\n" +
"\n" +
"Number_of_Licenses=1\n" +
"\n" +
"Date=09-04-2012\n" +
"\n" +
"Trial=31\n" +
"\n" +
"SGN=MCwCFGNoEGJSeiC3XCYIyalvjzHhGhhqAhRNRDpEu8RIWb8icCJO7HqfVP4++A\\=\\=\n" +
"\n" +

"-------END-LICENSE-KEY-------",
 PluginWorkspaceTCBase.XML_AUTHOR_PRODUCT);
 }

/**
 * <p>Description: TC for opening a file and using the bold operation</p>
 * <p>Bug ID: EXM-20417</p>
 *
 * @author radu_coravu
 *
 * @throws Exception
 */

public void testOpenFileAndBoldEXM_20417() throws Exception {
 WSEditor ed = open(new File("D:/projects/eXml/test/authorExtensions/dita/sampleSmall.xml").toURL());

//Move caret
 moveCaretRelativeTo("Context", 1, false);

//Insert
 invokeAuthorExtensionActionForID("bold");
 assertEquals("<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" +

"<!DOCTYPE task PUBLIC \"-//OASIS//DTD DITA Task//EN\"
\"http://docs.oasis-open.org/dita/v1.1/OS/dtd/task.dtd\">\n" +

"<task id=\"taskId\">\n" +
" <title>Task title</title>\n" +
" <prolog/>\n" +
" <taskbody>\n" +
" <context>\n" +
" <p>Context for the current task</p>\n" +
" </context>\n" +
" <steps>\n" +
" <step>\n" +
" <cmd>Task step.</cmd>\n" +
" </step>\n" +
" </steps>\n" +
" </taskbody>\n" +
"</task>\n" +
"", getCurrentEditorXMLContent());

 }
}

API Frequently Asked Questions (API FAQ)
This section contains answers to common questions regarding the Oxygen XML Editor plugin customizations using the
oXygen SDK, Author Component, or Plugins.

For additional questions, contact us. The preferred approach is via email because API questions must be analyzed
thoroughly. We also provide code snippets, if they are required.

To stay up-to-date with the latest API changes, discuss issues and ask for solutions from other developers working with
the oXygen SDK, register on the oXygen-SDK mailing list.

Oxygen XML Editor plugin | Author Mode Customization | 1038

http://www.oxygenxml.com/oxygen_sdk.html
http://www.oxygenxml.com/oxygen_sdk.html#oXygen_component
http://www.oxygenxml.com/oxygen_sdk.html#oXygen_standalone_plugins
http://www.oxygenxml.com/contact.html
http://www.oxygenxml.com/mailinglists.html#oxygen-sdk

Difference Between a Document Type (Framework) and a Plugin Extension

Question

What is the difference between a Document Type (Framework) and a Plugin Extension?

Answer

Two ways of customizing the application are possible:

1. Implement a plugin.

A plugin serves a general purpose and influences any type of XML file that you open in Oxygen XML Editor plugin.

For the Oxygen XML Editor pluginPlugins API, Javadoc, samples, and documentation, go to
http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

2. Create or modify the document type that is associated to your specific XML vocabulary.

This document type can be used, for instance, to provide custom actions for your type of XML files and to mount
them on the toolbar, menus, and contextual menus.

For example, if the end users are editing DITA documents, all the toolbar actions that are specific for DITA are
provided by the DITA Document Type. If you look in the Document Type Association preferences page there is a
DITA document type. If you edit that document type you will see that it has an Author tab in the Document Type
configuration dialog box. The subtabs in this tab can be used to define custom DITA actions and add them to the
toolbars, main menus, or contextual menus.

For information about developing your own document types (frameworks), see the Author Mode Customization
Guide on page 890 chapter.

If you look on disk in the [OXYGEN_INSTALL_DIR]\frameworks\dita folder, there is a file called
dita.framework. That file gets updated when you edit a document type from the Document Type Association
preferences page. Then you can share that updated file with all users.

The same folder contains some JAR libraries. These libraries contain custom Java operations that are called when
the user presses certain toolbar actions.

We have an oXygen SDK that contains the Java sources from all the DITA Java customizations:

http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

Related tasks
Add a Custom Operation to an Existing Framework on page 916

Dynamically Modify the Content Inserted by the Author

Question

Is there a way to insert typographic quotation marks instead of double quotes?

Answer

By using the API you can set a document filter to change the text that is inserted in the document in Author mode. You
can use this method to change the insertion of double quotes with the typographic quotes.

Here is some sample code:

authorAccess.getDocumentController().setDocumentFilter(new AuthorDocumentFilter() {
/**

 * @see
ro.sync.ecss.extensions.api.AuthorDocumentFilter#insertText(ro.sync.ecss.extensions.api.AuthorDocumentFilterBypass,
 int, java.lang.String)
 */

@Override

Oxygen XML Editor plugin | Author Mode Customization | 1039

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

public void insertText(AuthorDocumentFilterBypass filterBypass, int offset, String toInsert) {
if(toInsert.length() == 1 && "\"".equals(toInsert)) {

//User typed a quote but he actually needs a smart quote.
//So we either have to add \u201E (start smart quote)
//Or we add \u201C (end smart quote)
//Depending on whether we already have a start smart quote inserted in the current paragraph.

try {
 AuthorNode currentNode = authorAccess.getDocumentController().getNodeAtOffset(offset);

int startofTextInCurrentNode = currentNode.getStartOffset();
if(offset > startofTextInCurrentNode) {

 Segment seg = new Segment();
 authorAccess.getDocumentController().getChars(startofTextInCurrentNode, offset -
startofTextInCurrentNode, seg);
 String previosTextInNode = seg.toString();

boolean insertStartQuote = true;
for (int i = previosTextInNode.length() - 1; i >= 0; i--) {

char ch = previosTextInNode.charAt(i);
if('\u201C' == ch) {
//Found end of smart quote, so yes, we should insert a start one
break;

 } else if('\u201E' == ch) {
//Found start quote, so we should insert an end one.

 insertStartQuote = false;
break;

 }
 }

if(insertStartQuote) {
 toInsert = "\u201E";
 } else {
 toInsert = "\u201C";
 }
 }
 } catch (BadLocationException e) {
 e.printStackTrace();
 }
 }
 System.err.println("INSERT TEXT |" + toInsert + "|");

super.insertText(filterBypass, offset, toInsert);
 }
});

You can find the online Javadoc for AuthorDocumentFilterAPI here:
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html

An alternative to using a document filtering is the use of a
ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandlerAdapter, which has clear
callbacks indicating the source from where the API is called (Paste, Drag and Drop, Typing).

Split Paragraph on Enter (Instead of Showing Content Completion List)

Question

How to split the paragraph on Enter instead of showing the content completion list?

Answer

To obtain this behavior, edit your document type and in the Document Type configuration dialog box go to the Author
tab, then Actions subtab, and add your own split action. This action must have the Enter shortcut key associated and
must trigger your own custom operation that handles the split.

So, when you press Enter, your Java operation is invoked and it will be your responsibility to split the paragraph using
the current API (probably creating a document fragment from the cursor offset to the end of the paragraph, removing
the content and then inserting the created fragment after the paragraph).

This solution has as a drawback. Oxygen XML Editor plugin hides the Content Completion Assistant when you press
Enter. If you want to show allowed child elements at that certain offset, implement your own content proposals window
using the ro.sync.ecss.extensions.api.AuthorSchemaManagerAPI to use information from the
associated schema.

Oxygen XML Editor plugin | Author Mode Customization | 1040

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html

Impose Custom Options for Authors

Question

How to enable Track Changes at startup?

Answer

There are two ways to enable Track Changes for every document that you open:

1. You could customize the default options that are used by your authors and set the Track Changes - Initial State
option to Always On.

2. Use an API to toggle the Track Changes state after a document is opened in Author mode:

// Check the current state of Track Changes
boolean trackChangesOn = authorAccess.getReviewController().isTrackingChanges();
if (!trackChangesOn) {

// Set Track Changes state to On
 authorAccess.getReviewController().toggleTrackChanges();
}

Highlight Content

Question

How can we add custom highlights to the document content in Author mode?

Answer

There are two types of highlights you can add:

1. Non-Persistent Highlights - Such highlights are removed when the document is closed and then re-opened.

You can use the following API method:

ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getHighlighter()

to obtain an AuthorHighlighter that allows you to add a highlight between certain offsets with a specified painter.

For example, you can use this support to implement your own spell checker with a custom highlight for the
unrecognized words.

2. Persistent Highlights - Such highlights are saved in the XML content as processing instructions.

You can use the following API method:

ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getPersistentHighlighter()

to obtain an AuthorPersistentHighlighter class that allows you to add a persistent highlight between certain offsets,
set new properties for a specific highlight, and render it with a specified painter.

For example, you can use this support to implement your own way of adding review comments.

Related information
Adding Custom Persistent Highlights on page 967

How Do I Add My Custom Actions to the Contextual Menu?

The API methods WSAuthorEditorPageBase.addPopUpMenuCustomizer and
WSTextEditorPage.addPopUpMenuCustomizer allow you to customize the contextual menu shown either in
the Author or Text modes. The API is available both in the standalone application and in the Eclipse plugin.

Here is an elegant way to add actions to the Author page from your Eclipse plugin extension:

Oxygen XML Editor plugin | Author Mode Customization | 1041

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorHighlighter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html

1. Create a pop-up menu customizer implementation:

import org.eclipse.jface.action.ContributionManager;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.menus.IMenuService;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.structure.AuthorPopupMenuCustomizer;
/**
* This class is used to create the possibility to attach certain
* menuContributions to the {@link ContributionManager}, which is used for the
* popup menu in the Author Page of the Oxygen Editor.

* You just need to use the org.eclipse.ui.menus extension and add a
* menuContribution with the locationURI: menu:oxygen.authorpage
*/
public class OxygenAuthorPagePopupMenuCustomizer implements
 AuthorPopupMenuCustomizer {

@Override
public void customizePopUpMenu(Object menuManagerObj,

 AuthorAccess authoraccess) {
if (menuManagerObj instanceof ContributionManager) {

 ContributionManager contributionManager = (ContributionManager) menuManagerObj;
 IMenuService menuService = (IMenuService) PlatformUI.getWorkbench()
 .getActiveWorkbenchWindow().getService(IMenuService.class);

 menuService.populateContributionManager(contributionManager,
"menu:oxygen.authorpage");

 contributionManager.update(true);
 }
 }
}

2. Add a workbench listener and add the pop-up customizer when an editor is opened in the Author page:

Workbench.getInstance().getActiveWorkbenchWindow().getPartService().addPartListener(
new IPartListener() {

@Override
public void partOpened(IWorkbenchPart part) {

if(part instanceof ro.sync.exml.workspace.api.editor.WSEditor) {
 WSEditorPage currentPage = ((WSEditor)part).getCurrentPage();

if(currentPage instanceof WSAuthorEditorPage) {
 ((WSAuthorEditorPage)currentPage).addPopUpMenuCustomizer(new OxygenAuthorPagePopupMenuCustomizer());

 }
 }
 }

 });

3. Implement the extension point in your plugin.xml:

<extension
point="org.eclipse.ui.menus">

<menuContribution
allPopups="false"
locationURI="menu:oxygen.authorpage">

<command
commandId="eu.doccenter.kgu.client.tagging.removeTaggingFromOxygen"
style="push">

</command>
</menuContribution>

</extension>

Adding Custom Callouts

Question

I want to highlight validation errors, instead of underlining them (for example, changing the text background color to
light red or yellow). Also, I want to let Oxygen XML Editor plugin write a note about the error type into the Author
mode directly at the error position (for example, " [value "text" not allowed for attribute "type"] "). Is this possible using
the API?

Answer

The Plugins API allows you to set a ValidationProblemsFilter that gets notified when automatic validation
errors are available. Then you can map each of the problems to an offset range in the Author mode using the API
WSTextBasedEditorPage.getStartEndOffsets(DocumentPositionedInfo). For each of those

Oxygen XML Editor plugin | Author Mode Customization | 1042

offsets, you can add either persistent or non-persistent highlights. If you add persistent highlights, you can also customize
callouts to appear for each of them. The downside is that they need to be removed before the document gets saved. The
result would look something like this:

Figure 498: Custom Callouts with Persistent Highlights

Here is a working example:

/**
 * Plugin extension - workspace access extension.
 */

public class CustomWorkspaceAccessPluginExtension
implements WorkspaceAccessPluginExtension {

/**
 * @see ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension
 #applicationStarted(ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)
 */

public void applicationStarted(final StandalonePluginWorkspace pluginWorkspaceAccess) {
 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {

/**
 * @see ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorOpened(java.net.URL)
 */

@Override
public void editorOpened(URL editorLocation) {

final WSEditor currentEditor = pluginWorkspaceAccess.getEditorAccess(editorLocation,
StandalonePluginWorkspace.MAIN_EDITING_AREA);
 WSEditorPage currentPage = currentEditor.getCurrentPage();

if(currentPage instanceof WSAuthorEditorPage) {
final WSAuthorEditorPage currentAuthorPage = (WSAuthorEditorPage)currentPage;

 currentAuthorPage.getPersistentHighlighter().setHighlightRenderer(new PersistentHighlightRenderer()
 {

@Override
public String getTooltip(AuthorPersistentHighlight highlight) {
return highlight.getClonedProperties().get("message");

 }
@Override
public HighlightPainter getHighlightPainter(AuthorPersistentHighlight highlight) {
//Depending on severity could have different color.

 ColorHighlightPainter painter = new ColorHighlightPainter(Color.COLOR_RED, -1, -1);
 painter.setBgColor(Color.COLOR_RED);

return painter;
 }
 });
 currentAuthorPage.getReviewController()
 .getAuthorCalloutsController().setCalloutsRenderingInformationProvider(

new CalloutsRenderingInformationProvider() {
@Override
public boolean shouldRenderAsCallout(AuthorPersistentHighlight highlight) {
//All custom highlights are ours
return true;

 }
@Override
public AuthorCalloutRenderingInformation getCalloutRenderingInformation(

final AuthorPersistentHighlight highlight) {
return new AuthorCalloutRenderingInformation() {
@Override

Oxygen XML Editor plugin | Author Mode Customization | 1043

public long getTimestamp() {
//Not interesting
return -1;

 }
@Override
public String getContentFromTarget(int limit) {

return "";
 }

@Override
public String getComment(int limit) {

return highlight.getClonedProperties().get("message");
 }

@Override
public Color getColor() {

return Color.COLOR_RED;
 }

@Override
public String getCalloutType() {

return "Problem";
 }

@Override
public String getAuthor() {

return "";
 }

@Override
public Map<String, String> getAdditionalData() {

return null;
 }
 };
 }
 });
 currentEditor.addValidationProblemsFilter(new ValidationProblemsFilter() {
 List<int[]> lastStartEndOffsets = new ArrayList<int[]>();

/**
 * @see ro.sync.exml.workspace.api.editor.validation.ValidationProblemsFilter
 #filterValidationProblems(ro.sync.exml.workspace.api.editor.validation.ValidationProblems)

 */
@Override
public void filterValidationProblems(ValidationProblems validationProblems) {

 List<int[]> startEndOffsets = new ArrayList<int[]>();
 List<DocumentPositionedInfo> problemsList = validationProblems.getProblemsList();

if(problemsList != null) {
for (int i = 0; i < problemsList.size(); i++) {

try {
 startEndOffsets.add(currentAuthorPage.getStartEndOffsets(problemsList.get(i)));
 } catch (BadLocationException e) {
 e.printStackTrace();
 }
 }
 }

if(lastStartEndOffsets.size() != startEndOffsets.size()) {
//Continue

 } else {
boolean equal = true;
for (int i = 0; i < startEndOffsets.size(); i++) {
int[] o1 = startEndOffsets.get(i);
int[] o2 = lastStartEndOffsets.get(i);
if(o1 == null && o2 == null) {

//Continue
 } else if(o1 != null && o2 != null
 && o1[0] == o2[0] && o1[1] == o2[1]){

//Continue
 } else {
 equal = false;

break;
 }
 }

if(equal) {
//Same list of problems already displayed.
return;

 }
 }

//Keep last used offsets.
 lastStartEndOffsets = startEndOffsets;

try {
if(! SwingUtilities.isEventDispatchThread()) {

 SwingUtilities.invokeAndWait(new Runnable() {
@Override
public void run() {

//First remove all custom highlights.
 currentAuthorPage.getPersistentHighlighter().removeAllHighlights();
 }
 });
 }
 } catch (InterruptedException e1) {
 e1.printStackTrace();
 } catch (InvocationTargetException e1) {
 e1.printStackTrace();

Oxygen XML Editor plugin | Author Mode Customization | 1044

 }
if(problemsList != null) {
for (int i = 0; i < problemsList.size(); i++) {

//A reported problem (could be warning, could be error).
 DocumentPositionedInfo dpi = problemsList.get(i);

try {
final int[] currentOffsets = startEndOffsets.get(i);
if(currentOffsets != null) {

//These are offsets in the Author content.
final LinkedHashMap<String, String> highlightProps = new LinkedHashMap<String,

String>();
 highlightProps.put("message", dpi.getMessage());
 highlightProps.put("severity", dpi.getSeverityAsString());

if(! SwingUtilities.isEventDispatchThread()) {
 SwingUtilities.invokeAndWait(new Runnable() {

@Override
public void run() {

 currentAuthorPage.getPersistentHighlighter().addHighlight(
 currentOffsets[0], currentOffsets[1] - 1, highlightProps);
 }
 });
 }
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }
 }
 }
 }
 });
 currentEditor.addEditorListener(new WSEditorListener() {

/**
 * @see ro.sync.exml.workspace.api.listeners.WSEditorListener#editorAboutToBeSavedVeto(int)
 */

@Override
public boolean editorAboutToBeSavedVeto(int operationType) {
try {
if(! SwingUtilities.isEventDispatchThread()) {

 SwingUtilities.invokeAndWait(new Runnable() {
@Override
public void run() {

//Remove all persistent highlights before saving
 currentAuthorPage.getPersistentHighlighter().removeAllHighlights();
 }
 });
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }

return true;
 }
 });
 }
 }
 }, StandalonePluginWorkspace.MAIN_EDITING_AREA);
 }

/**
 * @see ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension#applicationClosing()
 */

public boolean applicationClosing() {
return true;

 }
 }

Change the DOCTYPE of an Opened XML Document

Question

How to change the DOCTYPE of a document opened in the Author mode?

Answer

The following API:

ro.sync.ecss.extensions.api.AuthorDocumentController.getDoctype()

Oxygen XML Editor plugin | Author Mode Customization | 1045

allows you to get the DOCTYPE of the current XML file opened in the Author mode.

There is also an API method available that would allow you to set the DOCTYPE back to the XML:

ro.sync.ecss.extensions.api.AuthorDocumentController.setDoctype(AuthorDocumentType)

Here is an example of how this solution would work:

AuthorDocumentType dt = new AuthorDocumentType("article", "testSystemID", "testPublicID",
"<!DOCTYPE article PUBLIC \"testPublicID\" \"testSystemID\">");

docController.setDoctype(dt);

Basically you could take the entire content from the existing DOCTYPE,

ro.sync.ecss.extensions.api.AuthorDocumentType.getContent()

modify it to your needs, and create another AuthorDocumentType object with the new content and with the same
public, system IDs.

For example, you could use this API is you want to add unparsed entities in the XML DOCTYPE.

Customize the Default Application Icons for Toolbars/Menus

Question

How can we change the default icons used for the application built-in actions?

Answer

If you look inside the main JAR library [OXYGEN_INSTALL_DIR]\lib\oxygen.jar or
[OXYGEN_INSTALL_DIR]\lib\author.jar, it contains an images folder that contains all the images that we
use for our buttons, menus, and toolbars.

To overwrite them with your own creations, follow these steps:

1. In the [OXYGEN_INSTALL_DIR]\lib directory create a folder called endorsed.
2. In the endorsed folder create another folder called images.
3. Add your own images in the images folder.

You can use this mechanism to overwrite any kind of resource located in the main oXygen JAR library. The folder
structure in the endorsed directory and in the main oXygen JAR must be identical.

Disable Context-Sensitive Menu Items for Custom Author Actions

Question

Is there a way to disable menu items for custom Author mode actions depending on the cursor context?

Answer

By default, Oxygen XML Editor plugin does not toggle the enabled/disabled states for actions based on whether or not
the activation XPath expressions for that certain Author mode action are fulfilled. This is done because the actions can
be many and evaluating XPath expression on each cursor move can lead to performance problems. However, if you
have your own ro.sync.ecss.extensions.api.ExtensionsBundle implementation you can overwrite
the method:

ro.sync.ecss.extensions.api.ExtensionsBundle.createAuthorExtensionStateListener()

and when the extension state listener gets activated, you can use the API like this:

/**
 * @see

Oxygen XML Editor plugin | Author Mode Customization | 1046

ro.sync.ecss.extensions.api.AuthorExtensionStateListener#activated(ro.sync.ecss.extensions.api.AuthorAccess)
 */
public void activated(final AuthorAccess authorAccess) {

//Add a caret listener to enable/disable extension actions:
 authorAccess.getEditorAccess().addAuthorCaretListener(new AuthorCaretListener() {

@Override
public void caretMoved(AuthorCaretEvent caretEvent) {

try {
 Map<String, Object> authorExtensionActions =
authorAccess.getEditorAccess().getActionsProvider().getAuthorExtensionActions();

//Get the action used to insert a paragraph. It's ID is "paragraph"
 AbstractAction insertParagraph = (AbstractAction) authorExtensionActions.get("paragraph");

//Evaluate an XPath expression in the context of the current node in which the cursor is located
 Object[] evaluateXPath = authorAccess.getDocumentController().evaluateXPath(".[ancestor-or-self::p]",
false, false, false, false);

if(evaluateXPath != null && evaluateXPath.length > 0 && evaluateXPath[0] != null) {
//We are inside a paragraph, disable the action.

 insertParagraph.setEnabled(false);
 } else {

//Enable the action
 insertParagraph.setEnabled(true);
 }
 } catch (AuthorOperationException e) {
 e.printStackTrace();
 }
 }
 });

When the extension is deactivated, you should remove the CaretListener to avoid adding multiple listeners that
perform the same functionality.

Dynamic Open File in Oxygen XML Editor plugin Distributed via JavaWebStart

Question

How can we dynamically open a file in an Oxygen XML Editor plugin distributed via JWS?

Answer

The JWS packager Ant build file that is included with Oxygen XML Editor plugin signs by default the JNLP file (this
means that a copy of it is included in the main JAR library) in this step:

<copy file="${outputDir}/${packageName}/${productName}.jnlp" tofile="${home}/JNLP-INF/APPLICATION.JNLP"/>

Signing the JNLP file is required by newer Java versions and means that it is impossible to automatically generate a
JNLP file containing some dynamic arguments. The solution is to use the signed JNLP template feature of Java 7, bundle
inside the JAR library a signed APPLICATION_TEMPLATE.JNLP instead of an APPLICATION.JNLP with a
wildcard command line argument:

<application-desc main-class="ro.sync.jws.JwsDeployer">
<argument>*</argument>

</application-desc>

Then you can replace the wildcard in the external placed JNLP to the actual, dynamic command line arguments value.

A different, more complicated approach would be to have the JNLP file signed and always referenced as a URL argument
a location like this:

http://path/to/server/redirectEditedURL.php

When the URL gets clicked on the client side you would also call a PHP script on the server side that would update the
redirect location for redirectEditedURL.php to point to the clicked XML resource. Then the opened Oxygen
XML Editor plugin would try to connect to the redirect PHP and be redirected to open the XML.

Change the Default Track Changes (Review) Author Name

Question

How can we change the default author name used for Track Changes in the Author Component?

Oxygen XML Editor plugin | Author Mode Customization | 1047

Answer

The Track Changes (Review) author name is determined in the following order:

1. API - The review user name can be imposed through the following API:

ro.sync.ecss.extensions.api.AuthorReviewController.setReviewerAuthorName(String)

2. Options - If the author name was not imposed from the API, it is determined from the Author option set in the
Review preferences page.

3. System properties - If the author name was not imposed from the API or from the application options then the
following system property is used:

System.getProperty("user.name")

So, to impose the Track Changes author, use one of the following approaches:

1. Use the API to impose the reviewer author name. Here is the online Javadoc of this method:
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReviewController.html#setReviewerAuthorName(java.lang.String)

2. Customize the default options and set a specific value for the Author name option set in the Review preferences
page.

3. Set the value of user.name system property when the applet is initializing and before any document is loaded.

Multiple Rendering Modes for the Same Document in Author Mode

Question

How can we add multiple buttons, each showing a different visualization mode of the same document in Author mode?

Answer

In the toolbar of the Author mode there is a Styles drop-down menu that contains alternative CSS styles for the same
document. To add an alternative CSS stylesheet, open the Preferences dialog box , go to Document Type Association,
select the document type associated with your documents and press Edit. In the Document Type configuration dialog
box that appears, go to the Author tab, and in the CSS subtab add references to alternate CSS stylesheets.

For example, one of the alternate CSS stylesheets that we offer for the DITA document type is located here:

[OXYGEN_INSTALL_DIR]/frameworks/dita/css_classed/hideColspec.css

If you open it, you will see that it imports the main CSS and then adds selectors of its own.

Obtain a DOM Element from an AuthorNode or AuthorElement

Question

Can a DOM Element be obtained from an AuthorNode or an AuthorElement?

Answer

No, a DOM Element cannot be obtained from an AuthorNode or an AuthorElement. The AuthorNode structure
is also hierarchical but the difference is that all the text content is kept in a single text buffer instead of having individual
text nodes.

We have an image in the Javadoc documentation that explains this situation:
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html

Oxygen XML Editor plugin | Author Mode Customization | 1048

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReviewController.html#setReviewerAuthorName(java.lang.String)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html

Print Document Within the Oxygen XML Author Component

Question

Can a document be printed within the Oxygen XML Author Component?

Answer

You can use the following API method to either print the document content to the printer or to show the Print Preview
dialog box, depending on the preview parameter value:

AuthorComponentProvider.print(boolean preview)

Here is the online Javadoc for this method:
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AuthorComponentProvider.html#print(boolean)

Running XSLT or XQuery Transformations

Question

Can I run XSL 2.0 / 3.0 transformation with Saxon EE using the oXygen SDK?

Answer

The API class ro.sync.exml.workspace.api.util.XMLUtilAccess allows you to create an XSLT
Transformer that implements the JAXP interface javax.xml.transform.Transformer. Then this type of
transformer can be used to transform XML. Here's just an example of transforming when you have an AuthorAccess
API available:

 InputSource is = new org.xml.sax.InputSource(URLUtil.correct(new File("test/personal.xsl")).toString());
 xslSrc = new SAXSource(is);
 javax.xml.transform.Transformer transformer = authorAccess.getXMLUtilAccess().createXSLTTransformer(xslSrc,
null, AuthorXMLUtilAccess.TRANSFORMER_SAXON_ENTERPRISE_EDITION);
 transformer.transform(new StreamSource(new File("test/personal.xml")), new StreamResult(new
File("test/personal.html")));

If you want to create the transformer from the plugins side, you can use this method instead:
ro.sync.exml.workspace.api.PluginWorkspace.getXMLUtilAccess().

Use Custom Rendering Styles for Entity References, Comments, or Processing Instructions

Question

Is there a way to display entity references in the Author mode without the distinct gray background and tag markers?

Answer

There is a built-in CSS stylesheet in the Oxygen XML Editor plugin libraries that is used when styling content in the
Author mode, no matter what CSS you use. This CSS has the following content:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');
@namespace xi "http://www.w3.org/2001/XInclude";
@namespace xlink "http://www.w3.org/1999/xlink";
@namespace svg "http://www.w3.org/2000/svg";
@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {
display:block !important;

}

oxy|cdata {
display:morph !important;
white-space:pre-wrap !important;
border-width:0px !important;
margin:0px !important;
padding: 0px !important;

Oxygen XML Editor plugin | Author Mode Customization | 1049

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AuthorComponentProvider.html#print(boolean)

}

oxy|processing-instruction {
display:block !important;
color: rgb(139, 38, 201) !important;
white-space:pre-wrap !important;
border-width:0px !important;
margin:0px !important;
padding: 0px !important;

}

oxy|comment {
display:morph !important;
color: rgb(0, 100, 0) !important;
background-color:rgb(255, 255, 210) !important;
white-space:pre-wrap !important;
border-width:0px !important;
margin:0px !important;
padding: 0px !important;

}

oxy|reference:before,
oxy|entity[href]:before{
 link: attr(href) !important;

text-decoration: underline !important;
color: navy !important;

margin: 2px !important;
padding: 0px !important;

}

oxy|reference:before {
display: morph !important;
content: url(../images/editContent.gif) !important;

}

oxy|entity[href]:before{
display: morph !important;
content: url(../images/editContent.gif) !important;

}

oxy|reference,
oxy|entity {
 editable:false !important;

background-color: rgb(240, 240, 240) !important;
margin:0px !important;
padding: 0px !important;

}

oxy|reference {
display:morph !important;

}

oxy|entity {
display:morph !important;

}

oxy|entity[href] {
border: 1px solid rgb(175, 175, 175) !important;
padding: 0.2em !important;

}

xi|include {
display:block !important;
margin-bottom: 0.5em !important;
padding: 2px !important;

}
xi|include:before,
xi|include:after{

display:inline !important;
background-color:inherit !important;
color:#444444 !important;
font-weight:bold !important;

}

xi|include:before {
content:url(../images/link.gif) attr(href) !important;

 link: attr(href) !important;
}
xi|include[xpointer]:before {

content:url(../images/link.gif) attr(href) " " attr(xpointer) !important;
 link: oxy_concat(attr(href), "#", attr(xpointer)) !important;
}

xi|fallback {
display:morph !important;
margin: 2px !important;
border: 1px solid #CB0039 !important;

}

Oxygen XML Editor plugin | Author Mode Customization | 1050

xi|fallback:before {
display:morph !important;
content:"XInclude fallback: " !important;
color:#CB0039 !important;

}

oxy|doctype {
display:block !important;
background-color: transparent !important;
color:blue !important;
border-width:0px !important;
margin:0px !important;
padding: 2px !important;

}

oxy|error {
display:morph !important;

 editable:false !important;
white-space:pre !important;
color: rgb(178, 0, 0) !important;
font-weight:bold !important;

}

*[xlink|href]:before {
content:url(../images/link.gif);

 link: attr(xlink|href) !important;
}

/*No direct display of the MathML and SVG images.*/
svg|svg{
display:inline !important;

white-space: trim-when-ws-only;
}
svg|svg svg|*{

display:none !important;
white-space:normal;

}

mml|math{
display:inline !important;

white-space: trim-when-ws-only;
}
mml|math mml|*{

display:none !important;
white-space: normal;

}

In the CSS used for rendering the XML in Author mode, do the following:

1. Import the special Author mode namespace.
2. Use a special selector to customize the entity node.

Example:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');
oxy|entity {

background-color: inherit !important;
margin:0px !important;
padding: 0px !important;

 -oxy-display-tags:none;
}

You can overwrite styles in the predefined CSS to customize style comments, processing instructions, and CData
sections. You can also customize the way xi:include elements are rendered.

Insert an Element with all the Required Content

Question

I am inserting a DITA image XML element using the API that points to a certain resource and has required content. Can
the required content be automatically inserted by the application?

Answer

The API ro.sync.ecss.extensions.api.AuthorSchemaManager can propose valid elements that can be
inserted at the specific offset. Using the method

Oxygen XML Editor plugin | Author Mode Customization | 1051

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaManager.html

AuthorSchemaManager.createAuthorDocumentFragment(CIElement), you can convert the proposed
elements to document fragments (which have all the required content filled in) that can then be inserted in the document.

AuthorSchemaManager schemaManager = this.authorAccess.getDocumentController().getAuthorSchemaManager();
WhatElementsCanGoHereContext context =
schemaManager.createWhatElementsCanGoHereContext(this.authorAccess.getEditorAccess().getCaretOffset());
List<CIElement> possibleElementsAtCaretPosition = schemaManager.whatElementsCanGoHere(context);
loop: for (int i = 0; i < possibleElementsAtCaretPosition.size(); i++) {
 CIElement possibleElement = possibleElementsAtCaretPosition.get(i);
 List<CIAttribute> attrs = possibleElement.getAttributes();

if(attrs != null) {
for (int j = 0; j < attrs.size(); j++) {

 CIAttribute ciAttribute = attrs.get(j);
if (ciAttribute.getName().equals("class")) {

if (ciAttribute.getDefaultValue() != null
 && ciAttribute.getDefaultValue().contains(" topic/image ")) {

//Found a CIElement for image
//Create a fragment for it. The fragment contains all required child elements already built.

 AuthorDocumentFragment frag = schemaManager.createAuthorDocumentFragment(possibleElement);
//Now set the @href to it.
//Ask the user and obtain a value for the @href
//Then:

 String href = "test.png";
 List<AuthorNode> nodes = frag.getContentNodes();

if(!nodes.isEmpty()) {
 AuthorElement imageEl = (AuthorElement) nodes.get(0);
 imageEl.setAttribute("href", new AttrValue(href));
 }

//And insert the fragment.

this.authorAccess.getDocumentController().insertFragment(this.authorAccess.getEditorAccess().getCaretOffset(),
 frag);

break loop;
 }
 }
 }
 }
}

Related information
AuthorDocumentFragment Class

Obtain the Current Selected Element Using the Author API

Question

In Author mode, if an element is fully selected, I want to perform an action on it. If not, I want to perform an action on
the node that is located at the cursor position. Is this possible via the API?

Answer

When an element is fully selected by the user the selection start and end offsets are actually outside of the node's offset
bounds. So using AuthorDocumentController.getNodeAtOffset will actually return the parent of the
selected node. We have some special API that makes it easier for you to determine this situation:
WSAuthorEditorPageBase.getFullySelectedNode().

AuthorDocumentController controller = authorPageAccess.getDocumentController();
AuthorAccess authorAccess = authorPageAccess.getAuthorAccess();
int caretOffset = authorAccess.getEditorAccess().getCaretOffset();

AuthorElement nodeAtCaret = (AuthorElement) authorAccess.getEditorAccess().getFullySelectedNode();
if (nodeAtCaret == null) {

//We have no fully selected node. We can look at the cursor offset.
 nodeAtCaret = (AuthorElement) authorAccess.getDocumentController().getNodeAtOffset(caretOffset);

//Or we could look at the selection start and end, see which node is the parent of each offset and get the
 closest common ancestor.
}

Debugging a Plugin Using the Eclipse Workbench

To debug problems in the code of the plugin without having to re-bundle the Java classes of the plugin in a JAR library,
follow these steps:

1. Download and unpack an all platforms standalone version of Oxygen XML Editor plugin.

Oxygen XML Editor plugin | Author Mode Customization | 1052

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html
http://www.oxygenxml.com//InstData/Editor/All/oxygen.tar.gz

2. Set up the oXygen SDK following this set of instructions.
3. Create an Eclipse Java Project (for example, MyPluginProject) from one of the sample plugins (the Workspace

Access plugin, for example).
4. In the MyPluginProject folder, create a folder called myPlugin. In this new folder copy the plugin.xml

from the sample plugin. Modify the added plugin.xml to add a library reference to the directory where Eclipse
copies the compiled output. To find out where this directory is located, invoke the contextual menu of the project
(in the Project view), and go to Build Path > Configure Build Path. Then inspect the value of the Default output
folder text box.

Example: If the compiled output folder is classes, then the you need to add in the plugin.xml the following
library reference:

<library name="../classes"/>

5. Copy the plugin.dtd from the [OXYGEN_INSTALL_DIR]/plugins folder in the root MyPluginProject
folder.

6. In the MyPluginProject build path add external JAR references to all the JAR libraries in the
[OXYGEN_INSTALL_DIR]/lib folder. Now your MyPluginProject should compile successfully.

7. In the Eclipse IDE, create a new Java Application configuration for debugging. Set the Main class box to
ro.sync.exml.Oxygen. Click the Arguments tab and add the following code snippet in the VM arguments
input box, making sure that the path to the plugins directory is the correct one:

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m
-XX:MaxPermSize=384m -Dcom.oxygenxml.editor.plugins.dir=D:\projects\MyPluginProject

Note: If you need to configure the plugin for , set the com.oxygenxml.app.descriptor to
ro.sync.exml.AuthorFrameDescriptor or ro.sync.exml.DeveloperFrameDescriptor,
respectively.

8. Add a break point in the source of one of your Java classes.
9. Debug the created configuration. When the code reaches your breakpoint, the debug perspective should take over.

Debugging an Oxygen SDK Extension Using the Eclipse Workbench

To debug problems in the extension code without having to bundle the extension's Java classes in a JAR library, perform
the following steps:

1. Download and unpack an all platforms standalone version of Oxygen XML Editor plugin to a folder on your hard
drive.

2. Create an Eclipse Java Project (for example, MySDKProject) with the corresponding Java sources (for example,
a custom implementation of the ro.sync.ecss.extensions.api.StylesFilter interface).

3. In the Project build path add external JAR references to all the JAR libraries in the [OXYGEN_INSTALL_DIR]/lib
folder. Now your Project should compile successfully.

4. Start the standalone version of Oxygen XML Editor plugin from the [OXYGEN_INSTALL_DIR] and in the
Document Type Association preferences page, edit the document type (for example, DITA) to open the Document
Type configuration dialog box. In the Classpath tab, add a reference to your Project's classes directory and in
the Extensions tab, select your custom StylesFilter extension as a value for the CSS styles filter property.
Close the application to save the changes to the framework file.

5. Create a new Java Application configuration for debugging. The Main Class should be ro.sync.exml.Oxygen.
The given VM Arguments should be

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m -XX:MaxPermSize=384m

6. Add a break point in one of the source Java classes.
7. Debug the created configuration. When the code reaches your breakpoint, the debug perspective should take over.

Oxygen XML Editor plugin | Author Mode Customization | 1053

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
http://www.oxygenxml.com//InstData/Editor/All/oxygen.tar.gz

Extending the Java Functionality of an Existing Framework (Document Type)

Question

How can I change the way a DocBook 4 xref displays in Author mode based on what element is at the linkend?

Follow these steps:

1. Create a Maven Java project and add a dependency on the Oxygen XML Editor plugin classes:

<dependency>
<groupId>com.oxygenxml</groupId>
<artifactId>oxygen-sdk</artifactId>
<version>${oxygen.version}</version>

</dependency>

where ${oxygen.version} is the version of Oxygen XML Editor plugin.

Alternatively, if the project does not use Maven, all the transitive dependencies of the above Maven artifact need to
be added to the classpath of the project.

2. Also add the [OXYGEN_INSTALL_DIR]\frameworks\docbook\docbook.jar to the class path of the
project.

3. Create a class that extends ro.sync.ecss.extensions.docbook.DocBook4ExtensionsBundle and
overwrites the method:
ro.sync.ecss.extensions.api.ExtensionsBundle#createLinkTextResolver()

4. For your custom resolver implementation you can start from the Java sources of the
ro.sync.ecss.extensions.docbook.link.DocbookLinkTextResolver (the Java code for the
entire DocBook customization is present in a subfolder in the oXygen SDK).

5. Pack your extension classes in a JAR file. Copy the JAR to:
[OXYGEN_INSTALL_DIR]\frameworks\docbook\custom.jar.

6. Start Oxygen XML Editor plugin.
7. Open the Preferences dialog box and go to Document Type Association. Edit the DocBook 4 document type. In

the Classpath list add the path to the new JAR. In the extensions list select your custom extension instead of the
regular DocBook one.

8. You can rename the document type and the docbook framework folder to something else (such as
custom_docbook) and share it with others.

Controlling XML Serialization in the Oxygen XML Author Component

Question

How can I force the Oxygen XML Author Component to save the XML with zero indent size and not to break the line
inside block-level elements?

Answer

Usually, in a standalone version of Oxygen XML Editor plugin, the Editor > Format and Editor > Format > XML
preferences pages allow you to control the way the XML is saved on the disk after you edit it in the Author mode.

In the editor application (Standalone or Eclipse-based), you can either bundle a default set of options or use the
PluginWorkspace.setGlobalObjectProperty(String, Object)API:

//For not breaking the line
//Long line
pluginWorkspace.setObjectProperty("editor.line.width", new Integer(100000));
//Do not break before inline elements
pluginWorkspace.setObjectProperty("editor.format.indent.inline.elements", false);

//For forcing zero indent
//Force indent settings to be controlled by us
pluginWorkspace.setObjectProperty("editor.detect.indent.on.open", false);
//Zero indent size
pluginWorkspace.setObjectProperty("editor.indent.size.v9.2", 0);

Oxygen XML Editor plugin | Author Mode Customization | 1054

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/docbook/DocBook4ExtensionsBundle.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html#createLinkTextResolver()
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/docbook/link/DocbookLinkTextResolver.html
http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

In the Oxygen XML Author Component, you can either bundle a fixed set of options, or use our Java API to set properties
that overwrite the default options:

//For not breaking the line
//Long line
AuthorComponentFactory.getInstance().setObjectProperty("editor.line.width", new Integer(100000));
//Do not break before inline elements
AuthorComponentFactory.getInstance().setObjectProperty("editor.format.indent.inline.elements", false);

//For forcing zero indent
//Force indent settings to be controlled by us
AuthorComponentFactory.getInstance().setObjectProperty("editor.detect.indent.on.open", false);
//Zero indent size
AuthorComponentFactory.getInstance().setObjectProperty("editor.indent.size.v9.2", 0);

How do I add a Customized Outline View for Editing XML Documents in Text Mode?

Suppose that you have the following XML document:

<doc startnumber="15">
<sec counter="no">

<info/>
<title>Introduction</title>

</sec>
<sec>

<title>Section title</title>
<para>Content</para>

<sec>
<title>Section title</title>

<para>Content</para>
</sec>

</sec>
<sec>

<title>Section title</title>
<para>Content</para>

</sec>
</doc>

and you want to display the XML content in a simplified Outline view like this:

doc "15"
sec Introduction
sec 15 Section title
sec 15.1 Section title
sec 16 Section title

Usually an Outline should have the following characteristics:

1. Double clicking in the Outline the corresponding XML content would get selected.
2. When the cursor moves in the opened XML document the Outline would select the proper entry.
3. When modifications occur in the document, the Outline would refresh.

A simple implementation using a Workspace Access plugin type could be something like this:

/**
 * Simple Outline for the Text mode based on executing XPaths over the text content.
 */
public class CustomWorkspaceAccessPluginExtension implements WorkspaceAccessPluginExtension {

/**
 * The custom outline list.
 */

private JList customOutlineList;

/**
 * Maps outline nodes to ranges in document
 */

private WSXMLTextNodeRange[] currentOutlineRanges;

/**
 * The current text page
 */

private WSXMLTextEditorPage currentTextPage;

/**
 * Disable CaretListener when we select from the CaretListener.
 */

private boolean enableCaretListener = true;

/**
 * @see

Oxygen XML Editor plugin | Author Mode Customization | 1055

ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension#applicationStarted(ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)

 */
@Override
public void applicationStarted(final StandalonePluginWorkspace pluginWorkspaceAccess) {

 pluginWorkspaceAccess.addViewComponentCustomizer(new ViewComponentCustomizer() {
/**

 * @see
ro.sync.exml.workspace.api.standalone.ViewComponentCustomizer#customizeView(ro.sync.exml.workspace.api.standalone.ViewInfo)

 */
@Override
public void customizeView(ViewInfo viewInfo) {

if(
//The view ID defined in the "plugin.xml"
"SampleWorkspaceAccessID".equals(viewInfo.getViewID())) {

 customOutlineList = new JList();
//Render the content in the Outline.

 customOutlineList.setCellRenderer(new DefaultListCellRenderer() {
/**

 * @see javax.swing.DefaultListCellRenderer#getListCellRendererComponent(javax.swing.JList,
java.lang.Object, int, boolean, boolean)
 */

@Override
public Component getListCellRendererComponent(JList<?> list, Object value, int index,

boolean isSelected, boolean cellHasFocus) {
 JLabel label = (JLabel) super.getListCellRendererComponent(list, value, index, isSelected,
cellHasFocus);
 String val = null;

if(value instanceof Element) {
 Element element = ((Element)value);
 val = element.getNodeName();

if(!"".equals(element.getAttribute("startnumber"))) {
 val += " " + "'" + element.getAttribute("startnumber") + "'";
 }
 NodeList titles = element.getElementsByTagName("title");

if(titles.getLength() > 0) {
 val += " \"" + titles.item(0).getTextContent() + "\"";
 }
 }
 label.setText(val);

return label;
 }
 });

//When we click a node, select it in the text page.
 customOutlineList.addMouseListener(new MouseAdapter() {

@Override
public void mouseClicked(MouseEvent e) {
if(SwingUtilities.isLeftMouseButton(e) && e.getClickCount() == 2) {

int sel = customOutlineList.getSelectedIndex();
 enableCaretListener = false;

try {

currentTextPage.select(currentTextPage.getOffsetOfLineStart(currentOutlineRanges[sel].getStartLine()) +
currentOutlineRanges[sel].getStartColumn() - 1,
 currentTextPage.getOffsetOfLineStart(currentOutlineRanges[sel].getEndLine()) +
currentOutlineRanges[sel].getEndColumn());
 } catch (BadLocationException e1) {
 e1.printStackTrace();
 }
 enableCaretListener = true;
 }
 }
 });
 viewInfo.setComponent(new JScrollPane(customOutlineList));
 viewInfo.setTitle("Custom Outline");
 }
 }
 });

 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {
/**

 * @see ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorOpened(java.net.URL)
 */

@Override
public void editorOpened(URL editorLocation) {

//An editor was opened
 WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess(editorLocation,
StandalonePluginWorkspace.MAIN_EDITING_AREA);

if(editorAccess != null) {
 WSEditorPage currentPage = editorAccess.getCurrentPage();

if(currentPage instanceof WSXMLTextEditorPage) {
//User editing in Text mode an opened XML document.
final WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage) currentPage;
//Reconfigure outline on each change.

 xmlTP.getDocument().addDocumentListener(new DocumentListener() {
@Override
public void removeUpdate(DocumentEvent e) {

 reconfigureOutline(xmlTP);

Oxygen XML Editor plugin | Author Mode Customization | 1056

 }
@Override
public void insertUpdate(DocumentEvent e) {

 reconfigureOutline(xmlTP);
 }

@Override
public void changedUpdate(DocumentEvent e) {

 reconfigureOutline(xmlTP);
 }
 });
 JTextArea textComponent = (JTextArea) xmlTP.getTextComponent();
 textComponent.addCaretListener(new CaretListener() {

@Override
public void caretUpdate(CaretEvent e) {

if(currentOutlineRanges != null && currentTextPage != null && enableCaretListener) {
 enableCaretListener = false;

//Find the node to select in the outline.
try {
int line = xmlTP.getLineOfOffset(e.getDot());
for (int i = currentOutlineRanges.length - 1; i >= 0; i--) {

if(line > currentOutlineRanges[i].getStartLine() && line <
currentOutlineRanges[i].getEndLine()) {
 customOutlineList.setSelectedIndex(i);

break;
 }
 }
 } catch (BadLocationException e1) {
 e1.printStackTrace();
 }
 enableCaretListener = true;
 }
 }
 });
 }
 }
 }

/**
 * @see ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorActivated(java.net.URL)
 */

@Override
public void editorActivated(URL editorLocation) {

//An editor was selected, reconfigure the common outline
 WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess(editorLocation,
StandalonePluginWorkspace.MAIN_EDITING_AREA);

if(editorAccess != null) {
 WSEditorPage currentPage = editorAccess.getCurrentPage();

if(currentPage instanceof WSXMLTextEditorPage) {
//User editing in Text mode an opened XML document.

 WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage) currentPage;
 reconfigureOutline(xmlTP);
 }
 }
 }
 }, StandalonePluginWorkspace.MAIN_EDITING_AREA);
 }

/**
 * Reconfigure the outline
 *
 * @param xmlTP The XML Text page.
 */

protected void reconfigureOutline(final WSXMLTextEditorPage xmlTP) {
try {

//These are DOM nodes.
 Object[] evaluateXPath = xmlTP.evaluateXPath("//doc | //sec");

//These are the ranges each node takes in the document.
 currentOutlineRanges = xmlTP.findElementsByXPath("//doc | //sec");
 currentTextPage = xmlTP;
 DefaultListModel listModel = new DefaultListModel();

if(evaluateXPath != null) {
for (int i = 0; i < evaluateXPath.length; i++) {

 listModel.addElement(evaluateXPath[i]);
 }
 }
 customOutlineList.setModel(listModel);
 } catch(XPathException ex) {
 ex.printStackTrace();
 }
 }

/**
 * @see ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension#applicationClosing()
 */

@Override
public boolean applicationClosing() {
return true;

 }
}

Oxygen XML Editor plugin | Author Mode Customization | 1057

Dynamically Adding Form Controls Using a StylesFilter

Usually, a form control is added from the CSS using one of the built-in form controls. However, in some cases you do
not have all the information you need to properly initialize the form control at CSS level. In these cases you can add the
form controls by using the API, more specifically ro.sync.ecss.extensions.api.StylesFilter.

For instance, if you want a combo box form control and the values to populate the combo are specified inside a file (or
they come from a database). Here is how to add the form control from the API:

public class SDFStylesFilter implements StylesFilter {

public Styles filter(Styles styles, AuthorNode authorNode) {
if(authorNode.getType() == AuthorNode.NODE_TYPE_PSEUDO_ELEMENT

 && "before".equals(authorNode.getName())) {
 authorNode = authorNode.getParent();

if ("country".equals(authorNode.getName())) {
// This is the BEFORE pseudo element of the "country" element.
// Read the supported countries from the configuration file.

 Map<String, Object> formControlArgs = new HashMap<String, Object>();
 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDIT, "#text");
 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_TYPE, InplaceEditorArgumentKeys.TYPE_COMBOBOX);

// This will be a comma separated enumeration: France, Spain, Great Britain
 String countries = readCountriesFromFile();
 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES, countries);
 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDITABLE, "false");

// We also add a label in form of the form control.
 Map<String, Object> labelProps = new HashMap<String, Object>();
 labelProps.put("text", "Country: ");
 labelProps.put("styles", "* {width: 100px; color: gray;}");
 StaticContent[] mixedContent = new StaticContent[] {new LabelContent(labelProps), new
EditorContent(formControlArgs)};
 styles.setProperty(Styles.KEY_MIXED_CONTENT, mixedContent);
 }
 }

// The previously added form control is the only way the element can be edited.
if ("country".equals(authorNode.getName())) {

 styles.setProperty(Styles.KEY_VISIBITY, "-oxy-collapse-text");
 }

return styles;
 }
}

If the execution of the formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES,
countries); line consumes too much execution time (for example, if it connects to a database or if it needs to extract
data from a very large file), you can choose to delay it until the values are actually needed by the form control. This
approach is called lazy evaluation and can be implemented as follows:

formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES, new LazyValue<List<CIValue>>() {
public java.util.List<CIValue> get() {
// We avoid reading the possible values until they are actually requested.
// This will be a List with CIValues created over countries: France, Spain, Great Britain
return readCountriesFromFile();

 }
});

The lazy evaluation approach can be used for the following form controls properties:

• InplaceEditorArgumentKeys.PROPERTY_VALUES

• InplaceEditorArgumentKeys.PROPERTY_LABELS

• InplaceEditorArgumentKeys.PROPERTY_TOOLTIPS

The full source code for this example is available inside the oXygen SDK.

Modifying the XML Content on Open

Question

I have a bunch of DITA documents that have a fixed path the image src attributes. These paths are not valid and I am
trying to move away from this practice by converting it in to relative paths. When an XML document is opened, can I
trigger the Java API to change the fixed path to a relative path?

Oxygen XML Editor plugin | Author Mode Customization | 1058

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

Answer

The Plugins SDK: http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins contains a sample Plugin Type
called WorkspaceAccess. Such a plugin is notified when the application starts and it can do what you want in a couple
of ways:

1. Add a listener that notifies you when the user opens an XML document. Then if the XML document is opened in
the Author visual editing mode you can use our Author API to change attributes:

 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {
/**

 * @see ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorOpened(java.net.URL)
 */

@Override
public void editorOpened(URL editorLocation) {

 WSEditor openedEditor =
pluginWorkspaceAccess.getCurrentEditorAccess(StandalonePluginWorkspace.MAIN_EDITING_AREA);

if(openedEditor.getCurrentPage() instanceof WSAuthorEditorPage) {
 WSAuthorEditorPage authPage = (WSAuthorEditorPage) openedEditor.getCurrentPage();
 AuthorDocumentController docController = authPage.getDocumentController();

try {
//All changes will be undone by pressing Undo once.

 docController.beginCompoundEdit();
 fixupImageRefs(docController,
 docController.getAuthorDocumentNode());
 } finally {
 docController.endCompoundEdit();
 }
 }
 }

private void fixupImageRefs(AuthorDocumentController docController, AuthorNode authorNode) {
if(authorNode instanceof AuthorParentNode) {

//Recurse
 List<AuthorNode> contentNodes = ((AuthorParentNode)authorNode).getContentNodes();

if(contentNodes != null) {
for (int i = 0; i < contentNodes.size(); i++) {

 fixupImageRefs(docController, contentNodes.get(i));
 }
 }
 }

if(authorNode.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement elem = (AuthorElement) authorNode;

if("image".equals(elem.getLocalName())) {
if(elem.getAttribute("href") != null) {

 String originalHref = elem.getAttribute("href").getValue();
 URL currentLocation = docController.getAuthorDocumentNode().getXMLBaseURL();

//TODO here you compute the new href.
 String newHref = null;
 docController.setAttribute("href", new AttrValue(newHref), elem);
 }
 }
 }
 }
 },
 StandalonePluginWorkspace.MAIN_EDITING_AREA);

2. An API to open XML documents in the application:

ro.sync.exml.workspace.api.Workspace.open(URL)

So you can create up a plugin that automatically opens one by one XML documents from a certain folder in the
application, makes modifications to them, saves the content by calling:

ro.sync.exml.workspace.api.editor.WSEditorBase.save()

and then closes the editor:

ro.sync.exml.workspace.api.Workspace.close(URL)

Modifying the XML Content on Save

Question

Is it possible to get Oxygen XML Editor plugin to update the revised date on a DITA document when it's saved?

Oxygen XML Editor plugin | Author Mode Customization | 1059

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

Answer

The Plugins SDK: http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins contains a sample Plugin Type
called WorkspaceAccess.Such a plugin is notified when the application starts.

You can add a listener that notifies you before the user saves an XML document. Then if the XML document is opened
in the Author visual editing mode you can use our Author API to change attributes before the save takes place:

@Override
public void applicationStarted(final StandalonePluginWorkspace pluginWorkspaceAccess) {

 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener(){
//An editor was opened
@Override
public void editorOpened(URL editorLocation) {
final WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess(editorLocation,

PluginWorkspace.MAIN_EDITING_AREA);
if(editorAccess != null){

 editorAccess.addEditorListener(new ro.sync.exml.workspace.api.listeners.WSEditorListener(){
//Editor is about to be saved
@Override
public boolean editorAboutToBeSavedVeto(int operationType) {

if(EditorPageConstants.PAGE_AUTHOR.equals(editorAccess.getCurrentPageID())){
 WSAuthorEditorPage authorPage = (WSAuthorEditorPage) editorAccess.getCurrentPage();
 AuthorDocumentController controller = authorPage.getDocumentController();

try {
//Find the revised element

 AuthorNode[] nodes = controller.findNodesByXPath("//revised", true, true, true);
if(nodes != null && nodes.length > 0){

 AuthorElement revised = (AuthorElement) nodes[0];
//Set the modified attribute to it...

 controller.setAttribute("modified", new AttrValue(new Date().toString()), revised);
 }
 } catch (AuthorOperationException e) {
 e.printStackTrace();
 }
 }

//And let the save continue..
return true;

 }
 });
 }
 }
 }, PluginWorkspace.MAIN_EDITING_AREA);
 }

Save a New Document with a Predefined File Name Pattern

Question

Is it possible to get Oxygen XML Editor plugin to automatically generate a file name comprising a UUID plus file
extension using the SDK?

Answer

This could be done implementing a plugin for Oxygen XML Editor plugin using the Plugins SDK:

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

There is a type of plugin called Workspace Access that can be used to add a listener to be notified before an opened
editor is saved. The implemented plugin would intercept the save events when a newly created document is untitled and
display an alternative chooser dialog box, then save the topic with the proper name.

The Java code would look like this:

private static class CustomEdListener extends WSEditorListener{
private final WSEditor editor;
private final StandalonePluginWorkspace

 pluginWorkspaceAccess;
private boolean saving = false;
public CustomEdListener(StandalonePluginWorkspace pluginWorkspaceAccess, WSEditor editor) {

this.pluginWorkspaceAccess = pluginWorkspaceAccess;
this.editor = editor;

 }
@Override
public boolean editorAboutToBeSavedVeto(int operationType) {

if(! saving &&
 editor.getEditorLocation().toString().contains("Untitled")) {

Oxygen XML Editor plugin | Author Mode Customization | 1060

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

 File chosenDir = pluginWorkspaceAccess.chooseDirectory();
if(chosenDir != null) {
final File chosenFile = new File(chosenDir, UUID.randomUUID().toString() + ".dita");

 SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
try {

 saving = true;
 editor.saveAs(new URL(chosenFile.toURI().toASCIIString()));
 } catch (MalformedURLException e) {
 e.printStackTrace();
 } finally {
 saving = false;
 }
 }
 });
 }

//Reject the original save request.
return false;

 }
return true;

 }
 }

@Override
public void applicationStarted(final StandalonePluginWorkspace pluginWorkspaceAccess) {

 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {
@Override
public void editorOpened(URL editorLocation) {

final WSEditor editor = pluginWorkspaceAccess.getEditorAccess(editorLocation,
PluginWorkspace.MAIN_EDITING_AREA);

if(editor != null && editor.getEditorLocation().toString().contains("Untitled")) {

//Untitled editor
 editor.addEditorListener(new CustomEdListener(pluginWorkspaceAccess, editor));
 }
 }
 },
 PluginWorkspace.MAIN_EDITING_AREA);
..

Auto-Generate an ID When a Document is Opened or Created

Question

Is it possible to configure how the application generates ids? For project compliance we need ids having a certain format
for each created topic.

Answer

This could be done implementing a plugin for Oxygen XML Editor plugin using the Plugins SDK:

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

There is a type of plugin called "Workspace Access" that can be used to add a listener to be notified when an editor is
opened.

The implemented plugin would intercept the opened editor and editor page change events (which occur when a new
editor is created) and generate a new ID attribute value on the root element.

The Java code would look like this:

 pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {
/**

 * @see ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorOpened(java.net.URL)
 */

@Override
public void editorOpened(URL editorLocation) {

 WSEditor ed = pluginWorkspaceAccess.getEditorAccess(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);

 generateID(ed);
 }

/**
 * @see ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorPageChanged(java.net.URL)
 */

@Override
public void editorPageChanged(URL editorLocation) {

 WSEditor ed = pluginWorkspaceAccess.getEditorAccess(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);

Oxygen XML Editor plugin | Author Mode Customization | 1061

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

 generateID(ed);
 }

private void generateID(WSEditor ed) {
if(ed.getCurrentPage() instanceof WSAuthorEditorPage) {

 WSAuthorEditorPage authorEditPage = (WSAuthorEditorPage) ed.getCurrentPage();
 AuthorDocumentController ctrl = authorEditPage.getDocumentController();
 AuthorElement root = ctrl.getAuthorDocumentNode().getRootElement();

if(root.getAttribute("id") == null || !root.getAttribute("id").getValue().startsWith("generated_"))
{
 ctrl.setAttribute("id", new AttrValue("generated_" + Math.random()), root);
 }
 }
 }

 }, PluginWorkspace.MAIN_EDITING_AREA);

Use a Custom View with the Oxygen XML Editor plugin Distribution

Question

Is it possible to create a custom view in Eclipse that can insert certain XML fragments in the documents opened with
the Oxygen XML Editor plugin?

Answer

Here you can find more information about the Eclipse part of the oXygen SDK:

http://www.oxygenxml.com/oxygen_sdk.html#oXygen_Eclipse_plugin

Use the provided Oxygen XML Editor plugin sample project as a starting point. From any custom view/component you
can have singleton access to the using the
ro.sync.exml.workspace.api.PluginWorkspaceProvider.getPluginWorkspace()API.

The Java code for inserting a certain XML fragment in the currently open editor (either in the Text or Author editing
modes) would look like this:

 WSEditor currentEditorAccess =
PluginWorkspaceProvider.getPluginWorkspace().getCurrentEditorAccess(PluginWorkspace.MAIN_EDITING_AREA);

if(currentEditorAccess.getCurrentPage() instanceof WSXMLTextEditorPage) {
//Editor opened in Text page

 WSXMLTextEditorPage tp = (WSXMLTextEditorPage) currentEditorAccess.getCurrentPage();
//You can access an API to insert text in the XML content

// tp.getDocument().insertString(tp.getCaretOffset(), "<testTag/>", null);
//This is the internal StyledText implementation

// tp.getTextComponent()
//You can use this XPath API to find the range of an XML element.

// tp.findElementsByXPath(xpathExpression)
 } else if(currentEditorAccess.getCurrentPage() instanceof WSAuthorEditorPage) {

//Editor opened in Author page
// try {
 WSAuthorEditorPage authPage = (WSAuthorEditorPage) currentEditorAccess.getCurrentPage();

//Then you can do stuff like this to insert XML at cursor position
// authPage.getDocumentController().insertXMLFragment("<testTag/>", authPage.getCaretOffset());
// } catch (AuthorOperationException e) {
// // TODO Auto-generated catch block
// e.printStackTrace();
// }
 }

http://www.oxygenxml.com/oxygen_sdk.html#oXygen_Eclipse_plugin

Chapter

16

Extending Oxygen XML Editor plugin Using the SDK

This chapter includes information about the available extension points for
Eclipse.

Topics:

• Extension points for Oxygen XML
Editor plugin This chapter includes information about the available extension points for

Eclipse.

Extension points for Oxygen XML Editor plugin
The Oxygen XML Editor plugin includes a number of extension points, which can be implemented by other Eclipse
plugins that depend on it. All of them are listed in the plugin.xml file, along with samples of usage code. The
following is a list with short descriptions for some of the most useful extension points:

Extension point: ditaKeyDefinitionManager

It can be used to provide an external keys manager, responsible of providing DITA keys that are then used for editing
and resolving referenced content. Its EXSD schema can be found in:
OXYGEN_PLUGIN_DIR/exsd-schema/ditaKeyDefinitionManager.exsd.

Extension point: actionBarContributorCustomizer

A very useful extension point that can add or remove actions from various menus, contextual menus, and toolbars that
are contributed by the Oxygen XML Editor plugin. Its EXSD schema can be found in:
OXYGEN_PLUGIN_DIR/exsd-schema/actionBarContributorCustomizer.exsd.

Extension point: customEditorInputCreator

Create your custom editor input for a certain resource that will be opened by the Oxygen XML Editor plugin when
clicking links. Its EXSD schema can be found in:
OXYGEN_PLUGIN_DIR/exsd-schema/customEditorInputCreator.exsd.

Extension point: editorAdapterContributor

When an adapter is requested to the opened XML editor you can provide your custom adapter from your external plugin.
Its EXSD schema can be found in: OXYGEN_PLUGIN_DIR/exsd-schema/editorAdapterContributor.exsd.

Extension point: extensionsBundleContributor

Provide your own ExtensionsBundle implementation for a certain opened XML resource. Its EXSD schema can
be found in: OXYGEN_PLUGIN_DIR/exsd-schema/extensionsBundleContributor.exsd.

Extension point: stylesFilterContributor

Provide your own StylesFilter implementation for special visual rendering when an XML resource is opened in
the Author editing mode. Its EXSD schema can be found in:
OXYGEN_PLUGIN_DIR/exsd-schema/stylesFilterContributor.exsd.

Extension point: XMLRefactoringContributor

Contribute a folder that contains the additional XML Refactoring operation descriptor files and XQuery scripts that can
be used by the batch XML refactoring actions. Its EXSD schema can be found in:
OXYGEN_PLUGIN_DIR/exsd-schema/xmlRefactoringContributor.exsd.

Extension point: AuthorStylesheet

Use this extension point to provide a stylesheet layer that will be used when rendering any XML document in Author
mode. Its EXSD schema can be found in:
OXYGEN_PLUGIN_DIR/exsd-schema/authorStylesheetContributor.exsd.

Chapter

17

Tools

This chapter presents the various tools that are included in Oxygen XML Editor
plugin.

Topics:

• Refactoring XML Documents
Oxygen XML Editor plugin includes a variety of helpful tools to help you
accomplish XML-related tasks. This section presents many of those tools.

• Generating Sample XML Files
• Converting Schema to Another

Schema Language
• Converting Database to XML

Schema
• XML to JSON Converter
• Generate Documentation
• Canonicalizing Files
• Signing Files
• Verifying Signature
• WSDL SOAP Analyzer
• XML Schema Regular

Expressions Builder

Refactoring XML Documents
In the life cycle of XML documents there are instances when the XML structure needs to be changed to accommodate
various needs. For example, when an associated schema is updated, an attribute may have been removed, or a new
element added to the structure.

These types of situations cannot be resolved with a traditional Find/Replace tool, even if the tool accepts regular
expressions. The problem becomes even more complicated if an XML document is computed or referenced from multiple
modules, since multiple resources need to be changed.

To assist you with these types of refactoring tasks, Oxygen XML Editor plugin includes a specialized XML Refactoring
tool that helps you manage the structure of your XML documents.

XML Refactoring Tool

The XML Refactoring tool is presented in the form of an easy to use wizard that is designed to reduce the time and
effort required to perform various structure management tasks. For example, you can insert, delete, or rename an attribute
in all instances of a particular element that is found in all documents within your project.

To access the tool, select the XML Refactoring action from one of the following locations:

• The XML Tools menu.
• The Refactoring submenu from the contextual menu in the Navigator view.
• The Refactoring submenu from the contextual menu in the DITA Maps Manager view.

Note: The predefined refactoring operations are also available from the Refactoring submenu in the contextual
menu of Author or Text mode. This is useful because by selecting the operations from the contextual menu,
Oxygen XML Editor plugin considers the editing context to skip directly to the wizard page of the appropriate
operation and to help you by preconfiguring some of the parameter values. For your convenience, the last 5
operations that are used also appear in the Refactoring submenu of the contextual menu in the DITA Maps
Manager.

XML Refactoring Wizard

The XML Refactoring tool includes the following wizard pages:

Oxygen XML Editor plugin | Tools | 1066

The first wizard page presents the available operations, grouped by category. To search for an operation,
you can use the filter text box at the top of the page.

Figure 499: XML Refactoring Wizard

Refactoring
operations

Oxygen XML Editor plugin | Tools | 1067

The next wizard page allows you to specify the parameters for the refactoring operation. The parameters
are specific to the type of refactoring operation that is being performed. For example, to delete an attribute
you need to specify the parent element and the qualified name of the attribute to be removed.

Figure 500: XML Refactoring 2nd Wizard Page (Delete Attribute Operation)

Configure
Operation
Parameters

The last wizard page allows you to select the set of files that represent the input of the operation. You can
select from predefined resource sets (such as the current file, your whole project, the current DITA map
hierarchy, etc.) or you can define your own set of resources by creating a working set.

Scope and
Filters

The Filters section includes the following options:

• Include files - Allows you to filter the selected resources by using a file pattern. For example, to restrict
the operation to only analyze build files you could use build*.xml for the file pattern.

• Restrict only to known XML file types - When enabled, only resources with a known XML file type
will be affected by the operation.

Figure 501: XML Refactoring - Scope and Filters Wizard Page

Oxygen XML Editor plugin | Tools | 1068

If an operation takes longer than expected you can use the Stop button in the progress bar to cancel the operation.

Note: It is recommended that you use the Preview button to review all the changes that will be made by the
refactoring operation before applying the changes.

Warning: After clicking the Finish button, the operation will be processed and Oxygen XML Editor plugin
provides no automatic means for reverting the operations. Any Undo action will only revert changes on the
current document.

Predefined Refactoring Operations

The XML Refactoring tool includes a variety of predefined operations that can be used for common refactoring tasks.
They are grouped by category in the Refactoring operations wizard page. You can also access the operations from the
Refactoring submenu in the contextual menu of Author or Text mode. The operations are also grouped by category
in this submenu. When selecting the operations from the contextual menu, Oxygen XML Editor plugin considers the
editing context to get the names and namespaces of the current element or attribute, and uses this information to
preconfigure some of the parameter values for the selected refactoring operation.

Tip: Each operation includes a link in the lower part of the wizard that opens the XML / XSLT-FO-XQuery
/ XPath preferences page where you can configure XPath options and declare namespace prefixes.

The following predefined operations are available:

Refactoring Operations for Attributes

Use this operation to change the value of an attribute or insert a new one. This operation allows
you to specify the following parameters:

Add/Change
attribute

• Parent element section

• Element - The parent element of the attribute to be changed, in the form of a local name
from any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute section

• Local name - The local name of the affected attribute.
• Namespace - The namespace of the affected attribute.
• Value - The value for the affected attribute.

• Options section

• You can choose between one of the following options for the Operation mode:

• Add the attribute in the parent elements where it is missing
• Change the value in the parent elements where the atrribute already exists
• Both

Use this operation to remove one or more attributes. This operation requires you to specify the
following parameters:

Delete attribute

• Element - The parent element of the attribute to be deleted, in the form of a local name from
any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be deleted.

Use this operation to rename an attribute. This operation requires you to specify the following
parameters:

Rename attribute

• Element - The parent element of the attribute to be renamed, in the form of a local name from
any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be renamed.

Oxygen XML Editor plugin | Tools | 1069

• New local name - The new local name of the attribute.

Use this operation to search for a text fragment inside an attribute value and change the fragment
to a new value. This operation allows you to specify the following parameters:

Replace in
attribute value

• Target attribute section

• Element - The parent element of the attribute to be modified, in the form of a local name
from any namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be modified.

• Find / Replace section

• Find - The text fragments to find. You can use Perl-like regular expressions.
• Replace with - The text fragment to replace the target with. This parameter can bind regular

expression capturing groups ($1, $2, etc.) from the find pattern.

Refactoring Operations for Comments

Use this operation to delete comments from one or more elements. This operation requires you
specify the following parameter:

Delete comments

• Element - The target element (or elements) for which comments will be deleted, in the form
of a local name from any namespace, a local name with a namespace prefix, or an XPath
expression.

Note: Comments that are outside the root element will not be deleted because the serializer
preserves the content before and after the root.

Refactoring Operations for Elements

Use this operation to delete elements. This operation requires you to specify the following
parameter:

Delete element

• Element - The target element to be deleted, in the form of a local name from any namespace,
a local name with a namespace prefix, or an XPath expression.

Use this operation to delete the content of elements. This operation requires you to specify the
following parameter:

Delete element
content

• Element - The target element whose content is to be deleted, in the form of a local name from
any namespace, a local name with a namespace prefix, or an XPath expression.

Use this operation to insert new elements. This operation allows you to specify the following
parameters:

Insert element

• Element section

• Local name - The local name of the element to be inserted.
• Namespace - The namespace of the element to be inserted.

• Location section

• XPath- An XPath expression that identifies an existing element to which the new element
is relative, in the form of a local name from any namespace, a local name with a namespace
prefix, or other XPath expressions.

• Position - The position where the new element will be inserted, in relation to the specified
existing element. The possible selections in the drop-down menu are: After, Before, First
child, or Last child.

Oxygen XML Editor plugin | Tools | 1070

Use this operation to rename elements. This operation requires you to specify the following
parameters:

Rename element

• Target elements (XPath) - The target elements to be renamed, in the form of a local name
from any namespace, a local name with a namespace prefix, or other XPath expressions.

• New local name - The new local name of the element.

Use this operation to remove the surrounding tags of elements, while keeping the content unchanged.
This operation requires you to specify the following parameter:

Unwrap element

• Target elements (XPath) - The target elements whose surrounding tags will be removed, in
the form of a local name from any namespace, a local name with a namespace prefix, or other
XPath expressions.

Use this operation to surround elements with element tags. This operation allows you to specify
the following parameters:

Wrap element

• Target elements (XPath) - The target elements to be surrounded with tags, in the form of a
local name from any namespace, a local name with a namespace prefix, or other XPath
expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element.
• Namespace - The namespace of the Wrapper element.

Use this operation to surround the content of elements with element tags. This operation allows
you to specify the following parameters:

Wrap element
content

• Target elements (XPath) - The target elements whose content will be surrounded with tags,
in the form of a local name from any namespace, a local name with a namespace prefix, or
other XPath expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element that will surround the content of the
target.

• Namespace - The namespace of the Wrapper element that will surround the content of the
target.

Refactoring Operations for Fragments

Use this operation to insert an XML fragment. This operation allows you to specify the
following:

Insert XML fragment

• XML Fragment - The XML fragment to be inserted.
• Location section

• XPath - An XPath expression that identifies an existing element to which the inserted
fragment is relative, in the form of a local name from any namespace, a local name
with a namespace prefix, or other XPath expressions.

• Position - The position where the fragment will be inserted, in relation to the specified
existing element. The possible selections in the drop-down menu are: After, Before,
First child, or Last child.

Use this operation to replace the content of elements with an XML fragment. This operation
allows you to specify the following parameters:

Replace element
content with XML
fragment

• Target elements (XPath) - The target elements whose content will be replaced, in the
form of a local name from any namespace, a local name with a namespace prefix, or
other XPath expressions.

Oxygen XML Editor plugin | Tools | 1071

• XML Fragment - The XML fragment with which to replace the content of the target
element.

Use this operation to replace elements with an XML fragment. This operation allows you to
specify the following parameters:

Replace element with
XML fragment

• Target elements (XPath) - The target elements to be replaced, in the form of a local
name from any namespace, a local name with a namespace prefix, or other XPath
expressions.

• XML Fragment - The XML fragment with which to replace the target element.

Additional Notes

Note: There are some operations that allow <ANY> for the local name and namespace parameters. This value
can be used to select an element or attribute regardless of its local name or namespace. Also, the
<NO_NAMESPACE> value can be used to select nodes that do not belong to a namespace.

Note: Some operations have parameters that accept XPath expressions to match elements or attributes. In these
XPath expressions you can only use the prefixes declared in the Options > Preferences > XML >
XSLT-FO-XQUERY > XPath page. This preferences page can be easily opened by clicking the link in the note
(Each prefix used in an XPath expression must be declared in the Default prefix-namespace mappings
section) at the bottom of the Configure Operation Parameters wizard page.

Custom Refactoring Operations

While Oxygen XML Editor plugin includes a variety of predefined XML refactoring operations to help you accomplish
particular tasks, you can also create custom operations according to your specific needs. For example, you could create
a custom refactoring operation to convert an attribute to an element and insert the element as the first child of the parent
element.

An XML Refactoring operation is defined as a pair of resources:

• An XQuery Update script or XSLT stylesheet that Oxygen XML Editor plugin will run to refactor the XML files.
• An XML Operation Descriptor file that contains information about the operation (such as the name, description, and

parameters).

Oxygen XML Editor plugin | Tools | 1072

Figure 502: Diagram of an XML Refactoring Operation

All the defined custom operations are loaded by the XML Refactoring Tool and presented in the Refactoring Operations
wizard page, along with the predefined built-in operations.

After the user chooses an operation and specifies its parameters, Oxygen XML Editor plugin processes an XQuery
Update or XSLT transformation over the input file. This transformation is executed in a safe mode, which implies the
following:

• When loading the document:

• The XInclude mechanism is disabled. This means that the resources included by using XInclude will not be visible
in the transformation.

• The DTD entities will be processed without being expanded.
• The associated DTD will be not loaded, so the default attributes declared in the DTD will not be visible in the

transformation.

• When saving the updated XML document:

• The DOCTYPE will be preserved.
• The DTD entities will be preserved as they are in the original document when the document is saved.
• The attribute values will be kept in their original form without being normalized.
• The spaces between attributes are preserved. Basically, the spaces are lost by a regular XML serialization since

they are not considered important.

The result of this transformation overrides the initial input file.

Note: To achieve some of the previous goals, the XML Refactoring mechanism adds several attributes that are
interpreted internally. The attributes belong to the
http://oxygenxml.com/app/xml_refactory/additional_attributes namespace. These
attributes should not be taken into account when processing the input XML document since they are discarded
when the transformed document is serialized.

Oxygen XML Editor plugin | Tools | 1073

Restriction: Comments or processing instructions that are in any node before or after the root element cannot
be modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be
performed on comments or processing instructions that are inside the root element.

Creating a Custom Refactoring Operation

To create a custom refactoring operation, follow these steps:

1. Create an XQuery Update script or XSLT file.
2. Create an XML Refactoring Operation Descriptor file.
3. Store both files in one of the locations that Oxygen XML Editor plugin scans when loading the custom operations.

Result: Once you run the XML Refactoring tool again, the custom operation appears in the Refactoring Operations
wizard page.

Related information
Storing and Sharing Refactoring Operations on page 402

Custom Refactoring Script

The first step in creating a custom refactoring operation is to create an XQuery Update script or XSLT stylesheet that is
needed to process the refactoring operations. The easiest way to create this script file is to use the New document wizard
to create a new XQuery or XSLT file and you can use our examples to help you with the content.

There are cases when it is necessary to add parameters in the XQuery script or XSLT stylesheet. For instance, if you
want to rename an element, you may want to declare an external parameter associated with the name of the element to
be renamed. To allow you to specify the value for these parameters, they need to be declared in the refactoring operation
descriptor file that is associated with this operation.

Note: The XQuery Update processing is disabled by default in Oxygen XML Editor plugin. Thus, if you want
to create or edit an XQuery Update script you have to enable this facility by creating an XQuery transformation
scenario and choose Saxon EE as the transformation engine. Also, you need to make sure the Enable XQuery
update option is enabled in the Saxon processor advanced options.

Note: If you are using an XSLT file, XPath expressions that are passed as parameters will automatically be
rewritten to conform with the mapping of the namespace prefixes declared in the XML /XSLT-FO-XQuery /
XPath preferences page.

The next step in creating a custom refactoring operation is to create a custom operation descriptor file.

Related information
Example of an XML Refactoring Operation on page 399

Custom Refactoring Operation Descriptor File

The second step in creating a custom refactoring operation is to create an operation descriptor file. The easiest way to
do this is to use the New document wizard and choose the XML Refactoring Operation Descriptor template.

Introduction to the Descriptor File

This file contains information (such as name, description, and id) that is necessarily when loading an XML
Refactoring operation . It also contains the path to the XQuery Update script or XSLT stylesheet that is associated with
the particular operation through the script element.

You can specify a category for your custom operations to logically group certain operations. The category element
is optional and if it is not included in the descriptor file, the default name of the category for the custom operations is
Other operations.

The descriptor file is edited and validated against the following schema:
frameworks/xml_refactoring/operation_descriptor.xsd.

Oxygen XML Editor plugin | Tools | 1074

Declaring Parameters in the Descriptor File

If the XQuery Update script or XSLT stylesheet includes parameters, they should be declared in the parameters section
of the descriptor file. All the parameters specified in this section of the descriptor file will be displayed in the XML
Refactoring tool within the Configure Operation Parameters wizard page for that particular operation.

The value of the first description element in the parameters section will be displayed at the top of the Configure
Operation Parameters wizard page.

To declare a parameter, specify the following information:

• label - This value is displayed in the user interface for the parameter.
• name - The parameter name used in the XQuery Update script or XSLT stylesheet and it should be the same as the

one declared in the script.
• type - Defines the type of the parameter and how it will be rendered. There are several types available:

• TEXT - Generic type used to specify a simple text fragment.
• XPATH - Type of parameter whose value is an XPATH expression. For this type of parameter, Oxygen XML

Editor plugin will use a text input with corresponding content completion and syntax highlighting.

Note: The value of this parameter is transferred as plain text to the XQuery Update or XSLT
transformation without being evaluated. You should evaluate the XPath expression inside the XQuery
Update script or XSLT stylesheet. For example, you could use the saxon:evaluate Saxon extension
function.

Note: A relative XPath expression is converted to an absolute XPath expression by adding // before it
(//XPathExp). This conversion is done before transferring the XPath expression to the XML refactoring
engine.

Note: When writing XPath expressions, you can only use prefixes declared in the Options > Preferences >
XML > XSLT-FO-XQUERY > XPath options page.

• NAMESPACE - Used for editing namespace values.
• REG_EXP_FIND - Used when you want to match a certain text by using Perl-like regular expressions.
• REG_EXP_REPLACE - Used along with REG_EXP_FIND to specify the replacement string.
• XML_FRAGMENT - This type is used when you want to specify an XML fragment. For this type, Oxygen XML

Editor plugin will display a text area specialized for inserting XML documents.
• NC_NAME - The parameter for NC_NAME values. It is useful when you want to specify the local part of a QName

for an element or attribute.
• BOOLEAN - Used to edit boolean parameters.
• TEXT_CHOICE - It is useful for parameters whose value should be from a list of possible values. Oxygen XML

Editor plugin renders each possible value as a radio button option.

• description - The description of the parameter. It is used by the application to display a tooltip when you hover
over the parameter.

• possibleValues - Contains the list with possible values for the parameter and you can specify the default value,
as in the following example:

<possibleValues onlyPossibleValuesAllowed="true">
<value name="before">Before</value>
<value name="after"default="true">After</value>
<value name="firstChild">First child</value>
<value name="lastChild">Last child</value>

</possibleValues>

Specialized Parameters to Match Elements or Attributes

If you want to match elements or attributes, you can use some specialized parameters, in which case Oxygen XML
Editor plugin will propose all declared elements or attributes based on the schema associated with the currently edited
file. The following specialized parameters are supported:

Oxygen XML Editor plugin | Tools | 1075

This parameter is used to match elements. For this type of parameter, the application displays
a text field where you can enter the element name or an XPath expression. The text from

elementLocation

the label attribute is displayed in the application as the label of the text field. The name
attribute is used to specify the name of the parameter from the XQuery Update script or
XSLT stylesheet. If the value of the useCurrentContext attribute is set to true, the
element name from the cursor position is used as proposed values for this parameter.

Example of an elementLocation:

<elementLocation name="elem_loc" useCurrentContext="false">
<element label="Element location">

<description>Element location description.</description>
</element>

</ ElementLocation>

This parameter is used to match attributes. For this type of parameter, the application displays
two text fields where you can enter the parent element name and the attribute name (both

attributeLocation

text fields accept XPath expressions for a finer match). The text from the label attributes
is displayed in the application as the label of the associated text fields. The name attribute
is used to specify the name of the parameter from the XQuery Update script or XSLT
stylesheet. The value of this parameter is an XPath expression that is computed by using
the values of the expression from the element and attribute text fields. For example,
if section is entered for the element and a title is entered for the attribute, the XPath
expression would be computed as //section/@title. If the value of the
useCurrentContext attribute is set to true, the element and attribute name from the
cursor position is used as proposed values for the operation parameters.

Example of an attributeLocation:

<attributeLocation name="attr_xpath" useCurrentContext="true">
<element label="Element path">

<description>Element path description.</description>
</element>
<attribute label="Attribute" >

<description>Attribute path description.</description>
</attribute>

</ AttributeLocation>

This parameter is used to specify elements by local name and namespace. For this type of
parameter, the application displays two combo boxes with elements and namespaces collected

elementParameter

from the associated schema of the currently edited file. The text from the label attribute
is displayed in the application as label of the associated combo. The name attribute is used
to specify the name of the parameter from the XQuery Update script or XSLT stylesheet.
If you specify the allowsAny attribute, the application will propose <ANY> as a possible
value for the Name and Namespace combo boxes. You can also use the
useCurrentContext attribute and if its value is set to true, the element name and
namespace from the cursor position is used as proposed values for the operation parameters.

Example of an elementParameter:

<elementParameter id="elemID">
<localName label="Name" name="element_localName" allowsAny="true"

useCurrentContext="true">
<description>The local name of the attribute's parent element.</description>

</localName>
<namespace label="Namespace" name="element_namespace" allowsAny="true">

<description>The local name of the attribute's parent element</description>

</namespace>
</elementParameter>

This parameter is used to specify attributes by local name and namespace. For this type of
parameter, the application displays two combo boxes with attributes and their namespaces

attributeParameter

collected from the associated schema of the currently edited file. The text from the label
attribute is displayed in the application as the label of the associated combo box. You can
also use the useCurrentContext attribute and if its value is set to true, the attribute

Oxygen XML Editor plugin | Tools | 1076

name and namespace from the cursor position is used as proposed values for the operation
parameters.

Note: An attributeParameter is dependant upon an elementParameter.
The list of attributes and namespaces are computed based on the selection in the
elementParameter combo boxes.

Example of an attributeParameter:

<attributeParameter dependsOn="elemID">
<localName label="Name" name="attribute_localName" useCurrentContext="true">

<description>The name of the attribute to be converted.</description>
</localName>
<namespace label="Namespace" name="attribute_namespace" allowsAny="true">

<description>The namespace of the attribute to be converted.</description>
</namespace>

</attributeParameter>

Note: All predefined operations are loaded from the [OXYGEN_INSTALL_DIR]/refactoring folder.

Related information
Example of an XML Refactoring Operation on page 399

Example of an XML Refactoring Operation

To demonstrate creating a custom operation, consider that we have a task where we need to convert an attribute into an
element and insert it inside another element. A specific example would be if you have a project with a variety of image
elements where a deprecated alt attribute was used for the description and you want to convert all instances of that
attribute into an element with the same name and insert it as the first child of the image element.

Thus, our task is to convert this attribute into an element with the same name and insert it as the first child of the image
element.

Figure 503: Example: Custom XML Refactoring Operation

A new custom XML refactoring operation requires:

• An XQuery Update script or XSLT stylesheet.
• An XML Refactoring operation descriptor file that contains the path to the XQuery Update script or XSLT stylesheet.

Oxygen XML Editor plugin | Tools | 1077

Example of an XQuery Update Script for Creating a Custom Operation to Convert an Attribute to an
Element
The XQuery Update script does the following:

• Iterates over all elements from the document that have the specified local name and namespace.
• Finds the attribute that will be converted to an element.
• Computes the QName of the new element to be inserted and inserts it as the first child of the parent element.

(:
 XQuery document used to implement 'Convert attribute to element' operation from XML Refactoring tool.
:)

declare namespace output = "http://www.w3.org/2010/xslt-xquery-serialization";
declare option output:method "xml";
declare option output:indent "no";

(: Local name of the attribute's parent element. :)
declare variable $element_localName as xs:string external;

(: Namespace of the attribute's parent element. :)
declare variable $element_namespace as xs:string external;

(: The local name of the attribute to be converted :)
declare variable $attribute_localName as xs:string external;

(: The namespace of the attribute to be converted :)
declare variable $attribute_namespace as xs:string external;

(: Local name of the new element. :)
declare variable $new_element_localName as xs:string external;

(: Namespace of the new element. :)
declare variable $new_element_namespace as xs:string external;

(: Convert attribute to element:)
for $node in //*
(: Find the attribute to convert :)
let $attribute :=
 $node/@*[local-name() = $attribute_localName and
 ($attribute_namespace = '<ANY>' or $attribute_namespace = namespace-uri())]

(: Compute the prefix for the new element to insert :)
let $prefix :=
 for $p in in-scope-prefixes($node)
 where $new_element_namespace = namespace-uri-for-prefix($p, $node)
return $p

(: Compute the qname for the new element to insert :)
let $new_element_qName :=
 if (empty($prefix) or $prefix[1] = '') then $new_element_localName
 else $prefix[1] || ':' || $new_element_localName

 where ('<ANY>' = $element_localName or local-name($node) = $element_localName) and
 ($element_namespace = '<ANY>' or $element_namespace = namespace-uri($node))

 return
 if (exists($attribute)) then
 (insert node element {QName($new_element_namespace, $new_element_qName)}
 {string($attribute)} as first into $node,
 delete node $attribute)
 else ()

Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element
The XSLT stylesheet does the following:

• Iterates over all elements from the document that have the specified local name and namespace.
• Finds the attribute that will be converted to an element.
• Adds the new element as the first child of the parent element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
exclude-result-prefixes="xs"
xmlns:xr="http://www.oxygenxml.com/ns/xmlRefactoring"
version="2.0">

 <xsl:import href="http://www.oxygenxml.com/ns/xmlRefactoring/resources/commons.xsl"/>

 <xsl:param name="element_localName" as="xs:string" required="yes"/>
 <xsl:param name="element_namespace" as="xs:string" required="yes"/>

Oxygen XML Editor plugin | Tools | 1078

 <xsl:param name="attribute_localName" as="xs:string" required="yes"/>
 <xsl:param name="attribute_namespace" as="xs:string" required="yes"/>
 <xsl:param name="new_element_localName" as="xs:string" required="yes"/>
 <xsl:param name="new_element_namespace" as="xs:string" required="yes"/>

 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="//*[xr:check-local-name($element_localName, ., true()) and
 xr:check-namespace-uri($element_namespace, .)]">

 <xsl:variable name="attributeToConvert"
select="@*[xr:check-local-name($attribute_localName, ., true()) and

 xr:check-namespace-uri($attribute_namespace, .)]"/>

 <xsl:choose>
 <xsl:when test="empty($attributeToConvert)">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy>
 <xsl:for-each select="@*[empty(. intersect $attributeToConvert)]">
 <xsl:copy-of select="."/>
 </xsl:for-each>

<!-- The new element namespace -->
 <xsl:variable name="nsURI" as="xs:string">
 <xsl:choose>
 <xsl:when test="$new_element_namespace eq $xr:NO-NAMESPACE">
 <xsl:value-of select="''"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$new_element_namespace"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:element name="{$new_element_localName}" namespace="{$nsURI}">
 <xsl:value-of select="$attributeToConvert"/>
 </xsl:element>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

Note: The XSLT stylesheet imports a module library that contains utility functions and variables. The location
of this module is resolved via an XML catalog set in the XML Refactoring framework.

Example of an Operation Descriptor File for Creating a Custom Operation to Convert an Attribute to
an Element

After you have developed the XQuery script or XSLT stylesheet, you have to create an XML Refactoring operation
descriptor. This descriptor is used by the application to load the operation details such as name, description, or parameters.

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"
id="convert-attribute-to-element"
name="Convert attribute to element">
<description>Converts the specified attribute to an element. The new element will be inserted as first child

 of the attribute's parent element.</description>
<!-- For the XSLT stylesheet option uncomment the following line and comment the line referring the XQuery

 Update script -->
<!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->
<script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>
<parameters>

<description>Specify the attribute to be converted to element.</description>
<section label="Parent element">

<elementParameter id="elemID">
<localName label="Name" name="element_localName" allowsAny="true">

<description>The local name of the attribute's parent element.</description>
</localName>
<namespace label="Namespace" name="element_namespace" allowsAny="true">

<description>The local name of the attribute's parent element</description>
</namespace>

</elementParameter>

Oxygen XML Editor plugin | Tools | 1079

</section>
<section label="Attribute">

<attributeParameter dependsOn="elemID">
<localName label="Name" name="attribute_localName">

<description>The name of the attribute to be converted.</description>
</localName>
<namespace label="Namespace" name="attribute_namespace" allowsAny="true">

<description>The namespace of the attribute to be converted.</description>
</namespace>

</attributeParameter>
</section>
<section label="New element">

<elementParameter>
<localName label="Name" name="new_element_localName">

<description>The name of the new element.</description>
</localName>
<namespace label="Namespace" name="new_element_namespace">

<description>The namespace of the new element.</description>
</namespace>

</elementParameter>
</section>

</parameters>
</refactoringOperationDescriptor>

Note: If you are using an XSLT file, the line with the script element would look like this:

<script type="XSLT" href="convert-attribute-to-element.xsl"/>

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Editor plugin when it loads the
custom operation. When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The following
image shows the parameters that can be specified in our example of the custom operation to convert an attribute to an
element:

Figure 504: Example: XML Refactoring Wizard for a Custom Operation

Storing and Sharing Refactoring Operations

Oxygen XML Editor plugin scans the following locations when looking for XML Refactoring operations to provide
flexibility:

• A refactoring folder, created inside a directory that is associated to a framework you are customizing.
• Any folder. In this case, you need to open the Preferences dialog box , go to XML > XML Refactoring, and specify

the same folder in the Load additional refactoring operations from text box.

Oxygen XML Editor plugin | Tools | 1080

• The refactoring folder from the Oxygen XML Editor plugin installation directory
([OXYGEN_INSTALL_DIR]/refactoring/).

Sharing Custom Refactoring Operations

The purpose of Oxygen XML Editor plugin scanning multiple locations for the XML Refactoring operations is to provide
more flexibility for developers who want to share the refactoring operations with the other team members. Depending
on your particular use case, you can attach the custom refactoring operations to other resources, such as frameworks or
projects.

After storing custom operations, you can share them with other users by sharing the resources.

Localizing XML Refactoring Operations

Oxygen XML Editor plugin includes localization support for the XML refactoring operations.

The translation keys for the built-in refactoring operations are located in
[OXYGEN_INSTALL_DIR]/refactoring/i18n/translation.xml.

The localization support is also available for custom refactoring operations. The following information can be translated:

• The operation name, description, and category.
• The description of the parameters element.
• The label, description, and possibleValues for each parameter.

Translated refactoring information uses the following form:

${i18n(translation_key)}

Oxygen XML Editor plugin scans the following locations to find the translation.xml files that are used to load
the translation keys:

• A refactoring/i18n folder, created inside a directory that is associated to a customized framework.
• A i18n folder, created inside a directory that is associated to a customized framework.
• An i18n folder inside any specified folder. In this case, you need to open the Preferences dialog box , go to XML >

XML Refactoring, and specify the folder in the Load additional refactoring operations from text box.
• The refactoring/i18n folder from the Oxygen XML Editor plugin installation directory

([OXYGEN_INSTALL_DIR]/refactoring/i18n).

Example of a Refactoring Operation Descriptor File with i18n Support

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://oxygenxml.com/app/xml_refactory

http://oxygenxml.com/app/xml_refactory/operation_descriptor.xsd"
xmlns="http://oxygenxml.com/app/xml_refactory" id="remove_text_content"

name="${i18n(Remove_text_content)}">
<description>${i18n(Remove_text_content_description)}</description>
<script type="XQUERY_UPDATE" href="remove_text_content.xq"/>
<parameters>

<description>${i18n(parameters_description)}</description>
<parameter label="${i18n(Element_name)}" name="element_localName" type="NC_NAME">

<description>${i18n(Element_name_descriptor)}</description>
<possibleValues>

<value default="true" name="value1">${i18n(value_1)}</value>
<value name="value2">${i18n(value_2)}</value>

</possibleValues>
</parameter>

</parameters>
</refactoringOperationDescriptor>

Oxygen XML Editor plugin | Tools | 1081

Generating Sample XML Files
Oxygen XML Editor plugin offers support to generate sample XML files both from XML schema 1.0 and XML schema
1.1, depending on the XML schema version set in XML Schema preferences page.

To generate sample XML files from an XML Schema, use the Generate Sample XML Files action from the XML
Tools menu. This action is also available in the contextual menu of the schema Design mode. The action opens the
Generate Sample XML Files dialog box that allows you to configure a variety of options for generating the files.

For more information about this tool, watch our video demonstration about generating sample XML files at
http://oxygenxml.com/demo/Generate_Sample_XML_Files.html.

The Generate Sample XML Files dialog box contains three tabs with various configurable options. Default values for
these options can be set in the Sample XML Files Generator preferences page.

Schema Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The first set of options are found in the Schema tab.

Figure 505: Generate Sample XML Files Dialog Box (Schema Tab)

This tab includes the following options:

Specifies the URL of the Schema location. You can specify the path by using the
text field, the history drop-down menu, or the browsing tools in the Browse
drop-down list.

URL

Displays the namespace of the selected schema.Namespace

After the schema is selected, this drop-down menu is populated with all root
candidates gathered from the schema. Choose the root of the output XML
documents.

Root Element

Path to the folder where the generated XML instances will be saved.Output folder

Oxygen XML Editor plugin | Tools | 1082

http://oxygenxml.com/demo/Generate_Sample_XML_Files.html

You can specify the prefix and extension for the file name that will be generated.
Generated file names have the following format: prefixN.extension, where
N represents an incremental number from 0 up to the specified Number of instances.

Filename prefix and Extension

The number of XML files to be generated.Number of instances

When checked, the first generated XML file is opened in the editor.Open first instance in editor

You can specify the Default Namespace, as well as the prefixes for the namespaces.Namespaces section

Use this button to load previously exported settings.Load settings

Use this button to save the current settings for future use.Export settings

You can click OK at any point to generate the sample XML files.

Options Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The Options tab allows you to set specific options for namespaces and elements.

Figure 506: Generate Sample XML Files Dialog Box (Options Tab)

This tab includes the following options:

Allows you to set a namespace for each element name that appears in an XML document instance.
The following prefix-to-namespace associations are available:

Namespace /
Element table

• All elements from all namespaces (<ANY> - <ANY>). This is the default setting.
• All elements from a specific namespace.
• A specific element from a specific namespace.

Oxygen XML Editor plugin | Tools | 1083

Settings subtab Displays the namespace specified in the table at the top of the dialog box.Namespace

Displays the element specified in the table at the top of the dialog box.Element

When checked, all elements are generated, including the optional ones
(having the minOccurs attribute set to 0 in the schema).

Generate optional
elements

When checked, all attributes are generated, including the optional ones
(having the use attribute set to optional in the schema).

Generate optional
attributes

Controls the content of generated attribute and element values. The following
choices are available:

Values of elements
and attributes

• None - No content is inserted.
• Default - Inserts a default value depending of data type descriptor of

the particular element or attribute. The default value can be either the
data type name or an incremental name of the attribute or element
(according to the global option from the XML Instances Generator
preferences page). Note that type restrictions are ignored when this
option is enabled. For example, if an element is of a type that restricts
an xs:string with the xs:maxLength facet to allow strings with a
maximum length of 3, the XML instance generator tool may generate
string element values longer than 3 characters.

• Random - Inserts a random value depending of data type descriptor of
the particular element or attribute.

Important: If all of the following are true, the XML Instances
Generator outputs invalid values:

• At least one of the restrictions is a regexp.
• The value generated after applying the regexp does not

match the restrictions imposed by one of the facets.

Allows you to set the preferred number of repeating elements related to
minOccurs and maxOccurs facets defined in the XML Schema.

Preferred number of
repetitions

• If the value set here is between minOccurs and maxOccurs, then
that value is used.

• If the value set here is less than minOccurs, then the minOccurs
value is used.

• If the value set here is greater than maxOccurs, then maxOccurs is
used.

If a recursion is found, this option controls the maximum allowed depth of
the same element.

Maximum recursion
level

Used for the xs:alternative element from XML Schema 1.1. The
possible strategies are:

Type alternative
strategy

• First - The first valid alternative type is always used.
• Random - A random alternative type is used.

Used for xs:choice or substitutionGroup elements. The possible
strategies are:

Choice strategy

• First - The first branch of xs:choice or the head element of
substitutionGroup is always used.

• Random - A random branch of xs:choice or a substitute element
or the head element of a substitutionGroup is used.

Oxygen XML Editor plugin | Tools | 1084

If enabled, generates the other possible choices or substitutions (for
xs:choice and substitutionGroup). These alternatives are

Generate the other
options as comments

generated inside comments groups so you can uncomment and use them
later. Use this option with care (for example, on a restricted namespace and
element) as it may generate large result files.

Allows you to add values that are used to generate the content of elements. If there are multiple
values, then the values are used in a random order.

Element values
subtab

Allows you to add values that are used to generate the content of attributes. If there are multiple
values, then the values are used in a random order.

Attribute values
subtab

Use this button to load previously exported settings.Load settings

Use this button to save the current settings for future use.Export settings

You can click OK at any point to generate the sample XML files.

Advanced Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The Advanced tab allows you to set some options in regards to output values and performance.

Figure 507: Generate Sample XML Files Dialog Box (Advanced Tab)

This tab includes the following options:

If checked, the value of an element or attribute starts with the name of that element
or attribute. For example, for an a element the generated values are: a1, a2, a3,

Use incremental attribute / element
names as default

and so on. If not checked, the value is the name of the type of that element /
attribute (for example: string, decimal, etc.)

The maximum length of string values generated for elements and attributes.Maximum length

The optional elements that exceed the specified nested level are discarded. This
option is useful for limiting deeply nested element definitions that can quickly
result in very large XML documents.

Discard optional elements after
nested level

Converting Schema to Another Schema Language

The Generate/Convert Schema tool allows you to convert a DTD or Relax NG (full or compact syntax) schema or
a set of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where perfect
equivalence is not possible due to limitations of the target language, Oxygen XML Editor plugin generates an
approximation of the source schema. Oxygen XML Editor plugin uses Trang multiple format converter to perform the
actual schema conversions.

Oxygen XML Editor plugin | Tools | 1085

http://www.thaiopensource.com/relaxng/trang.html

To use this tool, select the Generate/Convert Schema (Ctrl + Shift + BackSlash (Command + Shift + BackSlash
on OS X)) action from the XML Tools menu. This action opens the Generate/Convert Schema dialog box that allows
you to configure various options for conversion.

Figure 508: Generate/Convert Schema Dialog Box

The Generate/Convert Schema dialog box includes the following options:

Allows you to select the language of the source schema. If the conversion is based on a set of XML files,
rather than just a single XML file, select the XML Documents option and use the file selector to add
the XML files involved in the conversion.

Input
section

Allows you to select the language of the target schema.Output
section You can choose the Encoding, the maximum Line width, and the Indent

size (in number of spaces) for one level of indentation.
Options

Specifies the path for the output file that will be generated.Output file

If you deselect this option, the dialog box will remain opened after the conversion so that you can easily
continue to convert more files.

Close dialog
when
finished

If you select XML 1.0 DTD for the input, you can click this button to access more advance options to
further fine-tune the conversion. The following advanced options are available:

Advanced
options

These options apply to the source DTD:XML 1.0
DTD Input
section

• xmlns - Specifies the default namespace, that is the namespace used for unqualified
element names.

• attlist-define - Specifies how to construct the name of the definition representing an
attribute list declaration from the name of the element. The specified value must
contain exactly one percent character. This percent character is replaced by the name
of element (after colon replacement) and the result is used as the name of the definition.

• colon-replacement - Replaces colons in element names with the specified chars when
constructing the names of definitions used to represent the element declarations and
attribute list declarations in the DTD.

• any-name - Specifies the name of the definition generated for the content of elements
declared in the DTD as having a content model of ANY.

Oxygen XML Editor plugin | Tools | 1086

• element-define - Specifies how to construct the name of the definition representing
an element declaration from the name of the element. The specified value must contain
exactly one percent character. This percent character is replaced by the name of element
(after colon replacement) and the result is used as the name of the definition.

• annotation-prefix - Default values are represented using an annotation attribute
prefix:defaultValue where prefix is the specified value and is bound to
http://relaxng.org/ns/compatibility/annotations/1.0 as defined
by the RELAX NG DTD Compatibility Committee Specification. By default, the
conversion engine will use a for prefix unless that conflicts with a prefix used in the
DTD.

• inline-attlist - Instructs the application not to generate definitions for attribute list
declarations, but instead move attributes declared in attribute list declarations into the
definitions generated for element declarations. This is the default behavior when the
output language is XSD.

• strict-any - Preserves the exact semantics of ANY content models by using an explicit
choice of references to all declared elements. By default, the conversion engine uses
a wildcard that allows any element

• generate-start - Specifies whether or not the conversion engine should generate a
start element. DTD's do not indicate what elements are allowed as document elements.
The conversion engine assumes that all elements that are defined but never referenced
are allowed as document elements.

• xmlns mappings table - Each row specifies the prefix used for a namespace in the
input schema.

This section is available if you select W3C XML Schema for the output.W3C XML
Schema

• disable-abstract-elements - Disables the use of abstract elements and substitution
groups in the generated XML Schema. This can also be controlled using an annotation
attribute.

Output
section

• any-process-contents - One of the values: strict, lax, skip. Specifies the value for the
processContents attribute of any elements. The default is skip (corresponding
to RELAX NG semantics) unless the input format is DTD, in which case the default
is strict (corresponding to DTD semantics).

• any-attribute-process-contents - Specifies the value for the processContents
attribute of anyAttribute elements. The default is skip (corresponding to RELAX
NG semantics).

Converting Database to XML Schema
Oxygen XML Editor plugin includes a tool that allows you to create an XML Schema from the structure of a database.

To convert a database structure to an XML Schema, use the following procedure:

1. Select the Convert DB Structure to XML Schema action from the Tools menu.

Result: The Convert DB Structure to XML Schema dialog box is opened and your current database connections
are displayed in the Connections section.

2. If the database source is not listed, click the Configure Database Sources button to open the Data Sources preferences
page where you can configure data sources and connections.

3. In the Format for generated schema section, select one of the following formats:

• Flat schema - A flat structure that resembles a tree-like view of the database without references to elements.
• Hierarchical schema - Display the table dependencies visually, in a type of tree view where dependent tables

are shown as indented child elements in the content model. Select this option if you want to configure the database
columns of the tables to be converted.

Oxygen XML Editor plugin | Tools | 1087

4. Click Connect.

Result: The database structure is listed in the Select database tables section according to the format you chose.

5. Select the database tables that you want to be included in the XML Schema.
6. If you selected Hierarchical schema for the format, you can configure the database columns.

a. Select the database column you want to configure.
b. In the Criterion section you can choose to convert the selected database column as an Element, Attribute, or

to be Skipped in the resulting XML Schema.
c. You can also change the name of the selected database column by changing it in the Name text field.

7. Click Generate XML Schema.

Result: The database structure is converted to an XML Schema and it is opened for viewing and editing.

XML to JSON Converter
Oxygen XML Editor plugin includes a useful and simple tool for converting XML files to JSON. It can be found in the
XML Tools menu.

To convert an XML document to JSON, follow these steps:

1. Select the XML to JSON action from the XML Tools menu.
The XML to JSON dialog box is displayed:

Figure 509: XML to JSON Dialog Box

2. Choose or enter the Input URL of the XML document.

3. Choose the path of the Output file that will contain the conversion JSON result.

4. Check the Open in Editor option to open the JSON result of the conversion in the Oxygen XML Editor plugin JSON
Editor.

5. Click the Convert button.

The original XML document is now converted to a JSON document.

Oxygen XML Editor plugin | Tools | 1088

Figure 510: Example: XML to JSON Operation Result

Generate Documentation
Oxygen XML Editor plugin includes a tool for generating documentation for XSLT, XML Schema, XQuery, and WSDL
documents.

Generating Documentation for an XML Schema

Oxygen XML Editor plugin can generate detailed documentation for the components of an XML Schema in HTML,
PDF, DocBook, or other custom formats. You can select the components and the level of detail. The components are
hyperlinked in both HTML and DocBook documents.

Note: You can generate documentation for both XML Schema version 1.0 and 1.1.

To generate documentation for an XML Schema document, select XML Schema Documentation from the XML
Tools > Generate Documentation menu or from the Generate XML Schema Documentation action from the contextual
menu of the Navigator view.

Oxygen XML Editor plugin | Tools | 1089

Figure 511: XML Schema Documentation Dialog Box

The Schema URL field of the dialog box must contain the full path to the XML Schema (XSD) file for which you want
to generate documentation. The schema may be a local or a remote file. You can specify the path to the schema by
entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down
menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• PDF - The documentation is generated in PDF output format.
• DocBook - The documentation is generated in DocBook output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output. Click

the Options button to open a Custom format options dialog box where you can specify a custom stylesheet for
creating the output. There is also an option to Copy additional resources to the output folder and you can
select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate
XML files created during the documentation process by deselecting the Delete intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. You can choose to
split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output file
type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

Oxygen XML Editor plugin | Tools | 1090

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with the
xml:lang attribute set to the selected language. If you choose a primary language code (for example, en for
English), this includes all its possible variations (en-us, en-uk, etc.).

Settings Tab
When you generate documentation for an XML schema you can choose what components to include in the output and
the details to be included in the documentation.

Figure 512: Settings Tab of the XML Schema Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Global elements, Global
attributes, Local elements, Local attributes, Simple Types, Complex Types, Groups, Attribute Groups, Redefines,
Referenced schemas, Include notations.

You can choose whether or not to include the following other details:

• Diagram - Displays the diagram for each component. You can choose the image format (JPEG, PNG, SVG) to use
for the diagram section. The generated diagrams are dependent on the options from the Schema Design Properties
page.

• Diagram annotations - This option controls whether or not the annotations of the components presented in the
diagram sections are included.

• Namespace - Displays the namespace for each component.
• Location - Displays the schema location for each component.
• Type - Displays the component type if it is not an anonymous one.
• Type hierarchy - Displays the types hierarchy.
• Model - Displays the model (sequence, choice, all) presented in BNF form. The separator characters that are used

depend upon the information item used:

• xs:all - Its children will be separated by space characters.

Oxygen XML Editor plugin | Tools | 1091

• xs:sequence - Its children will be separated by comma characters.
• xs:choice - Its children will be separated by | characters.

• Children - Displays the list of component's children.
• Instance - Displays an XML instance generated based on each schema element.
• Used by - Displays the list of all the components that reference the current one. The list is sorted by component type

and name.
• Properties - Displays some of the component's properties.
• Facets - Displays the facets for each simple type
• Identity constraints - Displays the identity constraints for each element. For each constraint there are presented the

name, type (unique, key, keyref), reference attribute, selector and field(s).
• Attributes - Displays the attributes for the component. For each attribute there are presented the name, type, fixed

or default value, usage and annotation.
• Asserts - Displays the assert elements defined in a complex type. The test, XPath default namespace, and annotation

are presented for each assert.
• Annotations - Displays the annotations for the component. If you choose Escape XML Content, the XML tags are

present in the annotations.
• Source - Displays the text schema source for each component.
• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If checked, local elements and attributes are included in the documentation
index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema documentation
is generated. It is disabled by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported settings file
you can generate the same documentation from the command line interface.)

Load settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XML Schema documentation.

Related information
Customizing the PDF Output of Generated XML Schema Documentation on page 486

Generating Documentation for an XSLT Stylesheet

You can use Oxygen XML Editor plugin to generate detailed documentation in HTML format for the elements (top-level
elements whose names are in the XSLT namespace) of an XSLT stylesheet. You can select what XSLT elements to
include in the generated documentation and also the level of details to present for each of them. The elements are
hyperlinked. To generate documentation in a custom output format, you can edit the XSLT stylesheet used to generate
the documentation, or create your own stylesheet.

To open the XSLT Stylesheet Documentation dialog box, select XSLT Stylesheet Documentation from the XML
Tools > Generate Documentation menu or from the Generate Stylesheet Documentation action from the contextual
menu of the Navigator view.

Oxygen XML Editor plugin | Tools | 1092

Figure 513: XSLT Stylesheet Documentation Dialog Box

The XSL URL field of the dialog box must contain the full path to the XSL Stylesheet file you want to generate
documentation for. The stylesheet may be a local or a remote file. You can specify the path to the stylesheet by entering
it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output. Click

the Options button to open a Custom format options dialog box where you can specify a custom stylesheet for
creating the output. There is also an option to Copy additional resources to the output folder and you can
select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate
XML files created during the documentation process by deselecting the Delete intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large XSLT
stylesheets, choosing another split criterion may generate smaller output files, providing faster documentation
browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output file
type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

Settings Tab
When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include in the output
(templates, functions, global parameters, global variables, attribute sets, character maps, keys, decimal formats, output
formats, XSLT elements from referenced stylesheets) and the details to include in the documentation.

Oxygen XML Editor plugin | Tools | 1093

Figure 514: Settings Tab of the XSLT Stylesheet Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Templates, Functions,
Global parameters, Global variables, Attribute sets, Character maps, Keys, Decimal formats, Output formats,
Referenced stylesheets.

You can choose whether or not to include the following other details:

• Documentation - Shows the documentation for each XSLT element. For HTML format, the user-defined data
elements that are recognized and transformed in documentation blocks of the XSLT elements they precede, are the
ones from the following schemas:

• Oxygen XML Editor plugin built-in XSLT documentation schema.
• A subset of DocBook 5 elements. The recognized elements are: section, sect1 to sect5, emphasis,

title, ulink, programlisting, para, orderedlist, itemizedlist.
• A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul,

ol, pre, sl, sli, step, steps, li, title, xref.
• Full XHTML 1.0 support.
• XSLStyle documentation environment. XSLStyle uses DocBook or DITA languages inside its own user-defined

data elements. The supported DocBook and DITA elements are the ones mentioned above.
• Doxsl documentation framework. Supported elements are : codefrag, description, para, docContent,

documentation, parameter, function, docSchema, link, list, listitem, module, parameter,
template, attribute-set;

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre element.
You can change this behavior by using a custom format instead of the built-in HTML format and providing your
own XSLT stylesheets.

• Use comments - Controls whether or not the comments that precede an XSLT element is treated as documentation
for the element they precede. Comments that precede or succeed the xsl:stylesheet element, are treated as
documentation for the whole stylesheet. Note that comments that precede an import or include directive are not
collected as documentation for the imported/included module. Also, comments from within the body of the XSLT
elements are not collected at all.

• Namespace - Shows the namespace for named XSLT elements.
• Location - Shows the stylesheet location for each XSLT element.
• Parameters - Shows parameters of templates and functions.
• References - Shows the named XSLT elements that are referenced from within an element.

Oxygen XML Editor plugin | Tools | 1094

• Used by - Shows the list of all the XSLT elements that reference the current named element.
• Supersedes - Shows the list of all the XSLT elements that are superseded the current element.
• Overriding - Shows the list of all the XSLT elements that override the current element.
• Return type - Shows the return type of the function.
• Source - Shows the text stylesheet source for each XSLT element.
• Import precedence - Shows the computed import precedence as declared in the XSL transformation specifications.
• Generate index - Creates an index with all the XSLT elements included in the documentation.

Export settings - Save the current settings in a settings file for further use (for example, with the exported settings file
you can generate the same documentation from the command-line interface.)

Load settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XSLT documentation.

Related information
XSLT Stylesheet Documentation Support on page 419

Generating HTML Documentation for an XQuery Document

To generate HTML documentation for an XQuery document, use the XQuery Documentation dialog box. It is opened
with the XQuery Documentation action that is available from the XML Tools > Generate Documentation menu or
from the Generate XQuery Documentation action from the contextual menu of the Navigator view.

The dialog box allows you to configure a set of parameters for the process of generating the HTML documentation.

Figure 515: XQuery Documentation Dialog Box

The following options are available:

• Input - The full path to the XQuery file must be specified in one of the two fields in this section:

• URLFile - The URL of the file in which you want to generate the documentation.

Oxygen XML Editor plugin | Tools | 1095

• Folder - The directory that contains the files for which you want to generate the documentation. You can also
specify the XQuery file extensions to be searched for in the specified directory.

• Default function namespace - Optional URI for the default namespace for the submitted XQuery.
• Predefined function namespaces - Optional, engine-dependent, predefined namespaces that the submitted XQuery

refers to. They allow the conversion to generate annotation information to support the presentation component
hypertext linking (only if the predefined modules have been loaded into the local xqDoc XML repository).

• Open in Browser/System Application - Select this option if you want the result to be opened in the system application
associated with that file type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

• Output - Allows you to specify where the generated documentation is saved on disk.

Generating Documentation for WSDL Documents

You can use Oxygen XML Editor plugin to generate detailed documentation for the components of a WSDL document
in HTML format. You can select the WSDL components to include in your output and the level of details to present for
each of them. Also, the components are hyperlinked. You can also generate the documentation in a custom output format
by using a custom stylesheet.

Note: The WSDL documentation includes the XML Schema components that belong to the internal or imported
XML schemas.

To generate documentation for a WSDL document, select WSDL Documentation from the XML Tools > Generate
Documentation menu or from the Generate WSDL Documentation action from the contextual menu of the Navigator
view.

Figure 516: WSDL Documentation Dialog Box

The Input URL field of the dialog box must contain the full path to the WSDL document that you want to generate
documentation for. The WSDL document may be a local or a remote file. You can specify the path to the WSDL file
by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse
drop-down menu.

Oxygen XML Editor plugin | Tools | 1096

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output. Click

the Options button to open a Custom format options dialog box where you can specify a custom stylesheet for
creating the output. There is also an option to Copy additional resources to the output folder and you can
select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate
XML files created during the documentation process by deselecting the Delete intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large WSDL
documents, choosing a different split criterion may generate smaller output files providing a faster documentation
browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output file
type.

Note: To set the browser or system application that will be used, go to Window > Preferences > General >
Web Browser and specify it there. This will take precedence over the default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with the
xml:lang attribute set to the selected language. If you choose a primary language code (for example, en for
English), this includes all its possible variations (en-us, en-uk, etc.).

Setting Tab

When you generate documentation for a WSDL document, you can choose what components to include in the output
and the details to be included in the documentation.

Figure 517: Settings Tab of the WSDL Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following:

Oxygen XML Editor plugin | Tools | 1097

• Components

• Services - Specifies whether or not the generated documentation includes the WSDL services.
• Bindings - Specifies whether or not the generated documentation includes the WSDL bindings.
• Port Types - Specifies whether or not the generated documentation includes the WSDL port types.
• Messages - Specifies whether or not the generated documentation includes the WSDL messages.
• XML Schema Components - Specifies whether or not the generated documentation includes the XML Schema

components.

• Only global elements and types - Specifies whether or not the generated documentation includes only global
elements and types.

• Component Details

• Namespace - Presents the namespace information for WSDL or XML Schema components.
• Location - Presents the location information for each WSDL or XML Schema component.
• Used by - Presents the list of components that reference the current one.
• Documentation - Presents the component documentation. If you choose Escape XML Content, the XML tags

are presented in the documentation.
• Source - Presents the XML fragment that defines the current component.
• Instance - Generates a sample XML instance for the current component.

Note: This option applies to the XML Schema components only.

• XML Schema Diagram - Displays the diagram for each XML Schema component. You can choose the image
format (JPEG, PNG, SVG) to use for the diagram section.

• Diagram annotations - Specifies whether or not the annotations of the components presented in the diagram
sections are included.

• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If checked, local elements and attributes are included in the documentation
index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema documentation
is generated. It is disabled by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported settings file
you can generate the same documentation from the command-line interface.)

Load settings - Reloads the settings from the exported file.

Generate - Use this button to generate the WSDL documentation.

Canonicalizing Files
You can select the canonicalization algorithm to be used for a document from the dialog box that is displayed by using
the Canonicalize action that is available from the Source submenu when invoking the contextual menu in Text mode
or from the XML Tools menu.

Oxygen XML Editor plugin | Tools | 1098

Figure 518: Canonicalization Settings Dialog Box

The Canonicalize dialog box allows you to set the following options:

• Input URL - Available if the Canonicalize action was selected from the XML Tools menu. It allows you to specify
the location of the input file.

• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part
of the XML syntax). It does not look into attribute values or element content, so the namespace declarations
required to process these are not copied. This is useful if you have a signed XML document that you want
to insert into other XML documents (or you need self-signed structures that support placement within various
XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope
of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security perspective because it requires no knowledge of the data that are
to be secured to safely sign them. A problem may occur if the signed document is moved into another XML
document that has other declarations because the Inclusive Canonicalization will copy them and the signature
will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• Output - Available if the Canonicalize action was selected from the XML Tools menu. It allows you to specify the

output file path where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in the editor.

Related information
Digital Signatures Overview on page 569

Oxygen XML Editor plugin | Tools | 1099

Signing Files
You can select the type of signature to be used for documents from a signature settings dialog box. To open this dialog
box, select the Sign action from the Source submenu when invoking the contextual menu in Text mode or from the
XML Tools menu.

Figure 519: Signature Settings Dialog Box

The following options are available:

Note: If Oxygen XML Editor plugin could not find a valid certificate, a link is provided at the top of the dialog
box that opens the XML Signing Certificates preferences page where you can configure a valid certificate.

• Input - Available if the Sign action was selected from the XML Tools menu. Specifies the location of the input
URL.

• Transformation Options - See the Digital Signature Overview section for more information about these options.

• None - If selected, no canonicalization algorithm is used.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are
a part of the XML syntax). It does not look into attribute values or element content, so the namespace
declarations required to process these are not copied. This is useful if you have a signed XML document
that you want to insert into other XML documents (or you need self-signed structures that support
placement within various XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Oxygen XML Editor plugin | Tools | 1100

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope
of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security perspective because it requires no knowledge of the data that
are to be secured to safely sign them. A problem may occur if the signed document is moved into another
XML document that has other declarations because the Inclusive Canonicalization will copy them and
the signature will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.

• XPath - The XPath expression provides the fragments of the XML document to be signed.
• ID - Provides ID of the XML element to be signed.
• Envelope - If selected, the enveloped signature is used. See the Digital Signature Overview for more information.
• Detached - If selected, the detached signature is used. See the Digital Signature Overview for more information.
• Append KeyInfo - If this option is checked, the ds:KeyInfo element will be added in the signed document.
• Signature algorithm - The algorithm used for signing the document. The following options are available: RSA

with SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
• Output - Available if the Sign action was selected from the XML Tools menu. Specifies the path of the output file

where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in Oxygen XML Editor plugin.

Related tasks
Example of How to Digitally Sign XML Files or Content on page 574

Related information
Digital Signatures Overview on page 569

Verifying Signature on page 574

Verifying Signature
You can verify the signature of a file by selecting the Verify Signature action from the Source submenu when invoking
the contextual menu in Text mode or from the XML Tools menu. The Verify Signature dialog box then allows you to
specify the location of the file whose signature is verified.

If the signature is valid, a dialog box displays the name of the signer. Otherwise, an error shows details about the problem.

Related tasks
Example of How to Digitally Sign XML Files or Content on page 574

Related information
Digital Signatures Overview on page 569

Signing Files on page 572

WSDL SOAP Analyzer
After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP, it is
easy to check if the defined SOAP messages are accepted by the remote Web Services server by using the integrated
WSDL SOAP Analyzer tool (available from the toolbar or WSDL menu).

Composing a SOAP Request

WSDL SOAP Analyzer is a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL) are
accepted by a Web Services server.

Oxygen XML Editor plugin | Tools | 1101

Oxygen XML Editor plugin provides two ways of testing, one for the currently edited WSDL document and another
for the remote WSDL documents that are published on a web server. To open the WSDL SOAP Analyzer tool for the
currently edited WSDL document do one of the following:

• Click the WSDL SOAP Analyzer toolbar button.

• Use the WSDL SOAP Analyzer action from the WSDL menu.
• Go to Open with > WSDL Editor in the contextual menu of the Navigator view.

Figure 520: WSDL SOAP Analyzer View

This tool contains a SOAP analyzer and sender for Web Services Description Language file types. The analyzer fields
are as follows:

• Services - The list of services defined by the WSDL file.
• Ports - The ports for the selected service.
• Operations - The list of available operations for the selected service.
• Action URL - The script that serves the operation.
• SOAP Action - Identifies the action performed by the script.
• Version - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected port.
• Request Editor - It allows you to compose the web service request. When an action is selected, Oxygen XML Editor

plugin tries to generate as much content as possible for the SOAP request. The envelope of the SOAP request has
the correct namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/envelope/ for SOAP
1.1 or http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to change a few values for
the request to be valid. The Content Completion Assistant is available for this editor and is driven by the schema
that defines the type of the current message. While selecting various operations, Oxygen XML Editor plugin remembers
the modified request for each one. You can press the Regenerate button to overwrite your modifications for the
current request with the initial generated content.

• Attachments List - You can define a list of file URLs to be attached to the request.
• Response Area - Initially it displays an auto generated server sample response so you can have an idea about how

the response looks like. After pressing the Send button, it presents the message received from the server in response
to the Web Service request. It may show also error messages. If the response message contains attachments, Oxygen
XML Editor plugin prompts you to save them, then tries to open them with the associated system application.

• Errors List - There may be situations where the WSDL file is respecting the WSDL XML Schema, but it fails to
be valid (for example, in the case of a message that is defined by means of an element that is not found in the types
section of the WSDL). In such a case, the errors are listed here. This list is presented only when there are errors.

• Send Button - Executes the request. A status dialog box is displayed when Oxygen XML Editor plugin is connecting
to the server.

Oxygen XML Editor plugin | Tools | 1102

The testing of a WSDL file is straight-forward: click the WSDL analysis button, then select the service, the port, and
the operation. The editor generates the skeleton for the SOAP request. You can edit the request, eventually attach files
to it and send it to the server. Watch the server response in the response area. You can find more details in the Testing
Remote WSDL Files section.

Note: SOAP requests and responses are automatically validated in the WSDL SOAP Analyzer using the XML
Schemas specified in the WSDL file.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web Service
SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs and parameters.

You can open the result of a Web Service call in an editor panel using the Open button.

Testing Remote WSDL Files

To open and test a remote WSDL file the steps are the following:

1. Go to Window > Show View > Other > Oxygen XML Editor plugin > WSDL SOAP Analyzer.

2. Press the Choose WSDL button and enter the URL of the remote WSDL file.

You enter the URL:

• by typing
• by browsing the local file system
• by browsing a remote file system
• by browsing a UDDI Registry

3. Press the OK button.
This will open the WSDL SOAP Analyzer tool. In the Saved SOAP Request tab you can open directly a previously
saved Web Service SOAP Call (WSSC) file, thus skipping the analysis phase.

UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog box (menu Tools > WSDL SOAP Analyzer) opens the UDDI
Registry Browser dialog box.

Oxygen XML Editor plugin | Tools | 1103

Figure 521: UDDI Registry Browser Dialog Box

The fields of the dialog box are as follows:

• URL - Type the URL of an UDDI registry or choose one from the default list.
• Keywords - Enter the string you want to be used when searching the selected UDDI registry for available Web

services.
• Rows to fetch - The maximum number of rows to be displayed in the result list.
• Search by - You can choose to search either by company or by provided service.
• Case sensitive - When checked, the search takes into account the keyword case.
• Search - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the OK button, the UDDI Registry Browser dialog box is closed and
you are returned to the WSDL File Opener dialog box.

XML Schema Regular Expressions Builder
The XML Schema regular expressions builder allows you to test regular expressions on a fragment of text as they are
applied to an XML instance document. Start the tool by selecting XML Schema Regular Expressions Builder from
the XML Tools menu.

Oxygen XML Editor plugin | Tools | 1104

Figure 522: XML Schema Regular Expressions Builder Dialog Box

The dialog box contains the following:

Allows you to edit the regular expression to be tested and used. Content completion is available
and presents a list with all the predefined expressions. It is triggered by pressing Ctrl + Space
(Command + Space on OS X).

Regular expressions
editor

If the edited regular expression is incorrect, an error message will be displayed here. The
message contains the description and the exact location of the error. Also, clicking the quick
navigation button () highlights the error inside the regular expression.

Error display area

You can choose from several categories of predefined expressions. The selected category
influences the displayed expressions in the Available expressions table.

Category

This table includes the available regular expressions and a short description for each of them.
The set of expressions depends on the category selected in the previous Category combo

Available expressions

box. You can add an expression in the Regular expressions editor by double-clicking the
expression row in the table. You will notice that in the case of Character categories and
Block names, the expressions are also listed in complementary format.

You can choose between two options:Evaluate expression on

• Evaluate expression on each line - The edited expression will be applied on each line
in the Test area.

• Evaluate expression on all text - The edited expression will be applied on the whole
text.

Oxygen XML Editor plugin | Tools | 1105

A text editor that allows you to enter a text sample for which the regular expression will be
applied. All matches of the edited regular expression will be highlighted.

Test

After editing and testing your regular expression you can insert it in the current editor. The Insert button will become
active when an editor is opened in the background and there is an expression in the Regular expressions editor.

The regular expression builder cannot be used to insert regular expressions in the Grid mode or Schema Design mode.
Accordingly, the Insert button will be disabled if the current document is edited in these modes.

Note: Some regular expressions may indefinitely block the Java Regular Expressions engine. If the execution
of the regular expression does not end in about five seconds, the application displays a dialog box that allows
you to interrupt the operation.

Chapter

18

Common Problems

A compilation of common problems and their solutions.Topics:

This section provides a variety of common problems and their solutions.• Performance Problems
• Common Problems and Solutions

Performance Problems
This section contains solutions for some common performance problems that may appear when running Oxygen XML
Editor plugin.

Performance Issues with Large Documents

While editing large documents in Oxygen XML Editor plugin, if you see that performance slows down considerably
over time, then a possible cause is that the application needs more memory to run properly. You can increase the maximum
amount of memory available to Oxygen XML Editor plugin by setting the -vmargs and -Xmx parameters in the
command used to launch the Eclipse platform.

Attention: The maximum amount of memory should not be equal to the physical amount of memory available
on the machine because in that case the operating system and other applications will have no memory available.

External Processes

The Memory available to the built-in FOP option controls the amount of memory allocated to generate PDF output
with the built-in Apache FOP processor. If Oxygen XML Editor plugin throws an Out Of Memory error, open the
Preferences dialog box , go to XML > XSLT-FO-XQuery > FO Processors, and increase the value of the Memory
available to the built-in FOP option.

For external XSL-FO processors, XSLT processors, and external tools, the maximum value of the allocated memory is
set in the command line of the tool using the -Xmx parameter set to the Java virtual machine.

Related information
FO Processors Preferences on page 124

Custom Engines Preferences on page 127

Common Problems and Solutions
This chapter presents common problems that may appear when running the application and the solutions for these
problems.

Details to Submit in a Request for Technical Support Using the Online Form

What details should I add to my request for technical support on the online form in the product website?

When completing a request for Technical Support using the online form, include as many details as possible about your
problem. For problems where a simple explanation may not be enough for the Technical Support team to reproduce or
address the issue (such as server connection errors, unexpected delays while editing a document, an application crash,
etc.), you should generate a log file and attach it to the problem report. In the case of a crash, you should also attach the
crash report file generated by your operating system.

To generate an Oxygen XML Editor plugin log file, follow these steps:

1. Create a text file called log4j.properties in the lib folder of the installed plugin folder, with the following
content:

log4j.rootCategory= debug, R2

log4j.appender.R2=org.apache.log4j.RollingFileAppender
log4j.appender.R2.File=${user.home}/Desktop/oxygenLog/oxygen.log
log4j.appender.R2.MaxFileSize=12000KB
log4j.appender.R2.MaxBackupIndex=20
log4j.appender.R2.layout=org.apache.log4j.PatternLayout
log4j.appender.R2.layout.ConversionPattern=%r %p [%t] %c - %m%n

2. Restart the application.
3. Reproduce the error.

Oxygen XML Editor plugin | Common Problems | 1108

4. Close the application.
5. Delete the log4j.properties file because it might cause performance issues if you leave it in the lib folder.

Important: The logging mode may severely decrease the performance of the application. Therefore, please
do not forget to delete the log4j.properties file when you are done with the procedure.

The resulting log file is named oxygen#.log (for example, oxygen.log, oxygen.log.1, oxygen.log.2,
etc.) and is located in the Desktop\oxygenLog folder.

Oxygen XML Editor plugin Takes Several Minutes to Start

Problem: Some anti-virus software can cause Java applications, such as Oxygen XML Editor plugin, to start very slowly
due to scanning of compressed archives (such as the JAR libraries that all Java applications use).

Solution: The solution is to add the Oxygen XML Editor plugin folder to the list of exceptions in the anti-virus software
settings.

XSLT Debugger Is Very Slow

When I run a transformation in the XSLT Debugger perspective it is very slow. Can I increase the speed?

If the transformation produces HTML or XHTML output you should disable rendering of output in the XHTML output
view during the transformation process. To view the XHTML output result do one of the following:

• Run the transformation in the Editor perspective and make sure the Open in Browser/System Application option is
enabled.

• Run the transformation in the XSLT Debugger perspective, save the text output area to a file, and use a browser
application for viewing it (for example Firefox or Internet Explorer).

Syntax Highlight Not Available in Eclipse Plugin

I associated the .ext extension with Oxygen XML Editor plugin in Eclipse. Why does an .ext file opened with the
Oxygen XML Editor plugin plugin not have syntax highlight?

Associating an extension with Oxygen XML Editor plugin in Eclipse versions 3.6-3.8, 4.2-4.5 requires three steps:

1. Associate the .ext extension with the Oxygen XML Editor plugin plugin.

a) Open the Preferences dialog box and go to General > Editors > File Associations.
b) Add *.ext to the list of file types.
c) Select *.ext in the list by clicking it.
d) Add Oxygen XML Editor plugin to the list of Associated editors and make it the default editor.

2. Associate the .ext extension with the Oxygen XML content type.

a) Open the Preferences dialog box and go to General > Content Types.
b) Add *.ext to the File associations list for the Text > XML > Oxygen XML Editor plugin content type.

3. Press the OK button in the Eclipse preferences dialog box.

Now when an *.ext file is opened the icon of the editor and the syntax highlight should be the same as for XML files
opened with the Oxygen XML Editor plugin plugin.

Damaged File Associations on OS X

After upgrading OS X and Oxygen XML Editor plugin, it is no longer associated to the appropriate file types (such as
XML, XSL, XSD, etc.) How can I create the file associations again?

The upgrade damaged the file associations in the LaunchService Database on your OS X machine. You can rebuild the
LaunchService Database with the following procedure. This will reset all file associations and will rescan the entire file
system searching for applications that declare file associations and collecting them in a database used by Finder.

1. Find all the Oxygen XML Editor plugin installations on your hard drive.

Oxygen XML Editor plugin | Common Problems | 1109

2. Delete them by dragging them to the Trash.

3. Clear the Trash.

4. Unpack the Oxygen XML Editor plugin installation kit on your desktop.

5. Copy the contents of the archive into the folder / Applications / Oxygen.

6. Run the following command in a Terminal:

/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/LaunchServices.framework/Versions/A/Support/lsregister
 -kill -r -domain local -domain system -domain user

7. Restart Finder with the following command:

killall Finder

8. Create an XML or XSD file on your desktop.
It should have the Oxygen XML Editor plugin icon.

9. Double-click the file.

10. Accept the confirmation.

When you start Oxygen XML Editor plugin the file associations should work correctly.

Signature Verification Failed Error on Open or Edit a Resource from Documentum

When I try to open/edit a resource from Documentum, I receive the following error:

signature verification failed: certificate for All-MB.jar.checksum not signed
by a certification authority.

The problem is that the certificates from the Java Runtime Environment 1.6.0_22 or later no longer validate the signatures
of the UCF jars.

Edit the eclipse.ini file from the Eclipse directory and add the following parameter to the -vmargs:
-Drequire.signed.ucf.jars=false. For example:

-vmargs
-Xms40m
-Xmx256m
-Drequire.signed.ucf.jars=false

Compatibility Issue Between Java and Certain Graphics Card Drivers

Under certain settings, a compatibility issue can appear between Java and some graphics card drivers, which results in
the text from the editor (in Author or Text mode) being displayed garbled. If you encounter this problem, update your
graphics card driver.

Image Appears Stretched Out in the PDF Output

When publishing XML content (DITA, DocBook, etc.), images are sometimes scaled up in the PDF outputs but are
displayed perfectly in the HTML (or WebHelp) output.

PDF output from XML content is obtained by first obtaining a intermediary XML format called XSL-FO and then
applying an XSL-FO processor to it to obtain the PDF. This stretching problem is caused by the fact that all XSL-FO
processors take into account the DPI (dots-per-inch) resolution when computing the size of the rendered image.

The PDF processor that comes out of the box with the application is the open-source Apache FOP processor. Here is
what Apache FOP does when deciding the image size:

1. If the XSL-FO output contains width, height or a scale specified for the image external-graphic tag, then
these dimensions are used. This means that if in the XML (DITA, DocBook, etc.) you set explicit dimensions to the
image they will be used as such in the PDF output.

Oxygen XML Editor plugin | Common Problems | 1110

2. If there are no sizes (width, height or scale) specified on the image XML element, the processor looks at the image
resolution information available in the image content. If the image has such a resolution saved in it, the resolution
will be used and combined with the image width and height to obtain the rendered image dimensions.

3. If the image does not contain resolution information inside, Apache FOP will look at the FOP configuration file for
a default resolution. The FOP configuration file for XSLT transformations that output PDF is located in the
[OXYGEN_INSTALL_DIR]/lib/fop.xconf. DITA publishing uses the DITA Open Toolkit that has the
Apache FOP configuration file located in
[DITA_OT_DIR/plugins/org.dita.pdf2/fop/conf/fop.xconf. The configuration file contains two
XML elements called source-resolution and target-resolution. The values set to those elements can
be increased (usually a DPI value of 110 or 120 should render the image in PDF the same as in the HTML output).

The commercial RenderX XEP XSL-FO processor behaves similarly but as a fallback it uses 120 as the DPI value
instead of using a configuration file.

Tip: It is best to save your images without any DPI resolution information. For example, when saving a PNG
image in the open-source GIMP image editor, you do not want to save the resolution.

This allows you to control the image resolution from the configuration file for all referenced images.

DITA PDF Transformation Fails

To generate the PDF output, Oxygen XML Editor plugin uses the DITA Open Toolkit.

If your transformation fails you can detect some of the problems that caused the errors by running the Validate and
Check for Completeness action. Depending on the options you select when you run it, this action reports errors such
as topics referenced in other topics but not in the DITA Map, broken links, and missing external resources.

You can analyze the Results tab of the DITA transformation and search for messages that contain text similar to [fop]
[ERROR]. If you encounter this type of error message, edit the transformation scenario you are using and set the
clean.temp parameter to no and the retain.topic.fo parameter to yes. Run the transformation, go to the temporary
directory of the transformation, open the topic.fo file and go to the line indicated by the error. Depending on the
XSL FO context try to find the DITA topic that contains the text that generates the error.

If none of the above methods helps you, go to Help > About > Components > Frameworks and check what version
of the DITA Open Toolkit you are using. Copy the whole output from the DITA OT console output and either report
the problem on the DITA User List or to support@oxygenxml.com.

DITA to CHM Transformation Fails

Oxygen XML Editor plugin uses the DITA Open Toolkit and the HTML Help compiler (part of the Microsoft HTML
Help Workshop) to transform DITA content into Compiled HTML Help (or CHM in short).

It is a good practice to validate the DITA map before executing the transformation scenario. To do so, run the Validate
and Check for Completeness action. Depending on the selected options, this action reports errors, such as topics
referenced in other topics (but not in the DITA map), broken links, and missing external resources.

However, the execution of the transformation scenario may still fail. Reported errors include:

• [exec] HHC5010: Error: Cannot open "fileName.chm". Compilation stopped. - This
error occurs when the CHM output file is opened and the transformation scenario cannot rewrite its content. To solve
this issue, close the CHM help file and run the transformation scenario again.

• [exec] HHC5003: Error: Compilation failed while compiling fileName - Possible causes
of this error are:

• The processed file does not exist. Fix the file reference before executing the transformation scenario again.

Oxygen XML Editor plugin | Common Problems | 1111

• The processed file has a name that contains space characters. To solve the issue, remove any spacing from the
file name and run the transformation scenario again.

Related information
Compiled HTML Help (CHM) Output Format on page 600

DITA Map Transformation Fails (Cannot Connect to External Location)

The transformation is run as an external Ant process so you can continue using the application as the transformation
unfolds. All output from the process appears in the DITA Transformation tab.

The HTTP proxy settings are used for the Ant transformation, so if the transformation fails because it cannot connect
to an external location, you can check the Network Connections.

Topic References Outside the Main DITA Map Folder

Referencing to a DITA topic, map or to a binary resource (for example: image) that is located outside of the folder where
the main DITA map is located usually leads to problems when publishing the content using the DITA Open Toolkit.
The DITA OT does not handle it well when links to topics that are outside the directory where the published DITA map
is found. By default it does not even copy the referenced topics to the output directory.

You have the following options:

1. Create another DITA map that is located in a folder path above all referenced folders and reference from it the original
DITA map. Then transform this DITA map instead.

2. Edit the transformation scenario and in the Parameters tab edit the fix.external.refs.com.oxygenxml parameter.
This parameter is used to specify whether or not the application tries to fix such references in a temporary files folder
before the DITA Open Toolkit is invoked on the fixed references. The fix has no impact on your edited DITA content.
The allowed values are "false" and "true". The default value is false.

PDF Processing Fails to Use the DITA OT and Apache FOP

There are cases when publishing DITA content fails when creating a PDF file. This topic lists some common problems
and solutions.

• The FO processor cannot save the PDF at the specified target. The console output contains messages like this:

[fop] [ERROR] Anttask - Error rendering fo file: C:\samples\dita\temp\pdf\oxygen_dita_temp\topic.fo <Failed
to open C:\samples\dita\out\pdf\test.pdf>
Failed to open samples\dita\out\pdf\test.pdf
.............
[fop] Caused by: java.io.FileNotFoundException: C:\Users\radu_coravu\Desktop\bev\out\pdf\test.pdf
(The process cannot access the file because it is being used by another process)

Such an error message usually means that the PDF file is already opened in a PDF reader application. The solution
is to close the open PDF before running the transformation.

• One of the DITA tables contains more cells in a table row than the defined number of colspec elements. The console
output contains messages like this:

[fop] [ERROR] Anttask - Error rendering fo file:
D:\projects\eXml\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo
<net.sf.saxon.trans.XPathException: org.apache.fop.fo.ValidationException:
The column-number or number of cells in the row overflows the number of fo:table-columns specified for the
table. (See position 179:-1)>net.sf.saxon.trans.XPathException: org.apache.fop.fo.ValidationException: The
column-number or number of cells in the row overflows the number of fo:table-columns specified for the table.
 (See position 179:-1)
[fop] at org.apache.fop.tools.anttasks.FOPTaskStarter.renderInputHandler(Fop.java:657)
[fop] at net.sf.saxon.event.ContentHandlerProxy.startContent(ContentHandlerProxy.java:375)
............
[fop] D:\projects\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo ->
D:\projects\samples\dita\flowers\out\pdf\flowers.pdf

To resolve this issue, correct the colspec attribute on the table that caused the issue. To locate the table that caused
the issue:

1. Edit the transformation scenario and set the parameter clean.temp to no.

Oxygen XML Editor plugin | Common Problems | 1112

2. Run the transformation, open the topic.fo file in Oxygen XML Editor plugin, and look in it at the line specified
in the error message (See position 179:-1).

3. Look around that line in the XSL-FO file to find relevant text content that you can use (for example, with the
Find/Replace in Files action in the DITA Maps Manager view) to find the original DITA topic for which the
table was generated.

• There is a broken link in the generated XSL-FO file. The PDF is generated but contains a link that is not working.
The console output contains messages like this:

[fop] 1248 WARN [main] org.apache.fop.apps.FOUserAgent - Page 6: Unresolved ID reference
"unique_4_Connect_42_wrongID" found.

To resolve this issue:

1. Use the Validate and Check for Completeness action available in the DITA Maps Manager view to find
such problems.

2. If you publish to PDF using a DITAVAL filter, select the same DITAVAL file in the DITA Map Completeness
Check dialog box.

3. If the Validate and Check for Completeness action does not discover any issues, edit the transformation
scenario and set the clean.temp parameter to no.

4. Run the transformation, open the topic.fo file in Oxygen XML Editor plugin, and search in it for the
unique_4_Connect_42_wrongID id.

5. Look around that line in the XSL-FO file to find relevant text content that you can use (for example, with the
Find/Replace in Files action in the DITA Maps Manager view) to find the original DITA topic for which the
table was generated.

TocJS Transformation Does not Generate All Files for a Tree-Like TOC

The TocJS transformation of a DITA map does not generate all the files needed to display the tree-like table of contents.
To get a complete working set of output files you should follow these steps:

1. Run the XHTML transformation on the same DITA map. Make sure the output gets generated in the same output
folder as for the TocJS transformation.

2. Copy the content of DITA_OT_DIR/plugins/com.sophos.tocjs/basefiles folder in the transformation's
output folder.

3. Copy the DITA_OT_DIR/plugins/com.sophos.tocjs/sample/basefiles/frameset.html file
in the transformation's output folder.

4. Edit frameset.html file.

5. Locate element <frame name="contentwin" src="concepts/about.html">.

6. Replace "concepts/about.html" with "index.html".

Navigation to the web page was canceled when viewing CHM on a Network Drive

When viewing a CHM on a network drive, if you only see the TOC and an empty page displaying “Navigation to the
web page was canceled” note that this is normal behavior. The Microsoft viewer for CHM does not display the topics
for a CHM opened on a network drive.

As a workaround, copy the CHM file on your local system and view it there.

Alignment Issues of the Main Menu on Linux Systems Based on Gnome 3.x

On some Linux systems based on Gnome 3.x (Ubuntu 11.x, 12.x), the main menu of Oxygen XML Editor plugin has
alignment issues when you navigate it using your mouse.

This is a known problem caused by Java SE 6 1.6.0_32 and earlier. You can resolve this problem using the latest Java
SE 6 JRE from Oracle. To download the latest version, go to
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Oxygen XML Editor plugin | Common Problems | 1113

http://www.oracle.com/technetwork/java/javase/downloads/index.html

To bypass the JRE bundled with Oxygen XML Editor plugin, go to the installation directory of Oxygen XML Editor
plugin and rename or move the jre folder. If Oxygen XML Editor plugin does not seem to locate the system JRE,
either set the JAVA_HOME environment variable to point to the location where you have installed the JRE, or you can
simply copy that folder with the JRE to the installation directory and rename it to jre to take the place of the bundled
JRE.

JPEG CMYK Color Space Issues

JPEG images with CMYK color profile having the color profiles embedded in the image should be properly rendered
in the Author mode.

If the color profile information is missing from the JPEG image but you have the ICC file available, you can copy the
profileFileName.icc to the [OXYGEN_INSTALL_DIR]\lib directory.

If the color space profile is missing, JPEG images that have the CMYK color space are rendered without taking the
color profile into account. The Unsupported Image Type message is displayed above the image.

SVG 1.2 Rendering Issues

Oxygen XML Editor plugin uses the Apache Batik open source library to render SVG images and it only has partial
support for SVG 1.2. For more information, see http://xmlgraphics.apache.org/batik/dev/svg12.html.

This partial support could lead to some rendering issues in Oxygen XML Editor plugin. For example, if you are using
the Inkscape SVG editor, it is possible for it to save the SVG as 1.1, while using SVG 1.2 elements (such as flowRoot)
inside it. This means that the image will not be properly rendered inside the application.

Note: SVG images shown in the Author visual editing mode are rendered as static images, without support for
animations and JavaScript.

MSXML 4.0 Transformation Issues

If the latest MSXML 4.0 service pack is not installed on your computer, you are likely to encounter the following error
message in the Results panel when you run a transformation scenario that uses the MSXML 4.0 transformer.

Error Message

Could not create the 'MSXML2.DOMDocument.4.0' object.
Make sure that MSXML version 4.0 is correctly installed on the machine.

To fix this issue, go to the Microsoft website and get the latest MSXML 4.0 service pack.

Increasing the Memory for the Ant Process

For details about setting custom JVM arguments to the Ant build process see this section.

'Address Family Not Supported by Protocol Family; Connect' Error
I have experienced the following error: "Address Family Not Supported by Protocol Family; Connect".
How do I solve it?

Question:

This seems to be an IPv6 connectivity problem. By default, the Java runtime used by Oxygen XML
Editor plugin prefers to create connections via IPv6, if the support is available. However, even though
it is available in appearance, IPv6 sometimes happens to be configured incorrectly on some systems.

Solution:

A quick fix for this problem is to set the java.net.preferIPv4Stack Java property to true
(java.net.preferIPv4Stack=true).

In order to do this, follow this procedure:

Oxygen XML Editor plugin | Common Problems | 1114

http://xmlgraphics.apache.org/batik/dev/svg12.html

1. Edit the custom_commons.vmoptions file that is located in the Oxygen XML Editor plugin
installation folder, by adding the Java property java.net.preferIPv4Stack=true, and save
it in the same location.

2. Restart Oxygen XML Editor plugin.
3. Make sure the procedure was successful by going to Help > About > System properties and check

that the value of the java.net.preferIPv4Stack property is true.

Oxygen XML Editor plugin | Common Problems | 1115

Chapter

19

DITA Authoring and Publishing

This chapter is designed to be a guide to help content authors who use DITA.Topics:

DITA is an XML standard, an architectural approach, and a writing methodology,
developed by technical communicators for technical communicators. It provides

• Working with DITA Maps
• Working with DITA Topics

a standardised architectural framework for a common structure for content that
promotes the consistent creation, sharing, and re-use of content.• Working with Keys

• Reusing DITA Content
Some of the benefits of using DITA include the following:

• Linking in DITA
• Flexibility - DITA is a topic-based architecture and it offers flexibility in

content organization.
• Publishing DITA Output
• DITA Profiling / Conditional Text

• Modularity - DITA allows for content reuse that saves time and reduces
the number of modifications.

• DITA Open Toolkit Support
• DITA Specialization Support

• Structured Authoring - DITA offers a standardized, methodological
approach that helps to reduce authoring time and improve consistency.• Metadata

• Creating an Index in DITA • Single-Source Publishing - DITA provides the ability to change content in
one place and have the change propagate everywhere.• DITA 1.3 Support

• Multiple Output Formats - DITA supports multiple types of output.
• Inheritance - The DITA inheritance model makes it easy to specialize topics

or elements within topics and you only have to define how the element is
different from its immediate ancestor.

• Process Automation - DITA offers various ways to automate processes,
such as with index or glossary production, output delivery, validation, and
more.

• Specialization - DITA allows you to define your own information types and
semantic elements/attributes to suit the needs of your particular content
model.

• Multi-Lingual - DITA is a translation-friendly structure that supports
numerous languages and text encodings.

• Conditional Profiling - DITA supports conditional text processing and
profiling to filter content in the publishing stage.

This chapter is designed to be a guide to help content authors who use DITA.
It also presents the Oxygen XML Editor plugin features that are specific to
working with DITA documents and concepts.

DITA Resources
For more general information and technical details about working with DITA,
refer to the following resources:

• The DITA Specifications.
• The DITA Style Guide Best Practices for Authors.
• Various sample DITA topics and maps can be found in the

[OXYGEN_INSTALL_DIR]/samples/dita folder.

http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html

Working with DITA Maps
In the DITA standard architecture you create documents by collecting topics into maps.

DITA Maps

A DITA map organizes a set of topics into a hierarchy. In most output formats, the structure of the map becomes the
structure of the table of contents. Oxygen XML Editor plugin provides support for creating and managing DITA maps
through the DITA Maps Manager. There are also specialized types of DITA maps, such as a bookmap, which is intended
for creating the structure of a book.

Submaps

You do not have to create an entire publication using a single map. It is generally good practice to break up a large
publication into several smaller submaps that are easier to manage. You can reuse submaps in multiple publications by
including them in each of the main maps. The DITA Maps Manager provides support for easily creating and managing
submaps.

Opening a DITA Map
There are several ways to open a DITA map and you can choose to open it in the DITA Maps Manager or in the XML
editor. Use any of the following methods to open a map:

• To open a submap in its own tab in the DITA Maps Manager, simply double-click it (or right-click it and select
Open).

• To open a map in the XML editor from the DITA Maps Manager, right-click it and select Open Map in Editor.
• Drag a DITA map file from your system browser and drop it in the XML editor. This will open the map in the editor.
• To open a map in the DITA Maps Manager, you can right-click a map file in the Navigator view and select Open

in DITA Maps Manager.

Chunking DITA Maps

By default, many output types place a single topic on each output page. In some cases you may want to output multiple
topics as a single output page (also known as chunking). To support this, Oxygen XML Editor plugin provides an Edit
Properties dialog box that allows you to easily configure the attributes of a topic to control how your table of contents
and topics are rendered in the output.

Validating a Map
You should validate your maps to make sure that the individual topics are valid and that the relationships between them
are working. Oxygen XML Editor plugin provides a validation function for DITA maps that performs a comprehensive
validation of a map and its topics.

To watch a video on DITA editing , go to http://oxygenxml.com/demo/DITA_Editing.html.

DITA Maps Manager

Oxygen XML Editor plugin provides a view for managing and editing DITA maps. The DITA Maps Manager view
presents a DITA map as a table-of-contents. It allows you to navigate the topics and maps, make changes, and apply
transformation scenarios to obtain various output formats.

The DITA Maps Manager includes a variety of useful actions to help you edit and organize the structure of your DITA
maps and topics. The actions that are available and their functions depend on the type of nodes that are selected in the
DITA Maps Manager. If you select multiple sibling nodes, the result of the actions will be applied to all the selected
nodes. If you select multiple nodes that are not on the same hierarchical level, the actions will be applied to the parent
node and the child nodes will inherit certain attributes from the parent node.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1118

http://oxygenxml.com/demo/DITA_Editing.html

Figure 523: DITA Maps Manager View

Opening Maps in the DITA Maps Manager

The DITA Maps Manager view supports multiple open maps at the same time, with each one presented in its own tab.
To open a DITA map in the DITA Maps Manager, use any of the following methods:

• To open a submap in its own tab, simply double-click it (or right-click it and select Open).
• Right-click a map file in the Navigator view and select Open in DITA Maps Manager.

If your map references other DITA maps, they will be shown, expanded, in the DITA Maps Manager view and you
will be able to navigate their content. To edit the submaps and their content, you need to open each referenced map
separately.

Drag and Drop in the DITA Maps Manager

You can move topics or nodes within the same map, or other maps, by dragging and dropping them into the desired
position. You can arrange the nodes by dragging and dropping one or more nodes at a time. You can arrange multiple
topics by dragging them while pressing the Ctrl or Shift key. Drop operations can be performed before, after, or as child
of the targeted node.

Drag and drop operations include:

Select the nodes you want to copy and start dragging them. Before dropping them in
the appropriate place, press and hold the Ctrl key. The mouse pointer changes to a

 symbol to indicate that a copy operation is being performed.

Copy

Select the nodes you want to move and drag and drop them in the appropriate place.Move

You can move nodes between child and parent nodes by using the Promote (Alt +
LeftArrow) and Demote (Alt + RightArrow) operations.

Promote (Alt +
LeftArrow)/Demote (Alt +
RightArrow)

DITA Maps Manager Toolbar

The toolbar includes the following actions (also available in theDITA Maps menu) and their availability depend on the
nodes that are selected:

Note: If multiple nodes are selected, the availability of the actions depend on the nodes that are selected.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1119

You can use this drop-down menu to open new DITA maps or to reopen recently viewed
maps. The drop-down menu contains the following:

Open Drop-down
Menu

• List of recently viewed DITA maps that can be selected to reopen them.
• Clear history - Clears the history list of the recently viewed DITA maps.

• Open - Allows you to open the map in the DITA Maps Manager view. You can
also open a map by dragging it from the file system explorer and dropping it into the
DITA Maps Manager view.

• Browse workspace - Opens a file browser dialog box allowing you to select a file
from the local workspace.

• Open URL - Displays the Choose DITA Map dialog box that allows you to access
any resource identified through a URL (defined by a protocol, host, resource path, and
an optional port). The following actions are available in this drop-down menu:

• Browse for local file - Opens a local file browser dialog box, allowing you to
select a local DITA map.

• Browse workspace - Opens a file browser dialog box allowing you to select a
file from the local workspace.

• Browse for remote file - Displays the Open using FTP/SFTP dialog box that
allows you to open a remotely stored DITA map.

• Browse for archived file - Displays the Archive Browser dialog box that
allows you to browse the content of an archive and choose a DITA map.

• Browse Data Source Explorer - Opens the Data Source Explorer that allows
you to browse the data sources defined in the Data Sources preferences page.

Tip: You can open the Data Sources preferences page by using the
Configure Database Sources shortcut from the Open URL dialog box.

• Search for file - Displays the Find Resource dialog box that allows you to
search for a DITA map.

Saves the current DITA map.Save (Ctrl (Meta on
Mac OS)+S)

Checks the validity and integrity of the map.Validate and Check for
Completeness

Applies the DITA Map transformation scenario that is associated with the current map.Apply Transformation
Scenario(s)

Allows you to associate a DITA Map transformation scenario with the current map.Configure
Transformation
Scenario(s)

You can use this action to manually trigger a refresh and update of all referenced
documents. This action is useful when the referenced documents are modified externally.

Refresh References

When they are modified and saved from the Oxygen XML Editor plugin, the DITA map
is updated automatically.

Opens the DITA map in the main editor area with content from all topic references,
expanded in-place. Content from the referenced topics is presented as read-only and you
have to use the contextual menu action Edit Reference to open the topic for editing.

Open Map in Editor
with Resolved Topics

Tip: If you want to print the expanded content, you should consider changing
the Styles drop-down to + Print ready.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1120

For complex operations that cannot be performed in the simplified DITA Maps Manager
view (for instance, editing a relationship table) you can open the map in the main editing
area.

Open Map in Editor

Note: You can also use this action to open referenced DITA maps in the Editor.

This drop-down menu contains the following actions:Profiling/Conditional
Text Drop-down Menu • Show Profiling Colors and Styles - Enable this option to turn on conditional styling.

To configure the colors and styles open the Preferences dialog box and go to Editor >
Edit modes > Author > Profiling/Conditional Text > Colors and Styles.

• Show Profiling Attributes - Enable this options to display the values of the profiling
attributes at the end of the titles of topic references. When enabled, the values of the
profiling attributes are displayed in both the DITA Maps Manager view and in the
Author view.

• Show Excluded Content - Controls if the content filtered out by a particular condition
set is hidden or grayed-out in the editor area and in the Outline and DITA Maps
Manager views. When this option is enabled, the content filtered by the currently
applied condition set is grayed-out. To show only the content that matches the currently
applied condition set, disable this option.

• Profiling Settings - Opens the preferences page for adding and editing the profiling
conditions that you can apply in the DITA Maps Manager view and the Author view.
When a profiling condition set is applied, the keys that are defined in the DITA map
are gathered by filtering out the excluded content.

Disables/Enables the synchronization between the file path of the current editor and the
selected topic reference in the DITA Maps Manager view.

Link with Editor

Note: This button is disabled automatically when you move to the Debugger
perspective.

Allows you to choose whether or not to Show extended toolbar and Show root map
toolbar.

Settings

Specifies a master DITA map that Oxygen XML Editor plugin uses to establish a key
space that you can use with any other DITA map that is contained by the master map.

Root map

You can use this drop-down menu to browse for root maps with the following choices:Browse Drop-down
menu

• Browse for local file - Opens a local file browser dialog box, allowing you to select
a local root map.

• Browse workspace - Allows you to select a root map from the local workspace.

• Browse for remote file - Displays the Open using FTP/SFTP dialog box that allows
you to select a remotely stored root map.

• Browse for archived file - Displays the Archive Browser dialog box that allows
you to browse the content of an archive and choose a root map.

• Browse Data Source Explorer - Opens the Data Source Explorer that allows
you to browse the data sources defined in the Data Sources preferences page.

Tip: You can open the Data Sources preferences page by using the Configure
Database Sources shortcut from the Open URL dialog box.

• Search for file - Displays the Find Resource dialog box to search for a root map.

Opens the Insert Reference dialog box that allows you to insert references to targets
such as anchors, topics, maps, topic sets, or key definitions.

Insert Topic Reference

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1121

Opens the Edit Properties dialog box that allows you to configure the properties
of a selected node. You can find more details about this dialog box in the Edit
Properties Dialog Box on page 1137 topic.

 Edit Properties

Opens a small in-place editor that allows you to edit the attributes of a selected node.
You can find more details about this action in the Attributes View in Author Mode
on page 180 topic.

Edit Attributes

Deletes the selected node.Delete

Moves the selected node up within the DITA map tree.Move Up

Moves the selected node down within the DITA map tree.Move Down

Moves the selected node up one level to the level of its parent node.Promote

Moves the selected node down one level to the level of its child nodes.Demote

Contextual Menu of the DITA Maps Manager

The following actions can be invoked from the contextual menu on the root map of an opened DITA map:Root
Map For complex operations that cannot be performed in the simplified DITA Maps

Manager view (for instance, editing a relationship table) you can open the map
in the main editing area.

Open Map in Editor

Opens the DITA map in the main editor area with content from all topic references,
expanded in-place. Content from the referenced topics is presented as read-only

Open Map in Editor
with Resolved Topics

and you have to use the contextual menu action Edit Reference to open the topic
for editing.

Allows you to choose a destination for exporting the DITA map.Export DITA Map

Allows you to search for orphaned resources that are not referenced in the DITA
maps.

Find Unreferenced
Resources

Opens the Edit Properties dialog box that allows you to configure the properties
of a selected node. You can find more details about this dialog box in the Edit
Properties Dialog Box on page 1137 topic.

 Edit Properties

Container sub-menu for a number of actions that create a map node as a child of
the currently selected node:

Append Child submenu

• New - Opens a dialog box that allows you to configure some options for
inserting a new topic.

• Reference - Inserts a reference to a topic file. You can find more details
about this action in the Inserting References topic.

• Reference to the currently edited file - Inserts a reference to the currently
edited file. You can find more details about this action in the Inserting
References topic.

• Key Reference - Opens an Insert Key Definition dialog box that allows you
to insert a key reference.

• Key Reference with Keyword - Opens a simplified Insert Key Definition
dialog box that allows you to define a key and a value inside a keyword.

• A set of actions that open the Insert Reference dialog box that allow you to
insert various reference specializations (such as Anchor Reference, Glossary
Reference, Map Reference, Navigation Reference, Topic Group, Topic
Head, Topic Reference, Topic Set, Topic Set Reference).

Searches all references to the current topic in the entire DITA map.Search References

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1122

The following actions are available from this submenu:Refactoring submenu

Allows you to change the name of a resource linked
in the edited DITA map.

Rename resource

Allows you to change the location on disk of a resource
linked in the edited DITA map.

Move resource

Opens the XML Refactoring tool wizard that presents
refactoring operations to assist you with managing the
structure of your XML documents.

XML Refactoring

For your convenience, the last 5 XML Refactoring tool
operations that are used will also appear in this
submenu.

Other XML
Refactoring Actions

Allows you to find and replace content across multiple files.Find/Replace in Files

Allows you to spell check multiple files.Check Spelling in Files

Allows you to paste content from the clipboard into the DITA map.Paste

Pastes the content of the clipboard (only if it is a part of the DITA map) before
the currently selected DITA map node.

Paste Before

Pastes the content of the clipboard (only if it is a part of the DITA map) after the
currently selected DITA map node.

Paste After

Allows you to expand the entire DITA map structure.Expand All

Allows you to collapse the entire DITA map structure.Collapse All

The following actions are available when the contextual menu is invoked on a child node of a DITA map
(submaps need to be opened in the DITA Maps Manager to access these actions since they are in a read-only
state in the parent map):

Child
Nodes

Note: If multiple nodes are selected, the availability of the actions depend on the nodes that are selected.

Opens in the editor the resources referenced by the nodes that you select.Open

Opens the Edit Properties dialog box that allows you to configure the properties of a
selected node. You can find more details about this dialog box in the Edit Properties
Dialog Box on page 1137 topic.

 Edit Properties

Container sub-menu for a number of actions that create a map node as a child of the
currently selected node:

Append Child
submenu

• New - Opens a dialog box that allows you to configure some options for inserting
a new topic.

• Reference - Inserts a reference to a topic file. You can find more details about
this action in the Inserting References topic.

• Reference to the currently edited file - Inserts a reference to the currently edited
file. You can find more details about this action in the Inserting References topic.

• Key Reference - Opens an Insert Key Definition dialog box that allows you to
insert a key reference.

• Key Reference with Keyword - Opens a simplified Insert Key Definition dialog
box that allows you to define a key and a value inside a keyword.

• A set of actions that open the Insert Reference dialog box that allow you to insert
various reference specializations (such as Anchor Reference, Glossary Reference,
Map Reference, Navigation Reference, Topic Group, Topic Head, Topic
Reference, Topic Set, Topic Set Reference).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1123

Container sub-menus for a number of actions that create a map node as a sibling of the
currently selected node:

Insert After
submenu

• New - Opens a dialog box that allows you to configure some options for inserting
a new topic.

• Reference - Inserts a reference to a topic file. You can find more details about
this action in the Inserting References topic.

• Reference to the currently edited file - Inserts a reference to the currently edited
file. You can find more details about this action in the Inserting References topic.

• Key Reference - Opens an Insert Key Definition dialog box that allows you to
insert a key reference.

• Key Reference with Keyword - Opens a simplified Insert Key Definition dialog
box that allows you to define a key and a value inside a keyword.

• A set of actions that open the Insert Reference dialog box that allow you to insert
various reference specializations (such as Anchor Reference, Glossary Reference,
Map Reference, Navigation Reference, Topic Group, Topic Head, Topic
Reference, Topic Set, Topic Set Reference).

Searches all references to the current topic in the entire DITA map.Search
References

The following actions are available from this submenu:Refactoring
submenu Allows you to change the name of a resource linked in

the edited DITA map.
Rename resource

Allows you to change the location on disk of a resource
linked in the edited DITA map.

Move resource

Opens the XML Refactoring tool wizard that presents
refactoring operations to assist you with managing the
structure of your XML documents.

XML Refactoring

For your convenience, the last 5 XML Refactoring tool
operations that are used will also appear in this submenu.

Other XML Refactoring
Actions

Allows you to find and replace content across multiple files.Find/Replace in
Files

Allows you to spell check multiple files.Check Spelling in
Files

Deletes the currently selected node and copies it to the clipboard.Cut

Copies the currently selected node to the clipboard.Copy

Allows you to paste content from the clipboard into the DITA map.Paste

Pastes the content of the clipboard (only if it is a part of the DITA map) before the
currently selected DITA map node.

Paste Before

Pastes the content of the clipboard (only if it is a part of the DITA map) after the
currently selected DITA map node.

Paste After

Deletes the currently selected node from the DITA map.Delete

Allows you to organize the DITA map with the several submenu actions:Organize

• Move Up - Moves the selected node up within the DITA map tree.

• Move Down - Moves the selected node down within the DITA map tree.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1124

• Promote - Moves the selected node up one level to the level of its parent node.

• Demote - Moves the selected node down one level to the level of its child nodes.

Allows you to expand the entire DITA map structure.Expand All

Allows you to collapse the entire DITA map structure.Collapse All

The following actions are available when the contextual menu is invoked from a node that is not an immediate
child node of the root map:

Other
Nodes

Note: If multiple nodes are selected, the availability of the actions depend on the nodes that are selected.

Opens in the editor the resources referenced by the nodes that you
select.

Open

Opens the currently selected DITA map in the editor.Open Map in Editor (available when
invoking on a submap)

Opens the parent DITA map of the currently selected reference in the
DITA Maps Manager.

Open parent DITA map (available
when invoking on a topic reference
or a submap reference)

Opens a small in-place editor that allows you to edit the attributes of
a selected node. You can find more details about this action in the
Attributes View in Author Mode on page 180 topic.

Edit Attributes (only available for
relationship table nodes)

Allows you to change the profiling attributes defined on the selected
node.

Edit Profiling Attributes (only
available for relationship table nodes)

Searches all references to the current topic in the entire DITA map.Search References

The following actions are available from this submenu:Refactoring submenu

Allows you to change the name of a resource
linked in the edited DITA map.

Rename resource

Allows you to change the location on disk of
a resource linked in the edited DITA map.

Move resource

Opens the XML Refactoring tool wizard that
presents refactoring operations to assist you

XML
Refactoring

with managing the structure of your XML
documents.

For your convenience, the last 5 XML
Refactoring tool operations that are used will
also appear in this submenu.

Other XML
Refactoring Actions

Allows you to find and replace content across multiple files.Find/Replace in Files

Allows you to spell check multiple files.Check Spelling in Files

Copies the currently selected node to the clipboard.Copy

Allows you to expand the entire DITA map structure.Expand All

Allows you to collapse the entire DITA map structure.Collapse All

To watch our video demonstration about the DITA Maps Manager view, go to
http://oxygenxml.com/demo/DITA_Maps_Manager.html.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1125

http://oxygenxml.com/demo/DITA_Maps_Manager.html

Related information
DITA Map Validation and Completeness Check on page 1143

DITA OT Transformation on page 614
This type of transformation specifies the parameters for an Ant transformation that executes a DITA-OT build script.
Oxygen XML Editor plugin includes a built-in version of Ant and a built-in version of DITA-OT, but other versions
can be set in the scenario.

DITA Map Transformation Fails (Cannot Connect to External Location) on page 1112

DITA Map Author Mode Actions on page 863

Creating a Map

To create a DITA map, subject scheme, bookmap, or other types of DITA maps, follow these steps:

1. Go to File > New > New from Templates.
A New document dialog box is opened that allows you to select a document type from various folders.

2. Select one of the DITA Map templates from the Framework templates folder.

3. Click the Next button.

4. Select a parent folder and the file name and click Finish.

5. Save the map after opening it in the DITA Maps Manager or the Editor.

Selecting a Root Map

Oxygen XML Editor plugin allows you to select a DITA map as a key space, or root map, for all the other DITA maps
and topics in the project. Specifying the correct root map helps to prevent validation problems when you work with
keyrefs and also acts as the foundation for content completion. All the keys that are defined in a root map are available
in the maps that the root map contains.

There are several ways to select or change the root map:

• The easiest method is to use the Root map drop-down menu in the DITA Maps Manager toolbar to select the
appropriate root map.

• If you insert a key reference using the Cross Reference action from the Link drop-down menu (from the toolbar
or Link submenu of the contextual menu) and keys are not gathered from the expected DITA map, you can change
the root map by using the Change Root Map link in the Choose Key dialog box that is opened when you click the

Choose Key Reference button.

• If you insert a content key reference or key reference using the Reuse Content action (from the toolbar, DITA
menu, or Reuse submenu of the contextual menu) and keys are not gathered from the expected DITA map, you can
change the root map by using the Change Root Map link in the Choose Key dialog box that is opened when you

click the Choose Key Reference button.

To watch our video demonstration about the DITA Root Map support, go to
http://oxygenxml.com/demo/DITA_Root_Map.html.

Creating DITA Submaps

You can break up a large DITA map into more manageable pieces by creating submaps. A submap is simply a DITA
map that is included by another DITA map. There is no separate markup for a submap.

For example, if you are creating a book, you might use one submap for each chapter of the book. If you are reusing a
set of topics in multiple publications, you might collect them into a map and reuse the map as a submap in multiple other
maps, rather than referencing the topics individually from the new maps.

You add a submap to a map the same way that you would add a new topic or insert an exiting topic into a map, except
you choose a map rather than a topic to create or add. When adding a submap to a map make sure that you use a mapref
element or a topicref element with the format attribute set to ditamap. In most cases, Oxygen XML Editor
plugin takes care of this for you.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1126

http://oxygenxml.com/demo/DITA_Root_Map.html

Adding a Submap to a Map

To add a submap to a map:

1. Right-click the place in the current map where you want to add the new submap.
2. To insert the submap as a child of the selected node, select Append Child > New. To insert the submap as a sibling

to the current node, select Insert After > New. This opens a New file template dialog box that allows you to select
the type of document and assists you with naming it.

3. Select the type of map in one of the folders inside the DITA Map folder and give it a name (the file type should be
.ditamap).

4. Click Create to insert the submap.

You can also manage and move submaps the same as you would with topics. For more information, see the Managing
DITA Maps on page 1127 section.

Creating a Bookmap in DITA

If you want to create a traditional book in DITA, you can use a bookmap to organize your topics into a book. A DITA
bookmap is a specialized type of map, intended for creating output that is structured like a book. A bookmap allows you
to add book-specific elements such as frontmatter, part, chapter, appendix, and backmatter to the map.
How these book-specific elements are processed for publication is up to the processing script for each media. See the
DITA documentation for details.

You can find additional support for creating books in DITA in the DITA for Publishers plugin, which is included with
Oxygen XML Editor plugin.

To create a book in DITA using a bookmap:

1. Create a new bookmap (File > New > Framework templates > DITA Map > map > Bookmap). If you want the
bookmap to be a submap, you can create it the same way by right-clicking the place in the current map where you
want to add it (in the DITA Maps Manager) and selecting New from Append child or Insert After.

2. Create the structure of your book by adding the appropriate book sections and defining containers for chapters and
any appendices. To add sections to a bookmap, or children to a section, right-click the bookmap or section icon and
choose any of the reference actions in the Append child menu. The selections offered in the menu will adjust
depending on the element they are applied to. Consult the DITA documentation to fully understand the structure of
a DITA bookmap and where to create each element.

3. Create special elements such as an index and table of contents. The index and table of contents will be generated by
the build process, based on the content of the map and the topics it points to.

4. Add topics to your chapters to add content to your book. You may find it easier to manage if you use submaps to
create the content of your chapters. This keeps your bookmap from becoming long and difficult to manage.

Managing DITA Maps

You may want to manage your DITA maps in a variety of ways, including:

• Change the order and nesting of topics in a map.
• Add topics to a map.
• Insert various types of references in a map.
• Find, move, or rename resources in a map.
• Change other properties of the items in a map.
• Use the Edit Properties dialog box to manage attributes, keys, metadata, or add profiling to any section of a map.

This section includes various topics that describe how you can manage DITA maps and resources.

Change the Order of Topics in DITA Maps

You can change the order and nesting of the topics in a map in several ways:

• By dragging and dropping topics within the DITA Maps Manager.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1127

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/bookmap.html#bookmap
http://docs.oasis-open.org/dita/v1.2/os/spec/langref/bookmap.html#bookmap

• By showing the extended DITA Maps Manager toolbar (press the Settings icon on the DITA Maps Manager

toolbar and select the extended toolbar) and then using the arrow keys () on the toolbar to move topics
around in the map.

To understand how to organize topics in a DITA map using the DITA Maps Manager, you can examine and experiment
with the sample map called flowers.ditamap, located in the [OXYGEN_INSTALL_DIR]/samples/dita
folder.

Adding Topics to a DITA Map

When you are working in DITA, there are several approaches that you can use to create topics and maps. You can start
by first creating topics and then assembling your finished topics into one or more documents by creating one or more
maps, or you can start by creating a map and then adding new topics to it as you work.

The topics-first approach is generally more appropriate if you intend to do a lot of content reuse, as it encourages you
to think of each topic as an independent unit that can be combined with other topics in various ways. The map-first
approach will be more familiar to you if you are used to creating books or manuals as a whole. Oxygen XML Editor
plugin supports both approaches.

A DITA map organizes content hierarchically, so you can add a topic as a child of the map root or as a child or sibling
of any item already in the map. Therefore, the first step to adding a topic to a map is always to choose the place it will
be inserted into the map.

Adding Existing Topics to a Map

At the XML-level, a topic is added to a map by adding a reference to the map that points to the topic. There are a variety
of reference types that you can use. The default type is the topicref element. See the DITA documentation for the
full range of reference elements and their uses. Oxygen XML Editor plugin provides several tools for inserting reference
elements into a map:

The Insert Reference dialog box allows you to create various reference types and configure
the most commonly used attributes. You can open the Insert Reference dialog box with
any of the following methods:

Using the Insert
Reference Dialog Box

• Right-click an item in the current map where you want to add the reference, select
Append child or Insert After and select the type of reference to enter.

• If the topic you want to add is currently open in the editor, you can right-click an item
in the current map where you want to add the reference and select Reference to the
currently edited file.

• Selecting an item in the map and click the Insert Reference button from the DITA
Maps Manager toolbar.

• Select Insert Reference from the DITA Maps menu.

You can add a topic to a DITA map by dragging and dropping the file into the DITA Maps
Manager. You can drag and drop files from any of the following:

Dragging and Dropping
a File into the DITA
Maps Manager

• Your OS file system explorer.
• The Project view.

Adding topics this way will not open the Insert Reference dialog box, but you can adjust
all the same properties by invoking the contextual menu from the topic and selecting Edit
Properties.

Adding a New Topic to a Map

To add a new topic to a map, follow these steps:

1. In the DITA Maps Manager, right-click the place in the current map where you want to add the new topic.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1128

http://docs.oasis-open.org/dita/v1.2/os/spec/common/map_elements.html#map_elements

2. To insert the topic as a child of the selected node, select Append Child > New. To insert the topic as a sibling to
the current node, select Insert After > New.

Result: This opens a New file template dialog box that allows you to select the type of document and assists you
with naming it.

Adding Multiple References to the Same Topic in a Map
Oxygen XML Editor plugin allows you to add multiple references to the same topic in a DITA map. Whenever multiple
references to the same topic are detected, an indicator will appear in the top-right corner of the Author mode editor that
shows the number of times the topic is referenced in the DITA map. It also includes navigation arrows that allow you
to jump to the next or previous reference.

Remove Topics from a Map

You can remove topics from a map in a number of ways. Some ways to remove a topic from a map include:

• Highlight the topic and press Delete.

• Highlight the topic and click the Delete button on the DITA Maps Manager extended toolbar.

Moving and Renaming Resources

You can move or rename resources on disk directly from Oxygen XML Editor plugin. To do this, use one of the following
actions available in the Refactoring submenu of the contextual menu when invoked on a resource in the DITA Maps
Manager view:

This action allows you to change the name of a resource linked in the edited DITA map, using
the Rename resource dialog box. This dialog box contains the following options:

Refactoring >
Rename resource

• New name - Presents the current name and allows you to change it.
• Update references - Enable this checkbox to update all references of the file in the edited

DITA map and in the files referenced from the DITA map, preserving the completeness of the
DITA map.

• Preview - Select this button to display a preview of the changes Oxygen XML Editor plugin
is about to make.

• Rename - Executes the Rename resource operation.
• Cancel - Cancels the Rename resource operation. No changes are applied.

This action allows you to change the location of a resource linked in the edited DITA map, using
the Move resource dialog box. This dialog box contains the following options:

Refactoring >
Move resource

• Destination - Specifies the target location of the edited resource.
• File name - Allows you to change the name of the edited resource.
• Update references - Enable this checkbox to update all references of the file in the edited

DITA map and in the files referenced from the DITA map, preserving the completeness of the
DITA map.

• Preview - Select this button to display a preview of the changes Oxygen XML Editor plugin
is about to make.

• Move - Moves the edited resource in the target location on disk.
• Cancel - Cancels the Move resource operation. No changes are applied.

Note: If a root DITA map is not defined, the move and rename actions are executed in the context of the current
DITA map.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1129

Finding Resources Not Referenced in DITA Maps

Over the course of time large projects can accumulate a vast amount of resources from a variety of sources. Especially
in organizations with a large number of content authors or complex project structures, organizing the project resources
can become a challenge. Over time a variety of actions can cause resources to become orphaned from DITA maps. To
assist you with organizing project resources, Oxygen XML Editor plugin includes an action, Find Unreferenced
Resources, that searches for orphaned resources that are not referenced in DITA maps.

To perform this search, open the DITA map in the DITA Maps Manager, invoke the contextual menu on the DITA
map, and select Find Unreferenced Resources. This action opens the Find Unreferenced Resources dialog box, which
allows you to specify some search parameters:

• DITA Maps - Provides a list of DITA maps to be included in the search and allows you to Add maps to the list or
Remove them.

• Folders - Provides a list of folders to be included in the search and allows you to Add or Remove specific folders.
• Filters - Provides three combo boxes that allow you to filter the search to include or exclude certain files or folders:

• Include files - Allows you to filter specific files to include in the search.
• Exclude files - Allows you to filter specific files to exclude from the search.
• Exclude folders - Allows you filter specific folders to exclude from the search.

Note: In any of the filter combo boxes you can enter multiple filters by separating them with a comma
and you can use the ? and * wildcards. Use the drop-down arrow to select a previously used filter pattern.

Insert References in DITA Maps

A DITA map may contain various types of references. The targets of the references can be a variety of references, such
as anchors, chapters, maps, topics, topic sets, or key definitions. You can insert references to such targets with the Insert
Reference dialog box.

This section explains how to insert and configure references (such as topic references, topic groups, topic headings, and
key definitions) in a DITA map.

Insert Reference Dialog Box

The Insert Reference dialog box allows you to insert and configure references in DITA maps. There are numerous
types of references that can be inserted into maps. They include references to topics, other maps, anchors, glossary terms,
and keys. You can also use this dialog box to configure the attributes of a reference, add profiling or metadata, and
define keys.

To open the Insert Reference dialog box, use one of the following methods:

• Select Reference, Reference to the currently edited file, or any of the other specific reference actions that are
available from the Append Child and Insert After submenus when invoking the contextual menu in the DITA
Maps Manager.

• To insert the reference as a child of the current node, select the reference from the Append Child submenu.
• To insert the reference as a sibling of the current node (below the current node in the map), select the reference

from the Insert After submenu.

Note: The content of these submenus depends on the node that is selected in the DITA map tree when the
contextual menu is invoked. For example, if the selected node is a topic reference (topicref), its possible
child nodes include the following elements: anchorref, chapter, keydef, mapref, topicgroup,
topichead, topicref, topicset, and topicsetref.

• Click the Insert Reference button on the DITA Maps Manager extended toolbar. This action will insert the
reference as a sibling of the current node (below the current node in the map).

• Select Insert Reference from the DITA Maps menu. This action will insert the reference as a sibling of the
current node (below the current node in the map).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1130

For the Reference or Reference to the currently edited file actions, a Reference type drop-down list is displayed
at the top of the Insert Reference dialog box and you can select the type of reference you want to insert. Depending on
the place where the reference will be inserted, Oxygen XML Editor plugin will propose only valid reference types .
When you change the reference type, the fields in the various tabs of the dialog box are reconfigured depending upon
the availability of the associated attributes. For the other reference actions in the Append Child and Insert After
submenus, the reference type is automatically chosen based upon the invoked action and you cannot change it.

The main section of the dialog box includes the following tabs: Target, Keys, Attributes, Metadata, and Profiling.

Target Tab

Figure 524: Insert Reference Dialog Box - Target Tab

The Target tab of the Insert Reference dialog box allows you to specify information about the target reference. It
includes the following sections and fields:

You can browse for and select the source target file by using the file window in this section.Choose a file location
section

Displays the path to the target and allows you to select or change it by using the combo box
or browsing tools.

URL

The drop-down list displays all of the target elements that are available for the selected target
URL.

ID

The selected target automatically modifies this value to point to the corresponding href
attribute of the target element.

Href

Note: If the Reference type is a Navigation Reference, the Href field is changed
to Mapref, since a navref element requires a mapref attribute instead.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1131

Keys Tab

Figure 525: Insert Reference Dialog Box - Keys Tab

The Keys tab allows you to use and define keys for indirect referencing. For more information, see the Working with
Keys on page 1165 topic. This tab includes the following:

Use this text field to define the keys attribute for the target.Define keys

Use this text field to define or edit the value of a keyscope attribute.
Key scopes allow you to specify different sets of key definitions for
different map branches.

Key scopes [This option is only available
if the Built-in DITA-OT 2.x (with DITA
1.3 support) option is enabled in the DITA
preferences page]

Instead of using the Target tab to select a file that contains the target
reference, you can reference a key definition by using this text field. Use

Key reference

the Choose key reference button to access the list of keys that are
already defined in the current root map.

Attributes Tab

Figure 526: Insert Reference Dialog Box - Attributes Tab

The Attributes tab of the Insert Reference dialog box allows you to insert and edit attribute values for the target
reference. This tab includes the following sections and actions:

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1132

http://www.oxygenxml.com/dita/1.3/specs/index.html#langRef/attributes/the-key-scope-attribute.html

This text field allows you to specify a custom navigation title for the target reference. If you want
this attribute to always be populated with a detected value (based on the specifications for the target

Navigation title

file), enable the Navigation title checkbox for the Always fill values for attributes option in the
DITA preferences page. You can enforce the use of the specified title by enabling the Lock checkbox.

Tip: You can also enable the Prefer navigation title for topicref rendering option in the
DITA preferences page to always enforce the use of the navtitle value rather than
enabling this Lock option on individual topics.

This drop-down list allows you to select the collection-type attribute to create hierarchical
linking between topics in a DITA map (for example, unordered, sequence, choice, family,
-dita-use-conref-target).

Collection type

Allows you to select a type attribute (such as topic, task, concept, etc.) for the target element.
If you want this attribute to always be populated with a detected value (based on the specifications

Type

for the target file), enable the Type checkbox for the Always fill values for attributes option in the
DITA preferences page.

This property corresponds to the scope attribute of the target element. It is populated automatically,
based on the selected file type, unless its value for the selected target file is the same as the default

Scope

attribute value. If you want this attribute to always be populated with a detected value based on the
specifications (regardless of the default value), enable the Scope checkbox for the Always fill values
for attributes option in the DITA preferences page.

This property corresponds to the format attribute of the target element. It is populated automatically,
based on the selected file type, unless its value for the selected target file is the same as the default

Format

attribute value. If you want this attribute to always be populated with a detected value based on the
specifications (regardless of the default value), enable the Format checkbox for the Always fill
values for attributes option in the DITA preferences page.

This drop-down list allows you to set the processing-role attribute to one of the allowed
values for DITA reference elements (for example, resource-only, normal,
-dita-use-conref-target).

Processing Role

This table contains the attributes that are available for the selected reference. You can use this table
to insert or edit the values of any of the listed attributes. Clicking a cell in the Value column allows
you to use the combo box to enter, edit, or select attribute values.

Other attributes
table

Metadata Tab

Figure 527: Insert Reference Dialog Box - Metadata Tab

The Metadata tab allows you to add metadata elements to the target reference. Use the buttons on the right side of the
tab to insert specific metadata elements (you can add the following metadata elements: navtitle, linktext,

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1133

shortdesc, keyword, indexterm). The metadata elements are inserted inside a topicmeta element. The editing
window allows you to easily insert and modify the content of the metadata that will be inserted.

Profiling Tab

Figure 528: Insert Reference Dialog Box - Profiling Tab

The Profiling tab allows you to select or change profiling attributes for the selected reference. This tab displays profiling
attributes and their values as determined by the following:

• If your root DITA map references a DITA subject scheme map that defines values for the profiling attributes, those
values are used.

• Otherwise, a basic default set of profiling attributes and values are used.

When you modify a selection of values in this tab, the change will also automatically be reflected in the Attributes tab.
For more information, see the DITA Profiling / Conditional Text on page 1202 section.

Finalizing Your Insert Reference Configuration
Once you click Insert or Insert and close, the configured reference is added in the map.

Tip: You can easily insert multiple references by keeping the Insert Reference dialog box opened, using the
Insert button.

Related information
DITA Profiling / Conditional Text on page 1202

Working with Keys on page 1165

Inserting Topic Headings

The topichead element provides a title-only entry in a navigation map, as an alternative to the fully-linked title
provided by the topicref element.

You can insert a topic heading by doing the following:

• Select Topic Head from the Append Child or Insert After submenus when invoking the contextual menu in the
DITA Maps Manager view.

• Open the DITA map in the XML editor and select the Insert Topic Heading action from the main toolbar (or
from the Insert submenu of the contextual menu).

Those actions open the Insert Topic Head dialog box that allows you to easily insert a topichead element. A
Navigation title (navtitle attribute) is required but other attributes can also be specified from this dialog box (such
as Type, Scope, Format, etc.)

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1134

Figure 529: Insert Topic Heading Using the Insert Reference Dialog Box

Related information
Insert Reference Dialog Box on page 1130

Inserting Topic Groups

The topicgroup element identifies a group of topics (such as a concepts, tasks, or references) or other resources. A
topicgroup can contain other topicgroup elements, allowing you to express navigation or table-of-contents
hierarchies, as well as implying relationships between the containing topicgroup and its children. You can set the
collection-type of a container topicgroup to determine how its children are related to each other. Relationships end
up expressed as links in the output (with each participant in a relationship having links to the other participants by
default).

You can insert a topic group by doing the following:

• Select Topic Group from the Append Child or Insert After submenus when invoking the contextual menu in the
DITA Maps Manager view.

• Open the DITA map in the XML editor and select the Insert Topic Group action from the main toolbar (or from
the Insert submenu of the contextual menu).

Those actions open the Insert Topic Group dialog box that allows you to easily insert a topicgroup element and
various attributes can be specified (such as Collection type, Type, Scope, Format, etc.)

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1135

Figure 530: Insert Topic Group Using the Insert Reference Dialog Box

Related information
Insert Reference Dialog Box on page 1130

Inserting and Defining Keys in DITA Maps

DITA uses keys to insert content that may have different values in various circumstances. Keys provide the means for
indirect referencing in DITA. This can make it easier to manage and to reuse content. In DITA, keys are defined in maps
and can then be reused and referenced throughout the whole structure of the map.

The following example is a DITA map that defines various values for the product key:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>

<!-- product name -->
<keydef keys="product" product="basic">
<topicmeta>

<keywords>
<keyword>Basic Widget</keyword>

</keywords>
</topicmeta>

</keydef>
<keydef keys="product" product="pro">
<topicmeta>

<keywords>
<keyword>Professional Widget</keyword>

</keywords>
</topicmeta>

</keydef>
<keydef keys="product" product="enterprise">
<topicmeta>

<keywords>
<keyword>Enterprise Widget</keyword>

</keywords>
</topicmeta>

</keydef>
</map>

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1136

Note: The profiling of the names is now contained in the map, where it only has to occur once to reuse throughout
the whole map structure.

Key Definition with a Keyword
To insert a key definition with a keyword in a DITA map, follow these steps:

1. Open the DITA map in the DITA Maps Manager.
2. Invoke the contextual menu and select Key Definition from the Append Child or Insert After submenu (depending

on where you want to insert the key definition in the DITA map). This opens an Insert Key Definition dialog box.
3. Go to the Keys tab and enter the name of the key in the Define keys field.
4. Go to the Metadata tab and click Add keyword. In the editing window enter the key value inside the keyword

element.

Note: You can profile the key by using the Profiling tab and other attributes can also be defined in the
Attributes tab.

5. Once you are done configuring the key definition, click Insert and close.

Alternatively, there is a simplified method that can be used if you simply want to define a key with a value inside a
keyword, without configuring any profiling or other attributes. To use the simplified method, follow these steps:

1. Open the DITA map in the DITA Maps Manager.
2. Invoke the contextual menu and select Key Definition with Keyword from the Append Child or Insert After

submenu (depending on where you want to insert the key definition in the DITA map). This opens a simplified Insert
Key Definition dialog box.

3. Enter the name of the key in the Key field and its value in the Keyword field.
4. Click Insert and close to finalize the operation.

Key Definition with a Target
To insert a targeted key definition (for example, to target a resource such as an image or topic) in a DITA map, follow
these steps:

1. Open the DITA map in the DITA Maps Manager.
2. Invoke the contextual menu and select Key Definition from the Append Child or Insert After submenu (depending

on where you want to insert the key definition in the DITA map). This opens an Insert Key Definition dialog box.
3. Go to the Keys tab and enter the name of the key in the Define keys field.
4. Go to the Target tab and select a target resource (such as an image or topic).

Note: You can profile the key by using the Profiling tab and other attributes can also be defined in the
Attributes tab.

5. Once you are done configuring the targeted key definition, click Insert and close.

Related information
Working with Variable Text in DITA on page 1178

Working with Keys on page 1165

Edit Properties Dialog Box

The DITA Maps Manager view includes a feature that allows you to view and edit the properties of a selected node.

The Edit properties action is available on both the DITA Maps Manager toolbar and in the contextual menu. This
action is also available in the contextual menu when you edit a DITA map document in Author mode. The action opens
the Edit Properties dialog box and it includes several tabs with various functions and fields that are initialized with
values based upon the node for which the action was invoked.

Note: If you select multiple sibling nodes and invoke the Edit properties action, only the Profiling tab will
be available and your modifications in that tab will be applied to all the selected nodes. If you select multiple

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1137

nodes that are not on the same hierarchical level, the other tabs will also be available and your modifications
will be applied to the parent node (the child nodes will inherit the attributes of the parent node).

You can use the Edit Properties dialog box to modify or define attributes, metadata, profiling, or keys in DITA maps
or topics. You can also use it to modify the title of root maps.

At the top of the Edit Properties dialog box, the Reference type drop-down list displays the type of the selected node
and it depends on the node for which the action was invoked.

The main section of the dialog box includes the following tabs: Target, Keys, Attributes, Metadata, and Profiling.
The availability of the tabs and their functions depend on the selected node. For example, if you invoke the action on a
root map, only the Attributes, Metadata, and Profiling tabs are enabled and the Title property can be configured. Also,
if you select multiple nodes, only the Profiling tab is available.

Target Tab

Figure 531: Edit Properties Dialog Box - Target Tab

The Target tab of the Edit Properties dialog box displays information about the target node on which the action was
invoked and allows you to change the target. It includes the following sections and fields:

You can browse for and select the source target file by using the file window in this section.Choose a file location
section

Displays the path to the target and allows you to select or change it by using the combo box
or browsing tools.

URL

The drop-down list displays all of the target elements that are available for the selected target
URL.

ID

The selected target automatically modifies this value to point to the corresponding href
attribute of the target element.

Href

Note: If the Reference type is a Navigation Reference, the Href field is changed
to Mapref, since a navref element requires a mapref attribute instead.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1138

Keys Tab

Figure 532: Edit Properties Dialog Box - Keys Tab

The Keys tab allows you to use and define keys for indirect referencing. For more information, see the Working with
Keys on page 1165 topic. This tab includes the following:

Use this text field to define the keys attribute for the target.Define keys

Use this text field to define or edit the value of a keyscope
attribute. Key scopes allow you to specify different sets of key
definitions for different map branches.

Key scopes [This option is only available if the
Built-in DITA-OT 2.x (with DITA 1.3 support)
option is enabled in the DITA preferences page]

Use this combo box (or the Choose key reference button) to
select a key that is already defined in the root map.

Key reference

Attributes Tab

Figure 533: Edit Properties Dialog Box - Attributes Tab

The Attributes tab of the Edit Properties dialog box allows you to insert and edit attribute values for the target node
for which the action was invoked.

If the target is a root map, the tab displays the title of the map. You can change it in the Title text field and assign it to
an Attribute, Element, or All.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1139

http://www.oxygenxml.com/dita/1.3/specs/index.html#langRef/attributes/the-key-scope-attribute.html
http://www.oxygenxml.com/dita/1.3/specs/index.html#langRef/attributes/the-key-scope-attribute.html

Figure 534: Attributes Tab for a Root Map

For other types of targets, the tab includes the following sections and fields that can be used to edit the attributes of the
target:

This text field allows you to specify a custom navigation title for the target reference. If you want
this attribute to always be populated with a detected value (based on the specifications for the target

Navigation title

file), enable the Navigation title checkbox for the Always fill values for attributes option in the
DITA preferences page. You can enforce the use of the specified title by enabling the Lock checkbox.

Tip: You can also enable the Prefer navigation title for topicref rendering option in the
DITA preferences page to always enforce the use of the navtitle value rather than
enabling this Lock option on individual topics.

This drop-down list allows you to select the collection-type attribute to create hierarchical
linking between topics in a DITA map (for example, unordered, sequence, choice, family,
-dita-use-conref-target).

Collection type

Allows you to select a type attribute (such as topic, task, concept, etc.) for the target element.
If you want this attribute to always be populated with a detected value (based on the specifications

Type

for the target file), enable the Type checkbox for the Always fill values for attributes option in the
DITA preferences page.

This property corresponds to the scope attribute of the target element. It is populated automatically,
based on the selected file type, unless its value for the selected target file is the same as the default

Scope

attribute value. If you want this attribute to always be populated with a detected value based on the
specifications (regardless of the default value), enable the Scope checkbox for the Always fill values
for attributes option in the DITA preferences page.

This property corresponds to the format attribute of the target element. It is populated automatically,
based on the selected file type, unless its value for the selected target file is the same as the default

Format

attribute value. If you want this attribute to always be populated with a detected value based on the
specifications (regardless of the default value), enable the Format checkbox for the Always fill
values for attributes option in the DITA preferences page.

This drop-down list allows you to set the processing-role attribute to one of the allowed
values for DITA reference elements (for example, resource-only, normal,
-dita-use-conref-target).

Processing Role

This table contains the attributes that are available for the selected reference. You can use this table
to insert or edit the values of any of the listed attributes. Clicking a cell in the Value column allows
you to use the combo box to enter, edit, or select attribute values.

Other attributes
table

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1140

Metadata Tab

Figure 535: Edit Properties Dialog Box - Metadata Tab

The Metadata tab allows you to add metadata elements to the target node. Use the buttons on the right side of the tab
to insert specific metadata elements (you can add the following metadata elements: navtitle, linktext,
shortdesc, keyword, indexterm). The metadata elements are inserted inside a topicmeta element. The editing
window allows you to easily insert and modify the content of the metadata that will be inserted.

Profiling Tab

Figure 536: Edit Properties Dialog Box - Profiling Tab

The Profiling tab allows you to select or change profiling attributes for the selected target nodes. This tab displays
profiling attributes and their values as determined by the following:

• If your root DITA map references a DITA subject scheme map that defines values for the profiling attributes, those
values are used.

• Otherwise, a basic default set of profiling attributes and values are used.

If you have a large list of profiling attributes, you can use the text filter field to search for attributes or values, and you

can expand or collapse attributes by using the Expand All/ Collapse All buttons to the right of the text filter or
the arrow button to the left of the profiling attribute name..

When you modify a selection of values in this tab, the change will also automatically be reflected in the Attributes tab.
For more information, see the DITA Profiling / Conditional Text on page 1202 section.

Note: If you invoke the Edit properties action on a selection of multiple nodes that have different values
for the same profiling attribute, a conflict panel will be displayed in the Profiling tab and you can choose between
the following actions for resolving it:

• Keep - Preserves the current attribute values.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1141

• Change Now - Allows you to edit the selection of values in this Profiling tab and the changes will be applied
to all the selected nodes.

Figure 537: Profiling Conflict Panel

Finalizing Your Modifications
Once you click OK, all your changes are applied to the target node.
Related information
DITA Profiling / Conditional Text on page 1202

Working with Keys on page 1165

Creating a Table of Contents in DITA

In DITA, the order and hierarchy of the table of contents of a document is based directly on the DITA map that defines
the document. In many media, the creation of a table of contents, based on the map, is automatic. For example, you do
not have to do anything special to create a table of contents in WebHelp output.

In other media, you need to tell DITA where the table of contents should occur. For example, in a book you need to tell
DITA where to place the table of contents in the structure of the book, and if you want to generate other common content
lists, such as a list of figures or tables. You do this by using a bookmap to define your book, and adding the appropriate
elements to the frontmatter.

To configure a table of contents and other book lists, follow these steps:

1. Open your bookmap in the DITA Maps Manager.

2. Right-click the bookmap and select Append child > Frontmatter. The Insert Reference dialog box appears.

3. Click Insert and Close to insert the frontmatter element.

4. Right-click the frontmatter element and create a booklist element using Append child > Book Lists.

5. Use the same steps to create a toc element and to add other booklist elements, such as tablelist.

Resolving Topic References Through an XML Catalog

There are situations where you want to resolve URIs with an XML catalog:

• You customized your DITA map to reference topics using URIs instead of local paths.
• You have URI content references in your DITA topic files and you want to map them to local files when the map is

transformed.

In such situations, you have to add the catalog to Oxygen XML Editor plugin. The DITA Maps Manager view will
solve the displayed topic refs through the added XML catalog, as will DITA map transformations (for PDF output,
XHTML output, etc.)

To add an XML catalog to the DITA framework, follow these steps:

1. Create an XML catalog using the guidelines described in the Working with XML Catalogs on page 380 section.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1142

2. Open the Preferences dialog box and go to Document Type Association.
3. Select the DITA document type and use the Edit, Duplicate, or Extend button to opens a Document type configuration

dialog box.
4. Go to the Catalogs tab.

5. Click on the Add button to open a dialog box that allows you to add your created XML catalog to the list.
6. After adding your catalog, click OK. You may need to reopen any currently edited files that use the new catalog or

run a manual Validate action for the changes to take effect.

Note: You could also add your created catalog to the list of global catalogs in the XML Catalog preferences
page.

Chunking DITA Topics

By default, when a DITA map is published to an online format, each topic becomes a separate page in the output. In
some cases, you may want to combine multiple source topics into one output page. For instance, you may want to
combine several types of information into a single page, or you may have chosen to create many small DITA topics for
reuse purposes but feel they are too small to be useful to a reader by themselves. This is referred to as chunking.

To chunk DITA topics, you set the chunking attribute on the topicref that contains the sub-topics in a DITA map.
There are several values that you can set on the chunking attribute (for example, by-topic or to-content). See
the DITA documentation for full details. To achieve the effects you want in your topics and table of contents, you may
also need to set the toc and collection-type attributes on the sub-topics or container topic to suitable values.
See the DITA documentation for details.

You can set the collection-type attribute on your topics using the Edit Properties action in the DITA Maps
Manager. To set the toc and chunk attributes, you must open the map file in the editor and add or edit the attributes

directly (double-click the map icon in the DITA Maps Manager to open the map in the editor).

DITA Map Validation and Completeness Check

You should validate your maps regularly to make sure that your topics are valid, and all of the relationships between
them are working. Changing one topic, image, or piece of metadata may create errors in references that rely on them.
You may not discover these problems all at once. Validate your map to catch all of these kinds of problems. The longer
you wait between validating your maps, the more difficult it may be to detect and correct any errors you find.

Validating a DITA Map

To validate a DITA, follow these steps:

1. In the DITA Maps Manager view, make sure that the tab that holds your root map is selected and that the Root map
selection is set either to the name of your root map or to <current map>.

2. It is a good practice to refresh your DITA map before running the validation process. To do so, select the DITA map
in the DITA Maps Manager view and click File > Refresh (F5).

3. Click the Validate and Check for Completeness button on the DITA Maps Manager toolbar to open the DITA
Map Completeness Check dialog box.

4. If you are using profiling, check the Use DITAVAL filters box and select the appropriate option.
5. Select any other options you want to check.
6. Click Check to run the validation process.

Validation Process

The validation process of a DITA map includes the following:

• Verifies that the file paths of the topic references are valid. For example, if an href attribute points to an invalid
file path, it is reported as an error in the message panel at the bottom of the editor.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1143

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/chunking.html#chunking
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/ditamap-attributes.html

• Validates each referenced topic and map. Each topic file is opened and validated against the appropriate DITA DTD.
If another DITA map is referenced in the main one, the referenced DITA map is verified recursively, applying the
same algorithm as for the main map.

• If errors or warnings are found, they are displayed in a separate message pane at the bottom of the editor and clicking
them takes you to the location of the error or warning in the file where it was found.

DITA Map Completeness Check Dialog Box

The DITA Map Completeness Check dialog box allows you to configure the DITA map validation.

Figure 538: DITA Map Completeness Check Dialog Box

You can configure the validation process with the following options that are available in the DITA Map Completeness
Check dialog box:

This option specifies the level of validation that applies to referenced DITA files:Batch validate referenced
DITA resources

• If the checkbox is left unchecked (default setting), the DITA files will be validated
using the rules defined in the DTD or XML Schema declared in the document.

• If the checkbox is checked, the DITA files will be validated using rules defined
in their associated validation scenario.

Extends the validation of referenced resources to non-DITA files.Check the existence of
non-DITA references
resources

Enable this option if you want to check that remote
referenced binary resources (such as images, movie clips,
ZIP archives) exist at the specified location.

Include remote
resources

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1144

The content of the map is filtered by applying a profiling condition set before
validation. You can choose between the following options:

Use DITAVAL filters

• From the current condition set - The map is filtered using the condition set

currently applied in the DITA Maps Manager view. Clicking the Details icon
opens a topic in the Oxygen XML Editor plugin User Guide that explains how to
create a profiling condition set.

• From all available condition sets - For each available condition set, the map
content is filtered using the condition set before validation.

• From the associated transformation scenario - The filtering condition set is
specified explicitly as a DITAVAL file in the current transformation scenario
associated with the DITA map.

• Other DITAVAL files -For each DITAVAL file from this list, the map content
is filtered using the DITAVAL file before validation. Use the Add or Remove
buttons to configure the list.

Checks for multiple topics with the same ID in the context of the entire map.Check for duplicate topic IDs
within the DITA map context

Checks that all referenced topics are linked in the DITA map.Report links to topics not
referenced in DITA maps

When the profiling attributes of a topic contain values that are not found in parent
topic profiling attributes, the content of the topic is overshadowed when generating
profiled output. This option reports these possible conflicts.

Identify possible conflicts in
profile attribute values

Looks for profiling attributes and values that are not defined in the Profiling /

Conditional Text preferences page (you can click the Profiling Preferences button

Report attributes and values
that conflict with profiling
preferences to open this preferences page). It also checks if profiling attributes defined as

single-value have multiple values set in the searched topics.

Looks for table layout problems. The types of errors that may be reported include:Report table layout problems

• If a row has fewer cells than the number of columns detected.
• For a CALS table, if a cell has a vertical span greater than the available rows count.
• For a CALS table, if the number of colspecs is different than the number of

columns detected from the table cols attribute.
• For a CALS table, if the number of columns detected from the table cols attribute

is different than the number of columns detected in the table structure.
• For a CALS table, if the value of the cols, rowsep, or colsep attributes are

not numeric.
• For a CALS table, if the namest, nameend, or colname attributes point to an

incorrect column name.

Allows you to select a Schematron schema that Oxygen XML Editor plugin uses for
the validation of DITA resources.

Additional schematron checks

Click the Check button to begin the validation process. The options that you choose in this dialog box are preserved
between sessions.

Related information
DITA Maps Manager on page 1118

Working with DITA Topics
DITA is a structured writing format. Structure can have several meanings, all of which are relevant to DITA. This section
includes information about working with DITA topics and the structure.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1145

Information Types
The structure of a piece of content refers to how the words and images are selected and organized to convey information.
One approach to structured writing is to divide content into discrete blocks that contain various types of information,
and then to combine those blocks to form publications. DITA is based on this approach, and encourages the author to
write in discrete blocks called topics. DITA provides three base topic types (concept, task, and reference), a number of
extended topic types, and the capability to create new topic types through specialization.

Text Structure

Every piece of text is made up of certain text structures, such as paragraphs, lists, and tables. DITA supports text structures
through XML elements such as p, ol, and simpletable. The DITA markup specifies the text structures, but not how
they will be published in various types of media. The formatting of text structures is determined by the output
transformations and may be customized to meet the needs of various organizations and type of media.

Semantic Structure
Semantic structure is structure that shows the meaning of things. For example:

• A task element specifies that a block of content contains the description of a task
• A codeblock element specifies that a block of text consists of programming code
• A uicontrol element specifies that a word is the name of a control in a computer GUI
• The platform profiling attribute specifies that a particular piece of content applies only to certain computing

platforms

Semantic structure is important in a structured writing system because it allows both authors and readers to find content,
and it allows processing scripts to process various pieces of content differently, based on their role or meaning. This
can be used to do things such as filtering content related to a specific product so that you can produce documentation
on many products from the same source.

There can be many forms of semantics captured in a document set. DITA captures some of these in topics and some of
them in maps. If you are using a CMS, it may capture additional semantics.

Document Semantics

Documents consist of elements that may be made up of the same basic text structures as the rest of the text, but have a
special function within the structure of the document. For instance, both tables of contents and indexes are lists, but they
play a special role in the document. Chapters and sections are just sequences of paragraphs and other text structures, yet
they are meaningful in the structure of the document. In some cases, such as indexes and tables of contents, these
structures can be generated from semantic information embedded in the source. For instance, a table of contents can be
built by reading the titles of chapters and sections. DITA provides elements to describe common document semantics.

Subject Matter Semantics

In some cases, the semantics of the content relate directly to the subject matter that the content describes. For instance,
DITA supports tags that allow you to mark a piece of text as the name of a window in a software application (wintitle),
or to mark a piece of text as applying only to a particular product.

Audience Semantics

In some cases, the semantics of the content relate to the audience that it is addressed to. For instance, a topic might be
addressed to a particular role, or to a person with a particular level of experience. DITA provides an audience element
to capture audience metadata.

Creating Topic Structures

Oxygen XML Editor plugin provides a number of tools to help you create topic structures:

• Content Completion Assistant - Shows you which elements can be created at the current position.
• Model view - Shows you the complete structure supported by the current element.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1146

http://docs.oasis-open.org/dita/v1.2/os/spec/DITA1.2-spec.html

• Outline view - Shows you the current structure of your document.
• DITA toolbar - Helps you to easily insert many common structures.

Related information
Your First DITA Topic on page 23

Creating a New DITA Topic

The basic building block for DITA information is the DITA topic. DITA provides a variety of specialized topic types,
the most common of which are:

• Concept - For general, conceptual information such as a description of a product or feature.
• Task - For procedural information such as how to use a dialog box.
• Reference - For reference information.
• Topic - The base topic type from which all other topic types are specialized. Typically, it is used when a more

specialized topic type is inappropriate.

To add a new topic to a DITA map, follow these steps:

1. Select a node of a map open in the DITA Maps Manager View.

2. To insert the topic as a child of the selected node, right-click that node and choose Append Child > New. To insert
the topic as a sibling to the current node, choose Insert After > New.
A dialog box is displayed that allows you to create a new DITA topic using various types of DITA file templates
and provides some options that help you to configure the new topic.

Figure 539: New DITA Topic Dialog Box

Note: The templates that appear in this dialog box include all templates that have an associated
.properties file and the type property is set to dita, as well as templates that do not have an associated
properties file or the type property is not defined. It will also include custom templates that you create
using the procedures presented in the Creating New Document Templates on page 208 topic.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1147

3. Select the appropriate DITA topic type from the list templates. You can use the filter text field to search for a template.

4. You can use the following options to preconfigure some topic creation tasks:

a) Title - The text entered in this field will be used as the value of the root title element for the new topic. The
title is set only if the selected template contains a root with a title element as its first child.

b) Use the title to generate the file name - Select this option to use the text entered in the Title field to automatically
generate a file name. The generated name will transform spaces into underscores (_), all illegal characters will
be removed, and all upper case characters changed to lower case (the generated name can be seen in the Save as
field).

c) Save as - Select a file name and path in this field.
d) Use the file name as the value of the root ID attribute - Select this option to use the file name (without the file

extension) in the Save as field as the value of the root id attribute for the new topic.

5. Click the Create button.
A reference (topicref) to the new topic is added to the current map and the new topic is opened in the editor.

Related information
Your First DITA Topic on page 23

Editing DITA Topics

Oxygen XML Editor plugin provides a number of features to help you edit DITA topics. A DITA topic is an XML
document, thus all the editing features that Oxygen XML Editor plugin provides for editing XML documents also apply
to DITA topics. Oxygen XML Editor plugin also provides extensive additional support specifically for DITA.

Opening a DITA Topic
There are several ways to open a DITA topic in the XML editor. Use any of the following methods to open a topic:

• Double-click the topic in the DITA Maps Manager (or right-click the topic and select Open).
• Double-click the file in the Navigator view (or right-click the file and select Open).

• If you have a DITA map opened in the XML editor, you can click the icons to the left of the topic.
• Drag a DITA file from your system browser and drop it in the XML editor.

Visual Editing in Author Mode

DITA is an XML format, although you do not have to write raw XML to create and edit DITA topics. Oxygen XML
Editor plugin provides a graphical view of your topics in Author mode. Your topics will likely open in Author mode
by default, so this is the first view you will see when you open or edit a DITA topic. If your topic does not open in
Author mode, just click Author at the bottom left of the editor window to switch to this mode.

Author mode presents a graphical view of the document you are editing, similar to the view you would see in a word
processor. However, there are some differences, including:

• Author mode is not a WYSIWYG view. It does not show you exactly what your content will look like when printed
or displayed on-screen. The appearance of your output is determined by the DITA publishing process, and your
organization may have modified that process to change how the output is displayed. Oxygen XML Editor plugin has
no way of determining what your final output will look like or where line breaks or page breaks will fall. Treat
Author mode as a friendly visual editing environment, not a faithful preview of your output.

• Your document is still an XML document. Author mode creates a visual representation of your document by applying
a CSS stylesheet to the XML. You can see the XML at any time by switching to Text mode. You, or someone in
your organization, can change how the Author view looks by changing the CSS stylesheet or providing an alternate
stylesheet.

• Your aim in editing a DITA document is not to make it look right, but to create a complete and correct DITA XML
document. Author mode keeps you informed of the correctness of your content by highlighting XML errors in the
text and showing you the current status in a box at the top right of the editor window. Green means that your document
is valid, yellow means valid with warnings, and red means invalid. Warnings and errors are displayed when you
place the cursor on the error location.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1148

• Your XML elements may have attributes set on them. Conventionally, attributes are used to contain metadata that
is not displayed to the reader. By default, attributes are not displayed in the Author view (though there are some
exceptions) and cannot be edited directly in the Author view (though in some cases the CSS that drives the display
may use form controls to let you edit attributes directly). To edit the attributes of an element, place your cursor on
the element and press Alt+Enter to bring up the attribute editor. Alternatively, you can use the Attributes view to
edit attributes.

Tip: You can select Hints from the Styles drop-down menu (available on the Author Styles toolbar) to display
tooltips throughout the DITA document that offers additional information to help you with the DITA structure.
For more information, see the Selecting and Combining Multiple CSS Styles section.

Content Completion Assistance
Since it is a structured format, DITA only allows certain elements in certain places. The set of elements allowed differ
from one DITA topic type to another (this is what makes one topic type different from another). To help you figure out
which elements you can add in any given place and help you understand what they mean, Oxygen XML Editor plugin
has a number of content completion assistance features.

• The Enter key: In Author mode, the Enter key does not create line breaks, it brings up the Content Completion
Assistant to help you enter a new element. In XML, you do not use line breaks to separate paragraphs. You create
paragraphs by creating paragraph elements (element p in DITA) and tools insert the line breaks in the output and
on-screen.

Figure 540: Content Completion Assistant

The Content Completion Assistant not only suggests new elements you can add. If you press Enter at the end of
a block element (such as a paragraph) it suggests creating a new element of the same type. If you press Enter in the
middle of a block element, it suggests splitting that element into two elements.

A useful consequence of this behavior is that you can create a new paragraph simply by hitting Enter twice (just as
you might in a text editor).

As you highlight an element name, a basic description of the element is displayed. Select the desired element and
press Enter to create it.

To wrap an element around an existing element or piece of text, simply select it and press Enter and use the Content
Completion Assistant to choose the wrapper element.

• The Model view:You can see the entire model of the current element by opening the Model view (Window > Show
View > Model, if the view is not already open). The Model view shows you what type of content the current element
can contain, all the child elements it can contain, all its permitted attributes, and their types.

Tip: You can also select Inline actions from the Styles drop-down menu (available on the Author Styles
toolbar) to display possible elements that are allowed to be inserted at various locations throughout the DITA
document. For more information, see the Selecting and Combining Multiple CSS Styles section.

DITA Editing Actions

A variety of actions are available in the DITA framework to specifically assist you with editing DITA documents. These
various actions are available in the contextual menu, the DITA menu, the DITA (Author Custom Actions) toolbar, or
the Content Completion Assistant.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1149

The DITA toolbar contains buttons for inserting a number of common DITA elements (elements that are found in most
DITA topic types).

If the DITA toolbar is not displayed, right-click anywhere on the toolbar area, select Configure Toolbars, and select
it from the displayed dialog box.

Note: The DITA toolbar contains a list of the most common elements and actions for DITA, such as inserting
an image, creating a link, inserting a content reference, or creating a table. It does not contain a button for
inserting every possible DITA element. For a complete list of elements that you can insert at the current location
in your document, press Enter to open the Content Completion Assistant.

Whenever the current document in the editor is a DITA document, the DITA menu is displayed in the menu bar. It
contains a large number of actions for inserting elements, creating content references and keys, editing DITA documents,
and controlling the display. These actions are specific to DITA and supplement the general editing commands available
for all document types. Many of these actions are also conveniently available in the contextual menu. In addition to the
DITA framework-specific actions, the contextual menu also includes various general Author mode contextual menu
actions.
Related information
Your First DITA Topic on page 23

DITA Author Mode Actions on page 854

Adding Images in DITA Topics

There are several ways to add images to a DITA topic, depending on if you want to create a figure element (with a title
and caption), just insert an image inline, or if you want to use multiple versions of a graphic depending on the situation.
For instance, you might want to use a specific image for each different product version or output media.

Adding an Image Inline

Use the following procedure to add an image inline:

1. Place the cursor in the position you want the graphic to be inserted.

2. Select the Insert Image action. The Insert Image dialog box appears.

Figure 541: Insert Image Dialog Box

3. Configure the options in this dialog box and click Insert.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1150

The Insert Image dialog box includes the following options for inserting images into a DITA document:

Inserts an image element with an href attribute. You can type the URL of the image you want
to insert or use the Browse drop-down menu to select an image using one of the following
options:

URL

• Browse for local file - Displays the Open dialog box to select a local file.

• Browse workspace - Opens a file browser dialog box that allows you to select a file from
the local workspace.

• Browse for remote file - Displays the Open URL dialog box to select a remote file.
• Browse for archived file - Opens the Archive Browser to select a file from an archive.
• Browse Data Source Explorer - Opens the Data Source Explorer to select a file from a

connected data source.
• Search for file - Displays the Find Resource dialog box to search for a file.

You can use the Choose Key Reference button to open the Choose Key dialog box that presents
the list of keys available in the selected root map. Use this dialog box to insert an image element

Keyref

with a keyref attribute. All keys that are presented in the dialog box are gathered from the root
map of the current DITA map. Elements that have the keyref attribute set are displayed as links.
For more information, see the Adding an Image Using a Key Reference on page 1151 section.

Note: If your defined keys are not listed in this dialog box, it is most likely trying to
gather keys from the wrong root map. You can change the root map by using the Change
Root Map link.

Use this text box to insert a title and image element inside a fig element.Figure title

Use this text box to insert an alt element inside the image element.Alternate text

Use this section to configure the Width and Height of the image, or Scale the image. Specifying
a value in these options inserts a width, height, and scale attribute, respectively.

Size

Use the options in this section to insert placement and align attributes into the image element.Layout

Adding an Image in a Figure Element

To add an image in a figure:

1. Add a fig element to your document at the appropriate place.
2. Add a title and/or desc element to the fig element, according to your needs.
3. Add an image element to the fig element.

Note: The fig element has a number of other child elements that may be appropriate to your content. See the
DITA documentation for complete information about the fig element.

Note: The order in which the image, title, and desc content are presented in output is determined by the
output transformation. If you want to change how they are output, you may have to modify the output
transformation, rather than your source content.

Adding an Image Using a Key Reference

If you want to use a different version of the image depending on the situation (for example, screenshots for multiple
platforms or types of output media), you can reference the image using a key reference:

1. Create a DITA map to hold your image keys. You can create one map for each use or create a single map and profile
the key definitions for multiple uses. For instance, you might create one map of images to be used in PDF and one
for images to be used in Web output, or you might use the platform profiling attribute to manage multiple versions
of a screenshot (one for Macintosh and another for the Windows version of your product).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1151

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/fig.html#fig

2. For each image, create a keydef element with the following structure:

<keydef keys="image.test" href="img/test.png" format="png">

Tip: You can easily create a keydef element that targets an image by using the Key Definition action
from the Append Child or Insert After submenus.

3. If you are using profiling, add the alternative keydef elements and the appropriate profiling attributes:

<keydef keys="image.test" href="img/win/test.png" platform="windows" format="png">
<keydef keys="image.test" href="img/mac/test.png" platform="mac" format="png">

Tip: If you create the keydef element using the Key Definition action, you can use the Profiling tab of
the Insert Reference dialog box to easily add profiling attributes to the target.

4. If you are using separate maps, repeat in each map. For instance, if you are using a separate map for images in PDF
output, add a topic ref to that map like this:

<topicref href="images.ditamap" format="ditamap">

5. To insert an image by key, insert an image element and use a keyref attribute to point to the image:

<image keyref="image.test"/>

Tip: You can also use the Keyref section of the Insert Image dialog box to insert a keyref attribute inside
an image element.

Oxygen XML Editor plugin displays the image in Author mode. Which image is displayed depends on the current
profiling set that is applied and which root map is being used to resolve references.

6. Configure your build so that the appropriate image map is included for each output type and/or the appropriate
profiling conditions are applied to each output.

Related information
Image Maps in DITA on page 330

Image Maps in DITA

Oxygen XML Editor plugin includes support for image maps in DITA documents through the use of the imagemap
element. This feature provides an easy way to create hyperlinks in various areas within an image without having to
divide the image into separate image files. The visual Author editing mode includes an Image Map Editor that helps
you to easily create and configure image maps.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1152

Figure 542: Image Map Editor in DITA

Image Map Editor Interface in DITA

The interface of the Image Map Editor consists of the following sections and actions:

Toolbar Use this button to draw a rectangular shape over an area in the image.
You can drag any of the four points to adjust the size and shape of the
rectangle.

New Rectangle

Use this button to draw a circle over an area in the image. You can
drag any of the four points to adjust the size of the circle.New Circle

Use this button to draw a polygon shape over an area in the image.
This actions opens a dialog box that allows you to select the numberNew Polygon

of points for the polygon. You can drag any of the points to adjust the
size and shape of the polygon.

Use this button to create a duplicate of the currently selected shape.
Duplicate

Use this button to delete the currently selected shape.
Delete

Use this button to undo the last action.
Undo

Use this button to redo the last action that was undone.
Redo

Use this button to toggle between showing or hiding the numbers for
the shapes.Show/Hide Numbers

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1153

Use this button to bring the currently selected shape forward to the top
layer.Bring Shape to Front

Use this button to bring the currently selected shape forward one layer.
Bring Shape Forward

Use this button to send the currently selected shape back one layer.
Send Shape Backward

Use this button to send the currently selected shape back to the bottom
layer.Send Shape to Back

Use this drop-down menu to select a color scheme for the lines and
numbers of the shapes.

Color Chooser

Use this slider to zoom the image in or out in the main image pane.Zoom Slider

This main image pane is where you work with shapes to add hyperlinks to multiple areas within an image.
Use the mouse to move shapes around in the image to the desired area and drag the points on a selected

Image
Pane

shape to adjust its size and shape. It is easy to see which shape is selected in this image pane because the
border of the selected shape changes from a solid line to a dotted line.

Area
Properties

Allows you to choose the target resource that you want the selected area (shape) to be linked
to. You can enter the path to the target in the text field but the easiest way to select a target
is to use the Link drop-down menu to the right of the text field. You can choose between

Target

the following types of links: Cross Reference, File Reference, or Web Link. All three types
will open a dialog box that allows you to define the target resource. This linking process is
similar to the normal process of inserting links in DITA by using the identical Link
drop-down menu from the main toolbar.

When you click OK to finalize your changes in the Image Map Editor, an xref element
will be inserted with either an href attribute or a keyref attribute. Additional attributes
may also be inserted and their values depend on the target and the type of link. For details
about the three types of links and their dialog boxes, see Inserting a Link in Oxygen XML
Editor plugin on page 1181.

You can enter an optional description for the selected area (shape) that will be displayed in
the Image Map Details section in Author mode and as a tooltip message when the end user
hovers over the hyperlink in the output.

Description

How to Create an Image Map in DITA

To create an image map on an existing image in a DITA document, follow these steps:

1. Right-click the image and select Image Map Editor.

Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting one of the shape buttons (New Rectangle, New Circle, or New
Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form.
You can use the other buttons on the toolbar to adjust its layer and color, or to perform other editing actions.

4. With the shape selected, use one of the linking options in the Link drop-down menu to select a target resource
(or enter its path in the Target text field).

5. (Optional) Enter a Description for the selected area (shape).
6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.
7. When you are finished creating hyperlinks, click OK to process your changes.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1154

Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In
Author mode, the image map is now rendered over the image. If the image includes an alt element, its value will be
displayed under the image. The following two buttons will also now be available under the image in Author mode:

• Image Map Editor - Click this button to open the Image Map Editor.
• Image Map Details - Click this button to expand a section that displays the details of the image map and allows you

to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this
section, you also need to add or remove coordinates to match the requirements of the new shape.

Figure 543: Image Map Details

How to Edit an Existing Image Map in DITA

To edit an existing image map, right-click the image and select Image Map Editor (or click the Image Map Editor
button below the image). This opens the Image Map Editor where you can make changes to the image map with a
visual editor. You can also make changes to the XML structure of the image map in the Text editing mode.

You can also click the Image Map Details button below the image to expand a section that displays the details of the
image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change
the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown

inside each shape represent its layer (if the numbers are not displayed, click the Show/Hide Numbers button on the
Image Map Editor toolbar). To change the layer order for a shape, use the layer buttons on the Image Map Editor

toolbar (, , ,).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display
a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely
inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

Warning: PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains
circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might
affect overlaps in the output.

Related information
DITA 'imagemap' Element Specifications

Adding Images in DITA Topics on page 1150

Adding Tables in DITA Topics

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a DITA topic. By
default, DITA supports three types of tables:

• DITA Simple table model - This is the most commonly used model for basic tables.
• OASIS Exchange Table Model (a subset of the CALS table model) - This is used for more advanced functionality.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1155

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/imagemap.html#imagemap

• DITA Choice table model - This is used within a step in a DITA task document to describe a series of optional choices
that a user must make before proceeding.

If you are using a specialized DITA vocabulary, it may contain specialized versions of these table models.

Since DITA is a structured format, you can only insert a table in places in the structure of a topic where tables are
allowed. The Oxygen XML Editor plugin toolbar provides support for entering and editing tables. It also helps to indicate
where you are allowed to insert a table or its components by disabling the appropriate buttons.

Inserting a Simple Table Model

To insert a Simple DITA table, select the Insert Table action on the toolbar or from the contextual menu (or the
Table submenu from the DITA menu). The Insert Table dialog box appears. Select Simple for the table Model.

Figure 544: Insert Table Dialog Box - Simple Model

The dialog box allows you to configure the following options when you select the Simple table model:

If this checkbox is enabled, you can specify a title for your table in the adjacent text box.Title

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate
table header

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose
one of the following properties for the column width:

Column
widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a relcolwidth attribute with the values listed as the number of
shares followed by an asterisk. The value of the shares are totaled and rendered as a percent. For
example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When
entering content into a cell in one column, the width proportions of the other columns are maintained.
If you change the width by dragging a column in Author mode, the values of the relcolwidth
attribute are automatically changed accordingly. By default, when you insert, drag and drop, or
copy/paste a column, the value of the relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width. Entering
content into a cell changes the rendered width dynamically. If you change the width by dragging
a column in Author mode, a dialog box will be displayed that asks you if you want to switch to
proportional or fixed column widths.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1156

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified locally

are preserved. You can choose this option to override this behavior and pull the value of this
particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

When you click Insert, a simple table is inserted into your document at the current cursor position.

Inserting a CALS Table Model (OASIS Exchange Table)

To insert an OASIS Exchange Table (CALS), select the Insert Table action on the toolbar or from the contextual
menu (or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select CALS for the table
Model. This model allows you to configure more properties than the Simple model.

Figure 545: Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

If this checkbox is enabled, you can specify a title for your table in the adjacent text box.Title

Allows you to choose the number of Rows and Columns for the table.Table Size

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate table
header

Allows you to specify the type of properties for column widths (colwidth attribute). You can
choose one of the following properties for the column width:

Column widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a colwidth attribute with the values listed as the number of shares
followed by an asterisk. The value of the shares are totaled and rendered as a percent. For example,

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1157

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content
into a cell in one column, the width proportions of the other columns are maintained. If you change
the width by dragging a column in Author mode, the values of the colwidth attribute are
automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a
column, the value of the colwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width (colwidth
attribute). Entering content into a cell changes the rendered width dynamically. If you change the
width by dragging a column in Author mode, a dialog box will be displayed that asks you if you
want to switch to proportional or fixed column widths.

• fixed - The width is specified in fixed units. By default, the pt unit is inserted, but you can change
the units in the colspecs (column specifications) section above the table or in Text mode. The
following units are allowed: pt (points), cm (centimeters), mm (millimeters), pi (picas), in
(inches).

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the value of
this particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Specifies whether or not to include row separators (rowsep attribute). The allowed values are: 0
(no separator) and 1 (include separators).

Row separator

Specifies whether or not to include column separators (colsep attribute). The allowed values are:
0 (no separator) and 1 (include separators).

Column
separator

Specifies the alignment of the text within the table (align attribute). The allowed values are:Alignment

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you will only see
it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char attribute for
alignment.

• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified
locally are preserved. You can choose this option to override this behavior and pull the value of
this particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

When you click Insert, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the colspecs (column specifications) of your table. Click
the link to open the controls that allow you to adjust various column properties. Although they appear as part of the
Author mode, the colspecs link and its controls will not appear in your output. They are just there to make it easier
to adjust how the columns of your table are formatted.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1158

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

Figure 546: CALS Table in DITA

Inserting a Choice Table Model

To insert a Choice table within a step element in a DITA task, select the Insert Table action on the toolbar or in
the Insert submenu from the contextual menu (or the Table submenu from the DITA menu), or select choicetable
from the Content Completion Assistant. The Insert Table dialog box appears. Select Simple for the table Model.

Figure 547: Insert Table Dialog Box - Choice Model

The dialog box allows you to configure the following options when you insert a Choice table model within a DITA task:

Allows you to choose the number of Rows and Columns for the table.Table Size

If enabled, an extra row will be inserted at the top of the table to be used as the table header.Generate table
header

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose
one of the following properties for the column width:

Column
widths

• proportional - The width is specified in proportional (relative) units of measure. The proportion
of the column is specified in a relcolwidth attribute with the values listed as the number of
shares followed by an asterisk. The value of the shares are totaled and rendered as a percent. For
example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When
entering content into a cell in one column, the width proportions of the other columns are
maintained. If you change the width by dragging a column in Author mode, the values of the
relcolwidth attribute are automatically changed accordingly. By default, when you insert,
drag and drop, or copy/paste a column, the value of the relcolwidth attribute is 1*.

• dynamic - If you choose this option, the columns are created without a specified width. Entering
content into a cell changes the rendered width dynamically. If you change the width by dragging
a column in Author mode, a dialog box will be displayed that asks you if you want to switch to
proportional or fixed column widths.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1159

Allows you to specify a value for the frame attribute. It is used to specify where a border should
appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes specified

locally are preserved. You can choose this option to override this behavior and pull the value of
this particular attribute from the conref target. For more information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

When you click Insert, a Choice table is inserted into your task document at the current cursor position (within a step
element).

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add
or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the
formatting of your tables by using the Attributes view (Window > Show View > Attributes). See the DITA documentation
for a full explanation of these attributes.

You can also use the Table Properties (Ctrl + T (Command + T on OS X)) action from the toolbar or contextual
menu (or DITA menu) to modify many of the properties of the table.

Also, remember that underneath the visual representation, both table models are really just XML, and, if necessary, you
can edit the XML directly by switching to Text mode.

Related information
Editing Tables in Author Mode on page 305

DITA Table Layouts

Depending on the context, DITA accepts the following table layouts:

• CALS table model
• Simple table model
• Choice table model

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing a CALS
table model from the Insert Table dialog box, you have access to more configurable properties. The layout of a CALS
table includes a colspecs section that allows you to easily configure some properties without opening the Table Properties
dialog box. For example, you can change the value of column widths (colwidth attribute) or the text alignment
(align attribute). Although they appear as part of the Author mode, the colspecs link and its controls will not appear
in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1160

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/table2.html#table2

Figure 548: CALS Table in DITA

Simple Table Model Layout

When choosing a Simple table model from the Insert Table dialog box, you only have access to configure a few
properties. For example, you can choose the number of rows and columns, specify values for frames, and choose from
a few types of properties for the column width. The layout of this type of table is very simple, as the name suggests.

Figure 549: DITA Simple Table

Choice Table Model Layout

A Choice table model is used within a step in a DITA task document to describe a series of optional choices that a user
must make before proceeding. The choicetable element is a useful device for documenting options within a single
step of a task. You can insert Choice tables in DITA tasks either by selecting choicetable from the Content

Completion Assistant (within a step element) or by using the Insert Table action on the toolbar or from the
contextual menu). The options and layout of a Choice table is similar to the Simple table model.

Figure 550: DITA Choice Table

Table Validation in DITA

Oxygen XML Editor plugin reports table layout problems that are detected in manual or automatic validations. When

you validate a DITA map with the Validate and Check for Completeness action, if the Report table layout problems
option is enabled in the DITA Map Completeness Check dialog box, table layout problems will be reported in the
validation results. The types of errors that may be reported for DITA table layout problems include:

CALS Tables

• A row has fewer cells than the number of columns detected from the table cols attribute.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1161

• A row has more cells than the number of columns detected from the table cols attribute.
• A cell has a vertical span greater than the available rows count.
• The number of colspecs is different than the number of columns detected from the table cols attribute.
• The number of columns detected from the table cols attribute is different than the number of columns detected in

the table structure.
• The value of the cols, rowsep, or colsep attributes are not numeric.
• The namest, nameend, or colname attributes point to an incorrect column name.

Simple or Choice Tables

• A row has fewer cells than the number of table columns.

Editing Table Properties in DITA

To customize the look of a table in DITA, place the cursor anywhere in a table and invoke the Table Properties
(Ctrl + T (Command + T on OS X)) action from the toolbar or the Table submenu of the contextual menu (or DITA
menu). This opens the Table properties dialog box.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available
depend on the context and location within the table in which the action was invoked.

Note: Some properties allow the following special values, depending on the context and the current properties
or values:

• <not set> - Use this value if you want to remove a property.
• <preserve> - If you select multiple elements that have the same property set to different values, you can

choose this value to keep the values that are already set. In some cases it can also be used to keep the current
non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.
• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of

the tab tells you how many rows will be affected.
• Column tab - The options in this tab apply to the current column or selection of multiple columns. A message at the

bottom of the tab tells you how many columns will be affected.
• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of

the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1162

Figure 551:Table Properties Dialog Box with Cell Tab Selected (DITA CALS Table Model)

The options in the four tabs include the following:

Specifies the horizontal alignment of text within the current table/column/cell or selection
of multiple columns/cells (align attribute). The allowed values are as follows:

Horizontal alignment
(Available in the Table,
Column, and Cell tabs)

• left - Aligns the text to a left position.
• right - Aligns the text to a right position.
• center - Aligns the text to a centered position.
• justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you
will only see it in the output.

• char - Aligns text to the leftmost occurrence of the value specified on the char
attribute for alignment.

• -dita-use-conref-target - Normally, when using a conref, the values of attributes
specified locally are preserved. You can choose this option to override this behavior
and pull the value of this particular attribute from the conref target. For more
information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Specifies the vertical alignment of text within the current row/cell or selection of multiple
rows/cells (valign attribute). The allowed values are as follows:

Vertical alignment
(Available in the Row and
Cell tabs)

• top - Aligns the text at the top of the cell.
• middle - Aligns the text in a vertically centered position.
• bottom - Aligns the text at the bottom of the cell.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes

specified locally are preserved. You can choose this option to override this behavior
and pull the value of this particular attribute from the conref target. For more
information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1163

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

Specifies whether or not to include column separators (colsep attribute). The allowed
values are: 0 (no separator) and 1 (include separators).

Column separator
(Available in the Table,
Column, and Cell tabs)

Specifies whether or not to include row separators (rowsep attribute). The allowed
values are: 0 (no separator) and 1 (include separators).

Row separator (Available
in all four tabs)

Allows you to specify a value for the frame attribute. It is used to specify where a border
should appear in the table. The allowed values are as follows:

Frame (Available only in
the Table tab)

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes

specified locally are preserved. You can choose this option to override this behavior
and pull the value of this particular attribute from the conref target. For more
information, see
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Edit Table Properties for a Simple or Choice Table Model
For a Simple or Choice table model, the Table properties dialog box only allows you to edit a few options.

Table tab Allows you to specify a value for the frame attribute. It is used to specify where a border
should appear in the table. The allowed values are as follows:

Frame

• none - No border will be added.
• all - A border will be added to all frames.
• top - A border will be added to the top frame.
• topbot - A border will be added to the top and bottom frames.
• bottom - A border will be added to the bottom frame.
• sides - A border will be added to the side frames.
• -dita-use-conref-target - Normally, when using a conref, the values of attributes

specified locally are preserved. You can choose this option to override this behavior and
pull the value of this particular attribute from the conref target. For more information,
see http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html.

Row tab Allows you change the row to a body or header type of row.Row type

Related information
Adding Tables in DITA Topics on page 314

Editing Tables in Author Mode on page 305

Adding MathML Equations in DITA Topics

You can add MathML equations in a DITA document using one of the following methods:

• Embed MathML directly into a DITA topic. You can start with the Framework templates / DITA / topic / Composite
with MathML document template, available from the New file action wizard.

• Reference an external MathML file as an image, using the Insert Image action that is available on the DITA
toolbar (or from the DITA > Insert menu).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1164

http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html
http://docs.oasis-open.org/dita/v1.1/OS/langspec/common/ditauseconreftarget.html

Note: MathML equations contained in DITA topics can only be published out-of-the-box in PDF using the
DITA PDF transformation scenario. For other publishing formats, you must employ additional customizations
for handling MathML content.

Working with Keys
DITA uses keys to insert content that may have different values in various circumstances. Keys provide a way to reference
something indirectly. This can make it easier to manage and to reuse content in a number of ways.

You can think of keys as like renting a post office box. Instead of the mail going directly from the sender to your house,
it now goes to the post office box. You then go to the post office box and bring the mail back to your house. If you move
to a new house, your mail still gets to you because it comes to the same post office box. You do not have to send change
of address cards to all the people who send you mail. Your mailbox address is the key that makes sure your mail always
reaches you, even if you move.

Similarly, if you use keys in your content to reference other content, you do not have to update the source content to
change the value of the key or what it points to. You just change the definition of the key.

Using Keys for Values

You can use keys to represent values that may vary depending on the type of output. For instance, you may have several
products that share a common feature. When you want to describe that feature, you need a way to insert the name of the
product, even though that name is different depending on which product the feature description is being used for. For
more information, see Working with Variable Text in DITA on page 1178.

Assigning Keys to Topics

You can assign a key to a topic and use that key to reference that topic for various purposes, such as reuse or linking.
As always, keys are defined in maps, so the key definition is done using the keys attribute of the topicref element:

<topicref href="quick-heat.dita" keys="feature.quick-heat"/>

You can also assign keys to a topic (and insert the topicref element in its DITA map) by using the Keys tab in the
Edit Properties dialog box. In the DITA Maps Manager, invoke the contextual menu on the topic for which you want

to assign a key and select Edit Properties. Go to the Keys tab and enter the name of the key in the Define keys field.

Once a key is assigned to a topic, you can use it to reference that topic for various purposes:

• You can create a link to it using <xref keyref="feature.quick-heat"/>. This allows you to change
the target of the link by changing the topic that is pointed to by the key (for example, by profiling).

• You can use it in a map to create a reference to a topic by key: <topicref keyref="feature.quick-heat".
This allows you to change which topic is inserted in the map by the build, by changing the topic that is pointed to
by the key.

• You can use it to insert a content reference. In this case, the content reference uses the key to locate the topic to pull
content from. It uses a conkeyref attribute: <procedure
conkeyref="feature.quick-heat/preheat-procedure"/>. In this example, feature.quick-heat
is the key, and preheat-procedure is the id of a procedure within the topic for that key. Using this mechanism,
you could have multiple versions of the preheat procedure in various topics and control which one is inserted by
changing the topic that is pointed to by the key.

Assigning Keys to Graphics

You can assign a key to an image (using a map to point to the image file) and insert the image using the key.

Related information
Inserting and Defining Keys in DITA Maps on page 1136

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1165

Reusing DITA Content
Reusing content is one of the key features of DITA. DITA provides several methods for reusing content. Oxygen XML
Editor plugin provides support for each of these methods.

Reusing Topics in DITA Maps

A DITA topic does not belong to any one publication. You add a DITA topic to a publication by referencing it in a map.
You can reference the same topic in multiple maps.

Reusing Content with References and Keys

DITA allows you to reuse content by referencing it in another topic. DITA provides two mechanisms for including
content by reference: conref and conkeyref. A conref creates a direct reference to a specific element of another
topic. A conkeyref creates a reference to a key, which then points to a specific element in another topic. The advantage
of using a conkeyref is that you can change the element that is included by changing the key reference. For example,
since keys are defined in maps, if you include a topic in multiple maps, you can use a different key reference in each
map.

Oxygen XML Editor plugin provides support for both conref and conkeyref mechanisms.

While the conref and conkeyref mechanisms can be used to reference any content element, it is considered best
practice to only conref or conkeyref content that is specifically set and managed as reusable content. This practice helps
reduce expensive errors, such as an author accidentally deleting the source element that other topics are including by
conref. Oxygen XML Editor plugin can help you create a reusable component from your current content.

Reusing Content with Reusable Components
DITA allows you to select content in a topic, create a reusable component from it and reference that component in other
locations. Each reusable component is created as a separate file. Anytime the content needs to be edited, you only need
to update it in the component file and all the locations in your topics that reference it will also be updated. This can help
you to maintain continuity and accuracy throughout your documents.

Reusing Content with Variables

DITA allows you to replace the content of certain elements with a value that is pointed to by a key. This mechanism
effectively means that you can create variables in your content, which you can then create multiple outputs by changing
the value that the key points to. This is done by profiling the definition of the key value, or by substituting another map
with a different key value.

Related information
Working with Keys on page 1165

Reusing DITA Topics in Multiple Maps

You can reuse a DITA topic simply by including it in multiple maps (or submaps) using the following procedure:

1. To create a new map, select File > New > Other > Oxygen XML Editor plugin, or click the New button on
the toolbar, select New from Templates, go to Framework templates > DITA Map, and choose the appropriate
type of map.

2. Add existing topics to the new map by dragging and dropping them from the Project view or the file system (or
right-click the map icon, or on a topic already in the map, and select Append child or Insert After).

3. If your topics use key references, set up the appropriate key definitions in your new map. You can set the keys when

you add the topics, or afterwards by right-clicking the topic in the DITA Maps Manager, selecting Edit Properties,
and defining them in the Keys tab.

4. If you want to define relationships between topics, other than those defined in the topics themselves, add a relationship
table to your map or to a separate map linked to your main map.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1166

5. When you have finished adding topics, check that your map is complete and that all topic links and keys resolve

correctly. To do this validation, click the Validate and Check for Completeness action on the toolbar in the
DITA Maps Manager.

Working with Content References

The DITA conref feature (short for content reference) lets you insert a piece of source content by referencing it from
its source. When you need to update that content, you only need to do it in one place.

There are several strategies for managing content references:

• Reusable components - With this strategy, you create a new file for each piece of content that you want to reuse and
you insert references from the content of the reusable component files. For example, suppose that you have a disclaimer
that needs to be included in certain sections of your documentation. You can create a reusable component that contains
your disclaimer and reuse it as often as you need to. If the disclaimer ever needed to be updated, you only have to
edit it in one file.

• Single-source content references - You may prefer to keep many pieces of reusable content in one file. For example,
you might want to create a single file that contains all the actions that are available in various menus or toolbars for
your software application. Then, wherever you need to describe or display an action in your documentation, you can
reuse content from that single file by inserting content references. This strategy requires more setup than reusable
components, but might make it easier to centrally managing the reused content and it allows for more flexibility in
the XML structure of the reusable content.

• Arbitrary content references - Although it is not recommended, you can create content references amongst topics
without storing the reusable content in components or a single file. This strategy might make it difficult to manage
content that is reused and to maintain continuity and accuracy, since you may not have any indication that content
you are editing is reused elsewhere.

Oxygen XML Editor plugin creates a reference to the external content by adding a conref attribute to an element in
the local document. The conref attribute defines a link to the referenced content, made up of a path to the file and the
topic ID within the file. The path may also reference a specific element ID within the topic. Referenced content is not
physically copied to the referencing file. However, by default Oxygen XML Editor plugin displays it in Author mode
as if it is there in the referencing file. If you do not want referenced content displayed, open the Preferences dialog box
, go to Editor > Edit modes > Author, and disable the Display referenced content option.

Note: A reference also displays tracked changes and comments that are included in the source fragment. To
edit these comments (or accept/reject changes) right-click the comment or tracked change and select Edit
Reference.

Tip: To search for references made through a direct content references, use the Search References action from
the contextual menu.

Related information
Working with Reusable Components on page 1177

Working with Keys on page 1165

Working with the Conref Push Mechanism on page 1175

Creating a DITA Content Reference

DITA Content Reference

A DITA content reference, or conref, is one of the main content reuse features of DITA. It is a mechanism for re-using
the same content in multiple topics (or even in multiple locations within the same topic).

For a conref to be created, the source content must have an id attribute that the conref can reference. Therefore,
creating a conref requires that you add an id to the content to be reused before inserting a conref into the topic
that reuses the referenced content.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1167

Assigning an ID to the Referenced Content
To add an id to a DITA element in a topic, place the cursor on the element and select Edit Attributes from the
contextual menu to open the in-place attribute editor. Enter id as the Name of the attribute and a value of your choice
in the Value field. You can also use the Attributes view to enter a value in the id attribute.

Note: The element may already have an id, since in some cases Oxygen XML Editor plugin automatically
generates an id value when the id attribute is created.

Creating a Content Reference

To create a content reference (conref), follow these steps:

1. Make sure the element you want to reference has an id assigned to it.
2. In Author mode, place the cursor at the location where you want the reused content to be inserted.

3. Select the Reuse Content action on the main toolbar (or from the DITA menu or Reuse submenu of the contextual
menu). The Reuse Content dialog box is displayed.

4. In the Location field of the Reuse Content dialog box, select the topic that contains the element you want to reference.
The elements that you can reference are presented in a table.

5. Select the Target ID of the element (or elements) from which you want to insert the content, and verify the content
in the Preview pane. The id value of the element that you select is automatically added to the Reference to (conref)
field.

6. Make any other selections you need in the Reuse Content dialog box. If you select multiple elements, the Expand
to (conrefend) field is automatically filled with the id value of the last element in your selection.

7. Click Insert or Insert and close to create the content reference.

Using Copy/Paste Actions to Create a Content Reference

Oxygen XML Editor plugin also includes support for creating content references with simple copy/paste actions. The
copied content must be an entire DITA XML element with an ID attribute. Also, the location in the document where
you paste the element must be valid, although as long as the Smart paste and drag and drop option is enabled in the
Schema Aware preferences page, if you try to paste it in an invalid location, Oxygen XML Editor plugin will attempt
to place it in a valid location, and may prompt you with one or more choices for where to place it.

To create a content reference (conref) using copy/paste actions, follow these steps:

1. Copy an entire DITA element that has an ID attribute assigned to it.
2. Place the cursor at a location where the copied element will be valid.

3. Select the Paste as Content Reference action from the Paste Special submenu from the contextual menu.

Other Ways to Reuse Content

An alternate way to reuse content is to use the Oxygen XML Editor plugin Create Reusable Component and Insert
Reusable Component actions (available in the DITA menu and the Reuse submenu of the contextual menu). They
handle the details of creating an id and conref and creates reusable component files, separate from your normal content
files. This can help you manage your reusable content more effectively.

You can also insert reusable content using content key references. This may also make reusable content easier to manage,
depending on your particular situation and needs.

Related information
Reuse Content Dialog Box on page 1170

Working with Reusable Components on page 1177

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1168

Creating a DITA Content Key Reference

DITA Content Key Reference

A DITA content key reference, or conkeyref, is a mechanism for inserting a piece of content from one topic into
another. It is a version of the DITA content reference mechanism that uses keys to locate the content to reuse rather than
direct references to topics that contain reused content.

As with a conref, a conkeyref requires that the element to be reused has an id attribute. It also requires the topic that
contains the reusable content to be assigned a key in a map. As with all uses of keys, you can substitute multiple maps
or use profiling to create multiple definitions of keys in a single map. This allows the same conkeyref to pull in
content from various sources, depending on how your build is configured. This can make it easier to create and manage
sophisticated content reuse scenarios.

Creating a Content Key Reference

To create a content key reference (conkeyref), follow these steps:

1. Make sure the topic that contains the reusable content is assigned a key in the DITA map and the element you want
to reference has an id assigned to it.

2. In Author mode, place the cursor at the location where you want the reused content to be inserted.

3. Select Reuse Content on the main toolbar (or from the DITA menu or Reuse submenu of the contextual menu).
The Reuse Content dialog box is displayed.

4. Select the Key radio button for the content source and use the Choose Key Reference button to select the key
for the topic that contains the reusable content (you can also select one from the drop-down list in the Key field).
The elements that you can reference from the source are presented in the table in the middle of the Reuse Content
dialog box.

5. Select the Target ID of the element (or elements) that you want to insert, and verify the content in the Preview pane.
The id value of the element that you select is automatically added to the Reference to (conkeyref) field.

6. Make any other selections you need in the Reuse Content dialog box. If you select multiple elements, the Expand
to (conrefend) field is automatically filled with the id value of the last element in your selection.

7. Click Insert or Insert and close to create the content reference.

Using Copy/Paste Actions to Create a Content Key Reference

Oxygen XML Editor plugin also includes support for creating content key references with simple copy/paste actions.
When the DITA content is processed, the key references are resolved using key definitions from DITA maps. The copied
content must be an entire DITA XML element with an ID attribute and the topic that contains the reusable content must
have a key assigned in a DITA map. Also, the location in the document where you paste the element must be valid,
although as long as the Smart paste and drag and drop option is enabled in the Schema Aware preferences page, if
you try to paste it in an invalid location, Oxygen XML Editor plugin will attempt to place it in a valid location, and may
prompt you with one or more choices for where to place it.

To create a content key reference (conkeyref) using copy/paste actions, follow these steps:

1. In the DITA Maps Manager view, make sure that the Root map combo box points to the correct map that stores
the keys.

2. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click
the topic with its parent map opened in the DITA Maps Manager, select Edit Properties, and enter a value in the
Keys field.

3. In a topic with an assigned key, copy an entire DITA element that has an ID attribute assigned to it.
4. Place the cursor at a location where the copied element will be valid.

5. Select the Paste as Content Key Reference action from the Paste Special submenu from the contextual menu.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1169

Editing DITA Content References

Oxygen XML Editor plugin also includes some actions that allows you to quickly edit existing content references. When
the element that contains a content reference (conref or conkeyref) is selected, the following actions are available
in the DITA menu and the Reuse submenu of the contextual menu:

This action is available for elements with a conref or conkeyref attribute. it opens
the Edit Content Reference dialog box that allows you to edit the source location (or

Edit Content Reference

key) and source element of a content reference (or content key reference), and the
reference details (conref/conkeyref and conrefend attributes). See the Reuse
Content Dialog Box on page 1170 topic for more information.

Replaces the referenced fragment (conref or conkeyref) at the cursor position with
its content. This action is useful if you want to make changes to the content in the
currently edited document without changing the referenced fragment in its source location.

Replace Reference with
content

Removes the content reference (conref or conkeyref) inside the element at the
cursor position.

Remove Content Reference

Reuse Content Dialog Box

The Reuse Content dialog box provides a mechanism for reusing content fragments. DITA conref, conkeyref,
and keyref attributes can be used to insert references to reusable content. The conref attribute stores a reference to
another element and is processed to replace the referencing element with the referenced element. The conkeyref
attribute uses keys to locate the content to reuse rather than direct references to the topic that contains the reusable
content. The keyref attribute also uses keys and can be used to indirectly reference metadata that may have different
values in various circumstances.

Note: For a conref or conkeyref, to reference the content inside a DITA element, the source element must
have an id attribute assigned to it. The element containing the content reference acts as a placeholder for the
referenced element. For more details about DITA conref and conkeyref attributes, go to
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/conref.html.

Note: For the purposes of using a keyref, keys are defined at map level and referenced afterwards. For more
information about the DITA keyref attribute, go to
http://docs.oasis-open.org/dita/v1.2/os/spec/common/thekeyrefattribute.html.

Oxygen XML Editor plugin displays the referenced content of a DITA content reference if it can resolve it to a valid
resource. If you use URIs instead of local paths in your XML documents and your DITA OT transformation needs an
XML catalog to map the URIs to local paths, you need to add the catalog to Oxygen XML Editor plugin. If the URIs
can be resolved, the referenced content is displayed in Author mode and in the transformation output.

In Author mode, a references to reusable content (conref, conkeyref, or keyref) can easily be inserted at the
cursor position by using the Reuse Content dialog box. It can be opened with any of the following methods:

• Go to DITA > Reuse Content.

• Click the Reuse Content action on the main toolbar.

• In the contextual menu of the editing area, go to Reuse > Reuse Content.

Your selection at the top of the dialog box for choosing the content source determines whether Oxygen XML Editor
plugin will insert a conref, conkeyref, or keyref.

If you select Location for the content source, a content reference (conref) will be inserted. If you select Key for the
content source, keys will be used to insert a content key reference (conkeyref) or a key reference (keyref).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1170

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/conref.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/thekeyrefattribute.html

Content Reference (conref) Options Using the Reuse Content Dialog Box

Figure 552: Reuse Content Dialog Box (with the Default Insert Content Reference Options Displayed)

When Location is selected for the content source, a content reference (conref) will be inserted. Here you can specify
the path of the topic that contains the content you want to reference.

The dialog box offers the following options:

Select an element
from the content
source Section

You can use this drop-down list to select specific types of elements
to be displayed in the subsequent table. This can help you narrow
down the list of possible source elements that you can select.

Show elements of
type

You can also use the text filter field to narrow down the list of possible
source elements to be displayed in the subsequent table.

Text Filter Field

Presents all the element IDs defined in the source topic. Use this table
to select the Target ID of the element that you want to reference. You
can select multiple contiguous elements to reference a block of content.

Element Table

Displays the content that will be references. If you select multiple
elements in the element table, the content from all the selected
elements is displayed.

Preview Pane

Displays the source code of the element to be referenced.Source Pane

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1171

Reference details
Section

Oxygen XML Editor plugin automatically fills this text field with
the value of the conref attribute to be inserted. However, you can
edit this value if need be.

Reference to (conref)

If you select multiple elements (of the same type) in the element
table, Oxygen XML Editor plugin automatically fills this text field

Reference to range end
(conrefend)

with the id value of the last element in your selection. This value
will be inserted as a conrefend attribute, defining the end of the
conref range.

Content Key Reference (conkeyref) Options Using the Reuse Content Dialog Box

Figure 553: Insert Content Key Reference Options

Choose the content source Section

When Key is selected for the content source, you can use keys to reference content. You can use the Choose Key
Reference button to open the Choose Key dialog box that allows you to select one from a list of all the keys that are
gathered from the root map (you can also select one from the drop-down list in the Key field).

Note: If the current DITA map is not selected as the root map, no keys will be listed.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1172

Figure 554: Choose Key Dialog Box

To insert a content key reference (conkeyref), select the key that contains the content you want to reference. Notice
that the file path is shown in the Href column. Keys that do not have a value in the Href column are for referencing
metadata with a keyref attribute. Therefore, to insert a conkeyref, you need to select a key that has a value (file
path) in the Href column. After you select a key, click OK to return to the Reuse Content dialog box.

When a key that is defined as a content key reference has been selected, the Reuse Content dialog box offers the
following additional options for inserting a conkeyref:

Select an element
from the content
source Section

You can use this drop-down list to select specific types of elements to
be displayed in the subsequent table. This can help you narrow down
the list of possible source elements that you can select.

Show elements of type

You can also use the text filter field to narrow down the list of possible
source elements to be displayed in the subsequent table.

Text Filter Field

Presents all the element IDs defined in the source topic. Use this table
to select the Target ID of the element that you want to reference. You
can select multiple contiguous elements to reference a block of content.

Element Table

Displays the content that will be references. If you select multiple
elements in the element table, the content from all the selected elements
is displayed.

Preview Pane

Displays the source code of the element to be referenced.Source Pane

Reference details
Section

The type of reference that will be inserted. If you selected a key that
references a DITA resource, you will notice that conkeyref value is
automatically selected.

Reference type

Oxygen XML Editor plugin automatically fills this text field with the
value of the conkeyref attribute to be inserted. However, you can
edit this value if need be.

Reference to

You can enable this option to define a conref attribute to be used as
a fallback to determine the content reference relationship if the specified
conkeyref cannot be resolved.

Fallback to (conref)

If you select multiple elements (of the same type) in the element table,
Oxygen XML Editor plugin automatically fills this text field with the

Reference to range
end (conrefend)

id value of the last element in your selection. This value will be inserted
as a conrefend attribute, defining the end of the conkeyref range.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1173

Key Reference to Metadata (keyref) Options Using the Reuse Content Dialog Box

Figure 555: Insert Key Reference Options

Choose the content source Section

When Key is selected for the content source, you can use keys to reference content. You can use the Choose Key
Reference button to open the Choose Key dialog box that allows you to select one from a list of all the keys that are
gathered from the root map (you can also select one from the drop-down list in the Key field).

Note: If the current DITA map is not selected as the root map, no keys will be listed.

Figure 556: Choose Key Dialog Box

To insert a key reference to metadata (keyref), select the key you want to reference.

Note: Keys that do not have a value in the Href column are for referencing metadata with a keyref attribute,
whereas keys for referencing a conkeyref have a value (file path) shown in the Href column.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1174

Note: The Description column collects data from the definition of the key, either from the navtitle element
or, if missing, from the keyword element. The following example shows two key definitions that will be
collected in the keys table. Their corresponding information from the Description column will display
oxygen.sh and oxygen.tar.gz respectively.

<keydef keys="executableInstallLinux">
<topicmeta>
<keywords>

<keyword>oxygen.sh</keyword>
</keywords>

</topicmeta>
</keydef>

<keydef keys="archiveInstallAll">
<topicmeta>
<navtitle>

 oxygen.tar.gz
</navtitle>

</topicmeta>
</keydef>

After you select a key, click OK to return to the Reuse Content dialog box.

When a key that references metadata has been selected, the Reuse Content dialog box offers the following additional
options for inserting a keyref:

This section is not used when referencing metadata.Select an element from the
content source Section

Reference details Section The type of reference that will be inserted. If you selected a key
that does not reference a DITA resource, you will notice that
keyref value is automatically selected.

Reference type

Oxygen XML Editor plugin automatically fills this text field with
the value of the keyref attribute to be inserted.

Reference to

Oxygen XML Editor plugin automatically selects the element
that is most commonly used for the selected type of key reference,

Element name

but you can use the drop-down list to choose another element to
use for the reference.

Finalizing Your Content Reference Configuration
Once you click Insert or Insert and close, the configured content reference is inserted into your document.

Tip: You can easily insert multiple content references by keeping the Reuse Content dialog box opened, using
the Insert button.

Working with the Conref Push Mechanism

Content Reference Push Mechanism

The usual method of using content references pulls element content from a source element and inserts it in the current
topic. DITA 1.2 introduced an alternative method of content referencing, allowing element content to be pushed, or
injected, from a source topic to another topic without any special coding in the topic where the content will be re-used.
This technique is known as a content reference push mechanism (conref push).

The conref push mechanism requires elements in the target topic (the topic where the content is to be pushed) to have
id elements, as the push mechanism inserts elements before or after a named element, or replaces the named element.
Assuming the source topic is included in the DITA map, the conref push will be processed during publishing stage for
the DITA map.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1175

Example of a Conref Push Scenario
An example of a scenario in which a conref push would be useful is where a car manufacturer produces driver manuals
that are distributed to various regions with their own specific regulations and certain sections need to be customized by
the local car dealers before publishing. The local dealer could use a conref push technique to insert specific content
without modifying the manufacturer-supplied content.

Push Current Element Action

Oxygen XML Editor plugin includes an action that allows you to easily reference content with a conref push mechanism.
The Push Current Element action is available in the DITA menu and in the Reuse subfolder of the contextual menu
when editing in Author mode. Selecting this action opens the Push current element dialog box that allows you to
select a target resource and element, and where to insert the current element content.

Figure 557: Push Current Element Dialog Box

This dialog box allows you to configure the following options for the conref push action:

Allows you to select a Location URL or a Key for the target resource and the table in the next
section of the dialog box will be populated using the information from the specified resource.

Choose the target
resource

The table in this section contains the available elements (identified by their ID) that belong to the
same class as the current element on which the action was invoked.

Select the target
element

Allows you to choose one of the following options for where you want to insert the current element
content:

Push action

The target element will be replaced with the current element content.

On the technical side, the value of the conaction attribute in the current
element will be set to pushreplace and the conref or conkeyref attribute
will be set to the specified reference.

replace the
target element

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1176

The current element content will be inserted before the specified target element
in the target resource.

On the technical side, the value of the conaction attribute in the current
element will be set to pushbefore. Another element with the same name and

push before

class as the target element will be inserted in the document after the current
element. The new element will have the conaction attribute set to mark and
the conref or conkeyref attribute will be set to the specified reference.

The current element content will be inserted after the specified target element in
the target resource.

On the technical side, the value of the conaction attribute in the current
element will be set to pushafter. Another element with the same name and

push after

class as the target element will be inserted in the document before the current
element. The new element will have the conaction attribute set to mark and
the conref or conkeyref attribute will be set to the specified reference.

You can also use the Preview panel to view the content that will be pushed and the Source panel to see the XML code
for the content to be pushed. After you click OK, the conref push mechanism is inserted in the current document. The
changes in the target resource will be processed when you transform the DITA map.

Related information
For more technical details about the conref push mechanism, refer to "The Conref Push Technique" section of The DITA
Style Guide Best Practices for Authors.

Working with Reusable Components

In DITA, the content of almost any element can be made reusable simply by adding an id attribute to the element. The
DITA content reference mechanism can reuse any element with an id. However, it is not considered best practice to
arbitrarily reuse pieces of text from random topics due to the difficulties this creates in trying to manage it. It also creates
the possibility of authors deleting or changing content that is reused in other topics without being aware that the content
is reused.

To prevent these types of problems, you can create reusable components to manage a separate set of topics that contain
topics designed specifically for reuse. Then, all of your reusable content can be referenced from the reusable components
and if the content needs to be updated you only need to edit it in one place.

Oxygen XML Editor plugin allows you to select content in a topic, create a reusable component from it and reference
that component in other locations by using the Create Reusable Component and Insert Reusable Component actions.

Creating a Reusable Content Component

Oxygen XML Editor plugin makes it easy to create reusable content components from existing topic content.

Note: To ensure that the topic file that contains the reusable component is a valid container for just the reusable
content component, without having to include the other elements required by a standard topic type, Oxygen
XML Editor plugin creates a specialized topic type on the fly. This specialization is designed to make sure that
the content is compatible with the topic type from which it is created.

Follow these steps to create a reusable component:

1. In Author mode, select the content you want to make into a reusable component.

2. Select the Create Reusable Component action that is available in the DITA menu or the Reuse submenu of the
contextual menu.
The Create Reusable Component dialog box is displayed.

3. Use the Reuse Content drop-down list to select the scope of the content to be made reusable. It allows you to select
how much of the current content you want to make reusable. The choices presented include the element at the current
cursor position and its ancestor elements.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1177

http://www.oxygenxml.com/dita/styleguide/webhelp-feedback/#Artefact/Content_Reuse/c_Conref_Push.html
http://www.oxygenxml.com/dita/styleguide/webhelp-feedback/#Artefact/Content_Reuse/c_Conref_Push.html

4. Add a description. This becomes the title of the topic that contains the reusable component, but is not part of the
reusable content. It is just to help you identify the reusable content and will not become part of your output.

5. If you want to replace the extracted content with a reference to the new component you should leave the Replace
selection with content reference option enabled. This is recommended, since the point of reuse is to maintain only
one copy of the content.

6. Select a file name and location to save the topic containing the reusable component and click Save. It is considered
best practice to save or store reusable components in an area set aside for that purpose.
If the Replace selection with content reference option was enabled, Oxygen XML Editor plugin replaces the current
content with a conref attribute. The content of the content reference will be displayed in your current topic with
a gray background, but it will no longer be editable since it is stored in a separate file. To edit the source of the
reusable component, click the Edit Content icon at the beginning of the inserted content.

You now have a reusable component that you can include in other topics by using the Insert Reusable Component
action that is available in the DITA menu or the Reuse submenu of the contextual menu. You can also reference this
new reusable component by using a content reference or content key reference.

Inserting a Reusable Content Component

Oxygen XML Editor plugin includes an Insert Reusable Content action that allows you to easily insert a reusable
content component that you created using the Create Reusable Component action.

CAUTION: This action is only designed to insert reusable components created using the Oxygen XML Editor
plugin Create Reusable Component action. It assumes certain things about the structure of the reusable content
file that may not be true of reusable content created by other methods and it may not provide the expected results
if used with content that does not have the same structure.

The Insert Reusable Content action creates a DITA conref to insert the content, and creates a parent element for
the conref attribute based on the type of the reusable element in the reusable component file. This action ensures that
the correct element is used to create the conref. However, that element must still be inserted at a point in the current
topic where that element type is permitted.

Follow these steps to insert a reusable component that was created using the Create Reusable Component action:

1. Place the cursor at the insertion point where you want the reusable component to be inserted.

2. Select the Insert Reusable Component action that is available in the DITA menu or the Reuse submenu of the
contextual menu.
The Insert Reusable Component dialog box is displayed.

3. Locate the reusable content file in which you want to insert its content.

4. If you select Content reference in the Insert as drop-down list, the action will add a conref attribute to the DITA
element at the current location. If you select Copy in the drop-down list, the content of the reusable component file
will simply be pasted at the current location (assuming the content is valid at the current location).

5. Click Insert to perform the action.

Working with Variable Text in DITA

You may often find that you want a certain piece of text in a topic to have a different value in various circumstances.
For example, if you are reusing a topic about a feature that is shared between several products, you might want to make
the name of the product variable so that the correct product name is used in the manual for each product.

For example, you might have a sentence like this:

The quick-heat feature allows [product-name] to come up to temperature quickly.

You need a way to substitute the correct product name for each product.

One way to do this would be to use conditional profiling, as in this figure:

<p>The quick-heat feature allows
<ph product="basic">Basic Widget</ph>

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1178

<ph product="pro">Pro Widget</ph>
<ph product="enterprise">Enterprise Widget</ph>

to come up to temperature quickly.</p>

Figure 558: Variable content using profiling

Creating Variable Text Using Keys
In DITA, you can create variable text using keys.

One way to do this would be to provide conditional values using the product profiling attribute.

However, this approach means that you are repeating the product names over and over again everywhere the product
name is mentioned. This is time consuming for authors and will create a maintenance problem if the product names
change.

Creating Variable Content Using a Key Reference

The alternative is to use a key reference, as in the following example:

<p>The quick-heat feature allows <ph keyref="product"/> to come up to temperature quickly.</p>

Figure 559: Variable content using a key reference

The key reference stands in for the name of the product. When the content is published, the current value of the key
product will be inserted.

To insert a key reference into a document in Oxygen XML Editor plugin Author mode, follow these steps:

1. Press Enter and select any DITA element that supports the keyref attribute.

2. Select Edit Attributes from the contextual menu to bring up the attribute editor.
3. In the Name field, select keyref.
4. In the Value field, select or enter the name of the key.

Note: Additionally, if you have a need for reusing the key reference pattern while editing your documentation,
you could add that pattern to a code template so that it appears in your list of content completion proposals.

Linking in DITA
DITA provides support for various types of linking between topics, some of which is automated, while others are specified
by the author. Oxygen XML Editor plugin provides support for all forms of linking in DITA.

Linking Between Parent, Child, and Sibling Topics

A DITA map creates a hierarchical relationship between topics. That relationship map expresses a narrative flow from
one topic to another, or it may be used as a classification system to help the reader find topics based on their classification,
without creating a narrative flow. Since there may be various types of relationships between topics in a hierarchy, you
may want to create links between topics in a variety of ways. For instance, if your topics are supposed to be organized
into a narrative flow, you may want to have links to the next and previous topics in that flow. If your topics are part of
a hierarchical classification, you may want links from parent to child topics, and vice versa, but not to the next and
previous topics.

Parent, child, and sibling links are created automatically by the DITA output transformations (and may differ between
various output formats). The kinds of links that are created are determined by the DITA collection-type attribute.

In-Line Linking in the Content of a Topic

DITA supports linking within the text of a topic using the xref element. The destination of the link can be expressed
directly using the href attribute or indirectly using the keyref attribute. If you use the keyref attribute, you link

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1179

to a key rather than directly to a topic. That key is then assigned to a topic in a map that includes that topic. This means
that you can change the destination that a key points to by editing the key definition in the map or by substituting another
map in the build.

Linking Between Related Topics

In addition to the relationships between topics that expressed by their place in the hierarchy of a map, a topic may be
related to other topics in various ways. For instance, a task topic may be related to a concept topic that gives the background
of the task, or to a reference topic that provides data needed to complete the task. Task topics may also be related to
other tasks in a related area, or concepts to related concepts.

Typically, they are grouped in a list at the end of the topic, although this depends on the behavior of the output
transformation. DITA provides two mechanisms for expressing relationships between topics at the topic level: the related
links section of a topic and relationship tables in maps.

Managing Links

Links can break for a variety of reasons. The topic that a link points to may be renamed or removed. A topic may be
used in a map that does not include a linked topic. A topic or a key may not exist in a map when a particular profile is
applied. The DITA Maps Manager provides a way to validate all the links in the documents that are included in the
map. This can include validating all the profiling conditions that are applied.

Hierarchical Linking in DITA Maps

To create hierarchical linking between the topics in a DITA map, you set the appropriate value of the collection-type
attribute on the map. See the DITA documentation for the meaning of each of the values of the collection-type
attribute.

Note: Publishing scripts determine when and how to create hierarchical links. The collection-type
attribute does not force a particular style of linking. Instead, it declares what the nature of the relationship is
between the topics. The publishing scripts use that information to determine how to link topics. Scripts for
different types of media might make the determination depending on what is appropriate for the particular type
of media. You can provide additional instructions to the scripts using the linking attribute.

To add the collection-type to an item in a map:

1. Right-click the topic and choose Edit Properties. The Edit Properties dialog box is displayed.
2. In the Attributes tab, select the appropriate value from the Collection type drop-down list.
3. You can use the Other attributes table to add a value to the linking attribute.

Linking in DITA Topics

Direct Links
You can create in-line links in the content of a DITA topic using the xref element. The destination of the link can be
expressed directly by using the href attribute and the target can be another topic or a specific element within the other
topic, another location within the same topic, a file, or a web link. You can also create direct related links to topics, files,
or websites in a DITA topic using the related-links element.

Indirect Links Using Keys

The destination of the link can also be expressed indirectly by using keys to create either in-line links or related links
(with the keyref attribute). By using keys, you avoid creating a direct dependency between topics. This makes links
easier to manage and can make it easier to reuse topics in various publications. It can also be helpful in verifying the
completeness of a publication, by ensuring that a publication map provides a key definition for every key reference used
in the content.

Links based on keys require two pieces:

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1180

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/ditamap-attributes.html

• Key Definition - Assigns a key to a topic so that other topics can link to it. For more information, see Inserting and
Defining Keys in DITA Maps on page 1136.

• Key Reference - Created in an xref element and specifies the key to link to.

The key reference points to a key definition, and the key definition points to a topic. Key definitions are created in maps,
as an element on the topicref element that points to a topic. This allows you to assign a particular key to one topic
in one map and to another topic in another map. When a topic that links to that key is used in each of these maps, the
links work correctly in both maps.

Inserting a Link in Oxygen XML Editor plugin
To insert a link in Author mode, use the actions available in the Link drop-down menu from the toolbar (or the

Link submenu in the contextual menu or DITA menu). You can choose between the following types of in-line links:

Opens the Cross Reference (xref) dialog box that allows you to insert a link to a target resource at the
current location within a document. The target resource can be the location of a file or a key that is already

Cross
Reference

defined in your DITA map structure. Once the target resource has been selected, you can also target specific
elements within that resource. Depending on the context where it is invoked, the action inserts one of the
following two elements:

• xref - Used to link to other topics or another location within the same topic and points to the target
using the href or keyref attribute.

• fragref - A logical reference to a fragment element within a syntax diagram and points to the target
using the href or keyref attribute.

Figure 560: Cross Reference (xref) Dialog Box

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1181

This dialog box includes the following sections and fields:

Location - If you select Location for the target, the link is expressed in an href
attribute.

Choose the Target
Resource Section

Key - If you select Key for the target, keys will be used to express the link in a

keyref attribute. You can use the Choose Key Reference button to open the
Choose Key dialog box that allows you to select one from a list of all the keys that
are gathered from the root map (you can also select one from the drop-down list in
the Key field).

This section can be used to target a specific element inside the target resource.Select the Target
Element Section You can use this drop-down list to select specific types of

elements to be displayed in the subsequent table. This can
Show elements of
type

help you narrow down the list of possible source elements
that you can select.

You can also use the text filter field to narrow down the list
of possible source elements to be displayed in the subsequent
table.

Text Filter Field

Presents all the element IDs defined in the source topic. Use
this table to select the Target ID of the element that you
want to reference.

Element Table

Displays the content that will be references.Preview Pane

Displays the XML source code of the element to be
referenced.

Source Pane

Once you click Insert or Insert and close, the configured cross reference is inserted into your document.

Tip: You can easily insert multiple cross references by keeping the dialog box opened, using the
Insert button.

Opens the File Reference dialog box that allows you to insert a link to a target file resource at the current
location within a document. The target resource can be the location of a file or a key that is already defined
in your DITA map structure. It inserts an xref element with either an href attribute or a keyref attribute.

File
Reference

Location - If you select Location for the target file, the link is expressed in an href
attribute.

Choose the Target
Resource

Key - If you select Key for the target file, keys will be used to express the link in a

keyref attribute. You can use the Choose Key Reference button to open the
Choose Key dialog box that allows you to select one from a list of all the keys that
are gathered from the root map and defined as a non-DITA resource (you can also
select one from the drop-down list in the Key field).

Opens the Web Link dialog box that allows you to insert a link to a target web-related resource at the current
location within a document. The target resource can be a URL or a key that is already defined in your DITA
map structure. It inserts an xref element with either an href attribute or a keyref attribute.

Web
Link

URL - If you select URL for the target resource, the link is expressed in an href
attribute.

Choose the Target
Web Resource

Key - If you select Key for the target resource, keys will be used to express the link

in a keyref attribute. You can use the Choose Key Reference button to open
the Choose Key dialog box that allows you to select one from a list of all the keys
that are gathered from the root map and defined as a non-DITA resource (you can
also select one from the drop-down list in the Key field).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1182

Opens the Cross Reference (xref) dialog box that allows you to insert a link to a target resource in a related
links section that is typically at the bottom of your topic (although this depends on the behavior of the output

Related
Link to
Topic transformation). The target resource can be the location of a file or a key that is already defined in your

DITA map structure. Once the target resource has been selected, you can also target specific elements within
that resource. If a related links section does not already exist, this action creates one. Specifically, it inserts
a link element inside a related-links element.

This dialog box includes the following sections and fields:

Location - If you select Location for the target, the link is expressed in an href
attribute.

Choose the Target
Resource Section

Key - If you select Key for the target, keys will be used to express the link in a

keyref attribute. You can use the Choose Key Reference button to open the
Choose Key dialog box that allows you to select one from a list of all the keys that
are gathered from the root map (you can also select one from the drop-down list in
the Key field).

This section can be used to target a specific element inside the target resource.Select the Target
Element Section You can use this drop-down list to select specific types of

elements to be displayed in the subsequent table. This can
Show elements of
type

help you narrow down the list of possible source elements
that you can select.

You can also use the text filter field to narrow down the list
of possible source elements to be displayed in the subsequent
table.

Text Filter Field

Presents all the element IDs defined in the source topic. Use
this table to select the Target ID of the element that you
want to reference.

Element Table

Displays the content that will be references.Preview Pane

Displays the XML source code of the element to be
referenced.

Source Pane

Once you click Insert or Insert and close, the configured cross reference is inserted into your document.

Tip: You can easily insert multiple cross references by keeping the dialog box opened, using the
Insert button.

Opens the File Reference dialog box that allows you to insert a link to a target file resource in a related
links section that is typically at the bottom of your topic (although this depends on the behavior of the output

Related
Link to
File transformation). The target resource can be the location of a file or a key that is already defined in your

DITA map structure. If a related links section does not already exist, this action creates one. Specifically,
it inserts a link element inside a related-links element.

Location - If you select Location for the target file, the link is expressed in an href
attribute.

Choose the Target
Resource

Key - If you select Key for the target file, keys will be used to express the link in a

keyref attribute. You can use the Choose Key Reference button to open the
Choose Key dialog box that allows you to select one from a list of all the keys that
are gathered from the root map and defined as a non-DITA resource (you can also
select one from the drop-down list in the Key field).

Opens the Web Link dialog box that allows you to insert a link to a target web-related resource in a related
links section that is typically at the bottom of your topic (although this depends on the behavior of the output

Related
Link to

transformation). The target resource can be a URL or a key that is already defined in your DITA mapWeb
Page

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1183

http://docs.oasis-open.org/dita/v1.2/os/spec/common/relatedl.html#relatedl
http://docs.oasis-open.org/dita/v1.2/os/spec/common/relatedl.html#relatedl

structure. If a related links section does not already exist, this action creates one. Specifically, it inserts a
link element inside a related-links element.

URL - If you select URL for the target resource, the link is expressed in an href
attribute.

Choose the Target
Web Resource

Key - If you select Key for the target resource, keys will be used to express the link

in a keyref attribute. You can use the Choose Key Reference button to open
the Choose Key dialog box that allows you to select one from a list of all the keys
that are gathered from the root map and defined as a non-DITA resource (you can
also select one from the drop-down list in the Key field).

Using Copy/Paste Actions to Insert a Cross Reference

Oxygen XML Editor plugin also includes support for inserting cross references with simple copy/paste actions. The
copied content must be an entire DITA XML element with an ID attribute or a topicref. Also, the location in the
document where you paste the link must be valid, although as long as the Smart paste and drag and drop option is
enabled in the Schema Aware preferences page, if you try to paste it in an invalid location, Oxygen XML Editor plugin
will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it. You can
paste the link as a cross reference with the link expressed in an href attribute or in a keyref attribute.

To insert a cross reference link (expressed in an href attribute) using copy/paste actions, follow these steps:

1. Copy an entire DITA element that has an ID attribute assigned to it or a topicref.
2. Place the cursor at a location, where you want to insert the link.

3. Select the Paste as Link action from the Paste Special submenu from the contextual menu.

To insert a cross reference link (expressed in a keyref attribute) using copy/paste actions, follow these steps:

1. In the DITA Maps Manager view, make sure that the Root map combo box points to the correct map that stores
the keys.

2. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click
the topic with its parent map opened in the DITA Maps Manager, select Edit Properties, and enter a value in the
Keys field.

3. Copy an entire DITA element that has an ID attribute assigned to it from a topic with an assigned key, or a topicref
from a DITA map.

4. Place the cursor at a location, where you want to insert the link.

5. Select the Paste as Link (keyref) action from the Paste Special submenu from the contextual menu.

Related information
Inserting and Defining Keys in DITA Maps on page 1136

Linking with Relationship Tables in DITA

A relationship table is used to express relationships between topics outside of the topics themselves. The DITA publishing
scripts can then create links between related topics when the content is published.

The reason for using a relationship table is to help make topics easier to reuse. If a topic links directly to another topic,
this creates a dependency between the topics. If one topic is reused in a publication where the other is not used, the link
is broken. By defining relationships between topics in a relationship table, you avoid creating this dependency.

To create an appropriate set of links between topics in multiple publications, you can create a separate relationship table
for each publication. If you are creating multiple publications by applying profiling conditions to a single map, you can
also profile your relationship table.

To create a relationship table, follow these steps :

1. If the map is currently open in the DITA Maps Manager, double-click the map icon () to open the map in Author
mode. If it opens in Text mode, click Author at the bottom left to switch to Author mode.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1184

http://docs.oasis-open.org/dita/v1.2/os/spec/common/relatedl.html#relatedl

2. Move the insertion point inside the map root element (usually map, but it might be bookmap, or another specialization
of the map element). The easiest way to do this is to click below the title of the map in the editor and then press the
up arrow once. Confirm that you are inside the map root element by checking the breadcrumbs at the top left of the
editor window. You should only see the name of the map root element.

3. Select the Insert Relationship Table action on the toolbar or from the Relationship Table submenu of the
contextual menu.
The Insert Relationship Table dialog box is displayed.

4. Set the number of rows, the number of columns, a table title (optional), and select whether or not you want a table
header. Click Insert.

5. Enter the type of the topics in the header of each column.

The header of the table (the relheader element) already contains a relcolspec element for each table column.
You should set the value of the attribute type of each relcolspec element to a value such as concept, task, or
reference. When you click in the header cell of a column (that is a relcolspec element), you can see all the
attributes of that relcolspec element, including the type attribute in the Attributes view. You can edit the
attribute type in this view.

6. To insert a topic reference in a cell, place the cursor in a table cell and select Insert Reference from the contextual
menu or the DITA Map toolbar.

7. To add a new row to the table or remove an existing row use Insert Relationship Row/ Delete Relationship
Row from the contextual menu or the DITA Map toolbar.

8. To add a new column to the table or remove an existing column, use Insert Relationship Column/ Delete
Relationship Column contextual menu or the DITA Map toolbar. If you double-click the relationship table (or
select it and press Enter, or choose Open from the contextual menu) the DITA map is opened in the editor with the
cursor positioned inside the corresponding relationship table.

9. To add topic references to your relationship table, drag and drop topics from the DITA Maps Manager or the Project
view into the appropriate cell in the relationship table.

See the DITA documentation for a full explanation of the relationship table format and its options. Note that you can
change all the selections that you make here later by using the actions on the toolbar (or in the Relationship Table
submenu of the contextual menu) or by editing the underlying XML in Text mode.

10. Save the DITA map.
Relationship tables are also displayed in the DITA Maps Manager view, along with the other elements in its DITA
map.

Figure 561: Relationship Table

You can open the DITA map to edit the relationship table by doing one of the following:

• Double-click the appropriate relationship table in the DITA Maps Manager.
• Select the relationship table in the DITA Maps Manager and press Enter.
• Select Open from the contextual menu of the relationship table in the DITA Maps Manager.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1185

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/reltable.html#reltable

Publishing DITA Output
As a structured writing format, DITA produces structured content (content that is annotated with specific structural and
semantic information rather than with formatting information). To create a publication, your DITA map and its associated
topics must be processed by a transformation script. That script is responsible for how the structural and semantic
information in the DITA files is converted into formatting information for display.

This means that you can display the same DITA content in multiple ways, types of media, or publications. It also means
that you cannot control every aspect of the presentation of your content in your DITA files. The only way to change the
formatting is to change the transformation routines that create it.

Therefore, to create output from your DITA content you have to run a transformation on your content. Transformations
for various types of output are provided by the DITA Open Toolkit. Oxygen XML Editor plugin provides a mechanism
called transformation scenarios to help you configure and run transformations.

Note: Oxygen XML Editor plugin does not create any output formats itself. Oxygen XML Editor plugin runs
externally defined transformations that produce output, and displays the result in the appropriate application,
but the output itself is produced by the external transformation, not by Oxygen XML Editor plugin.

Running a Transformation Scenario

To select and run a transformation scenario on your map, follow these steps:

1. Click the Configure Transformation Scenario(s) button. The Configure Transformation Scenario(s) dialog
box appears. This dialog box lists all the transformation scenarios that have been configured in your project. Oxygen
XML Editor plugin provides a default set of transformation scenarios, but the people in charge of your DITA system
may have provided others that are specifically configured for your needs.

2. Select the transformation scenario you want to run and click Apply Associated. The transformation scenario runs
in the background. You can continue to work in Oxygen XML Editor plugin while the transformation is running. If
there are errors or warnings, Oxygen XML Editor plugin displays them when the transformation is complete. If the
transformation is successful, Oxygen XML Editor plugin opens the output in the appropriate application.

3. To rerun the same scenario again, click the Apply Transformation Scenario(s) button.

Transforming DITA Content

Oxygen XML Editor plugin uses the DITA Open Toolkit (DITA-OT) to transform DITA maps and topics into an output
format. For this purpose, both the DITA Open Toolkit and Ant come bundled in Oxygen XML Editor plugin.

For more information about the DITA Open Toolkit, see DITA Open Toolkit Documentation.

This section includes information about how to create a DITA OT transformation and how to customize DITA
transformations.

Related information
Transforming Documents on page 577

Creating or Editing a DITA OT Transformation

Creating a DITA OT Transformation Scenario

To create a DITA OT Transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X)) action
from the toolbar or the XML menu. Then click the New button and select DITA OT Transformation.

• Use the Apply Transformation Scenario(s) (Alt + Shift + T, T (Command + Alt + T, T on OS X)) action
from the toolbar or the XML menu. Then click the New button and select DITA OT Transformation.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1186

http://dita-ot.sourceforge.net/

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios are

associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select DITA OT Transformation.

All three methods open the DITA Transformation Type dialog box that presents the list of possible outputs.

Figure 562: DITA Transformation Type Dialog Box

Select the desired type of output and click OK. This opens the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation. Some of these tabs are only available for certain output types (for example, a Skins tab is only available
for WebHelp Classic and WebHelp Classic with Feedback output types, a Templates tab is available only for WebHelp
Responsive and WebHelp Responsive with Feedback, and a FO Processor tab is available for PDF output).

Editing a DITA OT Transformation Scenario

Editing a transformation scenario is useful if you need to configure some of its parameters.

To configure an existing transformation scenario, follow these steps:

1. Select the Configure Transformation Scenario(s) (Alt + Shift + T, C (Command + Alt + T, C on OS X))
action from the toolbar or the XML menu.

Step Result: The Configure Transformation Scenario(s) dialog box is opened.

2. Select the particular transformation scenario and click the Edit button at the bottom of the dialog box or from the
contextual menu.

Note: You can edit transformation scenarios that are defined at project level only. To edit a transformation
scenario that is associated with a predefined document type, use the Duplicate button and then edit the
duplicated scenario.

Result: This will open an Edit scenario configuration dialog box that contains several tabs that allow you to configure
the options that control the transformation. Some of these tabs are only available for certain output types (for example,
a Skins tab is only available for WebHelp Classic and WebHelp Classic with Feedback output types, a Templates
tab is available only for WebHelp Responsive and WebHelp Responsive with Feedback, and a FO Processor tab is
available for PDF output).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1187

Related information
Creating a DITA OT Customization Plugin on page 1208

Installing a Plugin in the DITA Open Toolkit on page 1210

DITA Open Toolkit Documentation

Skins Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Skins tab is available for DITA OT transformations with WebHelp Classic or WebHelp Classic with Feedback
output types and it provides a set of predefined skins that you can use as a base for your WebHelp system output.

A skin is a collection of CSS properties that can alter the look of the output by changing colors, font types, borders,
margins, and paddings. This allows you to rapidly adapt the look and feel of your output.

Figure 563: Skins Tab

The Skins tab includes the following sections:

This sections presents the predefined skins that are included in Oxygen XML Editor plugin. The
predefined skins cover a wide range of chromatic themes, ranging from a very light one to a

Predefined Skins

high-contrast variant. To see how the skin looks when applied on a sample documentation project
that is stored on the Oxygen XML Editor plugin website, press the Online preview link.

You can use this section to customize the look of the output.Custom Skins

You can set this field to point to a custom CSS stylesheet or customized skin.
A custom CSS file will overwrite a skin selection.

CSS File

Note: The output can also be styled by setting the args.css
parameter in the Parameters tab. The properties taken from the
stylesheet referenced in this parameter take precedence over the
properties declared in the skin set in the Skins tab.

Use this link to open the WebHelp Skin Builder tool.Create custom
skin

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1188

http://www.dita-ot.org/

Templates Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Templates tab is available for DITA OT transformations with WebHelp Responsive or WebHelp Responsive
with Feedback output types and it provides a set of predefined skins that you can use as a base for the layout of your
WebHelp system output.

A skin is a collection of CSS properties that can alter the look of the output by changing colors, font types, borders,
margins, and paddings. This allows you to rapidly adapt the look and feel of your output. You can choose predefined
skins in a tile style of layout or a tree style of layout, and you can also add your own customized skins.

Figure 564:Templates Tab

The Templates tab comes by default with the following predefined collections of skins:

This sections presents the predefined skins that are arranged in a tiles style of layout. These predefined
skins include a variety of themes, ranging from a very light one to a high-contrast variant, and various

Tiles

styles. If you select Choose custom skin, you can select a custom CSS stylesheet to be used as your
template.

This sections presents the predefined skins that are arranged in a tree style of layout. These predefined
skins include a variety of themes, ranging from a very light one to a high-contrast variant, and various

Tree

styles. If you select Choose custom skin, you can select a custom CSS stylesheet to be used as your
template.

When you add a new collection of skins, this tab will list them.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1189

FO Processor Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab is available for DITA OT transformations with a PDF output type.

This tab allows you to select an FO Processor to be used for the transformation.

Figure 565: FO Processor Configuration Tab

You can choose one of the following processors:

The default processor that comes bundled with Oxygen XML Editor plugin.Apache FOP

The RenderX XEP processor. If XEP is already installed, Oxygen XML Editor plugin displays the
detected installation path under the drop-down menu. XEP is considered installed if it was detected
in one of the following sources:

XEP

• XEP was configured as an external FO Processor in the FO Processors option page.
• The system property com.oxygenxml.xep.location was set to point to the XEP executable file for

the platform (for example: xep.bat on Windows).
• XEP was installed in the DITA_OT_DIR/plugins/org.dita.pdf2/lib directory of the

Oxygen XML Editor plugin installation directory.

The Antenna House (AH Formatter) processor. If Antenna House is already installed, Oxygen XML
Editor plugindisplays the detected installation path under the drop-down menu. Antenna House is
considered installed if it was detected in one of the following sources:

Antenna
House

• Environment variable set by Antenna House installation (the newest installation version will be
used).

• Antenna House was added as an external FO Processor in the Oxygen XML Editor plugin
preferences pages.

To further customize the PDF output obtained from the Antenna House processor, follow these steps:

1. Edit the transformation scenario.
2. Open the Parameters tab.
3. Add the env.AXF_OPT parameter and point to the Antenna House configuration file.

Related information
FO Processors Preferences on page 124

XSL-FO Processors on page 648

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1190

http://www.renderx.com/
http://www.antennahouse.com/

Parameters Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Parameters tab allows you to configure the parameters sent to the DITA-OT build file.

The table in this tab displays all the parameters that the DITA-OT documentation specifies as available for each chosen
type of transformation (for example, XHTML or PDF), along with their description and current values. You can find
more information about each parameter in the DITA OT Documentation. You can also add, edit, and remove parameters,
and you can use the text box to filter or search for a specific term in the entire parameters collection. Note that edited
parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

• A simple text field for simple parameter values.
• A combo box with some predefined values.
• A file chooser and an editor variable selector to simplify setting a file path as the value of a parameter.

Note: To input parameter values at runtime, use the ask editor variable in the Value column.

Below the table, the following actions are available for managing parameters:

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can

specify the Value of the parameter by using the Insert Editor Variables button or the Browse
button.

New

Resets the selected parameter to its default value. Available only for edited parameters with set
values.

Unset

Opens the Edit Parameter dialog box that allows you to change the value of the selected parameter
or its description.

Edit

Removes the selected parameter from the list. It is enabled only for new parameters that have been
added to the list.

Delete

Related information
DITA Open Toolkit Documentation

Filters Tab (DITA Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Filters tab allows you to add filters to remove certain content elements from the generated output.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1191

http://dita-ot.sourceforge.net/1.6/readme/dita-ot_ant_properties.html
http://www.dita-ot.org/

Figure 566: Edit Filters tab

You can choose one of the following options to define filters:

If you already have a DITAVAL file associated with the DITA map, you can specify
the file to be used when filtering content. You can specify the path by using the text

Use DITAVAL file

field, the history drop-down menu, the Insert Editor Variables button, or the

Browse button. You can find out more about constructing a DITAVAL file in the
DITA OT Documentation.

Attention: If a filter file is specified in the args.filter parameter (in
the Parameters tab), that file takes precedence over a DITAVAL file specified
here.

Sets the profiling condition set that will be applied to your transformation.Use profiling condition set

By using the New, Edit, or Delete buttons at the bottom of the pane, you
can configure a list of attributes (name and value) to exclude all elements that contain
any of these attributes from the output.

Exclude from output all
elements with any of the
following attributes

Advanced Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Advanced tab allows you to specify advanced options for the transformation scenario.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1192

http://docs.oasis-open.org/dita/v1.2/os/spec/common/about-ditaval.html

Figure 567: Advanced Settings Tab

You can specify the following parameters:

If you use a custom DITA-OT build file, you can specify the path to the customized build file.
If empty, the build.xml file from the dita.dir parameter that is configured in the Parameters

Custom build file

tab is used. You can specify the path by using the text field, the Insert Editor Variables

button, or the Browse button.

Optionally, you can specify a build target for the build file. If no target is specified, the default
init target is used.

Build target

You can specify additional command line arguments to be passed to the transformation (such
as -verbose).

Additional
arguments

You can choose between the default or custom Ant installation to run the transformation.Ant Home

You can choose between the default or custom Java installation to run the transformation. The
default path is the Java installation that is used by Oxygen XML Editor plugin.

Java Home

Note: It may be possible that the used Java version is incompatible with the DITA
Open Toolkit engine. For example, DITA OT 1.8.5 and older requires Java 1.6 or later,
while DITA OT 2.0 and newer requires Java 1.7 or newer. Thus, if you encounter
related errors running the transformation, consider installing a Java VM that is supported
by the DITA OT publishing engine and using it in the Java Home text field.

This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant.
For example, if it is set to -Xmx384m, the transformation process is allowed to use 384 megabytes

JVM Arguments

of memory. When performing a large transformation, you may want to increase the memory
allocated to the Java Virtual Machine. This will help avoid Out of Memory error messages
(OutOfMemoryError).

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1193

By default, Oxygen XML Editor plugin adds libraries (as high priority) that are not
transformation-dependent and also patches for certain DITA Open Toolkit bugs. You can use

Libraries

this button to specify additional libraries (jar files or additional class paths) to be used by the
Ant transformer.

Output Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab allows you to configure options that are related to the location where the output is generated.

Figure 568: Output Settings Tab

You can specify the following parameters:

All the relative paths that appear as values in parameters are considered relative to the base
directory. The default value is the directory where the transformed map is located. You can

Base directory

specify the path by using the text field, the Insert Editor Variables button, or the Browse
button.

This directory is used to store pre-processed temporary files until the final output is obtained.
You can specify the path by using the text field, the Insert Editor Variables button, or the

Browse button.

Temporary files
directory

The folder where the content of the final output is stored. You can specify the path by using

the text field, the Insert Editor Variables button, or the Browse button.

Output directory

Note: If the DITA map or topic is opened from a remote location or a ZIP file, the
parameters must specify absolute paths.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1194

If enabled, Oxygen XML Editor plugin automatically opens the result of the transformation in
a system application associated with the file type of the result (for example, in Windows PDF
files are often opened in Acrobat Reader).

Open in
Browser/System
Application

Note: To set the web browser that is used for displaying HTML/XHTML pages, go
to Window > Preferences > General > Web Browser and specify it there.

• Output file - When Open in Browser/System Application is selected, you can
use this button to automatically open the default output file at the end of the
transformation.

• Other location - When Open in Browser/System Application is selected, you
can use this option to open the file specified in this field at the end of the
transformation. You can specify the path by using the text field, the Insert Editor

Variables button, or the Browse button.

When this is enabled, at the end of the transformation, the default output file is opened in a
new editor panel with the appropriate built-in editor type (for example, if the result is an XML

Open in editor

file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the
built-in FO editor).

Customizing DITA Transformations

Oxygen XML Editor plugin includes a bundled copy of the DITA-OT as an Oxygen XML Editor plugin framework.
That framework includes a number of transformation scenarios for common output formats. This section includes topics
about customizing DITA transformations, such as using a custom build file, customizing PDF output, and using DITA
OT plugins to customize your needs.

Customizing Output Transformations

You can customize the appearance of any of the output types by customizing the output transformations. There are
several ways to do this:

• Most transformations are configurable by passing parameters to the transformation script. Oxygen XML Editor
plugin allows you to set parameters on a transformation scenario and you can save and share them with others. You
can also use the ${ask} editor variable in the Parameters tab to instruct Oxygen XML Editor plugin to prompt you
for a particular parameter whenever a transformation scenario is run. You can set up multiple transformation scenarios
for a given output type, allowing you to maintain several customized transformation scenarios for multiple types of
output configurations.

• If you want to customize an output in a way not supported by the customization options, you can create a modified
version of the transformation code. Some transformation scripts export specific forms of extension or customization.
You should consult the DITA Open Toolkit for the transformation type that you are interested in to see what
customization options it supports. Oxygen XML Editor plugin provides full editing and debugging support from
XSLT and CSS stylesheets, which you can use to modify transformation code.

You can also write your own output transformation scripts to produce a type of output not supported by the DITA Open
Toolkit. Oxygen XML Editor plugin provides a full source editing environment for developing such transformations.
You can create Oxygen XML Editor plugin transformation scenarios to run these scripts once they are complete.

Related information
Transforming DITA Content on page 1186

DITA Open Toolkit Documentation

Using a Custom Build File

To use a custom build file in a DITA-OT transformation, follow these steps:

1. Use the Configure Transformation Scenario(s) action to open the Configure Transformation Scenario(s)
dialog box.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1195

http://www.dita-ot.org/

2. Select the transformation scenario and click Edit.
3. Go to the Advanced tab and change the Custom build file path to point to the custom build file.

As an example, if you want to call a custom script before running the DITA OT, your custom build file would have the
following content:

<project basedir="." default="dist">
<!--The DITA OT default build file-->
<import file="build.xml"/>
<target name="dist">
<!-- You could run your script here -->
<!--<exec></exec>-->
<!--Call the DITA OT default target-->
<antcall target="init"/>

</target>
</project>

Note: If you use the built-in Ant 1.8.2 build tool that comes bundled with Oxygen XML Editor plugin, it is
located in the [OXYGEN_INSTALL_DIR]/tools/ant directory. Any additional libraries for Ant must be
copied to the Oxygen XML Editor plugin Ant lib directory.

DITA to PDF Output Customization

This section includes topics about customizing DITA to PDF output.

Creating a Customization Directory for PDF Output

DITA Open Toolkit PDF output can be customized in several ways:

• Creating a DITA Open Toolkit plugin that adds extensions to the PDF plugin. More details can be found in the DITA
Open Toolkit user manual.

• Creating a customization directory and using it from the PDF transformation scenario. A small example of this
procedure can be found below.

How to Create a Customization Directory for PDF Output

The following procedure explains how to do a basic customization of the PDF output by setting up a customization
directory. An example of a common use case is embedding a company logo image in the front matter of the book.

1. Copy the entire directory: DITA_OT_DIR\plugins\org.dita.pdf2\Customization to another location
(for instance, C:\Customization).

2. Copy your logo image to: C:\Customization\common\artwork\logo.png.
3. Rename C:\Customization\catalog.xml.orig to: C:\Customization\catalog.xml.
4. Open the catalog.xml in Oxygen XML Editor plugin and uncomment this line:

<!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

It now looks like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: C:\Customization\fo\xsl\custom.xsl.orig to:
C:\Customization\fo\xsl\custom.xsl

6. Open the custom.xsl file in Oxygen XML Editor plugin and create the template called createFrontMatter_1.0
(you can copy the same template from
DITA_OT_DIR\plugins\org.dita.pdf2\xsl\fo\front-matter.xsl and modify it in whatever way
necessary to achieve your specific goal). This new template in the custom.xsl file will override the same template
from DITA_OT_DIR\plugins\org.dita.pdf2\xsl\fo\front-matter.xsl.

For example, the custom.xsl could now have the following content:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.1">

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1196

http://dita-ot.sourceforge.net/1.8/
http://dita-ot.sourceforge.net/1.8/

<xsl:template name="createFrontMatter_1.0">
<fo:page-sequence master-reference="front-matter" xsl:use-attribute-sets="__force__page__count">

 <xsl:call-template name="insertFrontMatterStaticContents"/>
<fo:flow flow-name="xsl-region-body">

<fo:block xsl:use-attribute-sets="__frontmatter">
<!-- set the title -->
<fo:block xsl:use-attribute-sets="__frontmatter__title">

 <xsl:choose>
 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/mainbooktitle
 ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains(@class, ' topic/topic
')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>

</fo:block>

<!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/booktitlealt ')]"/>

<fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/bookmeta ')]"/>

</fo:block>

<fo:block text-align="center" width="100%">
<fo:external-graphic src="url({concat($artworkPrefix,

'/Customization/OpenTopic/common/artwork/logo.png')})"/>
</fo:block>

</fo:block>

<!--<xsl:call-template name="createPreface"/>-->

</fo:flow>
</fo:page-sequence>

 <xsl:call-template name="createNotices"/>
 </xsl:template>
</xsl:stylesheet>

7. Edit the DITA Map to PDF transformation scenario and in the Parameters tab, set the customization.dir parameter
to C:\Customization.

Related information
Automatic PDF plugin customization generator by Jarno Elovirta.

DITA OT Documentation - PDF Customization Plugin

Customizing the Header and Footer in PDF Output

The XSLT stylesheet DITA_OT_DIR/plugins/org.dita.pdf2/xsl/fo/static-content.xsl contains
templates that output the static header and footers for various parts of the PDF such as the prolog, table of contents,
front matter, or body.

The templates for generating a footer for pages in the body are called insertBodyOddFooter or
insertBodyEvenFooter.

These templates get the static content from resource files that depend on the language used for generating the PDF. The
default resource file is DITA_OT_DIR/plugins/org.dita.pdf2/cfg/common/vars/en.xml. These
resource files contain variables (such as Body odd footer) that can be set to specific user values.

Instead of modifying these resource files directly, they can be overwritten with modified versions of the resources in a
PDF customization directory as explained in Creating a Customization Directory for PDF Output on page 1196.

Adding a Watermark to PDF Output

To add a watermark to the PDF output of a DITA map transformation, create a DITA-OT customization directory and
use it from a DITA to PDF transformation scenario, as in the following procedure:

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1197

http://dita-generator-hrd.appspot.com/pdf-plugin/
http://www.dita-ot.org/1.8/readme/dita2pdf-customization.html

1. Copy the entire directory: DITA_OT_DIR\plugins\org.dita.pdf2\Customization to another location
(for instance, C:\Customization).

2. Copy your watermark image (for example, watermark.png) to:
C:\Customization\common\artwork\watermark.png.

3. Rename the C:\Customization\catalog.xml.orig file to: C:\Customization\catalog.xml.
4. Open the catalog.xml in Oxygen XML Editor plugin and uncomment this line:

<!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

The uncommented line should look like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: C:\Customization\fo\xsl\custom.xsl.orig to:
C:\Customization\fo\xsl\custom.xsl

6. Open the C:\Customization\fo\xsl\custom.xsl file in Oxygen XML Editor plugin to overwrite two
XSLT templates:

• The first template is located in the XSLT stylesheet
DITA_OT_DIR\plugins\org.dita.pdf2\xsl\fo\static-content.xsl and we override it
specifying a watermark image for every page in the PDF content, using a block-container element that references
the watermark image file:

<fo:static-content flow-name="odd-body-header">
<fo:block-container absolute-position="absolute"

top="-2cm" left="-3cm" width="21cm" height="29.7cm"
background-image="{concat($artworkPrefix,

'/Customization/OpenTopic/common/artwork/watermark.png')}">
<fo:block/>

</fo:block-container>
<fo:block xsl:use-attribute-sets="__body__odd__header">

 <xsl:call-template name="insertVariable">
 <xsl:with-param name="theVariableID" select="'Body odd header'"/>
 <xsl:with-param name="theParameters">

<prodname>
 <xsl:value-of select="$productName"/>

</prodname>
<heading>

<fo:inline xsl:use-attribute-sets="__body__odd__header__heading">
<fo:retrieve-marker retrieve-class-name="current-header"/>

</fo:inline>
</heading>
<pagenum>

<fo:inline xsl:use-attribute-sets="__body__odd__header__pagenum">
<fo:page-number/>

</fo:inline>
</pagenum>

 </xsl:with-param>
 </xsl:call-template>

</fo:block>
</fo:static-content>

 </xsl:template>

• The second template that we override is located in the XSLT stylesheet
DITA_OT_DIR\plugins\org.dita.pdf2\xsl\fo\commons.xsl and is used for styling the first
page of the output. We also override it by copying the original template content in our custom.xsl and adding
the block-container element that references the watermark image file:

<xsl:template name="createFrontMatter_1.0">
<fo:page-sequence master-reference="front-matter" xsl:use-attribute-sets="__force__page__count">

 <xsl:call-template name="insertFrontMatterStaticContents"/>
<fo:flow flow-name="xsl-region-body">

<fo:block-container absolute-position="absolute"
top="-2cm" left="-3cm" width="21cm" height="29.7cm"
background-image="{concat($artworkPrefix,

'/Customization/OpenTopic/common/artwork/watermark.png')}">
<fo:block/>

</fo:block-container>
<fo:block xsl:use-attribute-sets="__frontmatter">

<!-- set the title -->
<fo:block xsl:use-attribute-sets="__frontmatter__title">

 <xsl:choose>
 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1198

 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>

 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/mainbooktitle
 ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains(@class, ' topic/topic
')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>

</fo:block>

<!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/booktitlealt ')]"/>

<fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/bookmeta ')]"/>

</fo:block>

</fo:block>

<!--<xsl:call-template name="createPreface"/>-->

</fo:flow>
</fo:page-sequence>

 <xsl:if test="not($retain-bookmap-order)">
 <xsl:call-template name="createNotices"/>
 </xsl:if>
 </xsl:template>

7. Edit your DITA Map to PDF transformation scenario. In the Parameters tab, set the customization.dir parameter to
C:\Customization.

Related tasks
Adding a Watermark to XHTML Output on page 1201

Force Page Breaks Between Two Block Elements in PDF Output

Suppose that in your DITA content you have two block level elements, such as two paragraphs:

<p>First para</p>
<p>Second para</p>

and you want to force a page break between them in the PDF output.

Here is how you can implement a DITA Open Toolkit plugin that would achieve this:

1. Define your custom processing instruction that marks the place where a page break should be inserted in the PDF,
for example:

<p>First para</p>
<?pagebreak?>

<p>Second para</p>

2. Locate the DITA Open Toolkit distribution and in the plugins directory create a new plugin folder (for example,
DITA_OT_DIR/plugins/pdf-page-break).

3. In this new folder, create a new plugin.xml file with the following content:

<plugin id="com.yourpackage.pagebreak">
<feature extension="package.support.name" value="Force Page Break Plugin"/>
<feature extension="package.support.email" value="support@youremail.com"/>
<feature extension="package.version"value="1.0.0"/>
<feature extension="dita.xsl.xslfo" value="pageBreak.xsl" type="file"/>

</plugin>

The most important feature in the plugin is that it will add a new XSLT stylesheet to the XSL processing that produces
the PDF content.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1199

4. In the same folder, create an XSLT stylesheet named pageBreak.xsl with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"version="1.0">
 <xsl:template match="processing-instruction('pagebreak')">

<fo:block break-after="page"/>
 </xsl:template>
</xsl:stylesheet>

5. Install your plugin in the DITA Open Toolkit.

Customizing note Images in PDF

To customize the images that appear next to each type of note in the PDF output, use a PDF customization folder with
the following procedure:

1. Copy the DITA_OT_DIR/plugins/org.dita.pdf2/cfg/common/vars/en.xml file to the
[CUSTOMIZATION_DIR]\common\vars folder.

2. Edit the copied en.xml file and modify, for example, the path to the image for <note> element with the type
attribute set to notice from:

<variable id="notice Note Image Path">Configuration/OpenTopic/cfg/common/artwork/important.png</variable>

to:

<variable id="notice Note Image Path">Customization/OpenTopic/common/artwork/notice.gif</variable>

3. Add your custom notice image to [CUSTOMIZATION_DIR]\common\artwork\notice.gif.
4. Edit the DITA to PDF transformation scenario and in the Parameters tab set the path for the customization.dir

property to point to the customization folder.

Set a Font for PDF Output Generated with FO Processor

When a DITA map is transformed to PDF using an FO processor and it contains some Unicode characters that cannot
be rendered by the default PDF fonts, a font that is capable of rendering these characters must be configured and embedded
in the PDF result.

The settings that must be modified for configuring a font for the built-in FO processor are detailed in the Add a Font to
the Built-in FO Processor on page 649 section.

DITA OT PDF Font Mapping

The DITA OT contains a file DITA_OT_DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml
that maps logical fonts used in the XSLT stylesheets to physical fonts that will be used by the FO processor to generate
the PDF output.

The XSLT stylesheets used to generate the XSL-FO output contain code like this:

<xsl:attribute name="font-family">monospace</xsl:attribute>

The font-family is defined to be monospace, but monospace is just an alias. It is not a physical font name. Therefore,
another stage in the PDF generation takes this monospace alias and looks in the font-mappings.xml.

If it finds a mapping like this:

<aliases>
<alias name="monospace">Monospaced</alias>

</aliases>

then it looks to see if the Monospaced has a logical-font definition and if so, it will use the physical-font specified there:

<logical-font name="Monospaced">
<physical-font char-set="default">

<font-face>Courier New, Courier</font-face>
</physical-font>

............
</logical-font>

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1200

Important:

If no alias mapping is found for a font-family specified in the XSLT stylesheets, the processing defaults to
Helvetica.

Related information
http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html

Adding a Watermark to XHTML Output

To add a watermark to the XHTML output of a DITA map transformation, follow these steps:

1. Create a custom CSS stylesheet that includes the watermark image, as in the following example:

body {
background-image: url(MyWatermarkImage.png);

}

2. Edit a DITA Map XHTML transformation scenario and in the Parameters tab set the value of the args.css
parameter as the path to your watermark image.

3. Set the value of the args.copycss parameter to yes.

4. Apply the transformation scenario.

5. Copy the watermark image in the output directory of the transformation scenario, next to the CSS file created in step
1.

Related tasks
Adding a Watermark to PDF Output on page 1197

DITA Map to PDF WYSIWYG Transformation

Oxygen XML Editor plugin comes bundled with a DITA OT plugin that converts DITA maps to PDF using a CSS layout
processor. Oxygen XML Editor plugin supports the following processors (not included in the Oxygen XML Editor
plugin installation kit):

• Prince Print with CSS - A third-party component that needs to be purchased from http://www.princexml.com.
• Antenna House Formatter - A third-party component that needs to be purchased from

http://www.antennahouse.com/antenna1/formatter/.

The DITA-OT plugin is located in the following directory: DITA_OT_DIR/plugins/com.oxygenxml.pdf.css.

Although it includes a set of CSS files in its css subfolder, when this plugin is used in Oxygen XML Editor plugin, the
CSS files located in the ${frameworks} directory take precedence.

Creating the Transformation Scenario

To create an experimental DITA map to PDF WYSIWYG transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button from the Dita Maps Manager toolbar.
2. Select DITA Map PDF - WYSIWYG - Experimental.
3. When applied, this new transformation scenario uses the currently selected CSS files for the opened topic files. These

CSS files can be selected from the Styles drop-down menu from the toolbar.

Important: The author could open the map in the editor and change its style, but this is ignored in the
publishing stage. Since authors usually edit topics instead of the map, Oxygen XML Editor plugin uses the
styles selected in the opened topics.

4. In the Parameters tab, configure the following parameters:

• css.processor.path.prince (if you are using the Prince Print with CSS processor) - Specifies the path
to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default settings,
you can leave this blank.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1201

http://www.elovirta.com/2016/02/18/font-configuration-in-pdf2.html
http://www.princexml.com/
http://www.antennahouse.com/antenna1/formatter/

• css.processor.path.antenna-house (if you are using the Antenna House Formatter processor) -
Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed
Antenna House using its default settings, you can leave this blank.

• webhelp.show.changes.and.comments - When set to yes, user comments, replies to comments, and
tracked changes are published in the WebHelp output. The default value is no.

Customizing the Styles (for Output and Editing)

If you need to change the styles in the associated CSS, make sure you install Oxygen XML Editor plugin in a folder in
which you have full read and write privileges (for instance, your user home directory). This is due to the fact that all the
installed files are usually read-only (for instance, in Windows, Oxygen XML Editor plugin is installed in the Program
Files folder where the users do not have change rights).

If you want to change the style of an element, open a document in the editor and select Inspect Styles from the contextual
menu. The CSS Inspector view that shows all the CSS rules that apply to the selected element will be displayed. Click
the link for the CSS selector that you need to change and Oxygen XML Editor plugin will open the CSS file and position
the cursor at that selector. Simply add the properties you need and to see the changes in the editor, press F5 to reload
the document. Once you are satisfied with how it looks, use the transformation scenario and check for the changes in
the PDF output.

Note: This experimental transformation scenario also allows you to present colored highlights in the PDF
output.

DITA Profiling / Conditional Text
DITA offers support for conditionally profiling content by using profiling attributes. With Oxygen XML Editor plugin,
you can define values for the DITA profiling attributes and they can be easily managed to filter content in the published
output. You can switch between profile sets to see how the edited content looks like before publishing.

Profiling Attributes

You can profile content elements or map elements by adding one or more of the default DITA profiling attributes
(product, platform, audience, rev, props, and otherprops). You can also create your own custom profiling
attributes and custom profiling condition sets. The profiling attributes may contain one or more tokens that represent
conditions to be applied to the content when a publication is built.

For example, you could define a section of a topic that would only be included for a publication related to the Windows
platform by adding the platform profiling attribute:

<section platform="windows">

Profiling Conditions

DITA allows you to conditionally profile parts of a topic so that certain parts of the topic are displayed when certain
profiling conditions are set. Profiling conditions can be set both within topics and in maps. When set in a topic, they
allow you to suppress an element (such as paragraph), step in a procedure, item in a list, or even a phrase within a
sentence. When set in a map, they allow you to suppress an entire topic or group of topics. You can then create a variety
of publications from a single map by applying profiling conditions to the build.

Apply Profiling to DITA Content

To apply a profiling attribute to DITA content, highlight the content and select Edit Profiling Attributes from the
contextual menu. To profile specific elements in a topic or map, right-click inside the element and select Edit Profiling
Attributes. The Edit Profiling Attributes dialog box is displayed, allowing you to check each of the profiling tokens
that apply for each attribute.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1202

Figure 569: Edit Profiling Attributes Dialog Box

The profiling attributes, and their potential values, that appear in this dialog box depend on what has been configured
in Oxygen XML Editor plugin. If you have a large list of profiling attributes, you can use the text filter field to search

for attributes or values, and you can expand or collapse attributes by using the Expand All/ Collapse All buttons
to the right of the text filter or the arrow button to the left of the profiling attribute name.

The content of the dialog box is determined as follows:

• If your root DITA map references a DITA subject scheme map that defines values for the profiling attributes, those
values are used. In the image above (taken from the Oxygen XML Editor plugin documentation project), values are
defined for eight products, but none for other profiling attributes. Thus, the others are omitted from the dialog box.

• Otherwise, a basic default set of profiling attributes and values are available.

Visualizing Profiled Content

You can visualize the effect of profiling content by using the profiling tools in the Profiling/Conditional Text
drop-down menu that is located on the DITA Maps Manager toolbar. You can select which profiles to show, or apply
colors to text that is profiled in various ways, as shown in the following image:

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1203

Figure 570: Example: Profiled Content

To watch our video demonstration about DITA profiling, go to http://oxygenxml.com/demo/DITA_Profiling.html.

Related information
Profiling and Conditional Text on page 294

Profiling / Conditional Text

Managing Profiling Attributes on page 295
Create Profiling Attributes

Apply Profiling Attributes on page 298
Apply Profiling Attributes

Managing Profiling Condition Sets on page 299
Create Profiling Condition Sets

Apply Profiling Condition Sets on page 301

Edit Properties Dialog Box on page 1137

Profiling DITA Content

You can filter DITA content or the structure of a document by using profiling attributes or profiling conditions sets.

Defining Profiling Attributes for DITA Content

To define or edit profiling attributes for filtering DITA content, follow these steps:

1. Open the Preferences dialog box and go to Editor > Edit modes > Author > Profiling / Conditional Text.
2. In the Profiling Attributes section, there are already some default attributes for DITA documents (audience,

platform, product, otherprops, and rev), although if a Subject Scheme Map is used for profiling your
content, you will see the attributes defined in your subject scheme map instead. You can add new attributes and

values by clicking the New button at the bottom of the table, or customize existing attributes and their values by

selecting an attribute and clicking the Edit button.

Step Result: This opens a Profiling Attribute configuration dialog box that allows you to define attributes that
exist in your schema.

3. In this configuration dialog box, use the New, Edit, Delete buttons to add, edit, or delete possible values of
the selected attribute. You can also specify an optional description for each attribute value and you can choose

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1204

http://oxygenxml.com/demo/DITA_Profiling.html

whether the attribute accepts a Single value or Multiple values separated by a delimiter (DITA only accepts space
as delimiters for attribute values).

4. Click OK to accept your changes.

Result: You should see your changes in the Profiling Attribute table.

You can also use the Profiling Condition Sets section to apply more complex filters on you DITA content.

Applying Profiling Attributes in DITA

You can apply the DITA profiling attributes that were defined in the previous section in the following contexts:

To profile DITA topics, right-click a topic reference in the DITA Maps Manager, select

Edit Properties from the contextual menu, go to the Profiling tab, and select the appropriate
values.

DITA Topics

To profile DITA content in Author mode, highlight the content and select Edit Profiling
Attributes from the contextual menu and select the appropriate values in the subsequent dialog
box.

DITA Content

To profile specific XML elements in Author mode, right-click inside the element (or right-click
the element name in the breadcrumb navigation bar), select Edit Profiling Attributes, and

DITA Elements

select the appropriate values in the subsequent dialog box. You can also use the Attributes
view to set the profiling attributes on the element at the current cursor position.

To display the DITA profiling markup in the Author editing mode, enable the Show Profiling Attributes option in the

Profiling / Conditional Text drop-down menu that is available on the toolbar (or from the DITA >
Profiling/Conditional Text menu).

Adding or Editing Profiling Attribute Values

There are several ways to add values to existing profiling attributes.

• Use the procedure in the Defining Profiling Attributes for DITA Content on page 1204 section to edit an existing
attribute and use the Profiling Attribute configuration dialog box to add, edit, or delete values for existing profiling
attributes.

• You can add values directly to the existing profiling attributes in a document using the In-Place Attributes Editor in
Author mode, the Attributes view, or in the source code in Text mode. However, this just adds them to the document
and does not change the conditional text configuration. If you invoke the Edit Profiling Attributes action (from the
contextual menu in Author mode) on the new value, the Profiling Values Conflict dialog box will appear and it
includes an Add these values to the configuration action that will automatically add the new value to the particular
profiling attribute. It also includes an Edit the configuration action that opens the Profiling / Conditional Text
preferences page where you can edit the profiling configuration. The action selected by default is to preserve the
current configuration.

Note: If the Allow additional profiling attribute values collected from the document option is disabled in
the Profiling / Conditional Text preferences page, the Profiling Values Conflict dialog box will never
appear, the current conditional text configuration will be preserved, and therefore the second method mentioned
above will not be available.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1205

Figure 571: Profiling Values Conflict Dialog Box

Related information
Managing Profiling Attributes on page 295

Apply Profiling Attributes on page 298

Managing Profiling Condition Sets on page 299

Apply Profiling Condition Sets on page 301

Customizing Colors and Styles for Rendering Profiling in Author Mode on page 303

Profiling with a Subject Scheme Map

A subject scheme map allows you to create custom profiling values and to manage the profiling attribute values used
in the DITA topics without having to write a DITA specialization.

Subject scheme maps use key definitions to define a collection of profiling values. A map that uses the set of profiling
values must reference the subject scheme map in which the profiling values are defined at its highest level, as in the
following example:

<topicref href="test.ditamap" format="ditamap" type="subjectScheme"/>

A profiled value should be a short and readable keyword that identifies a metadata attribute. For example, the audience
metadata attribute may take a value that identifies the user group associated with a particular content unit. Typical user
values for a medical-equipment product line might include therapist, oncologist, physicist, radiologist,
surgeon, and so on. A subject scheme map can define a list of these audience values.

The following is an example of content from a subject scheme:

<subjectScheme>
<!-- Pull in a scheme that defines audience user values -->
<subjectdef keys="users">
<subjectdef keys="therapist"/>
<subjectdef keys="oncologist"/>
<subjectdef keys="physicist"/>
<subjectdef keys="radiologist"/>
<subjectdef keys="surgeon">

<subjectdef keys="neuro-surgeon"/>
<subjectdef keys="plastic-surgeon"/>

</subjectdef>
</subjectdef>
<!-- Define an enumeration of the audience attribute, equal to

 each value in the users subject. This makes the following values
 valid for the audience attribute: therapist, oncologist, physicist, radiologist,
 surgeon, neuro-surgeon and plastic-surgeon. -->

<enumerationdef>
<attributedef name="audience"/>
<subjectdef keyref="users"/>

</enumerationdef>
</subjectScheme>

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1206

When you edit a DITA topic in the Text or Author mode, Oxygen XML Editor plugin collects all the profiling values
from the Subject Scheme Map that is referenced in the map that is currently opened in the DITA Maps Manager. The
values of profiling attribute defined in a Subject Scheme Map are available in the Edit Profiling Attribute dialog box,
regardless of their mapping in the Profiling/Conditional Text preferences page. They are also available as proposals
for values in the Content Completion Assistant.

In the example above, the values therapist, oncologist, physicist, and so on, are displayed
in the Content Completion Assistant as values for the audience attribute.

Consider that you have the following fragment in a topic:

<p audience="neuro-surgeon">Some text.. </p>

When you define a DITAVAL filter, you can, for instance, exclude anything that is profiled as surgeon:

<val>
<prop action="exclude" att="audience" val="surgeon"/>

</val>

If you then transform the main DITA map specifying the DITAVAL filter file in the transformation scenario, the p
element should be excluded from the output. Therefore, excluding the surgeon audience also excludes
neuro-surgeon and plastic-surgeon from the output. More details about how hierarchical filtering and Subject
Scheme Maps should work are found in the following
specification:http://docs.oasis-open.org/dita/v1.2/os/spec/langref/subjectScheme.html#subjectSchemehttp://docs.oasis-open.org/dita/v1.2/os/spec/langref/subjectScheme.html%23subjectScheme

Related information
http://www.oxygenxml.com/demo/DITA_Subject_Scheme.html

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/subjectScheme.html#subjectScheme

Profiling Markers

If the Show Profiling Attributes option (available in the Profiling / Conditional Text toolbar menu) is enabled,
all profiling attributes set on the current element are listed at the end of the highlighted block. Profiled text is marked
in the Author mode with a light green border.

Figure 572: Profiling in Author

In the DITA Maps Manager view, the following icons are used to mark profiled and non-profiled topics:

• - The topic contains profiling attributes.
• - The topic inherits profiling attribute from its ancestors.
• - The topic contains and inherits profiling attributes.
• (dash) - The topic neither contains, nor inherits profiling attributes.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1207

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/subjectScheme.html#subjectSchemehttp://docs.oasis-open.org/dita/v1.2/os/spec/langref/subjectScheme.html%23subjectScheme
http://www.oxygenxml.com/demo/DITA_Subject_Scheme.html
http://docs.oasis-open.org/dita/v1.2/os/spec/langref/subjectScheme.html#subjectScheme

Figure 573: Profiling in DITA Maps Manager

The profiled content that does not match the rules imposed by the current condition sets is grayed-out, meaning that it
will not be included in the published output.

Publishing Profiled DITA Content

You can create a variety of publications or versions of your documentation from a single map by applying profiling
conditions to the build.

Oxygen XML Editor plugin includes preconfigured transformation scenarios for DITA. By default, these scenarios take
the current profiling condition set into account during the transformation, as defined in the Filters tab when creating a
DITA transformation.

Figure 574: Profiling Option in the Filters Tab (DITA OT Transformations)

DITA Open Toolkit Support
Oxygen XML Editor plugin includes support for the DITA Open Toolkit. This section includes information about how
to create a DITA OT plugin, how to install plugins in the DITA OT, and how to use an external instance of the DITA
Open Toolkit.

Related information
DITA Open Toolkit Documentation

Creating a DITA OT Customization Plugin

To describe the steps involved in creating a DITA Open Toolkit plugin, this section uses an example of creating an
XSLT customization plugin that provides syntax highlighting when publishing DITA codeblock elements to HTML

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1208

http://www.dita-ot.org/

and PDF output formats. This plugin (com.oxygenxml.highlight) is available in the DITA Open Toolkit distribution
that comes bundled with the latest version of Oxygen XML Editor plugin, but these instructions show you how to create
it as if it were not included.

The steps to help you to create the plugin are as follows:

1. Create a folder for your plugin in the DITA OT plugins folder (DITA_OT_DIR/plugins/).

For example, if you are using DITA 1.8 the path would look like this:

[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT/plugins/com.oxygenxml.highlight

2. Create a plugin.xml file (in the same plugin folder) that contains the extension points of the plugin.

Note: You can easily create this file by using the DITA OT Plugin new file template that is included in
Oxygen XML Editor plugin. From the New file wizard you can find this template in Framework templates >
DITA > plugin.

For example, our syntax highlighting plugin example contains the following:
<plugin id="com.oxygenxml.highlight">
 <feature extension="package.support.name" value="Oxygen XML Editor Support"/>
 <feature extension="package.support.email" value="support@oxygenxml.com"/>
 <feature extension="package.version" value="1.0.0"/>
 <feature extension="dita.xsl.xhtml" value="xhtmlHighlight.xsl" type="file"/>
 <feature extension="dita.xsl.xslfo" value="pdfHighlight.xsl" type="file"/>
</plugin>

The most important extensions in it are the references to the XSLT stylesheets that will be used to style the HTML
and PDF outputs.

You can find other DITA OT plugin extension points here:
http://dita-ot.sourceforge.net/1.5.3/dev_ref/extension-points.html

3. Create an XSLT stylesheet to customize the output types. In our example, to customize the HTML output we need
to create an XSLT stylesheet called xhtmlHighlight.xsl (in the same plugin folder).

Tip: You can use the Find/Replace in Files to find an XSLT stylesheet with content that is similar to the
desired output and use it as a template to overwrite parts of your stylesheet. In our example we want to
overwrite the creation of the HTML content from a DITA codeblock element. Since a DITA codeblock
element has the class attribute value + topic/pre pr-d/codeblock we can take part of the class
attribute value (topic/pre) and search the DITA OT resources for a similar stylesheet.

Our search found the XSLT stylesheet
DITA_OT_DIR/org.dita.xhtml/xsl/xslhtml/dita2htmlImpl.xsl that contains:
<xsl:template match="*[contains(@class,' topic/pre ')]" name="topic.pre">
 <xsl:apply-templates select="." mode="pre-fmt" />
</xsl:template>

We use it to overwrite our xhtmlHighlight.xsl stylesheet, which results in the following:
<xsl:template match="*[contains(@class,' topic/pre ')]" name="topic.pre">
 <!-- This template is deprecated in DITA-OT 1.7. Processing will moved into the main element rule.
 -->
 <xsl:if test="contains(@frame,'top')"><hr /></xsl:if>
 <xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-startprop ')]" mode="out-of-line"/>

 <xsl:call-template name="spec-title-nospace"/>
 <pre>
 <xsl:attribute name="class"><xsl:value-of select="name()"/></xsl:attribute>
 <xsl:call-template name="commonattributes"/>
 <xsl:call-template name="setscale"/>
 <xsl:call-template name="setidaname"/>
 <!--Here I'm calling the styler of the content inside the codeblock.-->
 <xsl:call-template name="outputStyling"/>
 </pre>
 <xsl:apply-templates select="*[contains(@class,' ditaot-d/ditaval-endprop ')]" mode="out-of-line"/>

 <xsl:if test="contains(@frame,'bot')"><hr /></xsl:if><xsl:value-of select="$newline"/>
 </xsl:template>

You could also use another XSLT template that applies the XSLTHL library as a Java extension to style the
content.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1209

http://dita-ot.sourceforge.net/1.5.3/dev_ref/extension-points.html

4. Create additional XSLT stylesheets to customize all other desired output types. In our example, to customize the
PDF output we need to create an XSLT stylesheet called pdfHighlight.xsl (in the same plugin folder).

In this case we found an appropriate XSLT stylesheet
DITA_OT_DIR/plugins/legacypdf/xslfo/dita2fo-elems.xsl to use as a template that we use to
overwrite our pdfHighlight.xsl stylesheet, which results in the following:

<xsl:template match="*[contains(@class,' topic/pre ')]">
 <xsl:call-template name="gen-att-label"/>
 <fo:block xsl:use-attribute-sets="pre">
 <!-- setclass -->
 <!-- set id -->
 <xsl:call-template name="setscale"/>
 <xsl:call-template name="setframe"/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

Note: You can edit the newly created stylesheets to customize multiple outputs in a variety of ways. For
example, in our case you could edit the xhtmlHighlight.xsl or pdfHighlight.xsl stylesheets that we created
to customize various colors for syntax highlighting.

5. To install the created plugin in the DITA OT, run the predefined transformation scenario called Run DITA OT

Integrator by executing it from the Apply Transformation Scenario(s) dialog box. If the integrator is not

visible, enable the Show all scenarios action that is available in the Settings drop-down menu. For more
information, see Installing a Plugin in the DITA Open Toolkit on page 1210.

Results of running the integrator using our example:

XSLT content is applied with priority when publishing to both HTML and PDF outputs.

a. For the HTML output, in the XSLT stylesheet DITA_OT_DIR/xsl/dita2html-base.xsl a new import
automatically appeared:
<xsl:import href="../plugins/com.oxygenxml.highlight/xhtmlHighlight.xsl"/>

This import is placed after all base imports and thus has a higher priority. For more information about imported
template precedence, see: http://www.w3.org/TR/xslt#import.

b. Likewise, for the PDF output, in the top-level stylesheet
DITA_OT_DIR/plugins/org.dita.pdf2/xsl/fo/topic2fo_shell_fop.xsl a new import
statement appeared:
<xsl:import href="../../../com.oxygenxml.highlight/pdfHighlight.xsl"/>

Now, you can distribute your plugin folder to anyone that has a DITA OT installation along with some simple installation
notes. Your customization will work provided that the templates you are overwriting have not changed from one DITA
OT distribution to the other.

Related information
DITA Open Toolkit Documentation

Installing a Plugin in the DITA Open Toolkit

The architecture of the DITA Open Toolkit allows additional plugins to be installed.

1. The additional plugin(s) should be copied to the DITA_OT_DIR\plugins directory.

Note: If the plugin is only supported in DITA-OT 2.x versions, make sure that you copy the plugin in the
[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT2.x directory.

2. Run the predefined transformation scenario called Run DITA OT Integrator by executing it from the Apply
Transformation Scenario(s) dialog box. If the integrator is not visible, enable the Show all scenarios action that

is available in the Settings drop-down menu.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1210

http://www.w3.org/TR/xslt#import
http://www.dita-ot.org/

Important: The folder where the DITA OT is located needs to have full write access permissions set to it.
For example if you are integrating plugins in the DITA OT folder bundled with Oxygen XML Editor plugin
and if you are running on Windows and your application is installed in the Program Files folder, you can
start the Oxygen XML Editor plugin main executable with administrative rights for the integrator process
to be able to modify resources in the DITA OT folder.

Starting with version 17.0, Oxygen XML Editor plugin detects the transformation type (transtype) declarations
from DITA OT plugins and presents descriptions, which are contributed in the transtype declarations, in the
DITA Transformation Type dialog box. Oxygen XML Editor plugin also shows the contributed parameters from
DITA OT plugins in the Parameters tab in the Edit DITA Scenario dialog box.

3. If the plugin contributed a new transformation type that is not detected (for instance, if you are using a previous
version of Oxygen XML Editor plugin that does not detect the transtype declarations), you can create a new
DITA OT transformation scenario with a predefined type that is similar to the new transformation type. Then edit
the transformation scenario, and in the Parameters tab add a transtype parameter with the value of the new
transformation type.

Note: A transformation type can also extend another transtype. For example, the pdf-prince transtype
extends a commons transformation type that contains all the common DITA OT parameters.

Example:

<plugin id="com.oxygenxml.pdf.prince">
<!-- extensions -->
<feature extension="dita.conductor.transtype.check" value="pdf-prince" type="txt"/>
<feature extension="dita.conductor.target.relative" value="integrator.xml" type="file"/>
<feature extension="dita.transtype.print" value="pdf-prince"/>
<transtype name="pdf-prince"extends="commons" desc="PDF (Prince XML - Experimental)">
<param name="princeExecPath" type="file" desc="Path to the Prince executable file (eg:

"c:\path\to\prince.exe" on Windows) which should be run to produce the PDF"/>
</ Transtype>

</plugin>

Related information
Creating a DITA OT Customization Plugin on page 1208

http://dita4publishers.sourceforge.net/topics/install-instructions.html

DITA Open Toolkit Documentation

Use an External DITA Open Toolkit in Oxygen XML Editor plugin

Oxygen XML Editor plugin comes bundled with a DITA Open Toolkit, located in the DITA_OT_DIR directory. Starting
with Oxygen XML Editor plugin version 17, if you want to use an external DITA OT for all transformations and
validations, you can open the Preferences dialog box and go to the DITA page, where you can specify the DITA OT
to be used. Otherwise, to use an external DITA Open Toolkit, follow these steps:

1. Edit your transformation scenarios and in the Parameters tab change the value for the dita.dir parameter to point
to the new directory.

2. To make changes in the libraries that come with the DITA Open Toolkit and are used by the Ant process, go to the
Advanced tab, click the Libraries button and uncheck Allow Oxygen to add high priority libraries to classpath.

3. If there are also changes in the DTDs and you want to use the new versions for content completion and validation,
go to the Oxygen XML Editor plugin preferences in the Document Type Association page, edit the DITA and
DITA Map document types and modify the catalog entry in the Catalogs tab to point to the custom catalog file
catalog-dita.xml.

Related information
Editing a Transformation Scenario on page 638

Creating New Transformation Scenarios on page 602

DITA Open Toolkit Documentation

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1211

http://dita4publishers.sourceforge.net/topics/install-instructions.html
http://www.dita-ot.org/
http://www.dita-ot.org/

Third-Party DITA Open Toolkit Plugins

The DITA Open Toolkit 1.8 and 2.x distributions that are bundled with Oxygen XML Editor plugin include some
pre-installed third-party open-source plugins that add extra publishing formats and functionality.

The plugins that come bundled with Oxygen XML Editor plugin include:

• DITA For Publishers (installed only in DITA OT 1.8) - These plugins allow DITA content to be published to
additional formats, such as EPUB 2.0 and Kindle.

• DITA to Reveal JS (installed only in DITA OT 1.8) - This plugin allows users to publish DITA content to web slides
that can be used for presentations.

• DITA to Word (installed only in DITA OT 2.x) - This plugin allows users to publish DITA content to MS Word.
• DITA Markdown (installed only in DITA OT 2.x) - This plugin allows users to publish DITA content to Markdown,

or to publish DITA Maps that refer to Markdown resources.
• Lightweight DITA (installed only in DITA OT 2.x) - This plugin allows users to create, edit, and validate Lightweight

DITA topics and maps.
• DITA Community (installed only in DITA OT 2.x) - These plugins allow support for DITA 1.3 with embedded or

referenced MathML and SVG images.

DITA Specialization Support
This section explains how you can integrate and edit a DITA specialization in Oxygen XML Editor plugin.

Integration of a DITA Specialization

A DITA specialization usually includes:

• DTD definitions for new elements as extensions of existing DITA elements.
• Optional specialized processing that is new XSLT template rules that match the extension part of the class attribute

values of the new elements and thus extend the default processing available in the DITA Open Toolkit.

A specialization can be integrated in the application with minimum effort:

1. If the DITA specialization is available as a DITA Open Toolkit plugin, copy the plugin to the location of the DITA
OT you are using (by default DITA_OT_DIR\plugins). Then run the DITA OT integrator to integrate the plugin.
In the Transformation Scenarios view there is a predefined scenario called Run DITA OT Integrator that can be
used for this.

Important: The directory where the DITA OT is located needs to have full write access permissions set to
it.

2. If the specialization is not available as a DITA OT plugin, you have the following options:

• If the DTD that define the extension elements are located in a folder outside the DITA Open Toolkit folder, add
new rules to the DITA OT catalog file for resolving the DTD references from the DITA files that use the specialized
elements to that folder. This allows correct resolution of DTD references to your local DTD files and is needed
for both validation and transformation of the DITA maps or topics. The DITA OT catalog file is called
catalog-dita.xml and is located in the root folder of the DITA Open Toolkit.

• If there is specialized processing provided by XSLT stylesheets that override the default stylesheets from DITA
OT, these new stylesheets must be called from the Ant build scripts of DITA OT.

Important: If you are using DITA specialization elements in your DITA files, it is recommended that
you activate the Enable DTD/XML Schema processing in document type detection checkbox in the
Document Type Association preferences page.

• In your specialization plugin directory, create a folder called template_folders, which would contain all
the folders with new file templates. In Oxygen XML Editor plugin, the templates contributed by the plugin will
be available in the New document wizard.

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1212

https://github.com/dita4publishers
https://github.com/doctales/org.doctales.reveal
https://github.com/jelovirt/com.elovirta.ooxml
https://github.com/jelovirt/dita-ot-markdown
http://dita.xml.org/blog/lightweight-dita
https://github.com/dita-community/dita13-dita-ot-1.x-support

Related concepts
Transformation Scenarios on page 578

Related information
DITA Configuration and Specialization Tutorials

Editing DITA Map Specializations

In addition to recognizing the default DITA map formats (map and bookmap), the DITA Maps Manager view can
also be used to open and edit specializations of DITA maps.

All advanced edit actions available for the map (such as insertion of topic refs, heads, properties editing) allow you to
specify the element in an editable combo box. Moreover the elements that appear initially in the combo are all the
elements that are allowed to appear at the insert position for the given specialization.

The topic titles rendered in the DITA Maps Manager view are collected from the target files by matching the class
attribute and not a specific element name.

When editing DITA specializations of maps in the main editor the insertions of topic reference, topic heading, topic
group and conref actions should work without modification. For the table actions, you have to modify each action
manually to insert the correct element name at cursor position. You can go to the DITA Map document type from the
Document Type Association preferences page and edit the table actions to insert the element names as specified in your
specialization. See the Adding or Editing a Document Type Association (Framework) on page 896 section for more
details.

Editing DITA Topic Specializations

In addition to recognizing the default DITA topic formats (topic, task, concept, reference, and composite),
topic specializations can also be edited in the Author mode.

The content completion should work without additional modifications and you can choose the tags that are allowed at
the cursor position.

The CSS styles in which the elements are rendered should also work on the specialized topics without additional
modifications.

The toolbar/menu actions should be customized to insert the correct element names. You can go to the DITA document
type from the Document Type Association preferences page and edit the actions to insert the element names, as specified
in your specialization. See the Adding or Editing a Document Type Association (Framework) on page 896 section for
more details.

Metadata
Metadata is a broad concept that describes data that explains or identifies other data. Metadata can be used for many
purposes, from driving automation of document builds to enabling authors and readers to find content more easily. DITA
provides numerous types of metadata, each of which is used and created differently. Some of the most important forms
of metadata in DITA are topic and taxonomy.

Topic Metadata

Topic metadata describes the topic and what it is about. Topic metadata can be inserted in the prolog element of a
topic or inside the topicref element that points to a topic from a map. In other words, metadata about the topic can
be asserted by the topic itself, or can be assigned to it by the map that includes it in the build. This allows multiple maps
to assign different metadata to the same topic. This may be appropriate when you want to describe a topic differently
in various documents.

Taxonomy and Subject Scheme

A taxonomy is a controlled vocabulary. It can be used to standardize how many things in your content and metadata are
named. This consistency in naming can help ensure that automated processes work correctly, and that consistent

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1213

http://dita4practitioners.github.io/dita-specialization-tutorials/

terminology is used in content, and in metadata. In DITA, taxonomies are created using subject scheme maps. When
you are authoring, many of the values you choose from have been defined in subject scheme maps.

Creating an Index in DITA
In DITA, indexes are created from indexterm elements. You can insert index term elements:

• In the header of a topic. In paginated media, such as a printed book or a PDF, this results in an index entry that points
to the page in which the topic starts, even if it is not the page in which the indexed term occurs.

• In the topicref element in a map that references the topic. This applies those index terms to that topic only when
used in that map, allowing you to index topics differently in various publications. In paginated media, index entries
point to the page in which the topic starts.

• In the body of a topic. In paginated media, this results in an index entry that points to the page in which the
indexterm element occurs, even if that is not the page in which the topic starts.

To add index terms to the text of a topic of the topic header, create the elements, as you normally would, in Oxygen
XML Editor plugin. To add index terms to a map, open the map in the editor and add the elements, as you normally
would, in a topic.

In some media, indexes will be generated automatically when index entries are found in the source. For other media,
such as books, you may need to tell DITA where to place the index. For instance, to add an index to a bookmap, you
need to add an indexlist element to the backmatter of the book.

1. Open your bookmap in the DITA Maps Manager.

2. Right-click the bookmap and select Append child > Backmatter. The Insert Reference dialog box appears.

3. Click Insert and Close to insert the backmatter element.

4. Right-click the backmatter element and create a booklists element using Append child > Book Lists.

5. Use the same steps to create an indexlist element.

CAUTION: Adding index entries and an indexlist to your project creates an instruction to the DITA
publishing routines to create an index. There is no guarantee that all DITA output types or third-party
customizations obey that instruction or create the index the way you want it. Modifying the output may be
necessary to get the result you want.

DITA 1.3 Support
Starting with version 17.1, Oxygen XML Editor plugin includes support for some DITA 1.3 features.

To enable DITA 1.3 support in Oxygen XML Editor plugin and use the DITA Open Toolkit 2.x for publishing, open
the Preferences dialog box , go to DITA, and select the Built-in DITA OT 2.x radio button.

The Oxygen XML Editor plugin publication of the full DITA 1.3 specifications can be found at
http://www.oxygenxml.com/dita/1.3/specs/index.html#introduction/dita-release-overview.html.

The following table is a list of DITA 1.3 features and their implementation status in Oxygen XML Editor plugin:

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1214

http://www.oxygenxml.com/dita/1.3/specs/index.html#introduction/dita-release-overview.html

Table 16: DITA 1.3 Features Implementation Status

Publishing [Latest
DITA Open Toolkit
2.x is used.]

EditingFeature

N/ANew DITA 1.3 file templates. By default, DITA topics
and maps that do not specify version in the
DOCTYPE declaration are also considered to be
DITA 1.3

Specific annotations presented in the content
completion assistance window and documentation
tooltips for all new DITA 1.3 elements

DITA 1.3 DTD, XML Schema, and
Relax NG-based
maps/topics/tasks/references, etc.

No specific support
implemented

New file templatesLearning Object and Group maps

No specific support
implemented

Create and edit new troubleshooting topicsTroubleshooting specialization

Special rendering in
PDF and
XHTML-based
outputs

Validation and Content CompletionXML markup domain

Special rendering in
PDF and
XHTML-based
outputs

Validation and content completion

Display and Insert equations

Equation and MathML domain

Special rendering in
PDF and
XHTML-based
outputs

Validation and content completion

Display referenced SVG content

SVG domain

Special rendering in
PDF and
XHTML-based
outputs

Validation and Content CompletionOther new DITA 1.3 elements (div,
strike-through, overline, etc)

No specific support
implemented

Validation and Content CompletionRelease management domain

Partially implemented
(Various issues may
still be encountered)

Define key scopes

Validate and check for completeness

Resolve keyrefs and conkeyrefs taking key scopes into
account

Key scope information is displayed in a tooltip when
hovering over an item in the DITA Maps Manager

Scoped keys

Partially implemented
(Various issues may
still be encountered)

Display, create, and edit ditavalref elementsBranch filtering

Not implemented.Special display for references to DITA maps with
scope="peer" and a defined keyscope

Gather and present keys from peer maps

Key-based cross deliverable addressing

Oxygen XML Editor plugin | DITA Authoring and Publishing | 1215

Publishing [Latest
DITA Open Toolkit
2.x is used.]

EditingFeature

ImplementedProperly resolved for validation, links, and conrefsShorthand to address syntax that
identifies elements in the same topic

Not implementedNot implemented in the Table Properties action
support. However, attributes can be changed from the
Attributes view

Various table attributes
(orientation, rotation, scope,
and headers on cells)

ImplementedAllow setting new attributes, propose proper values
for them

New Map topicref attributes
(cascade, deliveryTarget)

Related information
Watch our DITA 1.3 video tutorial for more information about key scopes and branch filtering.

https://www.oxygenxml.com/demo/DITA_13.html

Chapter

20

Glossary

Topics:

• Active cell
• Apache Ant
• Block element
• Bookmap
• DITA Map
• DITA_OT_DIR
• Inline element
• Java Archive
• Named User

Active cell
The selected cell in which data is entered when you begin typing. Only one cell is active at a time. The active cell is
bounded by a heavy border.

Apache Ant
Apache Ant (Another Neat Tool) is a software tool for automating software build processes.

Ant

Block element
A block element is intended to be visually separated from its siblings, usually vertically. For instance, a paragraph or a
list item are block elements. It is distinct from a inline element, which has no such separation.

Bookmap
A bookmap is a specialized DITA map used for creating books. A bookmap supports book divisions such as chapters
and book lists such as indexes.

DITA Map
A DITA map is a hierarchical collection of DITA topics that can be processed to form an output. Maps do not contain
the content of topics, but only references to them. These are known as topic references. Usually the maps are saved on
disk or in a CMS with the extension .ditamap.

Maps can also contain relationship tables that establish relationships between the topics contained within the map.
Relationship tables are also used to generate links in your published document.

You can use your map or bookmap to generate a deliverable using an output type such as XHTML, PDF, HTML Help
or Eclipse Help.

DITA_OT_DIR
DITA_OT_DIR is the default directory that is specified for your DITA Open Toolkit distribution in the Window >
Preferences > Oxygen XML Editor plugin > DITA preferences page.

For example, if you are using DITA 1.8, the default DITA OT directory is:
[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT (or if you are using DITA 2.x,
[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT2.x). You can also specify a custom directory.

Inline element
An inline element is intended to be displayed in the same line of text as its siblings or the surrounding text. For instance,
strong and emphasis in HTML are inline elements. It is distinct from a block element, which is visually separated from
its siblings.

Oxygen XML Editor plugin | Glossary | 1218

Java Archive
JAR (Java ARchive) is an archive file format. JAR files are built on the ZIP file format and have the .jar file extension.
Computer users can create or extract JAR files using the jar command or an archive tool.

Java Archive (JAR)

JAR

Named User
Named User is defined as an individual full or part-time employee who is authorized by You (the individual or entity
who owns the rights to Oxygen XML Editor plugin) to use the software regardless of whether or not the individual is
actively using the software at any given time. To avoid any doubt, Named User licenses cannot be shared amongst
multiple individuals and separate Named User licenses must be purchased for each individual user.

A Named User license may not be reassigned to another employee except in the following circumstances:

• (a) Upon termination of the Named User’s employment with your company.
• (b) Permanent reassignment of a Named User to a position that does not involve the use of the Software.

For example, suppose Jane has been assigned an Oxygen XML license and she leaves your company. When she leaves,
you can simply reassign her license to John, her replacement. In the event that you do reassign the Named User license
in accordance with the restrictions above, you do not need to notify Syncro of such a reassignment.

Note: This definition is taken from the Oxygen XML Editor plugin End User License Agreement.

Oxygen XML Editor plugin | Glossary | 1219

http://www.oxygenxml.com/eula.html

Notice

Copyright

Oxygen XML Editor plugin User Manual

Syncro Soft SRL.

Copyright © 2002-2016 Syncro Soft SRL. All Rights Reserved.

All rights reserved. No parts of this work may be reproduced in any form or
by any means - graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems - without the
written permission of the publisher. Products that are referred to in this document
may be either trademarks and/or registered trademarks of the respective owners.
The publisher and the author make no claim to these trademarks.

Trademarks. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this document, and Syncro Soft SRL was aware of a trademark claim,
the designations have been rendered in caps or initial caps.

Notice. While every precaution has been taken in the preparation of this
document, the publisher and the author assume no responsibility for errors or
omissions, or for damages resulting from the use of information contained in
this document or from the use of programs and source code that may accompany
it. In no event shall the publisher and the author be liable for any loss of profit
or any other commercial damage caused or alleged to have been caused directly
or indirectly by this document.

Link disclaimer. Syncro Soft SRL is not responsible for the contents or
reliability of any linked Web sites referenced elsewhere within this
documentation, and Syncro Soft SRL does not necessarily endorse the products,
services, or information described or offered within them. We cannot guarantee
that these links will work all the time and we have no control over the availability
of the linked pages.

Warranty. Syncro Soft SRL provides a limited warranty on this product. Refer
to your sales agreement to establish the terms of the limited warranty. In addition,
Oxygen XML Editor plugin End User License Agreement, as well as information
regarding support for this product, while under warranty, is available through
the Oxygen XML Editor plugin website.

Third-party components. Certain software programs or portions thereof
included in the Product may contain software distributed under third party
agreements ("Third Party Components"), which may contain terms that expand
or limit rights to use certain portions of the Product ("Third Party Terms").
Information identifying Third Party Components and the Third Party Terms that
apply to them is available on the Oxygen XML Editor plugin website.

Downloading documents. For the most current versions of documentation, see
the Oxygen XML Editor plugin website.

Contact Syncro Soft SRL. Syncro Soft SRL provides telephone numbers and
e-mail addresses for you to report problems or to ask questions about your
product, see the Oxygen XML Editor plugin website.

http://www.oxygenxml.com/eula.html
http://www.oxygenxml.com/thirdparty/
http://www.oxygenxml.com/documentation.html
http://www.oxygenxml.com/support.html

Index

Special Characters

:has pseudo-class 992

A

Actions subtab (Author Tab) (Document type configuration dialog
box) 62

Add button 708
Add favicon to WebHelp 681, 706
Add Form Controls 1058
StylesFilter API for adding form controls 1058
add image in DITA 1150
Add items to a project 28, 215
Add master file 222
add MathML in DITA 1164
Address Family Not Supported by Protocol Family; Connect 1114
add topics to a DITA map 1128
Advanced Tab (DITA OT Transformations) 619, 1192
Annotations preferences 93
Applying profiling attributes in Author mode 298
Applying profiling condition sets 301
Archives 733, 734, 736
browse 734
edit 736
file browser 734
modify 734
Association Rules Tab (Document type configuration dialog box)

60
Author Editing Mode 255
roles: content author, framework developer 255
Author Editor 168, 169, 170, 171, 173, 177, 180, 184, 225, 254,

255, 257, 258, 260, 264, 271, 273, 275, 282, 284, 287,
288, 292, 346, 349, 359

Accessibility 168, 257, 264
attributes view 180, 271
Author mode contextual menu 349
breadcrumb 168, 257

change tracking 282, 284, 287, 288, 292
callouts 288
managing comments 284, 287
the Review view 292
track changes behavior 282
track changes limitations 284

edit content 264
editing XML 254
edit markup 225, 260
elements view 184, 273
external references 171

navigation 168, 169, 257, 258
display the markup 169, 258

outline view 177, 275
position information tooltip 170
reload content 346
validation 171, 359
whitespace handling 173
WYSIWYG editing 255

Author Mode 278
change tracking 278
manage changes 278

Review tools 278
Author Mode - Content Authors 254
Author Mode - Framework Developers 254
Author Mode Settings 900

menus 900
main menu 900

Author Settings 898, 899, 901, 902, 904, 917, 920, 937, 941, 942,
943, 945, 952, 954, 955, 959, 961, 963

actions 898, 899
insert section 898
insert table 899

Author default operations 904
content 902
configuring the content completion 902
content completion customization wizard 902
Java API 917, 920, 937, 941, 942, 943, 945, 952, 954, 955,

959, 961, 963
Author action event handler 943
Author extension state listener 945
Author image decorator 945
Author schema aware editing handler 941, 942
configure XML node renderer customizer 963
CSS styles filter 954
customize outline icons 963
customize XML node 963
extensions bundle 937
generate unique ID 963
references resolver 952
table cell row and column separators provider 961
table cell span provider 959
table column width provider 955

Java API example 917
menus 898, 901
contextual menu 901
toolbars 898, 902
configure toolbar 902

Author Tab (Document type configuration dialog box) 61
AutoCorrect 568
Accessibility 568
automatically correct misspelled words 568
Automating WebHelp Output 711
WebHelp plugin 711

B

BaseX 778
XQJ 778
XQuery 778
BaseX contextual menu actions 777
BaseX database connections 776
Batch transformations 642
Berkeley DB XML contextual menu actions 756
Berkeley DB XML database connection 755
Berkeley DB XML debugging 759, 786

Oxygen XML Editor plugin | Index | 1223

Bidirectional text 167, 188
Author Mode 188
Grid Mode 167
bookmap 1126
creating a bookmap 1126
Built-in Form Controls 1013, 1014, 1016, 1017, 1019, 1020, 1022,

1024, 1025, 1026
built-in form controls 1013
button form control 1019
button group form control 1020
checkbox form control 1016
check box form control 1016
combobox form control 1014
combo box form control 1014
date picker form control 1025
HTML content form control 1026
popup form control 1017
pop-up form control 1017
text area form control 1022
Text field form control 1013
URL chooser form control 1024

C

Catalogs Tab (Document type configuration dialog box) 70
change order in DITA maps 1127
Chunking DITA topics 1143
Classpath Tab (Document type configuration dialog box) 61
Common Problems 45, 1108
floating license server 45
Compile LESS to CSS 521
Configuration 52
CSS validator 52
Configure Application 101

Editor preferences 101
spell check 101

Configure BaseX Connection 776
Configure Berkeley DB XML database connection 755
Configure Calabash with XEP 645
Configure Documentum xDB database connection 768
Configure eXist database connection 760
Configure generic JDBC database connection 774
Configure IBM DB2 database connection 742
Configure MarkLogic connection 764
Configure MarkLogic database connection 763
Configure Microsoft SQL Server database connection 745
Configure MySQL database connection 772
Configure Oracle database connection 748
Configure PostgreSQL database connection 752
Configure the Application 51, 53, 56, 58, 72, 73, 74, 77, 79, 81,

86, 87, 89, 91, 92, 95, 96, 97, 101, 103, 104, 105, 106,
107, 108, 109, 112, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134,
924

(S)FTP 106
archive 51
certificates 130
customize default options 132
custom validation 104

data sources 53, 56
download links for database drivers 56
table filters 56

Configure the Application (continued)
document type association 58
editor preferences 72

Editor preferences 72, 73, 74, 77, 79, 81, 86, 87, 89, 91, 92,
95, 96, 97, 101, 103

author 74
author profiling conditional text 81
author track changes 79
callouts 81
code templates 97
content completion 92
document checking 103
document templates 101
elements and attributes by prefix 96
format 87
format - CSS 91
format - JavaScript 92
format - XML 89
grid 73
open/save 96
pages 72
save hooks 96
schema aware 77
schema design 86
syntax highlight 95
text/diagram 86
validation preferences 103

editor variables 134
fonts 105
HTTP(S)/WebDAV preferences 106

import 129
date/time patterns 129

import/export global options 133
internationalization 924
license 51
outline 131
reset global options 133
Sample XML Files Generator 112

scenarios management 107, 134
Export Global Transformation Scenarios 134
Export Global Validation Scenarios 134
Import Global Transformation Scenarios 134
Import Global Validation Scenarios 134

views 107
XML 108
XML catalog 108
XML parser 109
XProc engines 114
XSLT 115
XSLT/FO/XQuery 114

XSLT/FO/XQuery preferences 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 127

custom engines 127
debugger 123
FO Processors 124
MSXML 119
MSXML.NET 119
profiler 123
Saxon6 115
Saxon HE/PE/EE 116, 121
Saxon-HE/PE/EE 116
Saxon HE/PE/EE advanced options 117, 122

Oxygen XML Editor plugin | Index | 1224

Configure the Application (continued)
XSLT/FO/XQuery preferences (continued)
XPath 127
XQuery 120
XSLTProc 118

Configure Transformation Scenario Dialog Box 640
Configure WebDAV connection 778
Configuring Content Completion Proposals 968
Configuring Documentum (CMS) Support 787
Configuring elements and attributes in Content Completion Assistant

970
Console view 385
Content Completion Assistant 268, 968, 970, 974
schema annotations 268
set schema 268
Content Completion Assistant Author Mode 265
Content completion configuration file 968, 970, 974
cc_config.xml 968, 970, 974
content completion in DITA 1148
Content Completion in Schematron 548
Content Completion subtab (Author Tab) (Document type

configuration dialog box) 68
content key reference 1170
conkeyref 1170
Content Management System 786
CMS integration 786
content reference 1170
conref 1170
Content Reuse 1167, 1170
content references 1167
Context sensitive WebHelp 710
Contextual Menu subtab (Author Tab) (Document type configuration

dialog box) 67
Copy/Paste 252, 264
grid editor 252
smart paste 264
Create custom document templates 208
Create custom editor variables 139
create DITA bookmap 1127
Create DITA Content Key Reference 1169
conkeyref 1169
create DITA index 1214
create DITA OT plugin 1208
create edit document type association 60
Create Image Map 329
Create New Project 28, 215
Create profiling attributes 295
Create profiling conditions sets 299
Create Reusable Component 1177
create submaps 1126
create table of contents in DITA 1142
Create Validation Scenario 363, 366
Create validation scenario XSLT stylesheets 404
Creating DITA topic 23
Creating Documents 203, 207
New Document Wizard 203
New from Templates Document Wizard 207
cross reference 1180
CSS @media rule 986
CSS Extensions 1006
CSS custom functions 1006

CSS Inspector View 187
Inspect Styles 187
CSS subtab (Author Tab) (Document type configuration dialog box)

62
CSS Support 982, 987

CSS 2.1 features 987
supported selectors 987

selecting and combining multiple CSS styles (files) 982
CSS Support in Author 985, 993, 999

CSS 2.1 features 993
properties support table 993
Oxygen CSS extensions 985, 999
media type oxygen 985

custom DITA to PDF output 1196
custom DITA to PDF transformations 1196
Custom Form Controls 1027
implement custom form controls in Java 1027
custom header and footer in DITA to PDF output 1197
Customization Support 891, 896, 925, 932, 933, 934, 935, 948, 976

document type associations (advanced customization tutorial)
896, 925, 932, 933, 934, 935, 948

Author settings 896
basic association 925
configuring extensions - link target reference finder 948
configuring transformation scenarios 934
configuring validation scenarios 935
new file templates 932
XML Catalogs 933
example files 976
the Simple Documentation Framework Files 976
simple customization tutorial 891
CSS 891
XML Schema 891

Customize assert error messages 361
Customize document templates 208
Customize Smart Paste 941
Customize WebHelp Classic Mobile 709
Customize WebHelp Responsive output 670
Customizing DITA OT Transformations 1197, 1201
Add Watermark to PDF Output 1197
Add Watermark to XHTML Output 1201
customizing note elements 1200
Customizing Schematron Quick Fixes 555
SQF 555
Customizing the Content Completion Assistant 968
Author mode 968
Customizing the rendering of Content Completion elements in

Author mode 974
Customizing WebHelp Responsive Systems 674, 705
add logo image in title area 674, 705
Customizing WebHelp Systems 680, 681, 695, 698, 703, 704, 705,

706, 709
add videos to WebHelp output 681, 704
change style of ordered lists 681, 706
changing the style of WebHelp Mobile pages 709
customizing headers / footers 706
Customizing icons in the Table of Contents 704
Customizing WebHelp output with a custom CSS 698
Editing Scoring Properties for Search Results 680, 703
remove previous / next links 706
Table of contents customization 705
Custom term file 564

Oxygen XML Editor plugin | Index | 1225

Custom XML Refactoring Operations 394, 1072

D

Databases 728, 738, 741, 765, 767, 778, 782, 783, 784, 786, 791
debugging with MarkLogic 765, 767, 784, 786
limitations of the MarkLogic debugger 767, 786
Native XML databases 741
Relational databases 741
SharePoint connection 791
WebDAV connection 778

XQuery 728, 782, 783, 784
debugging 784
drag and drop from the Data Source Explorer 782
transformation 783
validation 728

Data Source Explorer view 738
Debugging imported modules 766, 785
MarkLogic 766, 785
Debugging XSLT/XQuery Documents 807, 809, 818, 821
Java extensions 821

layout 807, 809, 818
information views 809
multiple output documents in XSLT 2.0 818

XSLT/XQuery debugger 818
Debugging XSLT / XQuery Documents 807

layout 807
Control toolbar 807

Debugging XSLT XQuery 805
Debug PDF transformation scenario 645
Define keys in DITA maps 1136
deploying WebHelp Classic with Feedback 691
deploying WebHelp Responsive with Feedback 657
Detect Master Files 222
Digital Signature 569, 571, 572, 574, 1098, 1100, 1101
canonicalizing files 571, 1098
certificates 571
signing files 572, 1100
verifying the signature 574, 1101
Digital Signatures 569, 574
digital signatures overview 569
how to digitally sign XML content 574
Disable browser caching 707
DITA 1.3 features supported 1214
DITA Authoring and Publishing 1117
DITA - keys 1165
DITA linking 1179
DITA map document type 863
schema 863
DITA Map document type 863

Author extension 863
catalogs 863

DITA Map Document Type 863, 868
Author extension 868
templates 868

DITA MAP document type 863
association rules 863
DITA MAP Document Type 586, 863, 865

Author extension 586, 863, 865
transformation scenarios 586, 865

DITA Map PDF - WISIWYG - Experimental transformations
scenario 599, 1201

Antenna House Formatter 599, 1201
Prince Print with CSS 599, 1201
DITA Maps 1112, 1114, 1126, 1130, 1134, 1135, 1137, 1142, 1143,

1147, 1186, 1195, 1210, 1212, 1213
creating a DITA Map 1126
creating a topic 1147
DITA Map Completeness Check dialog box 1143

DITA OT customization support 1114, 1142, 1195
increase the memory for Ant 1114
resolve topic reference through an XML catalog 1142
use your own custom build file 1195

DITA OT installation plugin 1210
DITA specialization 1213
editing DITA Map specialization 1213
DITA specialization support 1212, 1213
editing DITA Topic specialization 1213

edit properties in DITA maps 1137
inserting a reference 1130
inserting a topic group 1135
inserting a topic heading 1134
insert references 1130

transforming DITA Maps 1112, 1186
running an ANT transformation 1112

validating a DITA Map 1143
DITA Maps Manager 1118
DITA Map Transformation Scenario WebHelp Output 587, 865
DITA Map WebHelp Classic Mobile transformation scenario 595
DITA Map WebHelp Classic transformation scenario 592
DITA Map WebHelp Classic with Feedback transformation scenario

597
DITA Map WebHelp Responsive transformation scenario 587
DITA Map WebHelp Responsive with Feedback transformation

scenario 590
DITA menu 1148, 1175
Push Current Element 1175
DITA metadata 1213
DITA OT Support 1208
DITA OT third party plugins 1212
DITA OT Transformation 1200
PDF output FO processor 1200
set font for PDF output 1200
DITA profiling with Subject Scheme Map 1206
DITA publishing 1186
DITA reusable components 1177
DITA reuse content 1166
DITA table layout 319, 1160
DITA Table Properties dialog box 321, 1162
DITA toolbar 1148
DITA Topics document type 854
association rules 854

Author extensions 854
catalogs 854

schema 854
DITA Topics Document Type 586, 854, 862

Author extensions 586, 854, 862
templates 862
transformation scenarios 586, 862

DocBook 839, 851
Insert olink 839, 851
DocBook 4 to WebHelp transformations scenarios 579, 835

Oxygen XML Editor plugin | Index | 1226

DocBook 5 to WebHelp transformation scenarios 583, 847
DocBook Table Layout 310
DocBook CALS table model 310
DocBook HTML table model 310
DocBook tables 306
DocBook Targetset document type 888
association rules 888
schema 888
DocBook Targetset Document Type 888
DocBook to DITA Transformation Scenario 582, 586, 838, 850
DocBook to EPUB transformations scenario 582, 585, 838, 850
DocBook V4 document type 829, 839
association rules 829

Author extensions 829, 839
catalogs 829
templates 839

schema 829
DocBook V4 Document Type 579, 829, 835

Author extensions 579, 829, 835
transformation scenarios 579, 835

DocBook V5 document type 841, 851
association rules 841

Author extensions 841, 851
catalogs 841
templates 851

schema 841
DocBook V5 Document Type 582, 841, 847

Author extensions 582, 841, 847
transformation scenarios 582, 847

Document Type Association 964
customizing/changing the main/default CSS 964
Document type configuration dialog box 60
Documentum (CMS) Support 786, 787, 788, 789
actions 789
configuring a Documentum (CMS) data source 787, 788
Documentum CMS known issues 788
Documentum xDB contextual menu actions 769
Documentum xDB database connection 768
Documentum xDB parser configuration 771
Documentum xDB troubleshooting 772
Duplicate transformation scenario 639

E

Edit 133, 199, 200, 203, 210, 215, 562, 566, 569, 736
archives 736
associating a file extension 133
Character map 200
check spelling 562
check spelling in files 566
close documents 215
create new documents 203
file properties 215
open and close documents 203
open read-only files 569
open remote documents (FTP/SFTP/WebDAV) 210
save documents 210
Unicode documents 200
Unicode support 200
Unicode toolbar 200
edit DITA topics 1148
Edit Image Map 329

Editing CSS Stylesheets 517, 518, 519, 520
Content Completion Assistant 518
folding 519
format and indent (pretty print) 520
Outline view 519
validation 518
Editing DITA maps 1118
editing DITA topics 1145
Editing Documents 215, 229
contextual menu of current editor tab 215
drag and drop 229
Using projects 215
Editing Form Controls 262
edit form control attributes in Author mode 262
Editing JavaScript Documents 542
Editing JavaScript Files 542, 544, 545
Content Completion Assistant 544
Outline view 545
Text mode 542
validating JavaScript files 544
Editing JSON Documents 537, 538, 539, 540, 1088
convert XML to JSON 540, 1088
folding 538
Grid mode 539
Outline view 540
syntax highlight 538
Text mode 537
Validating JSON Documents 540
Editing LESS stylesheets 520
Editing Modes 161, 185
Results View 161, 185
Editing NVDL Schemas 533, 534, 535, 536
Component Dependencies view 535
Outline view 535

schema diagram 533, 534
actions in the diagram view 534
full model view 534

searching and refactoring actions 536
Editing RelaxNG Schemas 530
Component Dependencies View 530
Editing Relax NG Schemas 521, 522, 523, 524, 525, 526, 527, 531
Resource Hierarchy/Dependencies View 527

schema diagram 522, 523, 524, 525, 526
actions 525
full model view 522
logical model view 523
Outline view 526
symbols 524

searching and refactoring actions 531
Editing Schematron 554
Quick Assist 554
Editing Schematron Documents 553
searching and refactoring operations 553
Editing Schematron Schemas 370, 547, 548, 550, 551, 554
contextual editing 548
Master Files context 548
Resource Hierarchy/Dependencies View 551
Schematron Outline view 550
Search and Refactoring Operations Scope 554
validation against Schematron 370
Editing StratML Documents 542
Editing tables 305

Oxygen XML Editor plugin | Index | 1227

Editing tables in DocBook 312
Editing text content Author Mode 259
Editing WSDL Document 515, 1101

SOAP request 515, 1101
composing a SOAP request 515, 1101

Editing WSDL Documents 499, 500, 501, 504, 507, 508, 509, 510,
514, 516, 1096, 1101, 1103

Component Dependencies view 507
component occurrences 508
composing web service calls with WSDL SOAP analyzer 514, 1101
content completion 501
contextual editing 500
generate documentation for WSDL documents 510, 1096
generate documentation for WSDL documents from command line

514
generate documentation for WSDL documents in a custom format

514
Outline view 501
Quick Assist 509
Resource Hierarchy/Dependencies view 504
searching and refactoring operations 508
searching and refactoring operations scope 509

SOAP request 516, 1103
testing remote WSDL files 516, 1103
UDDI registry browser 516, 1103

Editing XLIFF document 542
1.2 542
2.0 542
Editing XML Documents 151, 155, 157, 160, 163, 173, 184, 216,

223, 224, 228, 230, 234, 235, 236, 237, 245, 274, 275,
356, 357, 358, 361, 362, 369, 370, 374, 375, 377, 378,
380, 382, 383, 385, 488, 1085

against a schema 357
associate a schema to a document 374, 375, 377
add schema association in XML instance 375
learning a document structure 377
setting a default schema 375
supported schema types 374

checking XML well-formedness 356
code templates 237, 275
content completion 237, 275
converting between schema languages 488, 1085

document navigation 155, 228, 237
folding 228
outline view 155, 237
editor specific actions 224
smart editing 224
grouping documents in XML projects 151, 173, 216, 382
large documents 382
new project 151, 173, 216
project view 151, 173, 216

including document parts with XInclude 383
Resource Hierarchy/Dependencies view 378
status information 385

streamline with content completion 157, 160, 184, 230, 234,
235, 236, 274

the Attributes view 157, 234
the Elements view 160, 235
the Entities view 160, 184, 236, 274

Text mode contextual menu actions 245
Text Mode specific actions 223

Editing XML Documents (continued)
validation against a schema 163, 357, 358, 361, 362, 369, 370
automatic validation 357
custom validation 361
marking validation errors 163, 358
resolving references to remote schemas with an XML Catalog

369
validation actions 357
validation example 370
validation scenario 362

working with XML Catalogs 380
Editing XML Documents in Author Mode 348
built-in form controls in Author mode 348
custom form controls in Author mode 348
using form controls in Author mode 348
Editing XML files in Master Files context 378
Editing XML Schemas 434, 466, 470, 472, 474, 476, 480, 483, 487,

493, 494, 1082, 1089, 1104
Component Dependencies view 472
contextual editing 466

generate documentation for XML Schema 480, 483, 487, 1089
from command line 487

output formats 483
Custom format 483
DocBook format 483
HTML format 483
PDF format 483

Resource Hierarchy/Dependencies view 470
schema files generator 476, 1082
schema regular expressions builder 493, 1104
searching and refactoring actions 474
XML Schema 1.1 494
Editing XProc Scripts 546
Editing XQuery Documents 496, 498, 1095
folding 498
generate HTML documentation 498, 1095
Editing XSL Stylesheets 417, 427, 433
Component Dependencies view 417
quick assist support 427
XSpec 433
Editing XSLT Schemas 404
contextual editing 404
Editing XSLT Stylesheets 404, 406, 407, 411, 414, 415, 419, 420,

423, 425, 426, 430, 1092
content completion 406, 407
in XPath expressions 407

find XSLT references and declarations 419
generate documentation for XSLT stylesheets 420, 1092

generate documentation for XSLT Stylesheets 423, 425, 426
as HTML 423
from command line 426
in custom format 425

Outline view 411
refactoring actions 430
Resource Hierarchy/Dependencies view 415

validation 404, 406
custom validation 406

XSLT Input view 414
XSLT stylesheet documentation 419
Edit Menu 167, 200, 284, 562, 566, 819
Add Comment 284
Breakpoints 819

Oxygen XML Editor plugin | Index | 1228

Edit Menu (continued)
Change Text Orientation 167
Check Spelling 562
Check Spelling in files 566
Edit Comment 284
Insert from Character Map 200
Remove Comment 284
Edit Menu (Review submenu 287
Colors 287
Highlight 287
Stop highlighting 287
Edit Menu (Review submenu) 278
Accept Change(s) 278
Add Comment 278
Comment Change 278
Edit Comment 278
Highlight 278
Manage Reviews 278
Reject Change(s) 278
Remove Comment(s) 278
Track Changes 278
editor highlights 385
Accessibility 385
Edit profiling attributes 295
Edit profiling condition sets 299
Edit transformation scenario 638
Edit Validation Scenario 363, 366
Edit validation scenario XSLT stylesheets 404
Edit XHTML files 561
Embedded Schematron Rules 549
Relax NG 549
XML Schema 549
Enable Master Files 222
EPUB Document Type 887
Error 1067: Process Terminated Unexpectedly 45
eXist contextual menu actions 761
eXist database connection 759
Expanding Unicode support 202
fallback font support 202
Extensions Tab (Document type configuration dialog box) 71
External DITA OT 1211

F

Facebook widget 677, 698
File Menu 203, 207, 210, 215, 346, 796, 797, 799, 802
Close 215
Close All 215
Close Other Files 215
Import Database Data 799
Import HTML File 802
Import MS Excel File 797
Import Text File 796
New 203
New from templates 207
Reload 346
Save 210
Save All 210
Save as 210
Save to URL 210
file reference 1180
filter DITA content 1204

Filters Tab (DITA Transformations) 618, 1191
Find/Replace 371
Find All Elements/Attributes dialog box 371
Find Menu 371
Find All Elements 371
find resources not referenced in DITA maps 1130
Flagging content 682, 708
Floating license key replacement 42, 44
Floating license report page 43
Floating license server 39
FO Processor tab (DITA OT Transformation) 617, 1190
FO Processor Tab (XQuery Transformations) 613, 636
FO Processor Tab (XSLT Transformations) 607, 629
Format and indent 240
Format and Indent 91, 243
set Indent Size to zero 243
Form Controls 1028
edit processing instructions with form controls 1028
pi form control 1028

G

Generate Documentation for an XML Schema 486
customizing the PDF output 486
Generate IDs 347
DITA 347
DocBook 347
TEI 347
Generate Sample XML Files Advanced tab 480, 1085
Generate Sample XML Files Options tab 477, 1083
Generate Sample XML Files Schema tab 476, 1082
Generating Documentation for WSDL Documents 513
generating WSDL documentation in HTML format 513
Generic database connections 772, 774, 775
Getting Started 20, 141, 142, 144, 145

perspectives 141, 142, 144, 145
database 145
editor 142
XQuery debugger 144
XSLT debugger 144

Getting started resources 18
Google Analytics integration 676, 701
Google Plus widget 678, 700
Google Search Integration 700
grid editor 167

navigation 167
collapse all 167
collapse children 167
collapse others 167
expand all 167
expand children 167

Grid Editor 164, 165, 166, 251, 252
add nodes 252
clear column content 251
copy/paste 252
drag and drop 252
duplicate nodes 252
inserting table column 251
insert table row 251
layouts (grid and tree) 165
navigation 166
refresh layout 252

Oxygen XML Editor plugin | Index | 1229

Grid Editor (continued)
sort table column 251
start and stop editing a cell value 252
Grid Mode Editor 164

H

Help menu 29
Accessibility 29
Check for a New Version 29
Check for updates 29
install add-ons 29
online help 29
Register 29
Report problem 29
Support center 29
Tip of the day 29
Hierarchical linking in DITA 1180
Highlight Component Occurrences 552
HTTP Authentication Schemes 214
NTLM 214

I

IBM DB2 connection contextual menu actions 744
IBM DB2 Database 742
Image Map Editor 329, 330, 333, 336, 339, 1152
DITA 330, 1152
DocBook 333
TEI 336
XHTML 339
Import from Excel 799
2007 799
2010 799
2013 799
Importing data 795
Importing Data 796, 799, 802

from a database 799
table content as XML document 799

from HTML files 802
from text files 796
Importing data from Excel 797
Incorrect Function when Started 45
Inputs Tab (XProc Transformations) 631
Insert DITA content key reference 1169
conkeyref 1169
Insert DITA Content Reference 1167
Insert Image 329
Insert page break in PDF 1199
Insert Reusable Component 1178
insert table in Author mode 305
Insert table in DITA 314, 1155
CALS 314, 1155
Simple table 314, 1155
Installation 33, 34, 35

Eclipse 33, 34, 35
update site method (Eclipse 3.6 - 4.5) 33, 34, 35
ZIP archive method (Eclipse 3.6 - 4.5) 33, 34, 35

Installing Java Advanced Imagine I/O Tools plugin 343
JAI 343
installing WebHelp Classic with Feedback 691
installing WebHelp Responsive with Feedback 657

integrate DITA specialization 1212
Integrate External XProc Engine 645
integrate WebHelp plugin with DITA 711
integrate WebHelp plugin with DocBook 716
Integrating Social Media in WebHelp 676, 698
Integrating the WebHelp plugin with DITA OT 711

J

JATS document templates 887
JATS NISO Journal Article Tag Suite 886
Author Mode Actions 886
JATS NISO Journal Article Tag Suite Document Type 885
JATS transformation scenarios 602, 887

K

Kerberos authentication 214

L

License 36, 37, 38, 39, 43, 45, 46
floating (concurrent) license 37
floating license server 39, 43
license server installed on OS X Linux Unix 45
multiple named-user licenses 38
named-user license 37
register a license key 36
release floating license 38
releasing a license key 46
transferring a license key 46
unregistering a license key 46
Link drop-down menu 1180
linking in DITA topics 1180
localize WebHelp with Feedback system emails 679, 703
Localizing WebHelp Output 702

M

manage DITA maps 1127
Manage IDs 245, 373
highlight ID occurrences in Text mode 245
search and refactor actions of ID IDREFS 373
MarkLogic contextual menu actions 767
MarkLogic database connection 762
MarkLogic for the developer 764
Master Files 221
benefits 221
Menu subtab (Author Tab) (Document type configuration dialog

box) 66
Methods for customizing WebHelp Responsive 670
Microsoft SQL Server database 745, 747
Model view 158, 182, 233, 269

streamline with content completion 158, 182, 233, 269
the Model panel 158, 182, 233, 269

Moving DITA Resources 1129
Moving Renaming Schematron resources 552

N

Native XML Databases 741

Oxygen XML Editor plugin | Index | 1230

Native XML Databases (NXD) 756, 760, 761, 763, 769
database connections configuration 756, 761, 769
Berkeley DB XML 756
Documentum xDB (X-Hive/DB) 769
eXist 761
data sources configuration 756, 760, 763, 769
Berkeley DB XML 756
Documentum xDB (X-Hive/DB) 769
eXist 760
MarkLogic 763

Network settings 105

O

open DITA topics 1148
Open Office documents to DITA 601, 868
Options Menu 50, 133, 134
Export Global Options 133
Export Global Transformation Scenarios 134
Export Global Validation Scenarios 134
Import Global Options 133
Import Global Transformation Scenarios 134
Import Global Validation Scenarios 134
Preferences 50
Reset Global Options 133
Options priority 131
Options Tab (Ant Transformations) 623
Options Tab (XProc Transformations) 632
Oracle database connection contextual menu actions 750
Oracle XML DB 748
OutOfMemory 124, 1108
Out Of Memory 124, 1108
OutOfMemoryError 124, 1108
Output Tab (Ant Transformations) 624
Output Tab (DITA OT Transformations) 621, 1194
Output Tab (XQuery Transformations) 613, 637
Output Tab (XSLT Transformations) 607, 629
oxy_label Function 1030
change the style of generated text 1030
Oxygen CSS Extensions 990, 991, 997, 999, 1002, 1003, 1004,

1005
additional properties 1002, 1003, 1004, 1005
display tags 1005
editable property 1004
folding elements 1002
link elements 1004
morph value 1004
placeholders for empty elements 1003
supported features from CSS level 3 990, 997, 999
additional custom selectors 999
attr() function 997
namespace selectors 990
supported features from CSS level 4 991
subject selectors 991

P

Parameters Tab (Ant Transformations) 623
Parameters Tab (DITA OT Transformations) 618, 1191
Parameters Tab (XProc Transformations) 631
Pasting tables in DocBook 310

Performance Problems 1108
external processes 1108
large documents 1108
PostgreSQL database 752
PostgreSQL database contextual menu actions 754
Predefined XML refactoring operations 391, 1069
Preferences 50
Pretty print 240
Profiling 822, 1202, 1207

conditional text 1207
filter content 1207
filter content 1202
conditional text 1202

XSLT stylesheets and XQuery documents 822
Profiling/Conditional Text menu 303
Profiling and Conditional Text 294
profiling colors 303
ProfilingConditionalTextProvider extension 940
profiling DITA content 1204
Profiling XSLT Stylesheets and XQuery Documents 822, 823, 824

profiling information 822, 823
Hotspots view 823
Invocation tree view 822

XSLT/XQuery profiler 824
Publishing DITA profiling 1208

Q

Querying Documents 496, 720, 724, 725, 726, 728
running XPath and XQuery expressions 720
XPath/XQuery Builder view 720

running XPath expressions 720
XQuery 496, 724, 725, 726, 728
Input view 726
Outline view 496, 725
syntax highlight and content completion 724
transforming XML documents; advanced Saxon B/SA options

728
validation 728

Quick Assist Support 240

R

Rectangular Selection 229
Text Mode 229
Refactoring 240
Quick Assist 240
Refactoring XML Documents 388, 1066
XML Refactoring Tool 388, 1066
Refresh WebHelp Classic with Feedback 693
Refresh WebHelp Responsive with Feedback 659
register license for WebHelp plugin 712
related links 1180
Relational Databases 739, 741, 742, 743, 745, 746, 749, 752, 754,

772, 773, 774, 775, 780, 781, 782
connections configuration 743, 746, 749, 754, 773, 775
generic JDBC 775
IBM DB2 connection 743
JDBC-ODBC connection 775
Microsoft SQL Server 746
MySQL 773
Oracle 11g 749

Oxygen XML Editor plugin | Index | 1231

Relational Databases (continued)
connections configuration (continued)
PostgreSQL 8.3 754
data sources configuration 742, 745, 749, 752, 772, 774
generic JDBC data source 774
IBM DB2 742
Microsoft SQL Server 745
MySQL 772
Oracle 11g 749
PostgreSQL 8.3 752
SQL execution support 780, 781, 782
drag and drop from the Data Source Explorer 780
executing SQL statements 782
SQL validation 781

Table Explorer view 739
relationship tables in DITA 1184
Relax NG Schema Editor 522
contextual editing 522
Remove master file 222
remove topics from a DITA map 1128
Renaming DITA Resources 1129
render PDF images 343
Resolve schema through xml catalog mappings 382
Retina HiDPI images 916
Accessibility 916
Reuse content 1170
reuse DITA topics in multiple maps 1166
Reusing DITA Content 1175
Push technique 1175

S

schema annotations 232
Schema Tab (Document type configuration dialog box) 61
Schematron Quick Fixes 387
Selecting content 229
Text Mode 229
select root map 1126
Sequence view 729
Set XML Schema version 495
SharePoint Connection 791, 792
configuration 792
SharePoint contextual menu actions 792
Data Source Explorer 792
Sharing extended document type 966
framework 966
Sharing frameworks 965
Skins Tab (DITA OT transformations) 615, 1188
Social media 677, 698
Social Media 676, 677, 678, 698, 699, 700, 701
Social plugin 677, 698
Sort entire table 325
Sorting content in list items 325
Sorting content in tables 325
Sort list items 328
Sort selected rows 326
Sort table with merged cells 328
specify schema for Content Completion 231
Spell Checking 565
automatic spell check 565
SQF 387

Subject scheme 1126
creating a Subject scheme 1126
Supported document types 828
frameworks 828
syntax highlight depending on namespace prefix 162

T

TEI ODD document type 872
association rules 872

Author extensions 872
catalogs 872

schema 872
TEI ODD Document Type 601, 872, 876

Author extensions 601, 872, 876
templates 876
transformation scenarios 601, 876

TEI P4 document type 876
association rules 876

Author extensions 876
catalogs 876

schema 876
TEI P4 Document Type 601, 876, 880

Author extensions 601, 876, 880
templates 880
transformation scenarios 601, 880

TEI P5 document type 881
association rules 881

Author extensions 881
catalogs 881

schema 881
TEI P5 Document Type 602, 881, 884, 885

Author extensions 602, 881, 884, 885
templates 885
transformation scenarios 602, 884

Templates Tab (DITA OT transformations) 616, 1189
Templates Tab (Document type configuration dialog box) 69
Text Editing Mode 150, 224, 245
Manage highlighted content 245
shortcut actions 224
Text mode editor 150
Text Mode Editor 150, 223
Accessibility 150, 223
breadcrumb 150, 223
navigation 150, 223
Toolbar subtab (Author Tab) (Document type configuration dialog

box) 68
Tools 1065
Tools Menu 244, 388, 476, 480, 488, 490, 491, 493, 515, 540, 571,

572, 574, 1066, 1082, 1085, 1087, 1088, 1089, 1098,
1100, 1101, 1104

Canonicalize 571, 1098
Convert DB Structure to XML Schema 490, 1087
Flatten Schema 491
Format and Indent Files 244
Generate/Convert Schema 488, 1085

Generate Documentation 480, 1089
XML Schema Documentation 480, 1089

Generate Sample XML Files 476, 1082
Sign 572, 1100
Verify Signature 574, 1101
WSDL SOAP Analyzer 515, 1101

Oxygen XML Editor plugin | Index | 1232

Tools Menu (continued)
XML Refactoring 388, 1066
XML Schema Regular Expression Builder 493, 1104
XML to JSON 540, 1088
Transformation Scenario 578, 602, 604, 609, 610, 611, 614, 622,

624, 626, 627, 630, 632, 634, 637, 642, 1186
ANT 622
built-in transformation scenarios 578
DITA OT 614, 1186

new transformation scenario 602, 604, 610, 611, 626, 627, 634
additional XSLT stylesheets 604, 627
configure transformation scenario 602
XML transformation with XSLT 602
XQuery extensions 611, 634
XQuery parameters 610, 634
XSLT extensions 604, 626
XSLT parameters 604, 626

sharing transformation scenarios 642
SQL 637
XML Transformation with XQuery 609
XProc 630
XQuery 632
XSLT 624
Transformation Tab (Document type configuration dialog box) 70
Transforming Documents 577, 578, 642, 646, 648
custom XSLT processors 648
supported XSLT processors 646
transformation scenario 578
Transformation Scenarios view 642
XSL-FO processors 648
XSLT processors extensions paths 648
Tweet Button 677, 699
Twitter Widget 677, 699

U

Unicode 91
Uninstalling the Plugin 48
Upgrade 47
check for new version 47
Upgrade HTTP floating license server 42
upgrade WebHelp plugin for DITA 712
upgrading WebHelp plugin for DocBook 717

V

Validating Schematron Files 548
Validating XML Documents 355
Validating XML Schema Files 466, 500, 525, 535
validation linked output messages 362
Validation Scenario 369
sharing validation scenarios 369
Validation Tab (Document type configuration dialog box) 71
variable text in DITA 1178
views to assist Content Completion 233, 269

W

WebDAV Connection 778
WebDAV contextual menu actions 779
WebHelp 711
command line 711

WebHelp (continued)
external process 711
outside oxygen 711
WebHelp Classic Administrative page 693
Admin Panel 693
WebHelp Classic System 684
WebHelp Classic with Feedback 693
comment management 693
manage comments 693
WebHelp GET parameters 681, 707
WebHelp Internationalization 679, 702

DITA WebHelp localization 679, 702
WebHelp i18n 679, 702
DocBook WebHelp localization 702
WebHelp i18n 702

WebHelp Output 697
WebHelp Skin Builder 697
WebHelp plugin to run external DITA transformations 712
WebHelp Responsive 652
WebHelp Responsive Administrative page 660
Admin Panel 660
WebHelp Responsive Templates 661
WebHelp Responsive Template types 661
WebHelp Responsive with Feedback 655, 660
comment management 660
manage comments 660
WebHelp with Classic Feedback System 687
web link 1180
whitespace 91
Whitespace handling 240
Window Menu 141
Open Perspective 141

X

X-Hive/DB 768
XHTML document type 868, 869
association rules 868

Author extensions 869
catalogs 869

CSS 868
schema 868
XHTML Document Type 601, 868, 869, 872

Author extensions 601, 869, 872
templates 872
transformation scenarios 601, 872

XHTML table layout 325
XHTML tables 323
XML Outline View 155, 156, 179, 237, 239, 277

Author 179, 277
outline filters 179, 277

contextual menu 179, 277
document structure change 156, 239
contextual menu 156, 239

outline filters 156, 239
XML Quick Fixes 386
Accessibility 386
XML Schema 192, 467
Outline view 192, 467

Oxygen XML Editor plugin | Index | 1233

XML Schema Diagram Editor 190, 191, 194, 195, 196, 434, 435,
436, 444, 447, 449, 451, 452, 453, 454, 455, 456, 457,
458, 459, 460, 461, 462, 463, 464, 468

Attributes view 194, 468
editing actions 436
edit schema namespaces 463
Facets view 195, 464

group schema components 461, 462
attributes 461
constraints 461
substitutions 462

navigation 191, 435
schema components 444, 447, 449, 451, 452, 453, 454, 455,

456, 457, 458, 459, 460
xs:alternative 452
xs:any 456
xs:anyAttribute 457
xs:assert 459
xs:attribute 447
xs:attributeGroup 449
xs:complexType 449
xs:element 444
xs:field 459
xs:group 453
xs:import 454
xs:include 454
xs:key 458
xs:keyRef 458
xs:notation 455
xs:openContent 460
xs:override 455
xs:redefine 454
xs:schema 444
xs:selector 459
xs:sequence, xs:choice, xs:all 455
xs:simpleType 451
xs:unique 457

XML Schema Diagram Editor (continued)
the Palette view 196, 463
validation 462
XML Schema Text Editor 465, 466, 491
content completion 466
flatten an XML Schema 491
XML serialization 240
XML styleguide 967
XProc Tab (XProc transformations) 631
XProc Tab (XProc Transformations) 630
XQJ Connection 729
XQJ configuration 729
XQJ Support 729
XQJ processor configuration 729
XQuery Tab (XQuery Transformations) 609, 633
XSLT/XQuery Debugger 810, 811, 812, 813, 814, 815, 816, 817,

818, 819, 820
debug steps 819
determining what XSLT/XQuery expression generated particular

output 820
using breakpoints 819, 820
inserting breakpoints 819
removing breakpoints 820
viewing processing information 810, 811, 812, 813, 814, 815,

816, 817
breakpoints view 811
context node view 810
messages view 812
node set view 816
output mapping stack view 813
stack view 812
templates view 815
trace history view 814
variables view 817
XPath watch view 810

XSLT tab (XSLT Transformations) 603, 625

Oxygen XML Editor plugin | Index | 1234

	Copyright
	Contents
	Introduction
	Getting Started
	What is Oxygen XML Editor plugin
	Getting Familiar with the Layout
	Resources to Help You Get Started Using Oxygen XML Editor plugin
	Your First Document or Project
	Your First XML Document
	Your First DITA Topic
	Creating a New Project

	Getting Help
	Help Menu

	Installation
	Installation Options
	Windows Installation
	Mac OS X Installation
	Linux Installation
	Site-wide deployment
	Licensing
	Choosing a License Type
	Obtaining a License
	Register a Named-User License
	Registering a Floating License
	Request a Floating License from a TCP License Server
	Request a Floating License from an HTTP License Server
	Release a Floating License
	Register a Floating License for Multiple Users

	Setting up a License Server
	Setting up an HTTP Floating License Server
	Upgrading Your HTTP Floating License Server
	Replacing a Floating License Key in an HTTP Floating License Server
	Getting More Information From the Report Page

	Setting up a TCP Floating License Server Using a 32-bit Windows Installer
	Upgrading Your TCP Floating License Server
	Replacing a Floating License Key in a TCP Floating License Server
	Common Problems
	Windows Service Reports 'Incorrect Function When Started'
	Windows Service Reports 'Error 1067: Process Terminated Unexpectedly'

	Setting up a TCP Floating License Server Using an All-Platforms Distribution
	Upgrading Your TCP Floating License Server
	Replacing a Floating License Key in a TCP Floating License Server

	Transferring or Releasing a License
	Upgrading
	Uninstalling

	Configuration
	Preferences
	Oxygen XML Editor plugin License
	Archive Preferences
	CSS Validator Preferences
	Custom Editor Variables Preferences
	Data Sources Preferences
	Table Filters Preferences
	Download Links for Database Drivers

	DITA Preferences
	Document Type Association Preferences
	Locations Preferences
	Document Type Configuration Dialog Box
	Association Rules Tab
	Schema Tab
	Classpath Tab
	Author Tab
	CSS Subtab
	Actions Subtab
	Action Dialog Box
	Activation of Multiple Functions for Actions using XPath Expressions
	oxy:allows-child-element() Function
	oxy:current-selected-element() Function

	Menu Subtab
	Contextual Menu Subtab
	Toolbar Subtab
	Content Completion Subtab

	Templates Tab
	Catalogs Tab
	Transformation Tab
	Validation Tab
	Extensions Tab

	Editor Preferences
	Edit Modes Preferences
	Grid Preferences
	Author Preferences
	Cursor Navigation Preferences
	Schema-Aware Preferences
	Review Preferences
	Callouts Preferences

	Profiling / Conditional Text Preferences
	Colors and Styles Preferences
	Attributes Rendering Preferences

	MathML Preferences
	AutoCorrect Preferences
	AutoCorrect Dictionaries Preferences

	Schema Design Preferences
	Properties

	Text Diagram Preferences

	Format Preferences
	XML Formatting Preferences
	Whitespaces Preferences

	XQuery Formatting Preferences
	XPath Formatting Preferences
	CSS Properties Formatting Preferences
	JavaScript Properties Formatting Preferences

	Content Completion Preferences
	Annotations Preferences
	XSL Preferences
	XPath Preferences
	XSD Preferences

	Syntax Highlight Preferences
	Elements / Attributes by Prefix Preferences

	Open / Save Preferences
	Save Hooks Preferences

	Templates Preferences
	Code Templates Preferences
	Document Templates Preferences

	Spell Check Preferences
	Spell Check Dictionaries Preferences

	Document Checking Preferences
	Mark Occurrences Preferences
	Custom Validation Engines Preferences
	Increasing the stack size for validation engines

	Fonts Preferences
	Network Connection Settings Preferences
	HTTP(S)/WebDAV Preferences
	(S)FTP Preferences
	Trusted Hosts Preferences

	Scenarios Management Preferences
	View Preferences
	XML Preferences
	XML Catalog Preferences
	XML Parser Preferences
	XML Schema Preferences
	Relax NG Preferences
	Schematron Preferences

	Sample XML Files Generator Preferences
	XProc Engines Preferences
	XSLT-FO-XQuery Preferences
	XSLT Preferences
	Saxon6 Preferences
	Saxon-HE/PE/EE Preferences
	Saxon HE/PE/EE Advanced Preferences

	XSLTProc Preferences
	MSXML Preferences
	MSXML.NET Preferences

	XQuery Preferences
	Saxon HE/PE/EE Preferences
	Saxon HE/PE/EE Advanced Preferences

	Debugger Preferences
	Annotations Preferences
	Profiler Preferences
	FO Processors Preferences
	XPath Preferences
	Custom Engines Preferences

	Import Preferences
	Date / Time Patterns Preferences

	XML Signing Certificates Preferences
	XML Refactoring Preferences

	XML Structure Outline Preferences

	Configuring Options
	Customizing Default Options
	Importing / Exporting Global Options
	Reset Global Options

	Associating a File Extension with Oxygen XML Editor plugin
	Scenarios Management
	Editor Variables
	Custom Editor Variables

	Localizing of the User Interface

	Perspectives
	oXygen XML Perspective
	Supported Document Types

	XSLT Debugger Perspective
	XQuery Debugger Perspective
	Oxygen XML Editor plugin Database Perspective

	Editing Modes
	Text Editing Mode
	Text Mode Editor
	Navigating the Document Content in Text Mode

	Text Mode Views
	Navigator View
	Outline View in Text Mode
	Outline View Filters in Text Mode
	Outline View Contextual Menu Actions in Text Mode

	Attributes View in Text Mode
	Model View
	Elements View in Text Mode
	Entities View
	Results View

	Syntax Highlight Depending on Namespace Prefix
	Presenting Validation Errors in Text Mode

	Grid Editing Mode
	Grid Mode Editor
	Layouts: Grid and Tree
	Grid Mode Navigation
	Bidirectional Text Support in Grid Mode

	Author Editing Mode
	Author Mode Editor
	Navigating the Document Content in Author Mode
	Displaying the Markup

	Visual Hints for the Cursor Position
	Displaying Referenced Content
	Presenting Validation Errors in Author Mode
	Whitespace Handling in Author Mode

	Author Mode Views
	Navigator View
	Outline View in Author Mode
	Outline View Filters in Author Mode
	Outline View Contextual Menu Actions in Author Mode

	Attributes View in Author Mode
	Model View
	Elements View in Author Mode
	Entities View
	Results View
	CSS Inspector View

	Bidirectional Text Support in Author Mode
	Controlling the Text Direction Using XML Markup
	Controlling the Text Direction Using the Unicode Direction Formatting Codes

	Design Editing Mode
	XML Schema Diagram Editor (Design Mode)
	Navigation in the XML Schema Design Mode
	XML Schema Outline View
	XML Schema Attributes View
	XML Schema Facets View
	XML Schema Palette View

	Editing Documents
	Working with Unicode
	Opening and Saving Unicode Documents
	Inserting Symbols
	Unicode Fallback Font Support

	Creating and Working with Documents
	Creating New Documents and Templates
	New Document Wizard
	Creating New Documents Based on Templates
	Creating New Document Templates
	Customizing Document Templates

	Saving Documents
	Opening and Saving Remote Documents via FTP/SFTP/WebDAV
	Open Using FTP/SFTP/WebDAV Dialog Box
	Changing File Permissions on a Remote FTP Server
	WebDAV over HTTPS
	Troubleshooting HTTPS

	HTTP Authentication Schemes
	Single Sign-on

	Closing Documents
	Contextual Menu of the Current Editor Tab
	Viewing File Properties

	Using Projects to Group Documents
	Creating a New Project
	Navigator View
	Moving/Renaming Resources in the Navigator View
	Problems Updating References of Moved/Renamed Resources

	Defining Master Files at Project Level
	Master Files Benefits
	Enabling the Master Files Support
	Detecting Master Files
	Adding or Removing a Master File

	Editing XML Documents
	Editing XML Documents in Text Mode
	Navigating the Document Content in Text Mode
	Smart Editing in Text Mode
	Editing Content in Text Mode
	Editing XML Markup in Text Mode
	Folding XML Elements in Text Mode
	Drag and Drop in Text Mode
	Selecting Content in Text Mode
	Content Completion Assistant in Text Mode
	Set Schema to be Used for Content Completion in Text Mode
	Schema Annotations in Text Mode
	Content Completion Helper Views
	Model View
	Attributes View in Text Mode
	Elements View in Text Mode
	Entities View

	Code Templates

	Outline View in Text Mode
	Outline View Filters in Text Mode
	Outline View Contextual Menu Actions in Text Mode

	Quick Assist Support for IDs and IDREFS
	Formatting and Indenting XML Documents
	Setting an Indent Size to Zero
	Format and Indent (Pretty Print) Multiple Files

	Managing Highlighted Content
	Highlight ID Occurrences in Text Mode
	Contextual Menu Actions in Text Mode

	Editing XML Documents in Grid Mode
	Editing Actions in Grid Mode
	Sorting a Table Column
	Inserting a Row in a Table
	Inserting a Column in a Table
	Clearing the Content of a Column
	Adding Nodes
	Duplicating Nodes
	Refresh Layout
	Start and Stop Editing a Cell Value

	Drag and Drop in the Grid Editing Mode
	Copy and Paste in the Grid Editing Mode

	Editing XML Documents in Author Mode
	Author Mode User Roles
	Rendering XML Documents in Author Mode
	Navigating the Document Content in Author Mode
	Displaying the Markup

	Editing Content in Author Mode
	Editing XML Markup in Author Mode
	Editing Attributes in Author Mode
	Folding XML Elements in Author Mode
	Drag and Drop in Author Mode
	Smart Paste Support
	Content Completion Assistant in Author Mode
	Set the Schema to be Used for Content Completion
	Schema Annotations in Author Mode
	Content Completion Helper Views
	Model View
	Attributes View in Author Mode
	Elements View in Author Mode
	Entities View

	Code Templates

	Outline View in Author Mode
	Outline View Filters in Author Mode
	Outline View Contextual Menu Actions in Author Mode

	Reviewing Documents
	Managing Tracked Changes
	Tracked Changes Behavior
	Tracked Changes Limitations
	Tracked Changes XML Markup

	Managing Comments
	Managing Highlights
	Author Callouts
	Review View

	Profiling and Conditional Text
	Managing Profiling Attributes
	Apply Profiling Attributes

	Managing Profiling Condition Sets
	Apply Profiling Condition Sets

	Profiling / Conditional Text Toolbar Menu
	Customizing Colors and Styles for Rendering Profiling in Author Mode

	Adding Tables in Author Mode
	Editing Tables in Author Mode
	Adding Tables in DocBook
	DocBook Table Layouts
	Editing Table Properties in DocBook

	Adding Tables in DITA Topics
	DITA Table Layouts
	Editing Table Properties in DITA

	Adding Tables in XHTML Documents
	XHTML Table Layout

	Sorting Content in Tables and List Items
	Sorting a Table
	Sorting a Selection of Rows
	Sorting a Table that Contains Merged Cells
	Sorting List Items

	Inserting Images
	Image Map Editor
	Image Maps in DITA
	Image Maps in DocBook
	Image Maps in TEI
	Image Maps in XHTML

	Image Rendering
	Customize Oxygen XML Editor plugin to Render CGM Images (Experimental Support)
	Customize Oxygen XML Editor plugin to Render PDF Images (Experimental Support)
	Customize Oxygen XML Editor plugin to Render PSD Images
	Customize Oxygen XML Editor plugin to Render EPS and AI Images
	Installing Java Advanced Imaging (JAI) Image I/O Tools Plugin

	Editing MathML Notations
	Configure the MathFlow Editor
	MathML Equations in HTML Output

	Refreshing the Content
	Generating IDs for Elements in Author Mode
	Using Form Controls in Author Mode
	Contextual Menu Actions in Author Mode

	Validating XML Documents
	Checking XML Well-formedness
	Validating XML Documents Against a Schema
	Automatic Validation
	Manual Validation Actions
	Presenting Validation Errors in Text Mode
	Presenting Validation Errors in Author Mode
	Customizing Assert Error Messages
	Custom Validators
	Linked Output Messages of an External Engine

	Validation Scenario
	Creating a New Validation Scenario
	Editing a Validation Scenario

	Sharing Validation Scenarios
	Resolving References to Remote Schemas with an XML Catalog
	Validation Example - A DocBook Validation Error

	Validate an XML Document Against Schematron

	Finding and Replacing Text in the Current File
	Find All Elements Dialog Box
	Regular Expressions Syntax

	Search and Refactor Actions for IDs and IDREFS
	Search and Refactor Operations Scope
	Associate a Schema to a Document
	Setting a Schema for Content Completion
	Supported Schema Types for XML Documents
	Setting a Default Schema
	Making the Schema Association Explicit in the XML Instance Document
	Associating a Schema With the Namespace of the Root Element
	xml-model Processing Instruction

	Learning Document Structure
	Create a DTD from Learned Document Structure

	Working with Modular XML Files in the Master Files Context
	XML Resource Hierarchy/Dependencies View
	Moving/Renaming XML Resources

	Working with XML Catalogs
	Resolve Schemas Through XML Catalogs

	Editing Large XML Documents with DTD Entities or XInclude
	Including Document Parts with DTD Entities
	Including Document Parts with XInclude

	Viewing Status Information
	Editor Highlights
	XML Quick Fixes
	Quick Fixes for XSD and Relax NG Errors
	Schematron Quick Fixes (SQF)

	Refactoring XML Documents
	Predefined Refactoring Operations
	Custom Refactoring Operations
	Custom Refactoring Script
	Custom Refactoring Operation Descriptor File
	Example of an XML Refactoring Operation

	Storing and Sharing Refactoring Operations
	Localizing XML Refactoring Operations

	Editing XSLT Stylesheets
	Editing XSLT Stylesheets in the Master Files Context
	Validating XSLT Stylesheets
	Creating a Validation Scenario for XSLT Stylesheets
	Validating XSLT Stylesheets with Custom Engines

	Content Completion in XSLT Stylesheets
	Content Completion in XPath Expressions
	Tooltip Helper for the XPath Functions Arguments

	Syntax Highlight
	XSLT Outline View
	XSLT/XQuery Input View
	XSLT Input View

	XSLT Resource Hierarchy/Dependencies View
	Moving/Renaming XSLT Resources

	XSLT Component Dependencies View
	Highlight Component Occurrences
	Finding XSLT References and Declarations
	XSLT Stylesheet Documentation Support
	Generating Documentation for an XSLT Stylesheet
	Generate XSLT Documentation in HTML Format
	Generate XSLT Documentation in a Custom Format
	Generating XSLT Documentation From the Command-Line Interface

	XSLT Quick Assist Support
	XSLT Quick Fix Support
	XSLT Refactoring Actions
	XSLT Unit Test (XSpec)

	Editing XML Schemas
	XML Schema Diagram Editor (Design Mode)
	Navigation in the XML Schema Design Mode
	Schema Editing Actions
	Contextual Menu Actions in the Design Mode
	XML Schema Components
	xs:schema
	xs:element
	xs:attribute
	xs:attributeGroup
	xs:complexType
	xs:simpleType
	xs:alternative
	xs:group
	xs:include
	xs:import
	xs:redefine
	xs:override
	xs:notation
	xs:sequence / xs:choice / xs:all
	xs:any
	xs:anyAttribute
	xs:unique
	xs:key
	xs:keyRef
	xs:selector
	xs:field
	xs:assert
	xs:openContent
	Constructs Used to Group Schema Components
	Attributes
	Constraints
	Substitutions

	Schema Validation
	Edit Schema Namespaces
	XML Schema Palette View
	XML Schema Facets View

	Editing XML Schema in Text Editing Mode
	Editing XML Schema in the Master Files Context
	Validating XML Schema Documents
	Content Completion in XML Schema
	XML Schema Outline View
	XML Schema Attributes View
	XML Schema Resource Hierarchy / Dependencies View
	Moving/Renaming XML Schema Resources

	Component Dependencies View for XML Schema
	Highlight Component Occurrences
	Searching and Refactoring Actions in XML Schemas
	XML Schema Quick Assist Support
	Generating Sample XML Files
	Schema Tab (Generate Sample XML Files Tool)
	Options Tab (Generate Sample XML Files Tool)
	Advanced Tab (Generate Sample XML Files Tool)

	Generating Documentation for an XML Schema
	Output Formats for Generating XML Schema Documentation
	Customizing the PDF Output of Generated XML Schema Documentation

	Generating XML Schema Documentation From the Command-Line Interface

	Converting Schema to Another Schema Language
	Converting Database to XML Schema
	Flatten an XML Schema
	XML Schema Regular Expressions Builder
	XML Schema 1.1
	Setting the XML Schema Version

	Editing XQuery Documents
	XQuery Outline View
	Folding in XQuery Documents
	Formatting and Indenting XQuery Documents
	Generating HTML Documentation for an XQuery Document

	Editing WSDL Documents
	Editing WSDL Documents in the Master Files Context
	Validating WSDL Documents
	Content Completion Assistance in WSDL Documents
	WSDL Outline View
	WSDL Resource Hierarchy/Dependencies View in WSDL Documents
	Moving/Renaming WSDL Resources

	Component Dependencies View in WSDL Documents
	Highlight Component Occurrences in WSDL Documents
	Searching and Refactoring Operations in WSDL Documents
	Searching and Refactoring Operations Scope in WSDL Documents
	Quick Assist Support in WSDL Documents
	Generating Documentation for WSDL Documents
	Generating WSDL Documentation in HTML Format
	Generating WSDL Documentation in a Custom Format
	Generating WSDL Documentation from the Command-Line Interface

	WSDL SOAP Analyzer
	Composing a SOAP Request
	Testing Remote WSDL Files
	UDDI Registry Browser

	Editing CSS Stylesheets
	Validating CSS Stylesheets
	Specify Custom CSS Properties

	Content Completion in CSS Stylesheets
	CSS Outline View
	Folding in CSS Stylesheets
	Formatting and Indenting CSS Stylesheets (Pretty Print)
	Minifying CSS Stylesheets

	Editing LESS CSS Stylesheets
	Validating LESS Stylesheets
	Content Completion in LESS Stylesheets
	Compiling LESS Stylesheets to CSS

	Editing Relax NG Schemas
	Editing Relax NG Schema in the Master Files Context
	Relax NG Schema Diagram Editor
	Introduction to Relax NG Schema Diagram Editor
	Full Model View
	Logical Model View
	Symbols Used in the Schema Diagram
	Actions Available in the Schema Diagram Editor

	Validating Relax NG Schema Documents
	Relax NG Outline View
	RNG Resource Hierarchy/Dependencies View
	Moving/Renaming RNG Resources

	Component Dependencies View for RelaxNG Schemas
	Searching and Refactoring Actions in RNG Schemas
	RNG Quick Assist Support
	Configuring a Custom Datatype Library for a RELAX NG Schema

	Editing NVDL Schemas
	NVDL Schema Diagram
	Introduction to NVDL Schema Diagram Editor
	Full Model View
	Actions Available in the Diagram Editor
	NVDL Outline View

	Validating NVDL Schema Documents
	Component Dependencies View for NVDL Schemas
	Searching and Refactoring Actions in NVDL Schemas

	Editing JSON Documents
	Editing JSON Documents in Text Mode
	Syntax Highlight in JSON Documents
	Folding in JSON

	Editing JSON Documents in Grid Mode
	Validating JSON Documents
	JSON Outline View
	XML to JSON Converter

	Editing StratML Documents
	Editing XLIFF Documents
	Editing JavaScript Documents
	JavaScript Editor Text Mode
	Validating JavaScript Files
	Content Completion in JavaScript Files
	JavaScript Outline View

	Editing XProc Scripts
	Editing Schematron Schemas
	Editing Schematron Schema in the Master Files Context
	Validating Schematron Documents
	Content Completion in Schematron Documents
	RELAX NG/XML Schema with Embedded Schematron Rules
	Schematron Outline View
	Schematron Resource Hierarchy/Dependencies View
	Moving/Renaming Schematron Resources

	Highlight Component Occurrences in Schematron Documents
	Searching and Refactoring Operations in Schematron Documents
	Searching and Refactoring Operations Scope in Schematron Documents
	Quick Assist Support in Schematron Documents

	Editing Schematron Quick Fixes
	Customizing Schematron Quick Fixes
	Validating Schematron Quick Fixes
	Content Completion in SQF
	Highlight Quick Fix Occurrences in SQF
	Searching and Refactoring Operations in SQF
	Embed Schematron Quick Fixes in Relax NG or XML Schema

	Editing XHTML Documents
	Spell Checking
	Spell Checking Dictionaries
	Dictionaries for the Hunspell Checker
	Add Dictionaries for the Hunspell Checker

	Dictionaries for the Java Checker

	Learned Words
	Ignored Words (Elements)
	Automatic Spell Check
	Spell Checking in Multiple Files

	AutoCorrect Misspelled Words
	Add Dictionaries for the AutoCorrect Feature

	Handling Read-Only Files
	XML Digital Signatures
	Digital Signatures Overview
	Certificates
	Canonicalizing Files
	Signing Files
	Verifying Signature
	Example of How to Digitally Sign XML Files or Content

	Publishing
	Transformation Scenarios
	Built-in Transformation Scenarios
	DocBook 4 Transformation Scenarios
	DocBook4 to WebHelp Output
	DocBook to PDF Output Customization
	DocBook to EPUB Transformation
	DocBook to DITA Transformation

	DocBook 5 Transformation Scenarios
	DocBook 5 to WebHelp Output
	DocBook to PDF Output Customization
	DocBook to EPUB Transformation
	DocBook to DITA Transformation

	DITA Topic Transformation Scenarios
	DITA Map Transformation Scenarios
	DITA Map to WebHelp Output
	WebHelp Responsive Output
	WebHelp Responsive with Feedback Output
	WebHelp Classic Output
	WebHelp Classic Mobile Output
	WebHelp Classic With Feedback Output

	DITA Map to PDF WYSIWYG Transformation
	Compiled HTML Help (CHM) Output Format
	Kindle Output Format
	Migrating OOXML Documents to DITA

	XHTML Transformation Scenarios
	TEI ODD Transformation Scenarios
	TEI P4 Transformation Scenarios
	TEI P5 Transformation Scenarios
	JATS Transformation Scenarios

	Creating New Transformation Scenarios
	XML Transformation with XSLT
	XSLT Tab
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets
	Advanced Saxon HE/PE/EE XSLT Transformation Options

	FO Processor Tab (XSLT Transformations)
	Output Tab (XSLT Transformations)
	Oxygen XML Editor plugin Browser View
	Oxygen XML Editor plugin Text View

	XML Transformation with XQuery
	XQuery Tab
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	DITA OT Transformation
	Skins Tab (DITA OT Transformations)
	Templates Tab (DITA OT Transformations)
	FO Processor Tab (DITA OT Transformations)
	Parameters Tab (DITA OT Transformations)
	Filters Tab (DITA Transformations)
	Advanced Tab (DITA OT Transformations)
	Output Tab (DITA OT Transformations)
	Troubleshooting DITA Transformation Errors

	Ant Transformation
	Options Tab (Ant Transformations)
	Parameters Tab (Ant Transformations)
	Output Tab (Ant Transformations)

	XSLT Transformation
	XSLT Tab
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets
	Advanced Saxon HE/PE/EE XSLT Transformation Options

	FO Processor Tab (XSLT Transformations)
	Output Tab (XSLT Transformations)

	XProc Transformation
	XProc Tab
	Inputs Tab (XProc Transformations)
	Parameters Tab (XProc Transformations)
	Outputs Tab (XProc Transformations)
	Options Tab (XProc Transformations)

	XQuery Transformation
	XQuery Tab
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	SQL Transformation

	Editing a Transformation Scenario
	Duplicating a Transformation Scenario
	Configure Transformation Scenario(s) Dialog Box
	Apply Batch Transformations
	Sharing the Transformation Scenarios
	Transformation Scenarios View
	Debugging PDF Transformations
	Configuring Calabash with XEP
	Integration of an External XProc Engine
	XSLT Processors
	Supported XSLT Processors
	Configuring Custom XSLT Processors
	Configuring the XSLT Processor Extensions Paths

	XSL-FO Processors
	Built-in XSL-FO Processor
	Add a Font to the Built-in FO Processor - Simple Version
	Add a Font to the Built-in FO Processor
	Adding Libraries to the Built-in FO Processor (XML with XSLT and FO)
	Adding Libraries to the Built-in FO Processor (DITA-OT)

	WebHelp System Output
	WebHelp Responsive System
	WebHelp Responsive with Feedback System
	Deploying the WebHelp Responsive with Feedback System
	Refreshing the Content of a WebHelp Responsive with Feedback System
	Managing Users and Comments in a WebHelp Responsive with Feedback System

	WebHelp Responsive Template Mechanism
	WebHelp Responsive Template Pages
	WebHelp Responsive Main Page Template
	WebHelp Responsive Topic Template
	WebHelp Responsive Search Results Template
	WebHelp Responsive Index Terms Template

	WebHelp Template Components
	WebHelp Template Resources

	Customizing the WebHelp Responsive Output
	WebHelp Responsive Customization Methods
	Adding a Logo Image in the Title Area
	How to set a Welcome Message in the Home Page
	How to Configure the Main Page Tiles
	Hiding some of the tiles displayed in the main page
	Setting an Image in the Tiles Displayed in the Main Page

	Customizing the Menu
	Hiding Some Menu Entries
	Hiding the Entire Menu

	Integrating Social Media and Google Tools in WebHelp Output
	How to Integrate Google Analytics in WebHelp Output
	How to Add a Facebook Like Button in WebHelp Responsive Output
	How to Add Tweet Button in WebHelp Responsive Output
	How to Add a Google+ Button in WebHelp Responsive Output

	How to Localize the Interface of WebHelp Output (for DITA Map Transformations)
	Localizing the Email Notifications of WebHelp with Feedback Systems
	Editing Scoring Values of Tag Elements in Search Results
	Adding Videos in the Output
	Adding a Favicon in WebHelp Systems
	Change Numbering Styles for Ordered Lists
	WebHelp Responsive Runtime Additional Parameters
	Flag DITA Content
	Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp
	Search Engine Optimization for DITA WebHelp
	Indexing Japanese Content for DITA WebHelp Pages

	WebHelp Classic System
	WebHelp Classic with Feedback System
	Deploying the WebHelp Classic with Feedback System
	Refreshing the Content of a WebHelp Classic with Feedback System
	Managing Users and Comments in a WebHelp Classic with Feedback System

	Customizing WebHelp Classic Systems
	Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp
	Search Engine Optimization for DITA WebHelp
	Indexing Japanese Content for DITA WebHelp Pages
	WebHelp Skin Builder
	Customizing WebHelp Output with a Custom CSS
	Integrating Social Media and Google Tools in WebHelp Output
	How to Add a Facebook Like Button in WebHelp Output
	How to Add Tweet Button in WebHelp Output
	How to Add a Google+ Button in WebHelp Output
	How to Integrate Google Search in WebHelp Output
	How to Integrate Google Analytics in WebHelp Output

	Localizing the Interface of WebHelp Output
	How to Localize the Interface of WebHelp Output (for DITA Map Transformations)
	How to Localize the Interface of WebHelp Output (for DocBook Transformations)

	Localizing the Email Notifications of WebHelp with Feedback Systems
	Editing Scoring Values of Tag Elements in Search Results
	Adding Videos in the Output
	Changing the Icons in a WebHelp Table of Contents
	Customize the Appearance of Selected Items in the Table of Contents
	Adding a Logo Image in the Title Area
	Removing the Previous/Next Links from WebHelp Pages
	Customizing the Header and Footer
	Adding a Favicon in WebHelp Systems
	Change Numbering Styles for Ordered Lists
	WebHelp Classic Runtime Additional Parameters
	Disable Caching in WebHelp Pages
	Adding a Button in Code Snippet Areas
	Flag DITA Content

	WebHelp Classic Mobile System
	Customizing WebHelp Classic Mobile Systems
	Changing the Style of WebHelp Mobile Pages

	Context-Sensitive WebHelp System
	Using the Oxygen XML WebHelp Plugin to Automate Output
	Oxygen XML WebHelp Plugin for DITA
	Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit
	Licensing the Oxygen XML WebHelp Plugin for DITA OT
	Upgrading the Oxygen XML WebHelp Plugin for DITA OT
	Running an External DITA Transformation Using the Oxygen XML WebHelp Plugin
	Additional Oxygen XML WebHelp Plugin Parameters for DITA

	Database Configuration for DITA WebHelp Systems with Feedback

	Oxygen XML WebHelp Plugin for DocBook
	Integrating the Oxygen XML WebHelp Plugin with the DocBook XSL Distribution
	Licensing the Oxygen XML WebHelp Plugin for DocBook
	Upgrading the Oxygen XML WebHelp Plugin for DocBook
	Running an External DocBook Transformation Using the WebHelp Plugin
	Additional Oxygen XML WebHelp Plugin Parameters for DocBook

	Database Configuration for DocBook WebHelp Classic with Feedback

	Querying Documents
	Running XPath Expressions
	What is XPath
	XPath/XQuery Builder View
	XPath Expression Results
	Catalogs
	XPath Prefix Mapping

	Working with XQuery
	What is XQuery
	Syntax Highlight and Content Completion
	XQuery Outline View
	XSLT/XQuery Input View
	XQuery Input View

	XQuery Validation
	Transforming XML Documents Using XQuery
	XQJ Transformers
	How to Configure an XQJ Data Source
	How to Configure an XQJ Connection

	Display XQuery Result in Sequence View
	Advanced Saxon HE/PE/EE XQuery Transformation Options
	Updating XML Documents using XQuery

	Working with Archives
	Browsing and Modifying Archives
	Working with EPUB
	Create an EPUB
	Publish to EPUB

	Editing Files From Archives

	Databases and CMS
	Working with Databases
	Data Source Explorer View
	Table Explorer View
	Database Connection Support
	IBM DB2 Database Connections
	Configuring an IBM DB2 Database Connection
	How to Configure IBM DB2 Data Source Drivers
	How to Configure an IBM DB2 Connection

	IBM DB2 Contextual Menu Actions

	Microsoft SQL Server Database Connections
	Configuring a Microsoft SQL Server Connection
	How to Configure Microsoft SQL Server Data Source Drivers
	How to Configure a Microsoft SQL Server Connection

	Microsoft SQL Server Contextual Menu Actions

	Oracle Database Connections
	Configuring an Oracle 11g Database Connection
	How to Configure Oracle 11g Data Source Drivers
	How to Configure an Oracle 11g Connection

	Oracle Database Contextual Menu Actions

	PostgreSQL Database Connections
	Configuring a PostgreSQL Database Connection
	How to Configure PostgreSQL 8.3 Data Source Drivers
	How to Configure a PostgreSQL 8.3 Connection

	PostgreSQL Contextual Menu Actions

	Berkeley DB XML Database Connections
	Configuring a Berkeley DB XML Database Connection
	How to Configure Berkeley DB XML Data Source Drivers
	How to Configure a Berkeley DB XML Connection

	Berkeley DB XML Contextual Menu Actions
	Debugging with Berkeley DB XML

	eXist Database Connections
	Configuring an eXist Database Connection
	How to Configure eXist Data Source Drivers
	How to Configure an eXist Connection

	eXist Contextual Menu Actions

	MarkLogic Database Connections
	Configuring a MarkLogic Database Connection
	How to Configure MarkLogic Data Source Drivers
	How to Configure a MarkLogic Connection

	MarkLogic Development in Oxygen XML Editor plugin
	Debugging with MarkLogic
	Using Breakpoints for Debugging Queries that Import Modules with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger

	MarkLogic Contextual Menu Actions

	Documentum xDB (X-Hive/DB) 10 Database Connections
	Configuring a Documentum xDB (X-Hive/DB) 10 Database Connection
	How to Configure Documentum xDB (X-Hive/DB) 10 Data Source Drivers
	How to Configure an Documentum xDB (X-Hive/DB) 10 Connection

	Documentum xDB (X-Hive/DB) 10 Contextual Menu Actions
	Documentum xDB (X-Hive/DB) 10 Parser Configuration for Adding XML Instances
	Troubleshooting Documentum xDB

	MySQL Database Connections
	Configuring a MySQL Database Connection
	How to Configure MySQL Data Source Drivers
	How to Configure a MySQL Connection

	Generic JDBC Database Connections
	Configuring a Generic JDBC Database Connection
	How to Configure Generic JDBC Data Source Drivers
	How to Configure a Generic JDBC Connection

	JDBC-ODBC Database Connections
	How to Configure a JDBC-ODBC Connection

	BaseX Database Connections
	How to Configure a BaseX Connection
	BaseX Contextual Menu Actions
	XQuery Execution

	WebDAV Connections
	How to Configure a WebDAV Connection
	WebDAV Contextual Menu Actions

	SQL Execution Support
	Drag and Drop from Data Source Explorer View
	SQL Validation
	Executing SQL Statements

	XQuery and Databases
	Build Queries with Drag and Drop from the Data Source Explorer View
	XQuery Transformation for Databases
	XQuery Database Debugging
	Debugging with MarkLogic
	Using Breakpoints for Debugging Queries that Import Modules with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger

	Debugging with Berkeley DB XML

	Content Management System (CMS) Integration
	Integration with Documentum (CMS) (deprecated)
	Configuring a Documentum (CMS) Database Connection
	How to Configure Documentum (CMS) Data Source Drivers
	How to Configure a Documentum (CMS) Connection
	Known Issues with Documentum (CMS)

	Documentum (CMS) Contextual Menu Actions

	Integration with Microsoft SharePoint
	How to Configure a SharePoint Connection
	SharePoint Contextual Menu Actions

	Importing Data
	Import from Text Files
	Import from MS Excel Files
	Import Data from MS Excel 2007 or Newer

	Import Database Data as an XML Document
	Import from HTML Files
	Import Content Dynamically

	XSLT and XQuery
	Layout
	Control Toolbar
	Debugging Information Views
	Context Node View
	XPath Watch (XWatch) View
	Breakpoints View
	Messages View
	Stack View
	Output Mapping Stack View
	Trace History View
	Templates View
	Nodes/Values Set View
	Variables View

	Multiple Output Documents in XSLT 2.0 and XSLT 3.0

	Working with the XSLT / XQuery Debugger
	Steps in a Typical Debugging Process
	Using Breakpoints
	Inserting Breakpoints
	Removing Breakpoints

	Determining What XSLT / XQuery Expression Generated Particular Output

	Debugging Java Extensions
	Supported Processors for XSLT / XQuery Debugging
	Performance Profiling of XSLT Stylesheets and XQuery Documents
	XSLT/XQuery Performance Profiling Overview
	Viewing Profiling Information
	Invocation Tree View
	Hotspots View

	Working with XSLT/XQuery Profiler

	Predefined Document Types
	Predefined Document Types (Frameworks)
	DocBook 4 Document Type
	DocBook 4 Author Mode Actions
	DocBook 4 Transformation Scenarios
	DocBook4 to WebHelp Output
	DocBook to PDF Output Customization
	DocBook to EPUB Transformation
	DocBook to DITA Transformation

	DocBook 4 Templates
	Inserting an olink in DocBook Documents

	DocBook 5 Document Type
	DocBook 5 Author Mode Actions
	DocBook 5 Transformation Scenarios
	DocBook 5 to WebHelp Output
	DocBook to PDF Output Customization
	DocBook to EPUB Transformation
	DocBook to DITA Transformation

	DocBook 5 Templates
	Inserting an olink in DocBook Documents

	DITA Topics Document Type
	DITA Author Mode Actions
	DITA Topic Transformation Scenarios
	DITA Templates

	DITA Map Document Type
	DITA Map Author Mode Actions
	DITA Map Transformation Scenarios
	DITA Map to WebHelp Output
	Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp
	Search Engine Optimization for DITA WebHelp
	Indexing Japanese Content for DITA WebHelp Pages

	Compiled HTML Help (CHM) Output Format
	Kindle Output Format
	Migrating OOXML Documents to DITA

	DITA Map Templates

	XHTML Document Type
	XHTML Author Mode Actions
	XHTML Transformation Scenarios
	XHTML Templates

	TEI ODD Document Type
	TEI ODD Author Mode Actions
	TEI ODD Transformation Scenarios
	TEI ODD Templates

	TEI P4 Document Type
	TEI P4 Author Mode Actions
	TEI P4 Transformation Scenarios
	TEI P4 Templates
	Customization of TEI Frameworks Using the Latest Sources

	TEI P5 Document Type
	TEI P5 Author Mode Actions
	TEI P5 Transformation Scenarios
	TEI P5 Templates
	Customization of TEI Frameworks Using the Latest Sources
	Customization of TEI Frameworks Using the Compiled Sources

	JATS Document Type
	JATS Author Mode Actions
	JATS Transformation Scenarios
	JATS Templates

	EPUB Document Type
	DocBook Targetset Document Type

	Author Mode Customization
	Author Mode Customization Guide
	Simple Customization Tutorial
	XML Schema
	CSS Stylesheet
	XML Instance Template

	Advanced Customization Tutorial - Document Type Associations
	Adding or Editing a Document Type Association (Framework)
	Configure Actions, Menus, and Toolbars for a Framework
	Configure the Insert Section Action for a Framework
	Configure the Insert Table Action for a Framework
	Configure the Main Menu for a Framework
	Configure the Contextual Menu for a Framework
	Configure the Toolbars for a Framework
	Configure Content Completion for a Framework
	Author Mode Default Operations
	Arguments of InsertFragmentOperation Operation
	Arguments of SurroundWithFragmentOperation

	Add a Custom Operation to an Existing Framework
	Using Retina/HiDPI Images in Author Mode

	Java API - Extending Author Functionality through Java
	Example 1- Simple Use of a Dialog Box from an Author Mode Operation
	Example 2- Operations with Arguments. Report from Database Operation

	Localizing Frameworks
	Creating the Basic Association
	First Step - XML Schema
	Schema Settings
	Second Step - CSS
	Defining the General Layout
	Styling the section Element
	Styling the Inline Elements
	Styling Images
	Testing the Document Type Association
	Organizing the Framework Files
	Packaging and Deploying

	Configuring New File Templates
	Configuring XML Catalogs
	Configuring Transformation Scenarios for a Framework
	Configuring Validation Scenarios for a Framework
	Configuring Extensions
	Configuring an Extensions Bundle
	Customize Profiling Conditions
	Customizing Smart Paste Support
	Implementing a Schema-Aware Editing Handler Adapter
	Implementing an Edit Properties Handler for Author Mode
	Implementing an Author Mode Action Event Handler
	Implementing an Image Decorator for Author Mode
	Implementing a State Listener for Author Mode
	Configuring a Content Completion Handler
	Configuring a Link Target Element Finder
	DefaultElementLocatorProvider Implementation
	XPointerElementLocator Implementation
	IDElementLocator Implementation

	Creating a customized link target reference finder

	Configuring a Custom Drag and Drop Listener
	Configuring a References Resolver
	Configuring CSS Styles Filter
	Configuring Tables
	Configuring a Table Column Width Provider
	Configuring a Table Cell Span Provider
	Configuring a Table Cell Row and Column Separator Provider

	Configuring a Unique Attributes Recognizer
	Configuring an XML Node Renderer Customizer

	Customizing the Main CSS of a Document Type
	Sharing a Document Type (Framework)
	Sharing an Extended Document Type (Framework)
	Adding Custom Persistent Highlights
	Providing Additional Annotations for XML Elements and Attributes
	Customizing the Content Completion Assistant
	Configuring the List of Attribute and Element Values
	Configuring the Proposals for Elements
	Customizing the Rendering of Elements

	Example Files for a Custom Framework
	XML Schema
	sdf.xsd
	abs.xsd

	CSS
	sdf.css

	XML
	sdf_sample.xml

	XSL
	sdf.xsl

	CSS Support in Author Mode
	Handling CSS Imports
	Selecting and Combining Multiple CSS Styles
	oxygen Media Type
	CSS At-Rules
	@font-face At-Rule
	@media Rule

	Standard W3C CSS Supported Features
	Supported CSS Selectors
	Namespace Selector
	Subject Selector
	:has Relational Pseudo-Class

	Supported CSS Properties
	Transparent Colors
	attr() Function: Properties Values Collected from the Edited Document

	Oxygen XML Editor plugin CSS Extensions
	Additional CSS Selectors
	Additional CSS Properties
	Folding Elements: -oxy-foldable, -oxy-not-foldable-child and -oxy-folded Properties
	Placeholders for Empty Elements: -oxy-show-placeholder and -oxy-placeholder-content Properties
	Read-only elements: -oxy-editable property
	Display Elements: -oxy-morph Value
	whitespace Property: -oxy-trim-when-ws-only Value
	visibility Property: -oxy-collapse-text
	Cyrillic Counters: list-style-type Values (-oxy-lower-cyrillic)
	link Property
	Display Tag Markers: -oxy-display-tags
	Append Content Properties: -oxy-append-content and -oxy-prepend-content
	Custom colors for element tags: -oxy-tags-color and -oxy-tags-background-color

	Custom CSS Functions
	oxy_local-name() Function
	oxy_name() Function
	oxy_url() Function
	oxy_base-uri() Function
	oxy_parent-url() Function
	oxy_capitalize() Function
	oxy_uppercase() Function
	oxy_lowercase() Function
	oxy_concat() Function
	oxy_replace() Function
	oxy_unparsed-entity-uri() Function
	oxy_attributes() Function
	oxy_substring() Function
	oxy_getSomeText(text, length) Function
	oxy_indexof() Function
	oxy_lastindexof() Function
	oxy_xpath() Function
	Form Controls
	Text Field Form Control
	Combo Box Form Control
	Checkbox Form Control
	Pop-up Form Control
	Button Form Control
	Button Group Form Control
	Text Area Form Control
	URL Chooser Form Control
	Date Picker Form Control
	HTML Content Form Control
	Implementing Custom Form Controls
	Editing Processing Instructions Using Form Controls

	oxy_action() Function
	oxy_action_list() Function
	oxy_label() Function
	oxy_link-text() Function
	oxy_unescapeURLValue(string) Function
	Arithmetic Functions

	Custom CSS Pseudo-classes
	Built-in CSS Stylesheet

	Debugging CSS Stylesheets

	Creating and Running Automated Tests
	API Frequently Asked Questions (API FAQ)
	Difference Between a Document Type (Framework) and a Plugin Extension
	Dynamically Modify the Content Inserted by the Author
	Split Paragraph on Enter (Instead of Showing Content Completion List)
	Impose Custom Options for Authors
	Highlight Content
	How Do I Add My Custom Actions to the Contextual Menu?
	Adding Custom Callouts
	Change the DOCTYPE of an Opened XML Document
	Customize the Default Application Icons for Toolbars/Menus
	Disable Context-Sensitive Menu Items for Custom Author Actions
	Dynamic Open File in Oxygen XML Editor plugin Distributed via JavaWebStart
	Change the Default Track Changes (Review) Author Name
	Multiple Rendering Modes for the Same Document in Author Mode
	Obtain a DOM Element from an AuthorNode or AuthorElement
	Print Document Within the Oxygen XML Author Component
	Running XSLT or XQuery Transformations
	Use Custom Rendering Styles for Entity References, Comments, or Processing Instructions
	Insert an Element with all the Required Content
	Obtain the Current Selected Element Using the Author API
	Debugging a Plugin Using the Eclipse Workbench
	Debugging an Oxygen SDK Extension Using the Eclipse Workbench
	Extending the Java Functionality of an Existing Framework (Document Type)
	Controlling XML Serialization in the Oxygen XML Author Component
	How do I add a Customized Outline View for Editing XML Documents in Text Mode?
	Dynamically Adding Form Controls Using a StylesFilter
	Modifying the XML Content on Open
	Modifying the XML Content on Save
	Save a New Document with a Predefined File Name Pattern
	Auto-Generate an ID When a Document is Opened or Created
	Use a Custom View with the Oxygen XML Editor plugin Distribution

	Extending Oxygen XML Editor plugin Using the SDK
	Extension points for Oxygen XML Editor plugin

	Tools
	XML Refactoring
	Predefined Refactoring Operations
	Custom Refactoring Operations
	Custom Refactoring Script
	Custom Refactoring Operation Descriptor File
	Example of an XML Refactoring Operation

	Storing and Sharing Refactoring Operations
	Localizing XML Refactoring Operations

	Generating Sample XML Files
	Schema Tab (Generate Sample XML Files Tool)
	Options Tab (Generate Sample XML Files Tool)
	Advanced Tab (Generate Sample XML Files Tool)

	Generate/Convert Schema
	Convert DB Structure to XML Schema
	XML to JSON
	Generate Documentation
	XML Schema Documentation
	XSLT Stylesheet Documentation
	XQuery Documentation
	WSDL Documentation

	Canonicalize
	Sign
	Verify Signature
	WSDL SOAP Analyzer
	Composing a SOAP Request
	Testing Remote WSDL Files
	UDDI Registry Browser

	XML Schema Regular Expressions Builder

	Common Problems
	Performance Problems
	Performance Issues with Large Documents
	External Processes

	Common Problems and Solutions
	Details to Submit in a Request for Technical Support Using the Online Form
	Oxygen XML Editor plugin Takes Several Minutes to Start
	XSLT Debugger Is Very Slow
	Syntax Highlight Not Available in Eclipse Plugin
	Damaged File Associations on OS X
	Signature Verification Failed Error on Open or Edit a Resource from Documentum
	Compatibility Issue Between Java and Certain Graphics Card Drivers
	Image Appears Stretched Out in the PDF Output
	DITA PDF Transformation Fails
	DITA to CHM Transformation Fails
	DITA Map Transformation Fails (Cannot Connect to External Location)
	Topic References Outside the Main DITA Map Folder
	PDF Processing Fails to Use the DITA OT and Apache FOP
	TocJS Transformation Does not Generate All Files for a Tree-Like TOC
	Navigation to the web page was canceled when viewing CHM on a Network Drive
	Alignment Issues of the Main Menu on Linux Systems Based on Gnome 3.x
	JPEG CMYK Color Space Issues
	SVG 1.2 Rendering Issues
	MSXML 4.0 Transformation Issues
	Increasing the Memory for the Ant Process
	'Address Family Not Supported by Protocol Family; Connect' Error

	DITA Authoring and Publishing
	Working with DITA Maps
	DITA Maps Manager
	Creating a Map
	Selecting a Root Map
	Creating DITA Submaps
	Creating a Bookmap in DITA

	Managing DITA Maps
	Change the Order of Topics in DITA Maps
	Adding Topics to a DITA Map
	Moving and Renaming Resources
	Finding Resources Not Referenced in DITA Maps
	Insert References in DITA Maps
	Insert Reference Dialog Box
	Inserting Topic Headings
	Inserting Topic Groups
	Inserting and Defining Keys in DITA Maps

	Edit Properties Dialog Box
	Creating a Table of Contents in DITA
	Resolving Topic References Through an XML Catalog

	Chunking DITA Topics
	DITA Map Validation and Completeness Check

	Working with DITA Topics
	Creating a New DITA Topic
	Editing DITA Topics
	Adding Images in DITA Topics
	Image Maps in DITA
	Adding Tables in DITA Topics
	DITA Table Layouts
	Editing Table Properties in DITA

	Adding MathML Equations in DITA Topics

	Working with Keys
	Reusing DITA Content
	Reusing DITA Topics in Multiple Maps
	Working with Content References
	Creating a DITA Content Reference
	Creating a DITA Content Key Reference
	Editing DITA Content References
	Reuse Content Dialog Box

	Working with the Conref Push Mechanism
	Working with Reusable Components
	Creating a Reusable Content Component
	Inserting a Reusable Content Component

	Working with Variable Text in DITA

	Linking in DITA
	Hierarchical Linking in DITA Maps
	Linking in DITA Topics
	Linking with Relationship Tables in DITA

	Publishing DITA Output
	Transforming DITA Content
	Creating or Editing a DITA OT Transformation
	Skins Tab (DITA OT Transformations)
	Templates Tab (DITA OT Transformations)
	FO Processor Tab (DITA OT Transformations)
	Parameters Tab (DITA OT Transformations)
	Filters Tab (DITA Transformations)
	Advanced Tab (DITA OT Transformations)
	Output Tab (DITA OT Transformations)

	Customizing DITA Transformations
	Using a Custom Build File
	DITA to PDF Output Customization
	Creating a Customization Directory for PDF Output
	Customizing the Header and Footer in PDF Output
	Adding a Watermark to PDF Output
	Force Page Breaks Between Two Block Elements in PDF Output
	Customizing note Images in PDF
	Set a Font for PDF Output Generated with FO Processor

	Adding a Watermark to XHTML Output

	DITA Map to PDF WYSIWYG Transformation

	DITA Profiling / Conditional Text
	Profiling DITA Content
	Profiling with a Subject Scheme Map
	Profiling Markers
	Publishing Profiled DITA Content

	DITA Open Toolkit Support
	Creating a DITA OT Customization Plugin
	Installing a Plugin in the DITA Open Toolkit
	Use an External DITA Open Toolkit in Oxygen XML Editor plugin
	Third-Party DITA Open Toolkit Plugins

	DITA Specialization Support
	Integration of a DITA Specialization
	Editing DITA Map Specializations
	Editing DITA Topic Specializations

	Metadata
	Creating an Index in DITA
	DITA 1.3 Support

	Glossary
	Active cell
	Apache Ant
	Block element
	Bookmap
	DITA Map
	DITA_OT_DIR
	Inline element
	Java Archive
	Named User

	Index

