
oXygen User Manual for Eclipse

SyncRO Soft Ltd.

Contributor: Sean Wheller



oXygen User Manual for Eclipse
SyncRO Soft Ltd.
Contributor: Sean Wheller
Copyright © 2002-2006 SyncRO Soft Ltd. All Rights Reserved.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and SyncRO Soft Ltd., was aware of a trademark claim, the designations have been printed in
caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

Third party software components are distributed in the <oXygen/> installation packages, including the Java Runtime Environment
(JRE), Docbook DTD and stylesheets. This product includes software developed by the Apache Software Foundation (ht-
tp://www.apache.org): the Apache FOP, Xerces XML Parser and Xalan XSLT. These products are not the property of SyncRO
Soft Ltd.. To the best knowledge of SyncRO Soft Ltd. owners of the aforesaid products granted permission to copy, distribute and/
or modify the software and its documents under the terms of the Apache Software License, Version 1.1. Other packages are used
under the GNU Lesser General Public License. Users are advised that the JRE is provided as a free software, but in accordance
with the licensing requirements of Sun Microsystems. Users are advised that SyncRO Soft Ltd. assumes no responsibility for er-
rors or omissions, or for damages resulting from the use of <oXygen/> and the aforesaid third party software. Nor does SyncRO
Soft Ltd. assume any responsibility for licensing of the aforesaid software, should the relevant vendors change their terms. By us-
ing <oXygen/> the user accepts responsibility to maintain any licenses required by SyncRO Soft Ltd. or third party vendors. Un-
less SyncRO Soft Ltd. declares in writing that the <oXygen/> license is inclusive of third party licensing.

http://www.apache.org
http://www.apache.org




Table of Contents
1. Introduction ............................................................................................................ 1

Key Features and Benefits .................................................................................... 1
About the <oXygen/> User Manual ........................................................................ 2

2. Installation ............................................................................................................. 4
Installation Requirements ..................................................................................... 4

Platform Requirements ................................................................................. 4
Operating System, Tools and Environment Requirements ................................... 4

Operating System ................................................................................ 4
Tools ................................................................................................ 4
Environment Prerequisites .................................................................... 4

Installation Instructions ........................................................................................ 5
Starting <oXygen/> plugin .................................................................................... 5
Obtaining and installing an <oXygen/> license ......................................................... 6

Named User license installation ..................................................................... 6
How floating (concurrent) licenses work .......................................................... 8

How to install the <oXygen/> license server as a Windows service ............... 9
How to release a floating license .......................................................... 10

Upgrading <oXygen/> ....................................................................................... 10
Uninstalling the <oXygen/> plugin ....................................................................... 11
Performance problems ....................................................................................... 11

Large documents ....................................................................................... 11
3. Getting started ....................................................................................................... 13

Supported types of documents ............................................................................. 13
Getting help ..................................................................................................... 13
Perspectives ..................................................................................................... 13

<oXygen/> XML perspective ...................................................................... 13
Supported editor types ....................................................................... 16

<oXygen/> XSLT Debugger Perspective ....................................................... 17
<oXygen/> XQuery Debugger Perspective ..................................................... 18

4. Editing documents ................................................................................................. 20
Working with Unicode ....................................................................................... 20

Opening and saving Unicode documents ........................................................ 20
Opening and closing documents ........................................................................... 20

Creating new documents ............................................................................. 21
<oXygen/> plugin wizards .................................................................. 21
Creating Documents based on Templates ............................................... 26

Saving documents ..................................................................................... 31
Closing documents .................................................................................... 31
Creating and sharing new document templates ................................................ 31

Creating a new document template ....................................................... 31
Sharing document templates ................................................................ 32

Viewing file properties ............................................................................... 32
Editing XML documents .................................................................................... 32

Associate a schema to a document ................................................................ 32
Setting a schema for the Content Completion ......................................... 32

Setting a default schema ............................................................. 33
Adding a Processing Instruction ................................................... 33

Learning document structure ............................................................... 34
Streamline with Content Completion ............................................................ 35

Code templates ................................................................................. 38
Content Completion helper panels ........................................................ 38

The Model panel ....................................................................... 38
The Element Structure panel ............................................... 39

iv



The Annotation panel ......................................................... 40
The Attributes panel .................................................................. 40

Debugging XML documents ....................................................................... 41
Checking XML Form ......................................................................... 41
Validating Documents ........................................................................ 42

Validate as you type .................................................................. 44
Custom validation of XML documents .......................................... 45

Document navigation ................................................................................. 46
Folding of the XML elements .............................................................. 47
Outliner view ................................................................................... 48

XML Document Overview .......................................................... 48
Modification Follow-up .............................................................. 49
Document Structure Change ........................................................ 49

The popup menu of the Outline tree ...................................... 49
Document Tag Selection ............................................................. 50

Grouping documents in XML projects ........................................................... 51
Large Documents .............................................................................. 51

Creating an included part ............................................................ 51
Creating a new project ....................................................................... 52

Including document parts with XInclude ........................................................ 55
Working with XML Catalogs ...................................................................... 57
Converting between schema languages .......................................................... 58
Formatting and indenting documents (pretty print) ........................................... 60
Viewing status information ......................................................................... 62
XML editor specific actions ........................................................................ 63

Edit actions ...................................................................................... 63
Select actions ................................................................................... 63
Source actions .................................................................................. 63
XML document actions ...................................................................... 65
XML Refactoring actions ................................................................... 65
XML Schema actions ......................................................................... 66
Smart editing .................................................................................... 67
Syntax highlight depending on namespace prefix .................................... 67

Editing XML Schema schemas ............................................................................ 67
Special content completion features .............................................................. 68
XML Schema diagram ............................................................................... 68

Introduction ..................................................................................... 68
Full model view ................................................................................ 68
Logical model view ........................................................................... 71
Schema components view ................................................................... 72

Create an XML Schema from a relational database table ................................... 73
XML Schema Instance Generator ................................................................. 73
Flatten an XML Schema ............................................................................. 77
XML Schema regular expressions builder ...................................................... 82
Generating HTML documentation for an XML Schema .................................... 84
XML Schema editor specific actions ............................................................. 88
Search References and Declarations .............................................................. 88

Editing Relax NG schemas ................................................................................. 89
Relax NG schema diagram .......................................................................... 89

Introduction ..................................................................................... 89
Full model view ................................................................................ 89
Logical model view ........................................................................... 91
Schema components view ................................................................... 92

Relax NG editor specific actions .................................................................. 93
Search References and Declarations .............................................................. 93

Editing XSLT stylesheets ................................................................................... 94
Validating XSLT stylesheets ....................................................................... 94

Custom validation of XSLT stylesheets ................................................. 94

oXygen User Manual for Eclipse

v



Content Completion in XSLT stylesheets ....................................................... 95
Content Completion in XPath expressions .............................................. 96
Code templates ................................................................................. 99

The XSLT Input View ............................................................................... 99
The Stylesheet Templates view .................................................................. 101
Finding XSLT references and declarations ................................................... 103
XSLT refactoring actions .......................................................................... 104

Editing XQuery documents ............................................................................... 106
Generating HTML Documentation for an XQuery Document .......................... 107

Editing CSS stylesheets .................................................................................... 108
Validating CSS stylesheets ........................................................................ 108
Content Completion in CSS stylesheets ....................................................... 108
Folding in CSS stylesheets ........................................................................ 108
Formatting and indenting CSS stylesheets (pretty print) .................................. 109
Other CSS editing actions ......................................................................... 109

Scratch Buffer ................................................................................................ 109
5. Transforming documents ....................................................................................... 110

Output formats ............................................................................................... 110
Transformation scenario ................................................................................... 111

Built-in transformation scenarios ................................................................ 112
Defining a new transformation scenario ....................................................... 112

XSLT Stylesheet Parameters ............................................................. 116
Additional XSLT Stylesheets ............................................................ 117
Scenario Macros ............................................................................. 118
XSLT/XQuery Extensions ................................................................ 119

Exporting and importing the transformation scenarios .................................... 120
XSL-FO processors ......................................................................................... 120
Common transformations .................................................................................. 121

PDF Output ........................................................................................... 121
PS Output .............................................................................................. 122
TXT Output ........................................................................................... 122
HTML Output ........................................................................................ 123
HTML Help Output ................................................................................. 124
JavaHelp Output ..................................................................................... 124
XHTML Output ...................................................................................... 124

Supported XSLT processors .............................................................................. 125
Configuring custom XSLT processors ................................................................. 128
Configuring the XSLT processor extensions paths ................................................. 128

6. Querying documents ............................................................................................ 129
Running XPath expressions ............................................................................... 129

What is XPath ........................................................................................ 129
<oXygen/>'s XPath toolbar ....................................................................... 129

Working with XQuery ..................................................................................... 131
What is XQuery ...................................................................................... 132
Syntax Highlight and Content Completion ................................................... 132
XQuery Validation .................................................................................. 132
Other XQuery editing actions .................................................................... 133
Transforming XML Documents Using XQuery ............................................. 133
How to configure eXist support in <oXygen/> .............................................. 133
How to configure Berkeley DB XML support in <oXygen/> ........................... 135
How to configure TigerLogic support in <oXygen/> ...................................... 136
How to configure X-Hive/DB support in <oXygen/> ..................................... 137
How to configure MarkLogic support in <oXygen/> ...................................... 138

7. Debugging XSLT stylesheets and XQuery documents ................................................. 140
Overview ....................................................................................................... 140
Layout .......................................................................................................... 140

Control Toolbar ...................................................................................... 142
Information views ................................................................................... 143

oXygen User Manual for Eclipse

vi



Multiple output documents in XSLT 2.0 ...................................................... 143
Working with the XSLT/XQuery Debugger ......................................................... 144

Steps in a typical debug process ................................................................. 144
Using breakpoints ................................................................................... 145

Inserting breakpoints ....................................................................... 145
Removing breakpoints ..................................................................... 146

Viewing processing information ................................................................. 146
Context node view .......................................................................... 146
XPath watch view ........................................................................... 146
Breakpoints view ............................................................................ 147
Break conditions view ...................................................................... 148
Messages view ............................................................................... 149
Stack view ..................................................................................... 150
Trace history view ........................................................................... 151
Templates view .............................................................................. 152
Node set view ................................................................................. 153
Variables view ................................................................................ 154

Determining what XSL/XQuery expression generated particular output ............. 156
8. Profiling XSLT stylesheets and XQuery documents .................................................... 158

Overview ....................................................................................................... 158
Viewing profiling information ........................................................................... 158

Invocation tree view ................................................................................ 158
Hotspots view ......................................................................................... 159

Working with XSLT/XQuery profiler ................................................................. 160
9. Importing data ..................................................................................................... 162

Introduction ................................................................................................... 162
Import from database ....................................................................................... 163

Import table content as XML document ....................................................... 163
Convert table structure to XML Schema ...................................................... 167

Import from MS Excel files ............................................................................... 169
Import from HTML files .................................................................................. 170
Import from text files ....................................................................................... 172

10. Composing Web Service calls .............................................................................. 176
Overview ....................................................................................................... 176
Composing a SOAP request .............................................................................. 176

Testing remote WSDL files ....................................................................... 178
The UDDI Registry browser ...................................................................... 179

Generate WSDL documentation ......................................................................... 181
11. Digital signature ................................................................................................ 182

Overview ....................................................................................................... 182
Canonicalizing files ......................................................................................... 183
Certificates .................................................................................................... 185
Signing files ................................................................................................... 185
Verifying the signature ..................................................................................... 187

12. Configuring the editor ......................................................................................... 188
Reset options .................................................................................................. 188
Preferences .................................................................................................... 188

Global ................................................................................................... 189
Editor ................................................................................................... 191

Format .......................................................................................... 193
XML Format .......................................................................... 194
CSS Format ........................................................................... 196

Save ............................................................................................. 197
Code Templates .............................................................................. 197
Default Schema Association .............................................................. 199
Content Completion ......................................................................... 200

XSL/XPath ............................................................................ 202
Diagram ........................................................................................ 203

oXygen User Manual for Eclipse

vii



Spell Check ................................................................................... 204
Document Checking ........................................................................ 206
Custom Validation .......................................................................... 207

CSS Validator ........................................................................................ 209
XML .................................................................................................... 210

XML Catalog ................................................................................. 210
XML Parser ................................................................................... 210
XML Instances Generator ................................................................. 212
XSLT/FO/XQuery .......................................................................... 214

XSLT ................................................................................... 214
Saxon6 .......................................................................... 214
Saxon8 .......................................................................... 215
XSLTProc ..................................................................... 217
MSXML ....................................................................... 219
MSXML.NET ................................................................ 220

XQuery ................................................................................. 223
Saxon ........................................................................... 223
eXist ............................................................................. 225
Berkeley DB XML .......................................................... 225
X-Hive/DB .................................................................... 226
MarkLogic ..................................................................... 226
TigerLogic ..................................................................... 227

Debugger ............................................................................... 228
Profiler ................................................................................. 228
FO Processors ........................................................................ 230
XPath ................................................................................... 232
Custom engines ...................................................................... 233

Database ............................................................................................... 235
Import ........................................................................................... 237

HTTP / Proxy Configuration ..................................................................... 237
Certificates ............................................................................................ 239
Scenarios Management ............................................................................ 240
View .................................................................................................... 240
Syntax Highlight ..................................................................................... 241
Syntax highlight elements by Prefix ............................................................ 242

Automatically importing the preferences from the other distribution ......................... 243
Importing/Exporting <oXygen/> preferences ........................................................ 243

13. Common problems ............................................................................................. 244

oXygen User Manual for Eclipse

viii



Chapter 1. Introduction
Welcome to the User Manual of the <oXygen/> plugin for Eclipse ! This book explains how to use the
7.2.0 version of <oXygen/> effectively to develop complex XML applications quickly and easily. Please
note that this manual assumes that you are familiar with the basic concepts of XML and its related tech-
nologies.

The <oXygen/> plugin for Eclipse is a cross-platform application for document development using
structured mark-up languages such as XML , XSD, Relax NG, XSL, DTD.

<oXygen/> offers developers and authors a powerful Integrated Development Environment. Based on
proven Java technology the intuitive Graphical User Interface of the <oXygen/> plugin for Eclipse is
easy-to-use and provides robust functionality for editing, project management and validation of struc-
tured mark-up sources. Coupled with XSLT and FOP transformation technologies, <oXygen/> supports
output to multiple target formats, including: PDF, PS, TXT, HTML and XML.

Key Features and Benefits
The <oXygen/> XML Editor offers the following key features and benefits.

Multiplatform availability: Windows, Mac OS X,
Linux, Solaris

Non blocking operations, you can perform validation
and transformation operations in background

Support for XML, XML Schema, Relax NG , Schemat-
ron, DTD, NRL schemas, XSLT, XSL:FO, WSDL,
XQuery, CSS

Outliner view in sync with a non well-formed document

Validate XML Schema schemas, Relax NG schemas,
DTDs, Schematron schemas, NRL schemas, WSDL,
XQuery and CSS

Manual and automatic validation of XML documents
against XML Schema schemas, Relax NG schemas,
DTDs, Schematron schemas and NRL schemas

Multiple built-in validation engines (Xerces, libxml,
MSXML 4.0, MSXML.NET) and support for custom
validation engines (Saxon SA, XSV, SQC).

Multiple built-in XSLT transformers (Saxon 6.5, Saxon
8 B, Saxon 8 SA, Saxon.NET, Xalan, libxslt, MSXML
3.0 / 4.0, Microsoft .NET 1.0, Microsoft .NET 2.0) and
support for custom JAXP transformers.

Visual schema editor with full and logical model views Easy error tracking - locate the error source by clicking
on it

Ready to use FOP support to generate PDF or PS docu-
ments

XInclude support

Generate HTML documentation from XML Schemas Support for latest versions of document frameworks:
Docbook and TEI.

Conversions from DTD, Relax NG schema or a set of
documents to XML Schema, DTD or Relax NG schema

Context sensitive content assistant driven by XML
Schema, Relax NG, DTD or by the edited document
structure enhanced with schema annotation presenter

XML Catalog support Unicode support

New XML document wizards to easily create docu-
ments specifying a schema or a DTD

Syntax coloring for XML, DTD, Relax NG compact
syntax, Java, C++, C, PHP, Perl, etc

Pretty-printing of XML files Easy configuration for external FO Processors

Apply XSLT and FOP transformations XPath search and evaluation support

Preview transformation results as XHTML or XML or
in your browser

Support for document templates to easily create and
share documents

Import data from a database, Excel, HTML or text file Convert database structure to XML Schema

Batch validate selected files in project Canonicalize and sign documents

1



Configurable actions key bindings Associate extensions with editors provided by the oXy-
gen plugin.

XSLT Debugger with Backmapping support XSLT Profiler

XQuery Debugger with Backmapping support XQuery Profiler

Model View Attributes View

XQuery 1.0 support WSDL Support

XSLT 2.0 full support XPath 2.0 support

XSLT refactoring actions Document folding

Generate large sets of sample XML instances from
XML Schema

Spell checking supporting English, German and French
including locals

Drag&drop support

About the <oXygen/> User Manual
This User Manual gives a complete overview of the <oXygen/> XML Editor and describes the basic
process of authoring, management, validation of structured mark-up documents and their transformation
to multiple target outputs. In this manual it is assumed that you are familiar with the use of your operat-
ing system and the concepts related to structured mark-up.

The <oXygen/> XML Editor User Manual is comprised of the following parts:

• Chapter 1, Introduction: Introduction - you are reading it.

• Chapter 2, Installation: Installation - defines the platform and environment requirements of
<oXygen/> and instructions for application installation, license installation, starting <oXygen/>, up-
grade and uninstalling.

• Chapter 3, Getting started: Getting started - provides general orientation and an overview of the
<oXygen/>'s editing perspectives.

• Chapter 4, Editing documents: Editing documents - explains how to obtain maximum benefit from the
editor, project and validation features.

• Chapter 5, Transforming documents: Transforming documents - explains the considerations for trans-
formation of structured sources to multiple target format and how to obtain maximum benefit.

• Chapter 6, Querying documents: Querying documents - This chapter explains the support offered by
<oXygen/> for querying XML documents.

• Chapter 7, Debugging XSLT stylesheets and XQuery documents: Debugging XSLT stylesheets and
XQuery documents - This chapter explains how to debug XSLT stylesheets or XQuery documents.

• Chapter 8, Profiling XSLT stylesheets and XQuery documents: Profiling XSLT stylesheets and
XQuery documents - This chapter explains how to profile the execution of XSLT stylesheets or
XQuery documents.

• Chapter 9, Importing data: Importing data - This chapter explains how to import data from a database,
an Excel sheet or text file.

• Chapter 10, Composing Web Service calls: Composing Web Service calls - This chapter explains the
facilities offered by <oXygen/> for composing and testing WSDL SOAP messages.

Introduction

2



• Chapter 11, Digital signature: Digital signature - This chapter explains how to canonicalize, sign and
verify the signature of documents.

• Chapter 12, Configuring the editor: Configuring the editor - explains how to configure preferences of
<oXygen/>.

Feedback and input to the <oXygen/> User Manual is welcomed.

Introduction

3



Chapter 2. Installation
This section explains platform requirements and installation procedures. It also provides instructions on
how to obtain and apply an <oXygen/> license, how to perform upgrades and uninstall <oXygen/> if re-
quired.

If you need help at any point during these procedures please send email to
<support@oxygenxml.com>.

Installation Requirements
Platform Requirements

Minimum run-time requirements are listed below.

• Pentium Class Platform

• 256 MB of RAM

• 200 MB free disk space

Operating System, Tools and Environment Require-
ments

Operating System

Windows Windows 98 or later.

Mac OS minimum Mac OS X 10.0

UNIX/Linux All versions/flavors

Tools

Installation packages are supplied in compressed archives. Ensure you have installed a suitable archive
extraction utility with which to extract the archive. The MD5 sum is available on the Download page
[http://www.oxygenxml.com/download.html] for every archive. You should check the MD5 sum of the
downloaded archive with a MD5 checking tool available on your platform.

Environment Prerequisites

Prior to installation ensure that your installed Eclipse platform is the following:

• the latest stable Eclipse version available at the release date. The current version works with Eclipse
3.1.2.

• Sun Microsystems Java VM version 1.4 or later (available at http://java.sun.com) in case you use an
installation kit without Java VM. For Mac OS X, Java VM updates are available at ht-

4

http://www.oxygenxml.com/download.html
http://www.oxygenxml.com/download.html
http://java.sun.com


tp://www.apple.com/macosx/features/java/.

Installation Instructions
Prior to proceeding with the following instructions, please ensure that your system complies with the
prerequisites detailed in the installation requirements.

There are two ways of installing the <oXygen/> Eclipse plugin: the Update Site method and the zip
archive method.

Procedure 2.1. Plugin installation - the Update Site method

1. Start Eclipse. Choose the menu option: Help / Software Update / Find and Install. Select the check-
box: "Search for new features to install" and press the "Next" button..

2. From the dialog "Update sites to visit" press the button "Add update site" or "New Remote Site".

3. Enter "oXygen XML Editor" in the "Name" field and the value ht-
tp://www.oxygenxml.com/InstData/Eclipse/site.xml into the "URL" field of the
"New Update Site" dialog. Press the "OK" button.

4. Select the checkbox "oXygen XML Editor" and press the "Next" button.

5. Select the new feature to install "oXygen XML Editor and XSLT debugger" and press the "Next"
button in the following install pages. You must accept the Eclipse restart.

6. Paste the <oXygen/> license information received in the registration email when prompted. This
will happen when you use one of the <oXygen/> wizards to create an XML project or document,
when you open or create a document associated with <oXygen/> or when accessing the <oXygen/>
Preferences.

7. The <oXygen/> plugin is installed correctly if you can create an XML project with an <oXygen/>
wizard.

Procedure 2.2. Plugin installation - the zip archive method

1. Download [http://www.oxygenxml.com/InstData/Eclipse/com.oxygenxml.editor_7.2.0.zip] the zip
archive with the plugin.

2. Unarchive the downloaded zip archive in the plugins subdirectory of the Eclipse install directory.

3. Restart Eclipse. Eclipse should display an entry com.oxygenxml.editor (7.2.0) in the list available
from Window - Preferences - Plug-in Development - Target Platform.

Starting <oXygen/> plugin
The <oXygen/> plugin will be activated automatically by the Eclipse platform when you use one of the

Installation

5

http://www.apple.com/macosx/features/java/
http://www.oxygenxml.com/InstData/Eclipse/com.oxygenxml.editor_7.2.0.zip
http://www.oxygenxml.com/InstData/Eclipse/com.oxygenxml.editor_7.2.0.zip


<oXygen/> wizards to create an XML project or document, when you open or create a document associ-
ated with <oXygen/> or when accessing the <oXygen/> Preferences.

Obtaining and installing an <oXygen/> license
<oXygen/> is not free software and requires a license in order to enable the application.

For demonstration and evaluation purposes a time limited license is available upon request from the
<oXygen/> Web Site [http://www.oxygenxml.com/register.html]. This license is supplied at no cost for
a period of 30 days from date of issue. During this period <oXygen/> is fully functional enabling you to
test all aspects of the application. Thereafter, the application is disabled and a permanent license must be
purchased in order to use the application. For special circumstances, if a trial period of greater than 30
days is required, please contact <support@oxygenxml.com>. All licenses are obtained from
<oXygen/> Web Site [http://www.oxygenxml.com].

For definitions and legal details of the license types available for <oXygen/> you should consult the End
User License Agreement received with the license key and available also on the <oXygen/> website at
http://www.oxygenxml.com/eula.html

Note

Starting with version 7.1 <oXygen/> accepts a license key for a newer version in the li-
cense registration dialog, e.g. version 7.1 accepts a license key for version 8.0.

Once you have obtained a license the installation procedure is described below.

Named User license installation

1. Save a backup copy of the message containing the new license key.

2. Start the <oXygen/> application.

3. Copy to the clipboard the license text as explained in the message.

4. If there is a new install of the editor then it will display automatically the registration dialog when it
is started. In the case you already used the editor and obtained a new license, go to Window - Pref-
erences - oXygen and press the Register button to make the registration dialog appear.

Figure 2.1. Registration Dialog

Installation

6

http://www.oxygenxml.com/register.html
http://www.oxygenxml.com/register.html
http://www.oxygenxml.com/register.html
http://www.oxygenxml.com
http://www.oxygenxml.com
http://www.oxygenxml.com/eula.html


5. Paste the license text in the registration dialog, and press Register.

You have the following alternative for the procedure of license install:

Procedure 2.3. Save the license in a text file

1. Save the license key in a file named licensekey.txt.

2. Copy the file in the 'lib' folder of the installed plugin. In that way the license will not be asked when
<oXygen/> will start.

3. Start Eclipse.

Installation

7



How floating (concurrent) licenses work
If all the floating licenses are used in the same local network the installation procedure of floating li-
censes is the same as for the Named User licenses. Within the same network the license management is
done by communication between the instances of <oXygen/> that are connected to the same local net-
work and that run at the same time. Any new instance of <oXygen/> that is started after the number of
running instances is equal with the number of purchased licenses will display a warning message and
will disable the open file action.

If the floating licenses are used on machines connected to different local networks a separate license
server must be started and the licenses deployed on it. Contact the <oXygen/> Support Team at
<support@oxygenxml.com> to request the license server kit.

Procedure 2.4. Floating license server setup

1. Contact the <oXygen/> Support Team at <support@oxygenxml.com> to request the license
server kit.

2. Unzip the zip archive containing the license server in a folder on your server machine. After that if
you want to install the license server as a Windows service go to the special section which de-
scribes that.

3. You have to configure the server to look into a license directory (by default is [Server License In-
stall Directory]/licenses) and use a certain TCP/IP port for communication (by default port 12346 is
used). The license directory will contain the license files to be managed. A license file must begin
with "license" and it has to have the extension "txt". It is the job of the license server to sum up the
total number of licenses contained in the license files from the licenses directory.

To change the default configuration of the license server the following parameters have to be used:

• -licenseDir followed by the path of the directory where the license files will be placed;

• -port followed by the port number used to communicate with <oXygen/> instances.

After the floating license server is set up the <oXygen/> application can be started and configured to re-
quest a license from it:

Procedure 2.5. Request a floating license from the license server

1. Start <oXygen/>.

2. Click Help -> Register.... The license dialog is displayed.

3. Check the Use a license server checkbox.

4. Fill-in the Host text field with the host name or IP address of the license server.

5. Fill-in the Port text field with the port number used for communicating with the license server. De-
fault is 12346.

Installation

8



6. Click the Register button. If the maximum number of available licenses was not exceeded a license
key is received from the floating license server and registered in <oXygen/>. If the maximum num-
ber of licenses was exceeded a warning dialog will pop up letting the user know about the problem.

Figure 2.2. Floating license number exceeded

The error message contains information about the users who requested and successfully received
the floating licenses.

How to install the <oXygen/> license server as a Windows service

In order to install the <oXygen/> license server as a Windows service run the following command from
the command line in the install folder of the license server:

installWindowsService.bat

After installing the server as a Windows service, use the following two commands to start and stop the
license server:

startWindowsService.bat

stopWindowsService.bat

Uninstallation of the Windows service requires the following command:

uninstallWindowsService.bat

The installService.bat script installs the <oXygen/> license server as a Windows service with the name
"oXygenLicenseServer" and accepts two parameters: the path of the folder containing the floating li-
cense key files and the local port number on which the server accepts connections from instances of the
<oXygen/> XML Editor. The parameters are optional. The default values are:

licenses for the license file folder

12555 for the local port number

Installation

9



The JAVA_HOME variable must point to the home folder of a Java runtime environment installed on
your Windows system.

The startService.bat script starts the Windows service so that the license server can accept connections
from <oXygen/> clients.

The stopService.bat script stops the Windows service. The license server is shut down and it cannot ac-
cept connections from <oXygen/> clients.

The uninstallService.bat script uninstalls the Windows service created by the installService.bat script.

The license server creates two log files in the directory where the license server is installed:

outLicenseServer.log the standard output stream of the server

errLicenseServer.log the standard error stream of the server

The license server should be installed in a folder which does not contain blank spaces in the path name.
Otherwise the install script fails.

How to release a floating license

To release a floating license key so that it can be registered for other user or for the cases when you do
not have Internet access (and you own also an individual license to which you want to switch from the
floating license), you do not have to disable or to uninstall the <oXygen/> plugin. All you have to do is
to go to the main <oXygen/> preferences panel, press the Register button, uncheck the Use a license
server checkbox in the license registration dialog, paste the individual license key and press OK in the
dialog. If you only want to stop using the <oXygen/> plugin just uncheck the checkbox and press the
OK dialog. This will release the floating license and leave the plugin in the unregistered state.

Upgrading <oXygen/>
From time to time, upgrade and patch versions of <oXygen/> are released to provide enhancements that
rectify problems, improve functionality and the general efficiency of the application.

This section explains the procedure for upgrading <oXygen/> while preserving any personal configura-
tion settings and customizations.

Procedure 2.6. Upgrade Procedure

1. Uninstall the <oXygen/> plugin (see Uninstall procedure).

2. Follow the Installation instructions.

3. Restart the Eclipse platform.

4. Start the <oXygen/> plugin to ensure that the application can start and that your license is recog-
nized by the upgrade installation.

5. If you are upgrading to a major version, for example from 5.1 to 6.0, then you will need to enter the
new license text into the registration dialog that is shown when the application starts.

6. Select Window → Preferences -> Plug-In Development -> Target Platform and next to the

Installation

10



com.oxygenxml.editor list entry you should see the version number of the newest installed plugin. If
the previous version was 6.2.7, the list entry should now contain 7.0.0.

Uninstalling the <oXygen/> plugin
Warning

The following procedure will remove the <oXygen/> plugin from your system. It will not
remove the Eclipse platform. If you wish to uninstall Eclipse please see its uninstall in-
structions.

Procedure 2.7. Uninstall Procedure

1. Choose the menu option: Help / Software Update / Manage Configuration and from the list of
products select <oXygen/> XML Editor and XSLT Debugger.

2. Select Disable

3. Accept the restart of the Eclipse IDE.

4. Again choose the menu option: Help / Software Update / Manage Configuration and from the list of
products select <oXygen/> XML Editor and XSLT Debugger.

5. Enable Show Disabled Features from the dialog toolbar.

6. From the right section of the displayed window choose Uninstall.

7. After the uninstall procedure is complete accept the Eclipse restart.

8. If you wish to completely remove the application directory and any work saved in it, you will have
to delete this directory manually. To remove the application configuration and any personal cus-
tomizations delete the Application Data\com.oxygenxml directory on Windows /
.com.oxygenxml on Linux from the user home directory.

Performance problems
Large documents

If <oXygen/> is used on large documents (more than 10 MB) and you see that performance slows down
considerably after some time then a possible cause is that it needs more memory in order to run prop-
erly. You can increase the maximum amount of memory available to <oXygen/> plugin by specifying
the parameters -vmargs -Xmx in the command used to launch the Eclipse platform.

Warning

The maximum amount of memory should not be equal to the physical amount of memory
available on the machine because in that case the operating system and other applications
will have no memory available.

Installation

11



Note

The amount of memory allocated for the FOP operations is controlled by a different setting
available in <oXygen/> Preferences: Memory available to the built-in FOP.

Example 2.1. Example of Eclipse start command

C:\eclipse\eclipse.exe -vmargs -Xmx256m

Modifying the value from 256 to 512 changes the memory available from 256 to 512.

Installation

12



Chapter 3. Getting started
Supported types of documents

The <oXygen/> XML Editor provides a rich set of features for working with:

• XML documents and applications

• XSL stylesheets - transformations and debugging

• Schema languages: XML Schema, Relax NG (full and compact syntax), NRL, Schematron, DTD

• Querying documents using XPath and XQuery

• Analyzing, composing and testing WSDL SOAP messages

Getting help
Online help is available at any time while working in <oXygen/> by going to Help → Help Contents →
oXygen User Manual for Eclipse

Perspectives
The <oXygen/> interface uses standard interface conventions and components to provide a familiar and
intuitive editing environment across all operating systems.

In <oXygen/> you can work with documents in one of the perspectives:

Editor perspective Editing of documents is supported by specialized and synchron-
ized editors and views.

XSLT Debugger perspective XSLT stylesheets can be debugged by tracing their execution step
by step.

XQuery Debugger perspective XQuery transforms can be debugged by tracing their execution
step by step.

<oXygen/> XML perspective
The <oXygen/> XML perspective is used for editing the content of your documents. The space is organ-
ized in:

As majority of the work process centers around the Editor panel, other panels can be hidden from view
using the expand and collapse controls located on the divider bars.

This perspective organizes the workspace in the following panels:

Figure 3.1. <oXygen/> XML perspective

13



The <oXygen/> custom menu When the current editor window contains a document associated
with <oXygen/> a custom menu is added to the Eclipse menu bar
named after the document type: XML, XSL, XSD, RNG, RNC,
Schematron, DTD, FO, WSDL, XQuery, CSS.

The <oXygen/> toolbar buttons The toolbar buttons added by the <oXygen/> plugin provide easy
access to common and frequently used functions. Each icon is a
button that acts as a shortcut to a related function.

The editor pane The editor pane is where you edit your documents opened or cre-
ated by the <oXygen/> Eclipse plugin. You know the document is
associated with <oXygen/> from the special icon displayed in the
editor's title bar which has the same graphic pattern painted with
different colors for different types of documents.

The Outline view The outline view has the following functions: XML document
overview, modification follow-up, document structure change,
document tag selection.

Figure 3.2. The Outline view

Getting started

14



The <oXygen/> Text view The <oXygen/> Text view is automatically showed in the views
pane of the Eclipse window to display text output from XSLT
transformations, FO processor's info, warning and error messages.
It contains a tab for each file with text results displayed in the
view.

Figure 3.3. The Text view

The <oXygen/> Browser view The <oXygen/> Browser view is automatically showed in the
views pane of the Eclipse window to display HTML output from
XSLT transformations. It contains a tab for each file with HTML
results displayed in the view.

Figure 3.4. The Browser view

Getting started

15



The <oXygen/> XPath view The <oXygen/> XPath view is automatically showed in the views
pane of the Eclipse window to display XPath results.

Figure 3.5. The XPath view

Supported editor types

The <oXygen/> Eclipse plugin provides special Eclipse editors identified by the following icons:

• - The icon for XML documents

• - The icon for XSL stylesheets

• - The icon for XML Schema

• - The icon for Document Type Definition schemas

• - The icon for RELAX NG full syntax schemas

• - The icon for RELAX NG compact syntax schemas

• - The icon for Namespace Routing Language schemas

• - The icon for XSL:FO documents

• - The icon for XQuery documents

Getting started

16



• - The icon for WSDL documents

• - The icon for Schematron documents

• - The icon for JS documents

• - The icon for Python documents

• - The icon for CSS documents

<oXygen/> XSLT Debugger Perspective
The XSLT Debugger perspective is used for detecting problems in an XSLT transformation process by
executing the process step by step in a controlled environment and inspecting the information provided
in different special views. The workspace is organized in:

Figure 3.6. <oXygen/> XSLT Debugger perspective

• Source document view - Displays and allows editing of data or document oriented XML files

Getting started

17



(documents).

• Stylesheet document view - Displays and allows editing of XSL files(stylesheets).

• Output document view - Displays the transformed output that results from the input of a selected doc-
ument (XML) and selected stylesheet (XSL) to the transformer. The result of transformation is dy-
namically written as the transformation is processed. There are three types of views for the output: a
text view (with XML syntax highlight), an XHTML view and one text view for each
xsl:result-document element used in the stylesheet (if it is a XSLT 2.0 stylesheet).

• Control toolbar - Contains all actions needed in order to configure and control the debug process.

• Information views - Distributed in two panes that are used to display various types of information that
can be used to understand the transformation process. For each information type there is a correspond-
ing tab. While running a transformation, relevant events are displayed in the various information
views. This enables the developer to obtain a clear view of the transformation progress.

<oXygen/> XQuery Debugger Perspective
The XQuery Debugger perspective is similar to the XSLT Debugger perspective. It is used for detecting
problems in an XQuery transformation process by executing the process step by step in a controlled en-
vironment and inspecting the information provided in different special views. The workspace is organ-
ized in:

Figure 3.7. <oXygen/> XQuery Debugger perspective

Getting started

18



• Source document view - Displays and allows editing of data or document oriented XML files
(documents).

• XQuery document view - Displays and allows editing of XQuery files.

• Output document view - Displays the transformed output that results from the input of a selected doc-
ument (XML) and selected XQuery document to the XQuery transformer. The result of transforma-
tion is dynamically written as the transformation is processed. There are two types of views for the
output: a text view (with XML syntax highlight) and an XHTML view.

• Control toolbar - Contains all actions needed in order to configure and control the debug process.

• Information views - Distributed in two panes that are used to display various types of information that
can be used to understand the transformation process. For each information type there is a correspond-
ing tab. While running a transformation, relevant events are displayed in the various information
views. This enables the developer to obtain a clear view of the transformation progress.

Getting started

19



Chapter 4. Editing documents
Working with Unicode

Unicode provides a unique number for every character, no matter what the platform, no matter what the
program, no matter what the language. Unicode is an internationally recognized standard, adopted by in-
dustry leaders. The Unicode is required by modern standards such as XML, Java, ECMAScript
(JavaScript), LDAP, CORBA 3.0, WML, etc., and is the official way to implement ISO/IEC 10646.

It is supported in many operating systems, all modern browsers, and many other products. The emer-
gence of the Unicode Standard, and the availability of tools supporting it, are among the most significant
recent global software technology trends. Incorporating Unicode into client-server or multi-tiered applic-
ations and websites offers significant cost savings over the use of legacy character sets.

As a modern XML Editor, <oXygen/> provides support for the Unicode standard enabling your XML
application to be targeted across multiple platforms, languages and countries without re-engineering. In-
ternally, the <oXygen/> XML Editor uses 16bit characters covering the Unicode Character set.

Opening and saving Unicode documents
On loading documents of the type XML, XSL, XSD and DTD, <oXygen/> receives the encoding of the
document from the Eclipse platform. This is then used to instruct the Java Encoder to load support for
and save using the code chart specified.

While in most cases you will use UTF-8, simply changing the encoding name will cause the file to be
saved using the new encoding. The appendix Unicode Character Encoding provides a matrix that
matches common names with Java Names. It also explains what you should type in the XML prolog to
cause the document to be saved as the required encoding.

To edit document written in Japanese or Chinese, you will need to change the font to one that supports
the specific characters (a Unicode font). For the Windows platform, use of Arial Unicode MS or MS
Gothic is recommended. Do not expect Wordpad or Notepad to handle these encodings. Use Explorer or
Word to eventually examine XML documents.

If an XML document which specifies the UTF-16 encoding in the prolog using the attribute encod-
ing="UTF-16" is edited in <oXygen/> and saved on disk the byte order mark (BOM) which always be-
gins such an XML document is created by the save operation according with the byte order accepted by
the CPU of that computer. That means that a UTF-16 document created on a Windows + Intel computer,
where the byte order mark is UnicodeLittle and loaded and saved in <oXygen/> running on a Mac OS
computer, where the byte order mark is UnicodeBig, is saved with the UnicodeBig encoding.

Note

The naming convention used under Java does not always correspond to the common names
used by the Unicode standard. For instance, while in XML you will use encod-
ing="UTF-8", in Java the same encoding has the name "UTF8".

Opening and closing documents
As with most editing applications, <oXygen/> lets you open existing documents, save your changes and
close them as required.

20



Creating new documents

<oXygen/> plugin wizards

The <oXygen/> plugin installs a series of Eclipse wizards for easy creation of new documents. Using
these wizards you let <oXygen/> fill in details like the system ID or schema location of a new XML
document, the minimal markup of a Docbook article or the namespace declarations of a Relax NG
schema.

Procedure 4.1. Creating new documents

1. Select File → New → -> Other (Ctrl+N) or press the New toolbar button. The New wizard is

displayed which contains the supported Document Types: XML, XSL, XML Schema, Document
Type Definition, Relax NG Schema, XQuery, Web Services Definition Language, Schematron
Schema, CSS File .

Figure 4.1. The New wizard

Editing documents

21



2. Select a document type, then click Next. For example if XML was selected the "Create an XML
Document" wizard is started.

3. Type a name for the new document and press Next.

4. The Create an XML Document dialog enables definition of a XML Document Prolog using the sys-
tem identifier of a XML Schema, DTD, Relax NG (full or compact syntax) schema or NRL
(Namespace Routing Language) schema. As not all XML documents are required to have a Prolog,
you may choose to skip this step by clicking OK . If the prolog is required complete the fields as
the following.

Figure 4.2. The Create an XML Document - XML Schema Tab

Editing documents

22



Complete the dialog as follows:

Use a DTD, XML Schema, Relax
NG or NRL schema

When checked enables selection between DTD, XML
Schema, Relax NG schema or NRL schema.

URL Specifies the location of an XML Schema Document (XSD).

Document Root Populated from the elements defined in the specified XSD,
enables selection of the element to be used as document root.

Namespace Specifies the document namespace.

Prefix Specifies the prefix for the namespace of the document root.

Figure 4.3. The Create an XML Document - DTD Tab

Editing documents

23



Complete the dialog as follows:

Use a DTD, XML Schema, Relax
NG or NRL schema

When checked enables selection between DTD, XML
Schema, Relax NG schema or NRL schema.

System ID Specifies the location of a Document Type Definition
(DTD).

Document Root Populated from the elements defined in the specified DTD,
enables selection of the element to be used as document root.

Public ID Specifies the PUBLIC identifier declared in the Prolog.

Figure 4.4. The Create an XML Document - Relax NG Tab

Editing documents

24



Complete the dialog as follows:

Use a DTD, XML Schema, Relax
NG or NRL schema

When checked enables selection between DTD, XML
Schema, Relax NG schema or NRL schema.

URL Specifies the location of a Relax NG schema in XML or
compact syntax (RNG/RNC).

XML syntax When checked the specified URL refers to a Relax NG
schema in XML syntax. It will be checked automatically if
the user selects a document with the .rng extension.

Compact syntax When checked the specified URL refers to a Relax NG
schema in compact syntax. It will be checked automatically
if the user selects a document with the .rnc extension.

Document Root Populated from the elements defined in the specified RNG or
RNC document, enables selection of the element to be used
as document root.

Editing documents

25



Figure 4.5. The Create an XML Document - NRL Tab

Complete the dialog as follows:

Use a DTD, XML Schema, Relax
NG or NRL schema

When checked enables selection between DTD, XML
Schema, Relax NG schema or NRL schema.

URL Specifies the location of a NRL schema (NRL).

Creating Documents based on Templates

Templates are documents containing a predefined structure. They provide starting points on which one
can rapidly build new documents that repeat the same basic characteristics. <oXygen/> installs a rich set
of templates for a number of XML applications. You may also create your own templates and share
them with other users.

The New from Templates wizard enables you to select predefined templates or templates that have
already been created in previous sessions or by other users. Open a template using the following options:

Figure 4.6. The New from Templates wizard

Editing documents

26



Open a template using the following options:

Standard Populates the Templates list to show templates supplied with the <oXygen/> in-
stallation package.

User defined Populates the Templates list to show previous saved personal templates.

From URL Enables definition of a URL location containing Templates.

Templates List Displays the available templates for Standard, From File and From URL options.

Procedure 4.2. Creating Documents based on Standard Templates

Editing documents

27



1. Select File → New → New from Templates The New from templates wizard is displayed.

Figure 4.7. The Templates dialog

2. Type a name for the new document and press Next.

3. Select the Standard option from the Load Templates Group. The Templates list displays standard
<oXygen/> templates.

4. Scroll the Templates list and select the required Template Type.

Editing documents

28



5. Click Finish. A new document is opened that already contains structure and content provided in the
template starting point.

Procedure 4.3. Creating Documents based on Personal Template Files

1. Select File → New → New from Templates The New from templates wizard is displayed.

Figure 4.8. The Templates dialog

2. Type a name for the new document and press Next.

3. Select the User defined option from the Load Templates Group. The Templates list displays person
templates.

4. Scroll the Templates list and select the required Template Type.

5. Click Finish. A new document is opened that already contains structure and content provided in the
template starting point.

Procedure 4.4. Creating Documents based on URL Template Files

1. Select File → New → New from Templates The New from templates wizard is displayed.

Editing documents

29



Figure 4.9. The Templates dialog

2. Type a name for the new document and press Next.

3. Select the From URL option from the Load Templates Group. The From URL field is enabled.

4. Enter the URL location of the templates, then click Load. The list of templates is retrieved from the
URL and displayed in the Templates list.

5. Scroll the Templates list and select the required Template Type.

6. Click Finish. A new document is opened that already contains structure and content provided in the
template starting point.

Editing documents

30



Saving documents
The edited document can be saved with one of the actions:

• File → Save (Ctrl+S) to save the current document.

• File → Save As: Displays the Save As dialog, used to name and save an open document to a file; or
save an existing file with a new name.

• File → Save All: Saves all open documents. If any document does not have a file, displays the Save
As dialog.

Closing documents
To close documents use one of the following methods:

• File → Close (Ctrl+F4) : Closes only the selected tab. All other tab instances remain.

• File → Close All (Ctrl+Shift+F4): Closes all opened documents. If a document is modified or has no
file, a prompt to save, not to save, or cancel the save operation is displayed.

• Close - accessed by right-clicking on an editor tab: Closes the selected editor.

• Close other files - accessed by right-clicking on an editor tab: Closes the other files except the selec-
ted tab.

• Close all - accessed by right-clicking on an editor tab: Closes all open editors within the panel.

Creating and sharing new document templates

Creating a new document template

<oXygen/> enables user defined templates to be created. Templates are created by adding an existing
document to the Template library.

Procedure 4.5. Creating New Templates

1. Open the document that will be used to create the Template.

2. Modify the structure and content as required.

3. XML → Add to templates (Ctrl+Shift+A) or press the toolbar button Add to templates to

display the Add templates dialog used to define the name by which the current document content
will be recognized in the New from templates option.

4. Enter the name by which the template will be known. Click OK the document is added to the list of
Personal Templates.

5. Test the template using the From File option.

Editing documents

31



Sharing document templates

<oXygen/> stores Personal Templates in an XML file called Application
Data\com.oxygenxml\templates.xml on Windows /
.com.oxygenxml\templates.xml on Linux, located in the Home folder of the <oXygen/> user.
By copying this file to a Web Server folder and making it accessible via HTTP, other <oXygen/> users
can use the From URL option to access the templates.

Procedure 4.6. Sharing Templates

1. Create one or more Personal Templates.

2. Copy [user home dir]\com.oxygenxml\templates.xml into an accessible directory
on your web server.

3. Test the template using the From URL option.

Viewing file properties
In the Properties view you can quickly access information about the current edited document like the
character encoding, full path on the file system, schema used for content completion and document val-
idation, associated transformation scenario, document's total number of characters, line width, if indent
with tabs is enabled and the indent size. The view can be accessed by going to Window+Show View →
Other ...+oXygen+Editor properties

Figure 4.10. The Properties view

Editing XML documents
Associate a schema to a document

Setting a schema for the Content Completion

In case you are editing document fragments, for instance the chapters from a book each one in a separate
file, you can activate the Content Completion for these fragments in two ways:

Editing documents

32



Setting a default schema

The table available at Options → Preferences -> Content Completion/Default contains a set of rules for
associating a schema with the current document when no schema is specified within the document. The
schema is one of the types: XML Schema, XML Schema with embedded Schematron rules, Relax NG,
Relax NG with embedded Schematron rules, Schematron, DTD, NRL.

The rules are applied in the order they appear in the table and take into account the local name of the
root element, the default namespace and the file name of the document.

Important

The editor is creating the Content Completion lists by analysing the specified schema and
the current context (the position in the editor). If you change the schema you can observe
that the list of tags to be inserted is changing.

Figure 4.11. Content completion driven by a Docbook DTD

Adding a Processing Instruction

The same effect is obtained by configuring a processing instruction that specifies the schema to be used.
The advantage of this method is that you can configure the Content Completion for each file. The pro-
cessing instruction must be added at the beginning of the document, just after the XML prologue:

<?oxygen RNGSchema="file:/C:/work/relaxng/personal.rng" type="xml"?>

Select menu Document+XML Document → Associate schema... or click the toolbar button Asso-

ciate schema to open a dialog for selecting a schema used for Content Completion and document valida-
tion. The schema is one of the types: XML Schema, DTD, Relax NG, NRL, Schematron.

This is a dialog helping the user to easily associate a schema file with the edited document . Enables
definition of a XML Document Prolog using the system identifier of a XML Schema, DTD, Relax NG
(full or compact syntax) schema, NRL (Namespace Routing Language) schema or Schematron schema.

Figure 4.12. Associate schema dialog

Editing documents

33



When associating a XML Schema to the edited document if the root element of the document defines a
default namespace URI with a "xmlns" attribute the "Associate schema" action adds a
xsi:schemaLocation attribute. Otherwise it adds a xsi:noNamespaceSchemaLocation attribute.

The URL combo box contains a predefined set of schemas that are used more often and it also keeps a
history of the last used schemas.

<oXygen/> logs the URL of the detected schema in the Status view.

The oxygen processing instruction has the following attributes:

RNGSchema specifies the path to the Relax NG schema associated with the current document

type specifies the type of Relax NG schema, is used together with the RNGSchema attribute
and can have the value "xml" or "compact".

NRLSchema specifies the path to the NRL schema associated with the current document

SCHSchema specifies the path to the SCH schema associated with the current document

Learning document structure

When working with documents that do not specify a schema, or for which the schema is not known or
does not exist, <oXygen/> is able to learn and translate it to a DTD, which in turn can be saved to a file
in order to provide a DTD for Content Completion and document validation. In addition to being useful
for quick creation of a DTD that will be capable of providing an initialization source for the Content
Completion assistant. This feature can also be used to produce DTDs for documents containing personal
or custom element types.

When it is opened a document that does not specify a schema <oXygen/> automatically learns the docu-
ment structure and uses it for Content Completion. To disable this feature uncheck the checkbox Learn
on open document from Preferences.

Procedure 4.7. To create a DTD:

1. Open the structured document from which a DTD will be created.

2. Select menu XML → Learn Structure (Ctrl+Shift+L) or click the toolbar button Learn struc-

Editing documents

34



ture to read the mark-up structure of the current document so that it can be saved as a DTD using
the Save Structure option. <oXygen/> will learn the document structure, when finished displaying
words Learn Complete in the Message Pane of the Editor Status bar.

3. Select menu Document+XML Document → Save Structure (Ctrl+Shift+S) or click the toolbar
button Save structure to display the Save Structure dialog, used to name and create DTD doc-

uments learnt by the Learn Structure function.

Note

The resulting DTD is only valid for documents containing the elements and structures
defined by the document used as the input for creating the DTD. If new element types or
structures are defined in a document, they must be added to the DTD in order for success-
ful validation.

Streamline with Content Completion
<oXygen/>'s intelligent Content Completion feature is a content assistant that enables rapid, in-line
identification and insertion of structured language elements, attributes and in some cases their parameter
options.

Figure 4.13. Content Completion Assistant

If the Content Completion assistant is enabled in user preferences (the option Use Content Completion)
it is automatically displayed whenever the < character is entered into a document or by pressing
CTRL+Space on a partial element or attribute name. Moving the focus to highlight an element and
pressing the Enter key or the Tab key, inserts both the start and end tags of the highlighted element into
the document.

The DTD, XML Schema, Relax NG schema or NRL schema used to populate the Content Completion
assistant is specified in the following methods, in order of precedence:

• The schema specified explicitly in the document. In this case <oXygen/> reads the beginning of the
document and resolves the location of the DTD, XML Schema, Relax NG schema or NRL schema.

• The default schema rule declared in the Default Schema Associations options which matches the ed-
ited document.

Editing documents

35



• For XSLT stylesheets the schema specified in the <oXygen/> Content Completion options.
<oXygen/> will read the Content Completion settings when the prolog fails to provide or resolve the
location of a DTD, XML Schema or Relax NG schema.

After inserting, the cursor is positioned directly before the > character of the start tag, if the element has
attributes, in order to enable rapid insertion of any attributed supported by the element, or after the >
char of the start tag if the element has no attributes. Pressing the space bar, directly after element inser-
tion will again display the assistant. In this instance the attributes supported by that element will be dis-
played. If an attribute supports a fix set of parameters, the assistant will display the list of valid paramet-
er. If the parameter setting is user defined and therefore variable, the assistant will be closed to enable
manual insertion. The values of the attributes can be learned from the same elements in the current docu-
ment.

If you press CTRL + Enter instead of Enter or Tab after inserting the start and end tags in the docu-
ment <oXygen/> will insert an empty line between the start and end tag and the cursor will be posi-
tioned between on the empty line on an indented position with regard to the start tag.

If the feature Add Element Content of Content Completion is enabled all the elements that the new ele-
ment must contain, as specified in the DTD or XML Schema, are inserted automatically in the docu-
ment. The Content Completion assistant can also add optional content and first choice particle, as spe-
cified in the DTD or XML Schema, for the element if the two options are enabled.

The content assistant can be started at any time by pressing CTRL+Space The effect is that the context-
sensitive list of proposals will be shown in the current position of the caret in the edited document if ele-
ment, attribute or attribute value insertion makes sense. Such positions are: anywhere within a tag name
or at the beginning of a tag name in an XML document, XML Schema, DTD or Relax NG (full or com-
pact syntax) schema, anywhere within an attribute name or at the beginning of an attribute name in any
XML document with an associated schema, and within attribute values or at the beginning of attribute
values in XML documents where lists of possible values have been defined for that element in the
schema associated with the document.

The content of the Content Completion assistant is dependent on the element structure specified in the
DTD, XML Schema, Relax NG (full or compact syntax) schema or NRL schema associated to the edited
document.

The number and type of elements displayed by the assistant is dependent on the current position of the
cursor in the structured document . The child elements displayed within a given element are defined by
the structure of the specified DTD, XML Schema, Relax NG (full or compact syntax) schema or NRL
schema. All elements that can't be child elements of the current element according to the specified
schema are not displayed.

Inside Relax NG documents the Content Completion assistant is able to present element values if such
values are specified in the Relax NG schema. Also pattern names defined in the Relax NG schema are
presented as possible values for pattern references. For example if the schema defines an enumVal-
uesElem element

<element name="enumValuesElem">
<choice>

<value>value1</value>
<value>value2</value>
<value>value3</value>

</choice>
</element>

in documents based on the schema the Content Completion assistant offers the list of values:

Editing documents

36



Figure 4.14. Content Completion assistant - element values in Relax NG
documents

If only one element name must be displayed by the content assistant then the assistant is not displayed
any more but this only option is automatically inserted in the document at the current cursor position.

If the schema for the edited document defines attributes of type ID and IDREF the content assistant will
display for IDREF attributes a list of all the ID values already present in the document for an easy inser-
tion of a valid ID value at the cursor position in the document. This is available for documents that use
DTD, XML Schema and Relax NG schema.

Also values of all the xml:id attributes are treated as ID attributes and collected and displayed by the
content completion assistant as possible values for anyURI attributes defined in the schema of the edited
document. This works only for XML Schema and Relax NG schemas.

For documents that use an XML Schema or Relax NG schema the content assistant offers proposals for
attributes and elements values that have as type an enumeration of tokens. Also if a default value is
defined in the schema for an attribute or element that value is offered in the content completion window.

If the edited document is not associated with a schema explicitly using the usual mechanisms for associ-
ating a DTD or XML Schema with a document or using a processing instruction introduced by the Asso-
ciate schema action the content assistant will extract the elements presented in the pop-up window from
the default schema.

If the schema for the document is of type XML Schema, Relax NG (full syntax) or DTD and it contains
element, attributes or attributes values annotations, these will be presented when the content completion
window is displayed, if the option Show annotations is enabled. Also the annotation is presented in a
small tooltip window displayed automatically when the mouse hovers over an element or attribute an-
notated in the associated schema of the edited document.

In an XML Schema annotations are put in an <xs:annotation> element:

<xs:annotation>
<xs:documentation>

Description of the element.
</xs:documentation>

</xs:annotation>

If the current element / attribute in the edited document does not have an annotation in the schema and
that schema is of the type XML Schema <oXygen/> seeks an annotation in the type definition of the ele-
ment / attribute or, if no annotation is found there, in the parent type definition of that definition, etc.

In a Relax NG schema any element outside the Relax NG namespace
(http://relaxng.org/ns/structure/1.0) is handled as annotation and the text content is displayed in the an-
notation window together with the content completion window:

Editing documents

37



Figure 4.15. Schema annotations displayed at Content Completion

For DTD <oXygen/> defines a custom mechanism for annotation using comments enabled from the op-
tion Use DTD comments as annotations . The text of a comment with the following format will be
presented on content completion:

<!--doc:Description of the element. -->

The operation of the Content Completion assistant is configured by the options available in the group
called Content Completion Features.

Code templates

You can define short names for predefined blocks of code called code templates. The short names are
displayed in the content completion window if the word at cursor position is a prefix of such a short
name. <oXygen/> comes with a lot of predefined code templates but you can define your own code tem-
plates for any type of editor. For more details see the example for XSLT editor code templates.

Content Completion helper panels

Information about the current element being edited are also available in the Model panel and Attributes
panel, located on the left-hand side of the main window. The Model panel and the Attributes panel com-
bined with the powerful Outliner provide spacial and insight information on the edited document.

The Model panel

The Model panel presents the structure of the current edited tag and tag documentation defined as an-
notation in the schema of the current document. Open the Model panel from Window → Show View →
Other+oXygen+Model view

Figure 4.16. The Model View

Editing documents

38



The Element Structure panel

The element structure panel shows the structure of the current edited or selected tag in a Tree format.

The information includes the name, model and attributes the currently edited tag may have. The allowed
attributes are shown along with any restrictions they might possess.

Figure 4.17. The Element Structure panel

Editing documents

39



The Annotation panel

The Annotation panel shows the annotations that are present in the used schema for the currently edited
or selected tag.

This information can be very useful to persons learning XML because it has small available definitions
for each used tag.

Figure 4.18. The Annotation panel

The Attributes panel

The Attributes panel presents all the possible attributes of the current element and allows to insert attrib-
utes in the current element or change the value of the attributes already used in the element. The attrib-
utes already present in the document are painted with a bold font. Clicking on the Value column of a ta-
ble row will start editing the value of the attribute from the selected row. If the possible values of the at-
tribute are specified as list in the schema associated with the edited document the Value column works

Editing documents

40



as a combo box where you can select one of the possible values to be inserted in the document. The at-
tributes table is sortable, 3 sorting orders being available by clicking on the columns' names. Thus the ta-
ble's contents can be sorted in ascending order, in descending order or in a custom order, where the used
attributes are placed at the beginning of the table as they appear in the element followed by the rest of
the allowed elements as they are declared in the associated schema.

Figure 4.19. The Attributes panel

Debugging XML documents
The W3C XML specification states that a program should not continue to process an XML document if
it finds a validation error. The reason is that XML software should be easy to write, and that all XML
documents should be compatible. With HTML it was possible to create documents with lots of errors
(like when you forget an end tag). One of the main reasons that HTML browsers are so big and incom-
patible, is that they have their own ways to figure out what a document should look like when they en-
counter an HTML error. With XML this should not be possible.

However, when creating an XML document, errors are very easily introduced. When working with large
projects or many files, the probability that errors will occur is even greater. Determining that your
project is error free can be time consuming and even frustrating. For this reason <oXygen/> provides
functions that enable easy error identification and rapid error location.

Checking XML Form

XML with correct syntax is Well Formed XML.

A Well Formed XML document is a document that conforms to the XML syntax rules.

• All XML elements must have a closing tag.

• XML tags are case sensitive.

• All XML elements must be properly nested.

Editing documents

41



• All XML documents must have a root element.

• Attribute values must always be quoted.

• With XML, white space is preserved.

If you select menu Document+XML Document → Check document form (Ctrl+Shift+W) or click the
toolbar button Check document form <oXygen/> checks your current document for any deviation

from these rules. If any error is found the result is returned to the Message Panel. Each error is one re-
cord in the Result List and is accompanied by an error message. Clicking the record will open the docu-
ment containing the error and highlight the approximate location.

Example 4.1. Check XML Form Error Message

In our example we will use the case where an end tag is missing from a Docbook listitem element. In
this case running Check XML Form will return the following error.

F The element type "listitem" must be terminated by the matching
end-tag "</listitem>".

To resolve the error, click in the result list record which will locate and highlight the errors approximate
position. Review the "listitem" elements, identify which is missing an end tag and insert </listitem>.

Also the files contained in the current project and selected with the mouse in the Project view can be
checked for well-formedness with one action available on the popup menu of the Project view in the
Batch validation submenu: Check well form

Validating Documents

A Valid XML document is a Well Formed XML document, which also conforms to the rules of a
schema which defines the legal elements of an XML document. The schema type can be: XML Schema,
Relax NG (full or compact syntax), Schematron, Document Type Definition (DTD) or Namespace Rout-
ing Language (NRL).

The purpose of the schema is to define the legal building blocks of an XML document. It defines the
document structure with a list of legal elements.

The <oXygen/> Validate document function ensures that your document is compliant with the

rules defined by an associated DTD, XML Schema, Relax NG or Schematron schema. XML Schema or
Relax NG Schema can embed Schematron rules. For Schematron it is possible to select the validation
phase.

A line with a validation error or warning will be marked in the editor panel by underlining it with a red
color. Also a red sign will mark the position in the document of that line on the right side ruler of the ed-
itor panel. The same will happen for a validation warning, only the color will be yellow instead of red.

The ruler on the right of the document is designed to display the errors found during the validation pro-
cess and also to help the user to locate them more easily. The ruler contains the following areas:

Editing documents

42



• top area containing a success validation indicator that will turn green in case the validation succeeded
or red otherwise.

• middle area where the errors markers are depicted in red. The number of markers shown can be lim-
ited by modifying the setting Window → Preferences+oXygen/Editor / Document check-
ing+Maximum number of errors reported per document

Clicking on a marker will highlight the corresponding text area in the editor. The error message is dis-
played both in the tool tip and in the error area on the bottom of the editor panel.

If you don't change the active editor and you don't switch to other application the schema associated to
the current document is parsed and cached at the first validate action and is reused by the next Validate
document actions without reparsing it. This increases the speed of the validate action starting with the
second execution if the schema is large or is located on a remote server on the Web. To reset the cache
and reparse the schema you have to use the Reset cache and validate action.

Use one of the actions for validating the current document:

• Select menu XML → Validate document (Ctrl+Shift+V) or click the button Validate document

available in the Validate toolbar to return an error result-list in the Message panel. Mark-up of current
document is checked to conform with the specified DTD, XML Schema or Relax NG schema rules. It
caches the schema and the next execution of the action uses the cached schema.

• Select menu XML → Reset cache and validate (Ctrl+Shift+V) or click the button Reset cache

and validate available in the Validate toolbar to reset the cache with the schema and validate the docu-
ment. It returns an error result-list in the Message panel. Mark-up of current document is checked to
conform with the specified DTD, XML Schema or Relax NG schema rules.

• Select menu XML → External Validation (Ctrl+Shift+H) or click the button External valida-

tion available in the Validate toolbar to display the External Validation dialog, used to select the ex-
ternal schemas (XML Schema, DTD, Relax NG, NRL,Schematron schema) and to execute the Valid-
ation operation on the current document using the selected schemas. Returns an error result-list in the
Message panel. Mark-up of current document is checked to conform with the specified schemas rules.

Figure 4.20. The External validation dialog

• Select contextual menu of Navigator or Package Explorer view,Batch Validation → Validate to valid-

Editing documents

43



ate all selected files with their declared schemas.

• Select contextual menu of Navigator or Package Explorer view,Batch Validation → Validate With ...
to select a schema and validate all selected files with that schema.

• XML → Clear validation markers (Ctrl+Shift+K) or click the toolbar button Clear validation

markers to clear the error markers added to the Problems view at the last validation of the current ed-
ited document.

Also you can select several files in the views like Package Explorer, Navigator and validate them with
one click by selecting the action Validate selection or the action Validate selection with ... available
from the contextual menu of that view, the submenu Batch Validate.

If there are too many validation errors and the validation process is long you can limit the maximum
number of reported errors.

Validation of an XML document against an XML Schema containing a type definition with a minOccurs
or maxOccurs attribute having a value larger than 256 limits the value to 256 and issues a warning about
this restriction in the Message panel at the bottom of the <oXygen/> window. Otherwise for large values
of the minOccurs and maxOccurs attributes the validator fails with an OutOfMemory error which prac-
tically makes <oXygen/> unusable without a restart of the entire application.

Status messages from every validation action are logged into the Console view.

Validate as you type

<oXygen/> can be configured to mark validation errors in the edited document as you modify it using
the keyboard. If you enable the Validate as you type option any validation errors and warnings will be
highlighted automatically in the editor panel after the configured delay from the last key typed, with un-
derline markers in the editor panel and small rectangles on the right side ruler of the editor panel, in the
same way as for manual validation invoked by the user.

Figure 4.21. Automatic validation of the edited document

<oXygen/> logs status messages of the validation action into the Console view.

Editing documents

44



Example 4.2. Validate document error message

In our example we will use the case where a Docbook listitem element does not match the rules of the
docbookx.dtd. In this case running Validate document will return the following error.

E The content of element type "listitem" must
match"(calloutlist|glosslist|itemizedlist|orderedlist|segmentedlist|
simplelist|variablelist| caution|important|note|tip|warning|
literallayout|programlisting|programlistingco|screen|
screenco|screenshot|synopsis|cmdsynopsis|
funcsynopsis|classsynopsis|fieldsynopsis| constructorsynopsis|
destructorsynopsis|methodsynopsis|formalpara|para|simpara|
address|blockquote|graphic|graphicco|mediaobject|
mediaobjectco|informalequation| informalexample|
informalfigure|informaltable|equation|example|
figure|table|msgset|procedure|sidebar|qandaset|anchor|
bridgehead|remark|highlights|abstract|authorblurb|epigraph|
indexterm|beginpage)+".

As you can see, this error message is a little more difficult to understand, so understanding of the syntax
or processing rules for the Docbook XML DTD's "listitem" element is required. However, the error mes-
sage does give us a clue as to the source of the problem, but indicating that "The content of element type
"listitem" must match".

Luckily most standards based DTD's, XML Schema's and Relax NG schemas are supplied with refer-
ence documentation. This enables us to lookup the element and read about it. In this case we would want
to learn about the child elements of "listitem" and their nesting rules. Once we have correctly inserted
the required child element and nested it in accordance with the XML rules, the document will become
valid on the next validation test.

Custom validation of XML documents

If you need to validate the edited document with other validation engine than the built-in one you have
the possibility to configure external validators as custom validation engines in <oXygen/>. After such a
custom validator is properly configured in Preferences it can be applied on the current document with
just one click on the External Validation toolbar. The document is validated against the schema declared
in the document.

Figure 4.22. External validation toolbar

Editing documents

45



Some validators are configured by default:

LIBXML included in <oXygen/> (Windows edition), associated to XML
Editor, able to validate the edited document against XML
Schema, Relax NG schema full syntax, DTD or a custom schema
type.

Saxon SA not included in <oXygen/>, the jar file and license key file of Sax-
on 8 SA must be placed in the lib subdirectory of the installation
directory and the entry

<library name="lib/saxon8sa.jar"/>

must be copied to the <runtime> section of the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/plugi
n.xml file. After that Eclipse must be restarted with the -clean
parameter. It is associated to XML Editor and XSD Editor.

MSXML 4.0 included in <oXygen/> (Windows edition). It is associated to
XML Editor, XSD Editor and XSL Editor. It is able to validate
the edited document against XML Schema, DTD or a custom
schema type.

MSXML.NET included in <oXygen/> (Windows edition). It is associated to
XML Editor, XSD Editor and XSL Editor. It is able to validate
the edited document against XML Schema, DTD or a custom
schema type.

XSV not included in <oXygen/>. A Windows distribution of XSV can
be downloaded from:
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV210.EXE
[ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV210.EXE] A Linux distri-
bution can be downloaded from
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-2.10-1.noarch.rpm.
[ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-2.10-1.noarch.rpm] The
executable path is configured already in <oXygen/> for the in-
stallation directory [oXygen-install-dir]/xsv. If it is in-
stalled in a different directory the predefined executable path must
be corrected in Preferences. It is associated to XML Editor and
XSD Editor. It is able to validate the edited document against
XML Schema or a custom schema type.

SQC (Schema Quality Checker
from IBM)

not included in <oXygen/>. It can be downloaded from here [ht-
tp://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=g
rx,p=shecheck] (it comes as a .zip file, at the time of this writing
SQC2.2.1.zip is about 3 megabytes). The executable path and
working directory are configured already for the SQC installation
directory [oXygen-install-dir]/sqc. If it is installed in a
different directory the predefined executable path and working
directory must be corrected in Preferences. It is associated to XSD
Editor. It must be used with a Java 1.4 virtual machine because it
does not work with Java 1.5.

Document navigation
Navigating between XML elements located in various parts of the currently edited document is easy due

Editing documents

46

ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV210.EXE
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV210.EXE
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-2.10-1.noarch.rpm
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-2.10-1.noarch.rpm
http://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=grx,p=shecheck
http://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=grx,p=shecheck
http://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=grx,p=shecheck
http://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=grx,p=shecheck


to several powerful features.

Folding of the XML elements

XML documents are organized as a tree of elements. When working on a large document you can col-
lapse some elements leaving in the focus only the ones you need to edit. Expanding and collapsing
works on individual elements: expanding an element leaves the child elements unchanged.

Figure 4.23. Folding of the XML Elements

To toggle the folded state of an element click on the special mark displayed in the left part of the docu-
ment editor next to the start tag of that element or click on the action Toggle fold (Ctrl+Alt+Y)

available from the context menu

Other menu actions related to folding of XML elements are available from the context menu of the cur-
rent editor:

• Document+Folding+ → Close other folds (Ctrl+NumPad+/) Fold all the sections except the

current element.

• Document+Folding+ → Collapse child folds (Ctrl+NumPad+-): Fold the sections indented

Editing documents

47



with one level inside the current element.

• Document+Folding+ → Expand child folds (Ctrl+NumPad++): Unfold the sections indented

with one level inside the current element.

• Document+Folding+ → Expand all (Ctrl+NumPad+*): Unfold all the sections inside the cur-

rent element.

• Document+Folding+ → Toggle fold (Ctrl+Alt+Y): Toggles the state of the current fold.

You can use folding by clicking on the special marks displayed in the left part of the document editor.

Outliner view

The Outliner view has the following available functions:

• the section called “XML Document Overview”

• the section called “Modification Follow-up”

• the section called “Document Structure Change”

• the section called “Document Tag Selection”

Figure 4.24. The Outliner view

XML Document Overview

Editing documents

48



The Outliner displays a general tag overview of the current edited XML Document. It also shows the
correct hierarchical dependencies between the tag elements, making it easier for the user to be aware of
the document's structure and the way tags are nested.

The Expand all and Collapse all items of the popup menu available on the outliner tree enlarge or re-
duce the set of nodes of the edited document currently visible in the view. The tree expansion action is a
faster alternative to mouse clicks on the plus signs of the tree when one wants to access quickly a node
deeply nested in the hierarchy of document nodes. When a large number of nodes become expanded and
the document structure is not clear any more the collapsing action clears the view quickly by reducing
the depth of the expanded nodes to only one child of the currently selected node.

Modification Follow-up

When editing, the Outliner dynamically follows the modifications introduced by the user, showing in the
middle of the panel the node which is currently being modified .This gives the user better insight on loc-
ation where in the document one is positioned and how the structure of the document is affected by one's
modifications.

Document Structure Change

Entire XML elements can be moved or copied in the edited document using only the mouse in the Out-
liner view in drag-and-drop operations. If you drag an XML element in the Outliner view and drop it on
another one in the same panel then the dragged element will be moved after the drop target element. If
you hold the mouse pointer over the drop target for a short time before the drop then the drop element
will be expanded first and the dragged element will be moved inside the drop one after its opening tag. If
you hold down the CTRL key it will be performed a copy operation instead a move one.

The drag and drop action in the Outliner view can be disabled and reenabled from the Preferences dia-
log.

The popup menu of the Outline tree

Figure 4.25. Popup menu of the Outline tree

Editing documents

49



The Add Child, Insert - Before and Insert - After submenus of the outline tree popup menu allow to
quickly insert new tags in the document at the place of the element currectly selected in the Outline tree.
The Add Child submenu lists the names of all the elements which are allowed by the schema associated
with the current document as child of the current element. The effect is the same as typing the '<' charac-
ter and selecting an element name from the popup menu offered by the content completion assistant. The
Insert - Before and Insert - After submenus of the Outline tree popup menu list the elements which are
allowed by the schema associated with the current document as siblings of the current element inserted
immediately before respectively after the current element.

The Toggle comment item of the outline tree popup menu is the same item as in the editor popup menu
with the same name. It encloses the currently selected element of the outline tree in an XML comment,
if the element is not commented, or uncomments it if it is commented.

The Cut, Copy and Delete items of the popup menu execute the same actions as the Edit menu items
with the same name on the elements currently selected in the outline tree (Cut, Copy, Paste).

Document Tag Selection

The Outliner can also be used to search for a specific tag's location and contents in the edited document.
Intuitively, by selecting with the left mouse button the desired tag in the Outliner view, the document is
scrolled to the position of the selected tag. Moreover, the tag's contents are selected in the document,
making it easy to notice the part of the document contained by that specific tag and furthermore to easily
copy and paste the tag's contents in other parts of the document or in other documents.

Editing documents

50



Grouping documents in XML projects

Large Documents

Let's consider the case of documenting a large project. It is likely to be several people involved. The res-
ulting document can be few megabytes in size. How to deal with this amount of data in such a way the
work parallelism would not be affected ?

Fortunately, XML provides a solution for this. It can be created a master document, with references to
the other document parts, containing the document sections. The users can edit individually the sections,
then apply FOP or XSLT over the master and obtain the result files, let say PDF or HTML.

Two conditions must be fulfilled:

• The master should declare the DTD to be used and the external entities - the sections. A sample docu-
ment is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "../xml/docbookx.dtd" [
<!ENTITY testing SYSTEM "testing.xml" > ]
>
<book>
<chapter> ...

At a certain point in the master document there can be inserted the section "testing.xml" entity:

... &testing; ...

• The document containing the section must not define again the DTD.

<section> ... here comes the section content ... </section>

Note

The indicated DTD and the element names ( "section", "chapter" ) are used here only for
illustrating the inclusion mechanism. You can use any DTD and element names you
need.

When splitting a large document and including the separate parts in the master file using external entit-
ies, only the master file will contain the Document Type Definition (the DTD) or other type of schema.
The included sections can't define again the schema because the main document will not be valid. If you
want to validate the parts separately you have to use XInclude for assembling the parts together with the
master file.

Creating an included part

Open a new document of type XML, with no associated schema.

Make sure that in the Content Completion / Default preferences you have chosen the correct schema.
Now you can type in the edited document the root element of your section. For example, if you are using
docbook it can be "<chapter></chapter>" or "<section></section>". Now if you are moving the cursor
between the tags and press "<", you will see the list of element names that can be inserted.

Editing documents

51



Figure 4.26. Content Completion list over a document with no schema

Note

The validation will not work on a included file, as no DTD is set. The validation can be
done only from the master file. At this point you can only check the document to be well-
formed.

Creating a new project

Procedure 4.8. Create an <oXygen/> XML project

1. Select File → New → -> Other (Ctrl+N) or press the New toolbar button. The New wizard is dis-
played which contains the list entry XML Project.

Figure 4.27. The New wizard

Editing documents

52



2. Select XML Project in the list of document types and click the Next button.

Figure 4.28. The XML Project wizard - step 1

Editing documents

53



3. Type a name for the new project and click the Next button.

Figure 4.29. The XML Project wizard - step 2

Editing documents

54



4. Select other Eclipse projects that you want to reference in the new project and click the Finish but-
ton.

The files are organized in a XML project usually as a collection of folders. They are created and deleted
with the usual Eclipse actions.

The currently selected files associated to the <oXygen/> pluginin the Package Explorer view can be val-
idated against a schema of type Schematron, XML Schema, Relax NG, NRL, or a combination of the
later with Schematron with one of the actions Validate and Validate With ... available on the Batch Val-
idation submenu of the right-click menu of the Package Explorer view. This together with the logical
folder support of the project allows you to group your files and validate them very easily.

If the resources from a linked folder in the project have been changed outside the view you can refresh
the content of the folder by using the Refresh action from the contextual menu. The action is also per-
formed when selecting the linked resource and pressing F5 key

Including document parts with XInclude
XInclude is a standard for assembling XML instances into another XML document through inclusion. It
enables larger documents to be dynamically created from smaller XML documents without having to
physically duplicate the content of the smaller files in the main file. XInclude is targeted as the replace-
ment for External Entities. The advantage of using XInclude is that, unlike the entities method, each of
the assembled documents is permitted to contain a Document Type Declaration (DocType Decl.). This
means that each file is a valid XML instance and can be independently validated. It also means that the
main document to which smaller instances are included can be validated without having to remove or
comment the DocType Decl. as is the case with External Entities. This is makes XInclude a more con-
venient and effective method for managing XML instances that need to be stand-alone documents and
part of a much larger work.

Editing documents

55



The main application for XInclude is in the document orientated content frameworks such as manuals
and Web pages. Employing XInclude enables authors and content managers to manage content in a
modular fashion that is akin to Object Orientated methods used in languages such as Java, C++ or C#.

The advantages of modular documentation include: reusable content units, smaller file units that are
easier to edited, better version control and distributed authoring.

An example: create a chapter file and an article file in the samples folder of the <oXygen/> install
folder and include the chapter file in the article file using XInclude.

Chapter file introduction.xml:

<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/docbookx.dtd">
<chapter>

<title>Getting started</title>
<section>

<title>Section title</title>
<para>Para text</para>

</section>
</chapter>

Main article file:

<?xml version="1.0"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.docbook.org/xml/4.3/docbookx.dtd"
[ <!ENTITY % xinclude SYSTEM "../frameworks/docbook/dtd/xinclude.mod">
%xinclude;
]>
<article>

<title>Install guide</title>
<para>This is the install guide.</para>
<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

href="introduction.xml">
<xi:fallback>
<para>
<emphasis>FIXME: MISSING XINCLUDE CONTENT</emphasis>

</para>
</xi:fallback>

</xi:include>
</article>

In this example the following is of note:

• The DocType Decl. defines an entity that references a file containing the information to add the xi
namespace to certain elements defined by the Docbook DTD.

• The href attribute of the xi:include element specifies that the introduction.xml file will replace
the xi:include element when the document is parsed.

• If the introduction.xml file cannot be found the parse will use the value of the xi:fallback ele-
ment - a message to FIXME.

If you want to include only a fragment of other file in the master file the fragment must be contained in a

Editing documents

56



tag having an xml:id attribute and you must use an XPointer expression pointing to the xml:id value. For
example if the master file is:

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="test.rng" type="xml"?>
<test>

<xi:include href="a.xml" xpointer="a1"
xmlns:xi="http://www.w3.org/2001/XInclude"/>

</test>

and the a.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<test>

<a xml:id="a1">test</a>
</test>

after resolving the XPointer reference the document is:

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="test.rng" type="xml"?>
<test>

<a xml:id="a1" xml:base="a.xml">test</a>
</test>

The XInclude support in <oXygen/> is turned off by default. You can turn it on by going to the entry
Enable XInclude processing in the menu Window → Preferences+oXygen / XML / XML Parser When
enabled <oXygen/> will be able to validate and transform documents comprised of parts added using
XInclude.

Working with XML Catalogs
When Internet access is not available or the Internet connection is slow the OASIS XML catalogs [ht-
tp://www.oasis-open.org/committees/entity/spec.html] present in the list maintained in the XML Catalog
Preferences panel will be scanned trying to map a remote system ID (at document validation) or a URI
reference (at document transformation) pointing to a resource on a remote Web server to a local copy of
the same resource. If a match is found then <oXygen/> will use the local copy of the resource instead of
the remote one. This enables the XML author to work on his XML project without Internet access or
when the connection is slow and waiting until the remote resource is accessed and fetched becomes un-
acceptable. Also XML catalogs make documents machine independent so that they can be shared by
many developers by modifying only the XML catalog mappings related to the shared documents.

<oXygen/> supports any XML catalog file that conforms to one of:

• the OASIS XML Catalogs Committee Specification [ht-
tp://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html]

• the OASIS Technical Resolution 9401:1997 [http://www.oasis-open.org/specs/a401.htm] including
the plain-text flavor described in that resolution

Editing documents

57

http://www.oasis-open.org/committees/entity/spec.html
http://www.oasis-open.org/committees/entity/spec.html
http://www.oasis-open.org/committees/entity/spec.html
http://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html
http://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html
http://www.oasis-open.org/committees/entity/specs/cs-entity-xml-catalogs-1.0.html
http://www.oasis-open.org/specs/a401.htm
http://www.oasis-open.org/specs/a401.htm


User preferences related to XML Catalogs can be configured from Window → Preferences +oXygen /
XML / XML Catalog

Converting between schema languages
The Trang converter allows you to convert a DTD or Relax NG (full or compact syntax) schema or a set
of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema.
Where perfect equivalence is not possible due to limitations of the target language <oXygen/> will gen-
erate an approximation of the source schema.

The conversion functionality is available from XML → Convert to ... (Ctrl+Shift+\) and from the tool-
bar button Trang Converter

A schema being edited can be converted with just one click on a toolbar button if that schema can be the
subject of a supported conversion.

Figure 4.30. Convert a schema to other schema language

The language of the target schema is specified with one of the four radio buttons of the Output panel.
The encoding, the maximum line width and the number of spaces for one level of indentation can be
also specified in this panel.

The conversion can be further fine-tuned by specifying more advanced options available from the Ad-
vanced options button. For example if the input is a DTD and the output is an XML Schema the ad-
vanced options are:

Figure 4.31. Convert a schema to other schema language - advanced options

Editing documents

58



For the Input panel:

xmlns field specifies the default namespace, that is the namespace used for unqualified
element names.

xmlns table Each row specifies in the prefix used for a namespace in the input schema.

colon-replacement Replaces colons in element names by the specified chars when constructing
the names of definitions used to represent the element declarations and at-
tribute list declarations in the DTD.

element-define Specifies how to construct the name of the definition representing an ele-
ment declaration from the name of the element. The specified value must
contain exactly one percent character. This percent character is replaced by
the name of element (after colon replacement) and the result is used as the
name of the definition.

inline-attlist Specifies not to generate definitions for attribute list declarations and instead
move attributes declared in attribute list declarations into the definitions
generated for element declarations. This is the default behavior when the
output language is XSD.

attlist-define This specifies how to construct the name of the definition representing an at-
tribute list declaration from the name of the element. The specified value

Editing documents

59



must contain exactly one percent character. This percent character is re-
placed by the name of element (after colon replacement) and the result is
used as the name of the definition.

any-name Specifies the name of the definition generated for the content of elements
declared in the DTD as having a content model of ANY.

strict-any Preserves the exact semantics of ANY content models by using an explicit
choice of references to all declared elements. By default, Trang uses a wild-
card that allows any element.

generate-start Specifies whether Trang should generate a start element. DTDs do not indic-
ate what elements are allowed as document elements. Trang assumes that all
elements that are defined but never referenced are allowed as document ele-
ments.

annotation-prefix Default values are represented using an annotation attribute pre-
fix:defaultValue where prefix is the specified value and is bound to ht-
tp://relaxng.org/ns/compatibility/annotations/1.0 as defined by the RELAX
NG DTD Compatibility Committee Specification. By default, Trang will use
a for prefix unless that conflicts with a prefix used in the DTD.

For the Output panel:

disable-abstract-elements Disables the use of abstract elements and subsitution groups in the
generated XML Schema. This can also be controlled using an an-
notation attribute.

any-process-contents One of the values: strict, lax, skip. Specifies the value for the pro-
cessContents attribute of any elements. The default is skip
(corresponding to RELAX NG semantics) unless the input format
is dtd, in which case the default is strict (corresponding to DTD
semantics).

any-attribute-process-contents Specifies the value for the processContents attribute of anyAttrib-
ute elements. The default is skip (corresponding to RELAX NG
semantics).

Formatting and indenting documents (pretty print)
In structured markup languages, the whitespace between elements that is created by use of the Space
bar, Tab or multiple line breaks insertion from use of the Enter, is not recognized by the parsing tools.
Often this means that when structured markup documents are opened, they are arranged as one long, un-
broken line, what seems to be a single paragraph.

While this is perfectly acceptable practice, it makes editing difficult and increases the likelihood of er-
rors being introduced. It also makes the identification of exact error positions difficult. Formatting and
Indenting, also called Pretty Print, enables such documents to be neatly arranged, in a manner that is
consistent and promotes easier reading on screen and in print output.

Pretty print is in no way associated with the layout or formatting that will be used in the transformed
document. This layout and formatting is supplied by the XSL style sheet specified at time of transforma-
tion.

Editing documents

60



Procedure 4.9. To format and indent a document:

1. Open or focus on the document that is to be formatted and indented.

2. Select menu XML → Format and Indent (Ctrl+Shift+F) or click the toolbar button Format

and indent . While in progress the Status Panel will indicate Pretty print in progress. On comple-
tion, this will change to Pretty print successful and the document will be arranged.

Note

Pretty Print can format empty elements as an auto-closing markup tag (ex. <a/>) or as a
regular tag (ex. <a></a> ). It can preserve the order or attributes or order them alphabetic-
ally. Also the user may specify a list of elements for which white spaces are preserved ex-
actly as before Pretty print and a one with elements for which white space is stripped.
These can be configured from Options → Preferences+Editor / Format.

Pretty Print requires that the structured document is well formed. If the document is not well formed an
error message is displayed. The message will usually indicate that a problem has been found in the form
and will hint to the problem type. It will not highlight the general position of the error, to do this run the
well formed action by selecting Document → Check document form (Ctrl+Shift+W).

To change the indenting of the current selected text see the action Indent selection .

For user preferences related to formatting and indenting like Detect indent on open and Indent on paste
see the corresponding Preferences panel.

XML elements can be excepted from the reformatting performed by the pretty-print operation by includ-
ing them in the Preserve space elements (XPath) list. That means that when the Format and Indent
(pretty-print) action encounters in the document an element with the name contained in this list the
whitespace is preserved inside that element. This is useful when most of the elements must be reformat-
ted with the exception of a few ones which are listed here.

For the situation when whitespace should be preserved in most elements with the exception of a few ele-
ments, the names of these elements must be added to the Strip space elements (XPath) list.

In addition to simple element names both the Preserve space elements (XPath) list and the Strip space
elements (XPath) one accept a restricted set of XPath expressions for covering a pattern of XML ele-
ments with only one expression. The allowed types of expressions are:

//xs:documentation the XPath descendant axis can be used only at the beginning of the
expression; the namespace prefix can be attached to any
namespace, no namespace binding check is performed when aply-
ing the pretty-print operation

/chapter/abstract/title note the use of the XPath child axis

//section/title the descendant axis can be followed by the child axis

The value of an xml:space attribute present in the XML document on which the pretty-print operation is
applied always takes precedence over the Preserve space elements (XPath) and the Strip space elements

Editing documents

61



(XPath) lists.

Viewing status information
Status information generated by the Schema Detection, Validation, Validate as you type and Transform-
ation threads are fed into the Console view allowing the user to monitor how the operation is being ex-
ecuted.

Figure 4.32. The Console view messages

Editing documents

62



Messages contain a timestamp, the name of the thread that generated it and the actual status information.
The number of displayed messages in the console view can be controlled from the options panel.

XML editor specific actions
<oXygen/> offers groups of actions for working on single XML elements. They are available from the
the context menu of the main editor panel.

Edit actions

• : Turns on line wrapping in the editor panel if it was off and viceversa. It has the same effect as the
Line wrap preference.

• contextual menu of current editor → Toggle comment (Ctrl + /): Comment the current selection of
the current editor. If the selection already contains a comment the action uncomments the selection. If
there is no selection in the current editor and the cursor is not positioned inside a comment the current
line is commented. If the cursor is positioned inside a comment then the commented text is uncom-
mented.

Select actions

The Select actions are enabled when the caret is positioned inside a tag name.

• contextual menu of current editor+Select → Select element: Selects the entire current element;

• contextual menu of current editor+Select → Select content: Selects the current element, excluding the
start tag and end tag;

• contextual menu of current editor+Select → Select attributes: Selects all the attributes of the current
element;

• contextual menu of current editor+Select → Select parent: Selects the parent element of the current
element;

Source actions

• contextual menu of current editor+Source+ → Escape Selection ...: Escapes a range of charac-

ters by replacing them with the corresponding character entities.

Editing documents

63



• contextual menu of current editor+Source+ → Unescape Selection ...: Replaces the character en-

tities with the corresponding characters;

• contextual menu of current editor+Source+ → Indent selection (Ctrl + I):Corrects the indenta-

tion of the selected block of lines.

• contextual menu of current editor+Source+ → Pretty-Print Element: Pretty prints the element

that surrounds the caret position;

• contextual menu of current editor+Source+ → Import entities list : Shows a dialog that allows

Editing documents

64



you to select a list of files as sources for external entities. The DOCTYPE section of your document
will be updated with the chosen entities. For instance, if choosing the file chapter1.xml, and
chapter2.xml, the following section is inserted in the DOCTYPE:

<!ENTITY chapter1 SYSTEM "chapter1.xml">

<!ENTITY chapter2 SYSTEM "chapter2.xml">

• Double click on an element or processing instruction - If the double click is done before the start tag
of an element or after the end tag of an element then all the element is selected by the double click ac-
tion. If it is done after the start tag or before the end tag then only the element content without the start
tag and end tag is selected.

• contextual menu of current editor → Join and normalize: The action works on the selection. It joins
the lines by replacing the line separator with a single space character. It also normalizes the
whitespaces by replacing a sequence of such characters with a single space.

XML document actions

• contextual menu of current editor → Show Definition : move the cursor to the definition of the cur-
rent element in the schema associated with the edited XML document (DTD, XML Schema, Relax
NG schema).

• contextual menu of current editor → Copy XPath (Ctrl+Shift+.): Copy XPath expression of current
element from current editor to clipboard.

• contextual menu of current editor+ → Go to the matching tag (Ctrl+Shift+G): Moves the cursor

to the end tag that matches the start tag, or vice versa.

• contextual menu of current editor → Go after Next Tag (Ctrl+Close Bracket): Moves the cursor to
the end of the next tag.

• contextual menu of current editor → Go after Previous Tag (Ctrl+Open Bracket): Moves the cursor
to the end of the previous tag.

XML Refactoring actions

• context menu of current editor+XML Refactoring+ → Surround with tag... (Ctrl+Alt+E): Se-

lected Text in the editor is marked with the specified start and end tags.

• context menu of current editor+XML Refactoring+ → Surround with <tag> (Ctrl+Alt+/): Se-

lected Text in the editor is marked with start and end tags of the last 'Surround in' action.

• context menu of current editor+XML Refactoring+ → Rename element (Ctrl+Alt+R): The ele-

ment from the caret position and the elements that have the same name as the current element can be
renamed according with the options from the Rename dialog.

• context menu of current editor+XML Refactoring+ → Rename prefix: The prefix of the element

Editing documents

65



from the caret position and the elements that have the same prefix as the current element can be re-
named according with the options from the Rename dialog.

Figure 4.33. Rename Prefix Dialog

Selecting the Rename current element prefix option the application will recursively traverse the cur-
rent element and all its children.

For example, to change the xmlns:p1="ns1" association existing in the current element to xm-
lns:p5="ns1" just select this option and press OK. If the association xmlns:p1="ns1" is applied on the
parent of the current element, then <oXygen/> will introduce a new declaration xmlns:p5="ns1" in the
current element and will change the prefix from p1 to p5. If p5 is already associated in the current ele-
ment with another namespace, let's say ns5, then a dialog showing the conflict will be displayed.
Pressing the OK button, the prefix will be modified from p1 to p5 without inserting a new declaration
xmlns:p5="ns1". On Cancel no modification is made.

Selecting the "Rename current prefix in all document" option the application will apply the change on
the entire document.

To apply the action also inside attribute values one must check the Rename also attribute values that
start with the same prefix checkbox.

• context menu of current editor+XML Refactoring+ → Split element: Split the element from the

caret position in two identical elements. The caret must be inside the element

• context menu of current editor+XML Refactoring+ → Join elements: Joins the left and the right

elements relative to the current caret position. The elements must have the same name, attributes and
attributes values.

• context menu of current editor+XML Refactoring+ → Delete element tags (Ctrl+Alt+X): De-

letes the start tag and end tag of the current element.

XML Schema actions

Editing documents

66



• contextual menu of current editor+Schema → Show definition (Ctrl + Alt + ENTER): Move the
cursor to the definition of the referenced XML Schema item - element, group, simple or complex
type.

Note

The actions are available when the current editor is of XML Schema type.

Smart editing

Closing tag auto-expansion If you want to insert content into an auto closing tag like <tag/>
deleting the / character saves some keystrokes by inserting a sep-
arate closing tag automatically and placing the cursor between the
start and end tags: <tag></tag>

Auto-breaking the edited line The Hard line wrap option breaks the edited line automatically
when its length exceeds the maximum line length defined for the
pretty-print operation.

Smart Enter The Smart Enter option inserts an empty line between the start
and end tags and places the cursor in an indented position on the
empty line automatically when the cursor is between the start and
end tag and Enter is pressed.

Syntax highlight depending on namespace prefix

The syntax highlight scheme of an XML file type allows the configuration of a color per each type of
token which can appear in an XML file. Distinguishing between the XML tag tokens based on the
namespace prefix brings additional visual help in editing some XML file types. For example in XSLT
stylesheets elements from different namespaces like XSLT, XHTML, XSL:FO or XForms are inserted
in the same document and the editor panel can become cluttered. Marking tags with different colors
based on the namespace prefix allows easier identification of the tags.

Figure 4.34. Example of coloring XML tags by prefix

Editing XML Schema schemas

Editing documents

67



<oXygen/> provides a special type of editor for XML Schema schemas. This editor presents the usual
text view of an XML document synchronized in real time with a graphical view of the schema compon-
ents.

Special content completion features
The XML Schema editor of <oXygen/> enhances the content completion of the XML editor with special
support for the elements and attributes of a Schematron schema inside the xs:annotation/xs:appinfo ele-
ments of an XML Schema.

Figure 4.35. Schematron support in XML Schema content completion

XML Schema diagram

Introduction

<oXygen/> provides a simple, expressive and easy to read Schema Diagram View for XML Schema
schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save
them as JPEG, PNG and BMP images. It helps both schema authors in developing the schema and con-
tent authors that are using the schema to understand it.

<oXygen/> is the only XML Editor to provide a side by side source and diagram presentation and have
them synchronized in real-time:

• the changes you make in the Editor will immediately be visible in the Diagram (no background pars-
ing).

• changing the selected element in the diagram will select the underlaying code in the source editor.

Full model view

When you create a new schema document or open an existing one the Editor Panel is divided in two sec-
tions: one containing the Schema Diagram and the second the source code. The Diagram View has two
tabbed panes offering a Full Model View and a Logical Model View.

Editing documents

68



Figure 4.36. XML Schema editor - full model view

The Full Model View renders all the XML Schema elements with intuitive icons. The following refer-
ences can be expanded in place: elements, attributes, groups, assigned types, base types, substitution ele-
ments and identity constraints. This coupled with the synchronization support makes the schema naviga-
tion easy.

At the top of the diagram view there are buttons corresponding to the following actions:

Show only the selected com-

ponent

It is a two state button. When it is turned on the diagram view
presents only the top level definition of the schema from the curs-
or position and it is updated when the cursor goes to another
definition. When it is turned off the view presents all the schema
definitions.

Expand to references This option controls how the schema diagram is automatically ex-
panded. For instance if you select it and then edit a top level ele-
ment or you make a refresh, the diagram will be expanded until it
reaches referred components. If this is left unchecked, only the

Editing documents

69



first level of the diagram is expanded, showing the top level ele-
ments.

For large schemas, the editor disables this option automatically.

Show/Hide Annotations Depending on its state (selected/not selected), the documentation
nodes are shown or hidden.

Show/Hide Comments Depending on its state (selected/not selected), the comment nodes
are shown or hidden.

Refresh Refreshes the Schema Diagram according to the changes in your
code (changes in your imported documents or those that are not
reflected automatically in the compiled schema)

Print Prints the diagram. <oXygen/> will split and print your Schema
on multiple pages if it is a large document. Each page will be sur-
rounded with a frame and will contain information about the
neighboring pages.

Save as Image Saves the Schema Diagram as a JPEG Image.

The contextual menu offers quick access to:

• Add Child: offers a list of possible items to be added as children of the current node.

• Insert - Before: offers a list of possible items to be added before the current node.

• Insert - After: offers a list of possible items to be added after the current node.

• Edit: allows the user to edit the attributes of the current node. This action can also be triggered by
double-clicking an element.

Figure 4.37. Edit attributes of current XML Schema element

Editing documents

70



• Remove: allows the user to remove the current element.

Also, the contextual menu offers access to the Collapse children, Expand children, Print, Print selection,
Save as Image, Save Selection as Image and Refresh actions. The diagram can be saved as JPEG, PNG
and BMP image.

Logical model view

The Logical Model View displays a diagram of the compiled schema. This is not synchronized automat-
ically with the source editor and it is obtained after resolving the references, type extensions and type re-
strictions, redefinitions etc.

It presents the global elements that when expanded show the types and identity constraints. If an element
has a simple type then the type name is rendered. If an element has a complex type then the content type
and attributes are presented.

Figure 4.38. Logical Model View for XML Schema

Editing documents

71



If the schema is not valid you will see an error message in the Logical Model View instead of the dia-
gram.

Schema components view

The Diagram View also contains a Schema Components View showing the global components grouped
by their namespaces and types. It allows a quick access to a component by knowing its name.

Figure 4.39. Schema components view for XML Schema

Editing documents

72



The view content depends on the selected view: in Full Model View it contains the global elements, at-
tributes, simple types, complex types, groups, attribute groups. In Logical Model View it contains the
global elements, grouped by their namespaces. It can be opened from Window → Show View → Other
→ oXygen → Schema Components

Create an XML Schema from a relational database table
To create an XML Schema from the structure of a relational database table use the special wizard avail-
able in the Tools menu.

XML Schema Instance Generator
To generate sample XML files from an XML Schema use the Generate Sample XML Files... dialog. It is
opened with the action XML Tools → Generate Sample XML Files...

Figure 4.40. The Generate Sample XML Files dialog

Editing documents

73



Complete the dialog as follows:

URL Schema's URL. Last used URLs are displayed in the drop-down
box.

Namespace Displays the namespace of the selected schema.

Document root After the list is selected, a list of elements is displayed in the
combo box. The user should choose the root of the XML docu-
ments to be generated.

Output folder Path to the folder where the generated XML instances will be
saved.

Filename prefix and Extension Generated files' names have the following format: pre-
fixN.extension, where prefix and extension are specified by the
user and N represents an incremental number from 0 upto Number
of instances - 1.

Number of instances The number of XML files to be generated.

Editing documents

74



Open first instance in editor When checked, the first generated XML file will be opened in ed-
itor.

Namespaces Here the user can specify the default namespace as well as the
proxies (prefixes) for namespaces.

The Options tab becomes active only after the URL field is filled-in and a schema is detected. It allows
the user to set specific options for different namespaces and elements.

Figure 4.41. The Generate Sample XML Files dialog

Editing documents

75



Namespace / Element Allows the user to define settings for:

• All elements from all namespaces. This is the default setting
and it can also be accessed from Options -> Preferences ->
XML / XML Instance Generator.

• All elements from a specific namespace.

• A specific element from a specific namespace.

Generate optional elements When checked, all elements will be generated, including the op-
tional ones (having the minOccurs attribute set to 0 in the
schema).

Generate optional attributes When checked, all attributes will be generated, including the op-
tional ones (having the use attribute set to optional in the
schema.)

Values of elements and attributes Controls the content of generated attributes and elements. Several
choices are available:

• None - No content is inserted;

• Default - Inserts a default value depending of data type
descriptor of the respective element/attribute. The default value
can be either the data type name or an incremental name of the
attribute or element (according to the global option from the
XML instance generator preferences page);

• Random - Inserts a random value depending of data type
descriptor of the respective element/attribute.

Preferred number of repetitions Allows the user set the preferred number of repeating elements re-
lated with minOccurs and maxOccurs defined in XML Schema.

• If the value set here is between minOccurs and maxOccurs, that
value will be used;

• If the value set here is less than minOccurs, the minOccur value
will be used;

• If the value set here is greater than maxOccurs, that value will
be used.

Maximum recursivity level Option to set the maximum allowed depth of the same element in
case of recursivity.

Choice strategy Option to be used in case of xs:choice or substitutionGroup. The
possible strategies are:

• First - the first branch of xs:choice or the head element of sub-
stritutionGroup will be always used;

• Random - a random branch of xs:choice or a substitute element
or the head element of a substitutionGroup will be used.

Generate the other options as com-
ments

Option to generate the other possible choices or substitutions (for
xs:choice and substitutionGroup). These alternatives will be gen-
erated inside comments groups so you can uncomment them and

Editing documents

76



use later. Use this option with care (for example on a restricted
namespace and element) as it may generate large result files.

Flatten an XML Schema
If an XML Schema is organized on several levels linked by xs:include statements sometimes it is more
convenient to work on the schema as a single flat file. To flatten schema <oXygen/> recursively adds in-
cluded files to the master one. That means <oXygen/> replaces the xs:include elements with the ones
coming from the included files.

This action can be accessed from the schema editor's contextual menu -> Refactoring -> Flatten Schema.

In the following example master.sxd includes slave.xsd. This, in turn, includes slave1.xsd which in-
cludes both slave2.xsd and slave3.xsd.

Listing of master.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="tns" xmlns:tns="tns" xmlns:b="b" >
<!-- included elements from slave.xsd -->
<xs:include schemaLocation="slave.xsd"></xs:include>
<!-- master.xsd -->
<xs:element name="element1">
<xs:complexType>
<xs:sequence>
<xs:element ref="tns:element2" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Listing of slave.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="tns" xmlns:a="a" xmlns:b="b" xmlns:c="c">
<!-- included elements from slave1.xsd -->
<xs:include schemaLocation="slave1.xsd"></xs:include>
<!-- slave -->
<xs:element name="element2" xmlns:c="x"/>

</xs:schema>

Listing of slave1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="tns" xmlns:tns="tns" blockDefault="restriction">
<!-- included elements from slave2.xsd -->
<xs:include schemaLocation="slave2.xsd"></xs:include>
<!-- included elements from slave3.xsd -->
<xs:include schemaLocation="slave3.xsd"></xs:include>
<!-- slave1 -->
<xs:element name="element0"/>
<xs:element name="element7"/>
<xs:element name="element7Substitute" substitutionGroup="tns:element7" block="extension"/>

Editing documents

77



<xs:element name="element6">
<xs:complexType>
<xs:sequence>
<xs:element ref="tns:element7"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="type1">
<xs:sequence>
<xs:element ref="tns:element0"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

Listing of slave2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="tns"
xmlns:tns="tns"
elementFormDefault="qualified"
attributeFormDefault="qualified">
<!-- slave2 -->
<xs:element name="a"></xs:element>
<a:element name="element9" xmlns:a="http://www.w3.org/2001/XMLSchema">
<xs:complexType>
<xs:sequence>
<!-- This element is from the target namespace -->
<xs:element name="element3" xmlns:b="http://www.w3.org/2001/XMLSchema"/>
<!-- Element from no namespace -->
<xs:element name="element4" form="unqualified"/>
<a:element ref="tns:a"></a:element>

</xs:sequence>
<!-- Attribute from the target namespace -->
<b:attribute name="attr1" type="xs:string" xmlns:b="http://www.w3.org/2001/XMLSchema"/>
<!-- Attribute from the no namespace -->
<xs:attribute name="attr2" type="xs:string" form="unqualified"/>

</xs:complexType>
</a:element>

</xs:schema>

Listing of slave3.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="tns" finalDefault="restriction" xmlns:tns="tns">
<!-- slave3 -->
<xs:complexType name="ct1"/>
<xs:complexType name="ct2" final="extension">
<xs:complexContent>
<xs:extension base="tns:ct1"/>

</xs:complexContent>
</xs:complexType>
<xs:simpleType name="st1" final="union">
<xs:restriction base="xs:integer"/>

</xs:simpleType>
<xs:simpleType name="st2" final="union">
<xs:restriction base="tns:st1">
<xs:enumeration value="1"/>

Editing documents

78



<xs:enumeration value="2"/>
</xs:restriction>

</xs:simpleType>
<xs:element name="e1" type="tns:c1" final="restriction"/>
<xs:element name="e2ext" type="tns:c2" substitutionGroup="tns:e1"></xs:element>
<xs:complexType name="c1">
<xs:sequence>
<xs:element ref="tns:e1"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="c2">
<xs:complexContent>
<xs:extension base="tns:c1">
<xs:sequence>
<xs:element ref="tns:e1"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:schema>

Listing of master.xsd after it has been flattened

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="tns" xmlns:a="a" xmlns:b="b" xmlns:c="c" xmlns:tns="tns"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- included elements from slave.xsd -->
<!-- included elements from slave1.xsd -->
<!-- included elements from slave2.xsd -->
<!-- slave2 -->
<xs:element block="restriction" name="a"/>
<a:element block="restriction" name="element9" xmlns:a="http://www.w3.org/2001/XMLSchema">
<xs:complexType>
<xs:sequence>
<!-- This element is from the target namespace -->
<xs:element block="restriction" form="qualified" name="element3"
xmlns:b="http://www.w3.org/2001/XMLSchema"/>

<!-- Element from no namespace -->
<xs:element block="restriction" form="unqualified" name="element4"/>
<a:element ref="tns:a"/>

</xs:sequence>
<!-- Attribute from the target namespace -->
<b:attribute form="qualified" name="attr1" type="xs:string"
xmlns:b="http://www.w3.org/2001/XMLSchema"/>

<!-- Attribute from the no namespace -->
<xs:attribute form="unqualified" name="attr2" type="xs:string"/>

</xs:complexType>
</a:element>
<!-- included elements from slave3.xsd -->
<!-- slave3 -->
<xs:complexType block="restriction" final="restriction" name="ct1"/>
<xs:complexType block="restriction" final="extension" name="ct2">
<xs:complexContent>
<xs:extension base="tns:ct1"/>

</xs:complexContent>
</xs:complexType>
<xs:simpleType final="union" name="st1">
<xs:restriction base="xs:integer"/>

</xs:simpleType>
<xs:simpleType final="union" name="st2">
<xs:restriction base="tns:st1">

Editing documents

79



<xs:enumeration value="1"/>
<xs:enumeration value="2"/>

</xs:restriction>
</xs:simpleType>
<xs:element block="restriction" final="restriction" name="e1" type="tns:c1"/>
<xs:element block="restriction" final="restriction" name="e2ext" substitutionGroup="tns:e1"
type="tns:c2"/>

<xs:complexType block="restriction" final="restriction" name="c1">
<xs:sequence>
<xs:element ref="tns:e1"/>

</xs:sequence>
</xs:complexType>
<xs:complexType block="restriction" final="restriction" name="c2">
<xs:complexContent>
<xs:extension base="tns:c1">
<xs:sequence>
<xs:element ref="tns:e1"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<!-- slave1 -->
<xs:element block="restriction" name="element0"/>
<xs:element block="restriction" name="element7"/>
<xs:element block="extension" name="element7Substitute" substitutionGroup="tns:element7"/>
<xs:element block="restriction" name="element6">
<xs:complexType>
<xs:sequence>
<xs:element ref="tns:element7"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType block="restriction" name="type1">
<xs:sequence>
<xs:element ref="tns:element0"/>

</xs:sequence>
</xs:complexType>
<!-- slave -->
<xs:element name="element2" xmlns:c="x"/>
<!-- master.xsd -->
<xs:element name="element1">
<xs:complexType>
<xs:sequence>
<xs:element ref="tns:element2"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The case of XML Schema redefinitions is also handled as the example below shows.

Listing of master.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:redefine schemaLocation="slave1.xsd">
<xs:complexType name="tp">
<xs:complexContent>
<xs:extension base="tp">
<xs:choice>
<xs:element name="el2" type="xs:NCName"/>

Editing documents

80



<xs:element name="el3" type="xs:string"/>
</xs:choice>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:redefine>
<xs:element name="el" type="tp"/>

</xs:schema>

Listing of slave1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:redefine schemaLocation="slave2.xsd">
<xs:complexType name="tp">
<xs:complexContent>
<xs:extension base="tp">
<xs:attribute name="a"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:redefine>

</xs:schema>

Listing of slave2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:complexType name="tp">
<xs:sequence>
<xs:element name="el" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

Listing of master.xsd after it has been flattened>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:complexType name="tp">
<xs:complexContent>
<xs:extension base="tp_Redefined1">
<xs:choice>
<xs:element name="el2" type="xs:NCName"/>
<xs:element name="el3" type="xs:string"/>

</xs:choice>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="tp_Redefined1">
<xs:complexContent>
<xs:extension base="tp_Redefined0">
<xs:attribute name="a"/>

</xs:extension>
</xs:complexContent>

Editing documents

81



</xs:complexType>
<xs:complexType name="tp_Redefined0">
<xs:sequence>
<xs:element name="el" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:element name="el" type="tp"/>

</xs:schema>

The references to the included schema files can be resolved through an XML Catalog.

XML Schema regular expressions builder
To generate XML Schema regular expressions use the action XML Tools → XML Schema Regular Ex-
pressions Builder It will open a dialog which allows you to build and test regular expressions.

Figure 4.42. XML Schema regular expressions builder dialog

Editing documents

82



The dialog contains the following sections:

• Regular expressions editor - allows you edit the regular expression to be tested and used. Content
completion is available and presents a list with all the predefined expressions. It is accessible by
pressing Ctrl + Space.

• Category combo box - here you can choose from several categories of predefined expressions. The se-
lected category influences the displayed expressions in the Available expressions table.

Editing documents

83



• Available expressions table - it consists of two columns. The first one presents the regular expres-
sions, the second displays a short description of the expressions. The set of expressions depend on the
category selected in the previous combo box. You can add an expression in the Regular expressions
editor by double-clicking on the expression row in the table You will notice that in the case of Char-
acter categories and Block names the expressions are also listed in complementary format. For ex-
ample: \p{Lu} - Uppercase letters; \P{Lu} - Complement of: Uppercase letters.

• Evaluate expression on radio buttons - there are available two options: Evaluate expression on each
line and Evaluate expression on all text . If the first option is selected the edited expression will be ap-
plied on each line from the Test area. If the second option is selected the expression will be applied on
the whole text.

• Test area - it is a text editor which allows you to enter a text sample on which the regular expression
will be applied. The matches of the expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button
will become active when an editor is opened in the background and there is an expression in the Regular
expressions editor.

Generating HTML documentation for an XML Schema
To generate HTML documentation for a XML Schema document similar with the Javadoc documenta-
tion for Java classes use the dialog Schema documentation. It is opened with the action XML Tools →
Generate Documentation → Schema Documentation... . The dialog enables the user to configure a large
set of parameters of the process of generating the HTML documentation.

The HTML documentation contains images corresponding to the schema definitions as the ones dis-
played by the schema diagram view. These images are divided in clickable areas which are linked to the
definitions of the clicked names of types or elements. The documentation of a definition includes a Used
By section with links to the other definitions which refer to it.

Figure 4.43. The XML Schema documentation dialog

Editing documents

84



Editing documents

85



The text field of the Input panel must contain the full path to the XML Schema (XSD) file, if the schema
is composed of only one file, or the full path to the main XSD file of the XML Schema document, that is
the file that includes or imports other modules of the document.

<oXygen/> is able to include images of the XML Schema components in the final HTML result. The
supported image formats are PNG and JPG. The image of an XML Schema component contains the
graphical representation of that component as it is rendered in the Schema Diagram panel of the
<oXygen/>'s XSD editor panel. The parameters related to images are:

Full model diagrams Include in the HTML result the representation of each schema com-
ponent in the <oXygen/>'s Full Model View of the schema.

Logical model diagrams Include in the HTML result the representation of each schema com-
ponent in the <oXygen/>'s Logical Model View of the schema.

Hide comments When checked the comments are not included in the generated
schema documentation.

Hide annotations When checked the annotations are not included in the generated
schema documentation.

The Options panel contain parameters for the level of details included in the documentation:

Title The title displayed at the beginning of the HTML document and in
the title bar of the web browser.

Sort by component If this parameter is set to "true", the schema components are
presented sorted by type and name. Otherwise, they are presented
in the order that they appear in the schema. By default, this para-
meter is set to "true."

Use JavaScript The generated XHTML document uses JavaScript to hide some de-
tails like the underlying schema component XML representation,
which can be made to appear with a button press. Since some
people have ideological objections to JavaScript, this feature can be
turned off. If this parameter is set to "true", JavaScript will be used
in the generated documentation. Otherwise, it won't. By default,
this parameter is set to "true."

Search Included Schemas If this parameter is set to "true", xs3p will search for components in
"included" schemas when creating links and generating the XML
Instance Representation table. When this parameter is set to "true",
the "linksFile" parameter must also be set, which is described be-
low. Otherwise, an error will be raised. This search is recursive, so
schemas "included" in the current schema's "included" schemas
will also be searched.

Search Imported Schemas If this parameter is set to "true", xs3p will search for components in
"imported" schemas when creating links and generating the XML
Instance Representation table. The above discussion for the
"searchIncludedSchemas" parameter also applies to this parameter.
Also, when this parameter is set to "true", the "linksFile" parameter
must also be set.

Print all super-types The type hierarchy of a global type definition is displayed in its
section. If this parameter is set to "true", all super-types of the cur-

Editing documents

86



rent type are shown in the type hierarchy. Otherwise, only the im-
mediate parent type is displayed. By default, this parameter is set to
"true."

Print all sub-types This parameter has a similar concept as printAllSuperTypes. If it is
set to "true", all sub-types of the current type are shown in the type
hierarchy. Otherwise, only the direct sub-types are displayed. By
default, this parameter is set to "true."

Print legend If this parameter is set to "true", the Legend section is included.
Otherwise, it isn't. By default, this parameter is set to "true."

Print glossary If this parameter is set to "true", the Glossary section is included.
Otherwise, it isn't. By default, this parameter is set to "true."

Print NS prefixes If this parameter is set to "true", namespace information is provided
when displaying sample instances and references. This is done by
providing a prefix in front of tags and references, which when
clicked, will take the user to the declared namespace. The prefix
matches the prefix in the namespace declaration in the schema. If
not set to "true", namespace prefixes are not displayed. By default,
this parameter is set to "true."

The Output panel contains parameters for the output folder and output file:

Output folder The path of the folder containing the HTML result and the image
files.

Diagrams folder The folder where the images are going to be saved relative to the
output file. If there is no folder specified, the images will be saved
in the same directory as the output file.

Generate chunks (Recommended
for large schemas)

If it is true the HTML result is organized as a main file containing
only a table of contents with links to other HTML documents con-
taining descriptions of the schema components. If it is false all the
documentation will be stored in one HTML file.

Use hash codes for component
names

If enabled then the anchors and links will be generated using the
hashcode of the component identifier instead of using the identifi-
er itself. This is useful when the schema component names con-
tain characters that are not directly supported by the browsers or
by the file system.

Generate documentation also for
included and imported schemas

It will be generated HTML documentation also for the XML
Schemas included or imported by the schema specified in the In-
put panel. The documentation can be navigated from a schema to
the included/imported ones and back to the first schema following
HTML hyperlinks.

Generate documentation only for
this schema

It will not be generated HTML documentation for the XML
Schemas included or imported by the schema specified in the In-
put panel.

Output file name The name of the HTML file containing the documentation of the
XML Schema

Links file the file which maps from file locations of "included" and "impor-

Editing documents

87



ted" schemas to the file locations of their xs3p-generated docu-
mentation. This file must be provided if either "searchIncludedS-
chemas" or "searchImportedSchemas" is set to true. If relative ad-
dresses are used to specify the location of external xs3p-generated
documentation, they must be relative to documentation file cur-
rently generated.

Note

The external documentation files does not need to
exist at the time of generating the documentation for
the current schema. The mapping is specified in
XML. The dtd and schema for this mapping syntax
are "links.dtd" and "links.xsd" respectively.

Note

The "xmlns" namespace attribute with the correct
namespace must be provided in the mapping file for
the xs3p stylesheet to work.

CSS file The path to a CSS file which will be referred from the result
HTML. This is useful for specifying a custom CSS stylesheet to
be used in the generated HTML documentation instead of the de-
fault one.

Open in browser If it is true the HTML result will be opened with the default Inter-
net browser set in Preferences or with the system application for
HTML files.

The same HTML documentation can be generated for an XML Schema from the command line by run-
ning the script schemaDocumentation.bat (on Windows) / schemaDocumentation.sh (on
Mac OS X / Unix / Linux) located in the <oXygen/> installation folder. The script can be integrated in
an external batch process launched from the command line.

XML Schema editor specific actions
The list of actions specific for the XML Schema editor of <oXygen/> is:

• contextual menu of current editor → Show Definition : move the cursor to the definition of the cur-
rent element in this XSD schema.

Search References and Declarations
All the following actions can be applied on xs:element, xs:attribute, xs:attributeGroup, xs:complexType,
xs:simpleType, xs:group, xs:key, xs:unique or xs:notation parameters only.

• XSD+ → References in Project (Ctrl+Shift+R): Searches in the project all references of the item

found at current cursor position.

• contextual menu of current editor+Search → References in File: Searches in the current file all refer-

Editing documents

88



ences of the item found at the current cursor position.

• contextual menu of the current editor+Search → References Starting from File: Searches all refer-
ences of the item at the cursor position in the current edited file and all its included and imported files.

• contextual menu of the current editor+Search → References Starting from...: Opens a dialog that al-
lows the user to specify the list of files used to start searching from. Pressing OK begins searching all
references of the item at the cursor position in the selected files and their included and imported files.

• XSL+ → Declarations in Project (Ctrl+Shift+D): Searches in the project all declarations of the

item found at current cursor position.

• contextual menu of current editor+Search → Declarations in File: Searches in the current file all de-
clarations of the item at the current cursor position.

• contextual menu of the current editor+Search → Declarations Starting from File: Searches all declara-
tions of the item at the cursor position in the current edited file and all its included and imported files.

• contextual menu of the current editor+Search → Declarations Starting from...: Opens the Start loca-
tions dialog that allows the user to specify the list of files used to start searching from. Pressing OK
begins searching all declarations of the item at the cursor position in the selected files and all their in-
cluded and imported files.

• XSL → Occurrences in File (Ctrl+Shift+U): Searches all occurrences of the item at the caret position
in the currently edited file.

Editing Relax NG schemas
<oXygen/> provides a special type of editor for Relax NG schemas. This editor presents the usual text
view of an XML document synchronized in real time with a graphical view of the schema components.

Relax NG schema diagram

Introduction

<oXygen/> provides a simple, expressive and easy to read Schema Diagram View for Relax NG schem-
as.

With this new feature you can easily develop complex schemas, print them on multiple pages or save
them as JPEG, PNG and BMP images. It helps both schema authors in developing the schema and con-
tent authors that are using the schema to understand it.

<oXygen/> is the only XML Editor to provide a side by side source and diagram presentation and have
them synchronized in real-time:

• the changes you make in the Editor will immediately be visible in the Diagram (no background pars-
ing).

• changing the selected element in the diagram will select the underlaying code in the source editor.

Full model view

When you create a new schema document or open an existing one the Editor Panel is divided in two sec-

Editing documents

89



tions: one containing the Schema Diagram and the second the source code. The Diagram View has two
tabbed panes offering a Full Model View and a Logical Model View.

Figure 4.44. Relax NG schema editor - full model view

The Full Model View renders all the XML Schema elements with intuitive icons. The following refer-
ences can be expanded in place: patterns, includes and external references. This coupled with the syn-
chronization support makes the schema navigation easy.

All the element and attribute names are editable: double-click on any name to start editing it.

Editing documents

90



Logical model view

The Logical Model View presents the compiled schema which is a single pattern. The patterns that form
the element content are defined as a top level pattern with a generated name. The name is generated de-
pending of the name class of the elements.

Figure 4.45. Logical Model View for a Relax NG schema

At the top of the diagram view there are buttons corresponding to the following actions:

Expand to references This option controls how the schema diagram is automatically ex-
panded. For instance if you select it and then edit a top level ele-
ment or you make a refresh, the diagram will be expanded until it
reaches referred components. If this is left unchecked, only the
first level of the diagram is expanded, showing the top level ele-
ments.

For large schemas, the editor disables this option automatically.

Show/Hide Annotations Depending on its state (selected/not selected), the documentation
nodes are shown or hidden.

Editing documents

91



Refresh Refreshes the Schema Diagram according to the changes in your
code (changes in your imported documents or those that are not
reflected automatically in the compiled schema)

Print Prints the diagram. <oXygen/> will split and print your Schema
on multiple pages if it is a large document. Each page will be sur-
rounded with a frame and will contain information about the
neighboring pages.

Save as Image Saves the Schema Diagram as a JPEG Image.

The contextual menu offers quick access to the Collapse children, Expand children, Print, Save as Im-
age, Save Selection as Image and Refresh actions. The diagram can be saved as JPEG, PNG and BMP
image.

If the schema is not valid you will see an error message in the Logical Model View instead of the dia-
gram.

Schema components view

The Schema Components View presents a list with the patterns that appear in the diagram in both the
Full Model View and Logical Model View cases. It allows a quick access to a component by knowing
its name. It can be opened from Window → Show View → Other → oXygen → Schema Components

Figure 4.46. Schema components view for Relax NG

Editing documents

92



Relax NG editor specific actions
The list of actions specific for the Relax NG (full syntax) editor of <oXygen/> is:

• contextual menu of current editor → Show Definition : move the cursor to the definition of the cur-
rent element in this Relax NG (full syntax) schema.

Search References and Declarations
All the following actions can be applied on ref and parentRef parameters only.

• RNG+ → References in Project (Ctrl+Shift+R): Searches in the project all references of the item

found at current cursor position.

• contextual menu of current editor+Search → References in File: Searches in the current file all refer-
ences of the item found at the current cursor position.

Editing documents

93



• contextual menu of the current editor+Search → References Starting from File: Searches all refer-
ences of the item at the cursor position in the current edited file and all its included and imported files.

• contextual menu of the current editor+Search → References Starting from...: Opens a dialog that al-
lows the user to specify the list of files used to start searching from. Pressing OK begins searching all
references of the item at the cursor position in the selected files and their included and imported files.

All the following actions can be applied on named define parameters only.

• RNG+ → Declarations in Project (Ctrl+Shift+D): Searches in the project all declarations of the

item found at current cursor position.

• contextual menu of current editor+Search → Declarations in File: Searches in the current file all de-
clarations of the item at the current cursor position.

• contextual menu of the current editor+Search → Declarations Starting from File: Searches all declara-
tions of the item at the cursor position in the current edited file and all its included and imported files.

• contextual menu of the current editor+Search → Declarations Starting from...: Opens the Start loca-
tions dialog that allows the user to specify the list of files used to start searching from. Pressing OK
begins searching all declarations of the item at the cursor position in the selected files and all their in-
cluded and imported files.

• XSL → Occurrences in File (Ctrl+Shift+U): Searches all occurrences of the item at the caret position
in the currently edited file.

Editing XSLT stylesheets
<oXygen/> provides special support for developing XSLT 1.0 / 2.0 stylesheets.

Validating XSLT stylesheets
Validation of XSLT stylesheets documents is performed with the help of an XSLT processor configur-
able from user preferences according to the XSLT version: 1.0 or 2.0. For XSLT 1.0 the options are:
Xalan, Saxon 6.5.5, Saxon 8B, Saxon 8SA (if the user installs it as additional package), MSXML 4.0,
MSXML.NET, a JAXP transformer specified by the main Java class. For XSLT 2.0 the options are:
Saxon 8B, Saxon 8SA (if the user installs it as additional package), a JAXP transformer specified by the
main Java class.

Custom validation of XSLT stylesheets

If you need to validate an XSLT stylesheet with other validation engine than the built-in ones you have
the possibility to configure external engines as custom XSLT validation engines in <oXygen/>. After
such a custom validator is properly configured in Preferences it can be applied on the current document
with just one click on the External Validation toolbar. The document is validated against the schema de-
clared in the document.

Figure 4.47. External validation toolbar

Editing documents

94



There are two validators configured by default:

MSXML 4.0 included in <oXygen/> (Windows edition). It is associated to the XSL Editor type in
Preferences.

MSXML.NE
T

included in <oXygen/> (Windows edition). It is associated to the XSL Editor type in
Preferences.

Content Completion in XSLT stylesheets
The content completion assistant adds special features for editing XSLT stylesheets.

Inside XSLT templates of an XSLT stylesheet the content completion presents also all the elements al-
lowed in any context by the schema associated to the result of applying the edited stylesheet. That
schema is defined by the user in the Content Completion / XSL preferences. There are presented all the
elements because in a template there is no context defined for the result document so the user is allowed
to insert any element defined by the schema of the result document.

Namespace prefixes in scope for the current context are presented at the top of the content completion
window to speed the insertion of prefixed elements into the document.

Figure 4.48. Namespace prefixes in the content completion window

Editing documents

95



Content Completion in XPath expressions

In XSLT stylesheets the content completion assistant provides all the features available in the editor for
XML documents and also adds some enhancements. In XPath expressions used in attributes of XSLT
stylesheets elements like match, select and test it offers XPath functions, XSLT functions, XSLT axes
and user defined functions. If a transformation scenario was defined and associated to the edited
stylesheet the content completion assistant computes and presents elements and attributes based on the
input XML document selected in the scenario and on the current context in the stylesheet. The associ-
ated document is displayed in the XSLT input view.

Content Completion for XPath expressions is started:

• on XPath operators detected in one of the match, select and test attributes of XSLT elements: ", ', /, //,
(, [, |, :, ::, $

• for attribute value templates of non XSLT elements, that is the '{' character is detected as the first
character of the attribute value

• on request if the combination CTRL + Space is pressed inside an edited XPath expression

The items presented in the content completion window are dependent on the context of the current
XSLT element, the XML document associated with the edited stylesheet in the transformation scenario
of the stylesheet and the XSLT version of the stylesheet (1.0 or 2.0). For example if the document asso-
ciated with the edited stylesheet is:

<personnel>
<person id="Big.Boss">

<name>
<family>Boss</family>
<given>Big</given>

</name>
<email>chief@oxygenxml.com</email>
<link subordinates="one.worker"/>

</person>
<person id="one.worker">

<name>
<family>Worker</family>
<given>One</given>

</name>
<email>one@oxygenxml.com</email>
<link manager="Big.Boss"/>

</person>
</personnel>

and you enter an element xsl:template using the content completion assistant the match attribute is inser-
ted automatically, the cursor is placed between the quotes and the XPath content completion assistant
automatically displays a popup window with all the XSLT axes, XPath functions and elements and at-
tributes from the XML input document that can be inserted in the current context. The set of XPath
functions depends on the XSLT version declared in the root element - xsl:stylesheet (1.0 or 2.0).

Figure 4.49. Content Completion in the match attribute

Editing documents

96



If the cursor is inside the select attribute of an xsl:for-each, xsl:apply-templates, xsl:value-of or
xsl:copy-of element the content completion proposals are dependent of the path obtained by concatenat-
ing the XPath expressions of the parent XSLT elements xsl:template and xsl:for-each like the following
figure shows:

Figure 4.50. Content Completion in the select attribute

Also XPath expressions typed in the test attribute of an xsl:if or xsl:choose / xsl:when element benefit of
the assistance of the content completion.

Figure 4.51. Content Completion in the test attribute

Editing documents

97



XSLT variable references are easier to insert in XPath expressions with the help of the content comple-
tion popup triggered by the $ character which signals the start of such a reference in an XPath expres-
sion.

Figure 4.52. Content Completion in the test attribute

The same content completion assistant is available also in attribute value templates of non XSLT ele-
ments if the '{' character is the first one in the value of the attribute.

Figure 4.53. Content Completion in attribute value templates

Editing documents

98



Code templates

When the content completion is invoked by pressing CTRL+Space it also presents a list of code tem-
plates specific to the type of the active editor. Such a code template provides a shortcut for inserting a
small document fragment at the current caret position. <oXygen/> comes with a large set of ready-to use
templates for XSL and XML Schema documents.

Example 4.3. The XSL code template called Template-Match-Mode

Typing t in an XSL document and selecting tmm in the content assistant pop-up window will insert the
following template at the caret position in the document:

<xsl:template match="" mode="">

</xsl:template>

Other templates can be easily defined by the user. Also the code templates can be shared with other
users.

The XSLT Input View
The structure of the XML document associated to the edited XSLT stylesheet is displayed in a tree form
in a view called XSLT Input. The tree nodes represent the elements of the document.

If you click on a node, the corresponding template from the stylesheet will be highlighted. A node can
be dragged and dropped in the editor area for quickly inserting xsl:template, xsl:for-each or other XSLT
elements with the match / select / test attribute already filled with the correct XPath expression referring
to the dragged tree node and based on the current editing context of the drop spot.

Figure 4.54. XSLT input view

Editing documents

99



For example for the following XML document

<personnel>
<person id="Big.Boss">

<name>
<family>Boss</family>
<given>Big</given>

</name>
<email>chief@oxygenxml.com</email>
<link subordinates="one.worker"/>

</person>
<person id="one.worker">

<name>
<family>Worker</family>
<given>One</given>

</name>
<email>one@oxygenxml.com</email>
<link manager="Big.Boss"/>

</person>
</personnel>

and the following XSLT stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="2.0">
<xsl:template match="personnel">

<xsl:for-each select="*">

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

if you drag the given element and drop it inside the xsl:for-each element a popup menu will be dis-

Editing documents

100



played.

Figure 4.55. XSLT Input drag and drop popup menu

Select for example Insert xsl:value-of and the result document will be:

Figure 4.56. XSLT Input drag and drop result

The Stylesheet Templates view
The list of all templates of the edited stylesheet is presented in the view called Stylesheet Templates.

Figure 4.57. The Stylesheet Templates view

Editing documents

101



It has two operation modes: the name and match attributes of templates presented in separate columns of
the table, and the name and match attributes presented in the same column. In the second case the entry
in the Name + Match column is composed of the value of the name attribute followed by a space charac-
ter and the value of the match attribute. The operation mode is switched from the action Join/Split name
and match columns available on the toolbar of the view.

The view provides three levels of syncronization with the editor panel:

No selection update The templates list selection is not synchronized with the caret po-
sition in the editor panel.

Selection update on document
change

The templates list selection is synchronized with the caret position
in the editor panel when the document is modified by an editing
action.

Selection update on caret move The templates list selection is synchronized with the caret position
in the editor panel in real time, that is the list selection is updated

Editing documents

102



for every move of the caret in the editor panel.

All the columns of the table with the templates are sortable in ascending and descending order. The first
click on the column name sorts the rows of the table in ascending order after the clicked column, the
second click sorts the table in descending order and the third click returns to the unsorted state, that is
the order of the templates in the stylesheet.

A template can be located easily in the list using only the keyboard. If the focus is in the Name column,
type the first characters of the template name and the selection moves to that template in the list. In a
similar way if the focus is in the Match or Mode column, typing the first characters of the value of the
match attribute or the mode attribute moves the selection to that template in the list.

Finding XSLT references and declarations

Note

All the following actions can be applied on named templates, attribute sets, functions,
decimal formats, keys, variables or parameters only. In case they are applied on other
items, a warning message will pop-up.

• XSL+ → References in project (Ctrl+Shift+R): Searches in the project all references of the item

found at current cursor position.

Note

For faster access, a shortcut to this action is also added in the XSL References toolbar.

• contextual menu of current editor+Search → References in file: Searches in the current file all refer-
ences of the item at the current cursor position.

• contextual menu of the current editor+Search → References starting from file: Searches all references
of the item at the cursor position in the current edited file and all its included and imported files.

• contextual menu of the current editor+Search → References starting from...: Opens a dialog that al-
lows the user to specify the list of files used to start searching from. Pressing OK begins searching all
references of the item at the cursor position in the selected files and their included and imported files.

Editing documents

103



• XSL+ → Declarations in project (Ctrl+Shift+D): Searches in the project all declarations of the

item found at current cursor position.

Note

For faster access, a shortcut to this action is also added in the XSL References toolbar.

• contextual menu of current editor+Search → Declarations in file: Searches in the current file all de-
clarations of the item at the current cursor position.

• contextual menu of the current editor+Search → Declarations starting from file: Searches all declara-
tions of the item at the cursor position in the current edited file and all its included and imported files.

• contextual menu of the current editor+Search → Declarations starting from...: Opens the Start loca-
tions dialog that allows the user to specify the list of files used to start searching from. Pressing OK
begins searching all declarations of the item at the cursor position in the selected files and all their in-
cluded and imported files.

• XSL → Occurrences in file (Ctrl+Shift+U): Searches all occurrences of the item at the caret position
in the currently edited file.

XSLT refactoring actions

• XSL+ → Create template from selection...: Opens a dialog that allows the user to specify the

name of the new template to be created. After pressing OK, the template is created and the selection is
replaced by a

xsl:call-template

instruction referring the just created template.

Note

The selection must contain wellformed elements only.

Editing documents

104



• XSL+ → Create stylesheet from selection...: Creates a separate stylesheet and replaces the selec-

tion with a

xsl:include

instruction referring the just created stylesheet.

Note

The selection must contain a well formed top level element.

• XSL → Extract attributes as xsl:attributes...: Extracts the attributes from the selected element and rep-
resents each of them with a

xsl:attribute

instruction.

For example from the following element

<person id="Big{test}Boss"/>

you would obtain

<person>
<xsl:attribute name="id">

<xsl:text>Big</xsl:text>
<xsl:value-of select="test"/>
<xsl:text>Boss</xsl:text>

</xsl:attribute>
</person>

• XSL+ → Rename occurrences in project...: Renames all occurrences of the item at current cursor

position in the entire project. The possible changes to be performed on the documents can be pre-
viewed prior to documents altering.

Editing documents

105



In the upper part of the Rename template dialog there are displayed all the project files in which the
item was found, while in the central part of the dialog it can be seen where the replacements will be
performed. The user has the possibility to allow or deny the altering of a file.

• XSL → Rename occurrences in file...: Renames all occurrences of the item at current cursor position
in the entire file. The possible changes to be performed on the current file can be previewed prior to
document altering.

• XSL → Rename occurrences starting from file...: Renames all occurrences of the item at current curs-
or position in the currently edited file and all its included and imported files. The possible changes to
be performed can be previewed prior to document(s) altering.

• XSL → Rename occurrences starting from ...: Opens a dialog that allows the user to select the files to
begin searching from, then renames all occurrences of the item at current cursor position in the selec-
ted files and all their included and imported files. The possible changes to be performed can be pre-
viewed prior to document(s) altering.

Editing XQuery documents

Editing documents

106



Generating HTML Documentation for an XQuery Docu-
ment

To generate HTML documentation for an XQuery document similar with the Javadoc documentation for
Java classes use the dialog XQuery Documentation. It is opened with the action XML Tools → Generate
Documentation → XQuery Documentation... . . The dialog enables the user to configure a set of para-
meters of the process of generating the HTML documentation. The parameters are:

Figure 4.58. The XQuery Documentation dialog

Input The Input panel allows the user to specify either the File or the

Editing documents

107



Folder which contains the files for which to generate the docu-
mentation. One of the two text fields of the Input panel must con-
tain the full path to the XQuery file. Extensions for the xquery
files contained in the specified directory can be added as comma
separated values. Default there are offered xquery, xq, xqy.

Default function namespace Optional URI for the default namespace for the submitted XQuery
if it exists.

Predefined function namespaces Optional engine dependent, predefined namespaces that the sub-
mitted XQuery refers to. They allow the conversion to generate
annotation information to support the presentation component's
hypertext linking if the predefined modules have been loaded into
the local xqDoc XML repository.

Open in browser When checked, the generated documentation will be opened in an
external browser.

Output Allows the user to specify where the generated documentation
will be saved on disk.

Editing CSS stylesheets
<oXygen/> provides special support for developing CSS stylesheet documents.

Validating CSS stylesheets
<oXygen/> includes a built-in CSS validator integrated with the general validation support. This brings
the usual validation features to CSS stylesheets.

Content Completion in CSS stylesheets
A content completion assistant similar to the one of XML documents offers the CSS properties and the
values available for each property. It is activated on the CTRL + Space shortcut and it is context sensit-
ive when it is invoked for the value of a property.

Figure 4.59. Content Completion in CSS stylesheets

Folding in CSS stylesheets

Editing documents

108



In a large CSS stylesheet document some styles may be collapsed so that only the needed styles remain
in focus. The same folding features available for XML documents are also available in CSS stylesheets.

Figure 4.60. Folding in CSS stylesheets

Formatting and indenting CSS stylesheets (pretty print)
If the edited CSS stylesheet becomes unreadable because of the bad alignment of the text lines the
pretty-print operation available for XML documents is also available for CSS stylesheets. It works in the
same way as for XML documents and is available as the same menu and toolbar action.

Other CSS editing actions
The CSS editor type offers a reduced version of the popup menu available in the XML editor type, that
means only the folding actions,the edit actions and a part of the source actions (only the actions To
lower case, To upper case, Capitalize lines).

Scratch Buffer
A handy addition to the document editing is the Scratch Buffer view used for storing fragments of arbit-
rary text during the editing process. It can be used to drop bits of paragraphs (including arbitrary xml
markup fragments) while rearranging and editing the document. The Scratch Buffer is basically a text
area offering XML syntax highlight. The view contextual menu contains basic edit actions: Cut, Copy,
Paste a. o.

Editing documents

109



Chapter 5. Transforming documents
XML is designed to store, carry, and exchange data, not to display data. When we want to view the data
we must either have an XML compliant user agent or transform it to a format that can be read by other
user agents. This process is known as transformation.

Status messages generated during transformation are displayed in the Console view.

Output formats
Within the current version of <oXygen/> you can transform your XML documents to the following
formats without having to exit from the application. For transformation to formats not listed simply in-
stall the tool chain required to perform the transformation and process the xml files created with
<oXygen/> in accordance with the processor instructions.

PDF Adobe Portable Document Format (PDF) is a compact binary file format that can be
viewed and printed by anyone, anywhere across a broad range of hardware and soft-
ware using the free PDF Viewer from Adobe [ht-
tp://www.adobe.com/products/acrobat/readstep.html].

PS PostScript is the leading printing technology from Adobe [ht-
tp://www.adobe.com:80/products/postscript/main.html] for high-quality, best-
in-class printing solutions ranging from desktop devices to the most advanced digit-
al presses, platemakers, and large format image setters in the world. Postscript files
can be viewed using viewers such as GhostScript, but are more commonly created
as a prepress format.

TXT Text files are Plain ASCII Text and can be opened in any text editor or word pro-
cessor.

XML XML stands for eXtensible Markup Language and is a W3C [ht-
tp://www.w3c.org/XML/] standard markup language, much like HTML, which was
designed to describe data. XML tags are not predefined in XML. You must define
your own tags. XML uses a Document Type Definition (DTD), an XML Schema or
a Relax NG schema to describe the data. XML with a DTD, XML Schema or Relax
NG schema is designed to be self-descriptive. XML is not a replacement for HTML.
XML and HTML were designed with different goals:

• XML was designed to describe data and to focus on what data is.

• HTML was designed to display data and to focus on how data looks.

• HTML is about displaying information, XML is about describing information.

XHTML XHTML stands for eXtensible HyperText Markup Language, a W3C [ht-
tp://www.w3c.org/MarkUp/] standard. XHTML is aimed to replace HTML. While
almost identical to HTML 4.01, XHTML is a stricter and cleaner version of HTML.
XHTML is HTML defined as an XML application.

All formatting during a transformation is provided under the control of an Extensible Stylesheet
(XSLT). Specifying the appropriate XSLT enables transformation to the above formats and preparation
of output files for specific user agent viewing applications, including:

110

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com:80/products/postscript/main.html
http://www.adobe.com:80/products/postscript/main.html
http://www.adobe.com:80/products/postscript/main.html
http://www.w3c.org/XML/
http://www.w3c.org/XML/
http://www.w3c.org/XML/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/


HTML HTML stands for Hyper Text Markup Language and is a W3C Standard [ht-
tp://www.w3c.org/MarkUp/] for the World Wide Web. HTML is a text file contain-
ing small markup tags. The markup tags tell the Web browser how to display the
page. An HTML file must have an htm or html file extension. An HTML file can be
created using a simple text editor.

HTML Help Microsoft HTML Help [ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vscon
HH1Start.asp?frame=true] is the standard help system for the Windows platform.
Authors can use HTML Help to create online help for a software application or to
create content for a multimedia title or Web site. Developers can use the HTML
Help API to program a host application or hook up context-sensitive help to an ap-
plication.

JavaHelp JavaHelp software is a full-featured, platform-independent, extensible help system
from Sun Microsystems [http://java.sun.com/products/javahelp/index.html] that en-
ables developers and authors to incorporate online help in applets, components, ap-
plications, operating systems, and devices. JavaHelp is a free product and the binar-
ies for JavaHelp can be redistributed.

Eclipse Help Eclipse Help is the help system incorporated in the Eclipse platform [ht-
tp://www.eclipse.org/] that enables Eclipse plugin developers to incorporate online
help in their plugins.

Many other target formats are possible, these are the most popular. The basic condition for transforma-
tion to any format is that your source document is well-formed. Always, make sure that the XSL used
for the transformation is the right one according to the desired output format and with the input source
definition. For example, if you want to transform to HMTL format using a DocBook html stylesheet,
your source xml document should respect the DocBook DTD.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an in-
stance of the class is transformed into an output document by using special formatting vocabulary.

XSL consists of three parts:

XSL Transformations (XSLT) XSLT is a language for transforming XML documents.

XML Path (XPath) Language XPath is an expression language used by XSLT to access or refer
parts of an XML document. (XPath is also used by the XML
Linking specification).

XSL Formatting Objects (XSL:FO) XSL:FO is an XML vocabulary for specifying formatting se-
mantics.

<oXygen/> supports XSLT/XPath version 1.0 using Saxon 6.5.5, Xalan, Xsltproc, MSXML (3.0, 4.0,
.NET) and XSLT/XPath 2.0 by using Saxon 8.7.1 B, Saxon 8.7.1 SA and Saxon.NET. Also the valida-
tion is done in function of the stylesheet version.

Transformation scenario
Before transforming the current edited XML document in <oXygen/> you must define a transformation
scenario to apply to that document. A scenario is a set of values for various parameters defining a trans-
formation. It is not related to any particular document but to a document type:

Transforming documents

111

http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://java.sun.com/products/javahelp/index.html
http://java.sun.com/products/javahelp/index.html
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/


Scenarios that apply to XML files Such a scenario contains the location of an XSLT stylesheet that
is applied on the edited XML document and other transform para-
meters.

Scenarios that apply to XSL files Such a scenario contains the location of an XML document that
the edited XSL file is applied on and other transform parameters.

In order to apply a transformation scenario one has to press the Apply transformation scenario button
from the toolbar. Alternatively, transform actions can be applied from the Project view's contextual
menu without having to open the files:

• Configure transformation scenario - allows the configuration of file's associated transformation scen-
ario. If no transformation scenario is associated with the file, then the menu action is disabled.

• Apply transformation scenario - applies the associated transformation scenario on the selected files. If
the currently processed file does not have an associated transformation scenario then the Configure
transformation scenario dialog is opened.

• Transform with... - allows the user to select a transformation scenario to be applied on the currently
selected files.

Built-in transformation scenarios
If the Apply Transformation Scenario toolbar button is pressed, currently there is no scenario associated
with the edited document and the edited document contains a "xml-stylesheet" processing instruction re-
ferring to a XSLT stylesheet (commonly used for display in Internet browsers), then <oXygen/> will
prompt the user and offer the option to associate the document with a default scenario containing in the
XSL URL field the URL from the href attribute of the processing instruction. This scenario will have the
"Use xml-stylesheet declaration" checkbox set by default, will use Saxon as transformation engine, will
perform no FO processing and will store the result in a file with the same URL as the edited document
except the extension which will be changed to html. The name and path will be preserved because the
output file name is specified with the help of two macros: ${cfd} and ${cfn}.

<oXygen/> comes with preconfigured built-in scenarios for usual transformations that enable the user to
obtain quickly the desired output: associate one of the built-in scenarios with the current edited docu-
ment and then apply the scenario with just one click.

Defining a new transformation scenario
The Configure Scenario dialog is used to associate a scenario from the list of all scenarios with the ed-
ited document by selecting an entry from the list. The dialog is opened by pressing the Configure Trans-
formation Scenario button on the toolbar of the document view. Once selected the scenario will be ap-
plied with only one click on the Apply Transformation button on the same toolbar. Pressing the Apply
Transformation button before associating a scenario with the edited document will invoke first the Con-
figure Scenario dialog and then apply the selected scenario.

Open the Configure Transformation dialog by selecting XML → Configure transformation scenario.
(Ctrl+Shift+C) Complete the dialog as follows:

Figure 5.1. The Configure Transformation Dialog - XSLT Tab

Transforming documents

112



XSL URL Specifies an input XSL file to be used for the transformation.

Insert macros button Opens a dialog allowing to introduce special <oXygen/> macros
in the XSL URL field.

Button Browse for local input XSL
file

Opens a file browser dialog allowing to select a local file name
for the XSL URL field.

Button Browse for remote input
XSL file

Opens a file browser dialog allowing to select a remote file name
for the XSL URL field.

Button Open XSL file Opens the file with the path specified in the XSL URL path in a
new editor panel.

Checkbox Use "xml-stylesheet" de-
claration

Use the stylesheet declared with an "xml-stylesheet" declaration
instead of the stylesheet specified in the XSL URL field.

Combo box Transformer This combo box contains all the transformer engines available for
applying the stylesheet. If you want to change the default selected
engine just select other engine from the drop down list of the
combo box.

Button Parameters Opens the dialog for configuring the XSLT parameters.

Button Append header and footer Opens a dialog for specifying a URL for a header HTML file ad-

Transforming documents

113



ded at the beginning of the result of an HTML transformation and
a URL for a footer HTML file added at the end of the HTML res-
ult.

Button Additional XSLT stylesheets Opens the dialog for adding XSLT stylesheets which are applied
on the result of the main stylesheet specified in the XSL URL
field.

Button Extensions Opens the dialog for configuring the XSLT/XQuery extension
jars or classes which define extension functions called from the
XSLT/XQuery transformation.

Figure 5.2. The Configure Transformation Dialog - FO Processor Tab

Checkbox Perform FO Processing Enable or disable the use of FOP during the transformation.

Radio button XSLT result as input The FO processor is applied to the result of applying the XSLT
stylesheet.

Radio button Edited document as
input

The FO processor is applied directly to the current edited docu-
ment.

Combo box Method The output format of the FO processing: PDF, PostScript or plain
text.

Combo box Processor The FO processor, which can be the built-in Apache FOP pro-
cessor or an external processor.

Transforming documents

114



Figure 5.3. The Configure Transformation Dialog - Output Tab

Radio button Prompt for file At the end of the transformation it will be displayed a file browser
dialog for specifying the path and name of the file which will
store the transformation result.

Text field Save As The path of the file where it will be stored the transformation res-
ult. The path can include special <oXygen/> macros.

Check box Open in browser If this is checked <oXygen/> will open automatically the trans-
formation result in a browser application specific for the type of
that result (HTML/XHTML, PDF, text).

Radio button Saved file When Open in browser is selected this button can be selected to
specify that <oXygen/> should open the file specified in the Save
As text field.

Radio button Other location When Open in browser is selected this button can be used to spe-
cify that <oXygen/> should not open the file specified in the Save
As text field, it should open the file specified in the text field of
the Other location radio button. The file path can include special
<oXygen/> macros.

Transforming documents

115



Check box Show As XHTML It is enabled only when Open in browser is disabled and if this is
checked <oXygen/> will display the transformation result in a
built-in XHTML browser panel of the <oXygen/> window.

Important

When transforming very large documents you
should be aware that enabling this feature will result
in a very long transformation time. This drawback
appears due to the Java XHTML browser imple-
mentation. In this situations if you wish to see the
result of the transformation you should use an ex-
ternal browser.

Check box Show As XML If this is checked <oXygen/> will display the transformation res-
ult in an XML viewer panel with syntax highlight specific for
XML documents.

Check box Show As SVG If this is checked <oXygen/> will display the transformation res-
ult in a SVG viewer panel by rendering the result as a SVG im-
age.

Text field Image URLs are relative
to

If Show As XHTML is checked this text field specifies the path for
resolving image paths contained in the transformation result.

XSLT Stylesheet Parameters

The parameters of the XSLT stylesheet used in the transformation scenario are configured from the dia-
log available from the Parameters button:

Figure 5.4. Configure parameters dialog

Transforming documents

116



The table presents all the parameters of the XSLT stylesheet and all imported and included stylesheets
with their current values. If a parameter value was not edited then the table presents its default value.
The bottom panel presents the default value of the parameter selected in the table and the system ID of
the stylesheet that declares it.

For setting the value of a parameter declared in the stylesheet in a namespace, for example:

<xsl:param name="p:param" xmlns:p="namespace">default</xsl:param>

use the following expression in the Name column of the Parameters dialog:

{namespace}param

Additional XSLT Stylesheets

The list of additional XSLT stylesheets can be edited in the dialog opened by the button "Additional
XSLT Stylesheets".

Transforming documents

117



Figure 5.5. Edit additional XSL stylesheets list dialog

Add Adds a stylesheet in the "Additional XSLT stylesheets" list using a file browser dialog , also
you can type a macro in the file name field of the browser dialog. The name of the stylesheet
will be added in the list after the current selection.

New Opens a dialog in which you can type the name of a stylesheet. The name is considered relat-
ive to the URL of the current edited XML document. You can use macros in the name of the
stylesheet. The name of the stylesheet will be added in the list after the current selection.

Remove Deletes the selected stylesheet from the "Additional XSLT stylesheets" list.

Up Move the selected stylesheet up in the list.

Down Move the selected stylesheet down in the list.

The path specified in the URL text field can include special <oXygen/> macros.

Scenario Macros

In the fields reserved for: input URL (XSL URL or XML URL, depending on scenario type), header
URL, footer URL, the URLs in the list of additional XSLT stylesheets, image base URL, the user can
use the following macros:

${frameworks} the path of the frameworks subdirectory of the <oXygen/> install directory

${home} the path of the user home directory

${cfdu} current file directory url - the path of the current edited document up to the name
of the parent directory as URL

${cfn} current file name - the name of the current edited document without extension and

Transforming documents

118



parent directory

In the Save As field from the Output tab, the user can use the following macros:

${frameworks} the path of the frameworks subdirectory of the <oXygen/> install directory

${home} the path of the user home directory

${cfd} current file directory - the path of the current edited document up to the name of
the parent directory

${cfn} current file name - the name of the current edited document without extension and
parent directory

The macros defined here can also be used in the values set for the parameters of the transformation (e.g.
base.dir).

XSLT/XQuery Extensions

The edit extensions dialog is used to specify the jars and classes containing extension functions called
from the XSLT/XQuery file of the current transformation scenario.

Figure 5.6. The XSLT/XQuery Extension Edit Dialog

An extension function called from the XSLT or XQuery file of the current transformation scenario will
be searched in the specified extensions in the order of the list displayed in the dialog. For changing the
order of the items the user must select the item that must be moved to other position in the list and press
the up and down buttons.

Use the following procedure to create a scenario.

Transforming documents

119



1. Select XML → Configure transformation scenario (Ctrl+Shift+C) to open the Configure Trans-
formation dialog.

2. Click the Duplicate Scenario button of the dialog to create a copy of the current scenario.

3. Click in the Name field and type a new name.

4. Click OK or Transform Now to save the scenario.

Exporting and importing the transformation scenarios
The option to Export Transformation Scenarios is used to store all the scenarios in a separate file , a
properties file. In this file will also be saved the associations between document URLs and scenarios.
The saved URLs are absolute . You can load the saved scenarios using Import Transformation Scenarios
option. All the imported scenarios will have added to the name the word 'import'.

• The action Window → Preferences+oXygen / Scenarios Management+ Import transformation

scenarios loads a properties file with scenarios.

• The action Window → Preferences+oXygen / Scenarios Management+ Export transformation

scenarios stores all the scenarios in a separate file , a properties file.

XSL-FO processors
The <oXygen/> installation package is distributed with the Apache [http://www.apache.org]FOP [ht-
tp://xml.apache.org/fop/index.html] (Formatting Objects Processor) for rendering your XML documents
to PDF. FOP is a print and output independent formatter driven by XSL Formatting Objects. FOP is im-
plemented as a Java application that reads a formatting object tree and renders the resulting pages to a
specified output.

Tip

To include PNG images in the final PDF document you need the JIMI [ht-
tp://java.sun.com/products/jimi/] or JAI [http://java.sun.com/products/java-media/jai/] lib-
raries. For TIFF images you need the JAI [http://java.sun.com/products/java-media/jai/]
library. The JIMI and JAI libraries are not bundled with <oXygen/> due to Sun's licensing.
Using them is as easy as downloading them and copying the necessary jar files (required
by the library documentation) in the lib subdirectory of the <oXygen/> installation direct-
ory. This means JimiProClasses.zip for JIMI and jai_core.jar, jai_codec.jar and mlibwrap-
per_jai.jar for JAI. For the JAI package you also need to include the directory containing
the native libraries (mlib_jai.dll and mlib_jai_mmx.dll on Windows) in the PATH system
variable.

The MacOS X version of the JAI library can be downloaded from ht-

Transforming documents

120

http://www.apache.org
http://www.apache.org
http://xml.apache.org/fop/index.html
http://xml.apache.org/fop/index.html
http://xml.apache.org/fop/index.html
http://java.sun.com/products/jimi/
http://java.sun.com/products/jimi/
http://java.sun.com/products/jimi/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html
http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html


. In order to use it, install the downloaded package.

Other FO processors can be configured in the Preferences -> FO Processors panel.

Common transformations
The following examples use the DocBook XSL Stylesheets to illustrate how to configure <oXygen/> for
transformation to the various target formats.

Note

<oXygen/> comes with the latest versions of the DocBook and TEI frameworks including
special XSLT stylesheets for DocBook and TEI documents. DocBook XSL extensions for
the Saxon and Xalan processors are included in the frameworks/doc-
book/xsl/extensions directory. Also the FXSL (Functional Programming Library
for XSLT) stylesheets [http://fxsl.sourceforge.net/] are shipped with <oXygen/>.

The following steps are common to all the example procedures below.

1. Set the editor focus to the document to be transformed.

2. Select XML → Configure transformation scenario (Ctrl+Shift+C) to open the Configure Trans-
formation dialog.

3. If you want to edit an existing scenario select that scenario in the list and press the Edit button. If
you want to create a new scenario press the New button. If you want to create a new scenario based
on an existing scenario select the scenario in the list and press the Duplicate button.

4. Select the XSLT tab.

5. Click the "Browse for an input XSL file button". The Open dialog is displayed.

Note

During transformations the Editor Status Bar will show "Transformation - in progress".
The transformation is successfully complete when the message "XSL transformation suc-
cessful" displays. If the transform fails the message "XSL transformation failed" is dis-
played as an error message in the Messages Panel. The user can stop the transformation
process at any point by pressing the "Stop transformation" button. In this case the message
displayed in the status bar will be "Transformation stopped by user".

PDF Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/fo/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

Transforming documents

121

http://fxsl.sourceforge.net/
http://fxsl.sourceforge.net/
http://fxsl.sourceforge.net/


4. Check the Perform FOP option. The remaining options are enabled.

5. Select the following options:

a. XSLT result as input.

b. PDF as method.

c. Built-in(Apache FOP) as processor.

6. Select the Output tab.

7. In the Save As field enter the output file name relative to the current directory (YourFile-
Name.pdf ) or the path and output file name (C:\FileDirectory\YourFileName.pdf).

8. Optionally, uncheck the XHTML and XML check boxes in the Show As group.

9. Click Transform Now. The transformation is started.

PS Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/fo/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Check the Perform FOP option. The remaining options are enabled.

5. Select the following options:

a. XSLT result as input.

b. PS as method.

c. Built-in(Apache FOP) as processor.

6. Select the Output tab.

7. In the Save As field enter the output file name relative to the current directory (YourFile-
Name.ps ) or the path and output file name (C:\FileDirectory\YourFileName.ps).

8. Optionally, uncheck the XHTML and XML check boxes in the Show As group.

9. Click Transform Now. The transformation is started.

TXT Output

Transforming documents

122



1. Change directory to [oxygen]/frameworks/docbook/xsl/fo/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Check the Perform FOP option. The remaining options are enabled.

5. Select the following options:

a. XSLT result as input.

b. TXT as method.

c. Built-in(Apache FOP) as processor.

6. Select the Output tab.

7. In the Save As field enter the output file name relative to the current directory (YourFile-
Name.txt ) or the path and output file name (C:\FileDirectory\YourFileName.txt).

8. Optionally, uncheck the XHTML and XML check boxes in the Show As group.

9. Click Transform Now. The transformation is started.

HTML Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/html/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Uncheck the Perform FOP option. The FOP options are disabled.

5. Select the Output tab.

6. In the Save As field enter the output file name relative to the current directory (YourFile-
Name.html ) or the path and output file name
(C:\FileDirectory\YourFileName.html).

a. If your pictures are not located relative to the out location, check the XHTML check box in the
Show As group.

b. Specify the path to the folder or URL where the pictures are located

7. Click Transform Now. The transformation is started.

Transforming documents

123



HTML Help Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/htmlhelp/.

2. Select htmlhelp.xsl, click Open. The dialog closes.

3. Set the XSLT parameter base.dir, it identifies the output directory. (If not specified, the output dir-
ectory is system dependent.) Also set the manifest.in.base.dir to 1 in order to have the project files
copied in output as well.

4. Select the FOP tab.

5. Uncheck the Perform FOP option. The FOP options are disabled.

6. Click Transform Now. The transformation is started.

7. At the end of the transformation you should find the html, hhp and hhc files in the base.dir direct-
ory.

8. Download Microsoft's HTML Help Workshop and install it.

9. Apply the HTML Help compiler called hhc.exe on the html, hhp and hhc files in the base.dir
directory.

JavaHelp Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/javahelp/.

2. Select javahelp.xsl, click Open. The dialog closes.

3. Set the XSLT parameter base.dir, it identifies the output directory. (If not specified, the output dir-
ectory is system dependent.)

4. Select the FOP tab.

5. Uncheck the Perform FOP option. The FOP options are disabled.

6. Click Transform Now. The transformation is started.

XHTML Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/xhtml/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Uncheck the Perform FOP option. The FOP options are disabled.

Transforming documents

124



5. Select the Output tab.

6. In the Save As field enter the output file name relative to the current directory (YourFile-
Name.html ) or the path and output file name
(C:\FileDirectory\YourFileName.html).

a. If your pictures are not located relative to the out location, check the XHTML check box in the
Show As group.

b. Specify the path to the folder or URL where the pictures are located

7. Click Transform Now. The transformation is started.

Supported XSLT processors
The <oXygen/> distribution comes with the following XSLT processors:

Xalan 2.7.0 Xalan-Java http://xml.apache.org/xalan-j/ is an XSLT processor for transforming
XML documents into HTML, text, or other XML document types. It implements
XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Ver-
sion 1.0.

Saxon 6.5.5 Saxon 6.5.5 [http://saxon.sourceforge.net/saxon6.5.5/] is an XSLT processor,
which implements the Version 1.0 XSLT and XPath with a number of powerful
extensions. This version of Saxon also includes many of the new features that
were first defined in the XSLT 1.1 working draft, but for conformance and portab-
ility reasons these are not available if the stylesheet header specifies ver-
sion="1.0".

Saxon 8.7.1 B Saxon-B http://saxon.sf.net/ implements the "basic" conformance level for XSLT
2.0 and XQuery. The term basic XSLT 2.0 processor is defined in the draft XSLT
2.0 specifications: it is a conformance level that requires support for all features of
the language other than those that involve schema processing.

Besides the above list <oXygen/> supports the following processors:

Xsltproc (libxslt) Libxslt http://xmlsoft.org/XSLT/ is the XSLT C library developed for the
Gnome project. Libxslt is based on libxml2 the XML C library developed
for the Gnome project. It also implements most of the EXSLT set of pro-
cessor-portable extensions functions and some of Saxon's evaluate and ex-
pressions extensions. The libxml2 version included in <oXygen/> is 2.6.23
and the libxslt version is 1.1.15

<oXygen/> uses Libxslt through its command line tool (Xsltproc). The
XSLT processor is included into the distribution kit of the stand-alone ver-
sion for Windows and Mac OS X. Because there are differences between
different Linux distributions, on Linux you must install Libxslt on your
machine as a separate application and set the PATH variable to contain the
Xsltproc executable.

Transforming documents

125

http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sf.net/
http://xmlsoft.org/XSLT/


If you do not have the Libxslt library already installed, you should copy
the following files from <oXygen/> stand-alone installation directory to
root of the com.oxygenxml.editor_7.2.0 plugin

• Windows: xsltproc.exe;
zlib1.dll,libxslt.dll,libxml2.dll,libexslt.dll,iconv.dll

• Linux: xsltproc,libexslt.so.0, libxslt.so.1,libxsml2.so.2

• Mac OSX: xsltproc.mac, libexslt, libxslt, libxml

MSXML 3.0/4.0 MSXML 3.0/4.0 http://msdn.microsoft.com/xml/ is available only on Win-
dows 2000, Windows NT and Windows XP platforms. It can be used for
transformation and validation of XSLT stylesheets.

<oXygen/> use the Microsoft XML parser through its command line tool
msxsl.exe [ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/
msxsl.asp]

Because msxsl.exe is only a wrapper, Microsoft Core XML Services
(MSXML) must be installed on the computer otherwise you get an corres-
ponding warning. You can get the latest Microsoft XML parser from Mi-
crosoft web-site ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4
F2-46DA-B4B6-C5D7485F2B42&displaylang=en [ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4
F2-46DA-B4B6-C5D7485F2B42&displaylang=en]

MSXML .NET MSXML .NET http://msdn.microsoft.com/xml/ is available only on Win-
dows NT4, Windows 2000 and Windows XP platforms. It can be used for
transformation and validation of XSLT stylesheets.

<oXygen/> performs XSLT transformations and validations using .NET
Framework's XSLT implementation (System.Xml.Xsl.XslTransform class)
through the nxslt [http://www.tkachenko.com/dotnet/nxslt.html] command
line utility.The nxslt version included in <oXygen/> is 1.6.

You should have the .NET Framework version 1.0 already installed on
your system otherwise you get this warning: MSXML.NET requires .NET
Framework version 1.0 to be installed. Exit code: 128

You can get the .NET Framework version 1.0 from Microsoft web-site ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83
f-4e21-b05a-009d06457787&displaylang=en [ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83
f-4e21-b05a-009d06457787&displaylang=en]

.NET 1.0 A transformer based on the System.Xml 1.0 library available in the .NET
1.0 and .NET 1.1 frameworks from Microsoft (ht-
tp://msdn.microsoft.com/xml/). It is available only on Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed
on your system otherwise you get this warning: MSXML.NET requires
.NET Framework version 1.0 to be installed. Exit code: 128

You can get the .NET Framework version 1.0 from Microsoft web-site ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83

Transforming documents

126

http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://msdn.microsoft.com/xml/
http://www.tkachenko.com/dotnet/nxslt.html
http://www.tkachenko.com/dotnet/nxslt.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/xml/


f-4e21-b05a-009d06457787&displaylang=en [ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83
f-4e21-b05a-009d06457787&displaylang=en]

.NET 2.0 A transformer based on the System.Xml 2.0 library available in the .NET
2.0 framework from Microsoft (http://msdn.microsoft.com/xml/). It is
available only on Windows.

You should have the .NET Framework version 2.0 already installed on
your system otherwise you get this warning: MSXML.NET requires .NET
Framework version 2.0 to be installed. Exit code: 128

You can get the .NET Framework version 2.0 from Microsoft web-site ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356
b-4a2c-857c-e62f50ae9a55&DisplayLang=en [ht-
tp://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356
b-4a2c-857c-e62f50ae9a55&DisplayLang=en]

Saxon 8SA Saxon-8SA http://www.saxonica.com/ is the schema-aware edition of Sax-
on-8B and it is available on a commercial license from the Saxonica [ht-
tp://www.saxonica.com/] site. Saxon-SA includes an XML Schema pro-
cessor, and schema-aware XSLT, XQuery, and XPath processors

In order to use it with <oXygen/> you have to place the saxon8sa.jar and
the license key from Saxonica in the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/lib folder
Also you have to add the entry

<library name="lib/saxon8sa.jar"/>

to the <runtime> section of the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/plugin.xml
file and restart Eclipse with the -clean parameter.

Saxon.NET Saxon.NET http://weblog.saxondotnet.org/ is the port of Saxon-8B XSLT
processor to the .NET platform and it is available on a Mozilla Public Li-
cense 1.0 (MPL) from the Mozilla [ht-
tp://www.mozilla.org/MPL/MPL-1.0.html] site.

In order to use it with <oXygen/> you have to unzip the Saxon.NET distri-
bution ht-
tp://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip
[ht-
tp://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip]
in the <oXygen/> install folder.

You should have the .NET Framework version 1.1 already installed on
your system otherwise you get this warning: Saxon.NET requires .NET
Framework 1.1 to be installed.

You can get the .NET Framework version 1.1 from Microsoft web-site ht-
tp://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f
589-4842-8157-034d1e7cf3a3&displayLang=en [ht-
tp://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f
589-4842-8157-034d1e7cf3a3&displayLang=en]

Note

Transforming documents

127

http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.saxonica.com/
http://www.saxonica.com/
http://www.saxonica.com/
http://www.saxonica.com/
http://weblog.saxondotnet.org/
http://www.mozilla.org/MPL/MPL-1.0.html
http://www.mozilla.org/MPL/MPL-1.0.html
http://www.mozilla.org/MPL/MPL-1.0.html
http://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip
http://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip
http://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip
http://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip
http://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en


There is no integrated XML Catalog support for MSXML 3.0/4.0 and .NET processors.

Configuring custom XSLT processors
One can configure other XSLT transformation engines than the ones which come with the <oXygen/>
distribution. Such an external engine can be used for XSLT transformations within <oXygen/>, in the
Editor perspective, and is available in the list of engines in the dialog for editing transformation scenari-
os. However it cannot be used in the XSLT Debugger perspective.

Configuring the XSLT processor extensions
paths

The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike
a literal result element, which the stylesheet simply transfers to the result tree, an extension element per-
forms an action. The extension is usually used because the xslt stylesheet fails in providing adequate
functions to the user for accomplishing a more complex task.

Samples on how to use extensions can be found at:

• for Xalan - http://xml.apache.org/xalan-j/extensions.html

• for Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html

• for Saxon 8.7.1 - http://www.saxonica.com/documentation/extensions/intro.html

In order to ease the configuration of XSLT processor extension path, you can use the Extensions button
of the scenario edit dialog.

As alternative the manual configuration must be performed with the following steps in order to find and
use successfully the Java extension classes:

• Place extension jars in the <oXygen/> plugin lib folder.

• Add references to the custom jars in the plugin/runtime section of the plugin.xml file.

• Restart Eclipse. Make sure you start Eclipse passing it -clean in the command line arguments, other-
wise the new jars will not be seen by Eclipse.

• Place extension jars in the <oXygen/> plugin lib folder.

• Add references to the custom jars in the plugin/runtime section of the plugin.xml file.

• Restart Eclipse. Make sure you start Eclipse passing it -clean in the command line arguments, other-
wise the new jars will not be seen by Eclipse.

Transforming documents

128

http://xml.apache.org/xalan-j/extensions.html
http://saxon.sourceforge.net/saxon6.5.5/extensions.html
http://www.saxonica.com/documentation/extensions/intro.html


Chapter 6. Querying documents
Running XPath expressions
What is XPath

XPath is a language for addressing specific parts of an XML document. XPath, like the Document Ob-
ject Model (DOM), models an XML document as a tree of nodes. An XPath expression is a mechanism
for navigating through and selecting nodes from the XML document. An XPath expression is in a way
analogous to a Structured Query Language (SQL) query used to select records from a database.

XPath models an XML document as a tree of nodes. There are different types of nodes, including ele-
ment nodes, attribute nodes and text nodes. XPath defines a way to compute a string-value for each type
of node.

XPath defines a library of standard functions for working with strings, numbers and Boolean expres-
sions.

Examples:

child: : * Select all children of the root node.

.//name Select all elements having the name "name", descendants of the current node.

/catalog/cd[price>10.80]Selects all the cd elements that have a price element with a value larger than
10.80

To find out more about XPath, the following URL is recommended: http://www.w3.org/TR/xpath

<oXygen/>'s XPath toolbar
To use XPath effectively requires at least an understanding of the XPath Core Function Library [ht-
tp://www.w3.org/TR/xpath#corelib]. If you have this knowledge the <oXygen/> XPath expression field
part of the current editor toolbar can be used to aid you in XML document development.

In <oXygen/> a XPath 1.0 or XPath 2.0 expression is typed and executed on the current document from
the menu XML → XPath (Ctrl+Shift+/) or from the toolbar button

The content completion assistant that helps in entering XPath expressions in attributes of XSLT
stylesheets elements is also available in the XPath console and offers always proposals dependent of the
current context of the cursor inside the edited document. The set of XPath functions proposed by the as-
sistant depends on the XPath version selected from the drop-down menu of the XPath button (1.0 or
2.0).

In the following example the cursor is on a person element and the content completion assistant offers
all the child elements of the person element and all XPath 2.0 functions:

Figure 6.1. Content Completion in the XPath console

129

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath#corelib
http://www.w3.org/TR/xpath#corelib
http://www.w3.org/TR/xpath#corelib


The evaluation of the XPath expression tries to resolve the locations of documents referred in the ex-
pression through the XML catalogs which are configured in Preferences and the current XInclude pref-
erences, for example when evaluating the collection(URIofCollection) function (XPath 2.0).

The results of an XPath query are returned in the Message Panel. Clicking a record in the result list high-
lights the nodes within the editing panel. Results are returned in a format that is a valid XPath expres-
sion:

- [FileName.xml] /node[value]/node[value]/node[value] -

Note

XPath 2.0 queries are executed using Saxon 8 B transformation engine and they are not
schema aware. If you try to impose type restrictions in a XPath 2.0 query they are ignored.

The popup menu of the history list of the XPath dialog contains the action Remove for removing the se-
lected expression from the history list.

Example 6.1. XPath Utilization with DocBook DTD

Our example is taken from a DocBook book based on the DocBook XML DTD. The book contains a
number of chapters. DocBook defines that chapters as have a <chapter> start tag and matching
</chapter> end tag to close the element. To return all the chapter nodes of the book enter //chapter into
the XPath expression field, then Enter. This will return all the chapter nodes of the DocBook book, in
the Message Panel. If your book has six chapters, their will be six records in the result list. Each record
when clicked will locate and highlight the chapter and all sibling nodes contained between the start and

Querying documents

130



end tags of the chapter.

If we used XPath to query for all example nodes contained in the section 2 node of a DocBook XML
document we would use the following XPath expression //chapter/sect1/sect2/example. If an example
node is found in any section 2 node, a result will be returned to the message panel. For each occurrence
of the element node a record will be created in the result list.

In our example an XPath query on the file oxygen.xml determined that:

- [oxygen.xml] /chapter[1]/sect1[3]/sect2[7]/example[1]

Which means:

In the file oxygen.xml, first chapter, third section level 1, seventh section level 2, the example node
found is the first in the section.

Note

If your project is comprised of a main file with ENTITY references to other files, you can
use XPath to return all the name elements of a certain type by querying the main file. The
result list will query all referenced files.

Important

If the document defines a default namespace then <oXygen/> will bind this namespace to
the first free prefix from the list: default, default1, default2, etc. For example if the docu-
ment defines the default namespace xmlns="something" and the prefix default is not asso-
ciated with a namespace then you can match tags without prefix in a XPath expression
typed in the XPath console by using the prefix default. For example to find all the level
elements when the root element defines a default namespace you should execute in the
XPath console the expression:

//default:level

To define default mappings between prefixes that can be used in the XPath console and namespace URIs
go to the XPath Options user preferences panel and enter the mappings in the Default prefix-

namespace mappings table. The same preferences panel allows also the configuration of the default
namespace used in XPath 2.0 expressions entered into the XPath toolbar and the creation of different
results panels for XPath queries executed on different XML documents.

To apply a XPath expression relative to the element on which the caret is positioned use the action XML
editor contextual menu → XML Document → Copy XPath (Ctrl+Shift+.) (also available on the context
menu of the main editor panel) to copy the XPath expression of the element to the clipboard and the
Paste action of the contextual menu of the XPath console to paste this expression in the console. Then
add your relative expression and execute the resulting complete expression.

The popup menu available on right click in the Expression panel of the XPath expressions dialog offers
the usual edit actions (Cut, Copy, Paste, Select All)

Working with XQuery

Querying documents

131



What is XQuery
XQuery is the query language for XML and is currently under development at the W3C. The many be-
nefits of XQuery include:

• XQuery allows you to work in one common model no matter what type of data you're working with:
relational, XML, or object data.

• XQuery is ideal for queries that must represent results as XML, to query XML stored inside or outside
the database, and to span relational and XML sources.

• XQuery allows you to create many different types of XML representations of the same data.

• XQuery allows you to query both relational sources and XML sources, and create one XML result.

Syntax Highlight and Content Completion
To create a new XQuery document select File → New (Ctrl+N) and when the New Document dialog
appears select XQuery entry.

Once you created the new document <oXygen/> provides syntax highlight for keywords and all known
XQuery functions and operators. Also for these there is available a content completion component that
can be activated by pressing Ctrl+Space keys. The functions and operators are presented together with a
comment about parameters and functionality.

Figure 6.2. XQuery Content Completion

XQuery Validation
With <oXygen/> you can validate your documents before using them in your transformation scenarios.
The validation uses the Saxon 8.7.1 B processor or the 8.7.1 SA, eXist, Berkeley DB XML or X-
Hive/DB if you installed them. This is in conformance with the XQuery Working Draft ht-
tp://www.w3.org/TR/xquery/. The processor is used in two cases: validation of the expression and exe-
cution. Although the execution implies a validation, it is faster to syntactically check the expression
without executing it. The errors that occurred in the document are presented in the messages view at the
bottom of editor window, with a full description message. As with all error messages, if you click on
one entry, the line where the error appeared is highlighted.

Figure 6.3. XQuery Validation

Querying documents

132



Please note that if you choose a processor that doesn't support XQuery validation you will receive a
warning when trying to validate.

Other XQuery editing actions
The XQuery editor type offers a reduced version of the popup menu available in the XML editor type,
that means only the folding actions,the edit actions a part of the source actions (only the actions To
lower case, To upper case, Capitalize lines) and Open file at cursor, Open in system application.

Transforming XML Documents Using XQuery
XQueries are very similar to the XSL stylesheets in the sense they both are capable of transforming an
XML input into another format. You can define transformation scenarios that specify the input URL, the
preview mode, XML or XHTML. The result can be saved and opened in the associated application. You
can even run a FO processor on the output of an XQuery. The transformation scenarios may be shared
between many XQuery files, and are exported at the same time with the XSLT scenarios. The transform-
ation performed can be based on the XML document specified in the Input field, or, if this field is
empty, the documents referred from the query expression are used instead. The parameters of XQuery
transforms must be set in the Parameters dialog. Parameters that are in a namespace must be specified
using the qualified name, for example a param parameter in the http://www.oxygenxml.com/ns
namespace must be set with the name {http://www.oxygenxml.com/ns}param.

The transformation uses the processor Saxon 8.7.1 B or Saxon 8.7.1 SA, eXist, Berkeley DB XML, X-
Hive/DB, MarkLogic or TigerLogic if you installed them. In order to use the transformation engines you
have to enable the appropriate preferences here: Saxon 8.7.1 SA, eXist, Berkeley DB XML, X-Hive/DB,
MarkLogic, TigerLogic preference pages.

How to configure eXist support in <oXygen/>
The latest instructions on how to configure eXist support in <oXygen/> can be found on our website [ht-
tp://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-exist-suppo
rt].

1. Copy eXist database jar resources. You have to copy the following eXist specific files in the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/lib directory

Querying documents

133

http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-exist-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-exist-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-exist-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-exist-support


• exist.jar (check for it into your eXist installation root directory)

• xmldb.jar (check for it into /lib/core subdirectory of your eXist installation root directory)

• xmlrpc-1.2-patched.jar (check for it into /lib/core subdirectory of your eXist installation root dir-
ectory)

If you skip this step the application will display an error message when you try to validate or run
the query.

2. Add the following elements to the <runtime> section of the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/plugin
.xml file which specifies the runtime libraries of the <oXygen/> plugin.

<library name="lib/exist.jar"/>
<library name="lib/xmldb.jar"/>
<library name="lib/xmlrpc-1.2-patched.jar"/>

3. Restart Eclipse with the -clean parameter in the command line.

4. Configure the eXist connection.

Go to Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery -> XQuery -> eXist and
configure the XML DB URI, user and password. If you like to set a default collection you have to
first press the Refresh button in order for the list to be populated.

5. Configure eXist as main validator for XQuery files.

Go to Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery -> XQuery and set eXist
for XQuery validation. Additionally you can set the other options.

6. Validate XQuery.

After step 4, you will benefit of the automatic validation feature and you can use Validate button to
get a list of validation errors.

7. Execute XQuery.

Go to associated scenario configuration and select eXist as the transformation engine.

Note

Validation (points 4 and 5) works only with the development snapshot of eXist database.
In order to take advantage of it, you should check-out the current SVN sources ( ht-
tp://svn.sourceforge.net/viewcvs.cgi/exist/trunk/eXist-1.0/ [ht-
tp://svn.sourceforge.net/viewcvs.cgi/exist/trunk/eXist-1.0/]) and make your own build
(after check-out just run ant). For previous versions (eXist-1.0b2 or the current eXist-
snapshot-20060316.jar kit available on eXist site) you will get a warning that the valida-
tion operation is not available.

Collection/resource management can be done using WebDAV (see ht-
tp://wiki.exist-db.org/space/WebDAV, oxygenXML section).

Querying documents

134

http://svn.sourceforge.net/viewcvs.cgi/exist/trunk/eXist-1.0/
http://svn.sourceforge.net/viewcvs.cgi/exist/trunk/eXist-1.0/
http://svn.sourceforge.net/viewcvs.cgi/exist/trunk/eXist-1.0/
http://svn.sourceforge.net/viewcvs.cgi/exist/trunk/eXist-1.0/
http://wiki.exist-db.org/space/WebDAV
http://wiki.exist-db.org/space/WebDAV


How to configure Berkeley DB XML support in
<oXygen/>

The latest instructions on how to configure Berkeley DB XML support in <oXygen/> can be found on
our website [ht-
tp://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-berkeley-su
pport].

The following directory definitions shall apply:

• OXY_DIR - oXygen installation root directory. (for example on Windows C:\Program Files\Oxygen
7.0)

• DBXML_DIR - Berkeley DB XML database root directory. (for example on Windows C:\Program
Files\Sleepycat Software\Berkeley DB XML 2.2.13)

• DBXML_LIBRARY_DIR (usually on Mac and Unix is DBXML_DIR/lib and on Windows is
DBXML_DIR/bin)

1. You should have Berkeley DB XML database installed on your machine.

http://www.sleepycat.com/products/bdbxml.html

2. Copy Berkeley DB XML jar resources

You have to copy the following Berkeley DB specific files in the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/lib directory

• db.jar (check for it into DBXML_DIR/lib or DBXML_DIR/jar)

• dbxml.jar (check for it into DBXML_DIR/lib or DBXML_DIR/jar)

In case the needed jars are not found you should use --enable-java switch when you build the lib-
raries (more info on http://www.sleepycat.com/xmldocs/ref_xml/xml_unix/intro.html). If you skip
this step the application will display an error message when you try to validate or run the query.

3. Add the following elements to the <runtime> section of the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/plugin
.xml file which specifies the runtime libraries of the <oXygen/> plugin.

<library name="lib/db.jar"/>
<library name="lib/dbxml.jar"/>

4. Restart Eclipse with the -clean parameter in the command line.

5. Add Berkeley DB XML libraries directory to your PATH environment variables.

When running the application, each of the Berkeley DB XML DLLs must be available in a direct-
ory in the PATH. You can achieve this by adding the library directory to the
LD_LIBRARY_PATH (linux), DYLD_LIBRARY_PATH (OS X), or PATH (windows) environ-

Querying documents

135

http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-berkeley-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-berkeley-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-berkeley-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-berkeley-support
http://www.sleepycat.com/products/bdbxml.html
http://www.sleepycat.com/xmldocs/ref_xml/xml_unix/intro.html


ment variable. On Windows the PATH might be already changed properly by the Berkeley DB
XML installation. A common example is PATH=C:\Program Files\Sleepycat Software\Berkeley
DB XML 2.2.13\bin

An alternative way is to modify the following:

• On UNIX: Create a file called oxygen7.0.vmoptions (in case it is not already created) in the
OXY_DIR. The content of the file must be: -Djava.library.path=DBXML_LIBRARY_DIR

• On Mac: Right-click on the <oXygen/> application icon and in the pop-up menu select Show
Package Contents, then in the Contents directory you edit the file Info.plist: in the key
VMOptions add -Djava.library.path=DBXML_LIBRARY_DIR

6. Configure the Berkeley DB environment.

Go to Oxygen and open Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery ->
XQuery -> Berkeley DB XML to configure the environment home directory. This is the directory
where your databases are stored (the DB_HOME setting). You can also set a verbosity level for the
messages to be provided during execution.

7. Configure Berkeley DB XML as main validator for XQuery files.

Go to Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery -> XQuery and set Berke-
ley DBXML for XQuery validation.

8. Execute XQuery.

Go to associated scenario configuration and select Berkeley DBXML as the transformation engine.
The collections from your XQuery are automatically opened if they are available in the environ-
ment home directory you set. For example in the below Query

<clients> {
for $client in collection("invoices.dbxml")

/e5Notification/OrderNotification/Purchase/CustomerData
let $bc := $client//BillingContact
return
<client id="{$bc/Email/text()}">

<name>{$bc/LastName/text()," ",$bc/FirstName/text()}</name>
<company>{$bc/Company/text()}</company>

</client>
} </clients>

How to configure TigerLogic support in <oXygen/>
The latest instructions on how to configure TigerLogic support in <oXygen/> can be found on our web-
site [ht-
tp://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-tigerlogic-s
upport].

Querying documents

136

http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-tigerlogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-tigerlogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-tigerlogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-tigerlogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-tigerlogic-support


1. Copy jar resources. Check your TigerLogic JDK lib directory from the server side (for example
C:\Program Files\rainingdata\tigerlogic\tljdk\lib) and copy the following files to
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/lib directory

• connector.jar

• jca-connector.jar

• tlapi.jar

• tlerror.jar

• utility.jar

• xmlparser.jar

• xmltypes.jar

If you skip this step the application will display an error message when you try to run the query.

2. Add the following elements to the <runtime> section of the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/plugin
.xml file which specifies the runtime libraries of the <oXygen/> plugin.

<library name="lib/connector.jar"/>
<library name="lib/jca-connector.jar"/>
<library name="lib/tlapi.jar"/>
<library name="lib/tlerror.jar"/>
<library name="lib/utility.jar"/>
<library name="lib/xmlparser.jar"/>
<library name="lib/xmltypes.jar"/>

3. Restart Eclipse with the -clean parameter in the command line.

4. Configure the TigerLogic connection.

Go to Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery -> XQuery -> TigerLogic
and configure the server host, port, user, password and the database name.

5. Execute XQuery.

Go to associated scenario configuration and select TigerLogic as the transformation engine.

How to configure X-Hive/DB support in <oXygen/>
The latest instructions on how to configure X-Hive/DB support in <oXygen/> can be found on our web-
site [ht-
tp://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-xhive-supp
ort].

1. Copy jar resources. Check your X-Hive/DB lib directory from the server side (for example

Querying documents

137

http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-xhive-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-xhive-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-xhive-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-xhive-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-xhive-support


C:\Program Files\xhive-7.2\lib on Windows or /usr/local/X-Hive_7_2_2/lib on Linux) and copy the
following files to [Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/lib directory

• icu4j.jar

• retroweaver-rt.jar

• xhive.jar

If you skip this step the application will display an error message when you try to run the query.

2. Add the following elements to the <runtime> section of the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/plugin
.xml file which specifies the runtime libraries of the <oXygen/> plugin.

<library name="lib/icu4j.jar"/>
<library name="lib/retroweaver-rt.jar"/>
<library name="lib/xhive.jar"/>

3. Restart Eclipse with the -clean parameter in the command line.

4. Configure the X-Hive/DB connection.

Go to Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery -> XQuery -> X-Hive/DB
and configure the xhive.bootstrap, user, password and the database name.

5. Configure X-Hive/DB as main validator for XQuery files.

Go to Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery -> XQuery and set X-
Hive/DB for XQuery validation.

6. Validate XQuery.

After step 4, you will benefit of the automatic validation feature and you can use Validate button to
get a list of validation errors.

7. Execute XQuery.

Go to associated scenario configuration and select X-Hive/DB as the transformation engine.

How to configure MarkLogic support in <oXygen/>
The latest instructions on how to configure MarkLogic support in <oXygen/> can be found on our web-
site [ht-
tp://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-marklogic-
support].

1. Copy jar resources. Go to http://xqzone.marklogic.com/download/ and download Java and .NET
XDBC distributions (XDBC Connectivity Packages) ht-
tp://xqzone.marklogic.com/svn/xdbc/releases/MarkXDBC.Java-3.0-6.zip. Extract the following

Querying documents

138

http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-marklogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-marklogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-marklogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-marklogic-support
http://www.oxygenxml.com/doc/ug-standalone/working-with-XQuery.html#how-to-configure-marklogic-support


files to [Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/lib directory

• xdbc.jar

• xdmp.jar

If you skip this step the application will display an error message when you try to run the query.

2. Add the following elements to the <runtime> section of the
[Eclipse-install-folder]/plugins/com.oxygenxml.editor_7.2.0/plugin
.xml file which specifies the runtime libraries of the <oXygen/> plugin.

<library name="lib/xdbc.jar"/>
<library name="lib/xdmp.jar"/>

3. Restart Eclipse with the -clean parameter in the command line.

4. Create an XDBC server in order to connect to it from <oXygen/>. You can create and configure an
XDBC Server using the Admin interface: start the XDBCServer Administration page, browse
through Configure->Default->App Servers and press the "Create XDBC" tab from the right side
panel. Choose a server name, a library path (on Linux choose /opt/MarkLogic/etc) a port number
(for example 8002) and other details like database or modules. Leave the address set to 0.0.0.0 in
order to permit access to the XDBC server from anywhere.

For a detailed description of XDBC server creation see chapter 6 of the MarkLogic admin manual
http://xqzone.marklogic.com/pubs/3.1/books/admin.pdf.

5. Configure the MarkLogic connection.

Go to Window -> Preferences -> oXygen -> XML -> XSLT/FO/XQuery -> XQuery -> MarkLogic
and configure the server host, port, user and password.

6. Execute XQuery.

Go to associated scenario configuration and select MarkLogic as the transformation engine.

Querying documents

139



Chapter 7. Debugging XSLT
stylesheets and XQuery documents
Overview

The Debugger perspectives enables you to test and debug XSLT 1.0 /2.0 stylesheets and XQuery 1.0
documents. The interface presents simultaneous views of the source XML document, the XSLT/XQuery
document and the result document. As you go step by step through the XSLT/XQuery document the cor-
responding output is generated step by step, and the corresponding position in the XML file is high-
lighted for each step. At the same time, special views in the interface provide various types of debugging
information and events useful for understanding the transformation process.

The user benefits of a rich set of features for testing and solving XSLT/XQuery problems:

• Support for XSLT 1.0 stylesheets (through the Saxon 6.5.5 and Xalan XSLT engines) , XSLT 2.0
stylesheets (through the Saxon 8B XSLT engine) and XQuery 1.0 (through the Saxon 8B XQuery en-
gine).

• Stepping capabilities: step in, step over, step out, run, run to cursor, run to end, pause, stop.

• Back mapping between every piece of output and instruction element /source context who generate it .

• Breakpoints on both source and XSLT/XQuery documents.

• Call stack view on both source and XSLT/XQuery documents.

• Trace history on both source and XSLT/XQuery documents.

• Support for XPath expression evaluation during debugging.

• Step into imported/included stylesheets as well as included source entities.

• Available templates and hits count.

• Variables view.

• Dynamic output generation.

Layout
The Debugger perspective interface looks like below. This interface is comprised of 4 panes as follows:

Figure 7.1. Debugger Mode Interface

140



Source document view (XML) Displays and allows editing of data or document oriented XML
files (documents).

XSL/XQuery document view
(XSL/XQuery)

Displays and allows editing of XSL files(stylesheets) or XQuery
documents.

Output document view Displays the transformed output that results from the input of a
selected document (XML) and selected stylesheet (XSL) or
XQuery document to the transformer. The result of transformation
is dynamically written as the transformation is processed.

Control view The control view provides functionality for configuration and
control of debugging operations. It also provides a series of In-
formation views types. This pane is comprised of two parts:

• Control Toolbar

• Information views

XML documents and XSL stylesheets or XQuery documents that were opened in Editor perspective are
automatically sorted into the first two panes. When multiple files of each type are opened, the individual
documents and stylesheets are separated using the familiar tab management system of the Editor per-
spective. Selecting a tab brings the document or stylesheet into focus and enables editing without tog-
gling back to the Editor perspective.

Debugging XSLT stylesheets and XQuery
documents

141



During debugging the current execution node is highlighted on both document (XML) and XSL/XQuery
views.

Control Toolbar
The toolbar contains all actions needed in order to configure and control the debug process. Items are
described below from left to right as they appear in the toolbar.

Figure 7.2. Control Toolbar

XML source selector The selection represents the source document to be used as input
by the transformation engine. The selection list is filled-in with all
opened files (the XML ones being emphasized). This gives you
the possibility to use other file types as source. In case of XQuery
debugging session this selection field can be set to default value
NONE, as usually XQuery documents do not require an input
source.

XSL/XQuery selector The selection represents the stylesheet or XQuery document to be
used by the transformation engine. The selection list is filled-in
with all opened files (the XSL/XQuery ones being emphasized).

XSLT/XQuery engine selector Lists the available XSLT/XQuery processors

(Saxon and Xalan Java - see specifications for XSLT or Saxon8B
for XQuery.)

XSLT/XQuery parameters XSLT/XQuery parameters to be used by the transformation.

Edit extensions Add and remove the Java classes and jars used as XSLT exten-
sions.

Enable profiling Enable/Disable current transformation profiling.

Step into (F7) Starts the debugging process and runs until the next stylesheet
node (next step in transformation).

Step over (F8) Executes the current stylesheet node (including its sub-elements)
and goes to next node in document order (usually the next sibling
of the current node).

Step out (Shift + F7) Steps out to the parent node (equivalent to the Step over (F8) on
the parent).

Run Starts the debugging process and runs until the first breakpoint is
encountered or until the end of transformation occurs, if no break-
points are encountered (see the section called “Breakpoints
view”).

Run to cursor (Ctrl + F5) Starts the debugging process and runs until one of the following
conditions occur: the line of cursor is reached, a valid breakpoint

Debugging XSLT stylesheets and XQuery
documents

142



is reached or end of execution.

Run to end (Alt + F5) Runs the transformation until the end, without taking into account
any enabled breakpoints that might be set.

Pause (Shift + F6) Interrupts the current transformation. This is useful for long trans-
formations (Docbook for instance) when you want to find out
what point the transformation has reached. The transformation
can be resumed after.

Stop (F6) Ends the transformation process.

Information views
The information view is comprised of two panes that are used to display various types of information
used to understand the transformation process. For each information type there is a corresponding tab.
While running a transformation, relevant events are displayed in the various information views. This en-
ables the developer to obtain a clear view of the transformation progress. Using the Debug controls de-
velopers can easily isolate parts of stylesheet therefore they may be understood and modified. The in-
formation types include (for a more detailed discussion on each information type see Viewing pro-
cessing information):

Left side information views

• Context Node View

• XWatch View

• Breakpoints View

• Break Conditions View

• Messages View (XSLT only)

• Variables View

Right side information views

• Stack View

• Trace View

• Templates View (XSLT only)

• Nodeset View

Multiple output documents in XSLT 2.0
For XSLT 2.0 stylesheets that store the output in more than one file by using the xsl:result-document in-
struction the content of the file created in this way is displayed dynamically while the transformation is
running in an output view. There is one view for each xsl:result-document instruction so that the output

Debugging XSLT stylesheets and XQuery
documents

143



of different instructions is not mixed but is presented in different views.

Figure 7.3. Multiple output documents in XSLT 2.0

Working with the XSLT/XQuery Debugger
The following topics are present about how to follow XSLT/XQuery processing and detect errors in
your stylesheets or XQuery documents:

• Steps in a typical debug process

• Using breakpoints

• Viewing processing information

• Determining what XSL/XQuery expression generated particular output

Steps in a typical debug process
To debug a stylesheet or XQuery document follow the procedure:

1. Open the source XML document and the XSLT/XQuery document.

Debugging XSLT stylesheets and XQuery
documents

144



2. If you are in the <oXygen/> XML perspective switch to the <oXygen/> XSLT Debugger perspect-
ive in case of XSLT debugging or to the the <oXygen/> XQuery Debugger in case of XQuery de-
bugging with one of the actions (here explained for XSLT):

• Window → Open Perspective → Other ...+<oXygen/> XSLT Debugger

• The toolbar button Debug scenario

3. Select the source XML document in the XML source selector of the Control toolbar In case of
XQuery debugging if your XQuery document has no implicit source set the source selector value to
NONE.

4. Select the XSL/XQuery document in the XSL/XQuery selector of the Control toolbar.

5. Set XSLT/XQuery parameters from the button available on the Control toolbar.

6. Set one or more breakpoints.

7. Step through the stylesheet using the buttons available on the Control toolbar: Step into,

Step over, Step out, Run, Run to cursor, Run to end, Pause, Stop

8. Examine the information in the Information Views to find the bug in the transformation process.

Note

Initially only the two available Saxon XSLT/XQuery Processors are active in the Debug-
ger perspective.If you select Xalan XSLT Processor an warning message is shown requir-
ing Xalan version 2.7.0. To set Xalan 2.7.0 you need to copy xalan.jar and serializerOxy-
gen.jar from [oxygen]/lib and put it to the endorsed folder from your JRE/JDK used
for running Eclipse (you can find it in Help → About Eclipse Platform+Configuration De-
tails java.endorsed.dirs entry) and restart Eclipse.

Using breakpoints
The <oXygen/> XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to gather
information about variables and processor execution at particular points.

Inserting breakpoints

To insert a breakpoint:

1. In the XML source document or the XSLT/XQuery document that you want to set a breakpoint,
place your cursor on the line where you want the breakpoint to be. You can set breakpoints on
XML source only for XSLT debugging sessions.

2. Select Edit → Breakpoints → Create or directly click with the mouse the left side stripe of the edit-
or window on the line where you want the breakpoint to be.

Debugging XSLT stylesheets and XQuery
documents

145



Removing breakpoints

To remove a breakpoint:

• Click with the mouse the left side stripe of the editor window on the line with the breakpoint or se-
lect Edit → Breakpoints → Remove all

Viewing processing information
Detailed information about the debugger status are provided using the information views.

Context node view

The context node is valid only for XSLT debugging session and is a source node corresponding to the
XSL expression being evaluated. It is also called the context of execution. The context node implicitly
changes as the processor hits various steps (at the point where XPath expressions are evaluated). This
node has the same value as evaluating '.' (dot) XPath expression on XWatch View. The value of the con-
text node is presented as a tree in the view.

Figure 7.4. The Context node view

The context node is presented in a tree-like fashion. The value of the selected attribute or node are
shown in the right side panel.

XPath watch view

Shows XPath expressions to be evaluated during debugging. Expressions are evaluated dynamically as
the processor changes its source context.

Debugging XSLT stylesheets and XQuery
documents

146



Figure 7.5. The XPath watch view

Table 7.1. XWatch details

Column Description

Expression XPath expression to be evaluated (should be XPath
1.0 or 2.0 compliant).

Value Result of XPath expression evaluation. Value has a
type (see Possible Values in the section the section
called “Variables view”). For Node Set results the
number of nodes in the set is shown in parenthesis.

Remarks

• Expressions referring to variables names are not evaluated. In case of an XPath error,
you get an Error line.

• The expression list is not deleted at the end of transformation (it is preserved during ses-
sions).

• To insert a new expression click the last line on the expression column and enter it or
right click and select the Add action. Press enter on cell to add and evaluate.

• To delete an expression click on its Expression column and delete its content or right
click and select the Remove action. Press enter on cell to commit changes.

• If the expression result type is a Node Set you can click on it (Value column) and you
will see on the right side its value. (see Nodeset View).

• Copy, Add, Remove and Remove All actions are offered in every row's contextual
menu.

Breakpoints view

Lists all breakpoints set on opened documents. Once you set a breakpoint it is automatically added in
this list. Breakpoints can be set on XSL/XQuery documents and in XML documents for XSLT debug-
ging sessions.

Figure 7.6. The Breakpoints view

Debugging XSLT stylesheets and XQuery
documents

147



Table 7.2. Breakpoints details

Column Description

Enabled If checked, the current condition is evaluated and
taken into account.

Resource Resource file where the breakpoint is set.

Line Line number inside resource where the breakpoint
is set.

Valid Breakpoint

• Not all set breakpoints are valid. For example if the breakpoint is set on one empty or
commented line or the line is not reached by the processor (no template to match it, line
containing only an end tag), that breakpoint is invalid.

• Clicking a record highlights the breakpoint line into the document.

Break conditions view

Lists all defined break conditions. Unlike breakpoints, break conditions are not associated with a docu-
ment, but they represent XPath expressions evaluated in the current debugger context. In order to be pro-
cessed their evaluation result should be a boolean value.

Figure 7.7. The Break conditions view

Debugging XSLT stylesheets and XQuery
documents

148



Table 7.3. Break conditions details

Column Description

Enabled If checked, the current condition is evaluated and
taken into account.

Condition XSLT/XQuery expression to be evaluated during
debugging. The expression will be evaluated at
every debug step.

Value Boolean result of the evaluated condition or error
message if the condition expression cannot be
evaluated.

When the Debugger hits an active break condition it pauses the execution of the transformation and
places a small marker on the left side of the line where the break condition occured. The tooltip of the
marker explains the cause of the pause. To disable further pauses when the same condition occurs you
have to uncheck the Enabled column of the corresponding line in the Break conditions view.

Important

• The contextual menu on table has the Add, Remove, Remove All, Enable All, Disable
All options.

Messages view

<xsl:message> instructions are one way to signal special situations encountered during transforma-
tion as well as a raw way of doing the debugging. This view is available only for XSLT debugging ses-
sions and shows all <xsl:message> calls executed by the XSLT processor during transformation.

Figure 7.8. The Messages view

Debugging XSLT stylesheets and XQuery
documents

149



Table 7.4. Messages details

Column Description

Message Message content.

Terminate Signals if processor will terminate the transforma-
tion or not once it encounters the message
(true/false respectively)

Resource Resource file where <xsl:message> instruction
is defined.

Remarks

• Clicking a record from the table highlights the <xsl:message> declaration line.

• Message table values can be sorted by clicking the corresponding column header
(ascending, descending, no sort)

Stack view

Shows the current execution stack of both source and XSL/XQuery nodes. During transformation two
stacks are managed: one of source nodes being processed and the other for XSL/XQuery nodes being
processed. <oXygen/> shows both node types into one common stack. The source (XML) nodes are pre-
ceded by a red color icon while XSL/XQuery nodes are preceded by a green color icon. The advantage
of this approach is that you can always see the source scope on which a XSL/XQuery instruction is ex-
ecuted (the last red color node on the stack). The stack is oriented upside down.

Figure 7.9. The Stack view

Debugging XSLT stylesheets and XQuery
documents

150



Table 7.5. Stack details

Column Description

# Order number, represents the depth of the node (0
is the stack base).

XML/XSL/XQuery Node Node from source or stylesheet document currently
being processed. One particular stack node is the
document root, noted as #document.

Attributes Attributes of the node (list of id="value" pairs).

Resource Resource file where the node is located.

Remarks

• Clicking a record from the stack highlights that node's location inside resource.

• Using Saxon, the stylesheet elements are qualified with XSL proxy, while on Xalan you
only see their names. (example <xsl:template> on Saxon and template on Xalan).

• Only Saxon processor shows element attributes.

• Xalan processor shows the "built-in" rules.

Trace history view

Usually the XSLT/XQuery processors signal the following events during transformation:

• entering a source (XML) node.

• leaving a source (XML) node.

• entering a XSL/XQuery node.

• leaving a XSL/XQuery node.

Debugging XSLT stylesheets and XQuery
documents

151



The trace history catches all these events, so you can see how the process evolved. The red icon lines de-
note source nodes while the green icon lines denote XSL/XQuery nodes.

It is possible to save the element trace in a structured XML document. It is available on the context
menu of the view. In this way you have the possibility to compare the trace results from different debug
sessions.

Figure 7.10. The Trace History View

Table 7.6. Trace History details

Column Description

Depth Starts from 0 and represents the level of overlap-
ping for that node. This is similar with the # order
number from stack at the moment the node was
processed.

XML/XSL/XQuery Node Represents the node from the processed source or
stylesheet document. One particular node is the
document root, noted as #document. Every node
has an arrow in front of it representing what action
was performed on it (entering or leaving).

Attributes Attributes of the node (list of id="value" pairs).

Resource Resource file where the node is located.

Remarks

• Clicking a record highlights that node's location inside the resource.

• Only Saxon processor shows element attributes.

• Xalan processor shows the "built-in" rules.

Templates view

Debugging XSLT stylesheets and XQuery
documents

152



The <xsl:template> is the basic element for stylesheets transformation. This view is only available
during XSLT debugging sessions and shows all <xsl:template> instructions used by the transform-
ation. By seeing the number of hits for each of the templates you get an idea of the stylesheet coverage
by template rules with respect to the input source.

Figure 7.11. The Templates view

Table 7.7. Templates details

Column Description

Match Match attribute of the <xsl:template>.

Hits Number of hits for the <xsl:template>.
Shows how many times the XSLT processor used
this particular template.

Priority Template priority as established by XSLT pro-
cessor.

Mode Mode attribute of the <xsl:template>.

Name Name attribute of the <xsl:template>.

Resource Resource file where template is located.

Remarks

• Clicking a record highlights that template definition inside resource.

• Saxon only shows the applied templates having at least one hit from the processor.
Xalan shows all defined templates, with or without hits.

• Template table values can be sorted by clicking the corresponding column header
(ascending, descending, no sort)

• Xalan shows the "built-in" rules.

Node set view

Debugging XSLT stylesheets and XQuery
documents

153



This view is always used in relation with Variables View and XWatch View and shows a nodeset value
in a tree form. Once you click a variable having as value a nodeset or tree fragment or an XPath expres-
sion evaluated to a nodeset in the above views the node set view gets updated with the respective value.

Figure 7.12. The Node Set view

The nodes/values set is presented in a tree-like fashion. The value of the selected attribute or node are
shown in the right side panel.

Remarks

• In case of longer values for Value/Attributes column content, the interface shows three
suspension points (...) at the end. A more detailed value is available as tooltip.

• Clicking a record highlights the location of that node into the source or stylesheet view.

Variables view

During transformation variables and parameters play an important role.

<oXygen/> uses the following icons to differentiate variables/parameters:

• Global variable.

• Local variable.

• Global parameter.

• Local parameter.

Debugging XSLT stylesheets and XQuery
documents

154



The values types of a variable are marked by icons explained below:

Possible Values

• Boolean.

• String.

• Numeric.

• Node set.

• Tree fragment.

• Date. (XSLT 2.0 only)

• Object.

• Any.

Figure 7.13. The Variables view

Table 7.8. Variables details

Column Description

Name Name of the variable/parameter.

Value Current value for the variable/parameter.

Remarks

• Clicking a record highlights the variable definition line.

Debugging XSLT stylesheets and XQuery
documents

155



• Variable values could differ depending on the transformation engine used or stylesheet
version set.

• If the value of the variable is a node-set or a tree-fragment, clicking on it causes the
Node set view to be shown with corresponding set of values.

• Variable table values can be sorted by clicking the corresponding column header
(ascending, descending, no sort)

Determining what XSL/XQuery expression generated
particular output

In order to quickly spot the XSL templates or XQuery expressions with problems it is important to know
what XSL template in the XSL stylesheet or XQuery expression in the XQuery document and what ele-
ment in the source XML document generated a specified area in the output. Some of the debugging cap-
abilities, for example "Step in" can be used for this purpose. Using "Step in" you can see how output is
generated and link it with the XSL/XQuery element being executed in the current source context.
However, this can become difficult on complex stylesheets or XQuery documents that generates a large
output.

Output to source mapping is a powerful feature that makes this output to source mapping persistent that
is you can click on the text from the Output document view and the editor will select the XML source
context and the XSL/XQuery element that generated the text.

Figure 7.14. Output to Source Mapping

Debugging XSLT stylesheets and XQuery
documents

156



1. If you are in the <oXygen/> XML perspective switch to the <oXygen/> XSLT Debugger or
<oXygen/> XQuery Debugger perspective with one of the actions (here explained for XSLT):

• Window → Open Perspective → Other ...+<oXygen/> XSLT Debugger

• The toolbar button Debug scenario

2. Select the source XML document in the XML source selector of the Control toolbar. In case of
XQuery debugging without an implicit source choose the NONE value.

3. Select the XSL/XQuery document in the XSL/XQuery selector of the Control toolbar

4. Select the XSLT/XQuery engine in the XSLT/XQuery engine selector of the Control toolbar

5. Set XSLT/XQuery parameters from the button available on the Control toolbar

6. Apply the stylesheet or XQuery transformation using the button Run to end available on the

Control toolbar:

7. Inspect the mapping by clicking a section of the output from the Output view of the <oXygen/>
XSLT Debugger or <oXygen/> XQuery Debugger perspectives to have the XSL/XQuery element
and the source context highlighted.

Debugging XSLT stylesheets and XQuery
documents

157



Chapter 8. Profiling XSLT stylesheets
and XQuery documents
Overview

Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery
transformation to not meet customer expectations or you are trying to proactively identify issues prior to
deploying your XSLT/XQuery transformation, using the XSLT/XQuery profiler feature is essential to
helping you save time and ultimately ensure a better performing, more scalable XSLT/XQuery trans-
formation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processors that could be used
for debugging and it is available from the editor debugging perspective.

Enabling/disabling the profiler is controlled by the Profiler button from the debugger control toolbar.
The XSLT/XQuery profiler is off by default. This option is not available during a debugger session so
you should set it before starting the transformation.

Viewing profiling information
Detailed profiling information for the current transformation is provided using the information views:

Invocation tree view
The invocation tree view shows a top-down call tree representing how XSLT instructions or XQuery ex-
pressions are processed.

Figure 8.1. Invocation tree view

The entries in the invocation tree have different meanings which are indicated by the displayed icons:

• This points to a call whose inherent time is insignificant compared to its call tree time.

• This points to a call whose inherent time is significant compared to its call tree time. (greater than

158



1/3rd of its call tree time).

Every entry in the invocation tree has textual information attached which depends on the XSLT/XQuery
profiler settings

• a percentage number of total time which is calculated with respect to either the root of the tree or the
calling instruction;

• a total time measurement in ms or µs. This is the total execution time that includes calls into other in-
structions;

• a percentage number of inherent time which is calculated with respect to either the root of the tree or
the calling instruction;

• an inherent time measurement in ms or µs. This is the inherent execution time of the instruction;

• an invocation count which shows how often the instruction has been invoked on this path;

• an instruction name which contains also the attributes description.

Note

All nodes having their call tree time less than the one specified in the XSLT/XQuery pro-
filer settings are cumulated and shown as Others node.

Hotspots view
The hotspots view shows a list of all instruction calls which lie above the threshold defined in the
XSLT/XQuery profiler settings .

Figure 8.2. Hotspots view

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calcu-
lated and shown.

Profiling XSLT stylesheets and XQuery docu-
ments

159



Every hotspot is described in several columns:

• the instruction name;

• the inherent time in ms or µs of how much time has been spent in the hotspot together with a bar
whose length is proportional to this value. All calls into this instruction are summed up regardless of
the particular call sequence;

• the invocation count of the hotspot.

If you click on the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it which depends on the XSLT/
XQuery profiler settings .

• a percentage number which is calculated with respect either to the total time or the called instruction;

• a time measured in ms or µs of how much time has been contributed to the parent hotspot on this path;

• an invocation count which shows how often the hotspot has been invoked on this path;

Note

This is not the number of invocations of this instruction.

• an instruction name which contains also its attributes.

Working with XSLT/XQuery profiler
Profiling activity is linked with Debugging activity, so the first step in order to profile is to switch to de-
bugging perspective and follow the corresponding procedure (see Working with XSLT Debugger).

Immediately after turning the profiler on two new information views are added to the current debugger
information views (Invocation tree view on left side, Hotspots view on right side). Profiling data is
available only when the transformation ends successfully.

Note

Breakpoints/step capabilities may influence the result of profiling so their usage should be
restricted to minimum.

Looking to right side (Hotspots view), you can immediately spot the time the processor spent in each in-
struction. As instruction usually calls other instructions the used time of the called instruction is extrac-
ted from the duration time of the caller (the hotspot only presents the inherent time of the instruction).

Looking at left side (Invocation tree view), you can examine how style instructions are processed. This
result view is also named call-tree, as it represents the order of style processing. The profiling result
shows the duration time for each of the style-instruction including the time needed for its called chil-
dren.

Profiling XSLT stylesheets and XQuery docu-
ments

160



Figure 8.3. Source backmapping

In any of the above views you can use the backmapping feature in order to find the XSLT stylesheet or
XQuery expression definition. Clicking on the selected item cause oXygen to highlight the XSLT
stylesheet or XQuery expression source line where the instruction is defined.

When navigating through the trees by opening instruction calls, oXygen automatically expands instruc-
tions which are only called by one other instruction themselves.

The profiling data can be saved into XML and HTML format. On any view you should right click , use
the pop-up menu and select the corresponding choice. Basically saving HTML means saving XML and
applying an XSLT stylesheet to render the report as XML. These stylesheets are also available on distri-
bution (see the subdirectory frameworks/profiler/ of the <oXygen/> installation directory) so
you can make your own report based on the profiling raw data.

If you like to change the XSLT/XQuery profiler settings you should right click on view, use the pop-up
menu and choose the corresponding "View settings" entry.

Note

Precision: For Java virtual machine versions less than 1.4 we provide a time measurement
in milliseconds while for greater versions (1.5) the time resolution is provided in micro-
seconds.

Caution

Profiling exhaustive transformation may run into an OutOfMemoryException due to the
large amount of information being collected. If this is the case you can close unused
projects when running the profiling or use high values for Java VM options -Xms and -
Xmx. If this does not help you can shorten your source xml file and try again.

Profiling XSLT stylesheets and XQuery docu-
ments

161



Chapter 9. Importing data
Introduction

XML was designed to describe data. Computer systems and databases contain data in incompatible
formats and one of the most time-consuming activities has been to exchange data between these sys-
tems. Converting the data to XML can greatly reduce complexity and create data that can be read by
many different types of applications.

This is why <oXygen/> now offers you support for importing text files, MS Excel files, Database Data
and HTML files into XML documents, that can be further converted into other formats using the Trans-
form features.

Figure 9.1. The Import wizards of <oXygen/> plugin

162



Import from database
Import table content as XML document

To import from a database, select File → Import → Database data Next, in the "Select database table"
choose the driver and the URL for the database. You can edit, delete or add a new JDBC driver: click on
the "Configure JDBC Driver" button (next to the Driver combo box) and the "Preferences" dialog will
open at Database/JDBC Drivers. You'll also have to provide a username and a password. Click Connect.

Figure 9.2. Select database table Dialog

Importing data

163



Driver Choose a driver from the list. To configure an existing driver or adding a new
driver for accessing your database server go to the related Preferences panel.

URL Specify the URL of the database table.

User Provide a user for the database

Importing data

164



Password Provide a password

Stored sessions If you want to save the current session (Driver, URL, User and Password) type
a name in the text field and click Save. To load the data of a saved session se-
lect its name from the list and click on Load. A saved session can be removed
from the list by selecting it and clicking on Delete.

From the catalogs list click on a schema and choose the required table. Click Ok.

The "Import criteria" Dialog will open next, showing a default Query string like "select * from table" in
SQL Query. You can click the "SQL Preview" button to see the input data displayed in a tabular form
and the XML Import Preview containing an example of what the generated XML will look like. The
SQL Query message is editable: "*" selects all the fields from the chosen table. You can specify what
fields should be taken into consideration: just replace "*" with the required fields, separated by comma.

Figure 9.3. Import from Database Criteria Dialog

Importing data

165



If you edit the query string so that the query does a join of two or more tables and selects columns with
the same name from different tables you should use an alias for the columns like in the following ex-
ample. That will avoid a confusion of two columns mapped to the same name in the result document of
the importing operation.

select s.subcat_id,
s.nr as s_nr,
s.name,
q.q_id,
q.nr as q_nr,
q.q_text

from faq.subcategory s,
faq.question q

where ...

Importing data

166



SQL Preview Displays the labels that will be used in the XML document and its pre-
view. Import setting: If the "SQL Preview" button is pressed, it shows the
labels that will be used in the XML document and the first 5 lines from
the database. All data items in the input will be converted by default to
element content, but this can be over-ridden by clicking on the individual
column headers. Clicking once on a column header (ex Heading0) will
cause the data from this column to be used as attribute values on the row
elements. Clicking a second time - the column's data will be ignored
when generating the XML file. You can cycle through these three options
by continuing to click on the column header. If the data column will be
converted to element content, the header will contain the "<>" symbol. If
the data column will be converted to attribute content, the header will
contain the "=" symbol, and if it will be skipped, the header will contain
"x".

Change labels This button opens a new dialog, allowing you to edit the names of the
root and row elements, change the XML name and the conversion cri-
terion.

The XML names can be edited by double-clicking on the desired item
and entering the required label. The conversion criterion can also be
modified by selecting from the drop-down list ELEMENT, ATTRIBUTE
or SKIPPED.

Save in file If checked, the new XML document will be saved at the specified path.

Note

If only Open in editor is checked, the newly created docu-
ment will be opened in the editor, but as an unsaved file.

Generate XML Schema Allows you to specify the path of the generated XML Schema file.

Convert table structure to XML Schema

Figure 9.4. Select database table

Importing data

167



Next, in the "Select database table" choose the driver and the URL for the database. You can edit, delete
or add a new JDBC driver: click on the "Configure JDBC Driver" button (next to the Driver combo box)
and the "Preferences" dialog will open at Database/JDBC Drivers. You'll also have to provide a user-
name and a password.

Driver Choose a driver from the list.

URL Specify the URL of the database table.

User Provide a user for the database

Password Provide a password

Importing data

168



Stored sessions If you want to save the current session (Driver, URL, User and Password)
type a name in the text field and click Save. To load the data of a saved
session select its name from the list and click on Load. A saved session can
be removed from the list by selecting it and clicking on Delete.

Format Enables you to choose a format for the structure.

• Flat - Generates an XML Schema according to the ISO-ANSI Working
draft (Part 14: XML Related Specifications SQL/XML).

• Hierarchical - Represents the database structure as a tree hierarchy tak-
ing into account the relationship between tables.

Enable Attachments If checked, the database table is selected for conversion.

Criterion The Criterion options allow the user to specify the name of the selected
database column and also how it should be converted into XML. The fol-
lowing options are available:

• Element: When checked the selected column will be converted into an
XML element.

• Attribute: If checked the selected column will be converted into an XML
attribute.

• Skipped: Is to be selected if the intention is to skip that column from be-
ing imported.

• Name: Allows you to specify the name of the column to be imported.
Implicitly <oXygen/> suggests an import name that is according to
SQL/XML Specification.

• Type: Displays the data type of the imported column.

Import from MS Excel files
<oXygen/> can also import MS (Microsoft) Excel files into XML format documents. To do this, select
File → Import... → MS Excel files... In the "Select Excel Sheet" dialog provide the URL of the Excel
document, choose one of the available sheets and click Ok.

Figure 9.5. Select Excel Sheet

Importing data

169



The input data is displayed next in the "Import Criteria" Dialog in a tabular form and the XML Import
Preview contains an example of what the generated XML will look like.

The Import Criteria Dialog has a similar behaviour with the one shown in case of "Import from text
files".

Note

Please note that Excel sheets saved with versions later that Excel 2002 may not be handled
correctly by the Import operation.

Import from HTML files
Another format that can be imported in an XML document is HTML.

Procedure 9.1. Import from HTML

1. Select File → Import

2. Select HTML file in the list and click the Next button.

Figure 9.6. Import HTML file - step 1

Importing data

170



3. Type a name for the new document and click the Next button.

Figure 9.7. Import HTML - step 2

Importing data

171



4. Complete the HTML document name, select the type of the result document - XHTML 1.0 Trans-
itional or XHTML 1.0 Strict, then click the OK button.

The resulted document will be an XHTML file containing a DOCTYPE declaration referring to the
XHTML DTD definition on the Web and the parsed content of the imported file as XHTML Transition-
al or Strict depending on what radio button the user chose when performing the import operation.

Import from text files
To import from a text file you'll have to select File → Import... → Text File In the "Select text file" dia-
log choose the URL and the encoding to be used and click OK.

Figure 9.8. Select text file Dialog

Importing data

172



• URL: Specifies the location of the text file to be imported.

• Encoding: Specifies the encoding

Next, in the "Import Criteria" Dialog select the field delimiter for the import settings. The input data is
displayed here in a tabular form and the XML Import Preview contains an example of what the gener-
ated XML will look like.

Figure 9.9. Import Text Criteria Dialog

Importing data

173



The above table shows the labels that will be used in the XML document and the first 5 lines from the
text file in a tabular form. All data items in the input will be converted by default to element content, but
this can be over-ridden by clicking on the individual column headers. Clicking once on a column header
will cause the data from this column to be used as attribute values on the row elements. Clicking a
second time - the column's data will be ignored when generating the XML file. You can cycle through
these three options by continuing to click on the column header. If the data column will be converted to
element content, the header will contain the "<>" symbol. If the data column will be converted to attrib-
ute content, the header will contain the "=" symbol, and if it will be skipped, the header will contain "x".

First row contains field names If the option is checked, you'll notice that the table has moved up;
the default column headers are replaced (where there is informa-
tion) by the content of the first row. In other words, the first row
is interpreted as containing the field names. The changes are also
visible in the preview of the XML document. To return to default
(where the first row is interpreted as not containing field names),
simply uncheck the option.

Change labels If the above option is set, the first row of the input file contains
presentation names and these will be used as tokens in the created

Importing data

174



XML files, otherwise some generic heading names will be used.
This button opens a new dialog, allowing you to edit the names of
the root and row elements, change the XML name and the conver-
sion criterion.

Figure 9.10. Presentation Names

The XML names can be edited by double-clicking on the desired
item and entering the required label. The conversion criterion can
also be modified by selecting from the drop-down list ELE-
MENT, ATTRIBUTE or SKIPPED.

Output file Allows you to select the output XML file.

Importing data

175



Chapter 10. Composing Web Service
calls
Overview

Web Services Description Language (WSDL) is an XML format for describing network services as a set
of endpoints operating on messages containing either document-oriented or procedure-oriented informa-
tion.

The WSDL files contain information about the published services, like the name, the message types and
the bindings. The editor is offering a way to edit the WSDL files that is similar to editing XML, the con-
tent completion being driven by a mix of the WSDL and SOAP schemas.

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL
and SOAP it is very easy to check if the defined SOAP messages are accepted by the remote Web Ser-
vices server using <oXygen/>'s WSDL SOAP Analyser integrated tool.

Composing a SOAP request
To design, compose, and test Web service calls in <oXygen/> follow the procedure:

1. Create a new document or open an existing document of type WSDL.

2. Design the Web Service descriptor in the WSDL editor pane where the content completion is driv-
en by a mix of the WSDL and SOAP schemas. You do not need to specify the schema location for
the WSDL standard namespaces because <oXygen/> comes with these schemas and uses them by
default to assist the user in editing Web Service descriptors.

Figure 10.1. Content completion for WSDL documents

176



3. While editing the Web-Services descriptors check their conformance to the WSDL and SOAP
schemas. In the following example you can see how the errors are reported.

Figure 10.2. Validating a WSDL file

4. Check if the defined messages are accepted by the Web Services server. <oXygen/> is providing
two ways of testing, one for the currently edited WSDL file and other for the remote WSDL files
that are published on a web server.For the currently edited WSDL file open the WSDL SOAP Ana-
lyser tool by pressing the toolbar button WSDL SOAP Analyser or use the menu item WSDL

→ WSDL SOAP Analyser or from the Project view contextual menu select

Figure 10.3. WSDL SOAP Analyser

It contains a SOAP analyser and sender for Web Services Description Language file types.The ana-
lyser fields are:

Composing Web Service calls

177



• The List of Services. The list of services defined by the WSDL file.

• The List of Ports. The ports for the selected service.

• The List of Operations. The list of available operations for the selected service.

• The Action URL. Shows the script that serves the operation.

• The SOAP Action. Identifies the action performed by the script.

• The Request Editor. It allows you to compose the web service request. When an action is selec-
ted, <oXygen/> tries to generate as much content as possible for the call skeleton. Usually you
just have to change few values in order for the request to be valid. The content completion is
available for this editor and is driven by the schema that defines the type of the current message.

• The Attachments List. You can define a list of file's URLs to be attached to the request.

• The Response Area. Initially it displays an auto generated server sample response so you can
have an idea about how the response will look like. After pressing the Send button it will present
the message received from the server in response to the Web Service request. It may show also
error messages. In case the response message contains attachments, <oXygen/> will prompt you
to save them, then will try to open them with the associated system application.

• The Errors List. There may be situations in which the WSDL file is respecting the WSDL XML
Schema, but it fails to be valid for example in the case of a message that is defined by means of
an element that is not found in the types section of the WSDL. In such a case, the errors will be
listed here. This list is presented only when there are errors.

• The Send Button. Executes the request. A status dialog is shown when <oXygen/> is connecting
to the server.

The testing of a WSDL file is straight-forward, you just have to click on the WSDL analysis button,
then select the service, the port and the operation. The editor will generate the skeleton for the re-
quest. You can edit the request, eventually attach files to it and send it to the server. Watch the
server response in the response area. For testing remote WSDL files see the next section.

5. Once defined, a request derived from a Web Service descriptor can be saved with the Save button
to a Web Service SOAP Call(WSSC) file for later reuse. In this way you will save time in configur-
ing the URLs and parameters.

6. You can open the result of a Web Service call in an editing view. In this way you can save it or pro-
cess it further.

Testing remote WSDL files
To open and test a remote WSDL file use the menu item Window → Show View → Oth-
er+oXygen+WSDL SOAP Analyser ...

Figure 10.4. WSDL File Opener

Composing Web Service calls

178



press the Choose WSDL button and enter the URL of the remote WSDL file by typing or by browsing
the local filesystem, a remote filesystem or even a UDDI Registry. Pressing OK will open the WSDL
SOAP Analyser tool.

In the Saved SOAP Request tab you can open directly a previously saved Web Service SOAP
Call(WSSC) file thus skipping the analysis phase.

The UDDI Registry browser
Pressing the button opens the UDDI Registry Browser dialog.

Figure 10.5. UDDI Registry Browser dialog

Composing Web Service calls

179



• In the URL combo box type the URL of an UDDI registry or choose one list.

• In the Keywords field enter the string you want to be used when searching the selected UDDI registry
for available Web services.

• Optionally, you may change:

• Rows to fetch - The maximum number of rows to be displayed in the result list.

• Search by - you can choose to search whether by company or by provided service.

• Case sensitive - When checked, the search will take into account the Keywords' case.

• Click the Search button. WSDLs that matched the search criteria are added in the result list.

• Select a WSDL from the list and click OK. The UDDI Registry Browser dialog is closed and you are

Composing Web Service calls

180



returned to the WSDL File Opener dialog.

Generate WSDL documentation
To generate documentation for a WSDL document use the action XML Tools → Generate Documenta-
tion → WSDL Documentation.

Figure 10.6. WSDL Documentation dialog

• In the Input URL field type the URL of the file or click on the browse button and select it from the
file system.

• In the Output file(HTML) field you will have to enter the path and the filename where the documenta-
tion will be generated.

• If you want the result to be opened in a browser, select the corresponding checkbox.

• Click the Generate button and the documentation for the WSDL file will be generated.

Composing Web Service calls

181



Chapter 11. Digital signature
Overview

Digital signatures are widely used as security tokens, not just in XML.

A digital signature provides a mechanism for assuring integrity of data, the authentication of its signer,
and the nonrepudiation of the entire signature to an external party.

• a digital signature must provide a way to verify that the data has not been modified or replaced to en-
sure integrity.

• the signature must provide a way to establish the identity of the data's signer for authentication.

• the signature must provide the ability for the data's integrity and authentication to be provable to a
third party for nonrepudiation.

A public key system is used to create the digital signature and it's also used for verification. The signa-
ture binds the signer to the document because digitally signing a document requires the originator to cre-
ate a hash of the message and then encrypt that hash value with his own private key. Only the originator
has that private key and he is the only one can encrypt the hash so that it can be unencrypted using his
public key.The recipient, upon receiving both the message and the encrypted hash value, can decrypt the
hash value, knowing the originator's public key.The recipient must also try to generate the hash value of
the message and compare the newly generated hash value with the unencrypted hash value received
from the originator. If the hash values are identical, it proves that the originator created the message, be-
cause only the actual originator could encrypt the hash value correctly.

XML Signatures can be applied to any digital content (data object), including XML (see W3C Recom-
mendation, XML-Signature Syntax and Processing [http://www.w3.org/TR/xmldsig-core/ ] ). An XML
Signature may be applied to the content of one or more resources.

• Enveloped or enveloping signatures are over data within the same XML document as the signature.

• Detached signatures are over data external to the signature element; the signature is "detached" from
the content it signs. This definition typically applies to separate data objects, but it also includes the
instance where the Signature and data object reside within the same XML document but are sibling
elements.

The XML Signature is a method of associating a key with referenced data; it does not normatively spe-
cify how keys are associated with persons or institutions, nor the meaning of the data being referenced
and signed.

The original data is not actually signed; instead, the signature is applied to the output of a chain of ca-
nonicalization and transformation algorithms, which are applied to the data in a designated sequence.
This system provides the flexibility to accommodate whatever "normalization" or desired preprocessing
of the data that might be required or desired before subjecting it to being signed.

To canonicalize something means to put it in a standard format that everyone generally uses. Because
the signature is dependent on the content it is signing, a signature produced from a not canonicalized
document could possibly be different from one produced from a canonicalized document. The canonical
form of an XML document is physical representation of the document produced by the method de-
scribed in this specification. The term canonical XML refers to XML that is in canonical form. The

182

http://www.w3.org/TR/xmldsig-core/ 
http://www.w3.org/TR/xmldsig-core/ 


XML canonicalization method is the algorithm defined by this specification that generates the canonical
form of a given XML document or document subset. The term XML canonicalization refers to the pro-
cess of applying the XML canonicalization method to an XML document or document subset. XML ca-
nonicalization is designed to be useful to applications that require the ability to test whether the informa-
tion content of a document or document subset has been changed. This is done by comparing the canon-
ical form of the original document before application processing with the canonical form of the docu-
ment result of the application processing.

A digital signature over the canonical form of an XML document or document subset would allows the
signature digest calculations to be oblivious to changes in the original document's physical representa-
tion. During signature generation, the digest is computed over the canonical form of the document. The
document is then transferred to the relying party, which validates the signature by reading the document
and computing a digest of the canonical form of the received document. The equivalence of the digests
computed by the signing and relying parties (and hence the equivalence of the canonical forms over
which they were computed) ensures that the information content of the document has not been altered
since it was signed.

The following canonicalization algorithms are used in <oXygen/>: Canonical XML (or Inclusive XML
Canonicalization)(XMLC14N [http://www.w3.org/TR/2001/REC-xml-c14n-20010315]) and Exclusive
XML Canonicalization(EXCC14N [http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/]). The
first is used for XML where the context doesn't change while the second was designed for canonicaliza-
tion where the context might change.

Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of
the signature. In this way all the declarations you might use will be unambiguously specified. A problem
appears when the signed XML is moved into another XML document which has other declarations be-
cause the Inclusive Canonicalization will copy then and the signature will be invalid.

Exclusive Canonicalization finds out what namespaces you are actually using (the ones that are a part of
the XML syntax) and just copies those. It does not look into attribute values or element content, so the
namespace declarations required to process these are not copied.

This type of canonicalization is useful when you have a signed XML document that you wish to insert
into other XML documents and it will insure the signature verifies correctly every time, so it is required
when you need self-signed structures that support placement within different XML contexts.

Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted in other
XML document and it's the safer method from the security perspective because it requires no knowledge
of the data that are to be secured in order to safely sign them.

The canonicalization method can specify whether or not comments should be included in the canonical
form output by the XML canonicalization method. If a canonical form contains comments correspond-
ing to the comment nodes in the input node-set, the result is called canonical XML with comments. In an
uncommented canonical form comments are removed, including delimiter for comments outside docu-
ment element.

These three operations: Digital Signing, Canonicalization and Verification of the signature are available
from the Tools menu or from the Editor contextual menu->Source.

Canonicalizing files
The user can select the canonicalization algorithm to be used for his document from the following dia-
log.

Figure 11.1. Canonicalization settings dialog

Digital signature

183

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/


URL Specifies the location of the input URL

Exclusive If selected, the exclusive (uncommented) canonicalization method
is used.

Exclusive with comments If selected, the exclusive with comments canonicalization method
is used.

Inclusive If selected, the inclusive (uncommented) canonicalization method
is used.

Inclusive with comments If selected, the inclusive with comments canonicalization method is
used.

XPath The XPath expression provides the fragments of the XML docu-
ment to be signed.

Output Specifies the output file path where the signed XML document will
be saved.

Open in editor If checked, the output file will be opened in the editor.

Digital signature

184



Certificates
A certificate is a digitally signed statement from the issuer (an individual, an organization, a website or a
firm), saying that the public key (and some other information) of some other entity has a particular
value. When data is digitally signed, the signature can be verified to check the data integrity and authen-
ticity. Integrity means that the data has not been modified. Authenticity means the data comes indeed
from the entity that claims to have created and signed it. Certificates are kept in special repositories
called Keystores.

A Keystore is an encrypted file that contains private keys and certificates. All keystore entries (key and
trusted certificate entries) are accessed via unique aliases. An alias must be assigned for every new entry
of either a key or certificate as a reference for that entity. No Keystore can store an entity if it's "alias"
already exists in that Keystore and no KeyStore can store trusted certificates generated with keys in it's
KeyStore.

In <oXygen/> there are provided two types of keystores: Java Key Store (JKS) and Public-Key Crypto-
graphy Standards version 12 (PKCS-12). A keystore file is protected by a password. In a PKCS 12 key-
store you should not store a certificate without alias together with other certificates, with or without ali-
as, as in such a case the certificate without alias cannot be extracted from the keystore.

To set the options for a certificate or to validate it, go to Options → Preferences → Certificates .

Note

A certificate without alias stored in a PKCS 12 keystore together with other certificates,
with or without alias, cannot be always extracted correctly from the keystore due to the
missing alias. Such a certificate should be the only certificate of a PKCS 12 keystore.

Signing files
The user can select the type of signature to be used for his document from the following dialog.

Figure 11.2. Signature settings dialog

Digital signature

185



URL Specifies the location of the input URL

None If selected, no canonicalization algorithm is used.

Exclusive If selected, the exclusive (uncommented) canonicalization method
is used.

Exclusive with comments If selected, the exclusive with comments canonicalization method
is used.

Inclusive If selected, the inclusive (uncommented) canonicalization method
is used.

Inclusive with comments If selected, the inclusive with comments canonicalization method is
used.

Digital signature

186



XPath The XPath expression provides the fragments of the XML docu-
ment to be signed.

ID Provides ID of the XML element to be signed.

Envelope If selected, the enveloping signature is used.

Detached If selected, the detached signature is used. The canonicalization
methods, XPath and ID are not available.

Output Specifies the output file path where the signed XML document will
be saved.

Open in editor If checked, the output file will be opened in the editor.

Verifying the signature
The user can select a file to verify its signature.

Figure 11.3. Verifying signature dialog

UR
L

Specifies the location of the document for which to verify the signature.

If the signature is valid, a dialog displaying the name of the signer will be opened.

Digital signature

187



Chapter 12. Configuring the editor
Reset options

To reset all custom user settings of <oXygen/> to the installation defaults go to: Win-
dow+Preferences+oXygen+Reset Options The list of transformation scenarios will be reset to the de-
fault scenarios.

Preferences
Once <oXygen/> is installed you can use the Preferences dialog accessed from Options → Preferences
to customize <oXygen/> for your requirements and network environment.

A restricted version of the Preferences dialog is available at any time in editors of the <oXygen/> plugin
by right-clicking in the editor panel and selecting Preferences:

Figure 12.1. Eclipse Preferences dialog - restricted version

188



Global

Figure 12.2. The Global preferences panel

Configuring the editor

189



License This panel presents the data of the license key which enables the
<oXygen/> plugin: registration name, category and number of
purchased licenses, encrypted signature of the license key. Click-
ing on the Register button opens the <oXygen/> XML Editor Li-
cense dialog that allows you to insert a new license key:

Figure 12.3. <oXygen/> XML Editor License dialog

Configuring the editor

190



Default Internet browser The path to a web browser executable to be used to open XSLT or
PDF transformation results.

Editor
Use these options to configure the visual aspect, formatting parameters, and behaviour of the content as-
sistant. The same options panel is available in the restricted version of the Preferences dialog.

Figure 12.4. The Editor preferences panel

Configuring the editor

191



Editor background color Use this option to set the background color of the editor.

Completion proposal background Use this option to set the background color for the content com-
pletion window.

Completion proposal foreground Use this option to set the foreground color for the content comple-
tion window.

Documentation window back-
ground

Use this option to set the background color for the window con-
taining documentation for the content completion elements.

Documentation window foreground Use this option to set the foreground color for the window con-
taining documentation for the content completion elements.

Change Fonts Use this option to select the font family and size used to display
text in the editor.

Line Wrap (disables folding) This option will do a soft wrap of long lines, that is automatically
wrap lines in edited documents. When this option is checked line
folding will be disabled.

Highlight matching tag This option enables highlight for the tag matching the one on

Configuring the editor

192



which the caret is situated.

Enable folding when opening a
new editor

If checked, it enables folding when a new editor is opened.

Minimum fold range (only for
XML)

If "Enable folding when opening a new editor" is checked, you
can specify the minimum number of lines for folding. If you
modify this value, you'll notice the changes when you open/re-
open the editor.

Format

Figure 12.5. The Format preferences panel

Detect indent on open The editor tries to detect the indent settings of the opened XML
document. In this way you can correctly format (pretty-print) files
that were created with different settings, without changing your
options. More than that you can activate the advanced option for
detecting the maximum line width to be used for formatting and
hard wrap. These features were designed to minimize the differ-
ences created by the pretty print operation when working with a

Configuring the editor

193



versioning system, like CVS for example.

Indent with tabs When checked enables 'Indent with tabs' to sets the indent to a tab
unit. When unchecked, 'Indent with tabs' is disabled and the in-
dent will measure as many spaces as defined by the 'Indent size'
option.

Indent size Sets the number of spaces or the tab size that will equal a single
indent. The Indent can be spaces or a tab, select the preference us-
ing the Indent With Tabs option. If set to 4 one tab will equal 4
white spaces or 1 tab with size of 4 characters depending on
which option was set in the Indent With Tabs option.

Indent on paste Indent paste text corresponding to the indent settings set by the
user. This is useful for keeping the indent style of text copied
from other document.

Hard line wrap This feature saves time when writing a reach text XML document.
You can set a limit for the length of the lines in your document.
When this limit is exceeded the editor will insert a new line be-
fore the word that breaks the limit, and indent the next line. This
will minimize the need of reformatting the document.

Enable Smart Enter If checked, it inserts a new indented line between start and end
tag.

Detect line width on open If checked, it detects the line width automatically when the docu-
ment is opened.

Line width - pretty print Defines the point at which the "Format and Indent" (Pretty-Print)
function will perform hard line wrapping. So if set to 100 Pretty-
Print will wrap lines at the 100th space inclusive of white spaces,
tags and elements.

XML Format

Figure 12.6. The XML format preferences panel

Configuring the editor

194



Format and indent the document on
open

When checked, the Format and indent the document on open op-
eration will format and indent the document before opening it in
the editor panel.

Preserve empty lines When checked the Format and Indent operation will preserve all
empty lines found in the document on which the pretty-print oper-
ation os applied.

Expand empty elements When checked the Format and Indent operation will output empty
elements with a separate closing tag, ex. <a atr1="v1"></a>.
When not checked the same operation will represent an empty
element in a more compact form: <a atr1="v1"/>

Add space before slash in empty
elements

When checked the Format and Indent operation will add a space
before the closing slash of an empty element, for instance an
empty br will appear as <br />.

Sort attributes When checked the Format and Indent operation will sort the at-
tributes of an element alphabetically. When not checked the same
operation will leave them in the same order as before applying the
operation.

Break line before attribute's name If checked, the "Format and Indent" (Pretty-Print) function will
break the line before the attribute's name.

Configuring the editor

195



Preserve line breaks in attributes If checked, the "Format and Indent" (Pretty-Print) function will
preserve the line breaks found in attributes. When this option is
checked, Break long lines option will be disabled.

Preserve text as it is If checked, the "Format and Indent" (Pretty-Print) function will
preserve text nodes as they are without removing or adding any
whitespace.

Break long attributes If checked, the "Format and Indent" (Pretty-Print) function will
break long attributes.

Preserve space elements (XPath) This list contains simplified XPath expressions for the names of
the elements for which the contained white spaces like blanks,
tabs and newlines are preserved by the Format and Indent opera-
tion exactly as before applying the operation. The allowed XPath
expressions are of one of the form:

• author

• //listing

• /chapter/abstract/title

• //xs:documentation
The namespace prefixes like xs in the previous example are
treated as part of the element name without taking into account its
binding to a namespace.

Strip space elements (XPath) This list contains the names of the elements for which contiguous
white spaces like blanks, tabs and newlines are merged by the
Format and Indent operation into one blank.

Indent (when typing) in preserve
space elements

If checked, automatic tags indentation while editing will take
place for all elements including the ones that are excluded from
Pretty Print (default behaviour). When unchecked, indentation
while editing will not take place in elements that have the
'xml:space' attribute set on 'preserve' or are in the list of Preserve
Space Elements.

CSS Format

Figure 12.7. The CSS format preferences panel

Configuring the editor

196



Indent class content If checked, the class content is indented during a "Format and In-
dent" (Pretty-Print) operation.

Class body on new line If checked, the class body (including the curly brackets) are
placed on a new line after a Pretty-Print operation.

Add new line between classes If checked, an empty line is added between two classes after a
Pretty-Print operation is performed.

Save

Figure 12.8. The Save preferences panel

Check well-formedness on save If selected the <oXygen/> plugin will perform a well-formed
check every time the user saves a document.

Save all files before transformation
or validation

Save all opened files before validating or transforming an XML
document. In this way the dependencies are resolved, for example
when modifying both the XML document and its XML Schema.

Code Templates

Code templates are small document fragments that can be reused in other editing sessions. We have
defined a large set of ready-to use templates for XSL and XML Schema stored in a file named
code_templates.xml located in the <oXygen/> Preferences folder (folder Application
Data\com.oxygenxml on Windows / .com.oxygenxml on Linux of the user home directory). So

Configuring the editor

197



you can even share the templates from this file with your colleagues using the import function. To obtain
the template list you have use the Content Completion on request shortcut key (usually CTRL-SPACE).

Figure 12.9. The Code Templates preferences panel

New Define a new code template.

Edit Edit the selected code template.

Delete Delete the selected code template.

Import Import a file with code templates.

Configuring the editor

198



Export Export a file with code templates.

Default Schema Association

When no schema is specified in the edited document, <oXygen/> will try to use one of the default asso-
ciation rules set. It will try to use the association rules in the order presented in the Editor/Default
Schema Association pane.

Figure 12.10. The Default Schema Association preferences panel

Namespace Specifies the namespace of the root element from the association rules set (any
by default).

Root local name Specifies the local name of the root element (any by default).

File name Specifies the name of the file (any by default).

Schema type Specifies the type of schema to be used in the association rules for the docu-
ment.

Schema URI Specifies the location from where to load the schema to be used in the current
association rule. The macro ${frameworks} can be used and it will be expan-
ded to the path of the subdirectory frameworks of the <oXygen/> installa-
tion directory.

New Opens a new dialog allowing you to specify a new association rule.

Figure 12.11. The Schema mapping dialog

Configuring the editor

199



Edit Opens a new dialog allowing you to edit an existing association rule.

Delete Deletes one of the existing association rule.

Up Moves the selected association rule one level up (the order is important because
the first schema mapping in the list that can be associated with the document
will be associated.

Down Moves the selected association rule one level down.

Content Completion

The Content Completion feature enables inline syntax lookup and Auto Completion of mark-up ele-
ments and attributes to streamline mark-up and reduce errors while editing.

These settings define the operating mode of the content assistant.

Figure 12.12. The Content Completion Features preferences panel

Configuring the editor

200



Use Content Completion This option enables Content Completion feature. When un-
checked, all Content Completion features are disabled.

Case sensitive search When it is checked the search in the content completion window
when you type a character is case sensitive ('a' and 'A' are differ-
ent characters).

Close the inserted element When inserting elements from the Content Completion assistant,
both start and end tags are inserted.

If it has no matching tag When checked, the end tag of the inserted element will be auto-
matically added only if it is not already present in the document.

Auto close the last opened tag If the Use Content Completion option is not checked and if this
option is checked, <oXygen/> will close the last opened tag when
</ is typed.

Configuring the editor

201



Cursor position between tags When checked, <oXygen/> will set the cursor automatically
between tags. Even if the auto-inserted elements have attributes
that are not required, the position of cursor can be forced between
tags.

Show all entities When checked, <oXygen/> will display a list with all the internal
and external entities declared in the current document when the
user types the start character of an entity reference (i.e. &).

Add element content When checked, <oXygen/> will insert automatically the required
elements from the DTD or XML Schema.

Add optional content When checked, <oXygen/> will insert automatically the optional
elements from the DTD or XML Schema.

Add first Choice particle When checked, <oXygen/> will insert automatically the first
Choice particle from the DTD or XML Schema.

Insert the required attributes When checked, <oXygen/> will insert automatically the required
attributes from the DTD or XML Schema for an element inserted
with the help of the Content Completion assistant.

Insert the fixed attributes When checked, <oXygen/> will insert automatically any FIXED
attributes from the DTD or XML Schema for an element inserted
with the help of the Content Completion assistant.

Show annotations When checked, <oXygen/> will display the annotations that are
present in the used schema for the current element, attribute or at-
tribute value.

Show annotations as tooltip If checked, it shows the annotations of elements and attributes as
tooltips.

Use DTD comments as annotation When checked, <oXygen/> will use all DTD comments as an-
notation.

Show recently used items When checked, <oXygen/> will remember the last inserted items
from the Content Completion window. The number of items to be
remembered is limited by Maximum number of recent items
shown combo box. These most frequently used items are dis-
played on the top of Content Completion window and their icon is
decorated with a small red square.

Learn attributes values When checked, <oXygen/> will display a list with all attributes
values learned from the current document.

Learn on open document When checked, <oXygen/> will automatically learn the document
structure when the document is opened.

XSL/XPath

These settings define what elements are suggested by the content assistant in addition to the XSL ones.

Figure 12.13. The Content Completion XSL/XPath preferences panel

Configuring the editor

202



None The Content Completion will offer only the XSL information.

XHTML transitional Includes XHTML Transitional elements as substitutes for
xsl:element.

Formating objects Includes Formating Objects elements as substitutes for
xsl:element.

Other Includes elements from a DTD file, a XML Schema file or a RNG
Schema file specified from a URL as substitutes for xsl:element.

Enable content completion for
XPath expressions

Disables and enables content completion in XPath expressions
entered in the XSL attributes match, select and test and also in the
XPath toolbar.

Options are available to allow the user to include XPath functions,
XSLT functions or axes in the content completion suggestion list.

Diagram

If operation is slow for very large schemas disabling the schema diagram view will improve the speed of
navigation through the edited schema.

Configuring the editor

203



Figure 12.14. Schema diagram preferences panel

Show XML Schema diagram If this option is disabled the schema diagram for XML Schemas
will not be generated and displayed.

Show Relax NG diagram If this option is disabled the schema diagram for Relax NG
schemas will not be generated and displayed.

Location relative to editor The location of the diagram panel in the editing area can be:
North, East, South, West. For example North means that the dia-
gram panel takes the North part of the editing area and the text ed-
itor panel takes the rest of the editing area.

Spell Check

Figure 12.15. Spell check preferences panel

Configuring the editor

204



Automatic Spell Check When checked, the spell checker is activated. Spell errors will be
highlighted as you type.

Apply spell checking on whole
document

When checked, a spell check action will be performed on entire
document, highlighting all encountered errors.

Note

On large documents, spell checking the entire con-
tent may take a lot of time.

Dictionary The dictionary combo allows you to choose the dictionary you
need.

XML spell checking in These options allow the user to specify if the spell checker will be
enabled inside Comments, Attribute values, Text and CDATA
sections.

Case sensitive When checked, operations ignore capitalization errors.

Ignore mixed case words When checked, operations do not check words containing case
mixing (e.g. "SpellChecker").

Ignore words with digits When checked, the Spell Checker does not check words contain-

Configuring the editor

205



ing digits (e.g. "b2b").

Ignore Duplicates When checked, the Spell Checker does not signal two successive
identical words as an error.

Ignore URL When checked, ignores words looking like URL or file names
(e.g. "www.oxygenxml.com" or "c:\boot.ini") .

Check punctuation When checked, punctuation checking is enabled: misplaced white
space and wrong sequences, like a dot following a comma, are de-
tected.

Enable auto replace Enables the "Replace Always" feature.

Allow compounds words When checked, all words formed by concatenating two legal
words with an hyphen are accepted. If the language allows it, two
words concatenated without hyphen are also accepted.

Allow general prefixes When checked, a word formed by concatenating a registered pre-
fix and a legal word is accepted. For example if "mini-" is a re-
gistered prefix, accepts "mini-computer".

Allow file extensions When checked, accepts any word ending with registered file ex-
tensions (e.g. "myfile.txt", "index.html" etc.).

Suggestion This option indicates the type of spell checker accuracy, which
may be: "Favour speed over quality", "Normal" and "Favour qual-
ity over speed".

Document Checking

Figure 12.16. Document checking preferences panel

Validate as you type Validation of edited document is executed as the document is
modified by editing in <oXygen/>.

Delay after the last key event (s) The period of keyboard inactivity which starts a new validation
(in seconds).

Configuring the editor

206



ted per document If there are many validation errors the process of marking them in
the document is long. You should limit the maximum number of
reported errors with this setting to keep the time for error marking
short

Clear validation markers on close When a document edited with the <oXygen/> plugin is closed all
the error markers added in the Problems view for the validation
errors obtained for that document are removed.

Custom Validation

Figure 12.17. Custom validation preferences panel

Configuring the editor

207



Name The name of the custom validation tool displayed in the External
Validation toolbar

Executable path The path to the executable file of the external validation tool. The
following macros can be used:

${home} The path to user home directory

${pd} Project directory

Configuring the editor

208



${oxygenInstallDir} Oxygen installation directory

Working directory The working directory of the external validation tool. The follow-
ing macros can be used:

${home} The path to user home directory

${pd} Project directory

${oxygenInstallDir} Oxygen installation directory

Associated editors The editors which can perform validation with the external tool.

Command line arguments for de-
tected schemas

Command line arguments used to validate the current edited file
against different types of schema (W3C XML Schema, Relax NG
full syntax, Relax NG compact syntax, Namespace Routing Lan-
guage, Schematron, DTD, other schema type). The arguments can
include any custom switch (like -rng) and the macros:

${cf} The path of the currently edited file

${cfu} Path of current file (URL)

${ds} The path of detected schema file

${dsu} The path of detected schema file (URL)

CSS Validator

Figure 12.18. CSS Validator preferences panel

Profile Choose one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3,
SVG, SVG Basic, SVG Tiny, Mobile, TV Profile, ATSC TV Profile

Media Type Choose one of the available mediums: all, aural, braille, embossed, handheld,
print, projection, screen

Warning Level Set the minimum severity level for reported validation warnings. It is one of: all,
normal, most important, no warnings.

Configuring the editor

209



XML

XML Catalog

Figure 12.19. The XML Catalog preferences panel

When using catalogs it is sometimes useful to see what catalog files are parsed, if they are valid or not,
and what identifiers are resolved by the catalogs. The Verbosity option is used to control the output of
such messages. By default it is not selected.

If the Use default catalog option is checked the first XML catalog which <oXygen/> will use to resolve
system IDs at document validation and URI references at document transformation will be a default
built-in catalog which maps such references to the built-in local copies of the local DocBook and TEI
frameworks and the schemas for XHTML, SVG and JSP documents.

The Prefer option is used to specify if <oXygen/> will try to resolve first the PUBLIC or SYSTEM ref-
erence using the specified XML catalogs. If a PUBLIC reference is not mapped in any of the catalogs
then a SYSTEM reference is looked up.

When you add/delete an XML catalog to/from the list you must restart the application so that the
changes take effect.

XML Parser

Figure 12.20. The XML Parser preferences panel

Configuring the editor

210



Maximum number of problems re-
ported per file

Limit the number of errors reported at validation or well-formed
check. Use this option when the total number of errors is big and
the time of displaying is too large.

http://apache.org/xml/features/validation/schema - This option sets the 'schema' feature to true.

http://apache.org/xml/features/validation/schema-full-checking - This option sets the 'schema-
full-checking' feature to true.

http://apache.org/xml/features/validation/honour-all-schema-location - This option sets the 'honour-
all-schema-location' feature to true. This means all the schemas that are imported for a specific
namespace are used to compose the validation model. If this is false, only the first schema import is

Configuring the editor

211



taken into account.

Ignore the DTD for validation if a
schema is specified

This option forces validation against a referred schema (XML
Schema, Relax NG schema, Schematron schema) even if the doc-
ument includes also a DTD declaration. It is useful when the DTD
declaration is used to declare entities and the schema reference is
used for validation.

Enable XInclude processing Enable XInclude processing - if checked the XInclude support in
<oXygen/> is turned on.

Base URI fix-up [Xerces XML Parser documentation:] According to the specifica-
tion for XInclude, processors must add an xml:base attribute to
elements included from locations with a different base URI.
Without these attributes, the resulting infoset information would
be incorrect.

Unfortunately, these attributes make XInclude processing not
transparent to Schema validation.

One solution to this is to modify your schema to allow xml:base
attributes to appear on elements that might be included from dif-
ferent base URIs.

If the addition of xml:base and/or xml:lang is undesired by your
application, you can disable base URI fix-up.

Language fix-up [Xerces XML Parser documentation:]The processor will preserve
language information on a top-level included element by adding
an xml:lang attribute if its include parent has a different
[language] property.

If the addition of xml:lang is undesired by your application, you
can disable the Language fix-up.

Check ID/IDREF Checks the ID/IDREF matches when the Relax NG document is
validated.

Check feasibly valid Checks the Relax NG to be feasibly valid when this document is
validated.

Schematron XPath Version 1.0 - Allows XSLT 1.0 expressions for Schematron assertion
tests.

2.0 - Allows XSLT 2.0 expressions for Schematron assertion
tests.

2.0 - Allows XSLT 2.0 expressions for Schematron assertion
tests.

XML Instances Generator

Figure 12.21. The XML Instances Generator preferences panel

Configuring the editor

212



Generate optional elements If checked the elements declared optional in the schema will be
generated in the XML instance

Generate optional attributes If checked the attributes declared optional in the schema will be
generated in the XML instance

Values of elements and attributes Specifies what values are generated in elements and attributes of
the XML instance. It can have one of the values: None (no values
for elements and attributes), Default (the value is like the element
name or attribute name), Random (a random value).

Preferred number of repetitions The number of repetitions for an element that has a big value of
the maxOccurs attribute.

Maximum recursivity level For recursive type definitions this parameter specifies the number
of levels of recursive elements inserted in the parent element with
the same name.

Choice strategy For choice element models specifies what choice will be gener-
ated in the XML instance. It can be First (the first choice is gener-
ated) or Random (a random choice is generated).

Generate the other options as com-
ments

If checked the other options of the choice element model which
are not selected will be generated inside a comment in the XML
instance.

Use incremental attribute/element
names as default

If checked the value of an element/attribute is like the name of
that element/attribute. For example the values of a elements are

Configuring the editor

213



a1, a2, a3, etc. If not checked the value is the name of the type of
that element /attribute, for example string, decimal, etc.

Maximum length The maximum length of string values generated for elements and
attributes.

XSLT/FO/XQuery

XSLT

Figure 12.22. The XSLT preferences panel

If you want to use an XSLT transformer different than the ones that ship with <oXygen/> namely
Apache Xalan and Saxon all you have to do is to specify the name of the transformer's factory class
which <oXygen/> will set as the value of the Java property "javax.xml.transform.TransformerFactory".
To perform an XSLT transformation with Saxon 7 for instance you have to place the Saxon 7 jar file in
the <oXygen/> libraries directory (the lib subdirectory of the installation directory), set
"net.sf.saxon.TransformerFactoryImpl" as the property value and select JAXP as the XSLT processor in
the transformation scenario associated to the transformed XML document.

Value Allows the user to enter the name of the transformer factory Java
class.

XSLT 1.0 Validate with Allows the user to set the XSLT Engine used for validation of XSL
1.0 documents.

XSLT 2.0 Validate with Allows the user to set the XSLT Engine used for validation of XSL
2.0 documents.

Saxon6

Configuring the editor

214



The XSLT options which can be configured for the Saxon 6 transformer are:

Figure 12.23. The Saxon 6 XSLT preferences panel

• Line numbering: If checked line numbers are maintained for the source document.

• Allow calls on extension functions: If checked external functions called is allowed. Not checking this
is recommended in an environment where untrusted stylesheets may be executed. Also disables user-
defined extension elements, together with the writing of multiple output files, all of which carry simil-
ar security risks.

• Policy for handling recoverable errors in the stylesheet: Allows the user to choose how dynamic er-
rors will be handled. Either one of the following options can be selected: recover silently, recover
with warnings or signal the error and do not attempt recovery.

Saxon8

The XSLT options which can be configured for the Saxon 8 transformer (both the Basic and the Schema
Aware versions) are:

Figure 12.24. The Saxon 8 XSLT preferences panel

Configuring the editor

215



• Version warnings: If checked a warning will be output when running an XSLT 2.0 processor against
an XSLT 1.0 stylesheet. The XSLT specification requires this to be done by default.

• Allow calls on extension functions: If checked external functions called is allowed. Not checking this
is recommended in an environment where untrusted stylesheets may be executed. Also disables user-
defined extension elements, together with the writing of multiple output files, all of which carry simil-
ar security risks.

• DTD based validation of the source file: If checked XML source documents are validated against
their DTD.

• Line numbering: If checked line numbers are maintained for the source document.

• Policy for handling recoverable errors in the stylesheet: Allows the user to choose how dynamic er-
rors will be handled. Either one of the following options can be selected: recover silently, recover
with warnings or signal the error and do not attempt recovery.

• Strip whitespaces feature can be one of the three options: All, Ignorable, None.

All strips all whitespace text nodes from source documents before any further processing,
regardless of any xsl:strip-space declarations in the stylesheet, or any xml:space at-
tributes in the source document.

Configuring the editor

216



Ignorable strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xsl:strip-space declarations in the stylesheet, or any
xml:space attributes in the source document. Whitespace text nodes are ignorable if
they appear in elements defined in the DTD or schema as having element-only con-
tent.

None strips no whitespace before further processing. (However, whitespace will still be
stripped if this is specified in the stylesheet using xsl:strip-space).

Saxon8SA specific options

• Schema based validation of the source file: This determines whether source documents should be
parsed with schema-validation enabled.

• Lax schema based validation of the source file: This determines whether source documents should be
parsed with schema-validation enabled.

• Validation errors in the result tree treated as warnings: If checked, all validation errors are treated as
warnings, otherwise they are treated as fatal.

XSLTProc

Figure 12.25. The XSLTProc preferences panel

Configuring the editor

217



The options of the XSLTProc processor are the same as the ones available in the command line for the
XSLTProc processor:

Enable XInclude processing If checked XInclude references will be resolved when XSLTProc
is used as transformer in the transformation scenario.

Skip loading the document's DTD If checked the DTD specified in the DOCTYPE declaration will
not be loaded.

Do not apply default attributes
from document's DTD

If checked the default attributes declared in the DTD and not spe-
cified in the document are not included in the transformed docu-
ment.

Do not use Internet to fetch DTD's,
entities or docs

If checked the remote references to DTD's and entities are not fol-
lowed.

Maximum depth in templates stack If the limit of maximum templates is reached the transformation
ends with an error.

Verbosity If checked the transformation will output detailed status messages
about the transformation process in the Warnings view.

Show version of libxml and libxslt
used

If checked <oXygen/> will display in the Warnings view the ver-
sion of the libxml and libxslt libraries invoked by XSLTProc.

Show time information If checked the Warnings view will display the time necessary for

Configuring the editor

218



running the transformation.

Show debug information If checked the Warnings view will display debug information
about what templates are matched, parameter values, etc.

Show all documents loaded during
processing

If checked <oXygen/> will display in the Warnings view the URL
of all the files loaded during transformation.

Show profile information If checked <oXygen/> will display in the Warnings view a table
with all the matched templates, and for each template: the match
XPath expression, template name, number of template modes,
number of calls, execution time.

Show the list of registered exten-
sions

If checked <oXygen/> will display in the Warnings view a list
with all the registered extension funtions, extension elements and
extension modules.

Refuses to write to any file or re-
source

If checked the XSLTProc processor will not write any part of the
transformation result to an external file on disk. If such an opera-
tion is requested by the processed XSLT stylesheet the transform-
ation ends with a runtime error.

Refuses to create directories If checked the XSLTProc processor will not create any directory
during the transformation process. If such an operation is reques-
ted by the processed XSLT stylesheet the transformation ends
with a runtime error.

MSXML

Figure 12.26. The MSXML preferences panel

The options of the MSXML 3.0 and 4.0 processors are the same as the ones available in the command
line for the MSXML processors: [ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp]

Validate documents during parse
phase

If checked and either the source or style sheet document has a
DTD or schema against which its content should be checked, val-
idation is performed.

Configuring the editor

219

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp


Do not resolve external definitions
during parse phase

By default, MSXSL instructs the parser to resolve external defini-
tions such as document type definition (DTD), external subsets or
external entity references when parsing the source and style sheet
documents. If this option is checked the resolution is disabled.

Strip non-significant whitespaces If checked strip non-significant white space from the input XML
document during the load phase. Enabling this option can lower
memory usage and improve transformation performance while, in
most cases, creating equivalent output.

Show time information If checked the relative speed of various transformation steps can
be measured: time to load, parse, and build the input document;
time to load, parse, and build the style sheet document; time to
compile the style sheet in preparation for the transformation; time
to execute the style sheet.

Start transformation in this mode Although style sheet execution usually begins in the empty mode,
this default may be changed by specifying another mode. Chan-
ging the start mode allows execution to jump directly to an altern-
ate group of templates.

MSXML.NET

Figure 12.27. The MSXML.NET preferences panel

Configuring the editor

220



The options of the MSXML.NET processor are the same as the ones available in the command line for
the MSXML.NET processor: [http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx]

Enable XInclude processing If checked XInclude references will be resolved when XSLTProc
is used as transformer in the transformation scenario.

Validate documents during parse
phase

If checked and either the source or style sheet document has a
DTD or schema against which its content should be checked, val-
idation is performed.

Do not resolve external definitions
during parse phase

By default MSXML.NET resolves external definitions such as
DTD external subsets or external entity references when parsing
source XML document and stylesheet document. Using this op-
tion you can disable this behaviour. (Note, that it may affect also
the validation process.)

Strip non-significant whitespaces If checked strip non-significant white space from the input XML
document during the load phase. Enabling this option can lower
memory usage and improve transformation performance while, in
most cases, creating equivalent output.

Show time information If checked the relative speed of various transformation steps can
be measured: time to load, parse, and build the input document;
time to load, parse, and build the style sheet document; time to

Configuring the editor

221

http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx


compile the style sheet in preparation for the transformation; time
to execute the style sheet.

Forces ASCII output encoding There is a known problem with .NET 1.X XSLT processor
(System.Xml.Xsl.XslTransform class) - it doesn't support escap-
ing of characters as XML character references when they cannot
be represented in the output encoding. That means that when you
output a character that cannot be represented in output encoding,
it will be outputted as '?'. Usually this happens when output en-
coding is set to ASCII. With this option checked the output is
forced to be ASCII encoded and all non-ASCII characters get es-
caped as XML character references (&#nnnn; form).

Allow multiple output documents This option allows to create multiple result documents using the
exsl:document extension element. [ht-
tp://www.exslt.org/exsl/elements/document/index.html]

Use named URI resolver class This option allows to specify a custom URI resolver class to re-
solve URI references in xsl:import/xsl:include instructions
(during XSLT stylesheet loading phase) and in document() func-
tion (during XSL transformation phase).

Assembly file name for URI re-
solver class

The previous option specifies partially or fully qualified URI re-
solver class name, e.g. Acme.Resolvers.CacheResolver. Such
name requires additional assembly specification using this option
or the next option, but fully qualified class name (which always
includes an assembly specifier) is all-sufficient. See MSDN for
more info about fully qualified class names. [ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/cp
guide/html/cpconspecifyingfullyqualifiedtypenames.asp] This op-
tion specifies a file name of the assembly, where the specified re-
solver class can be found.

Assembly GAC name for URI re-
solver class

This option specifies partially or fully qualified name of the as-
sembly in the global assembly cache [ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/cp
guide/html/cpconglobalassemblycache.asp] (GAC), where the
specified resolver class can be found. See MSDN for more info
about partial assembly names. [ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/cp
guide/html/cpconpartialassemblyreferences.asp] Also see the pre-
vious option.

List of extension object class
names

This option allows to specify extension object [ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/cp
guide/
html/cp-
conxsltargumentlistforstylesheetparametersextensionobjects.asp]
classes, whose public methods then can be used as extension
functions in an XSLT stylesheet. It is a comma-separated list of
namespace-qualified extension object class names. Each class
name must be bound to a namespace URI using prefixes as when
providing XSLT parameters. [ht-
tp://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#param
eters]

Use specified EXSLT assembly MSXML.NET supports rich library of the EXSLT [ht-
tp://www.exslt.org/] and EXSLT.NET [ht-

Configuring the editor

222

http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.exslt.org/
http://www.exslt.org/
http://www.exslt.org/
http://www.xmllab.net/exslt


tp://www.xmllab.net/exslt] extension functions via embedded or
plugged in EXSLT.NET [http://workspaces.gotdotnet.com/exslt]
library. EXSLT support is enabled by default and cannot be dis-
abled in this version. If you want to use an external EXSLT.NET
implementation instead of a built-in one use this option.

Credential loading source xml This option allows to specify user credentials to be used when
loading XML source documents. The credentials should be
provided in the "username:password@domain" format (all parts
are optional).

Credential loading stylesheet This option allows to specify user credentials to be used when
loading XSLT stylesheet documents. The credentials should be
provided in the "username:password@domain" format (all parts
are optional).

XQuery

Figure 12.28. The XQuery preferences panel

XQuery validate with Allows you to select the XSLT Processor to validate the XQuery

Format transformer output When checked the transformer's output is formatted and indented
(pretty printed).

Create structure indicating the type
nodes

If checked, <oXygen/> takes the results of a query and creates an
XML document containing copies of all items in the sequence,
suitably wrapped.

Saxon

Figure 12.29. The Saxon XQuery preferences panel

Configuring the editor

223

http://www.xmllab.net/exslt
http://workspaces.gotdotnet.com/exslt
http://workspaces.gotdotnet.com/exslt


Saxon8 options:

Allow calls on extension functions If checked external functions called is allowed. Not checking this
is recommended in an environment where untrusted stylesheets
may be executed. Also disables user-defined extension elements,
together with the writing of multiple output files, all of which
carry similar security risks.

Policy for handling recoverable er-
rors in the stylesheet

Allows the user to choose how dynamic errors will be handled.
Either one of the following options can be selected: recover si-
lently, recover with warnings or signal the error and do not at-
tempt recovery.

Strip whitespaces Can have one of the three values: All, Ignore, None. All - strips all
whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source
document. Ignore - strips all ignorable whitespace text nodes
from source documents before any further processing, regardless
of any xml:space attributes in the source document. Whitespace
text nodes are ignorable if they appear in elements defined in the
DTD or schema as having element-only content. None - strips no
whitespace before further processing.

Configuring the editor

224



Saxon8SA specific options:

Schema based validation of the
source

This determines whether source documents should be parsed with
schema-validation enabled.

Lax schema based validation of the
source

This determines whether source documents should be parsed with
schema-validation enabled.

Validation errors in the result tree
treated as warnings

If checked, all validation errors are treated as warnings, otherwise
they are treated as fatal.

eXist

Figure 12.30. The eXist preferences panel

eXist options:

XML DB URI URI to the installed eXist engine. If you like to set a default collection you have to first
press the Refresh button in order for the Collection list to be populated.

User User name to access the eXist database engine

Password Password to access the eXist database engine

Collection eXist organizes all documents in hierarchical collections. Collections are like director-
ies. They are used to group related documents together. This combo box is populated
after pressing the Refresh button and allows the user to set the default collection name.

Berkeley DB XML

Figure 12.31. The Berkeley DB XML preferences panel

Configuring the editor

225



Berkeley DB XML options:

Environment home directory Path to the Berkeley DB XML's home directory.

Verbosity The user can choose between four levels of verbosity: DEBUG,
INFO, WARNING, ERROR.

X-Hive/DB

Figure 12.32. The X-Hive/DB preferences panel

X-Hive/DB options:

xhive.bootstrap URI to the installed X-Hive/DB engine.

User User name to access the X-Hive/DB database engine.

Password Password to access the X-Hive/DB database engine.

Database The name of the database to access from the X-Hive/DB database
engine.

Run XQuery in read/write session
(with committing)

If checked the X-Hive session ends with a commit, otherwise it
ends with a rollback.

MarkLogic

Configuring the editor

226



Figure 12.33. The MarkLogic preferences panel

MarkLogic options:

Host The hostname or ip address of the installed MarkLogic engine.

Port The port number of the MarkLogic engine.

User User name to access the MarkLogic engine.

Password Password to access the MarkLogic engine.

TigerLogic

Figure 12.34. The TigerLogic preferences panel

TigerLogic options:

Host The hostname or ip address of the installed TigerLogic engine.

Configuring the editor

227



Port The port number of the TigerLogic engine.

User User name to access the TigerLogic engine.

Password Password to access the TigerLogic engine.

Database The name of the database to access from the TigerLogic engine.

Debugger

Figure 12.35. The Debugger preferences panel

The following settings are available:

Enable XHTML output Enable or disable rendering of output to the XHTML Output doc-
ument View during the transformation process. For performance
issues, it is advisable to disable XHTML output for large jobs.
Also, the XHTML area is only able to render XHTML docu-
ments. In order to view the output result of other formats, such as
HTML, save the Text output area to a file and use the required ex-
ternal browser for viewing.

Show xsl:result-document output If checked, the debugger presents the output of xsl: result-
document instruction into the debugger output view.

Infinite loop detection Set this option to receive notifications when an infinite loop oc-
curs during transformation.

Maximum depth in templates stack How many templates (<xsl:templates>) instructions can ap-
pear on the current stack. This setting is used by the infinite loop
detection.

Profiler

This section explains the settings available for XSLT Profiler mode. To display settings select Window
→ Preferences → oXygen → XML → XSLT/FO+Profiler (see the section called “Debugger”).

Figure 12.36. The Profiler preferences panel

Configuring the editor

228



The following settings are available:

Show time Show the total time that was spent in the node.

Show inherent time Show the inherent time that was spent in the node.

Show invocation count Show how many times the node was called in this particular call
sequence.

Time scale The time scale options determine the unit of time measurement,
which may be milliseconds (ms) or microseconds (µs).

Hotspot threshold The threshold below which hot spots are ignored is entered in mil-
liseconds (ms).

Ignore invocation less than The threshold below which invocations are ignored is entered in
microseconds (µs).

Percentage calculation The percentage base determines against what time span percent-
ages are calculated.

• Absolute: Percentage values show the contribution to the total
time.

• Relative: Percentage values show the contribution to the calling

Configuring the editor

229



node.

FO Processors

Besides the built-in formatting objects processor (Apache FOP) the user can use other external pro-
cessors. <oXygen/> has implemented an easy way to add RenderX XEP as external FO processor if the
user has the XEP installed.

Figure 12.37. The FO Processors preferences panel

Enable the output of the built-in
FOP

When checked all FOP output will be displayed in a results pane
at the bottom of the editor window including warning messages
about FO instructions not supported by FOP.

Memory available to the built-in
FOP

If your FOP transformations fail with an "Out of Memory" error
select from this combo box a larger value for the amount of
memory reserved for FOP transformations.

Configuration file for the built-in
FOP

You should specify here the path to a FOP configuration file, ne-
cessary for example to render to PDF using a special true type
font a document containing Unicode content.

The users can configure the external processors for use with <oXygen/> in the following dialog.

Configuring the editor

230



Figure 12.38. The external FO processor configuration dialog

Name The name that will be displayed in the list of available FOP processors on
the FOP tab of the Transforming Configuration dialog.

Description The description of the FO processor displayed in the Preferences->FO Pro-
cessors option.

Working directory The directory in which the intermediate and final results of the processing
will be stored. Here you can use one of the following macros:

${home} The path to user home directory.

${cfd} The path of current file directory.

${pd} The project directory.

Command line The command line that will start the FO processor, specific to each pro-
cessor. Here you can use one of the following macros:

${method} The FOP transformation method (pdf, ps, txt).

${fo} The input FO file.

${out} The output file.

Configuring the editor

231



XPath

Figure 12.39. The XPath preferences panel

Unescape XPath expression When checked, unescapes the entities found in the XPath expres-
sion. For example the expression

//varlistentry[starts-with(@os,'&#x73;')]

is equivalent with

//varlistentry[starts-with(@os,'s')]

.

No namespace If checked <oXygen/> will consider unprefixed element names in
XPath expressions evaluated in the XPath console as belonging to
no namespace.

Use the namespace of the root If checked <oXygen/> will consider unprefixed element names in
XPath expressions evaluated in the XPath console as belonging to
the same namespace as the root element of the document.

Only if it is declared as default If checked the namespace of the root element will be applied to
the unprefixed elements in the XPath console only if it is set as
default namespace on the root element.

Configuring the editor

232



Other The user has the possibility to enter here the namespace of the un-
prefixed elements used in the XPath console

Default prefix-namespace map-
pings

Associates prefixes to namespaces. These mappings are useful
when applying an XPath in XPath console and you don't have to
define these mappings for each document separately.

The New button creates an editable prefix-namespace mapping.

The Remove button deletes the selected mapping.

Custom engines

One can configure other transformation engines than the ones which come with the <oXygen/> distribu-
tion. Such an external engine can be used for XSLT / XQuery transformations within <oXygen/>, in the
Editor perspective, and is available in the list of engines in the dialog for editing transformation scenari-
os. However it cannot be used in the Debugger perspective.

Figure 12.40. Configuration of custom transformation engines

The following parameters can be configured for a custom engine:

Figure 12.41. Parameters of a custom transformation engine

Configuring the editor

233



Engine type Combo box allowing you to choose the transformer type. There are two op-
tions: XSLT engines and XQuery engines.

Name The name of the transformer displayed in the dialog for editing transforma-
tion scenarios

Description Text description of the transformer

Working directory The start directory of the transformer executable program. The following
macros are available for making the path to the working directory independ-
ent of the input XML file:

• ${home} - the user home directory in the operating system

• ${cfd} - the path to the directory of the current file

• ${pd} - the path to the directory of the current project

• ${oxygenInstallDir} - the <oXygen/> install directory

Command line The command line that must be executed by <oXygen/> to perform a trans-
formation with the engine. The following macros are available for making
the items of the command line (the transformer executable, the input files)
independent of the input XML file:

Configuring the editor

234



• ${xml} - the XML input document as a file path

• ${xmlu} - the XML input document as a URL

• ${xsl} - the XSL / XQuery input document as a file path

• ${xslu} - the XSL / XQuery input document as a URL

• ${out} - the output document as a file path

• ${outu} - the output document as a URL

Database
Here you can configure the JDBC Drivers for the Import from Database action. Any database server that
supports JDBC connectivity can be configured. You can check the list of JDBC drivers (ht-
tp://www.oxygenxml.com/database_drivers.html) available for the major database servers.

Figure 12.42. The JDBC Drivers preferences panel

New Opens the JDBC Drivers dialog, allowing you to configure a new driver that will appear in in
the list from "Select database table" dialog.

Figure 12.43. The JDBC Drivers dialog

Configuring the editor

235

http://www.oxygenxml.com/database_drivers.html
http://www.oxygenxml.com/database_drivers.html


Name Provide the name for the JDBC Driver

URL: Provide the URL for the JDBC Driver

Driver Class Provide the Driver Class for the JDBC Driver

Add Adds the JDBC driver class library.

Remove Removes driver class library from the list.

Detect Detects JDBC driver candidates.

Stop Stops the detection of the JDBC driver candidates.

Edit Opens the JDBC Drivers dialog, allowing you to edit the selected driver. See above the spe-
cifications for the JDBC Drivers dialog.

Configuring the editor

236



Delete Deletes the selected JDBC Driver.

Import

Here it is configured how empty values and null values are handled when they are encountered in an im-
port operation.

Figure 12.44. The Database import preferences panel

Create empty elements for empty
values

If this option is enabled an empty value from a database column
will be imported as an empty element.

Create empty elements for null val-
ues

If this option is enabled a null value from a database column will
be imported as an empty element.

Add annotations for generated
XML Schema

If checked, the generated XML Schema will contain an annota-
tion for each of the imported table's columns. The documentation
inside the annotation tag will contain the remarks of the database
columns (if available) and also information about the conversion
between the column type and the generated XML Schema type.

Date/Time format If Data base specific Date/Time format is checked, the date and
time formats specific to the database will be used for import. The
type used in the generated XML Schema will be xs:string.
If XSL Schema specific Date/Time format is checked, the
ISO8601 format ( yyyy-MM-ddTHH:mm:ss ) will be used for im-
ported date/time data. The types used in the generated XML
Schema will be xs:datetime, xs:date and xs:time.

HTTP / Proxy Configuration
Some networks use Proxy servers to provide Internet Services to LAN Clients. Clients behind the Proxy
may therefore, only connect to the Internet via the Proxy Service. The Proxy Configuration dialog en-
ables this configuration. If you are not sure whether your computer is required to use a Proxy server to

Configuring the editor

237



connect to the Internet or the values required by the Proxy Configuration dialog, please consult your
Network Administrator.

Open the Proxy Configuration dialog by selecting Options → Preferences → HTTP / Proxy Configura-
tion.

Figure 12.45. The Proxy Configuration preferences panel

Complete the dialog as follows:

Use proxy server When checked enables <oXygen/> to use the specified Proxy Server. When
unchecked, Proxy Server is disabled.

Web Proxy (HTTP) The IP address or Fully Qualified Domain Name (FQDN) of the Proxy Serv-
er.

Port The TCP Port Number, normally set to 80 or 8080.

User The Name of the user if required. Can be empty.

Password The Password for authentication. Can be empty.

No proxy for Specify domains for which no proxy should be used.

Configuring the editor

238



SOCKS When checked enables SOCKS using the specified host and port for the serv-
er. When unchecked, SOCKS is disabled.

Host The SOCKS host you wish to connect to.

Port The SOCKS port you wish to connect to.

Read Timeout (s) The period in seconds after which <oXygen/> will consider a HTTP server is
unreachable if it does not receive any response to a request sent to that server.

A change to this setting takes effect only after the Eclipse platform is restar-
ted.

The Proxy settings are first looked up in the options. If there were no previous options set then the set-
tings are loaded from the "servers" file located in the "%HOME%\Application Data\Subversion\" folder
on Windows and %HOME%\.subversion\ folder on Linux and Mac OS X.

Certificates
In <oXygen/> there are provided two types of Keystores: Java KeyStore (JKS) and Public-Key Crypto-
graphy Standards version 12 (PKCS-12). A keystore file is protected by a password.

Figure 12.46. The Certificates preferences panel

Keystore type Represents the type of keystore to be used.

Keystore file Represents the location of the file to be imported.

Keystore password The password which is used to protect the privacy of the stored keys.

Certificate alias The alias to be used to store the key entry (the certificate and /or the
private key) inside the keystore.

Configuring the editor

239



Private key password It is only necessary in case of JKS keystore. It represents the certific-
ate's private key password.

Validate Verifies the entries from the fields; assures that the certificate is valid.

Scenarios Management

Figure 12.47. The Scenarios Management preferences panel

Import transformation scenarios Allows you to import all transformation scenarios from a scenari-
os properties file. Their names will appear in the "Configure
Transformation Scenario" dialog followed by "(import)". This
way there are no scenarios' names conflicts.

Export transformation scenarios Allows you to export all transformation scenarios available in the
"Configure Transformation Scenario" dialog.

View

Figure 12.48. The View preferences panel

Configuring the editor

240



Enable outline drag and drop When drag and drop is disabled for the tree displayed by the out-
line view there is no possibility to accidentally change the struc-
ture of the document.

Fixed width console When checked, a line in the Console view will be hard wrapped
after Maximum character width characters.

Limit console output When checked the content of the Console view will be limited to
a configurable number of characters.
Console buffer - specifies the maximum number of characters that
can be written at some point in the Console view.
Tab width - specifies the number of spaces used for depicting a
tab.

Syntax Highlight
<oXygen/> supports Syntax Highlight for XML, DTD, Relax NG (XML and Compact Syntax), Java,
JavaScript, XQuery, C++, C, PHP,CSS, Perl, Properties, SQL, Shell and Batch documents. While
<oXygen/> provides a default color configuration for highlighting the tokens, you may choose to cus-
tomize, as required, using the Colors dialog.

Figure 12.49. The Colors preferences panel

Configuring the editor

241



Open the Syntax Highlight panel by selecting Window->Preferences->oXygen->Syntax Highlight and
choose one of the supported Document Types. Each document type contains a set of Tokens. When a
Document Type node is expanded, the associated tokens are listed. Selecting a token displays the current
color properties and enables you to modify them. You can also select a token by clicking directly in the
preview area on that type of token.

Syntax highlight elements by Prefix

Figure 12.50. The Elements by Prefix preferences panel

Configuring the editor

242



One row of the table contains the association between a namespace prefix and the color used to mark
start tags and end tags in that prefix. Note that the marking mechanism does not look at the namespace
bound to that prefix. If the prefix is bound to different namespaces in different XML elements of the
same file all the tags with the prefix will be marked with the same color.

One can choose that only the prefix to be displayed in the chosen color by checking the Draw only the
prefix with a separate color option.

Automatically importing the preferences from
the other distribution

If you want to use the settings from “standalone” in the Eclipse plugin just delete the file with the Ec-
lipse plugin settings [user-home-dir]/Application Data/
com.oxygenxml/optionsEc7.2.xml on Windows /
[user-home-dir]/.com.oxygenxml/optionsEc7.2.xml on Linux, start Eclipse and the
“standalone” settings will be automatically imported in Eclipse. The same for importing the Eclipse plu-
gin settings in “standalone”: delete the file
[user-home-dir]/com.oxygenxml/optionsSa7.2.xml, start the <oXygen/> “standalone”
distribution and the Eclipse settings will be automatically imported.

Importing/Exporting <oXygen/> preferences
In the <oXygen/> preferences page (Window -> Preferences -> oXygen) you can find the Import/Export
preferences buttons which allow you to move your preferences in XML format from one computer to
another.

Configuring the editor

243



Chapter 13. Common problems
13.1. I associated the .ext extension with <oXygen/> in Eclipse. Why does an .ext file opened

with the Oxygen XML Editor not have syntax highlight ? ..................................... 244

13.1.
I associated the .ext extension with <oXygen/> in Eclipse. Why does an .ext file opened with
the Oxygen XML Editor not have syntax highlight ?

Associating an extension with <oXygen/> in Eclipse 3.1.2+ requires three steps:

1. Associate the .ext extension with the Oxygen XML Editor: go to Windows -> Preferences ->
General -> Editors -> File Associations, add *.ext to the list of file types, select *.ext in the
list by clicking on it, add Oxygen XML Editor to the list of Associated editors and make it the de-
fault editor.

2. Associate the .ext extension with the Oxygen XML content type: go to Windows -> Prefer-
ences -> General -> Content Types and for the Text -> XML -> oXygen XML content type add
*.ext to the File associations list.

3. Press the OK button of the Eclipse preferences dialog.

When a *.ext file is opened the icon of the editor and the syntax highlight should be the same as
for XML files opened with the Oxygen XML Editor.

244


	oXygen User Manual for Eclipse
	Table of Contents
	Chapter 1. Introduction
	Key Features and Benefits
	About the <oXygen/> User Manual

	Chapter 2. Installation
	Installation Requirements
	Platform Requirements
	Operating System, Tools and Environment Requirements
	Operating System
	Tools
	Environment Prerequisites


	Installation Instructions
	Starting <oXygen/> plugin
	Obtaining and installing an <oXygen/> license
	Named User license installation
	How floating (concurrent) licenses work
	How to install the <oXygen/> license server as a Windows service
	How to release a floating license


	Upgrading <oXygen/>
	Uninstalling the <oXygen/> plugin
	Performance problems
	Large documents


	Chapter 3. Getting started
	Supported types of documents
	Getting help
	Perspectives
	<oXygen/> XML perspective
	Supported editor types

	<oXygen/> XSLT Debugger Perspective
	<oXygen/> XQuery Debugger Perspective


	Chapter 4. Editing documents
	Working with Unicode
	Opening and saving Unicode documents

	Opening and closing documents
	Creating new documents
	<oXygen/> plugin wizards
	Creating Documents based on Templates

	Saving documents
	Closing documents
	Creating and sharing new document templates
	Creating a new document template
	Sharing document templates

	Viewing file properties

	Editing XML documents
	Associate a schema to a document
	Setting a schema for the Content Completion
	Setting a default schema
	Adding a Processing Instruction

	Learning document structure

	Streamline with Content Completion
	Code templates
	Content Completion helper panels
	The Model panel
	The Element Structure panel
	The Annotation panel

	The Attributes panel


	Debugging XML documents
	Checking XML Form
	Validating Documents
	Validate as you type
	Custom validation of XML documents


	Document navigation
	Folding of the XML elements
	Outliner view
	XML Document Overview
	Modification Follow-up
	Document Structure Change
	The popup menu of the Outline tree

	Document Tag Selection


	Grouping documents in XML projects
	Large Documents
	Creating an included part

	Creating a new project

	Including document parts with XInclude
	Working with XML Catalogs
	Converting between schema languages
	Formatting and indenting documents (pretty print)
	Viewing status information
	XML editor specific actions
	Edit actions
	Select actions
	Source actions
	XML document actions
	XML Refactoring actions
	XML Schema actions
	Smart editing
	Syntax highlight depending on namespace prefix


	Editing XML Schema schemas
	Special content completion features
	XML Schema diagram
	Introduction
	Full model view
	Logical model view
	Schema components view

	Create an XML Schema from a relational database table
	XML Schema Instance Generator
	Flatten an XML Schema
	XML Schema regular expressions builder
	Generating HTML documentation for an XML Schema
	XML Schema editor specific actions
	Search References and Declarations

	Editing Relax NG schemas
	Relax NG schema diagram
	Introduction
	Full model view
	Logical model view
	Schema components view

	Relax NG editor specific actions
	Search References and Declarations

	Editing XSLT stylesheets
	Validating XSLT stylesheets
	Custom validation of XSLT stylesheets

	Content Completion in XSLT stylesheets
	Content Completion in XPath expressions
	Code templates

	The XSLT Input View
	The Stylesheet Templates view
	Finding XSLT references and declarations
	XSLT refactoring actions

	Editing XQuery documents
	Generating HTML Documentation for an XQuery Document

	Editing CSS stylesheets
	Validating CSS stylesheets
	Content Completion in CSS stylesheets
	Folding in CSS stylesheets
	Formatting and indenting CSS stylesheets (pretty print)
	Other CSS editing actions

	Scratch Buffer

	Chapter 5. Transforming documents
	Output formats
	Transformation scenario
	Built-in transformation scenarios
	Defining a new transformation scenario
	XSLT Stylesheet Parameters
	Additional XSLT Stylesheets
	Scenario Macros
	XSLT/XQuery Extensions

	Exporting and importing the transformation scenarios

	XSL-FO processors
	Common transformations
	PDF Output
	PS Output
	TXT Output
	HTML Output
	HTML Help Output
	JavaHelp Output
	XHTML Output

	Supported XSLT processors
	Configuring custom XSLT processors
	Configuring the XSLT processor extensions paths

	Chapter 6. Querying documents
	Running XPath expressions
	What is XPath
	<oXygen/>'s XPath toolbar

	Working with XQuery
	What is XQuery
	Syntax Highlight and Content Completion
	XQuery Validation
	Other XQuery editing actions
	Transforming XML Documents Using XQuery
	How to configure eXist support in <oXygen/>
	How to configure Berkeley DB XML support in <oXygen/>
	How to configure TigerLogic support in <oXygen/>
	How to configure X-Hive/DB support in <oXygen/>
	How to configure MarkLogic support in <oXygen/>


	Chapter 7. Debugging XSLT stylesheets and XQuery documents
	Overview
	Layout
	Control Toolbar
	Information views
	Multiple output documents in XSLT 2.0

	Working with the XSLT/XQuery Debugger
	Steps in a typical debug process
	Using breakpoints
	Inserting breakpoints
	Removing breakpoints

	Viewing processing information
	Context node view
	XPath watch view
	Breakpoints view
	Break conditions view
	Messages view
	Stack view
	Trace history view
	Templates view
	Node set view
	Variables view

	Determining what XSL/XQuery expression generated particular output


	Chapter 8. Profiling XSLT stylesheets and XQuery documents
	Overview
	Viewing profiling information
	Invocation tree view
	Hotspots view

	Working with XSLT/XQuery profiler

	Chapter 9. Importing data
	Introduction
	Import from database
	Import table content as XML document
	Convert table structure to XML Schema

	Import from MS Excel files
	Import from HTML files
	Import from text files

	Chapter 10. Composing Web Service calls
	Overview
	Composing a SOAP request
	Testing remote WSDL files
	The UDDI Registry browser

	Generate WSDL documentation

	Chapter 11. Digital signature
	Overview
	Canonicalizing files
	Certificates
	Signing files
	Verifying the signature

	Chapter 12. Configuring the editor
	Reset options
	Preferences
	Global
	Editor
	Format
	XML Format
	CSS Format

	Save
	Code Templates
	Default Schema Association
	Content Completion
	XSL/XPath

	Diagram
	Spell Check
	Document Checking
	Custom Validation

	CSS Validator
	XML
	XML Catalog
	XML Parser
	XML Instances Generator
	XSLT/FO/XQuery
	XSLT
	Saxon6
	Saxon8
	XSLTProc
	MSXML
	MSXML.NET

	XQuery
	Saxon
	eXist
	Berkeley DB XML
	X-Hive/DB
	MarkLogic
	TigerLogic

	Debugger
	Profiler
	FO Processors
	XPath
	Custom engines


	Database
	Import

	HTTP / Proxy Configuration
	Certificates
	Scenarios Management
	View
	Syntax Highlight
	Syntax highlight elements by Prefix

	Automatically importing the preferences from the other distribution
	Importing/Exporting <oXygen/> preferences

	Chapter 13. Common problems

