
Oxygen XML Editor 12.2

Contents

Chapter 1: Introduction..17
Key Features and Benefits of Oxygen XML Editor ..18

Chapter 2: Installation..21
Installation Requirements...22

Platform Requirements...22

Operating System...22

Environment Requirements..22

JWS-specific Requirements...22

Installation Instructions..23

Windows Installation..23

Mac OS X Installation..24

Linux Installation...24

All Platforms Installation...25

Unix / Linux Server Configuration..25

Windows NT Terminal Server Configuration..26

Unattended Installation..26

Java Web Start (JWS) Installer...27

Setting a Parameter in the Launcher Configuration File / Startup Script...29

Starting the Application..30

Starting the Application on Windows...30

Starting the Application on Mac OS X...30

Starting the Application on Linux..30

Starting the Application with the All Platforms Kit...30

Obtaining and Registering a License Key..31

Named User License Registration..31

Named User License Registration with Text File...32

How Floating (Concurrent) Licenses Work..32

License Registration with an Activation Code...37

Unregistering the License Key...37

Upgrading the Oxygen Application..37

Upgrading the Standalone Application..37

Checking for New Versions..38

Uninstalling the Application...38

Uninstalling the Standalone Application..38

Unattended Uninstall..38

Performance Problems...38

Large Documents...39

Oxygen XML Editor | TOC | 3

External Processes..39

Display Problems on Linux/Solaris..39

Chapter 3: Getting Started...41
Getting Help...42

Supported Types of Documents..42

Perspectives..42

Editor Perspective ..43

XSLT Debugger Perspective ...44

XQuery Debugger Perspective ..45

Database Perspective ...45

Tree Editor Perspective..47

Dockable Views and Editors...48

Chapter 4: Editing Documents...51
Working with Unicode...52

Opening and Saving Unicode Documents..52

The Unicode Toolbar..53

Opening and Closing Documents...53

Creating New Documents..54

Saving Documents..57

Opening Existing Documents...58

Opening and Saving Remote Documents via FTP/SFTP/WebDAV ...59

Opening the Current Document in a Web Browser..63

Closing Documents..63

Viewing File Properties..63

Editing XML Documents...63

Associate a Schema to a Document...64

Streamline with Content Completion...67

Validating XML Documents..74

Document Navigation...83

Grouping Documents in XML Projects...87

Working with XML Catalogs...93

Converting Between Schema Languages...94

Editing XML Tree Nodes...97

Formatting and Indenting Documents (Pretty Print)..97

Viewing Status Information..98

Image Preview..98

Making a Persistent Copy of Results...98

Locking and Unlocking XML Markup..99

Adjusting the Transparency of XML Markup..99

XML Editor Specific Actions...99

Editing XML Schemas...103

4 | Oxygen XML Editor | TOC

XML Schema Text Editor..103

XML Schema Diagram Editor...110

Contextual Editing..138

Create an XML Schema From a Relational Database Table..138

Generate Sample XML Files..138

XML Schema Regular Expressions Builder..143

Generating Documentation for an XML Schema..145

Searching and Refactoring Actions..152

Search and Refactor Operations Scope..154

Resource Hierarchy / Dependencies View...155

Component Dependencies View...157

Highlight Component Occurrences..158

XML Schema Quick Assist Support..158

Linking Between Development and Authoring..159

Editing Relax NG Schemas..159

Relax NG Schema Diagram...159

Relax NG Editor Specific Actions...163

Searching and Refactoring Actions..164

Resource Hierarchy/Dependencies View...164

Component Dependencies View...166

RNG Quick Assist Support..166

Configuring a Custom Datatype Library for a RELAX NG Schema......................................167

Linking Between Development and Authoring..167

Editing NVDL Schemas...167

NVDL Schema Diagram..168

NVDL Editor Specific Actions..169

Searching and Refactoring Actions..169

Component Dependencies View...170

Linking Between Development and Authoring..170

Editing XSLT Stylesheets..170

Validating XSLT Stylesheets..171

Contextual Editing..171

Content Completion in XSLT Stylesheets..171

The XSLT/XQuery Input View..176

The XSLT Outline View...178

XSLT Stylesheet Documentation Support...179

Generating Documentation for an XSLT Stylesheet..180

Finding XSLT References and Declarations..188

Highlight Component Occurrences..188

XSLT Refactoring Actions...188

Resource Hierarchy/Dependencies View...189

Component Dependencies View...190

XSLT Quick Assist Support...191

Linking Between Development and Authoring..192

Editing XQuery Documents...192

Oxygen XML Editor | TOC | 5

XQuery Outline View...192

Folding in XQuery Documents..194

Generating HTML Documentation for an XQuery Document..194

Editing CSS Stylesheets...195

Validating CSS Stylesheets..195

Content Completion in CSS Stylesheets..196

CSS Outline View...196

Folding in CSS Stylesheets..197

Formatting and Indenting CSS Stylesheets (Pretty Print)..197

Other CSS Editing Actions...197

Editing XProc Scripts...197

Editing Schematron Schemas...198

Combined RELAX NG / W3C XML Schemas and Schematron Schema...............................198

Validate an XML Document..199

SVG Documents...199

The Standalone SVG Viewer..200

The Preview Result Panel...200

Integrating External Tools..201

Editing Very Large Documents..202

Insufficient Memory...202

Large File Viewer...202

Hex Viewer...204

Scratch Buffer...204

Changing the User Interface Language..204

Handling Read-Only Files..205

Editing Documents with Long Lines...205

Chapter 5: Authoring in the Tagless Editor..207
Authoring XML Documents Without the XML Tags..208

General Author Presentation..209

Author Views..210

The Author Editor...215

Review..230

Profiling / Conditional Text..232

Chapter 6: Author for DITA...237
Creating DITA Maps and Topics..238

Editing DITA Maps..238

Editing Actions...240

Creating a Map...241

Validating DITA Maps...241

Create a Topic in a Map..242

Organize Topics in a Map...242

6 | Oxygen XML Editor | TOC

Create a Bookmap..242

Create a Subject Scheme..243

Create Relationships Between Topics..243

Advanced Operations...244

Transforming DITA Maps and Topics..247

Available Output Formats...247

Configuring a DITA Transformation..249

Running a DITA Map ANT Transformation..250

Customizing a DITA Scenario..250

Set a Font for PDF Output Generated with Apache FOP...256

DITA-OT Customization..256

Support for Transformation Customizations..256

Using Your Custom Build File...256

Customizing the Oxygen Ant Tool...256

Upgrading to a New Version of DITA OT..256

Increasing the Memory for the Ant Process...257

Resolving Topic References Through an XML Catalog..257

DITA Specialization Support...257

Integration of a DITA Specialization...257

Editing DITA Map Specializations..257

Editing DITA Topic Specializations...258

Use a New DITA Open Toolkit in Oxygen..258

Reusing Content...258

Working with Content References...259

How to Work with Reusable Components...259

Insert a Direct Content Reference..260

DITA Profiling / Conditional Text..260

Profiling / Conditional Text Markers...261

Publish Profiled Text..261

Working with MathML..262

Chapter 7: Predefined Document Types..263
Document Type..264

The DocBook 4 Document Type..264

Author Extensions..265

Transformation Scenarios...268

Templates..268

The DocBook 5 Document Type..268

Author Extensions..268

Transformation Scenarios...268

Templates..269

The DocBook Targetset Document Type...269

Templates..269

The DITA Topics Document Type..269

Oxygen XML Editor | TOC | 7

Author Extensions..270

Transformation Scenarios...275

Templates..275

The DITA Map Document Type...276

Author Extensions..276

Transformation Scenarios...276

Templates..277

The XHTML Document Type..277

Author Extensions..277

Transformation Scenarios...278

Templates..279

The TEI P4 Document Type...279

Author Extensions..279

Transformation Scenarios...281

Templates..281

The TEI P5 Document Type...281

Transformation Scenarios...281

Templates..281

The MathML Document Type..282

Templates..282

The Microsoft Office OOXML Document Type..282

Templates..283

The Open Office ODF Document Type...283

Templates..284

The OASIS XML Catalog Document Type...284

Templates..284

The XML Schema Document Type..285

The Relax NG Document Type..285

The NVDL Document Type...285

The Schematron Document Type...285

The Schematron 1.5 Document Type...286

The XSLT Document Type...286

The XMLSpec Document Type..286

Transformation Scenarios...286

Templates..286

The FO Document Type...287

Transformation Scenarios...287

The EAD Document Type..287

Templates..287

The EPUB Document Type..287

Chapter 8: Author Developer Guide..289
Simple Customization Tutorial...291

XML Schema...291

8 | Oxygen XML Editor | TOC

CSS Stylesheet...292

The XML Instance Template..294

Advanced Customization Tutorial - Document Type Associations..295

Author Settings...296

Configuring New File Templates...314

Configuring XML Catalogs...316

Configuring Transformation Scenarios..316

Configuring Validation Scenarios...318

Configuring Extensions..320

Customizing the Default CSS of a Document Type...343

Document Type Sharing...344

CSS Support in Oxygen Author...345

CSS 2.1 Features..345

CSS 3 Features...349

Additional Custom Selectors..353

Oxygen CSS Extensions...354

Example Files Listings - The Simple Documentation Framework Files...360

XML Schema files...360

CSS Files..362

XML Files..364

XSL Files..366

Oxygen XML Author Component..367

Licensing..367

Installation Requirements...368

Customization...368

Deployment..370

Chapter 9: Grid Editor..373
Layouts: Grid and Tree...375

Navigating the Grid..375

Specific Grid Actions...376

Sorting a Table Column..376

Inserting a Row in a Table..376

Inserting a Column in a Table..376

Clearing the Content of a Column..376

Adding Nodes...376

Duplicating Nodes..377

Refresh Layout...377

Start Editing a Cell Value...377

Stop Editing a Cell Value...377

Drag and Drop in the Grid Editor...377

Copy and Paste in the Grid Editor..377

Bidirectional Text Support in the Grid Editor..379

Oxygen XML Editor | TOC | 9

Chapter 10: Transforming Documents..381
Output Formats...382

Transformation Scenario..383

Batch Transformation...383

Built-in Transformation Scenarios...383

Defining a New Transformation Scenario..384

Sharing the Transformation Scenarios...393

Transformation Scenarios View...393

XSLT Processors..394

Supported XSLT Processors...394

Configuring Custom XSLT Processors..396

Configuring the XSLT Processor Extensions Paths...396

XSL-FO Processors..396

The Built-in XSL-FO Processor...396

Add a Font to the Built-in FOP - The Simple Version...397

Add a Font to the Built-in FOP..398

XProc Transformations..400

XProc Transformation Scenario...400

Integration of an External XProc Engine...401

Chapter 11: Querying Documents..403
Running XPath Expressions...404

What is XPath...404

Oxygen's XPath Console..404

The XPath Builder View...407

Working with XQuery..408

What is XQuery..408

Syntax Highlight and Content Completion..408

XQuery Outline View...409

The XQuery Input View...410

XQuery Validation..411

Other XQuery Editing Actions...412

Transforming XML Documents Using XQuery...412

Chapter 12: Debugging XSLT Stylesheets and XQuery Documents.......417
Overview..418

Layout...418

Control Toolbar..419

Information View..421

Multiple Output Documents in XSLT 2.0..430

Working with the XSLT / XQuery Debugger...431

Steps in a Typical Debug Process...431

10 | Oxygen XML Editor | TOC

Using Breakpoints..431

Determining What XSLT / XQuery Expression Generated Particular Output.........................432

Debugging Java Extensions..434

Supported Processors for XSLT / XQuery Debugging..435

Chapter 13: Profiling XSLT Stylesheets and XQuery Documents..........437
Overview..438

Viewing Profiling Information...438

Invocation Tree View..438

Hotspots View...439

Working with XSLT/XQuery Profiler..439

Chapter 14: Comparing and Merging Documents...................................441
Directories Comparison..442

Directories Comparison User Interface..442

Comparison Result...443

Compare Images...444

Files Comparison..444

Main Menu...445

Compare Toolbar..447

Files Selector..448

File Contents Panel...448

Word Level Comparison...448

Character Level Comparison..449

XML Diff API..449

Chapter 15: Working with Archives...451
Browsing and Modifying Archive Structure..452

Working with EPUB...453

Create an EPUB...454

Publish to EPUB...454

Editing Files From Archives...454

Chapter 16: Working with Databases..455
Relational Database Support..456

Configuring Database Data Sources..456

Configuring Database Connections..461

Resource Management...466

SQL Execution Support..471

Native XML Database (NXD) Support..473

Configuring Database Data Sources..474

Configuring Database Connections..476

Oxygen XML Editor | TOC | 11

Data Source Explorer View..478

XQuery and Databases...488

Build Queries With Drag and Drop From Data Source Explorer View...................................488

XQuery Transformation...488

XQuery Database Debugging...490

WebDAV Connection...491

How to Configure a WebDAV Connection...491

WebDAV Connection Actions..492

Chapter 17: Importing Data...493
Introduction..494

Import from Database...494

Import Table Content as XML Document..494

Convert Table Structure to XML Schema..496

Import from MS Excel Files...496

Import from HTML Files...497

Import from Text Files..497

Chapter 18: Content Management System (CMS) Integration...............501
Integration with Documentum (CMS)...502

Configure Connection to Documentum Server..502

Documentum (CMS) Actions in the Data Source Explorer View..503

Transformations on DITA Content from Documentum (CMS)...507

Chapter 19: Composing Web Service Calls...509
Overview..510

Composing a SOAP Request..510

Testing Remote WSDL Files..513

The UDDI Registry Browser..513

Generate WSDL Documentation..514

Chapter 20: Digital Signatures...517
Overview..518

Canonicalizing Files...519

Certificates...520

Signing Files...520

Verifying the Signature...521

Chapter 21: Syncro SVN Client..523
Main Window...524

Views..524

12 | Oxygen XML Editor | TOC

Main Menu...524

Main Toolbar..529

Status Bar...530

Getting Started..531

SVN Repository Location..531

Defining a Working Copy...532

Manage Working Copy Resources...536

Synchronize with Repository...539

Obtain Information for a Resource...548

Management of SVN Properties..551

Branches and Tags..551

Working with Repositories...574

Sparse Checkout...576

Syncro SVN Client Views..576

Repositories View...576

Working Copy View...579

History View...588

The Editor Panel of SVN Client...591

Annotations View...591

Compare View..592

Image Preview..594

Compare Images View..594

Properties View...594

Console View..596

Dynamic Help View...596

The Revision Graph of a SVN Resource..596

Syncro SVN Client Preferences...599

Command Line Reference..600

Checkout Command...600

Update Command...600

Commit Command...600

Diff Command..600

Show History..601

Refresh...601

Synchronize..601

Import...601

Export...601

Information...602

Add...602

Add to svn:ignore...602

Delete...602

Copy...602

Move / Rename..603

Mark resolved...603

Revert...603

Oxygen XML Editor | TOC | 13

Cleanup...603

Show / Refresh Properties..603

Branch / Tag...604

Merge..604

Scan for locks...604

Lock..605

Unlock..605

Mark as merged..605

Override and update...605

Override and Commit...605

Add / Edit property...605

Remove property..606

Revert changes from this revision..606

Revert changes from these revisions..606

Chapter 22: Extending Oxygen with Plugins..607
Introduction..608

Oxygen Plugins..608

General Plugin..609

Selection Plugin..609

Document Plugin..610

Custom Protocol Plugin...610

Resource Locking Custom Protocol Plugin...610

Components Validation Plugin...611

Workspace Access Plugin...612

Open Redirect Plugin...613

How to Write a CMS Integration Plugin..613

How to Write A Custom Protocol Plugin...617

How to Install a Plugin...617

Example - A Selection Plugin..618

Chapter 23: Text Editor Specific Actions..621
Undoing and Redoing User Actions...622

Copying and Pasting Text...622

Finding and Replacing Text in the Current File...622

The Find / Replace Dialog...622

The Find All Elements / Attributes Dialog...624

The Quick Find Toolbar...625

Keyboard Shortcuts for Finding the Next and Previous Match..626

Finding and Replacing Text in Multiple Files..626

Spell Checking...629

Spell Checking Dictionaries...630

Learned Words..631

14 | Oxygen XML Editor | TOC

Ignored Words..631

Automatic Spell Check...631

Spell Checking in Multiple Files..632

Changing the Font Size..632

Word/Line Editor Actions..633

Dragging and Dropping the Selected Text...633

Inserting a File at Caret Position..633

Opening the File at Caret in System Application...633

Opening the File at Caret Position...633

Switching Between Opened Tabs...633

Printing a File...634

Exiting the Application...635

Chapter 24: Configuring the Application..637
Importing / Exporting Global Options...638

Preferences...638

Global...638

Fonts...640

Document Type Association...641

Perspectives Layout..643

Encoding...644

Editor..645

CSS Validator...675

XML...676

Data Sources...698

SVN..702

Files Comparison..706

Directories Comparison..707

Archive...708

Plugins..710

External Tools...710

Menu Shortcut Keys...712

File Types...713

SVN File Editors..714

Custom Editor Variables...715

HTTP(S) / (S)FTP / Proxy Configuration ...716

Certificates...718

XML Structure Outline..719

View..719

Messages..720

Tree Editor..721

Sharing Preferences..721

Automatically Importing the Preferences from the Other Distribution...722

Reset Global Options...722

Oxygen XML Editor | TOC | 15

Scenarios Management..722

Editor Variables..722

Custom Editor Variables...723

Configure Toolbars...724

Chapter 25: Common Problems...725
XML Document Opened After a Long Time...727

Out Of Memory Error When I Open Large Documents...727

Special Characters Are Replaced With a Square in Editor...727

XSLT Debugger Is Very Slow..727

The Scroll Function of my Notebook's Trackpad is Not Working...728

NullPointerException at Startup on Windows XP..728

Crash at Startup on Windows with an Error Message About a File nvoglv32.dll................................728

Oxygen Crashed on My Mac OS X Computer..729

Wrong Highlights of Matched Words in a Search in User Manual..729

Keyboard Shortcuts Do Not Work..729

After Installing Oxygen I Cannot Open XML Files in Internet Explorer Anymore............................729

I Cannot Associate Oxygen With a File Type on My Windows Computer..730

The Files Are Opened in Split Panels When I Restart the Oxygen Application..................................730

Grey Window on Linux With the Compiz / Beryl Window Manager..730

Drag and Drop Without Initial Selection Does Not Work..731

Set Specific JVM Version on Mac OS X..731

Segmentation Fault Error on Mac OS X..731

Damaged File Associations on Mac OS X...731

I Cannot Set XML Files to Open With Oxygen...732

I Cannot Connect to SVN Repository From Repositories View..732

Problem Report Submitted on the Technical Support Form..733

Cannot cancel a system shutdown when there is at least one modified document open in Oxygen.....733

16 | Oxygen XML Editor | TOC

Chapter

1

Introduction

Welcome to the Oxygen XML Editor 12.2 User Manual.Topics:

Oxygen XML Editor is a cross-platform application designed for document
development using structured mark-up languages such as XML , XSD, Relax
NG, XSL, DTD.

• Key Features and Benefits of
Oxygen XML Editor

It offers developers and authors a powerful Integrated Development Environment.
Based on proven Java technology, the intuitive Graphical User Interface of the
Oxygen XML Editor is easy-to-use and provides robust functionality for editing,
project management and validation of structured mark-up sources. Coupled with
XSLT and FOP transformation technologies, Oxygen supports output to multiple
target formats, including: PDF, PS, TXT, HTML and XML.

Oxygen is the XML Editor of choice for developers, authors and integrators
that demand high-quality output with a flexible and robust, single-source,
structured mark-up environment.

This user guide is focused mainly at describing features, functionality and
application interface to help you get started in no time. It also describes the basic
process of authoring, management, validation of structured mark-up documents
and their transformation to multiple target outputs. It is assumed that you are
familiar with the use of your operating system and the concepts related to
structured mark-up.

Key Features and Benefits of Oxygen XML Editor

Multilanguage support: English, German, French, Italian
and Japanese

Multiplatform availability: Windows, Mac OS X, Linux,
Solaris

Visual DITA Map editorVisual WYSIWYG XML editing mode based on W3C
CSS stylesheets.

Support for latest versions of document frameworks:
DocBook and TEI.

Closely integrate with the DITA Open Toolkit for
generating DITA output

Non blocking operations, you can perform validation and
transformation operations in background

Can be used as standalone desktop application, run through
Java Web Start or as an Eclipse plugin

Support for XML, CSS, XSLT, XSL-FO.Support for XML, XML Schema, Relax NG , Schematron,
DTD, NVDL schemas, XSLT, XSL:FO, WSDL, XQuery,
HTML, CSS

Manual and automatic validation of XML documents
against XML Schema schemas, Relax NG schemas, DTD's,
Schematron, and NVDL schemas

Validate XML Schema schemas, Relax NG schemas,
DTD's, Schematron schemas, NVDL schemas, WSDL,
XQuery, HTML and CSS

Multiple built-in XSLT transformers (Saxon 6.5, Saxon 9
Enterprise (schema aware), Xalan, libxslt, MSXML 3.0 /

Multiple built-in validation engines (Xerces, libxml, Saxon
SA, MSXML 4.0, MSXML.NET) and support for custom
validation engines (XSV, SQC). 4.0, Microsoft .NET 1.0, Microsoft .NET 2.0), support for

custom JAXP transformers.

Compare and merge files and directoriesSupport for latest versions of document frameworks:
DocBook and TEI.

XInclude supportReady to use FOP support to generate PDF or PS
documents

Easy error tracking - locate the error source by clicking on
it

Support for editing remote files over FTP, SFTP, HTTP /
WebDAV and HTTPS / WebDAV

Generate HTML documentation from XML SchemasVisual schema editor with full and logical model views

Context sensitive content assistant driven by XML Schema,
Relax NG, DTD, NVDL or by the edited document
structure enhanced with schema annotation presenter

New XML document wizards to easily create documents
specifying a schema or a DTD

Unicode supportXML Catalog support

Syntax coloring for XML, DTD, Relax NG compact syntax,
Java, C++, C, PHP, Perl, etc

Conversions from DTD, Relax NG schema or a set of
documents to XML Schema, DTD or Relax NG schema

Easy configuration for external FO ProcessorsPretty-printing of XML files

XPath search and evaluation supportApply XSLT and FOP transformations

Support for document templates to easily create and share
documents

Preview transformation results as XHTML or XML or in
your browser

Convert database structure to XML SchemaImport data from a database, Excel, HTML or text file

XML project managerCanonicalize and sign documents

Fully-fledged client for the Subversion (SVN) versioning
system with support for SVN 1.3, SVN 1.4, SVN 1.5 and
SVN 1.6 repositories.

Batch validate selected files in project

18 | Oxygen XML Editor | Introduction

Tree view / edit support for XML documentsGenerate large sets of sample XML instances from XML
Schema

Configurable actions key bindingsConfigurable external tools

Special viewer for very large files (up to 2 GB file size).Multi-line find and replace support allows regular
expressions, is XML aware, is incremental, handles
multiple files

Bookmark supportAssociate extensions on Windows

Print documentsMac OS X ready

XSLT ProfilerXSLT Debugger with Backmapping support

XQuery ProfilerXQuery Debugger with Backmapping support

Attributes ViewModel View

SVG ViewerMultidocument environment

WSDL analysis and SOAP requests supportXQuery 1.0 support

XPath 2.0 execution and debugging supportXSLT 2.0 full support

Document foldingDockable views and editors

Text transparency levels adjusterXSLT refactoring actions

Custom protocol plugin supportSpell checking supporting English, German and French
including locals

Drag&drop supportAll the usual editor capabilities (cut, copy, paste, find,
replace, windows management)

Outline view in sync with a non well-formed documentSupport for editing, modifying and using files directly from
ZIP-type archives

Oxygen XML Editor | Introduction | 19

Chapter

2

Installation

This section explains platform requirements and installation procedures. It also
provides instructions on how to obtain and register a license key, how to perform
upgrades and uninstall the application.

Topics:

• Installation Requirements
• Installation Instructions

If you need help at any point during these procedures please send email to
support@oxygenxml.com• Java Web Start (JWS) Installer

• Setting a Parameter in the
Launcher Configuration File /
Startup Script

• Starting the Application
• Obtaining and Registering a

License Key
• Unregistering the License Key
• Upgrading the Oxygen

Application
• Checking for New Versions
• Uninstalling the Application
• Performance Problems

Installation Requirements

This section contains details about the platform and environment requirements necessary for installing and running the
application.

Platform Requirements

The run-time requirements of the application are:

• CPU (processor): minimum - Intel Pentium III™/AMD Athlon™ class processor, 500 Mhz; recommended - Dual Core
class processor.

• Computer memory: minimum - 512 MB of RAM (1 GB on Windows Vista™ and Windows 7) ; recommended - 2
GB of RAM.

• Hard disk space: minimum - 300 MB free disk space ; recommended - 500 MB free disk space.

Operating System

Windows XP, Windows Vista, Windows 7, Windows 2003, Windows Server 2008
Windows

Mac OS X version 10.4 or later
Mac OS

Any Unix/Linux distribution with an available Java SE Runtime Environment version
1.5 or 1.6 from Oracle (formerly from Sun).

Unix/Linux

Environment Requirements

This section specifies the Java platform requirements and other tools that may be needed for installing the application.

Tools

Installation packages are supplied in compressed archives. Ensure you have installed a suitable archive extraction utility
with which to extract the archive. The MD5 sum is available on the Download page for every archive. You should check
the MD5 sum of the downloaded archive with a MD5 checking tool available on your platform.

Java Virtual Machine Prerequisites

Prior to installation ensure that your Operating System environment complies with the following:

• Oxygen XML Editor supports only official and stable Java virtual machines with the version number 1.5.0 or later
from Oracle, formerly Sun Microsystems (available at http://www.java.com/en/download/manual.jsp) and from
Apple Computer. The Java Virtual Machine from Apple is pre-installed on Mac OS X computers. For Mac OS X,
Java Virtual Machine updates are available at the Apple website. Oxygen XML Editor may work very well with
JVM implementations from other vendors but the eventual incompatibilities will not be solved in further Oxygen
XML Editor releases. Oxygen XML Editor does not work with the GNU libgcj Java virtual machine.

• The PATH environment variable is set to the most current Java Virtual Machine installation.

• References to older Java Virtual Machine installations are removed from the PATH.

JWS-specific Requirements

For Windows and Linux installations:

• The minimum Java Virtual Machine version should be 1.6 update 10 or later;

22 | Oxygen XML Editor | Installation

http://www.oxygenxml.com/download.html
http://www.java.com/en/download/manual.jsp
http://www.oxygenxml.com/forum/ftopic1887.html

• The browser should support the New Java™ Plug-In Technology (usually this plug-in is installed together with the
Java VM).

For Mac OS X installations, note that the New Java™ Plug-In Technology support is not enabled by default on Mac
OS X. To enable the plugin follow these steps:

• Upgrade to Java VM version 1.6 update 17 or later;
• Open the Java Preferences application and toggle setting to Run applets: in their own process;
• Restart your Safari browser and try viewing the applet.

Caution:

If you want to run Oxygen with Java Web Start directly from Oxygen Java Web Start page or from your intranet
server please configure your Java Web Start not to ask for desktop integration (File -> Preferences, Shortcuts). If
you don't, the application will freeze because it will show up a dialog in the same time with the Oxygen license
registration dialog.

Installation Instructions

Before proceeding with the following instructions, please ensure that your system complies with the prerequisites detailed
in the installation requirements.

Note:

The following instructions assume that a Java Runtime Environment JRE) is installed. If you have downloaded an
installation package that contains the JRE, please note that the package will automatically install a JRE before
execution of the application but this JRE will be used on your computer only for running Oxygen , it will be invisible
to other applications.

Note:

The installation kits and the executable files packaged inside the installation kits were checked before publication
with an antivirus program to make sure they are not infected with viruses, trojan horses or other malicious software.

Windows Installation
Windows installation procedure.

To install the application on Windows:

1. Download the oxygen.exe installation kit and run it.

2. Follow the instructions presented in the installation program.

The user preferences are stored in the subfolder com.oxygenxml of the folder that is the value of the APPDATA
Windows variable for the user that starts the application.

Note:

In order to specify another Java virtual machine to be used by Oxygen you have to set the home folder of the
desired JVM in the Windows variable JAVA_HOME or in the Windows variable JDK_HOME. If JAVA_HOME
and JDK_HOME are not set the application launcher will try to detect a JVM installed in a standard location
on the computer and use it for running the application. If you installed the kit which includes a Java virtual
machine you have to rename of remove the jre subfolder of the install folder in order for the variable
JAVA_HOME or JDK_HOME to have an effect.

Note:

Copy to clipboard the license key you have received by email and paste it in the application license dialog.

Oxygen XML Editor | Installation | 23

http://www.oxygenxml.com/javawebstart.html

Note:

If you have difficulties installing the product please use the zip archive distribution instead (oxygen-32bit.zip
). Just unzip it in a folder where you have write permissions and use the product launchers.

Mac OS X Installation
Mac OS X installation procedure.

To install the application on Mac OS X:

1. Create a folder called oxygen on your local disk.

2. Within the oxygen folder, create child folder named in accordance with the version number of the application.

The folder structure looks as follows: /../oxygen/12.2/

3. Download the Mac OS X Installation package (oxygen.tar.gz) into this folder.

4. Extract the archive into the same folder.

5. Execute the file named oxygen

Note:

Oxygen uses the first JVM from the list of preferred JVM versions set on your Mac computer that has the version
number not less than 1.5.0. To change the version of the Java virtual machine that runs the application you must
move your desired JVM version up in the preferred list by dragging it with the mouse on the first position in
the list of JVMs available from Applications -> Utilities -> Java -> Java Preferences.

Note:

Runs perfectly on Intel Core Duo Mac systems.

Note:

The compressed file should be recognized by StuffIt Expander and should automatically be expanded after
downloading. If it is not expanded, you can expand it manually using StuffIt Expander 6.0 or later.

Note:

Copy to clipboard the license key you have received by email and paste it in the application license dialog.

Note:

With some fonts the cursor will behave unpredictably. It is recommended to use a fixed-size font, such as
Monaco. More details can be found here.

Linux Installation
Linux installation procedure.

To install the application on Linux:

1. Download the oxygen.sh installation kit and run it.

2. Follow the instructions presented in the installation program.

Note:

In order to specify another Java virtual machine to be used by Oxygen you have to set the home folder of the
desired JVM in the environment variable JAVA_HOME or in the environment variable JDK_HOME. If
JAVA_HOME and JDK_HOME are not set the application launcher will try to detect a JVM installed in a
standard location on the computer and use it to run the application.

24 | Oxygen XML Editor | Installation

http://www.oxygenxml.com/forum/viewtopic.php?t=64

All Platforms Installation
All Platforms kit installation procedure.

1. Create a folder called oxygen on your local disk.

2. Within the oxygen folder, create child folder named in accordance with the application version number.
The directory structure looks as follows: /../oxygen/12.2/

3. Download the All Platforms Installation package (oxygen.tar.gz) to this folder.

4. Extract the archive to the same folder.

5. Run from a command line the script oxygen.bat on Windows, oxygenMac.sh on Mac OS X, oxygen.sh
on Unix / Linux.

Note:

To change the version of the Java virtual machine that runs the application you have to specify the full path
to the Java executable of the desired JVM version in the Java command at the end of the script file, for example:

"C:\Program Files\Java\jre1.5.0_13\bin\java" -Xmx256m
-Dsun.java2d.noddraw=true ...

on Windows,

/System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home/bin/java
 "-Xdock:name=Oxygen" ...

on Mac OS X.

Note:

You must have installed a Java virtual machine 1.5 or later.

Note:

Copy to clipboard the license key you have received by email and paste it in the application license dialog.

Unix / Linux Server Configuration
Unix / Linux Server configuration procedure.

To install the application on a Unix / Linux server:

1. Install the application on the server, making sure the oxygen.sh script is executable and the installation directory
is in the PATH of the users that need to use the editor.

2. Create a file called oxygen.vmoptions in the Oxygen install folder where the oxygen12.2 file is located.

File's content must be: -Xmx256m -Dcom.oxygenxml.MultipleInstances=true

The "-Xmx" value represents the maximum memory allocated for each application instance. Please make sure you
tune it such that the multiple application instances will not use all the available physical memory.

3. Make sure the X server processes located on the workstations allow connections from the server host. For this use
the xhost command.

4. Telnet (or ssh) on the server host.

5. Start an xterm process, with display parameter set on the current workstation. Ex: xterm -display
workstationip:0.0

6. Start the application by typing oxygen.sh

Oxygen XML Editor | Installation | 25

Windows NT Terminal Server Configuration
Windows NT Terminal Server configuration procedure.

1. Install the application on the server, making its shortcuts available to all users.

2. Edit the oxygen.vmoptions file located in the install folder, adding the parameter
-Dcom.oxygenxml.MultipleInstances=true so that the file content looks like: -Xmx256m
-Dcom.oxygenxml.MultipleInstances=true

The "-Xmx" value represents the maximum memory allocated for each application instance. Please make sure you
tune them in a way that the multiple application instances will not use all the available physical memory.

Unattended Installation

Unattended installation is possible only on Windows and Linux by running the installer executable from command line
and passing the -q parameter. The installer executable is called oxygen.exe on Windows and oxygen.sh on
Linux

In unattended mode the installer does not overwrite files with the same name if a previous version of the application is
installed in the same folder. The -overwrite parameter added after -q parameter forces the overwriting of these files.

If the installer is executed in silent (unattended) mode and -console parameter is passed as a second parameter after -q
parameter, a console will be allocated on Windows that displays the output of the installer. The command for running
the installer in this case is:

start /wait oxygen.exe -q -console

Custom Settings in Unattended Installation

By default an unattended installation applies the default settings of the installer. If you want to install the application
on a large number of computers but you need to change the default values of some settings (like the install folder on
disk, whether a desktop icon or a quick launch shortcut is created, the file associations created in the operating system,
the name of the program group on the Start menu, etc.) then you should use a special settings file which specifies the
new values for these settings. To generate the settings file you have to run the installer in normal attended mode once
on a test computer and specify the exact options that you want for the unattended installation. When the installation is
completed a file called response.varfile and containing your selected options is created in the .install4j
subfolder of the installation folder, by default C:\Program Files\Oxygen XML Editor \.install4j on Windows. This is
a one time process. After that for applying these options on all the computers where an unattended installation is performed
you have to specify this file in the command line, for example copy the file in the same location as the installer program
and use the command:

oxygen.exe -q -varfile response.varfile
- on Windows:

oxygen.sh -q -varfile response.varfile
- on Linux:

Privacy Options

The following parameters control the privacy options:

Table 1: Privacy Options Parameters

ValuesDescriptionParameter name

true / false. Default setting is true.Automatic version checking.autoVersionChecking

true / false. Default setting is true.Allows you to report a problem encountered while
using the application.

reportProblem

26 | Oxygen XML Editor | Installation

ValuesDescriptionParameter name

true / false. Default setting is true.When set to true, the user can choose whether the
application will send anonymous information about
how the product is used.

usageDataCollector

They can be set either in the response.varfile configuration file, or directly in the command line, like in the
following example:

oxygen.exe -q -VautoVersionChecking=false
-VreportProblem=false -VusageDataCollector=false

- on Windows:

oxygen.sh -q -VautoVersionChecking=false
-VreportProblem=false -VusageDataCollector=false

- on Linux:

Java Web Start (JWS) Installer

Oxygen provides the tools to create your own JWS distribution that can be installed on a custom web server. Advantages
of a JWS distribution include:

• Oxygen is run locally, not inside a web browser, overcoming many of the browser compatibility problems common
to applets;

• JWS ensures that the most current version of the application will be deployed, as well as the correct version of JRE;

• applications launched with Java Web Start are cached locally. Thus, an already downloaded application is launched
on par with a traditionally installed application;

• you can preconfigure Oxygen and the rest of your team will use the same preferences and frameworks.

Note: A code signing certificate is needed to sign the JWS distribution. The following procedure assumes that you
already have such a certificate (for example Thawte™, or Verisign™, just to name a few).

The following schematics depicts the Oxygen Java Web Start deployment procedure:

Oxygen XML Editor | Installation | 27

Figure 1: Java Web Start Deployment Procedure

The following steps describe the procedure of deploying a Oxygen installation on a custom server.

1. Download the All Platforms Installation package from
http://www.oxygenxml.com/InstData/Editor/All/oxygen.tar.gz to a local drive.

2. Expand the archive.
oxygen folder is created.

3. Optionally, you can customize the content of the frameworks folder, containing default template document files.

4. Edit the oxygen\tools\jwsPackager\packager.properties configuration file. The following properties
need to be adjusted:

• codebase - represents the location of the future JWS distribution;
• keystore - keystore location path;
• storepass - password for keystore integrity;
• alias - keystore alias;
• optionsDir - points to the options directory that may be distributed with the JWS installer.

Note: This property is optional and it is provided only if custom options need to be delivered to the end
users.

The values of keystore, storepass and alias properties are all provided by the code signing certificate. For more
information, please check the documentation of the jarsigner tool.

5. Edit the JNLP oxygen\tools\jwsPackager\dist\javawebstart\oxygen\oxygen.jnlp template
file to modify default settings. You can specify the list of files the application opens at startup by modifying the
<argument> list. To pass system properties directly to the started Oxygen application, you must add them the oxy

28 | Oxygen XML Editor | Installation

prefix, like in the example:<property name="oxyPropertyName" value="testValue"/>. The system
property is passed to the Oxygen application with the prefix stripped.

6. Using a command line console, run ant in the oxygen\tools\jwsPackager folder.
The ant process creates the oxygen\tools\jwsPackager\dist\InstData\oxygenJWS.zip archive
that contains the actual remote JWS installer.

7. Copy the expanded content of the archive into the folder specified in the codebase property, previously set in the
packager.properties file.

8. Using your favourite web browser, go to the address specified in the codebase property or to its parent folder and
start the remote installer.

Setting a Parameter in the Launcher Configuration File / Startup Script

On the Windows platform if you start the application by double-clicking on the Start menu shortcut/Desktop shortcut
in order to set a startup parameter you have to add a new line with the parameter to the file oxygen.vmoptions
located in the installation directory together with the launcher file called oxygen.exe. If the file oxygen.vmoptions
does not exist yet in the folder of the launcher file you have to create it there. For example for setting the maximum
amount of Java memory to 600 MB the content of the file oxygen.vmoptions must be:

-Xmx600m

Note: On Windows Vista/7 you will first have to copy the oxygen.vmoptions file to a folder with write access
(like your Desktop), modify it there with a text editing application (like Notepad) and then copy it back to the
installation folder, replacing the original file.

If you start the application with the script oxygen.bat you have to add or modify the parameter to the java command
at the end of the script. For example for setting the maximum amount of Java memory to 600 MB the java command
should start with:

java -Xmx600m -Dsun.java2d.noddraw=true ...

On the Mac OS X platform to add or modify a startup parameter you have to Ctrl-click on the Oxygen application icon
in Finder, in the pop-up menu select Show Package Contents, then in the Contents directory you edit the file
Info.plist: in the key VMOptions you modify the parameter if it already exists in that key or you add it after the
model of the existing parameters inside that key.

On the Linux platform you have to create a file called oxygen.vmoptions if it does not exist already and specify
the parameter exactly as in the case of the .vmoptions file on the Windows platform.

If you use the All platforms distribution you have to add or modify the startup parameter that you want to set in the Java
command line at the end of the startup script oxygen.bat on Windows, oxygenMac.sh on Mac OS X and
oxygen.sh on Linux. All these files are located in the installation directory. For example to set the maximum amount
of Java memory to 600 MB on Windows the -Xmx parameter must be modified in the java command line at the end of
oxygen.bat like this:

java -Xmx600m -Dsun.java2d.noddraw=true ...

on Mac OS X the java command at the end of oxygenMac.sh should look like:

java "-Xdock:name=Oxygen"\
 -Dcom.oxygenxml.editor.plugins.dir="$OXYGEN_HOME/plugins"\
 -Xmx600m\
 ...

and on Linux the Java command at the end of oxygen.sh should look like:

java -Xmx600m\
 "-Dcom.oxygenxml.editor.plugins.dir=$OXYGEN_HOME/plugins"\

Oxygen XML Editor | Installation | 29

Starting the Application

This section specifies the steps for starting the application.

Starting the Application on Windows

Start the application launcher.

Use one of the following two launchers:

• oxygen.exe - started from the shortcut created by the installer on the Start menu.
• oxygen.bat - located in the install folder and started from command line.

Starting the Application on Mac OS X

Start the application's launcher.

Use one of the following two methods:

• The shortcut Oxygen created on Desktop by the installer.
• The command

sh oxygenMac.sh

executed from command line. This launcher file is located in the install folder.

: Two or more instances can be started on the same computer with the following command that should be executed
for any new instance:

open -n Oxygen.app

Starting the Application on Linux

Start the application's launcher.

Use one of the following two methods:

• The shortcut oxygen created on Desktop by the installer.
• The command

sh oxygen.sh

executed from command line. This launcher file is located in the install folder.

Starting the Application with the All Platforms Kit

Start the application's launcher.

Use the following command:

• On Windows:

oxygen.bat

• On Linux:

30 | Oxygen XML Editor | Installation

sh oxygen.sh

• On Mac OS X:

sh oxygenMac.sh

Obtaining and Registering a License Key

The Oxygen XML Editor is not free software and requires a license in order to enable the application.

For demonstration and evaluation purposes a time limited license is available upon request from the Oxygen web site.
This license is supplied at no cost for a period of 30 days from date of issue. During this period the Oxygen XML Editor
is fully functional enabling you to test all aspects of the application. Thereafter, the application is disabled and a permanent
license must be purchased in order to use the application. For special circumstances, if a trial period of greater than 30
days is required, please contact support@oxygenxml.com . All licenses are obtained from the Oxygen web site .

For definitions and legal details of the license types available for Oxygen XML Editor you should consult the End User
License Agreement received with the license key and available also on the Oxygen website at
http://www.oxygenxml.com/eula.html

Named User License Registration

1. Save a backup copy of the message containing the new license key.

2. Start the application.

3. Copy to the clipboard the license text as explained in the message.

4. If this is a new install of the application then it will display automatically the registration dialog when it is started.
In the case you already used the application and obtained a new license, use the menu option Help / Register

Oxygen XML Editor | Installation | 31

http://www.oxygenxml.com/register.html
http://www.oxygenxml.com
http://www.oxygenxml.com/eula.html

Figure 2: Registration Dialog

5. Select Use a license key as licensing method.

6. Paste the license text in the registration dialog.

7. Press the OK button.

Named User License Registration with Text File

1. Save the license key in a file named licensekey.txt.

2. Copy the file in the lib subfolder of the install folder.

3. Start Oxygen .

How Floating (Concurrent) Licenses Work

Floating licenses are “pooled” licenses that can be shared across a group of users. They are most often deployed when
an organization has a group of users that will only consume a license for a minority of their working hours. The licenses
are returned back into the license pool as soon as they are released. Other users can then immediately reuse them.

The license management is done either by the application itself or by the Oxygen license server:

• if you plan to use the application on machines running in the same local network, Oxygen can manage the licenses
usage by itself. Different running instances of the application communicate between them. The registration procedure
requires you to paste the license key in the license registration dialog. See Named User License Registration procedure
for more details.

• if you plan to use the application on machines running in different network segments, then you must use a Oxygen
floating license server. A floating license server can be installed either as a Java servlet or as a standalone process.

32 | Oxygen XML Editor | Installation

Setting up a Floating License Server Running as a Java Servlet
Setting up the floating license servlet.

Apache Tomcat 5.5 or higher is necessary. You can get it from: http://tomcat.apache.org/

1. Download the license servlet Web ARchive (.war) from one of the download URLs included in the registration
email message.

2. Go to the Tomcat Web Application Manager page. In the WAR file to deploy section choose the WAR file and then
press the Deploy button. The oXygen License Servlet should be up and running, but there is no licensing information
set.

3. To set the license key, log on the deployment machine, and go to the Tomcat installation folder (usually
/usr/local/tomcat). Then go to the webapps/oXygenLicenseServlet/WEB-INF/license/ folder
and create a new file called license.txt. Copy the license text that was sent to you via e-mail into this file and
save it.

4. It is recommended to password protect your pages using a Tomcat Realm. Please refer to the Tomcat Documentation
for detailed info, like the Realm Configuration HOW-TO - Memory Based Realm section.

5. Once you have defined a realm resource, you have to edit
webapps/oXygenLicenseServlet/WEB-INF/web.xml file to configure user access rights on the license
server. Note that Tomcat's standard security roles are used, i.e.: standard for licensing and admin or manager for
the license usage report page.

6. Restart oXygen License Servlet from the Tomcat Web Application Manager page.

Contact the Oxygen XML support staff at support@oxygenxml.com and ask for a new license key if:

• you have multiple license keys for the same Oxygen version and you want to have all of them managed by the same
server;

• you have a multiple-user floating license and you want to split it between two or more license servers.

Report Page

You can access an activity report at
http://hostName:port/oXygenLicenseServlet/license-servlet/report.

It displays in real time the following information:

• License load - a graphical indicator that shows how many licenses are available. When the indicator turns red, there
are no more licenses available.

• Floating license server status - general information about the license server status like:

• server start time
• license count
• rejected and acknowledged requests
• average usage time
• license refresh and timeout intervals
• location of the license key
• server version

• License key information - license key data:

• licensed product
• registration name
• company name
• license category
• number of floating users
• Maintenance Pack validity

• Current license usage - lists all currently acknowledged users:

Oxygen XML Editor | Installation | 33

http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html

user name•
• date and time when the license was granted
• name and IP address of the computer where Oxygen runs
• MAC address of the computer where Oxygen runs

Note: The report is available also in XML format at
http://hostName:port/oXygenLicenseServlet/license-servlet/report-xml.

Setting up a Floating License Server Running as a Standalone Process
Setting up the floating license server.

1. Download the license server installation kit for your platform from one of the download URLs included in the
registration email message with your floating license key.

2. Unzip the install kit in a new folder.

The Windows installer installs the license server as a Windows service. It provides the following optional features
that are not available in the other license server installers:

• Start the Windows service automatically at Windows startup
• Create shortcuts on the Start menu for starting and stopping the Windows service manually.

If you use the zip archive on Windows you have to run the scripts provided in the archive for installing, starting,
stopping and uninstalling the server as a Windows service.

The zip archive can be used for running the license server on any platform where a Java virtual machine can run
(Windows, Mac OS X, Linux / Unix, etc).

3. Start the server using the startup script.

The startup script is called licenseServer.bat for Windows and licenseServer.sh for Mac OS X and
Unix / Linux. It has 2 parameters:

• licenseDir - the path of the directory where the license files will be placed. Default value: license.
• port - the port number used to communicate with Oxygen instances. Default value: 12346.

The following is an example command line for starting the license server on Unix/Linux and Mac OS X:

sh licenseServer.sh myLicenseDir 54321

The following is an example command line for starting the license server on Windows:

licenseServer.bat myLicenseDir 54321

The license folder must contain a text file called license.txt which must contain a single floating license key
corresponding to the set of purchased floating licenses. If you have more than one floating license key for the same
Oxygen version obtained from different purchases or you want to split a set of license keys between 2 different servers
please contact us at support@oxygenxml.com to merge / split your license keys.
Install the License Server as a Windows Service

1. Download the Windows installer of the license server from the URL provided in the registration email message
containing your floating license key.

2. Run the downloaded installer.

3. Enable the Windows service on the machine that hosts the license server.

If you want to install, start, stop and uninstall manually the server as a Windows service you must run the following
scripts from command line. On Windows Vista and Windows 7 you have to run the commands as Administrator.

34 | Oxygen XML Editor | Installation

• installWindowsService.bat - install the server as Windows service with the name
"oXygenLicenseServer". The parameters for the license key folder and the server port can be set in the
oXygenLicenseServer.vmoptions file.

• startWindowsService.bat - start the Windows service.
• stopWindowsService.bat - stop the Windows service.
• uninstallWindowsService.bat - uninstall the Windows service created by the

installWindowsService.bat script.

When the license server is used as a Windows service the output and error messages are redirected automatically to the
following log files created in the install folder:

• outLicenseServer.log - server's standard output stream
• errLicenseServer.log - server's standard error stream

Note: Before starting the server, the JAVA_HOME variable must point to the home folder of a Java runtime
environment installed on your Windows system.

Note:

On Windows Vista and Windows 7 if you want to start or stop the Windows service with the Start menu shortcut
called Start Windows service / Stop Windows service you have to run the shortcut as Administrator.

Request a Floating License from a License Server Running as a Standalone Process

Figure 3: Floating License Server Running as a Standalone Process

1. Start the application.

2. Go to menu Help > Register .
The license dialog is displayed.

3. Choose Use a license server as licensing method.

4. Select Standalone server as server type.

5. Fill-in the Host text field with the host name or IP address of the license server.

6. Fill-in the Port text field with the port number used to communicate with the license server.

7. Click the OK button.

If the maximum number of available licenses was not exceeded a license key is received from the floating license server
and registered in Oxygen . The license details are displayed in the About dialog opened from the Help menu. If the
maximum number of licenses was exceeded a warning dialog pops up letting you know about the problem. The message
contains information about the users who requested and successfully received the floating licenses before exceeding the
maximum number of licenses.

Oxygen XML Editor | Installation | 35

Request a Floating License from a License Server Running as a Java Servlet

Starting with Oxygen version 12.1, Oxygen can use a license server running as a Java Servlet to manage floating licenses.

Figure 4: Floating License Server Running as a Servlet

1. Start the application.

2. Go to menu Help > Register .
The license dialog is displayed.

3. Choose Use a license server as licensing method.

4. Select HTTP Server as server type.

5. Fill-in the URL text field with the address of the license server.
The URL address has the following format:
http://hostName:port/oXygenLicenseServlet/license-servlet/.

6. Fill-in the User and Password text fields. Contact your server administrator to supply you this information.

7. Click the OK button.

If the maximum number of available licenses was not exceeded a license key is received from the floating license server
and registered in Oxygen . The license details are displayed in the About dialog opened from the Help menu. If the
maximum number of licenses was exceeded a warning dialog pops up letting you know about the problem. The message
contains information about the users who requested and successfully received the floating licenses before exceeding the
maximum number of licenses.

Note: Two different Oxygen instances (for example one standalone and one Eclipse plugin) run on the same
machine, consume a single license key.

Release a Floating License

The floating license key registered for the current Oxygen instance will be released automatically when the connection
with the license server is lost (after closing the application or as a result of a network failure).

To manually release a floating license key to be returned to the server's pool of available license keys:

1. Go to the menu Help .

2. Select Register.

3. Select Use a license key as licensing method.

4. Paste a Named User license key in the registration dialog. Leave the text area empty to return to the previously used
license key, if any.

36 | Oxygen XML Editor | Installation

5. Press the OK button of the dialog.

License Registration with an Activation Code

If you have only an activation code and you want to register the associated license key you must request this license key
by filling the registration code and other details associated with your license in a request form on the Oxygen website.
The button Request license for registration code in the registration dialog available from menu Help > Register >
Register opens this request form in the default Web browser on your computer.

Unregistering the License Key

Sometimes you need to unregister your license key, for example to release a floating license to be used by other user
and still use the current Oxygen instance with a Named User license, or to transfer your license key to other computer
before other user starts using your current computer.

1. Go to menu Help > Register > Register
This displays the license registration dialog.

2. Make sure the text area for the license key is empty.

3. Make sure the checkbox Use a license server is unchecked.

4. Press the OK button of the dialog.
This displays a confirmation dialog.

5. Select between falling back to the license key entered previously (for the case of releasing a floating license and
reverting to Named User license) and removing your license key from your user account of the computer.

Upgrading the Oxygen Application

From time to time, upgrade and patch versions of Oxygen are released to provide enhancements that rectify problems,
improve functionality and the general efficiency of the application.

Any personal configuration settings and customizations are preserved by installing an upgrade or a patch.

Upgrading the Standalone Application

Upgrading to a new version might require a new license key. To check if your license key is compatible with the new
version, select Help > Check for New Version . Note that the application needs an Internet connection to check the
license compatibility.

Note: Any customization that was applied to a predefined document type will be removed by an upgrade.

Note: If there is a previous version of Oxygen already installed on your computer, it can coexist with the new one,
which means you don't have to uninstall it. However, if you choose to uninstall the older version please note that
all the files from its install directory will be removed, including any modification in Author frameworks files, XSLT
stylesheets, XML catalogs, and templates. If you have modified any files in that directory, it is recommended to
keep the older version until you are sure you don't need it anymore. The user preferences are stored in a different
directory. They will not be removed and will be imported automatically in the new version at the first application
launch.

1. Download the install kit of the new version.

2. Create a new folder under /../oxygen e. g. /../oxygen/12.2

Oxygen XML Editor | Installation | 37

3. Extract the content of the install kit into the new folder.

4. If you have defined Oxygen in the system PATH, modify it to point to the new installation folder.

5. Start Oxygen
This will test that the application can start and that your license is recognized by the upgrade installation.

Checking for New Versions

Oxygen XML Editor offers the option of checking for new versions at the http://www.oxygenxml.com site when the
application is started. If this option is enabled a message dialog will notify the user when new versions are released.

You can check for new versions manually at any time by going to menu Help > Check for New Versions

Uninstalling the Application

This section contains uninstallation procedures.

Uninstalling the Standalone Application

Caution: The following procedure will remove Oxygen XML Editor from your system. Please ensure that all
valuable data stored in the install folder is saved to another location prior to performing this procedure.

1. Backup all valuable data from the Oxygen XML Editor installation folder.

2. Remove the application.

• On Windows use the appropriate uninstaller shortcut provided with your OS.
• On Mac OS X and Unix manually delete the installation folder and all its contents.

3. If you want to remove also the user preferences that were configured in the Preferences dialog you must remove
the folder %APPDATA%\com.oxygenxml on Windows (usually %APPDATA% has the value
[user-home-dir]\Application Data) / the subfolder .com.oxygenxml of the user home folder on Linux / the
subfolder Library/Preferences/com.oxygenxml of the user home folder on Mac OS X.

Unattended Uninstall

The unattended uninstall procedure is available only on Windows and Linux.

Run the uninstaller executable from command line with the -q parameter.

The uninstaller executable is called uninstall.exe on Windows and uninstall on Linux and is located in
the application's install folder.

Performance Problems

This section contains the solutions for some common problems that may appear when running the application.

38 | Oxygen XML Editor | Installation

http://www.oxygenxml.com

Large Documents

When started from the icon created on the Start menu or the Desktop on Windows or from the shortcut created on the
Linux desktop the maximum memory available to Oxygen is set by default to 40% of the amount of physical RAM but
not more than 700 MB. When started from the command line scripts the maximum memory is 256 MB. If large documents
are edited in Oxygen and you see that performance slows down considerably after some time then a possible cause is
that the application needs more memory in order to run properly. You can increase the maximum amount of memory
available to Oxygen by setting the -Xmx parameter in a configuration file specific to the platform that runs the application.

Attention:

The maximum amount of memory should not be equal to the physical amount of memory available on the machine
because in that case the operating system and other applications will have no memory available.

When installed on a multi-user environment such as Windows Terminal Server or Unix/Linux, to each instance of
Oxygen will be allocated the amount stipulated in the memory value. To avoid degrading the general performance of
the host system, please ensure that the amount of memory available is optimally apportioned for each of the expected
instances.

External Processes

The amount of memory allocated to generate PDF output with the built-in Apache FOP processor is controlled by the
FOP memory setting available in Oxygen Preferences: Memory available to the built-in FOP. In the application throws
an Out Of Memory error (OutOfMemoryError), this is the setting that must be modified to allow more memory for
the built-in FOP.

For external XSL-FO processors configured in Options > Preferences > XML > XSLT/FO/XQuery > FO Processors
and for external XSLT processors configured in Options > Preferences > XML > XSLT/FO/XQuery > Custom
Engines and for external tools configured in Options > Preferences > External Tools the maximum memory must
be set in the command line of the tool with a parameter -Xmx set to the Java virtual machine.

Display Problems on Linux/Solaris

Display problems like screen freeze or momentary menu pop-ups during mouse movements over screen on Linux or
Solaris can be solved by adding the startup parameter -Dsun.java2d.pmoffscreen=false.

Oxygen XML Editor | Installation | 39

Chapter

3

Getting Started

This section will get you started with the editing perspectives of the application.Topics:

• Getting Help
• Supported Types of Documents
• Perspectives
• Dockable Views and Editors

Getting Help

Online help is available at any time while working in Oxygen by accessing the Help > Help ... menu which opens the
Help dialog.

Context sensitive help is available from any dialog or view by pressing the F1 key. This opens the same Help dialog
directly on a relevant page for the current view or dialog which has the editing focus.

The same help content is available in the view Window > Show View > Dynamic Help (also available from menu
Help > Show Dynamic Help View) which loads automatically the relevant help section for the focused editor, view
or dialog.

The name and version of the third-party libraries and frameworks used by Oxygen are listed in the About dialog box:
Help > About ... Also you can see here the values of system properties like the version of the Java virtual machine,
the location of the user home directory, the Java classpath, etc.

Supported Types of Documents

Oxygen XML Editor provides a rich set of features for working with:

• XML documents and applications

• XSL stylesheets - transformations and debugging support

• Schema languages: XML Schema, Relax NG (full and compact syntax), NVDL, Schematron, DTD

• Querying documents using XPath and XQuery

• Analyzing, composing and testing WSDL SOAP messages

• CSS documents

Perspectives

The Oxygen interface uses standard interface conventions and components to provide a familiar and intuitive editing
environment across all operating systems.

In Oxygen you can work with documents in one of the perspectives:

Documents editing is supported by specialized and synchronized editors and
views.

Editor perspective

XSLT stylesheets can be debugged by tracing their execution step by step.
XSLT Debugger perspective

XQuery transforms can be debugged by tracing their execution step by step.
XQuery Debugger perspective

Multiple connections to relational databases, native XML databases, WebDAV
sources and FTP sources can be managed at the same time in this perspective:
database browsing, SQL execution, XQuery execution and data export to XML.

Database perspective

An XML document is viewed and edited as a tree of XML elements.
Tree Editor perspective

42 | Oxygen XML Editor | Getting Started

Editor Perspective

The Editor perspective is used for editing the content of your documents.

Figure 5: Editor perspective

When two or more panels are displayed, the application provides divider bars. By selecting a divider bar, it can be
dragged to a new position, therefore increasing the space occupied by one panel while decreasing it for the other.

As majority of the work process centers around the Editor panel, other panels can be hidden from view using the expand
and collapse controls located on the divider bars.

This perspective organizes the workspace in the following panels:

• Main menu - Provides menu driven access to all the features and functions available within Oxygen.
• Main toolbar - Provides easy access to common and frequently used functions. Each icon is a button that acts as a

shortcut to a related function.
• Editor panel - The place where you spend most of your time, reading, editing, applying markup and validating your

documents.
• Outline view - Provides the following functions: XML document overview, modification follow-up, document

structure change, document tag selection.
• Model view panel - Presents the structure of the current edited tag and additional tag documentation.
• Results panel - Displays result messages returned from user operations. The following actions are available:

• Hierarchical view - that allows you to see the results in tree-like manner. Clicking on a tree leaf highlights
the corresponding line in the document.

• Flat view - that will present the errors in a table-like manner. Clicking on a table row highlights the
corresponding line in the document.

• Remove selected - removes the currently selected message from the list.

Oxygen XML Editor | Getting Started | 43

• Remove all - clears the message list.

Navigation to the previous and next message is possible from the contextual menu or by using the assigned shortcut
keys. The default shortcut keys are Ctrl + Shift +] for navigating to the next and Ctrl + Shift + [for navigating to
the previous message.

• Project view - Enables the definition of projects and logical management of the documents it contains.

XSLT Debugger Perspective

The XSLT Debugger perspective is used for detecting problems in an XSLT transformation process by executing the
process step by step in a controlled environment and inspecting the information provided in different special views. The
workspace is organized as an editing area supported by special helper views. The editing area contains editor panels and
can be split horizontally or vertically in two stacks of editors: XML editor panels and XSLT editor panels.

Figure 6: XSLT Debugger perspective

• Source document view - Displays and allows editing of data or document oriented XML files (documents).
• Stylesheet document view - Displays and allows editing of XSL files(stylesheets).
• Output document view - Displays the transformed output that results from the input of a selected document (XML)

and selected stylesheet (XSL) to the transformer. The result of transformation is dynamically written as the
transformation is processed. There are three types of views for the output: a text view (with XML syntax highlight),
an XHTML view and one text view for each xsl:result-document element used in the stylesheet (if it is a XSLT 2.0
stylesheet).

• Control toolbar - Contains all actions needed in order to configure and control the debug process.
• Information views - Distributed in two panes that are used to display various types of information that can be used

to understand the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This allows the developer to obtain
a clear view of the transformation progress.

44 | Oxygen XML Editor | Getting Started

XQuery Debugger Perspective

The XQuery Debugger perspective is similar to the XSLT Debugger perspective. It is used to detect problems in an
XQuery transformation process by executing the process step by step in a controlled environment and inspecting the
information provided in different special views. The workspace is organized as follows:

Figure 7: XQuery Debugger perspective

• Source document view - Allows editing of data or document oriented XML files (documents).
• XQuery document view - Allows editing of XQuery files.
• Output document view - Displays the transformed output that results from the input of a selected document (XML)

and selected XQuery document to the XQuery transformer. The result of transformation is dynamically written as
the transformation is processed. There are two types of views for the output: a text view (with XML syntax highlight)
and an XHTML view.

• Control toolbar - Contains all actions needed in order to configure and control the debug process.
• Information views - Distributed in two panes that are used to display various types of information that can be used

to understand the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This allows the developer to obtain
a clear view of the transformation progress.

Database Perspective

The Database perspective is similar to the Editor perspective. It allows you to manage a database, offering support for
browsing multiple connections at the same time, both relational and native XML databases, SQL execution, XQuery
execution and data export to XML.

Oxygen XML Editor | Getting Started | 45

This perspective offers database specific support for:

• Oracle Berkeley DB XML Database
• eXist XML Database
• IBM DB2 (Enterprise edition only)
• JDBC-ODBC Bridge (Enterprise edition only)
• MarkLogic (Enterprise edition only, XQuery support only)
• Microsoft SQL Server 2005 and Microsoft SQL Server 2008 (Enterprise edition only)
• MySQL
• Oracle 11g (Enterprise edition only)
• PostgreSQL 8.3 (Enterprise edition only)
• Software AG Tamino (Enterprise edition only)
• TigerLogic (Enterprise edition only, XQuery support only)
• Documentum xDb (X-Hive/DB) 10 XML Database (Enterprise edition only)
• Documentum (CMS) 6.5 (Enterprise edition only)

The XML capabilities of the databases marked in this list with "Enterprise edition only" are available only in the Enterprise
edition of Oxygen. The non-XML capabilities of any database listed here are available also in the Academic and
Professional editions of Oxygen by registering the database driver as a generic JDBC driver (the Generic JDBC type in
the list of driver types) when defining the data source for accessing the database in Oxygen.

The non-XML capabilities are:

• browsing the structure of the database instance;
• opening a database table in the Table Explorer view;
• handling the values from XML Type columns as String values.

The XML capabilities are:

• displaying an XML Schema node in the tree of the database structure (for databases with such an XML specific
structure) with actions for opening/editing/validating the schemas in an Oxygen editor panel;

• handling the values from columns of type XML Type as XML instance documents that can be opened and edited in
an Oxygen editor panel;

• validating an XML instance document added to an XML Type column of a table, etc.

For a detailed feature matrix that compares the Academic, Professional and Enterprise editions of Oxygen please go to
the Oxygen website.

Note: Only connections configured on relational data sources can be used to import data to XML or to generate
XML schemas.

46 | Oxygen XML Editor | Getting Started

http://www.oxygenxml.com/feature_matrix.html
http://www.oxygenxml.com/feature_matrix.html

Figure 8: Database perspective

• Main menu - provides menu driven access to all the features and functions available within Oxygen.
• Main toolbar - provides easy access to common and frequently used functions. Each icon is a button that acts as a

shortcut to a related function.
• Editor panel - the place where you spend most of your time, reading, editing, applying markup and validating your

documents.
• Data Source explorer - provides browsing support for the configured connections.
• Table explorer - provides table content editing support: insert a new row, delete a table row, cell value editing, export

to XML file.

Tree Editor Perspective

The Tree Editor perspective is used for editing the content of a document viewed as a XML tree. The workspace is
organized in:

Oxygen XML Editor | Getting Started | 47

Figure 9:Tree Editor perspective

• Main menu - provides menu driven access to all the features and functions available in Oxygen Tree Editor perspective.

• Toolbar - provides easy access to common and frequently used functions. Each icon is a button that acts as a shortcut
to a related function.

• Editor panel - easy editing of structured mark-up documents. Each token has associated an icon for a easy visual
identification of the tokens.

• Message panel - displays messages returned from user operations.

• Model panel - shows the detailed information about the attribute or element that you are working on.

• All Elements panel - presents a list of all defined elements that you can insert within your document.

The tree editor does not offer entity support: entities are not presented with a special type of node in the tree and new
entity nodes cannot be inserted in the document.

Dockable Views and Editors

All the Oxygen views available in the Editor Perspective, XSLT Debugger Perspective and XQuery Debugger Perspective
are dockable. You can drag them to any margin of another view or editor inside the Oxygen window to form any desired
layout. Also a view can be set to a floating state to enable it to hover over other views and editors.

48 | Oxygen XML Editor | Getting Started

To gain more editing space in the Oxygen window, set one or more views to the auto hide state: only the title always
remains visible, attached to one of the margins of the Oxygen window, while the rest of the view gets restored only
when the mouse pointer hovers over the title or when you click the title. The view becomes hidden again when the mouse
pointer goes out of the screen area covered by that view.

The editing area can be divided vertically in several editing panels by dragging the title of an editor inside the editing
area and dropping it when the frame of the dragged editor is painted in the desired position. In the following figure, you
can see how to unsplit the editing area by dragging the title of the personal.xml editor panel over personal-schema.xml
until the drop frame painted in dark gray covers all the personal-schema.xml editor panel and then dropping it.

Figure 10:You can split the editing area by drag and drop of the editor title:

All the opened editors can be tiled horizontally/vertically or stacked together using actions from Window menu :
Tile Editors Horizontally, Tile Editors Vertically, Stack Editors. When several tiled editors exist, and
action Synchronously scrolling (from the same Window menu) is enabled, when scrolling inside one editor all
other editors will also scroll.

Also the editing area can be divided vertically and horizontally with the split / unsplit actions available on the Split

toolbar and the Window menu: Split horizontally, Split vertically, Unsplit.

The editor can be maximized or restored(same action as double click on the editor tab) by using the Maximize/Restore
Editor Area action from the Window menu.

The tab strip is scroll-wheel sensitive, i. e. when there are more documents open than fit in the tab strip, the scroll wheel
could be used to scroll left/right as is currently accomplished with the two arrows at the right. However that is not
necessary for switching to other edited file as the following shortcuts can be used to display a small popup window that
cycles through all opened files: Ctrl-F6 (Meta-F6 on Mac OS X) and Ctrl-Shift-F6 (Meta-Shift-F6 on Mac OS X).

The default layout of any of the Editor Perspectives, XSLT Debugger Perspective and XQuery Debugger Perspective
can be restored at any time with the Reset Layout action found in the Window menu.

Oxygen XML Editor | Getting Started | 49

Any Oxygen view or toolbar can be opened at any time from the menu items available in the menus Window > Show
View and Window > Show Toolbar . The current (focused) dockable view is made invisible (switched to hidden state)
with the shortcut (Ctrl+Shift+F4) (Meta+Shift+F4) on Mac OS X). The users who prefer the keyboard instead of the
mouse may find this shortcut a faster way of closing a view than clicking the Close button from the title bar of the view.
The complementary action (opening a view with a shortcut) requires setting a custom shortcut for each view in the Menu
Shortcut Keys preferences.

50 | Oxygen XML Editor | Getting Started

Chapter

4

Editing Documents

This chapter explains the editor types available in the Oxygen application and
how to work with them for editing different types of documents.

Topics:

• Working with Unicode
• Opening and Closing Documents
• Editing XML Documents
• Editing XML Schemas
• Editing Relax NG Schemas
• Editing NVDL Schemas
• Editing XSLT Stylesheets
• Editing XQuery Documents
• Editing CSS Stylesheets
• Editing XProc Scripts
• Editing Schematron Schemas
• SVG Documents
• Integrating External Tools
• Editing Very Large Documents
• Insufficient Memory
• Large File Viewer
• Hex Viewer
• Scratch Buffer
• Changing the User Interface

Language
• Handling Read-Only Files
• Editing Documents with Long

Lines

Working with Unicode

Unicode provides a unique number for every character, independent of the platform and language. Unicode is an
internationally recognized standard, adopted by industry leaders. The Unicode is required by modern standards such as
XML, Java, ECMAScript (JavaScript), LDAP, CORBA 3.0, WML, etc., and is the official way to implement ISO/IEC
10646.

It is supported in many operating systems, all modern browsers, and many other products. The emergence of the Unicode
Standard, and the availability of tools supporting it, are among the most significant recent global software technology
trends. Incorporating Unicode into client-server or multi-tiered applications and websites offers significant cost savings
over the use of legacy character sets.

As a modern XML Editor, Oxygen provides support for the Unicode standard enabling your XML application to be
targeted across multiple platforms, languages, and countries without re-engineering. Internally, the Oxygen XML Editor
uses 16bit characters covering the Unicode Character set.

As a Java application, Oxygen comes with a default Java input method for typing characters with Unicode codes.
However, the default input method does not cover all the Unicode codes, for example the codes for some accented
characters or characters found in East Asian languages. Such characters can be inserted in the editor panel of Oxygen
either with the Character Map dialog available from menu Edit > Insert from Character Map or by installing a
Java input method that supports the insertion of the needed characters. The installation of a Java input method depends
on the platform on which Oxygen runs (Windows, Mac OS X, Linux, etc) and is the same for any Java application.

Note: Oxygen may not be able to display characters that are not supported by the operating system (either not
installed or unavailable).

Tip: Windows XP/2003: You can enable support for CJK (Chinese, Japanese, Korean) languages from Control
Panel / Regional and Language Options / Languages / Install files for East Asian languages.

Opening and Saving Unicode Documents

On loading documents of the type XML, XSL, XSD, and DTD, Oxygen reads the document prolog to determine the
specified encoding type. This encoding is then used to instruct the Java Encoder to load support for and to save the
document using the specified code chart. When the encoding type cannot be determined, Oxygen prompts and display
the Available Java Encodings dialog which provides a list of all encodings supported by the Java platform.

If the opened document contains an unsupported character, Oxygen applies the policy specified for handling such errors.
If the policy is set to REPORT, Oxygen displays an error dialog about the character not allowed by the encoding. If the
policy is set to IGNORE, the character is removed from the document displayed in the editor panel. If the policy is set
to REPLACE, the character is replaced with a standard replacement character for that encoding.

While in most cases you are using UTF-8, simply changing the encoding name causes the application to save the file
using the new encoding.

On saving the edited document, if it contains characters not included in the encoding declared in the document prolog
Oxygen detects the problem and signals it to the user. The user is responsible to resolve the conflict before saving the
document.

To edit documents written in Japanese or Chinese, change the font to one that supports the specific characters (a Unicode
font). For the Windows platform, Arial Unicode MS or MS Gothic is recommended. Do not expect Wordpad or Notepad
to handle these encodings. Use Internet Explorer or Word to examine XML documents.

When a document with a UTF-16 encoding is edited and saved in Oxygen, the saved document has a byte order mark
(BOM) which specifies the byte order of the document content. The default byte order is platform-dependent. That
means that a UTF-16 document created on a Windows platform (where the default byte order mark is UnicodeLittle)
has a different BOM than a UTF-16 document created on a Mac OS platform (where the byte order mark is UnicodeBig).

52 | Oxygen XML Editor | Editing Documents

http://java.sun.com/products/jfc/tsc/articles/InputMethod/inputmethod.html

The byte order and the BOM of an existing document are preserved Oxygen when the document is edited and saved.
This behavior can be changed in Oxygen from the Encoding preferences panel.

The Unicode Toolbar

The Unicode toolbar is switched on and off from Window > Show Toolbar > Unicode or from the contextual menu

of the toolbar area and contains the actions Change text orientation with the default shortcut Ctrl + Shift + O
and Insert from Character Map

The Change text orientation action enables editing documents in languages with right to left writing (Hebrew,
Arabic, etc.). Please note that you may have to set an appropriate Unicode aware font for the editor panel, able to render
the characters of the language of the edited file.

The Insert from Character Map action opens a dialog in which you can select one character in the matrix of all
characters available in a font and insert it in the edited document. The action is available also in the Edit menu.

Figure 11:The Character Map dialog

The character selected in the character table or an entity with the decimal code or the hexadecimal code of that character
can be inserted in the current editor. You will see it in the editor if the editor font is able to render it. The Insert button
inserts the selected character in the editor. The Copy button copies it to the clipboard without inserting it in the editor.

A character can be located very quickly in the map if you know the Unicode code: just type the code in the search field
above the character map and the character is selected automatically in the map. If the code is hexadecimal the radio
button for hexadecimal codes is selected automatically. Selecting a radio button with the mouse starts searching the
code in the map.

The Character Map dialog cannot be used to insert Unicode characters in the grid version of a document editor.
Accordingly, the Insert button of the dialog will be disabled if the current document is edited in grid mode.

Opening and Closing Documents

This section explains the actions and wizards available for creating new files, opening existing files, and closing files.

Oxygen XML Editor | Editing Documents | 53

Creating New Documents

This section details the procedures available for creating new documents.

The New Document Dialog

Oxygen supports many document types. This dialog presents the default associations between a file extension and the
type of editor which opens the file for editing. You can override these default associations in the File Types user
preferences panel.

1.
Select File > New (Ctrl+N) or press the New toolbar button.
The New dialog is displayed. The supported document types are grouped into several categories:

• Recently used - contains the list of most recently used files;
• New Document - contains the list of supported document types (including, among others, XML, XSL, XML

Schema, Document Type Definition, Relax NG Schema, XQuery, Web Services Definition Language, Schematron
Schema, CSS File, Text File, PHP File, JavaScript File , Java File, C File, C++ File, Batch File, Shell File,
Properties File, SQL File, XML Catalog, and PERL File).

• Global templates - contains the list of predefined templates as well as templates defined in the Document
Templates preferences page.

• Framework templates - contains the list of templates defined in the Document Type Association preferences
page, Templates tab.

2. Select a document type.

3. Click one of the following:

• Customize - Action available only for XML, XML Schema, Schematron, and XSL file types. Depending on the
document type, different properties can be set before creating the file.

• Create - Uses default settings to create a file.

If Create was clicked, the new file is created and opened in the editor view.

4. If Customize was clicked, the following dialog is opened. Depending on the selected document type, different
properties can be set:

54 | Oxygen XML Editor | Editing Documents

•

Figure 12: New XML Document Dialog

• Schema URL - Path to the schema file. When a file is selected, Oxygen analyzes its content and tries to fill-in
the rest of the dialog;

• Schema type - The following options are available: XML Schema, DTD, RelaxNG XML syntax, RelaxNG
compact syntax, and NVDL;

• Public ID - Specifies the PUBLIC identifier declared in the document prolog;
• Namespace - The document namespace;
• Prefix - The prefix for the namespace of the document root;
• Root Element - Populated with elements defined in the specified schema, enables selection of the element

to be used as document root;
• Description - Shows a small description of the selected document root;
• Add optional content - When selected, the elements and attributes that are defined in the XML Schema as

optional, are generated in the skeleton XML document;
• Add first Choice particle - When selected, the first element of an xs:choice schema element is generated in

the skeleton XML document created in a new editor panel when the OK button is pressed.

Oxygen XML Editor | Editing Documents | 55

•

Figure 13: New XSL Document Dialog

• Stylesheet version - Stylesheet version number. Possible options: 1.0 and 2.0;
• Generate stylesheet documentation - Generates the stylesheet documentation.

•

Figure 14: New XML Schema Document Dialog

• Target namespace - Specifies the schema target namespace;
• Namespace prefix declaration table - Contains namespace prefix declarations. Table information can be

managed using the New and Delete buttons.

56 | Oxygen XML Editor | Editing Documents

•

Figure 15: New Schematron Document Dialog

• Schematron version - Specifies the Schematron version. Possible options: 1.5 and ISO.

5. Press Create to create the file.

Creating Documents Based on Templates

The New wizard enables you to select predefined templates or templates that have already been created in previous
sessions or by other users.

The list of templates presented in the dialog includes:

• Document Types templates - Templates supplied with the defined document types.
• User defined templates - The user can add template files in the templates folder of the Oxygen install directory.

Also in the option page Options > Preferences > Editor > Templates > Document Templates can be specified
a custom templates folder to be scanned.

1. Go to menu File > New .

2. Select a document type.

3. Press the Finish button.

The newly created document already contains the structure and content provided in the template.
Document Templates

Templates are documents containing a predefined structure. They provide starting points on which one can rapidly build
new documents that repeat the same basic characteristics: file type, prolog, root element, existing content. Oxygen
installs a rich set of templates for a number of XML applications. You may also create your own templates from Options
> Preferences > Editor > Templates > Document Templates and share them with other users.

You can also use editor variables in the template files' content and they will be expanded when the files are opened.

Saving Documents

The edited document can be saved with one of the following actions:

• File > Save > (Ctrl+S) .
•

The Save toolbar button. If the document was not saved yet it displays the Save As dialog.
• File > Save As : displays the Save As dialog, used either to name and save an open document to a file or to save an

existing file with a new name.
• File > Save To URL displays the Save to URL dialog, used either to name and save an open document to a file or

to save an existing file with a new name, using FTP/SFTP/WebDAV.

Oxygen XML Editor | Editing Documents | 57

• File > Save All : Saves all open documents. If any document does not have a file, displays the Save As dialog.

Opening Existing Documents

Documents can be opened using one of the following actions:

• Go to menu File > Open (Ctrl+O) to display the Open dialog. The start folder of the Open dialog can be either
the last folder visited by this dialog or the folder of the currently edited file. This can be configured in the user
preferences.

•
Press the Open toolbar button to display the same dialog.

• Go to menu File > Open URL ... to open a document using FTP/SFTP/WebDAV.
• Press the Open URL ... toolbar button to run the same action.
• Go to menu File > Open/Find Resource ... (Ctrl+Shift+R) to look for a document from the current project or

from a DITA map opened in the DITA Maps Manager view by typing a part of the file name.
• Press the Open/Find Resource ... toolbar button to run the same action.
• Go to menu File > Revert to load the last saved file content. All unsaved modifications are lost.
• Go to menu File > Reopen to reopen one of the recently opened document files. The list containing recently opened

files can be emptied by invoking the Clear history action.
• Select the action Open from the Project view contextual menu. This opens the selected file from the Project view.
• Start the application from the command line with the paths of one or more local files as parameters. The specified

files will be opened automatically when the application is started:

• scriptName [pathToXMLFile1] [pathToXMLFile2] ... where scriptName is the name of the startup script for
your platform (oxygen.bat on Windows, oxygen.sh on Unix/Linux, oxygenMac.sh on Mac OS) and
pathToXMLFileN is the name of a local XML file

• an XML file and a schema file to be associated automatically to the file and used for validation and content
completion:

scriptName -instance pathToXMLFile -schema pathToSchemaFile -schemaType
XML_SCHEMA|DTD_SCHEMA|RNG_SCHEMA|RNC_SCHEMA -dtName documentTypeName

where scriptName is the name of the startup script for your platform (oxygen.bat on Windows, oxygen.sh on
Unix/Linux, oxygenMac.sh on Mac OS), pathToXMLFile is the name of a local XML file, pathToSchemaFile
is the name of the schema which you want to associate to the XML file, the four constants (XML_SCHEMA,
DTD_SCHEMA, RNG_SCHEMA, RNC_SCHEMA) are the possible schema types (W3C XML Schema, DTD,
Relax NG schema in full syntax, Relax NG schema in compact syntax). The next parameter, documentTypeName,
specifies the name of the Document Type for which the schema is defined. If the Document Type is already set
in the options pages, then its schema and type will be updated.

The two possibilities of opening files at startup by specifying them in the command line are explained also if the
startup script receives one of the -h or --help parameters.

Also when the Tree Editor perspective is activated the current document in the Editor perspective will be opened and
displayed as a tree of XML elements.

Open/Find Resource

The Open/Find Resource dialog is opened from menu File > Open/Find Resource ... (Ctrl+Shift+R) or from the

toolbar button Open/Find Resource It allows quickly finding a file in the current Oxygen project or in one of
the DITA maps opened in the DITA Maps Manager view by typing only a few letters of the file name.

58 | Oxygen XML Editor | Editing Documents

Figure 16:The Open/Find Resource Dialog

The list of file names that match the file pattern typed in the search field is updated automatically when a character is
inserted or deleted in the search field. For each matching file, the full path name is displayed in the list.

Because this operation involves extensive access to the hard drive, a caching mechanism is used to gather the paths of
all files linked in the current project. When the first search is performed, all project files are indexed and added to the
cache. The next search operations use the information extracted from the cache, thus improving the processing time.
The cache is kept for the currently loaded project only, so when you perform a search in a new project the cache is
rewritten. Also, the cache is reset when you press the Reindex button.

If there is no file found that matches your file pattern, a possible cause is that the file was added to the Oxygen project
after the last caching operation. In this case re-indexing the project files from the Reindex button will enable the file to
be found. The date and time of the last index operation is displayed below the file list.

Once you find the files that you want to open, select them in the list and press the Open button. Each of the selected
files is opened in the editor associated with the type of the file.

Opening and Saving Remote Documents via FTP/SFTP/WebDAV

Oxygen supports editing remote files, using the FTP, SFTP and WebDAV protocols. The remote files can be edited
exactly as the local ones, for example they can be added to a project, and can be subject to XSL and FO transformations.

You can open one or more remote files in the dialog Open using FTP/SFTP/WebDAV .

A WebDAV resource can be locked when it is opened in Oxygen Oxygen XML Author by checking the option Lock
WebDAV files on open to prevent other users to modify it concurrently on the server. If a user tries to edit a locked file,
the application will display a error message that contains the lock owner's name. The lock is released automatically
when the editor for that resource is closed in Oxygen Oxygen XML Author .

To improve the transfer speed, the content exchanged between Oxygen Oxygen XML Author and the HTTP / WebDAV
server is compressed using the GZIP algorithm.

The current WebDAV Connection details can be saved using the button and then used in the Data Source Explorer
view.

Oxygen XML Editor | Editing Documents | 59

The Dialog Open Using FTP/SFTP/WebDAV

The dialog Open using FTP/SFTP/WebDAV is displayed from the menu File > Open URL ... or from the toolbar

button Open URL

Figure 17: Open URL dialog

The displayed dialog is composed of several parts:

• The editable combo box, in which it can be specified directly the URL to be opened or saved.

Tip:

You can type in here an URL like http://some.site/test.xml, in case the file is accessible through normal HTTP
protocol, or ftp://anonymous@some.site/home/test.xml if the file is accessible through anonymous FTP.

This combo box is also displaying the current selection when the user changes selection by browsing the tree of
folders and files on the server.

• The Identification section contains the access credentials. If you want to browse for a file on a server, you have to
specify the user and password. This information is bound to the selected URL displayed in the File URL combo
box, and used further in opening/saving the file. If the check box Save is selected, then the user and password are
saved between editing sessions. The password is kept encrypted into the options file.

Note:

Your password is well protected. In the case the options file is used on other machine by a user with a different
username the password will become unreadable, since the encryption is username dependent. This is also true
if you add URLs having user and password to your project.

60 | Oxygen XML Editor | Editing Documents

• The Browse for remote file section contains the server combo and the Autoconnect check box. Into the server combo
it may be specified the protocol (HTTP, HTTPS or FTP), the name or IP of the server and, in case of WebDAV, the
path to a WebDAV directory.

Tip:

Server URLs

When accessing a FTP server, you need to specify only the protocol and the host, like: ftp://server.com, or if
using a nonstandard port: ftp://server.com:7800/.

When accessing a WebDAV server, along with the protocol and the host, it must be specified also the directory
of the WebDAV repository.

Important:

Make sure that the repository directory ends in a slash "/".

Ex: https://www.some-webdav-server.com:443/webdav-repository/, http://devel:9090/webdav/

By pressing the Browse button the directory listing will be shown in the component below. When Autoconnect is
selected then at every time the dialog is shown, the browse action will be performed.

• The tree view of the documents stored on the server. You can browse the directories, and make multiple selections.
Additionally, you may use the Rename, Delete, and New Folder to manage the file repository.

The file names are sorted in a case-insensitive way.

Changing File Permissions on a Remote FTP Server

Some FTP servers allow the modification of permissions of the files served over the FTP protocol. This protocol feature
is accessible directly in the FTP/WebDAV file browser dialog by right-clicking on a tree node and selecting the Change
permissions menu item.

The usual Unix file permissions Read, Write and Execute are granted or denied in this dialog for the file owner, owner
group and the rest of the users. The permission's aggregate number is updated in the Permissions text field when it is
modified with one of the check boxes.

WebDAV over HTTPS

If you want to access a WebDAV repository across an insecure network, Oxygen allows you to load and save the
documents over the HTTPS protocol (if the server understands this protocol) so that any data exchange with the WebDAV
server is encrypted.

When a WebDAV repository is first accessed over HTTPS, the server hosting the repository will present a security
certificate as part of the HTTPS protocol, without any user intervention. Oxygen will use this certificate to decrypt any
data stream received from the server. For the authentication to succeed you should make sure the security certificate of
the server hosting the repository can be read by Oxygen . This means that Oxygen can find the certificate in the key
store of the Java Runtime Environment in which it runs. You know the server certificate is not in the JRE key store if
you get the error No trusted certificate found when trying to access the WebDAV repository.

How to Add a HTTPS Server Certificate to Oxygen

You add a HTTPS server certificate to the Java key store by exporting it to a local file using any HTTPS-capable Web
browser (for example Internet Explorer) and then importing this file into the JRE using the keytool executable bundled
with the JRE. The steps are the following using Internet Explorer (if you use other browser the procedure is similar):

1. Export the certificate into a local file

a) Point your HTTPS-aware Web browser to the repository URL.

If this is your first visit to the repository it will be displayed a security alert stating that the security certificate
presented by the server is not trusted.

Oxygen XML Editor | Editing Documents | 61

Figure 18: Security alert - untrusted certificate

b) Go to menu Tools > Internet Options .
Internet Options dialog is opened.

c) Select Security tab.
d) Select Trusted sites icon.
e) Press Sites button.

This will open Trusted sites dialog.
f) Add repository URL to Websites list.
g) Close Trusted sites dialog and Internet Options dialog.
h) Try again to connect to the same repository URL in Internet Explorer.

The same error page as above will be displayed.
i) Select Continue to this website option.

A clickable area with a red icon and text Certificate Error is added to Internet Explorer address bar.
j) Click on Certificate Error area.

A dialog containing View certificates link is displayed.
k) Click on View certificates link.

Certificate dialog is displayed.
l) Select Details tab of Certificate dialog.
m) Press Copy to File button.

Certificate Export Wizard is started.
n) Follow indications of wizard for DER encoded binary X.509 certificate. Save certificate to local file server.cer.

2. Import the local file into the JRE running Oxygen .

a) Open a text-mode console.
b) Go to the lib/security subfolder of your JRE directory, that is of the directory where it is installed the JRE

running Oxygen . You find the home folder of the JRE in the java.home property that is displayed in the About
dialog, the System properties tab.

c) Run the following command:

..\..\bin\keytool.exe -import -trustcacerts -file server.cer -keystore
cacerts

62 | Oxygen XML Editor | Editing Documents

The local-file.cer file contains the server certificate, created during the previous step. keytool requires
a password before adding the certificate to the JRE keystore. The default password is changeit. If somebody
changed the default password then he is the only one who can perform the import. As a workaround you can
delete the cacerts file, re-type the command and enter as password any combination of at least 6 characters.
This will set the password for future operations with the key store.

3. Restart Oxygen .

Opening the Current Document in a Web Browser

To open the current document in your computer's default Web browser, use the Open in browser action available on
the Document > File menu and also on the Document toolbar. This is useful to see the effect of applying an XSLT
stylesheet or a CSS stylesheet on a document which specifies the stylesheet using an xml-stylesheet processing instruction.

Closing Documents

To close documents use one of the following methods:

• Go to menu File > Close (Ctrl+W) : Closes only the selected tab. All other tab instances remain opened.
• Go to menu File > Close All : Closes all open documents. If a document is modified or has no file, a prompt to

save, not to save, or cancel the save operation is displayed.
• Select the item Close from the contextual menu of an editor tab: Closes the selected editor.
• Select the item Close Other Files from the contextual menu of an editor tab: Closes the other files except the selected

tab.
• Select the item Close All from the contextual menu of an editor tab: Closes all open editors within the panel.

Viewing File Properties

In the Properties view you can quickly access information about the current edited document like:

• character encoding
• full path on the file system
• schema used for content completion and document validation
• document type name and path
• associated transformation scenario
• file's read-only state
• bidirectional text (left to right and right to left) state
• document's total number of characters
• line width
• indent with tabs state
• indent size

The view can be accessed from Window > Show View > Properties > Editor properties

To copy a value from the Properties view in the clipboard, for example the full file path, use the Copy action available
on the contextual menu of the view.

Editing XML Documents

This section explains the XML editing features of the application. All the user interface components and actions available
to users are described in detail with appropriate procedures for various tasks.

Oxygen XML Editor | Editing Documents | 63

Associate a Schema to a Document

This section explains the methods of associating a schema to a document for validation and content completion purposes.

Setting a Schema for Content Completion

This section explains the available methods of setting a schema for content completion in an XML document edited in
the Oxygen application.

Supported Schema Types for XML Documents

The supported schema types are:

• W3C XML Schema (with and without embedded Schematron rules)
• DTD
• Relax NG - XML syntax (with and without embedded Schematron rules)
• Relax NG - compact syntax
• NVDL
• Schematron (both ISO Schematron and Schematron 1.5)

Setting a Default Schema

The default schema used by content completion is the schema of the document type that matches the edited document.
The list of document types available at Options > Preferences > Document Type Association contains a set of rules
for associating a schema with the current document when no schema is explicitly specified within the document. The
schema has one of following the types: XML Schema, XML Schema with embedded Schematron rules, Relax NG (XML
syntax or compact syntax), Relax NG (XML syntax) with embedded Schematron rules, Schematron, DTD, NVDL.

The rules are applied in the order they appear in the table and take into account the local name of the root element, the
default namespace and the file name of the document.

Important:

The editor is creating the content completion lists by analysing the specified schema and the current context (the
position in the editor). If you change the schema you can observe that the list of tags to be inserted is changing.

Figure 19: Content Completion Driven by DocBook DTD

Making the Schema Association Explicit in the XML Instance Document

The schema used by the content completion assistant and document validation engine can be associated with the document
using the Associate Schema action. For most of the schema types, it uses the xml-model processing instruction, the
exceptions being:

• W3C XML Schema - the xsi:schemaLocation attribute is used;
• DTD - the DOCTYPE declaration is used.

64 | Oxygen XML Editor | Editing Documents

The association can specify a relative file path or a URL of the schema. The advantage of relative file path is that you
can configure the schema at file level instead of document type level.

Go to menu Document > Schema > Associate schema... or click the Associate schema toolbar button to select
the schema that will be associated with the XML document. The following dialog is displayed:

Figure 20:The Associate Schema Dialog

The following options are available:

• URL - contains a predefined set of schemas that are used more often and it also keeps a history of the last used
schemas. The URL must point to the schema file which can be loaded from the local disk or from a remote server
through HTTP(S), FTP(S) or a custom protocol.

• Schema type - selected automatically from the list of possible types in the Schema type combo box (XML Schema,
DTD, Relax NG, Relax NG Compact, Schematron, NVDL) based on the extension of the schema file that was entered
in the URL field.

• Public ID - Specify a public ID if you have selected a DTD.
• Embedded schematron rules - if you have selected XML Schema or Relax NG schemas with embedded Schematron

rules, enable this option.
• Use relative paths - enable this option if the XML instance document and the associated schema contain relative

paths. The location of the schema file is inserted in the XML instance document as a relative file path. This practice
allows you, for example, to share these documents with other users, without running into problems caused by different
project locations on physical disk.

The association with an XML Schema is added as an attribute of the root element. The Associate schema action adds
a:

• xsi:schemaLocation attribute, if the root element of the document sets a default namespace with an xmlns
attribute;

• or a xsi:noNamespaceSchemaLocation attribute, if the root element does not set a default namespace.

The association with a DTD is added as a DOCTYPE declaration. The association with a Relax NG , Schematron or
NVDL schema is added as xml-model processing instruction.

Associating a Schema With the Namespace of the Root Element

The namespace of the root element of an XML document can be associated with an XML Schema using an XML catalog.
If there is no xsi:schemaLocation attribute on the root element and the XML document is not matched with a
document type, the namespace of the root element is searched in the XML catalogs set in Preferences.

If the XML catalog contains an uri or rewriteUri or delegateUri element, its schema will be used by the
application to drive the content completion and document validation.

Oxygen XML Editor | Editing Documents | 65

The xml-model Processing Instruction

The xml-model processing instruction associates a schema with the XML document that contains the processing
instruction. It must be added at the beginning of the document, just after the XML prologue. The following code snippet
contains an xml-model processing instruction declaration:

<?xml-model href="../schema.sch" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/schematron" phase="ALL" title="Main
schema"?>

It is available in the content completion assistant, before XML document root element and has the following attributes:

• href - schema file location. Mandatory attribute.
• type - content type of schema. Optional attribute with the following possible values:

• for DTD the recommended value is application/xml-dtd;
• for W3C XML Schema the recommended value is application/xml or can be left unspecified;
• for RELAX NG the recommended value is application/xml or can be left unspecified;
• for RELAX NG - compact syntax the recommended value is application/relax-ng-compact-syntax;
• for Schematron the recommended value is application/xml or can be left unspecified;
• for NVDL the recommended value is application/xml or can be left unspecified.

• schematypens - namespace of schema language of referenced schema with the following possible values:

• for DTD - not specified;
• for W3C XML Schema the recommended value is http://www.w3.org/2001/XMLSchema;
• for RELAX NG the recommended value is http://relaxng.org/ns/structure/1.0;
• for RELAX NG - not specified;
• for Schematron the recommended value is http://purl.oclc.org/dsdl/schematron;
• for NVDL the recommended value is http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0.

• phase - phase name of validation function in Schematron schema. Optional attribute.
• title - title for associated schema optional attribute

Older versions of Oxygen used the oxygen processing instruction with the following attributes:

• RNGSchema - specifies the path to the Relax NG schema associated with the current document;
• type - specifies the type of Relax NG schema. It is used together with the RNGSchema attribute and can have the

value "xml" or "compact";
• NVDLSchema - specifies the path to the NVDL schema associated with the current document;
• SCHSchema - specifies the path to the SCH schema associated with the current document.

Note: Documents that use the oxygen processing instruction are compatible with newer versions of Oxygen.

Learning Document Structure

When working with documents that do not specify a schema, or for which the schema is not known or does not exist,
Oxygen is able to learn and translate the document structure to a DTD. You can choose to save the learned structure to
a file in order to provide a DTD as an initialization source for content completion and document validation. This feature
is also useful for producing DTD's for documents containing personal or custom element types.

When you open a document that is not associated with a schema, Oxygen automatically learns the document structure
and uses it for content completion. To disable this feature you have to uncheck the checkbox Learn on open document
in the user preferences.

Create a DTD from Learned Document Structure

When there is no schema associated with an XML document, Oxygen can learn the document structure by parsing the
document internally. This feature is enabled with the option Learn on open document that is available in the user
preferences.

66 | Oxygen XML Editor | Editing Documents

To create a DTD from the learned structure:

1. Open the XML document for which a DTD will be created.

2. Go to menu Document > XML Document > Learn Structure (Ctrl+Shift+L) .
The Learn Structure action reads the mark-up structure of the current document. The Learn completed message
is displayed in the application's status bar when the action is finished.

3. Go to menu Document > XML Document > Save Structure (Ctrl+Shift+S) . Enter the DTD file path.

4. Press the Save button.

Streamline with Content Completion

Oxygen's intelligent Content Completion feature enables rapid, in-line identification and insertion of structured language
elements, attributes and in some cases their parameter options.

Figure 21: Content Completion Assistant

Oxygen logs the URL of the detected schema in the Information view.

If the Content Completion assistant is enabled in user preferences (the option Use Content Completion), then it is
displayed:

• automatically, after a configurable delay from the last key press of the < character. The delay is configurable in
Preferences as a number of milliseconds from last key press.

• on demand, by pressing CTRL+Space on a partial element or attribute name.

Elements are highlighted in the list using the Up and Down cursor keys. Here are the options to insert the selected
content:

• press the Enter key or the Tab key to insert both the start and end tags.
• press CTRL + Enter. The application inserts both the start and end tags, separated by an empty line. The cursor is

positioned on the empty line on an indented position with regard to the start tag.

Note: When the DTD, XML Schema or RELAX NG schema specifies required child elements for the newly added
element, they will be inserted automatically only if the Add Element Content option (found in Preferences >
Editor > Content Completion options page) is enabled. The Content Completion assistant can also add optional
content and first choice particle, as specified in the DTD or XML Schema or RELAX NG schema, for the element
if these two options are enabled.

After inserting the element, the cursor will be positioned:

• before the > character of the start tag, if the element allows attributes, in order to enable rapid insertion of any of the
attributes supported by the element. Pressing the space bar will display the Content Completion list once again. This
time it will contain the list of allowed attribute names. If the attribute supports a fixed set of parameters, the assistant
list will display the list of valid parameters. If the parameter setting is user-defined and therefore variable, the assistant
will be closed to enable manual insertion. The values of the attributes can be learned from the same elements in the
current document.

• after the > char of the start tag if the element has no attributes.

Oxygen XML Editor | Editing Documents | 67

The content assistant can be started at any time by pressing CTRL+Space Also it can be started with the action Start
Content Completion (default shortcut is CTRL + Slash) which can be configured in Preferences > Menu Shortcut
Keys : category Content Completion, description Start Content Completion. The effect is that the context-sensitive list
of proposals will be shown in the caret's current position if element, attribute or attribute value insertion makes sense.
The Content Completion assistant is displayed:

• anywhere within a tag name or at the beginning of a tag name in an XML document, XML Schema, DTD or Relax
NG (full or compact syntax) schema;

• anywhere within an attribute name or at the beginning of an attribute name in any XML document with an associated
schema;

• within attribute values or at the beginning of attribute values in XML documents where lists of possible values have
been defined for that element in the schema associated with the document

The items that populate the Content Completion assistant are dependent on the element structure specified in the DTD,
XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema associated to the edited document.

The number and type of elements displayed by the assistant is dependent on the cursor's current position in the structured
document. The child elements displayed within a given element are defined by the structure of the specified DTD, XML
Schema, Relax NG (full or compact syntax) schema, or NVDL schema. All elements that can't be child elements of the
current element according to the specified schema are not displayed.

If the schema for the edited document defines attributes of type ID and IDREF the content assistant will display for
IDREF attributes a list of all the ID values already present in the document for an easy insertion of a valid ID value at
the cursor position in the document. This is available for documents that use DTD, XML Schema and Relax NG schema.

Also values of all the xml:id attributes are treated as ID attributes and collected and displayed by the Content Completion
assistant as possible values for anyURI attributes defined in the schema of the edited document. This works only for
XML Schema and Relax NG schemas.

For documents that use an XML Schema or Relax NG schema the content assistant offers proposals for attributes and
elements values that have as type an enumeration of tokens. Also if a default value or a fixed value is defined in the
XML Schema used in validation for an attribute or element then that value is offered in the content completion window.

The operation of the Content Completion assistant is configured by the options available in the options group called
Content Completion.

Set Schema for Content Completion

The DTD, XML Schema, Relax NG, or NVDL schema used to populate the Content Completion assistant is specified
in the following methods, in order of precedence:

• the schema specified explicitly in the document. In this case Oxygen reads the beginning of the document and resolves
the location of the DTD, XML Schema, Relax NG schema, or NVDL schema;

Note:

Limitation: In case of XML Schema, the content completion takes into account only the schema declarations
from the document's root element. If a schema declaration is attached to other element of the XML document,
then it will be ignored.

• the default schema rule declared in the Document Type Association preferences panel which matches the edited
document;

• for XSLT stylesheets, the schema specified in the Oxygen Content Completion options.Oxygen will read the Content
Completion settings when the prolog fails to provide or resolve the location of a DTD, XML Schema, Relax NG or
NVDL schema;

• for XML Schemas, the schema specified in the Oxygen Content Completion options.Oxygen will read the Content
Completion settings and the specified schema will enhance the content completion inside the xs:annotation/xs:appinfo
elements of the XML Schema.

68 | Oxygen XML Editor | Editing Documents

Content Completion in Documents with Relax NG Schemas

Inside the documents that use a Relax NG schema the Content Completion assistant is able to present element values if
such values are specified in the Relax NG schema. Also in Relax NG documents the Content Completion assistant
presents additional values of type ID for an anyURI data type. It presents also pattern names defined in the Relax NG
schema as possible values for pattern references. For example if the schema defines an enumValuesElem element like:

<element name="enumValuesElem">
 <choice>
 <value>value1</value>
 <value>value2</value>
 <value>value3</value>
 </choice>
</element>

In documents based on this schema, the Content Completion assistant offers the following list of values:

Figure 22: Content Completion assistant - element values in Relax NG documents

Schema Annotations

If the document's schema is an XML Schema, Relax NG (full syntax), NVDL or DTD and it contains element, attributes
or attributes values annotations, these will be presented when the content completion window is displayed, only if the
option Show annotations is enabled. Also the annotation is presented in a small tooltip window displayed automatically
when the mouse hovers over an element or attribute annotated in the associated schema of the edited document. The
tooltip window can be invoked at any time using the F2 shortcut.

In an XML Schema the annotations are specified in an <xs:annotation> element like this:

 <xs:annotation>
 <xs:documentation>
 Description of the element.
 </xs:documentation>
 </xs:annotation>

If the current element / attribute in the edited document does not have an annotation in the schema and that schema is
an XML Schema, Oxygen seeks an annotation in the type definition of the element / attribute or, if no annotation is
found there, in the parent type definition of that definition, etc.

When editing a Schematron schema the content completion assistant displays XSLT 1.0 functions and optionally XSLT
2.0 functions in the attributes path, select, context, subject, test depending on the Schematron options that are set in
Preferences. If the Saxon 6.5.5namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9.3.0.5
namespace is declared in the Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content
completion displays also the XSLT Saxon extension functions as in the following figure:

Oxygen XML Editor | Editing Documents | 69

Figure 23: XSLT extension functions in Schematron schemas documents

In a Relax NG schema any element outside the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as
annotation and the text content is displayed in the annotation window together with the content completion window:

For NVDL schemas annotations for the elements / attributes in the referred schemas (XML Schema, RNG, etc) are
presented

Figure 24: Schema annotations displayed at Content Completion

The following HTML tags are recognized inside the text content of an XML Schema annotation: p, br, ul, li. They
are rendered as in an HTML document loaded in a web browser: p begins a new paragraph, br breaks the current line,
ul encloses a list of items, li encloses an item of the list.

For DTD Oxygen defines a custom mechanism for annotation using comments enabled from the option Use DTD
comments as annotations . The text of a comment with the following format will be presented on content completion:

<!--doc:Description of the element. -->

Content Completion Helper Panels

Information about the current element being edited is also available in the Model panel and Attributes panel, located on
the left-hand side of the main window. The Model panel and the Attributes panel combined with the powerful Outline
view provide spatial and insight information on the edited document.

The Model Panel

The Model panel presents the structure of the current edited tag and tag documentation defined as annotation in the
schema of the current document.

70 | Oxygen XML Editor | Editing Documents

Figure 25:The Model View

The Model panel is comprised of:

• An element structure panel.

• An annotation panel.

The Element Structure Panel

The element structure panel shows the structure of the current edited or selected tag in a tree-like format.

The information includes the name, model and attributes the currently edited tag may have. The allowed attributes are
shown along with imposed restrictions, if any.

Figure 26:The Element Structure Panel

The Annotation Panel

The Annotation panel displays the annotations that are present in the used schema for the currently edited or selected
tag. This information can be very useful to developers learning XML because it has small available definitions for each
used tag.

Oxygen XML Editor | Editing Documents | 71

Figure 27:The Annotation panel

The Attributes Panel

The Attributes panel presents all possible attributes of the current element and allows to insert attributes in the current
element or change the value of the attributes already used in the element. The attributes already present in the document
are painted with a bold font. Clicking on the Value column of a table row will start editing the value of the attribute
from the selected row. If the possible values of the attribute are specified as list in the schema associated with the edited
document, the Value column works as a combo box where you can select one of the possible values to be inserted in
the document.

The Attributes table is sortable, three sorting orders being available by clicking on the columns' names. Thus the table's
contents can be sorted in ascending order, in descending order or in a custom order, where the already used attributes
are placed at the beginning of the table as they appear in the element followed by the rest of the allowed elements as
they are declared in the associated schema.

Figure 28:The Attributes Panel

The Elements View

The Elements view presents a list of all defined elements that you can insert at the current caret position according to
the document's schema. Double-clicking any of the listed elements will insert that element in the edited document. All
elements from a sequence are presented but the invalid proposals (which cannot be inserted in the current context) are
grayed-out.

72 | Oxygen XML Editor | Editing Documents

Figure 29:The Elements View

The Entities View

This view displays a list with all entities declared in the current document as well as built-in ones. Double clicking one
of the entities will insert it at the current cursor position. You can also sort entities by name and value.

Figure 30:The Entities View

Code Templates

You can define short names for predefined blocks of code called code templates. The short names are displayed in the
Content Completion window if the word at cursor position is a prefix of such a short name. If there is no prefix at cursor
position, that is the character at the left of cursor is a whitespace, all the code templates are listed.

Oxygen comes with a lot of predefined code templates but you can define your own code templates for any type of
editor. For more details see the example for XSLT editor code templates.

Oxygen XML Editor | Editing Documents | 73

To obtain the template list you can use the Content Completion on request shortcut key (usually CTRL-SPACE) or the
Code Templates on request shortcut key (CTRL-SHIFT-SPACE). The first shortcut displays the code templates in the
same content completion list with elements from the schema of the document. The second shortcut displays only the
code templates and is the default shortcut of the action Document > Content Completion > Show Code Templates
.

The following variables can appear in a code template:

• ${caret} - The caret position after inserting the code template.
• ${selection} - The position of the current selection in the inserted template.
• ${env(ENV_VAR_NAME)} - The value of the environment variable ENV_VAR_NAME.
• ${system(var.name)} - The value of the system variable var.name.
• ${date(yyyy-MM-dd)} - A date in the format: 4 digits for year, 2 digits for month, 2 digits for day.

Validating XML Documents

The W3C XML specification states that a program should not continue to process an XML document if it finds a
validation error. The reason is that XML software should be easy to write, and that all XML documents should be
compatible. With HTML it was possible to create documents with lots of errors (like when you forget an end tag). One
of the main reasons that HTML browsers are so big and incompatible, is that they have their own ways to figure out
what a document should look like when they encounter an HTML error. With XML this should not be possible.

However, when creating an XML document, errors are very easily introduced. When working with large projects or
many files, the probability that errors will occur is even greater. Determining that your project is error-free can be time
consuming and even frustrating. For this reason Oxygen provides functions that enable easy error identification and
rapid error location.

Checking XML Well-Formedness

A Well-Formed XML document is a document that conforms to the XML syntax rules. A Namespace Well-Formed XML
document is a document that is XML Well-Formed and is also namespace-wellformed and namespace-valid.

The XML Syntax rules for Well-Formed XML are:

• All XML elements must have a closing tag.
• XML tags are case sensitive.
• All XML elements must be properly nested.
• All XML documents must have a root element.
• Attribute values must always be quoted.
• With XML, white space is preserved.

The namespace-wellformed rules are:

• All element and attribute names contain either zero or one colon.
• No entity names, processing instruction targets, or notation names contain any colons.

The namespace-valid rules are:

• The prefix xml is by definition bound to the namespace name http://www.w3.org/XML/1998/namespace. It MAY,
but need not, be declared, and MUST NOT be undeclared or bound to any other namespace name. Other prefixes
MUST NOT be bound to this namespace name.

• The prefix xmlns is used only to declare namespace bindings and is by definition bound to the namespace name
http://www.w3.org/2000/xmlns/. It MUST NOT be declared or undeclared. Other prefixes MUST NOT be bound to
this namespace name.

• All other prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved. This means
that users SHOULD NOT use them except as defined by later specifications and processors MUST NOT treat them
as fatal errors.

74 | Oxygen XML Editor | Editing Documents

• The namespace prefix, unless it is xml or xmlns, MUST have been declared in a namespace declaration attribute in
either the start-tag of the element where the prefix is used or in an ancestor element (i.e. an element in whose content
the prefixed markup occurs). Furthermore, the attribute value in the innermost such declaration MUST NOT be an
empty string.

If you select menu Document > Validate > Check Well-Formedness(Ctrl+Shift+W) or click the toolbar button

 Check Well-FormednessOxygen checks if your document is Namespace Well-Formed XML. If any error is found
the result is returned to the message panel. Each error is one record in the result list and is accompanied by an error
message. Clicking the record will open the document containing the error and highlight its approximate location.

A not Well-Formed XML Document

<root><tag></root>

When Check Well-Formedness is performed the following error is raised:

The element type "tag" must be terminated by the matching end-tag
 "</tag>"

To resolve the error, click in the result list record which will locate and highlight the errors
approximate position. Identify which start tag is missing an end tag and insert </tag>.

A not namespace-wellformed document

<x::y></x::y>

When Check document form is performed the following error is raised:

Element or attribute do not match QName production:
QName::=(NCName':')?NCName.

A not namespace-valid document

<x:y></x:y>

When Check document form is performed the following error is raised:

The prefix "x" for element "x:y" is not bound.

Also the files contained in the current project and selected with the mouse in the Project view can be checked for

well-formedness with one action available on the popup menu of the Project view : Check Well-Formedness.

Validating XML Documents Against a Schema

A Valid XML document is a Well Formed XML document, which also conforms to the rules of a schema which defines
the legal elements of an XML document. The schema type can be: XML Schema, Relax NG (full or compact syntax),
Schematron, Document Type Definition (DTD), or Namespace-based Validation Dispatching Language (NVDL).

The purpose of the schema is to define the legal building blocks of an XML document. It defines the document structure
with a list of legal elements.

The Oxygen Validate document function ensures that your document is compliant with the rules defined by an
associated DTD, XML Schema, Relax NG, or Schematron schema. XML Schema or Relax NG Schema can embed
Schematron rules. For Schematron validations, it is possible to select the validation phase.

Marking Validation Errors and Warnings

A line with a validation error or warning will be marked in the editor panel by underlining the error region with a red
color. Also a red sign will mark the position in the document of that line on the right side ruler of the editor panel. The
same will happen for a validation warning, only the color will be yellow instead of red.

Oxygen XML Editor | Editing Documents | 75

The ruler on the right side of the document is designed to display the errors and warnings found during the validation
process and also to help the user to locate them more easily. The ruler contains the following areas:

• Top area containing a success validation indicator that will turn green in case the validation succeeded or red otherwise.

A more detailed report of the errors is displayed in the tooltip of the validation indicator. In case there are errors,
only the first three of them will be presented in the tooltip.

• Middle area where the error markers are depicted in red (with a darker color tone for the current selected one). The
number of markers shown can be limited by modifying the setting Options > Preferences > Editor > Document
checking > Maximum number of problems reported per document .

Clicking on a marker will highlight the corresponding text area in the editor. The error message is displayed both in
the tool tip and in the error area on the bottom of the editor panel.

The Document checking user preferences are easily accessible from the button displayed at the beginning of the
error message on the bottom of the editor panel.

• Bottom area containing two navigation arrows that will go to the next or to the previous error and a button for clearing
all the error markers from the ruler. The same actions can be triggered from menu Document > Automatic validation
> Next Error (Ctrl + .) and Document > Automatic validation > Previous Error (Ctrl + ,) .

The validation status area is the line at the bottom of the editor panel that presents the message of the current validation

error selected on the right side ruler. Clicking on opens the document checking page in Oxygen user preferences.

Status messages from every validation action are logged into the Information view.

Validation Example - A DocBook Validation Error

In the following DocBook 4 document the content of the listitem element does not match the rules of the DocBook
4 schema, that is docbookx.dtd.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"
 "http://www.docbook.org/xml/4.4/docbookx.dtd">
<article>
 <title>Article Title</title>
 <sect1>
 <title>Section1 Title</title>
 <itemizedlist>
 <listitem>
 <link>a link here</link>
 </listitem>
 </itemizedlist>
 </sect1>
</article>

The Validate Document action will return the following error:

Unexpected element "link". The content of the parent element type must match
"(calloutlist|glosslist|bibliolist|itemizedlist|orderedlist|segmentedlist|simplelist
|variablelist|caution|important|note|tip|warning|literallayout|programlisting
|programlistingco|screen|screenco|screenshot|synopsis|cmdsynopsis|funcsynopsis
|classsynopsis|fieldsynopsis|constructorsynopsis|destructorsynopsis|methodsynopsis
|formalpara|para|simpara|address|blockquote|graphic|graphicco|mediaobject|mediaobjectco
|informalequation|informalexample|informalfigure|informaltable|equation|example|figure
|table|msgset|procedure|sidebar|qandaset|task|anchor|bridgehead|remark|highlights
|abstract|authorblurb|epigraph|indexterm|beginpage)+".

This error message is a little more difficult to understand, so understanding of the syntax or processing rules for the
DocBook XML DTD's listitem element is recommended. However, the error message does give us a clue as to the
source of the problem, indicating that “The content of element type c must match”.

Luckily most standards based DTD's, XML Schema's and Relax NG schemas are supplied with reference documentation.
This enables us to lookup the element and read about it. In this case you should learn about the child elements of

76 | Oxygen XML Editor | Editing Documents

listitem and their nesting rules. Once you have correctly inserted the required child element and nested it in accordance
with the XML rules, the document will become valid on the next validation test.

Caching the Schema Used for Validation

If you don't change the active editor and you don't switch to other application, the schema associated to the current
document is parsed and cached by the first Validate Document action and is reused by the next actions without re-parsing
it. This increases the speed of the validate actions if the schema is large or is located on a remote server on the Web. To

reset the cache and re-parse the schema you have to use the Reset Cache and Validate action. This action will
also re-parse the catalogs and reset the schema used for content completion.

Automatic Validation

Oxygen can be configured to mark validation errors in the document as you are editing. If you enable the Automatic
validation option any validation errors and warnings will be highlighted automatically in the editor panel. The automatic
validation starts parsing the document and marking the errors after a configurable delay from the last key typed. Errors
are highlighted with underline markers in the main editor panel and small rectangles on the right side ruler of the editor
panel, in the same way as for manual validation invoked by the user.

Figure 31: Automatic Validation on the Edited Document

If the error message is long and it is not displayed completely in the error line at the bottom of the editing area,
double-clicking on the error icon at the left of the error line or on the error line displays an information dialog with the
full error message. The arrow buttons of the dialog enable the navigation to other errors issued by the Automatic
Validation feature.

Custom Validators

If you need to validate the edited document with other validation engine than the built-in one you have the possibility
to configure external validators in the Oxygen user preferences. After such a custom validator is properly configured it
can be applied on the current document with just one click on the Custom Validation Engines toolbar. The document
is validated against the schema declared in the document.

Some validators are configured by default but they are third party processors which do not support the output message
format of Oxygen for linked messages:

• LIBXML - Included in Oxygen (Windows edition only). It is associated to XML Editor. It is able to validate the
edited document against XML Schema, Relax NG schema full syntax, internal DTD (included in the XML document)
or a custom schema type. XML catalogs support (the --catalogs parameter) and XInclude processing (--xinclude)
are enabled by default in the preconfigured LIBXML validator. The --postvalid parameter is also set by default which
allows LIBXML to validate correctly the main document even if the XInclude fragments contain IDREFS to ID's
located in other fragments.

For validation against an external DTD specified by URI in the XML document, the parameter --dtdvalid ${ds} must
be added manually to the DTD validation command line. ${ds} represents the detected DTD declaration in the XML
document.

Oxygen XML Editor | Editing Documents | 77

Caution: Known problem: file paths containing spaces are not handled correctly in the LIBXML processor.
For example the built-in XML catalog files of the predefined document types (DocBook, TEI, DITA, etc) are
not handled by LIBXML if Oxygen is installed in the default location on Windows (C:\Program Files) because
the built-in XML catalog files are stored in the frameworks subfolder of the installation folder which in this
case contains at least one space character in the file path.

Attention:

On Mac OS X if the full path to the LIBXML executable file is not specified in the Executable path text field,
some errors may occur on validation against a W3C XML Schema like:

Unimplemented block at ... xmlschema.c

These errors can be avoided by specifying the full path to the LIBXML executable file.

• Saxon SA - Included in Oxygen. It is associated to XML Editor and XSD Editor. It is able to validate XML Schema
schemas and XML documents against XML Schema schemas. The validation is done according to the W3C XML
Schema 1.0 specification or according to the W3C XML Schema 1.1 specification. This can be configured in
Preferences.

• MSXML 4.0 - Included in Oxygen (Windows edition only). It is associated to XML Editor, XSD Editor and XSL
Editor. It is able to validate the edited document against XML Schema, internal DTD (included in the XML document),
external DTD or a custom schema type.

• MSXML.NET - Included in Oxygen (Windows edition only). It is associated to XML Editor, XSD Editor and XSL
Editor. It is able to validate the edited document against XML Schema, internal DTD (included in the XML document),
external DTD or a custom schema type.

• XSV - Not included in Oxygen. Windows and Linux distributions of XSV can be downloaded from
http://www.cogsci.ed.ac.uk/~ht/xsv-status.html. The executable path is already configured in Oxygen for the
[Oxygen-install-folder]/xsv installation folder. If it is installed in a different folder the predefined
executable path must be corrected in Preferences. It is associated to XML Editor and XSD Editor. It is able to validate
the edited document against XML Schema or a custom schema type.

• SQC (Schema Quality Checker from IBM) - Not included in Oxygen. It can be downloaded from here (it comes
as a .zip file, at the time of this writing SQC2.2.1.zip is about 3 megabytes). The executable path and working
directory are already configured for the SQC installation directory [Oxygen-install-folder]/sqc. If it is
installed in a different folder the predefined executable path and working directory must be corrected in the Preferences
page. It is associated to XSD Editor.

A custom validator cannot be applied on files loaded through an Oxygen custom protocol plugin developed independently
and added to Oxygen after installation.

Linked Output Messages of an External Engine

Validation engines display messages in an output view at the bottom of the Oxygen window. If such an output message
(warning, error, fatal error, etc) spans between three to five lines of text and has the following format then the message
is linked to a location in the validated document so that a click on the message in the output view highlights the location
of the message in an editor panel containing the file referred in the message. This behavior is similar to the linked
messages generated by the default built-in validator. The format for linked messages is:

• Type:[F|E|W] (the string Type: followed by a letter for the type of the message: fatal error, error, warning) - this line
is optional in a linked message.

• SystemID: a system ID of a file (the string SystemID: followed by the system ID of the file that will be opened for
highlighting when the message is clicked in the output message - usually the validated file, the schema file or an
included file).

• Line: a line number (the string Line: followed by the number of the line that will be highlighted).
• Column: a column number (the string Column: followed by the number of the column where the highlight will start

on the highlighted line) - this line is optional in a linked message.
• Description: message content (the string Description: followed by the content of the message that will be displayed

in the output view).

78 | Oxygen XML Editor | Editing Documents

http://www.cogsci.ed.ac.uk/~ht/xsv-status.html
http://www.alphaworks.ibm.com/tech/xmlsqc/download

Validation Scenario

A complex XML document is usually split in smaller interrelated modules which do not make much sense individually
and which cannot be validated in isolation due to interdependencies with the other modules. A mechanism is needed to
set the main module of the document which in fact must be validated when an imported module needs to be checked
for errors.

A typical example is the chunking DocBook XSL stylesheet which has chunk.xsl as the main module and param.xsl,
chunk-common.xsl and chunk-code.xsl as imported modules. param.xsl only defines XSLT parameters.
The module chunk-common.xsl defines a XSLT template with the name chunk which is called by
chunk-code.xsl. The parameters defined in param.xsl are used in the other modules without being redefined.

Validation of chunk-code.xsl as an individual XSLT stylesheet issues a lot of misleading errors referring to
parameters and templates used but undefined which are only caused by ignoring the context in which this module is
used in real XSLT transformations and in which it should be validated. To properly validate such a module, a validation
scenario must be defined to set the main module of the stylesheet and also the validation engine used to find the errors.
Usually this is the engine which applies the transformation in order to detect in validation the same errors that would
be issued by transformation.

A second benefit of a validation scenario is that the stylesheet can be validated with several engines to make sure that
it can be used in different environments with the same results. For example an XSLT stylesheet needs to be applied with
Saxon 6.5, Xalan and MSXML 4.0 in different production systems.

Other examples of documents which can benefit of a validation scenario are:

• A complex XQuery with a main module which imports modules developed independently but validated in the context
of the main module of the query. In an XQuery validation scenario the default validator of Oxygen (Saxon 9) or any
connection to a database that supports validation (Berkeley DB XML Database, eXist XML Database, Software AG
Tamino, Documentum xDb (X-Hive/DB) 10 XML Database) can be set as validation engine.

• An XML document in which the master file includes smaller fragment files using XML entity references.

How to Create a Validation Scenario

Follow these steps for creating a validation scenario:

1. Open the Configure Validation Scenario dialog from menu Document > Validate > Configure Validation
Scenario or from the Validate toolbar.
The following dialog is displayed. It contains the following types of scenarios:

• Default validation scenario validates the input using Oxygen default validation options that apply to the type of
the current document;

• Predefined scenarios are organized in categories depending on the type of file they apply to and can be easily
identified by a yellow key icon that marks them as read-only. If the predefined scenario is the framework's default
scenario its name is written in bold font. If you try to edit one of these scenarios, Oxygen creates a customizable
duplicate;

• User defined scenarios are organized under a single category, but you can use the drop-down option box to filter
them by the type of file they validate.

Oxygen XML Editor | Editing Documents | 79

Figure 32: Configure Validation Scenario

2. Press the New button to add a new scenario.

3. Press the Add button to add a new validation unit with default settings.
The dialog that lists all validation units of the scenario is opened.

Figure 33: Add / Edit a Validation Unit

The table holds the following information:

• URL of the file to validate - The URL of the main module which includes the current module. It is also the entry
module of the validation process when the current one is validated.

• File type - The type of the document validated in the current validation unit. Oxygen automatically selects the
file type depending on the value of the URL of the file to validate field.

• Validation engine - One of the engines available in Oxygen for validation of the type of document to which the
current module belongs. Default engine is the default setting and means that the validation is done by the default
engine set in Preferences pages for the type of the current document (XML document, XML Schema, XSLT
stylesheet, XQuery file, etc) instead of a validation scenario.

• Automatic validation - If this option is checked, then the validation operation defined by this row of the table
is applied also by the automatic validation feature. If the Automatic validation feature is disabled in Preferences
then this option does not take effect as the Preference setting has higher priority.

• Schema - Active when you set the File type to XML Document.

80 | Oxygen XML Editor | Editing Documents

• Settings - Contains an action that allows you to set a schema, when validating XML documents, or a list of
extensions when validating XSL or XQuery documents.

4. Edit the URL of the main validation module.

Specify the URL of the main module:

• browsing for a local, remote or archived file;
• using an editor variable or a custom editor variable, available in the following pop-up menu, opened after pressing

the button:

Figure 34: Insert an Editor Variable

5. Select the type of the validated document.

Note that it determines the list of possible validation engines.

6. Select the validation engine.

7. Select the Automatic validation option if you want to validate the current unit when automatic validation feature
is turned on.

8. Choose what schema is used during validation: the one detected after parsing the document or a custom one.

Sharing Validation Scenarios

Sometimes a group of users want to apply the same validation settings like the main module where the validation starts,
the validation engine, the schema, extensions of the engine. In order to apply the same settings consistently it is preferable
to share the validation scenario with the settings by storing it at project level and sharing the project file using a source
versioning system (CVS, SVN, Source Safe, etc).

You specify that you want to store a scenario at project level by selecting the option Project Scenarios instead of the
default option Global Scenarios.

Oxygen XML Editor | Editing Documents | 81

Figure 35: Configure Validation Scenario

The option Global Scenarios ensures that the scenarios are saved in the user home directory. After changing the selection
to Project Scenarios the scenario list will be stored in the project file. If your project is saved on a source versioning
system then your team can use the scenarios you defined.

Validation Actions in the User Interface

Use one of the actions for validating the current document:

• Select menu Document > Validate > Validate Document (Ctrl+Shift+V) or click the button Validate
Document available in the Validate toolbar. This action returns an error list in the message panel. Mark-up of
current document is checked to conform with the specified DTD, XML Schema or Relax NG schema rules. It caches
the schema and the next execution of the action uses the cached schema.

• Select menu Document > Validate > Reset Cache and Validate or click the button Reset Cache and Validate
available in the Validate toolbar to reset the cache with the schema and validate the document. This action also
parses again the XML catalogs and reset the schema used for content completion. It returns an error list in the message
panel. Mark-up of current document is checked to conform with the specified DTD, XML Schema or Relax NG
schema rules.

• Select menu Document > Validate > Validate with (Ctrl+Shift+H) or click the button Validate with
available in the Validate toolbar. This action can be used to validate the current document using a selectable schema
(XML Schema, DTD, Relax NG, NVDL, Schematron schema). It returns an error list in the message panel. Mark-up
of current document is checked to conform with the specified schema rules. The Validate with action does not work
for files loaded through an Oxygen custom protocol plugin developed independently and added to Oxygen after
installation.

• Select menu Document > Schema > Open External Schema or click the button Open External Schema
available in the Document toolbar to open the schema used for validating the current document in a new editor.

• Select submenu Validate Selection > Validate in the contextual menu of Project panel, to validate all selected
files with their declared schemas.

• Select submenu Validate Selection with Schema ... > Validate With ... of the contextual menu of Project panel,
to select a schema and validate all selected files with that schema.

• Select the submenu Validate > Configure Validation Scenario ... of the contextual menu of Project panel, to
configure and apply a validation scenario in one action to all the selected files in the Project panel, .

82 | Oxygen XML Editor | Editing Documents

The button Validation options available on the Validate toolbar allows quick access to the validation options of
the built-in validator in the Oxygen user preferences page.

Also you can select several files in the Project panel and validate them with one click by selecting the action Validate
selection, the action Validate selection with Schema ... or the action Configure Validation Scenario ... available from
the contextual menu of the Project view.

If there are too many validation errors and the validation process takes too long, you can limit the maximum number of
reported errors in Preferences.

References to XML Schema Specification

If validation is done against XML Schema Oxygen indicates a specification reference relevant for each validation error.
The error messages contain an Info field that when clicked will open the browser on the XML Schema Part 1:Structures
specification at exactly the point where the error is described. This allows you to understand the reason for that error.

Figure 36: Link to Specification for XML Schema Errors

Resolving References to Remote Schemas with an XML Catalog

When a reference to a remote schema must be used in the validated XML document for interoperability purposes, but
a local copy of the schema should be actually used for validation for performance reasons, the reference can be resolved
to the local copy of the schema with an XML catalog. For example, if the XML document contains a reference to a
remote schema docbook.rng like this:

<?oxygen RNGSchema="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
 type="xml"?>

it can be resolved to a local copy with a catalog entry:

<system systemId="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
 uri="rng/docbook.rng"/>

An XML catalog can be used also to map a W3C XML Schema specified with an URN in the xsi:schemaLocation
attribute of an XML document to a local copy of the schema. For example, if the XML document specifies the schema
with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

the URN can be resolved to a local schema file with a catalog entry like:

<system systemId="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

Document Navigation

This section explains various methods for navigating the edited XML document.

Oxygen XML Editor | Editing Documents | 83

Quick Document Browsing Using Bookmarks

The bookmark concept is the same as in other IDEs: you can mark a position in an edited document so that you can
return after further editing and browsing through one or more documents opened at the same time. Up to nine distinct
bookmarks can be placed in any opened document. Configurable shortcut key strokes are available to place bookmarks
and to return to any of the marked positions.

Figure 37: Editor Bookmarks

The key strokes can be configured from Options > Preferences ->Menu shortcut keys.

A bookmark can be placed from Edit > Bookmarks ->Create, from (F9) > Edit > Bookmarks > Bookmarks Quick

Creation (F9) , by clicking the toolbar button Bookmarks Quick Creation and by clicking in the margin of the
editing area, to the left of the line number area, reserved for bookmarks.

Quickly switching to a position marked by a bookmark can be done by Edit > Bookmarks ->Go to.

Two contextual menu actions are available:

• Remove - Removes the current bookmark;
• Remove all - Removes all bookmarks set in the document.

Folding of the XML Elements

An XML document is organized as a tree of elements. When working on a large document you can collapse some
elements leaving in the focus only the ones you need to edit. Expanding and collapsing works on individual elements:
expanding an element leaves the child elements unchanged.

Figure 38: Folding of the XML Elements

An unique feature of Oxygen is the fact that the folds are persistent: the next time you will open the document the folds
are restored to the last state so you won't have to collapse the uninteresting parts again.

To toggle the folded state of an element click on the special mark displayed in the left part of the document editor next
to the start tag of that element or click on the action Toggle fold available from the contextual menu or from the menu
Document > Folding > Toggle fold The element extent is marked with a grey line displayed in the left part of the
edited document. The grey line always covers the lines of text comprised between the start tag and end tag of the element
where the cursor is positioned.

84 | Oxygen XML Editor | Editing Documents

Other menu actions related to folding of XML elements are available from the contextual menu of the folding stripe of
the current editor:

• Close Other Folds (Ctrl+NumPad+/) - Folds all the elements except the current element.
• Collapse Child Folds (Ctrl+Decimal) - Folds the elements indented with one level inside the current element.
• Expand Child Folds (Ctrl+Equals)- Unfolds all child elements of the currently selected element.
• Expand All (Ctrl+NumPad+*) - Unfolds all elements in the current document.
• Toggle Fold (Alt+Shift+Y) - Toggles the state of the current fold.

Outline View

The Outline view offers the following functionality:

• XML Document Overview on page 85
• Outline Specific Actions on page 86
• Modification Follow-up on page 86
• Document Structure Change on page 86
• Document Tag Selection on page 87

Figure 39:The Outline View

XML Document Overview

The Outline view displays a general tag overview of the current edited XML Document. It also shows the correct
hierarchical dependencies between the tag elements. That makes easier for the user to be aware of the document structure
and the way tags are nested. It allows fast navigation of the document by displaying the start of the content of the child
elements in the node of the parent element thus allowing to see quickly the content of an element without expanding it
in the Outline tree. It also allows the user to insert or delete nodes using pop-up menu actions.

The Expand more and Collapse all items of the popup menu available on the Outline tree enlarge or reduce the set of
nodes of the edited document currently visible in the view. The tree expansion action is a faster alternative to mouse
clicks on the plus signs of the tree when one wants to access quickly a node deeply nested in the hierarchy of document
nodes. When a large number of nodes become expanded and the document structure is not clear any more, the collapsing
action clears the view quickly by reducing the depth of the expanded nodes to only one child of the currently selected
node.

Document errors (such as an element inserted in an invalid position, or a wrong attribute name, or a missing required
attribute value) are highlighted in the Outline tree. An easy-to-spot exclamation mark sign is used as element icon, a

Oxygen XML Editor | Editing Documents | 85

red underline decorates the element name and value and a tooltip provides more information about the nature of the
error.

Outline Specific Actions

The following actions are available in the Settings menu on the Outline view's toolbar:

• Selection update on caret move - Allows a synchronization between Outline view and schema diagram. The
selected view from the diagram will be also selected in the Outline view.

• Flat presentation mode of the filtered results - when active, the application flattens the filtered result elements
to a single level.

• Show comments and processing instructions - show/hide comments and processing instructions in the Outline
view.

• Show text - show/hide additional text content for the displayed elements.
• Show attributes - show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel.
• Configure displayed attributes - displays the XML Structured Outline preferences page.

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Modification Follow-up

When editing, the Outline view dynamically follows the modifications introduced by the user, showing in the middle
of the panel the node which is currently being modified. This gives the user better insight on location where in the
document one is positioned and how the structure of the document is affected by one's modifications.

Document Structure Change

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view in
drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another one in the same panel then the dragged
element will be moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will
be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or
lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the
target element.

• If you hold down the (Ctrl) key after dragging, there will be performed a copy operation instead of a move one.

The drag and drop action in the Outline view can be disabled and enabled from the Preferences dialog.

Tip: You can select and drag multiple nodes in the Author Outline tree.

The Popup Menu of the Outline Tree

The Append Child, Insert Before and Insert After submenus of the outline tree popup menu allow to quickly insert new
tags in the document at the place of the element currently selected in the Outline tree. The Append Child submenu lists
the names of all the elements which are allowed by the schema associated with the current document as child of the
current element. The Insert Before and Insert After submenus of the Outline tree popup menu list the elements which
are allowed by the schema associated with the current document as siblings of the current element inserted immediately
before respectively after the current element.

Edit attributes for the selected node. A dialog is presented allowing the user to see and edit the attributes of the selected
node.

The Toggle comment item of the outline tree popup menu is the same item as in the editor popup menu with the same
name. It encloses the currently selected element of the outline tree in an XML comment, if the element is not commented,
or uncomments it, if it is commented.

86 | Oxygen XML Editor | Editing Documents

The Cut, Copy and Delete items of the popup menu execute the same actions as the Edit menu items with the same name
on the elements currently selected in the outline tree.

Document Tag Selection

The Outline view can also be used to search for a specific tag's location and contents in the edited document. Intuitively,
by selecting with the left mouse button the desired tag in the Outline view, the document is scrolled to the position of
the selected tag. Moreover, the tag's contents are selected in the document, making it easy to notice the part of the
document contained by that specific tag and furthermore to easily copy and paste the tag's contents in other parts of the
document or in other documents.

You can double click the tag in the Outliner tree to move focus to the editor.

You can also use key search to look for a particular tag name in the Outline tree.

Navigation Buttons

These buttons are available in the editor's main toolbar:

• Go to Last Modification : Moves the cursor to the last modification in any opened document.
• Back :Moves the cursor to the previous position.
• Forward :Moves the cursor to the next position. Enabled after at least one press of the Back button.

Using the Go To Dialog

The Go to dialog available from Find > Go to ... (Ctrl+L (Cmd+L on Mac)) enables you to go to a precise location
in the current edited file specified by line and column or by an offset relative to the beginning of the file.

Figure 40: Go to Dialog

Complete the dialog as follows:

• Line - destination line in the current document;
• Column - destination column in the current document;
• Offset - destination offset relative to the beginning of document.

Grouping Documents in XML Projects

This section explains how to create and work with projects in the Oxygen application.

Large Documents

Let's consider the case of documenting a large project. It is likely to be several people involved. The resulting document
can be few megabytes in size. How to deal with this amount of data in such a way the work parallelism would not be
affected ?

Fortunately, XML provides two solutions for this: DTD entities and XInclude. It can be created a master document,
with references to the other document parts, containing the document sections. The users can edit individually the
sections, then apply an XSLT stylesheet over the master and obtain the result files, let say PDF or HTML.

Oxygen XML Editor | Editing Documents | 87

Including Document Parts with DTD Entities

There are two conditions for including a part using DTD entities:

• The master document should declare the DTD to be used, while the external entities should declare the XML sections
to be referred;

• The document containing the section must not define again the DTD.

A master document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "../xml/docbookx.dtd" [
<!ENTITY testing SYSTEM "testing.xml" >]
>
<book>
<chapter> ...

The referred document looks like this:

<section> ... here comes the section content ... </section>

Note:

The indicated DTD and the element names (section, chapter) are used here only for illustrating the inclusion
mechanism. You can use any DTD and element names you need.

At a certain point in the master document there can be inserted the section testing.xml entity:

... &testing; ...

When splitting a large document and including the separate parts in the master file using external entities, only the master
file will contain the Document Type Definition (the DTD) or other type of schema. The included sections can't define
again the schema because the main document will not be valid. If you want to validate the parts separately you have to
use XInclude for assembling the parts together with the master file.

Including Document Parts with XInclude

XInclude is a standard for assembling XML instances into another XML document through inclusion. It enables larger
documents to be dynamically created from smaller XML documents without having to physically duplicate the content
of the smaller files in the main file. XInclude is targeted as the replacement for External Entities. The advantage of using
XInclude is that, unlike the entities method, each of the assembled documents is permitted to contain a Document Type
Declaration (DOCTYPE Decl.). This means that each file is a valid XML instance and can be independently validated.
It also means that the main document to which smaller instances are included can be validated without having to remove
or comment the DOCTYPE Decl. as is the case with External Entities. This makes XInclude a more convenient and
effective method for managing XML instances that need to be stand-alone documents and part of a much larger project.

The main application for XInclude is in the document-oriented content frameworks such as manuals and Web pages.
Employing XInclude enables authors and content managers to manage content in a modular fashion that is akin to Object
Oriented methods used in languages such as Java, C++ or C#.

The advantages of modular documentation include: reusable content units, smaller file units that are easier to be edited,
better version control and distributed authoring.

Include a chapter in an article using XInclude

Create a chapter file and an article file in the samples folder of the Oxygen install folder.

Chapter file (introduction.xml) looks like this:

<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/docbookx.dtd">
<chapter>

88 | Oxygen XML Editor | Editing Documents

 <title>Getting started</title>
 <section>
 <title>Section title</title>
 <para>Para text</para>
 </section>
</chapter>

Main article file looks like this:

<?xml version="1.0"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.docbook.org/xml/4.3/docbookx.dtd"
[<!ENTITY % xinclude SYSTEM
"../frameworks/docbook/dtd/xinclude.mod">
%xinclude;
]>
<article>
 <title>Install guide</title>
 <para>This is the install guide.</para>
 <xi:include xmlns:xi="http://www.w3.org/2001/XInclude"
 href="introduction.dita">
 <xi:fallback>
 <para>
 <emphasis>FIXME: MISSING XINCLUDE CONTENT</emphasis>
 </para>
 </xi:fallback>
 </xi:include>
</article>

In this example the following is of note:

• the DOCTYPE Decl. defines an entity that references a file containing the information to add the xi namespace to
certain elements defined by the DocBook DTD;

• the href attribute of the xi:include element specifies that the introduction.xml file will replace the xi:include
element when the document is parsed;

• if the introduction.xml file cannot be found, the parser will use the value of the xi:fallback element - a FIXME
message.

If you want to include only a fragment of a file in the master file, the fragment must be contained in a tag having an
xml:id attribute and you must use an XPointer expression pointing to the xml:id value. For example if the master file is:

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="test.rng" type="xml"?>
<test>
 <xi:include href="a.xml" xpointer="a1"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
</test>

and the a.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<test>
 <a xml:id="a1">test
</test>

after resolving the XPointer reference the document is:

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="test.rng" type="xml"?>
<test>
 <a xml:id="a1" xml:base="a.xml">test
</test>

Oxygen XML Editor | Editing Documents | 89

The XInclude support in Oxygen is turned on by default. You can toggle it by going to the entry Enable XInclude
processing in the menu Options > Preferences ... > XML > XML Parser . When enabled, Oxygen will be able to
validate and transform documents comprised of parts added using XInclude.

Using the Project View

The Project view is designed to assist the user in organizing and managing related files grouped in the same XML project.
The actions available on the context menu and toolbar associated to this panel, enable the creation of XML projects and
shortcuts to various operations on the project documents.

Figure 41:The Project View

The default layout initialized by the Window > Reset Layout menu item positions the Project view on the left side
of the Oxygen window, above the Outline view. A closed view can be quickly reopened at any time with the Project
> Show Project View menu action.

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down list that holds
all recently used projects and project management actions:

• Open Project ... (Ctrl+F2) - Opens an existing project. An alternate way to open a project is to drop an Oxygen
XPR project file from the file explorer in the Project panel.

• New Project - Creates a new, empty project.

The following actions are grouped in the upper right corner:

• Collapse All - Collapses all project tree folders. You can also collapse/expand a project tree folder if you select
it and press the Enter key.

• Link with editor - When selected, the project tree highlights the currently edited file.
• Settings - A submenu containing the following actions:

• Filters - Allows you to filter the information displayed in the Project view. Click the toolbar button to set
filter patterns for the files you want to show or hide. Also, you can set filter patterns for the linked directories
that are hidden.

• Show Full Path - When selected, linked files and folders are presented with a full file path.

The files are organized in an XML project usually as a collection of folders. There are two types of folders:

• Logical folders - marked with a blue icon on Windows and Unix/Linux () and a magenta icon on Mac OS X ()
and do not have any connection with folders on the disk. This folder type has no correspondent on the physical disk,
being used as containers for related items. Creating and deleting them in Oxygen does not affect the file system on
disk.

• Linked folders - marked with a yellow icon on Windows and a blue icon on Mac OS X which is exactly the folder
icon used by the Windows Explorer and Mac OS Finder applications. They content mirror a real folder existing in
the file system on disk. They can be

90 | Oxygen XML Editor | Editing Documents

Creating New Project Items

A series of actions are available in the contextual menu:

• New > File - Creates a new file and adds it to the project structure.
• Add Folder - Adds a link to a physical folder, whose name and content mirror a real folder existing in the file

system on disk. The icon of this action is different on Mac OS X () as the standard folder icon on Mac OS X is
not the usual one from Windows and Unix/Linux systems.

• New > Logical Folder - Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS

X -).
• New > Logical Folders from File System - Replicates the structure of physical folders on disk. The newly created

logical folder contains the file structure of the folder it points to.
• New > Logical Folders from Web - Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV,

as a structure of logical folders. The newly created logical folders contain the file structure of the folder it points to.
• New > Project - Creates a new project, after closing the current project and all open files.

Add Content to a Logical Folder

You can add content to a logical folder using one of the actions available in the contextual menu:

• Add Folder - Adds a link to a physical folder, whose name and content mirror a real folder existing in the file

system on disk. The icon of this action is different on Mac OS X () as the standard folder icon on Mac OS X is
not the usual one from Windows and Unix/Linux systems.

• Add Files - Adds links to files on disk.
• Add Edited File - Adds a link to the current edited file to the project.

Managing Project Content

You can create linked folders by dragging and dropping a folder from the Windows Explorer / Mac OS X Finder over
the project tree or by selecting in the contextual menu Add Folder . Also the structure of the project tree can be changed
with drag and drop operations on the files and folders of the tree.

When adding files to a project, the default target is the project root. To change a target, select a new folder. Files may
have multiple instances within the folder system, but cannot appear twice within the same folder.

To remove one or more files or folders, select them in the project tree and press the Delete key or run the contextual
menu action Remove from Project. To remove a file or folder both from project and disk, run the contextual menu
action Remove from Disk (Shift+Delete) which is available for both logic and linked files.

Caution: In most cases this action is irreversible, deleting the file permanently. Under particular circumstances
(if you are running a Windows installation of Oxygen and the Recycle Bin is active) the file is moved to Recycle
Bin.

To create a file inside a linked folder, choose the New > File action from the contextual menu.

There are three ways yo rename an item in the Project view: To begin editing an item name in the Project view, select
the item and do one of the following:

• invoke the Rename action from the contextual menu;
• press F2;
• click the selected item.

To finish editing the item name press Enter.

Note:

• Files or folders are renamed both in the Oxygen Project view and on the local
disk;

Oxygen XML Editor | Editing Documents | 91

• The Rename action is also available on logic files.

If a project folder contains many documents, a certain document can be quickly located in the project tree if the user
selects with the mouse the folder containing the desired document (or some arbitrary document in this folder) and types
the first characters of the document name. The desired document is automatically selected as soon as the typed characters
uniquely identify its name in the folder. The selected document can be opened by pressing the Enter key, by
double-clicking it and with one of the Open actions from the pop-up menu. To open a file of known type with other
editor than the default one, use the Open with action.

The project file is saved automatically on disk, every time the content of the Project view is modified by actions like
adding or removing files or folders and drag and drop to/from the Project view.

Validate Files

The currently selected files in the Project view can be validated against a schema of type Schematron, XML Schema,
Relax NG, NVDL, or a combination of the later with Schematron with one of the following contextual menu actions:

• Check Well-Formedness - checks if the selected file or files are well-formed.
• Validate - validates the selected file or files against their associated schema. EPUB files make an exception,

because this action triggers a Validate and Check for Completeness operation.
• Validate with Schema... - validates the selected file of files against a specified schema.
• Configure Validation Scenario - allows you to configure and run a validation scenario.

Applying Transformation Scenarios

The currently selected files in the Project view can be transformed in one step with one of the actions Transform >

Apply Transformation Scenario , Transform > Configure Transformation Scenario ... and Transform

> Transform with... available on the right-click menu of the Project view. This, together with the logical folder
support of the project allows you to group your files and transform them very easily.

If the resources from a linked folder in the project have been changed outside the view, you can refresh the content of
the folder by using the Refresh action from the contextual menu. The action is also performed when selecting the
linked resource and pressing F5 key

A list of useful file properties like the ones available in the Properties view can be obtained with the Properties
action of the contextual menu invoked on a file node of the Project view tree, in the following dialog:

Figure 42:The Properties Dialog

92 | Oxygen XML Editor | Editing Documents

Right-clicking any object in the tree view displays the Project menu with functions that can be performed on, or from
the selected object. Options available from the Project menu are specific to the object type selected in the tree view.

You can also use drag and drop to arrange the files in logical folders (but not in linked folders). Also, dragging and
dropping files from the project tree to the editor area results in the files being opened.

Other Context-Dependent Actions

Many of the actions available in the Project view are grouped in a contextual menu. This menu is displayed after selecting
a file or folder and then pressing right-click (or Ctrl+Click on Mac OS X)

• Show in Explorer (or Show in Finder on Mac OS X) - Opens an OS-specific finder/explorer window, with the file
or folder in question selected in the finder/explorer window.

• Open with - Open selected file with one of internal tools: SVG Viewer, Hex Viewer, Large File Viewer, MathML
Editor, WSDL/SOAP Analyzer, DITA Maps Manager, Archive Browser.

• Open All Files - Action available only when at least one folder is selected. Opens in the editor view all files contained
by the selected resources.

• Find/Replace in Files - Allows you to find and replace text in multiple files.
• Check Spelling in Files - Allows you to check the spelling of multiple files.
• Open in SVN Client - Syncro SVN Client tool is opened and it highlights the selected resource in its corresponding

working copy.

Menu Level Actions

The following actions are available in the Project menu:

• New Project - Creates a new, empty project.
• Open Project ... (Ctrl+F2) - Opens an existing project. An alternate way to open a project is to drop an Oxygen

XPR project file from the file explorer in the Project panel.
• Save Project As... - Allows you to save the current project under a different name.
• Validate all project files - Checks if the project files are well-formed and their mark-up conforms with the specified

DTD, XML Schema, or Relax NG schema rules. It returns an error list in the message panel.
• Show Project View - Displays the project view.
• Reopen Project - Contains a list of links of previously used projects. This list can be emptied by invoking the Clear

history action.

Team Collaboration - Subversion

There is a SVN (Subversion) Client application embedded in Oxygen. You may start it from the Tools menu and use
it for synchronizing your working copy with a central repository.

Another way of starting it is by using the contextual menu of the Project tree: Team > Open in SVN Client . This
action displays the Syncro SVN Client and shows the selected project file in the Working Copy view.

Project Level Settings

You can store into the project not only lists of files and directories, but also transformation scenarios and other setting
specific to that project. For more information see the Preference Sharing and Sharing the Transformation Scenarios
topics.

Working with XML Catalogs

When Internet access is not available or the Internet connection is slow the OASIS XML catalogs present in the list
maintained in the XML Catalog Preferences panel will be scanned trying to map a remote system ID (at document
validation) or a URI reference (at document transformation) pointing to a resource on a remote Web server to a local
copy of the same resource. If a match is found then Oxygen will use the local copy of the resource instead of the remote
one. This enables the XML author to work on his/hers XML project without Internet access or when the connection is
slow and waiting until the remote resource is accessed and fetched becomes unacceptable. Also XML catalogs make

Oxygen XML Editor | Editing Documents | 93

http://www.oasis-open.org/committees/entity/spec.html

documents machine independent so that they can be shared by many developers by modifying only the XML catalog
mappings related to the shared documents.

Oxygen supports any XML catalog file that conforms to one of:

• the OASIS XML Catalogs Committee Specification v1.1

• the OASIS Technical Resolution 9401:1997 including the plain-text flavor described in that resolution

The version 1.1 of the OASIS XML Catalog specification introduces the possibility to map a system ID, a public ID or
a URI to a local copy using only a suffix of the ID or URI used in the actual document. This is done using the new
catalog elements systemSuffix and uriSuffix.

An XML catalog can be used also to map a W3C XML Schema specified with an URN in the xsi:schemaLocation
attribute of an XML document to a local copy of the schema. For example if the XML document specifies the schema
with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

Inside an XML Schema if an xs:import statement specifies only the namespace attribute, without the schemaLocation
attribute, Oxygen will try to resolve the specified namespace URI through one of the XML catalogs configured in
Preferences pages.

The URN can be resolved to a local schema file with a catalog entry like:

<system systemId="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

An XML Catalog file can be created quickly in Oxygen starting from the two XML Catalog document templates called
OASIS XML Catalog 1.0 and OASIS XML Catalog 1.1 and available in the document templates dialog.

User preferences related to XML Catalogs can be configured from Options > Preferences ... > XML > XML Catalog

XML Catalog

An XML catalog helps the XML parser to check a document for errors if the schema or a part of the schema is not
available, for example when an Internet connection is not available.

Important:

Oxygen XML Editor collects all the catalog files listed in the installed frameworks. No matter what the Document
Type Association matches the edited file, all the catalog mappings are considered when resolving external references.

Important:

The catalog files settings are available for all editing modes, not only for the Author mode.

Converting Between Schema Languages

The Generate/Convert Schema allows you to convert a DTD or Relax NG (full or compact syntax) schema or a set of
XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where perfect equivalence
is not possible due to limitations of the target language Oxygen will generate an approximation of the source schema.

The conversion functionality is available from Tools > Generate/Convert Schema... (Ctrl+Alt+T) , from the Project

view contextual menu - the action Open with > Generate/Convert Schema and from the toolbar button
Generate/Convert Schema... .

A schema being edited can be converted with just one click on a toolbar button if that schema can be the subject of a
supported conversion.

94 | Oxygen XML Editor | Editing Documents

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/specs/a401.htm
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.systemsuffix
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.urisuffix

Figure 43: Convert a Schema to Other Schema Language

The language of the source schema is specified with one of the four radio buttons of the Input panel. If the XML
Documents button is selected more than one file selection is allowed in the list below the group of radio buttons in case
the conversion is based on a set of XML files instead of a single file.

The language of the target schema is specified with one of the four radio buttons of the Output panel. The encoding,
the maximum line width and the number of spaces for one level of indentation can be also specified in this panel.

The conversion can be further fine-tuned by specifying more advanced options available from the Advanced options
button. For example if the input is a DTD and the output is an XML Schema the advanced options are:

Oxygen XML Editor | Editing Documents | 95

Figure 44: Convert a Schema to Other Schema Language - Advanced Options

For the Input panel:

• xmlns field - Specifies the default namespace, that is the namespace used for unqualified element names;
• xmlns table - Each row specifies in the prefix used for a namespace in the input schema;
• colon-replacement - Replaces colons in element names with the specified chars when constructing the names of

definitions used to represent the element declarations and attribute list declarations in the DTD;
• element-define - Specifies how to construct the name of the definition representing an element declaration from the

name of the element. The specified value must contain exactly one percent character. This percent character is
replaced by the name of element (after colon replacement) and the result is used as the name of the definition;

• inline-attlist - Instructs the application not to generate definitions for attribute list declarations, but instead move
attributes declared in attribute list declarations into the definitions generated for element declarations. This is the
default behavior when the output language is XSD;

• attlist-define - Specifies how to construct the name of the definition representing an attribute list declaration from
the name of the element. The specified value must contain exactly one percent character. This percent character is
replaced by the name of element (after colon replacement) and the result is used as the name of the definition;

• any-name - Specifies the name of the definition generated for the content of elements declared in the DTD as having
a content model of ANY;

• strict-any - Preserves the exact semantics of ANY content models by using an explicit choice of references to all
declared elements. By default, Trang uses a wildcard that allows any element;

• generate-start - Specifies whether Trang should generate a start element. DTD's do not indicate what elements are
allowed as document elements. Trang assumes that all elements that are defined but never referenced are allowed
as document elements;

• annotation-prefix - Default values are represented using an annotation attribute prefix:defaultValue where prefix is
the specified value and is bound to http://relaxng.org/ns/compatibility/annotations/1.0 as defined by the RELAX NG
DTD Compatibility Committee Specification. By default, Trang will use a for prefix unless that conflicts with a
prefix used in the DTD.

96 | Oxygen XML Editor | Editing Documents

For the Output panel:

• disable-abstract-elements - Disables the use of abstract elements and substitution groups in the generated XML
Schema. This can also be controlled using an annotation attribute;

• any-process-contents - One of the values: strict, lax, skip. Specifies the value for the processContents attribute of
any elements. The default is skip (corresponding to RELAX NG semantics) unless the input format is dtd, in which
case the default is strict (corresponding to DTD semantics);

• any-attribute-process-contents - Specifies the value for the processContents attribute of anyAttribute elements. The
default is skip (corresponding to RELAX NG semantics).

Editing XML Tree Nodes

A Well-Formed XML document can be viewed and edited in Oxygen also as a tree of XML elements. This is possible
in the Tree Editor perspective, available from Tools > Tree Editor (Ctrl+T) . The Tree Editor provides specially
designed views, toolbars and an editable tree allowing you to execute common tree actions like create/delete nodes, edit
node names, move nodes with drag and drop.

If you want to be able to edit XML documents that are not well-formed and still have a tree view of the document you
should use the Outline view in the Editor perspective.

Formatting and Indenting Documents (Pretty Print)

In structured markup languages, the whitespace between elements that is created using the Space bar, Tab or multiple
line breaks is not recognized by the parsing tools. Often this means that when structured markup documents are opened,
they are arranged as one long, unbroken line, that seems to be a single paragraph.

While this is a perfectly acceptable practice, it makes editing difficult and increases the likelihood of errors being
introduced. It also makes the identification of exact error positions difficult. Formatting and Indenting, also called Pretty
Print, enables such documents to be neatly arranged, in a manner that is consistent and promotes easier reading on
screen and in print output.

Pretty print is in no way associated with the layout or formatting that will be used in the transformed document. This
layout and formatting is supplied by the XSL stylesheet specified at the time of transformation.

To change the formatting of just one XML element see the action Pretty print element . To change the indenting of the
current selected text see the Indent selection action.

For user preferences related to formatting and indenting like Detect indent on open and Indent on paste see the
corresponding Preferences panel.

XML elements can be excepted from the reformatting performed by the pretty-print operation by including them in the
Preserve space elements (XPath) list. That means that when the Format and Indent (pretty-print) action encounters in
the document an element with the name contained in this list, the whitespace is preserved inside that element. This is
useful when most of the elements must be reformatted with the exception of a few ones which are listed here.

For the situation when whitespace should be preserved in most elements with the exception of a few elements, the names
of these elements must be added to the Strip space elements (XPath) list.

In addition to simple element names, both the Preserve space elements (XPath) list and the Strip space elements (XPath)
one accept a restricted set of XPath expressions to cover a pattern of XML elements with only one expression. The
allowed types of expressions are:

the XPath descendant axis can be used only at the beginning of the expression; the
namespace prefix can be attached to any namespace, no namespace binding check
is performed when applying the pretty-print operation

//xs:documentation

note the use of the XPath child axis
/chapter/abstract/title

the descendant axis can be followed by the child axis
//section/title

Oxygen XML Editor | Editing Documents | 97

The value of an xml:space attribute present in the XML document on which the pretty-print operation is applied always
takes precedence over the Preserve space elements (XPath) and the Strip space elements (XPath) lists.

Viewing Status Information

Status information generated by the Schema Detection, Validation, Automatic validation and Transformation threads
are fed into the Information view allowing the user to monitor how the operation is being executed.

Figure 45: Information view messages

Messages contain a timestamp, the name of the thread that generated it and the actual status information. The number
of displayed messages can be controlled from the Options panel.

In order to make the view visible go to menu Window > Show View > Information

Image Preview

Images and SVG files from the Project view can be previewed in a separate panel.

To preview an image you have to either double click the image name or click the Preview action from the Project's
tree contextual menu. Supported image types are GIF, JPEG/JPG, PNG, BMP. Once the image is displayed in the
Preview panel using the actions from the contextual menu one can scale the image at its original size (1:1 action) or
scale it down to fit in the view's available area (Scale to fit action).

To preview a SVG file click the Preview action from the Project's tree contextual menu. Once the SVG is displayed in
the Preview panel the following actions are available on the contextual menu: Zoom in, Zoom out, Rotate and Refresh.

Making a Persistent Copy of Results

The Results panel displays the results from the following operations:

• document validation
• checking the form of documents
• XSLT or FO transformation
• find all occurrences of a string in a file
• find all occurrences of a string in multiple files
• applying an XPath expression to the current document

98 | Oxygen XML Editor | Editing Documents

To make a persistent copy of the Results panel use one of the actions:

• File > Save Results - displays the Save Results dialog, used to save the result list of the current message tab. The
action is also available on the right click menu of the Results panel.

• File > Print Results - displays the Page Setup dialog used to define the page size and orientation properties for
printing the result list of the current Results panel. The action is also available on the right click menu of the Results
panel.

• Save Results as XML on the contextual menu - saves the content of the Results panel in an XML file with the
format:

<Report>
 <Incident>
 <engine>The engine who provide the error.<engine>
 <severity>The severity level<severity>
 <Description>Description of output message.</Description>
 <SystemID>The location of the file linked to the message.</SystemID>
 <Location>
 <start>
 <line>Start line number in file.<line>
 <column>Start column number in file<column>
 </start>
 <end>
 <line>End line number in file.<line>
 <column>End column number in file<column>
 </start>
 </Location>
 </Incident>
</Report>

Locking and Unlocking XML Markup

For documents with fixed markup such as forms in which the XML tags are not allowed to be modified but only their
text content, editing of the XML tag names can be disabled and re-enabled with the action available from Document

> Source > Locks / Unlocks the XML Tags or from the toolbar button Locks / Unlocks the XML tags

There is a default lock state for all opened editors in the Preferences XML Editor Format page.

Adjusting the Transparency of XML Markup

Most of the time you want the content of a document displayed on screen with zero transparency. When you want to
focus your attention only on editing text content inside XML tags Oxygen offers the option of reducing the visibility of
the tags by increasing their transparency when they are displayed. There are two levels of tag transparency:
semi-transparent markup and transparent markup. For the opposite case, when you want to focus on the tag names, the
text transparency can be set to one of two levels: semi-transparent text and transparent text. To change the level of

transparency click the toolbar button Adjust Contrast available on the Edit toolbar.

Note: On Windows XP and Windows Vista, depending on antialiasing settings and JVM used, this functionality
could have no effect.

XML Editor Specific Actions

Oxygen offers groups of actions for working on single XML elements. They are available from the Document menu
and the context menu of the main editor panel.

Oxygen XML Editor | Editing Documents | 99

Split Actions

The editing area can be divided vertically and horizontally with the split / unsplit actions available on the Split toolbar,
the Document > Split menu and the contextual menu of the editor panel for XML files:

• Split Editor Horizontally
• Split Editor Vertically
• Unsplit Editor

Edit Actions

The following XML specific editing actions are available in Text mode:

• Document > Edit > Toggle Line Wrap - (Ctrl + Shift + Y) Turns on line wrapping in the editor panel if it was
off and vice versa. It has the same effect as the Line wrap preference.

• Document > Edit > Toggle comment (Ctrl + Shift + ,) - Comments the current selection of the current editor. If
the selection already contains a comment the action removes the comment from around the selection. If there is no
selection in the current editor and the cursor is not positioned inside a comment the current line is commented. If
the cursor is positioned inside a comment then the commented text is uncommented. The action is also available on
the popup menu of the editor panel.

Select Actions

In Text mode of the XML editor these actions are enabled when the caret is positioned inside a tag name:

• Document > Select > Element - Selects the entire current element.
• Document > Select > Content - Selects the content of the current element, excluding the start tag and end tag. If

it is applied repeatedly, starts with selecting the XML element from the cursor position and extends the selection to
the ancestor XML elements. Each execution of the action extends the current selection to the surrounding element.

• Document > Select > Attributes - Selects all the attributes of the current element.
• Document > Select > Parent - Selects the parent element of the current element.
• Triple click on an element or processing instruction - If the triple click is done before the start tag of an element or

after the end tag of an element then all the element is selected by the triple click action. If it is done after the start
tag or before the end tag then only the element content without the start tag and end tag is selected.

• Double click after the opening quote or before the closing quote of an attribute value - Select the whole attribute
value.

Source Actions

The following actions can be applied on the text content of the XML editor:

• Document > Source > Locks / Unlocks the XML Tags - Disables / Enables editing of XML tags.
• Document > Source > To lower case - Converts the selection's content to lower case characters.
• Document > Source > To upper case - Converts the selection's content to upper case characters.
• Document > Source > Capitalize lines - Converts to upper case the first character of every selected line.
• Document > Source > Shift Right (Tab) - Shifts the currently selected block to the right.
• (Shift+Tab) > Document > Source > Shift Left (Shift+Tab) - Shifts the selected block to the left.
• Document > Source > Escape Selection ... - Escapes a range of characters by replacing them with the

corresponding character entities.
• Document > Source > Unescape Selection ... - Replaces the character entities with the corresponding characters.
• Document > Source > Indent selection (Ctrl + I) - Corrects the indentation of the selected block of lines if

it does not follow the current indenting preferences of the user.

100 | Oxygen XML Editor | Editing Documents

• Document > Source > Format and Indent Element (Ctrl + Shift + I) - Pretty prints the element that surrounds
the caret position.

• Document > Source > Import entities list - Shows a dialog that allows you to select a list of files as sources
for external DTD entities. The internal subset of the DOCTYPE declaration of your document will be updated with
the chosen entities. For instance, if choosing the file chapter1.xml and chapter2.xml, the following section
is inserted in the DOCTYPE:

 <!ENTITY chapter1 SYSTEM "chapter1.xml">
 <!ENTITY chapter2 SYSTEM "chapter2.xml">

• Document > Source > To Lower Case - The action works on the selection converting all upper case letters to
lower case.

• Document > Source > To Upper Case - The action works on the selection converting all lower case letters to
upper case.

• Document > Source > Capitalize lines - It capitalizes the first letter found on every new line that is selected. Only
the first letter is affected, the rest of the line remains the same. If the first character on the new line is not a letter
then no changes are made.

• Document > Source > Join and normalize - The action works on the selection. It joins the lines by replacing the
line separator with a single space character. It also normalizes the whitespaces by replacing a sequence of such
characters with a single space.

• Document > Source > Insert new line after : This useful action has the same result with moving the caret to the
end of the current line and pressing ENTER.

XML Document Actions

The Text mode of the XML editor provides the following document level actions:

• Document > Schema > Show Definition (also available on the contextual menu of the editor panel) - Moves the
cursor to the definition of the current element in the schema associated with the edited XML document (DTD, XML
Schema, Relax NG schema).

• Document > XML Document > Copy XPath (Ctrl+Alt+.) - Copies the XPath expression of the current element
or attribute from the current editor to the clipboard.

• Document > XML Document > Go to Matching Tag (Ctrl+Shift+G) - Moves the cursor to the end tag that
matches the start tag, or vice versa.

• Document > XML Document > Go after Next Tag (Ctrl+]) - Moves the cursor to the end of the next tag.
• Document > XML Document > Go after Previous Tag (Ctrl+[) - Moves the cursor to the end of the previous

tag.
• Document > XML Document > Associate XSLT/CSS Stylesheet - Inserts an xml-stylesheet processing

instruction at the beginning of the document referencing either an XSLT or a CSS file depending on the user selection.
Either reference is useful for rendering the document in a Web browser when the action Open in browser is executed.
Referencing the XSLT file is also useful for automatic detection of the XSLT stylesheet when there is no scenario
associated with the current document.

When associating the CSS stylesheet, the user can also specify a title for it if it is an alternate one. Setting a Title for
the CSS makes it the author's preferred stylesheet. Selecting the Alternate checkbox makes the CSS an alternate
stylesheet.

Oxygen XML Author fully implements the W3C recommendation regarding Associating Style Sheets with XML
documents. See also Specifying external style sheets in HTML documents.

XML Refactoring Actions

The following refactoring actions are available while editing an XML document:

• Document > XML Refactoring > Surround with tag... (Ctrl+E) - Selected text in the editor is marked with
the specified start and end tags.

Oxygen XML Editor | Editing Documents | 101

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

• Document > XML Refactoring > Surround with last <tag> (Ctrl+/) - Selected Text in the editor is marked
with start and end tags of the last 'Surround in' action.

• Document > XML Refactoring > Rename element (Alt+Shift+R) - the element from the caret position and
the elements that have the same name as the current element can be renamed according with the options from the
Rename dialog.

Document > XML Refactoring > Rename prefix (Alt+Shift+P) - the prefix of the element from the caret
position and the elements that have the same prefix as the current element can be renamed according with the options
from the Rename dialog.

Selecting the Rename current element prefix option, the application will recursively traverse the current element
and all its children.

For example, to change the xmlns:p1="ns1" association existing in the current element to xmlns:p5="ns1",
just select this option and press OK. If the association xmlns:p1="ns1" is applied on the parent of the current
element, then Oxygen will introduce a new declaration xmlns:p5="ns1" in the current element and will change
the prefix from p1 to p5. If p5 is already associated in the current element with another namespace, let's say ns5,
then a dialog showing the conflict will be displayed. Pressing the OK button, the prefix will be modified from p1
to p5 without inserting a new declaration xmlns:p5="ns1". On Cancel no modification is made.

Selecting the Rename current prefix in all document option, the application will apply the change on the entire
document.

To apply the action also inside attribute values one must check the Rename also attribute values that start with
the same prefix checkbox.

• Document > XML Refactoring > Split element (Ctrl+Alt+D) - Split the element from the caret position in
two identical elements. The caret must be inside the element.

• Document > XML Refactoring > Join elements (Ctrl+Alt+J) - Joins the left and right elements relative to
the current caret position. The elements must have the same name, attributes and attributes values.

• Document > XML Refactoring > Delete element tags (Ctrl+Alt+X) - Deletes the start and end tag of the
current element.

Smart Editing

The following helper actions are available in the XML editor:

• Closing tag auto-expansion - If you want to insert content into an auto closing tag like <tag/> deleting the / character
saves some keystrokes by inserting a separate closing tag automatically and placing the cursor between the start and
end tags: <tag></tag>

• Auto-rename matching tag - When you edit the name of the start tag, Oxygen will mirror-edit the name of the
matching end tag. This feature can be controlled from the Content Completion option page.

• Auto-breaking the edited line - The Hard line wrap option breaks the edited line automatically when its length
exceeds the maximum line length defined for the pretty-print operation.

• Indent on Enter - The Indent on Enter option indents the new line inserted when Enter is pressed.
• Smart Enter - The Smart Enter option inserts an empty line between the start and end tags. If Enter is pressed between

a start and an end tag the action places the cursor in an indented position on the empty line between the lines that
contain the start and end tag.

• Triple click - A triple click with the left mouse button selects a different region of text of the current document
depending on the position of the click in the document:

• if the click position is inside a start tag or an end tag then the entire element enclosed by that tag is selected
• if the click position is immediately after a start tag or immediately before an end tag then the entire content of

the element enclosed by that tag is selected, including all the child elements but excluding the start tag and the
end tag of the element

• otherwise the triple click selects the entire current line of text

102 | Oxygen XML Editor | Editing Documents

Syntax Highlight Depending on Namespace Prefix

The syntax highlight scheme of an XML file type allows the configuration of a color per each type of token which can
appear in an XML file. Distinguishing between the XML tag tokens based on the namespace prefix brings additional
visual help in editing some XML file types. For example in XSLT stylesheets elements from different namespaces like
XSLT, XHTML, XSL:FO or XForms are inserted in the same document and the editor panel can become cluttered.
Marking tags with different colors based on the namespace prefix allows easier identification of the tags.

Figure 46: Example of Coloring XML Tags by Prefix

Editing XML Schemas

An XML Schema describes the structure of an XML document and is used to validate XML document instances against
it, in order to check that the XML instances conform to the specified requirements. If an XML instance conforms to the
schema then it is said to be valid, otherwise it is invalid.

Oxygen provides two editing pages for working with XML Schema: the usual Text editing page and the visual Design
editing page.

XML Schema Text Editor

This page presents the usual text view of an XML document synchronized in real time with an outline view. The outline
view has two display modes: the standard outline mode and the components mode. To activate a side by side source
and diagram presentation you have to enable the Show XML Schema Diagram checkbox from the Diagram preferences
page.

Special Content Completion Features

The editor enhances the content completion of the XML editor inside the xs:annotation/xs:appinfo elements
of an XML Schema with special support for the elements and attributes from a custom schema (by default ISO
Schematron). This content completion enhancement can be configured from the XSD Content Completion preferences
page.

If the current XML Schema schema imports or includes other XML Schema schemas then the global types and elements
defined in the imported / included schemas are available in the content completion window together with the ones defined
in the current file.

Oxygen XML Editor | Editing Documents | 103

Figure 47: Schematron Support in XML Schema Content Completion

References to XML Schema Specification

The same as in editing XML documents, the message of an error obtained by validation of an XML Schema document
includes a reference to the W3C specification for XML Schema. An error message contains an Info field that will open
the browser on the "XML Schema Part 1:Structures" specification at exactly the point where the error is described thus
allowing you to understand the reason for that error.

Figure 48: Link to Specification for XML Schema Errors

Validation of an XML Schema containing a type definition with a minOccurs or maxOccurs attribute having a value
larger than 256 limits the value to 256 and issues a warning about this restriction in the Message panel at the bottom of
the Oxygen window. Otherwise, for large values of the minOccurs and maxOccurs attributes the validator fails with
an OutOfMemory error which practically makes Oxygen unusable without a restart of the entire application.

Important:

If the schema imports only a namespace without specifying the schema location and a catalog is set-up mapping
the namespace to a certain location both validation and the schema components outline will correctly identify the
imported schema.

XML Schema Actions

• The Show Definition action accessed from the menu Document > Schema > Show Definition (Ctrl + Shift +
ENTER) moves the cursor to the definition of the referenced XML Schema item. The referenced item can be an
element, group, simple type or complex type. The same action is executed on a double click on a component name

104 | Oxygen XML Editor | Editing Documents

in the Schema Outline view. You can define a scope for this action in the same manner you define it for Search
Declarations.

Flatten an XML Schema

If an XML Schema is organized on several levels linked by xs:include statements, sometimes it is more convenient
to work on the schema as a single flat file. To flatten schema, Oxygen recursively adds included files to the master one.
That means Oxygen replaces the xs:include elements with the ones coming from the included files.

This action works at file level not at schema document level so it is available only in Text mode of XML Schema editor.
It can be accessed from the XML Schema text editor's contextual menu > Refactoring > Flatten Schema . Alternatively
you can select one or more schemas in the Project view and invoke the action from the view's contextual menu. In this
last case the feedback of the action will be presented in the Information view.

Schema flattening can also be accessed from command line by running scripts that come with Oxygen installation:

• flattenSchema.bat on Windows;
• flattenSchema.sh on Mac OS X and Unix/Linux.

The input file is the first argument of the script and the output file is the second argument.

In the following example master.xsd includes slave.xsd. This, in turn, includes
slave1.xsd which includes both slave2.xsd and slave3.xsd.

master.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" xmlns:tns="tns"
 xmlns:b="b" >
 <!-- included elements from slave.xsd -->
 <xs:include schemaLocation="slave.xsd"></xs:include>
 <!-- master.xsd -->
 <xs:element name="element1">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:element2" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

slave.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" xmlns:a="a" xmlns:b="b"
 xmlns:c="c">
 <!-- included elements from slave1.xsd -->
 <xs:include schemaLocation="slave1.xsd"></xs:include>
 <!-- slave -->
 <xs:element name="element2" xmlns:c="x"/>
</xs:schema>

slave1.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" xmlns:tns="tns"
 blockDefault=" restriction">
 <!-- included elements from slave2.xsd -->
 <xs:include schemaLocation="slave2.xsd"></xs:include>
 <!-- included elements from slave3.xsd -->
 <xs:include schemaLocation="slave3.xsd"></xs:include>

Oxygen XML Editor | Editing Documents | 105

 <!-- slave1 -->
 <xs:element name="element0"/>
 <xs:element name="element7"/>
 <xs:element name="element7Substitute"
 substitutionGroup="tns:element7"
 block="extension"/>
 <xs:element name="element6">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:element7"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="type1">
 <xs:sequence>
 <xs:element ref="tns:element0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

slave2.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns"
 xmlns:tns="tns"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">
 <!-- slave2 -->
 <xs:element name="a"></xs:element>
 <a:element name="element9"
 xmlns:a="http://www.w3.org/2001/XMLSchema">
 <xs:complexType>
 <xs:sequence>
 <!-- This element is from the target namespace -->
 <xs:element name="element3"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Element from no namespace -->
 <xs:element name="element4" form="unqualified"/>
 <a:element ref="tns:a"></a:element>
 </xs:sequence>
 <!-- Attribute from the target namespace -->
 <b:attribute name="attr1" type="xs:string"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Attribute from the no namespace -->
 <xs:attribute name="attr2" type="xs:string"
 form="unqualified"/>
 </xs:complexType>
 </a:element>
</xs:schema>

slave3.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" finalDefault="restriction"
 xmlns:tns="tns">
 <!-- slave3 -->
 <xs:complexType name="ct1"/>
 <xs:complexType name="ct2" final="extension">
 <xs:complexContent>
 <xs:extension base="tns:ct1"/>
 </xs:complexContent>
 </xs:complexType>

106 | Oxygen XML Editor | Editing Documents

 <xs:simpleType name="st1" final="union">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType name="st2" final="union">
 <xs:restriction base="tns:st1">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="e1" type="tns:c1" final="restriction"/>
 <xs:element name="e2ext" type="tns:c2"
 substitutionGroup="tns:e1"></xs:element>
 <xs:complexType name="c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="c2">
 <xs:complexContent>
 <xs:extension base="tns:c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

master.xsd after it has been flattened:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="tns" xmlns:a="a"
 xmlns:b="b" xmlns:c="c" xmlns:tns="tns"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- included elements from slave.xsd -->
 <!-- included elements from slave1.xsd -->
 <!-- included elements from slave2.xsd -->
 <!-- slave2 -->
 <xs:element block="restriction" name="a"/>
 <a:element block="restriction" name="element9"
 xmlns:a="http://www.w3.org/2001/XMLSchema">
 <xs:complexType>
 <xs:sequence>
 <!-- This element is from the target namespace -->
 <xs:element block="restriction" form="qualified"
name="element3"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Element from no namespace -->
 <xs:element block="restriction" form="unqualified"
 name="element4"/>
 <a:element ref="tns:a"/>
 </xs:sequence>
 <!-- Attribute from the target namespace -->
 <b:attribute form="qualified" name="attr1" type="xs:string"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Attribute from the no namespace -->
 <xs:attribute form="unqualified" name="attr2"
type="xs:string"/>
 </xs:complexType>
 </a:element>
 <!-- included elements from slave3.xsd -->
 <!-- slave3 -->
 <xs:complexType block="restriction" final="restriction"

Oxygen XML Editor | Editing Documents | 107

name="ct1"/>
 <xs:complexType block="restriction" final="extension" name="ct2">

 <xs:complexContent>
 <xs:extension base="tns:ct1"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType final="union" name="st1">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType final="union" name="st2">
 <xs:restriction base="tns:st1">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element block="restriction" final="restriction" name="e1"
 type="tns:c1"/>
 <xs:element block="restriction" final="restriction" name="e2ext"

 substitutionGroup="tns:e1"
 type="tns:c2"/>
 <xs:complexType block="restriction" final="restriction"
 name="c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType block="restriction" final="restriction"
 name="c2">
 <xs:complexContent>
 <xs:extension base="tns:c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- slave1 -->
 <xs:element block="restriction" name="element0"/>
 <xs:element block="restriction" name="element7"/>
 <xs:element block="extension" name="element7Substitute"
 substitutionGroup="tns:element7"/>
 <xs:element block="restriction" name="element6">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:element7"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType block="restriction" name="type1">
 <xs:sequence>
 <xs:element ref="tns:element0"/>
 </xs:sequence>
 </xs:complexType>
 <!-- slave -->
 <xs:element name="element2" xmlns:c="x"/>
 <!-- master.xsd -->
 <xs:element name="element1">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:element2"/>

108 | Oxygen XML Editor | Editing Documents

 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The case of XML Schema redefinitions is also handled as shown in the example below.

master.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:redefine schemaLocation="slave1.xsd">
 <xs:complexType name="tp">
 <xs:complexContent>
 <xs:extension base="tp">
 <xs:choice>
 <xs:element name="el2" type="xs:NCName"/>
 <xs:element name="el3" type="xs:string"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>
 <xs:element name="el" type="tp"/>
</xs:schema>

slave1.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:redefine schemaLocation="slave2.xsd">
 <xs:complexType name="tp">
 <xs:complexContent>
 <xs:extension base="tp">
 <xs:attribute name="a"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>
</xs:schema>

slave2.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="tp">
 <xs:sequence>
 <xs:element name="el" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

master.xsd after it has been flattened:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="tp">
 <xs:complexContent>
 <xs:extension base="tp_Redefined1">
 <xs:choice>
 <xs:element name="el2" type="xs:NCName"/>
 <xs:element name="el3" type="xs:string"/>
 </xs:choice>
 </xs:extension>

Oxygen XML Editor | Editing Documents | 109

 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="tp_Redefined1">
 <xs:complexContent>
 <xs:extension base="tp_Redefined0">
 <xs:attribute name="a"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="tp_Redefined0">
 <xs:sequence>
 <xs:element name="el" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="el" type="tp"/>
</xs:schema>

The references to the included schema files can be resolved through an XML Catalog.

XML Schema Diagram Editor

This section explains how to use the graphical diagram of a W3C XML Schema.

Introduction

XML Schemas enable document designers to specify the allowed structure and content of an XML document and to
check if an XML document is valid.

Oxygen provides a simple and expressive Design page for editing XML Schemas. The schema diagram helps both the
content authors who want to understand a schema and schema designers who develop complex schemas.

The diagram font can be increased using the usual Oxygen shortcuts: (Ctrl - +) , (Ctrl - -) , (Ctrl - 0) or (Ctrl - mouse
wheel). The whole diagram can also be zoomed with one of the predefined factors available in the Schema preferences
panel. The same zoom factor is applied for the print and save actions.

110 | Oxygen XML Editor | Editing Documents

Figure 49: XML Schema Diagram

XML Schema Components

A schema diagram contains a series of interconnected components. To quickly identify the relation between two connected
components, the connection is represented as:

• a thick line to identify a connection with a required component (in the following image, family is a required
element);

• a thin line to identify a connection with an optional component (in the following image, email is an optional
element).

Oxygen XML Editor | Editing Documents | 111

The following topics explain in detail all available components and their symbols as they appear in an XML schema
diagram.

xs:schema

Defines the root element of a schema. A schema document contains representations for a collection of schema components,
e.g. type definitions and element declarations, which have a common target namespace. See more info at
http://www.w3.org/TR/xmlschema-1/#element-schema.

By default it displays the targetNamespace property when rendered.

xs:schema properties

Possible ValuesDescriptionProperty Name

Any URIThe schema target namespace.Target Namespace

qualified, unqualified, [Empty]. Default
value is unqualified.

Determining whether local element
declarations will be
namespace-qualified by default.

Element Form Default

qualified, unqualified, [Empty]. Default
value is unqualified.

Determining whether local attribute
declarations will be
namespace-qualified by default.

Attribute Form Default

#all, extension, restriction, substitution,
restriction extension, restriction

Default value of the block attribute
of xs:element and
xs:complexType.

Block Default

substitution, extension substitution,
restriction extension substitution,
[Empty]

#all, restriction, extension, restriction
extension, [Empty]

Default value of the final attribute
of xs:element and
xs:complexType.

Final Default

Any tokenSchema versionVersion

Any IDThe schema idID

Not editable property.The edited component name.Component

Not editable property.The schema system idSystemID

xs:element

Defines an element. An element declaration is an association of a name with a type definition, either simple or complex,
an (optional) default value and a (possibly empty) set of identity-constraint definitions. See more info at
http://www.w3.org/TR/xmlschema-1/#element-element.

An element by default displays the following properties when rendered in the diagram: default, fixed, abstract and type.
When referenced or declared locally, the element graphical representation also contains the value for the minOccurs

112 | Oxygen XML Editor | Editing Documents

http://www.w3.org/TR/xmlschema-1/#element-schema
http://www.w3.org/TR/xmlschema-1/#element-element

and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to
the element are drawn using dotted lines if the element is optional.

xs:element properties

MentionsPossible ValuesDescriptionProperty Name

If missing, will be displayed
as '[element]' in diagram.

Any NCName for global or
local elements, any QName
for element references.

The element name. Always
required.

Name

Appears only for local
elements.

true/falseWhen set, the local element
is a reference to a global
element.

Is Reference

For all elements. For
references, the value is set in
the referred element.

All declared or built-in
types. In addition, the
following anonymous types
are available:

The element type.Type

[ST-restriction], [ST-union],
[ST-list], [CT-anonymous],
[CT-extension SC],
[CT-restriction SC],
[CT-restriction CC],
[CT-extension CC].

For elements with complex
type, with simple or complex
content.

All declared or built-in typesThe extended/restricted base
type.

Base Type

For elements with complex
type.

true/falseDefines if the complex type
content model will be mixed.

Mixed

For elements with complex
type which extends/restricts

simple/complexThe content of the complex
type.

Content

a base type. It is
automatically detected.

For elements with complex
type which has a complex
content.

true/falseDefines if the complex
content model will be mixed.

Content Mixed

The fixed and default
attributes are mutually
exclusive.

Any stringDefault value of the element.
A default value is
automatically assigned to the
element when no other value
is specified.

Default

The fixed and default
attributes are mutually
exclusive.

Any stringA simple content element
may be fixed to a specific
value using this attribute. A
fixed value is also

Fixed

automatically assigned to the
element and you cannot
specify another value.

Only for references/local
elements

A numeric positive value.
Default value is 1

Minimum number of
occurrences of the element.

Min Occurs

Only for references/local
elements

A numeric positive value.
Default value is 1

Maximum number of
occurrences of the element.

Max Occurs

Oxygen XML Editor | Editing Documents | 113

MentionsPossible ValuesDescriptionProperty Name

For global and reference
elements

All declared elementsQualified name of the head
of the substitution group to
which this element belongs.

Substitution Group

For global elements and
element references

true/falseControls whether the
element may be used directly
in instance XML documents.

Abstract

When set to true, the element
may still be used to define
content models, but it must
be substituted through a
substitution group in the
instance document.

Only for local elementsunqualified/qualifiedDefines if the element is
"qualified" (i.e., belongs to

Form

the target namespace) or
"unqualified" (i.e., doesn't
belong to any namespace).

For global elements and
element references

true/falseWhen this attribute is set to
true, the element can be
declared as nil using an

Nillable

xsi:nil attribute in the
instance documents.

For global elements and
element references

#all, restriction,
extension,substitution,
extension restriction,

Controls whether the
element can be subject to a
type or substitution group

Block

extension substitution,substitution. '#all' blocks any
restriction substitution,substitution, 'substitution'
restriction extension
substitution

blocks any substitution
through substitution groups
and 'extension'/'restriction'
block any substitution (both
through xsi:type and
substitution groups) by
elements or types, derived
respectively by extension or
restriction from the type of
the element. Its default value
is defined by the
blockDefault attribute
of the parent xs:schema.

For global elements and
element references

#all, restriction, extension,
restriction extension,
[Empty]

Controls whether the
element can be used as the
head of a substitution group
for elements whose types are

Final

derived by extension or
restriction from the type of
the element. Its default value
is defined by the
finalDefault attribute
of the parent xs:schema.

For all elements.Any idThe component id.ID

114 | Oxygen XML Editor | Editing Documents

MentionsPossible ValuesDescriptionProperty Name

For all elements.Not editable property.The edited component name.Component

For all elements.Not editable property.The component namespace.Namespace

For all elements.Not editable property.The component system id.System ID

xs:attribute

Defines an attribute. See more info at http://www.w3.org/TR/xmlschema-1/#element-attribute.

An attribute by default displays the following properties when rendered in the diagram: default, fixed, use and type.
Connectors to the attribute are drawn using dotted lines if the attribute use is optional. The attribute name is stroked out
if prohibited.

xs:attribute properties

MentionsPossible ValueDescriptionProperty Name

For all local or global
attributes. If missing, will be

Any NCName for
global/local attributes, all

Attribute name. Always
required.

Name

displayed as '[attribute]' in
the diagram.

declared attributes' QName
for references.

For local attributes.true/falseWhen set, the local attribute
is a reference.

Is Reference

For all attributes. For
references, the type is set to
the referred attribute.

All global simple types and
built-in simple types. In
addition another 3 proposals
are present: [anonymous

Qualified name of a simple
type.

Type

restriction], [anonymous
list], [anonymous union] for
creating anonymous simple
types more easily.

For all local or global
attributes. For references the

Any stringDefault value. When
specified, an attribute is

Default

value is from the referred
attribute.

added by the schema
processor (if it is missing
from the instance XML
document) and it is given
this value. The default and
fixed attributes are mutually
exclusive.

For all local or global
attributes. For references the

Any stringWhen specified, the value of
the attribute is fixed and

Fixed

value is from the referred
attribute.

must be equal to this value.
The default and fixed
attributes are mutually
exclusive.

For local attributesoptional, required, prohibitedPossible usage of the
attribute. Marking an

Use

attribute "prohibited" is
useful to exclude attributes

Oxygen XML Editor | Editing Documents | 115

http://www.w3.org/TR/xmlschema-1/#element-attribute

MentionsPossible ValueDescriptionProperty Name

during derivations by
restriction.

For local attributes.unqualified/qualifiedSpecifies if the attribute is
qualified (i.e., must have a

Form

namespace prefix in the
instance XML document) or
not. The default value for
this attribute is specified by
the
attributeFormDefault
attribute of the xs:schema
document element.

For all attributes.Any idThe component id.ID

For all attributes.Not editable property.The edited component name.Component

For all attributes.Not editable property.The component namespace.Namespace

For all attributes.Not editable property.The component system id.System ID

xs:complexType

Defines a top level complex type. Complex Type Definitions provide for: See more data at
http://www.w3.org/TR/xmlschema-1/#element-complexType.

• Constraining element information items by providing Attribute Declarations governing the appearance and content
of attributes.

• Constraining element information item children to be empty, or to conform to a specified element-only or mixed
content model, or else constraining the character information item children to conform to a specified simple type
definition.

• Using the mechanisms of Type Definition Hierarchy to derive a complex type from another simple or complex type.
• Specifying post-schema-validation infoset contributions for elements.
• Limiting the ability to derive additional types from a given complex type.
• Controlling the permission to substitute, in an instance, elements of a derived type for elements declared in a content

model to be of a given complex type.

Tip: A complex type which is a base type to another type will be rendered with yellow background.

xs:complexType properties

MentionsPossible ValuesDescriptionProperty Name

Only for global complex
types. If missing, will be

Any NCNameThe name of the complex
type. Always required.

Name

displayed as '[complexType]'
in diagram.

For complex types with
simple or complex content.

Any from the declared
simple or complex types.

The name of the
extended/restricted types.

Base Type Definition

Only when base type is set.
If the base type is a simple

restriction/ extensionThe derivation method.Derivation Method

type, the derivation method
is always extension.

116 | Oxygen XML Editor | Editing Documents

http://www.w3.org/TR/xmlschema-1/#element-complexType

MentionsPossible ValuesDescriptionProperty Name

For complex types which
extend/restrict a base type. It
is automatically detected.

simple/ complexThe content of the complex
type.

Content

For complex contents.true/falseSpecifies if the complex
content model will be mixed.

Content Mixed

For global and anonymous
complex types.

true/falseSpecifies if the complex type
content model will be mixed.

Mixed

For global and anonymous
complex types.

true/falseWhen set to true, this
complex type cannot be used
directly in the instance

Abstract

documents and needs to be
substituted using an
xsi:type attribute.

For global complex types.all, extension, restriction,
extension restriction,
[Empty]

Controls whether a
substitution (either through
a xsi:type or substitution
groups) can be performed for

Block

a complex type, which is an
extension or a restriction of
the current complex type.
This attribute can only block
such substitutions (it cannot
"unblock" them), which can
also be blocked in the
element definition. The
default value is defined by
the blockDefault
attribute of xs:schema.

For global complex types.all, extension, restriction,
extension restriction,
[Empty]

Controls whether the
complex type can be further
derived by extension or
restriction to create new
complex types.

Final

For all complex types.Any idThe component id.ID

For all complex types.Not editable property.The edited component name.Component

For all complex types.Not editable property.The component namespace.Namespace

For all complex types.Not editable property.The component system id.System ID

xs:simpleType

Defines a simple type. A simple type definition is a set of constraints on strings and information about the values they
encode, applicable to the normalized value of an attribute information item or of an element information item with no
element children. Informally, it applies to the values of attributes and the text-only content of elements. See more info
at http://www.w3.org/TR/xmlschema-1/#element-simpleType.

Tip: A simple type which is a base type to another type will be rendered with yellow background.

xs:simpleType properties

Oxygen XML Editor | Editing Documents | 117

http://www.w3.org/TR/xmlschema-1/#element-simpleType

ScopePossible ValuesDescriptionName

Only for global simple types.
If missing, will be displayed
as '[simpleType]' in diagram.

Any NCName.Simple type name. Always
required.

Name

For all simple types.restriction,list or unionThe simple type category:
restriction, list or union.

Derivation

For global and anonymous
simple types with the

All global simple types and
built-in simple types. In

A simple type definition
component. Required if

Base Type

derivation method set to
restriction.

addition another 3 proposals
are present: [anonymous
restriction], [anonymous

derivation method is set to
restriction.

list], [anonymous union] for
easily create anonymous
simple types.

For global and anonymous
simple types with the

All global simple types and
built-in simple types(from

A simple type definition
component. Required if

Item Type

derivation method set to list.schema for schema). Inderivation method is set to
list. Derivation by list is the

process of transforming a
addition another 3 proposals
are present: [anonymous

simple datatype (named therestriction], [anonymous
item type) into alist], [anonymous union] for
whitespace-separated list ofeasily create anonymous

simple types. values from this datatype.
The item type can be defined
inline by adding a
simpleType definition as a
child element of the list
element, or by reference,
using the itemType attribute
(it is an error to use both).

For global and anonymous
simple types with the

Not editable property.Category for grouping union
members.

Member Types

derivation method set to
union.

For global and anonymous
simple types with the

All global simple types and
built-in simple types(from

A simple type definition
component. Required if

Member

derivation method set toschema for schema). Inderivation method is set to
union. union. Deriving a simple

datatype by union merges the
addition another 3 proposals
are present: [anonymous

lexical spaces of severalrestriction], [anonymous
simple datatypes (calledlist], [anonymous union] for
member types) to create aeasily create anonymous

simple types. new simple datatype. The
member types can be defined
either by reference (through
the memberTypes attribute)
or embedded as simple
datatype local definitions in
the xs:union element. Both
styles can be mixed.

Only for global simple types.#all, list, restriction, union,
list restriction, list union,

Blocks any further
derivations of this datatype

Final

118 | Oxygen XML Editor | Editing Documents

ScopePossible ValuesDescriptionName

restriction union. In addition,
[Empty] proposal is present
for set empty string as value.

(by list, union, derivation or
all).

For all simple typesAny id.The component id.ID

Only for global and local
simple types

Not editable property.The name of the edited
component.

Component

For global simple types.Not editable property.The component namespace.Namespace

Not present for built-in
simple types..

Not editable property.The component system id.System ID

xs:group

Defines a group of elements to be used in complex type definitions. See more info at
http://www.w3.org/TR/xmlschema-1/#element-group.

When referenced, the graphical representation also contains the value for the minOccurs and maxOccurs properties (for
0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the group are drawn using dotted
lines if the group is optional.

xs:group properties

MentionsPossible ValuesDescriptionProperty Name

If missing, will be displayed
as '[group]' in diagram.

Any NCName for global
groups, all declared groups
for reference.

The group name. Always
required.

Name

Appears only for reference
groups.

A numeric positive value.
Default value is 1.

Minimum number of
occurrences of the group.

Min Occurs

Appears only for reference
groups.

A numeric positive value.
Default value is 1.

Maximum number of
occurrences of the group.

Max Occurs

For all groups.Any idThe component id.ID

For all groups.Not editable property.The edited component name.Component

For all groups.Not editable propertyThe component namespace.Namespace

For all groups.Not editable property.The component system id.System ID

xs:attributeGroup

Defines an attribute group to be used in complex type definitions. See more info at
http://www.w3.org/TR/xmlschema-1/#element-attributeGroup.

xs:attributeGroup properties

MentionsPossible ValuesDescriptionProperty Name

For all global or referred
attribute groups. If missing,

Any NCName for global
attribute groups, all declared

Attribute group name.
Always required.

Name

will be displayed as
'[attributeGroup]' in diagram.

attribute groups for
reference.

Oxygen XML Editor | Editing Documents | 119

http://www.w3.org/TR/xmlschema-1/#element-group
http://www.w3.org/TR/xmlschema-1/#element-attributeGroup

MentionsPossible ValuesDescriptionProperty Name

For all attribute groups.Any idThe component id.ID

For all attribute groups.Not editable property.The edited component name.Component

For all attribute groups.Not editable property.The component namespace.Namespace

For all attribute groups.Not editable property.The component system id.System ID

xs:include

Adds multiple schemas with the same target namespace to a document. See more info at
http://www.w3.org/TR/xmlschema-1/#element-include.

xs:include properties

Possible ValuesDescriptionProperty Name

Any URIIncluded schema location.Schema Location

Any IDInclude ID.ID

Not editable property.The component name.Component

xs:import

Adds multiple schemas with different target namespace to a document. See more info at
http://www.w3.org/TR/xmlschema-1/#element-import.

xs:import properties

Possible ValuesDescriptionProperty Name

Any URIImported schema locationSchema Location

Any URIImported schema namespaceNamespace

Any IDImport IDID

Not editable property.The component nameComponent

xs:redefine

Redefines simple and complex types, groups, and attribute groups from an external schema. See more info at
http://www.w3.org/TR/xmlschema-1/#element-redefine.

xs:redefine properties

Possible ValuesDescriptionProperty Name

Any URIRedefine schema location.Schema Location

Any IDRedefine IDID

Not editable property.The component name.Component

xs:notation

120 | Oxygen XML Editor | Editing Documents

http://www.w3.org/TR/xmlschema-1/#element-include
http://www.w3.org/TR/xmlschema-1/#element-import
http://www.w3.org/TR/xmlschema-1/#element-redefine

Describes the format of non-XML data within an XML document. See more info at
http://www.w3.org/TR/xmlschema-1/#element-notation.

xs:notation properties

MentionsPossible valuesDescriptionProperty Name

If missing, will be displayed
as '[notation]' in diagram.

Any NCName.The notation name. Always
required.

Name

Required if public identifier
is absent, otherwise optional.

Any URIThe notation system
identifier.

System Identifier

Required if system identifier
is absent, otherwise optional.

A Public ID valueThe notation public
identifier.

Public Identifier

For all notations.Any IDThe component id.ID

For all notations.Not editable property.The edited component name.Component

For all notations.Not editable property.The component namespace.Namespace

For all notations.Not editable property.The component system id.System ID

xs:sequence, xs:choice, xs:all

Figure 50: An xs:sequence in diagram

xs:sequence specifies that the child elements must appear in a sequence. Each child element can occur from 0 to
any number of times. See more info at http://www.w3.org/TR/xmlschema-1/#element-sequence.

Figure 51: An xs:choice in diagram

xs:choice allows only one of the elements contained in the declaration to be present within the containing element.
See more info at http://www.w3.org/TR/xmlschema-1/#element-choice.

Figure 52: An xs:all in diagram

xs:all specifies that the child elements can appear in any order. Each child element can occur 0 or 1 time. See more
info at http://www.w3.org/TR/xmlschema-1/#element-all.

The compositor graphical representation also contains the value for the minOccurs and maxOccurs properties (for
0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the compositor are drawn using
dotted lines if the compositor is optional.

xs:sequence, xs:choice, xs:all properties

MentionsPossible ValuesDescriptionProperty Name

'all' is only available as a
child of a group or complex
type.

sequence, choice, all.Compositor type.Compositor

The property is not present
if compositor is 'all' and is
child of a group.

A numeric positive value.
Default is 1.

Minimum occurrences of
compositor.

Min Occurs

Oxygen XML Editor | Editing Documents | 121

http://www.w3.org/TR/xmlschema-1/#element-notation
http://www.w3.org/TR/xmlschema-1/#element-sequence
http://www.w3.org/TR/xmlschema-1/#element-choice
http://www.w3.org/TR/xmlschema-1/#element-all

MentionsPossible ValuesDescriptionProperty Name

The property is not present
if compositor is 'all' and is
child of a group.

A numeric positive value.
Default is 1.

Maximum occurrences of
compositor.

Max Occurs

For all compositors.Any IDThe component id.ID

For all compositors.Not editable property.The edited component name.Component

For all compositors.Not editable property.The component system id.System ID

xs:any

Enables the author to extend the XML document with elements not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema-1/#element-any.

The graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and 1..1
occurs the values are implied by the connector style) and the connectors to the wildcard are drawn using dotted lines if
the wildcard is optional.

xs:any properties

Possible ValuesDescriptionProperty Name

##any, ##other, ##targetNamespace,
##local or anyURI

The list of allowed namespaces. The
namespace attribute expects a list of
namespace URIs. In this list, two

Namespace

values have a specific meaning:
'##targetNamespace' stands for the
target namespace, and '##local' stands
for local attributes (without
namespaces).

skip, lax, strictType of validation required on the
elements allowed for this wildcard.

Process Contents

A numeric positive value. Default is 1.Minimum occurrences of anyMin Occurs

A numeric positive value. Default is 1.Maximum occurrences of anyMax Occurs

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:anyAttribute

Enables the author to extend the XML document with attributes not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema-1/#element-anyAttribute.

xs:anyAttribute properties

122 | Oxygen XML Editor | Editing Documents

http://www.w3.org/TR/xmlschema-1/#element-any
http://www.w3.org/TR/xmlschema-1/#element-anyAttribute

Possible ValueDescriptionProperty Name

##any, ##other, ##targetNamespace,
##local or anyURI

The list of allowed namespaces. The
namespace attribute expects a list of
namespace URIs. In this list, two

Namespace

values have a specific meaning:
'##targetNamespace' stands for the
target namespace, and '##local' stands
for local attributes (without
namespaces).

skip, lax, strictType of validation required on the
elements allowed for this wildcard.

Process Contents

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:unique

Defines that an element or an attribute value must be unique within the scope. See more info at
http://www.w3.org/TR/xmlschema-1/#element-unique.

xs:unique properties

Possible ValuesDescriptionProperty Name

Any NCName.The unique name. Always required.Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:key

Specifies an attribute or element value as a key (unique, non-nullable and always present) within the containing element
in an instance document. See more info at http://www.w3.org/TR/xmlschema-1/#element-key.

xs:key properties

Possible ValueDescriptionProperty Name

Any NCName.The key name. Always required.Name

Oxygen XML Editor | Editing Documents | 123

http://www.w3.org/TR/xmlschema-1/#element-unique
http://www.w3.org/TR/xmlschema-1/#element-key

Possible ValueDescriptionProperty Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:keyRef

Specifies that an attribute or element value corresponds to that of the specified key or unique element. See more info at
http://www.w3.org/TR/xmlschema-1/#element-keyref.

A keyref by default displays the Referenced Key property when rendered.

xs:keyRef properties

Possible ValuesDescriptionProperty Name

Any NCName.The keyref name. Always required.Name

any declared element constraints.The name of referred key.Referred Key

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:selector

Specifies an XPath expression that selects a set of elements for an identity constraint. See more info at
http://www.w3.org/TR/xmlschema-1/#element-selector.

xs:selector properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying
the element on which the constraint
applies.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

xs:field

124 | Oxygen XML Editor | Editing Documents

http://www.w3.org/TR/xmlschema-1/#element-keyref
http://www.w3.org/TR/xmlschema-1/#element-selector

Specifies an XPath expression that specifies the value used to define an identity constraint. See more info at
http://www.w3.org/TR/xmlschema-1/#element-field.

xs:field properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying
the field(s) composing the key, key
reference, or unique constraint.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

Constructs Used to Group Schema Components

This section explains the components that can be used for grouping other schema components:

• Attributes
• Constraints
• Substitutions

Attributes

Groups all attributes and attribute groups belonging to a complex type.

Attributes properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the attributes
are displayed.

Component

Not editable property.The component system id.System ID

Constraints

Groups all constraints (xs:key, xs:keyRef or xs:unique) belonging to an element.

Attributes properties

Oxygen XML Editor | Editing Documents | 125

http://www.w3.org/TR/xmlschema-1/#element-field

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the constraints
are displayed.

Component

Not editable property.The component system id.System ID

Substitutions

Groups all elements which can substitute the current element.

Attributes properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the substitutions
are displayed.

Component

Not editable property.The component system id.System ID

Navigation in the Schema Diagram

The following editing and navigation features work for all types of schema components:

• Move/refer components in the diagram using drag-and-drop actions.
• Select consecutive components on the diagram (components from the same level) using the Shift key to . You can

also make discontinuous selections in the schema diagram using the Ctrl key.
• Use the arrow keys to navigate the diagram vertically and horizontally.
• Use Home/End keys to navigate to the first/last component from the same level. Use (Ctrl - Home) key combination

to go to the diagram root and (Ctrl - End) to go to the last child of the selected component.
• You can easily go back to a previously visited component while moving from left to right. The path will be preserved

only if you use the left arrow key or right arrow key. For example, if the current selection is on the second attribute
from an attribute group and you press the left arrow key to navigate to the attribute group, when you press the right
arrow key, then the selection will be moved to the second attribute.

• Go back and forward between components viewed or edited in the diagram by selecting them in the Outline view:

• Back (go to previous schema component)
• Forward (go to next schema component)
• Go to Last Modification (go to last modified schema component)

• Copy, refer or move global components, attributes, and identity constraints to a different position and from one
schema to another using the Cut/Copy and Paste/Paste as Reference actions.

• Go to the definition of an element or attribute with the Show Definition action.
• Search in the diagram using the Find/Replace dialog or the Quick find toolbar. You can find/replace components

only in the current file scope.
• You can expand and see the contents of the imports/includes/redefines in the diagram. In order to edit components

from other schemas the schema for each component will be opened as a separate file in Oxygen.

126 | Oxygen XML Editor | Editing Documents

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will be
detected and you will be asked to refresh the current schema contents.

•
Recursive references are marked with a recurse symbol: . Click this symbol to navigate between the element
declaration and its reference.

Schema Validation

Validation for the Design page is seamlessly integrated in the Oxygen XML documents validation capability.

Figure 53: XML Schema Validation

A schema validation error is presented by highlighting the invalid component in the following places:

• in the Attributes View
• in the diagram by surrounding the component that has the error with a red border
• a marker on the errors stripe at the right of the diagram view
• a status label with a red icon () below the diagram view

Invalid facets for a component are highlighted in the Facets View.

Components with invalid properties are rendered with a red border. This is a default color, but you can customize it in
the Document checking user preferences. When hovering an invalid component, the tooltip will present the validation
errors associated with that component.

When editing a value which is supposed to be a qualified or unqualified XML name, the application provides automatic
validation of the entered value. This proves to be very useful in avoiding setting invalid XML names for the given
property.

If you validate the entire schema using Document > Validate Document (Ctrl+Shift+V) or the action available on
the Validate toolbar, all validation errors will be presented in the Errors tab. To resolve an error, just click on it (or

Oxygen XML Editor | Editing Documents | 127

double click for errors located in other schemas) and the corresponding schema component will be displayed as the
diagram root so that you can easily correct the error.

Important: If the schema imports only the namespace of other schema without specifying the schema location
and a catalog is set-up that maps the namespace to a certain location both the validation and the diagram will
correctly identify the imported schema.

Tip: If the validation action finds that the schema contains unresolved references, the application will suggest the
use of validation scenarios, but only if the current edited schema is a XML Schema module.

Schema Editing Actions

The schema can be edited using drag and drop operations or contextual menu actions.

Drag and drop action provides the easiest way to move the existing components to other locations in the schema. For
example, an element reference can be quickly inserted in the diagram with a drag and drop from the Outline view to a
compositor in the diagram. Also the components order in an xs:sequence can be easily changed using drag and drop.

If this property has not been set, you can easily set the attribute/element type by dragging over it a simple type or complex
type from the diagram. If the type property for a simple type or complex type is not already set, you can set it by dragging
over it a simple or complex type.

Depending on the drop area, different actions are available:

• move - Context dependent, the selected component is moved to the destination;
• refer - Context dependent, the selected component is referred from the parent;
• copy - If (Ctrl) key is pressed, a copy of the selected component is inserted to the destination.

Visual clues about the operation type are indicated by the mouse pointer shape:

•

 - When moving a component;
•

 - When referring a component;
•

 - When copying a component.

You can edit some schema components directly in the diagram. For these components, you can edit the name and the
additional properties presented in the diagram by double clicking the value you want to edit. If you want to edit the name
of a selected component, you can also press (Enter). The list of properties which can be displayed for each component
can be customized in the Preferences.

When editing references, you can choose from a list of available components. Components from an imported schema
for which the target namespace does not have an associated prefix is displayed in the list as
componentName#targetNamespace. If the reference is from a target namespace which was not yet mapped, you
are prompted to add prefix mappings for the inserted component namespace in the current edited schema.

You can also change the compositor by double-clicking it and choose the compositor you want from the proposals list.

There are some components that cannot be edited directly in the diagram: imports, includes, redefines. The editing action
can be performed if you double-click or press (Enter) on an import/include/redefine component. An edit dialog is
displayed, allowing you to customize the directives.

The contextual menu of the Design page offers the following edit actions:

• Show Definition ((Ctrl - Shift - Enter)) - Shows the definition for the current selected component. For references,
this action is available by clicking the arrow displayed in its bottom right corner.

• Open Schema ((Ctrl - Shift - Enter)) - Opens the selected schema. This action is available for xsd:import,
xsd:include and xsd:redefine elements. If the file you try to open does not exist, a warning message is
displayed and you have the possibility to create the file.

128 | Oxygen XML Editor | Editing Documents

• Edit Attributes... () - Allows you to edit the attributes of the selected component in a dialog that presents the same
attributes as in the Attributes View and the Facets View. The actions that can be performed on attributes in this dialog
are the same actions presented in the two views.

• Append child - Offers a list of valid components to append depending on the context. For example to a complex
type you can append a compositor, a group, attributes or identity constraints (unique, key, keyref). You can
set a name for a named component after it was added in the diagram.

• Insert before - Inserts before the selected component in the schema. The list of components that can be inserted
depends on the context. For example, before an xsd:import you can insert an xsd:import, xsd:include
or xsd:redefine. You can set a name for a named component after it was added in the diagram.

• Insert after - Inserts a component after the selected component on the schema. The list of components that can be
inserted depends on the context. You can set a name for a named component after it was added in the diagram.

• New global - Inserts a global component in the schema diagram. This action does not depend on the current context.
If you choose to insert an import you have to specify the URL of the imported file, the target namespace and the
import ID. The same information, excluding the target namespace, is requested for an xsd:include or
xsd:redefine element. See the Edit Import dialog for more details.

Note: If the imported file has declared a target namespace, the field Namespace is completed automatically.

• Edit Schema Namespaces... - When performed on the schema root, it allows you to edit the schema target namespace
and namespace mappings. You can also invoke the action by double-clicking the target namespace property from
Attributes view for the schema or by double-clicking the schema component.

• Edit Annotations... - Allows you to edit the annotation for the selected schema component in the Edit Annotations
dialog. You can perform the following operations in the dialog:

• Edit all appinfo/documentation items for a specific annotation - All appinfo/documentation
items for a specific annotation are presented in a table and can be easily edited. Information about an annotation
item includes: type (documentation/appinfo), content, source (optional, specify the source of the
documentation/appinfo element) and xml:lang. The content of a documentation/appinfo item
can be edited in the Content area below the table.

• Insert/Insert before/Remove documentation/appinfo. - Allows you to insert a new annotation item

(documentation/appinfo). You can add a new item before the item selected in table by pressing the

button. Also you can delete the selected item using the button.
• Move items up/down - To do this use the and buttons.
• Insert/Insert before/Remove annotation - Available for components that allow multiple annotations like schemas

or redefines.
• Specify an ID for the component annotation. The ID is optional.

Note: For imported/included components which do not belong to the current edited schema the dialog presents
the annotation as read-only and you will have to open the schema where the component is defined in order to
edit its annotation.

Note: Annotations are rendered by default under the graphical representation of the component. When you
have a reference to a component with annotations, these annotations are presented in the diagram also below
the reference component. The Edit Annotations action invoked from the contextual menu edit the annotations
for the reference. If the reference component does not have annotations, you can edit the annotations of the
referred component by double-clicking the annotations area. Otherwise you can edit the referred component
annotations only if you go to the definition of the component.

• Extract Global Element - Action available for local elements. A local element is made global and is replaced with
a reference to the global element. The local element properties that are also valid for the global element declaration
are kept.

Oxygen XML Editor | Editing Documents | 129

Figure 54: Extracting a Global Element

If you execute Extract Global Element on element name, the result is:

• Extract Global Attribute - Action available for local attributes. A local attribute is made global and replaced with
a reference to the global attribute. The properties of local attribute that are also valid in the global attribute declaration
are kept.

Figure 55: Extracting a Global Attribute

If you execute Extract Global Attribute on attribute note the result is:

130 | Oxygen XML Editor | Editing Documents

• Extract Global Group - Action available for compositors (sequence, choice, all). This action extracts a global group
and makes a reference to it. The action is enabled only if the parent of the compositor is not a group.

If you execute Extract Global Group on the sequence element, the Extract Global Component dialog is shown
and you can choose a name for the group. If you type personGroup, the result

is:

Figure 56: Extracting a Global Group

• Extract Global Type - Action used to extract an anonymous simple type or an anonymous complex type as global.
For anonymous complex types, the action is available on the parent element.

Oxygen XML Editor | Editing Documents | 131

Figure 57: Extracting a Global Simple Type

If you use the action on the union component and choose numericST for the new global simple type name, the
result is:

Figure 58: Extracting a Global Complex Type

If you execute the action on element person and choose person_type for the new complex type name, the result
is:

• Rename Component - Rename the selected component.
•

Cut (Ctrl - X) - Cut the selected component(s).
•

Copy (Ctrl - C) - Copy the selected component(s).

132 | Oxygen XML Editor | Editing Documents

•
Paste (Ctrl - V) - Paste the component(s) from the clipboard as children of the selected component.

• Paste as Reference - Create references to the copied component(s). If not possible a warning message is displayed.
• Remove (Delete) - Remove the selected component(s).
• Optional - Can be performed on element/attribute/group references, local attributes, elements, compositors, and

element wildcards. The minOccurs property is set to 0 and the use property for attributes is set to optional.
• Unbounded - Can be performed on element/attribute/group references, local attributes, elements, compositors, and

element wildcards. The maxOccurs property is set to unbounded and the use property for attributes is set to
required.

• Search - Can be performed on local elements or attributes. This action makes a reference to a global element or
attribute.

• Search References - Searches all references of the item found at current cursor position in the defined scope if
any.

• Search References in... - Searches all references of the item found at current cursor position in the specified scope.
• Search Occurrences in File - Searches all occurrences of the item found at current cursor position in the current

file.
• Component Dependencies - Allows you to see the dependencies for the current selected component.
• Resource Hierarchy - Allows you to see the hierarchy for the current selected resource.
• Resource Dependencies - Allows you to see the dependencies for the current selected resource.
• Expand all - Expands recursively all sub-components of the selected component.
• Collapse all - Collapses recursively all sub-components of the selected component.
• Save as Image... - Save the diagram as image, in JPEG, BMP, SVG or PNG format.
• Generate Sample XML Files - Generate XML files using the current opened schema. The selected component

is the XML document root. See more in the Generate Sample XML Files section.
• Options... - Show the Schema preferences panel.

Schema Outline View

The Outline view presents all the global components grouped by their location, namespace, or type. If hidden, you can
open it from Window > Show View > Outline .

Oxygen XML Editor | Editing Documents | 133

Figure 59:The Outline View for XML Schema

The Outline view provides the following options:

• Selection update on caret move - Allows a synchronization between Outline view and schema diagram. The
selected view from the diagram is also selected in the Outline view.

• Sort - Allows you to sort alphabetically the schema components.
• Show all components - Displays all components that were collected starting from the main files. Components that

are not referable from the current file are marked with an orange underline. To refer them, you need to add an import
directive with the componentNS namespace.

• Show referable components - Displays all components (collected starting from the main files) that can be referred
from the current file. This option is set by default.

• Show local components - Displays components defined in the current file only.
• Group by location/namespace/type - These three operations allow you to group the components by location,

namespace, or type. When grouping by namespace, the main schema target namespace is the first presented in the
Outline view.

The following contextual menu actions are available:

• Remove (Delete) - Removes the selected item from the diagram.
• Search References (Ctrl-Shift-R) - Searches all references of the item found at current cursor position in the

defined scope, if any.
• Search References in... - Searches all references of the item found at current cursor position in the specified scope.
• Component Dependencies (Ctrl + Shift + F4) - Allows you to see the dependencies for the current selected

component.
• Resource Hierarchy (F4) - Allows you to see the hierarchy for the current selected resource.
• Resource Dependencies (Shift + F4) - Allows you to see the dependencies for the current selected resource.
• Rename Component - Renames the selected component.

134 | Oxygen XML Editor | Editing Documents

• Generate Sample XML Files... - Generate XML files using the current opened schema. The selected component
is the XML document root.

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match (like *textToFind*).

The Outline content is synchronized with Text view; when you click a component in the Outline view, its definition
is highlighted in the Text view.

The Attributes View

The Attributes view presents the properties for the selected component in the schema diagram. If hidden, you can open
it from Window > Show View > Attributes .

Figure 60:The Attributes View

The default value of a property is presented in the Attributes view with blue foreground. The properties that can't be
edited are rendered with gray foreground. A non-editable category which contains at least one child is rendered with
bold. Bold properties are properties with values set explicitly to them.

Properties for components which do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking on by pressing Enter. For most properties you can choose valid values from
a list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted in the table
with the corresponding foreground color. By default properties with errors are highlighted with red and the properties
with warnings are highlighted with yellow. You can customize these colors from the Document checking user preferences.

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog will be shown
allowing you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit
Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:

Oxygen XML Editor | Editing Documents | 135

• Add - Allows you to add a new member type to an union's member types category.
• Remove - Allows you to remove the value of a property.
• Move Up - Allows you to move up the current member to an union's member types category.
• Move Down - Allows you to move down the current member to an union's member types category.
•

 Copy - Copy the attribute value.
• Show Definition - Show the definition for the selected type.
• Show Facets - Allows you to edit the facets for a simple type.

The Facets View

The Facets view presents the facets for the selected component, if available. If hidden, you can open it from Window
> Show View > Facets .

Figure 61:The Facets View

The default value of a facet is rendered in the Facets view with a blue color. The facets that can't be edited are rendered
with a gray color. The grouping categories (eg: Enumerations and Patterns) are not editable. If these categories contain
at least one child they are rendered with bold. Bold facets are facets with values set explicitly to them.

Important: Usually inherited facets are presented as default in the Facets view but if patterns are inherited from
a base type and also specified in the current simple type only the current specified patterns will be presented. You
can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip on
the Patterns category.

Facets for components which do not belong to the current edited schema are read-only but if you double-click them you
can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking on it or by pressing Enter, when that facet is selected. For some facets you can
choose valid values from a list or you can specify another value. If a facet has an invalid value or a warning, it will be
highlighted in the table with the corresponding foreground color. By default facets with errors are presented with red
and the facets with warnings with yellow. You can customize the error colors from the Document Checking user
preferences.

The Facets view has four toolbar actions available also on the contextual menu:

• Add - Allows you to add a new enumeration or a new pattern.
• Remove - Allows you to remove the value of a facet.
• Move Up - Allows you to move up the current enumeration/pattern in Enumerations/Patterns category.
• Move Down - Allows you to move down the current enumeration/pattern in Enumerations/Patterns category.
•

 Copy - Copy the attribute value.
• Open in Regular Expressions Builder - Allows you to open the pattern in the XML Schema Regular Expressions

Builder

136 | Oxygen XML Editor | Editing Documents

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the pin button.

Editing Patterns

You can edit regular expressions either be hand or you can right click, choose Open in Regular Expression Builder
and have a full-fledged XML Schema Regular Expression builder to guide you in testing and constructing the pattern.

The Palette View

Designed to offer quick access to XML Schema components, the Palette view improves the usability of the XML
Schema diagram builder allowing you drag components from the Palette view and drop them into the Design page.

Figure 62: Palette View

Components are organized functionally into 4 collapsible categories:

• Basic components: elements, group, attribute, attribute group, complex type, simple type.
• Compositors and Wildcards: sequence, choice, all, any, any attribute.
• Directives: import, include, redefine.
• Identity constraints: key, keyref, unique, selector, field.

To add a component to the edited schema:

• click and hold a graphic symbol from the Palette view, then drag the component into the Design view;
• a line dynamically connects the component with the XML schema structure;
• release the component into a valid position.

Note: You cannot drop a component into an invalid position. When you hover the component into an invalid

position, the mouse cursor changes its shape into . Also, the connector line changes its color from the usual
dark grey to the color defined in the Validation error highlight color option (default color is red).

Edit Schema Namespaces

You can use the dialog XML Schema Namespaces to easily set a target namespace and define namespace mappings
for a newly created XML Schema. In the Design page these namespaces can be modified anytime by choosing Edit
Schema Namespaces from the contextual menu. Also you can do that by double-clicking on the schema root in the
diagram.

The XML Schema Namespaces dialog allows you to edit the following information:

• Target namespace - The target namespace of the schema.

• Prefixes - The dialog shows a table with namespaces and the mapped prefixes. You can add a new prefix mapping
or remove an already existing one.

Oxygen XML Editor | Editing Documents | 137

Contextual Editing

Smaller interrelated modules that define a complex XML Schema cannot be correctly edited or validated individually,
due to their interdependency with other modules. For example, a function defined in a main schema document is not
visible when you edit an included or imported module. Oxygen provides the support for defining the main module (or
modules), thus allowing you to edit any of the imported/included schema files in the context of the larger schema
structure.

To set a main schema files, you need to define a validation scenario and add validation units that point to the main
schemas. Oxygen warns you if the current module is not part of the dependencies graph computed for the main schema.
In this case, it considers the current module as the main schema.

The advantages of editing in the context of main file include:

• correct validation of a module in the context of a larger schema structure;
• content completion assistant displays all the referable components valid in the current context. This include components

defined in modules other than the currently edited one;
• the Outline displays the components collected from the entire schema structure;

Create an XML Schema From a Relational Database Table

To create an XML Schema from the structure of a relational database table use the special wizard available in the Tools
menu.

Generate Sample XML Files

To generate sample XML files from an XML Schema use the Tools > Generate Sample XML Files... action. The
action is also available on the contextual menu from the schema Design page.

138 | Oxygen XML Editor | Editing Documents

Figure 63:The Generate Sample XML Files Dialog

Complete the dialog as follows:

• URL - Schema's URL. Last used URLs are displayed in the drop-down box.
• Namespace - Displays the namespace of the selected schema.
• Document root - After the list is selected, a list of elements is displayed in the combo box. The user should choose

the root of the XML documents to be generated.
• Output folder - Path to the folder where the generated XML instances will be saved.
• Filename prefix and Extension - Generated files' names have the following format: prefixN.extension,

where prefix and extension are specified by the user and N represents an incremental number from 0 up to
Number of instances - 1.

• Number of instances - The number of XML files to be generated.
• Open first instance in editor - When checked, the first generated XML file will be opened in editor.
• Namespaces - Here the user can specify the default namespace as well as the proxies (prefixes) for namespaces.
• Load settings / Export settings - The current settings can be saved for further usage with the Export settings button,

and reloaded when necessary with the Load settings button.

The Options tab becomes active only after the URL field is filled-in and a schema is detected. It allows the user to set
specific options for different namespaces and elements.

Oxygen XML Editor | Editing Documents | 139

Figure 64:The Generate Sample XML Files Dialog

The Namespace / Element table allows you to set a namespace for each element name that will appear in an XML
document instance.

• Namespace / Element table -

• All elements from all namespaces. This is the default setting and it can also be accessed from Options >
Preferences > XML > XML Instance Generator .

• All elements from a specific namespace.
• A specific element from a specific namespace.

• Settings

• Generate optional elements - When checked, all elements will be generated, including the optional ones (having
the minOccurs attribute set to 0 in the schema).

• Generate optional attributes - When checked, all attributes will be generated, including the optional ones
(having the use attribute set to optional in the schema.)

• Values of elements and attributes - Controls the content of generated attributes and elements. Several choices
are available:

• None - No content is inserted;
• Default - Inserts a default value depending of data type descriptor of the respective element or attribute. The

default value can be either the data type name or an incremental name of the attribute or element (according
to the global option from the XML Instances Generator preferences page). Please note that type restrictions
are ignored for this option when generating the values of elements and attributes. For example if an element
is of a type that restricts an xs:string with the xs:maxLength facet in order to allow strings with a maximum

140 | Oxygen XML Editor | Editing Documents

length of 3 the XML instance generator tool may generate string element values longer than 3 characters. If
you need to generate valid values, then the recommended option is Random.

• Random - Inserts a random value depending of data type descriptor of the respective element or attribute.

• Preferred number of repetitions - Allows the user to set the preferred number of repeating elements related
with minOccurs and maxOccurs defined in XML Schema.

• If the value set here is between minOccurs and maxOccurs, then that value will be used;
• If the value set here is less than minOccurs, then the minOccurs value will be used;
• If the value set here is greater than maxOccurs, then that value will be used.

• Maximum recursion level - Option to set the maximum allowed depth of the same element if a recursion is
found.

• Choice strategy - Option to be used in case of xs:choice or substitutionGroup. The possible strategies are:

• First - the first branch of xs:choice or the head element of substitutionGroup will be always used;
• Random - a random branch of xs:choice or a substitute element or the head element of a

substitutionGroup will be used.

• Generate the other options as comments - Option to generate the other possible choices or substitutions (for
xs:choice and substitutionGroup). These alternatives will be generated inside comments groups so
you can uncomment and use them later. Use this option with care (for example on a restricted namespace and
element) as it may generate large result files.

• Load settings / Export settings - The current settings can be saved for further usage with the Export settings
button, and reloaded when necessary with the Load settings button.

• Element values - The Element values tab allows you to add values that will be used to generate the elements content.
If there are more than one value, then the values will be used in a random order.

Figure 65:The Element Values Tab

• Attribute values - The Attribute values tab allows you to add values that will be used to generate the attributes
content. If there are more than one value, then the values will be used in a random order.

Oxygen XML Editor | Editing Documents | 141

Figure 66:The Attribute Values Tab

Running the XML Instance Generator From Command Line

The XML instance generator tool can be also used from command line by running the script called xmlGenerator.bat
(on Windows) / xmlGenerator.sh (on Mac OS X / Unix / Linux) located in the Oxygen installation folder. The
parameters can be set once in the dialog, exported to an XML file on disk with the button Export settings and reused
from command line. With the exported settings file you can generate the same XML instances from the command line
as from the dialog:

xmlGenerator.sh -cfgFile myConfigurationFile.xml

The script can be integrated in an external batch process launched from the command line. The command line parameter
of the script is the relative path to the exported XML settings file. The files specified with relative paths in the exported
XML settings will be made absolute relative to the folder where the script is run.

The following example shows such an XML configuration file:

XML Configuration File

<settings>

<schemaSystemId>http://www.w3.org/2001/XMLSchema.xsd</schemaSystemId>

 <documentRoot>schema</documentRoot>
 <outputFolder>D:\projects\output</outputFolder>
 <filenamePrefix>instance</filenamePrefix>

142 | Oxygen XML Editor | Editing Documents

 <filenameExtension>xml</filenameExtension>
 <noOfInstances>1</noOfInstances>
 <openFirstInstance>true</openFirstInstance>
 <defaultNamespace><NO_NAMESPACE></defaultNamespace>
 <element namespace="<ANY>" name="<ANY>">
 <generateOptionalElements>false</generateOptionalElements>

<generateOptionalAttributes>false</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>

<preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="false"/>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>
 </element>
 <element namespace="<NO_NAMESPACE>"
 name="<ANY>">
 <generateOptionalElements>true</generateOptionalElements>

<generateOptionalAttributes>true</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>

<preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="true"/>
 <elementValue>value1</elementValue>
 <elementValue>value2</elementValue>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>
 </element>
</settings>

XML Schema Regular Expressions Builder

The XML Schema regular expressions builder allows testing regular expressions on a fragment of text as they are applied
to an XML instance document. Start the tool from menu Tools > XML Schema Regular Expressions Builder .

Oxygen XML Editor | Editing Documents | 143

Figure 67: XML Schema Regular Expressions Builder Dialog

The dialog contains the following sections:

• Regular expressions editor - allows you to edit the regular expression to be tested and used. Content completion
is available and presents a list with all the predefined expressions. It is triggered by pressing (Ctrl - Space).

• Error display area - if the edited regular expression is incorrect, an error message will be displayed here. The
message contains the description and the exact location of the error. Also, a click on the quick navigation button
() highlights the error inside the regular expression.

• Category combo box - here you can choose from several categories of predefined expressions. The selected category
influences the displayed expressions in the Available expressions table.

• Available expressions table - holds the available regular expressions and a short description for each of them. The
set of expressions depends on the category selected in the previous combo box. You can add an expression in the
Regular expressions editor by double-clicking on the expression row in the table. You will notice that in the case
of Character categories and Block names the expressions are also listed in complementary format. For example:
\p{Lu} - Uppercase letters; \P{Lu} - Complement of: Uppercase letters.

• Evaluate expression on radio buttons - there are available two options:

• Evaluate expression on each line - the edited expression will be applied on each line in the Test area;
• Evaluate expression on all text - the edited expression will be applied on the whole text.

144 | Oxygen XML Editor | Editing Documents

• Test area - a text editor which allows you to enter a text sample on which the regular expression will be applied. All
matches of the edited regular expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button will become
active when an editor is opened in the background and there is an expression in the Regular expressions editor.

The regular expression builder cannot be used to insert regular expressions in the grid version or the schema version of
a document editor. Accordingly, the Insert button of the dialog will be disabled if the current document is edited in grid
mode.

Note: Some regular expressions may block indefinitely the Java Regular Expressions engine. If the execution of
the regular expression does not end in about five seconds, the application displays a dialog that allows you to
interrupt the operation.

Generating Documentation for an XML Schema

Oxygen can generate detailed documentation for the components of an XML Schema in HTML, PDF and DocBook
XML formats similar with the Javadoc documentation for the components of a Java class. You can select the components
and the level of detail. The components are hyperlinked in both HTML and DocBook documents.

To generate documentation for an XML Schema document use the dialog Schema Documentation. It is opened with
the action Tools > Generate Documentation > Schema Documentation... (Ctrl+Alt+S) . It can be also opened from
the Project view contextual menu: Generate Documentation > Schema Documentation... The dialog enables the
user to configure a large set of parameters for the process of generating the documentation.

Figure 68:The Output panel of the Schema Documentation Dialog

The Schema URL field of the dialog panel must contain the full path to the XML Schema (XSD) file you want to
generate documentation for. The schema may be a local or a remote one. You can specify the path to the schema using
the editor variables.

The following options are available in the Settings tab:

Oxygen XML Editor | Editing Documents | 145

• Format - Allows you to choose between three predefined formats (HTML, PDF, DocBook) and a custom one
(Custom). This allows you to control the output format by proving a custom stylesheet.

• Output file - Name of the output file.
• Split output into multiple files - Instructs the application to split the output into multiple files. You can choose to

split them by namespace, location or component name.
• Open in browser - Opens the result in the Default Internet browser.
• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with the

xml:lang attribute set to the selected language. If you choose a primary language code (like en, for example), this
includes all its possible variations (for example en-us and en-uk just to name a few).

You can choose to split the output into multiple files by namespace, location or component.

You can export the settings of the Schema Documentation dialog to an XML file by pressing the Export settings button.
With the exported settings file you can generate the same documentation from the command line interface.

Figure 69:The Settings Panel of the Schema Documentation Dialog

When you generate documentation for a schema you can choose what components to include in the output (global
elements, global attributes, local elements, local attributes, simple types, complex types, group, attribute groups, referenced
schemas, redefines) and the details to be included in the documentation:

• Diagram - Displays the diagram for each component. You can choose the image format (JPEG, PNG, GIF, SVG)
to use for the diagram section.

• Diagram annotations - This option controls whether or not the annotations of the components presented in the
diagram sections should be included.

• Namespace - Displays the namespace for each component.
• Location - Displays the schema location for each component.
• Type - Displays the component type if it is not an anonymous one.
• Type hierarchy - Displays the types hierarchy.

146 | Oxygen XML Editor | Editing Documents

• Model - Displays the model (sequence, choice, all) presented in BNF form. Different separator characters are used
depending on the information item used:

• xs:all - its children will be separated by space characters;
• xs:sequence - its children will be separated by comma characters;
• xs:choice - its children will be separated by | characters.

• Children - Displays the list of component's children.
• Instance - Displays an XML instance generated based on each schema element.
• Used by - Displays the list of all the components that refer the current one. The list is sorted by component type and

name.
• Properties - Displays some of the component's properties.
• Facets - Displays the facets for each simple type
• Identity constraints - Displays the identity constraints for each element. For each constraint there are presented the

name, type (unique, key, keyref), refer attribute, selector and field(s).
• Attributes - Displays the attributes for the component. For each attribute there are presented the name, type, fixed

or default value, usage and annotation.
• Annotations - Displays the annotations for the component. If you choose Escape XML Content, the XML tags are

present in the annotations.
• Source - Displays the text schema source for each component.
• Generate index - Displays an index with the components included in the documentation.
• Include local elements and attributes - If checked, local elements and attributes are included in the documentation

index.

These options are persistent between sessions.

Generate Documentation in HTML Format

The HTML documentation contains images corresponding to the schema definitions as the ones displayed by the schema
diagram editor. These images are divided in clickable areas which are linked to the definitions of the clicked names of
types or elements. The documentation of a definition includes a Used By section with links to the other definitions which
refer to it. If the Escape XML Content option is unchecked, the HTML or XHTML tags used inside the
xs:documentation elements of the input XML Schema for formatting the documentation text (for example ,
<i>, <u>, , , etc.) are rendered in the generated HTML documentation.

The generated images format is PNG. The image of an XML Schema component contains the graphical representation
of that component as it is rendered in the Schema Diagram panel of the Oxygen's XSD editor panel.

Oxygen XML Editor | Editing Documents | 147

Figure 70: Schema Documentation Example

The generated documentation includes a table of contents. You can group the contents by namespace, location, or
component type. After the table of contents there is presented some information about the main schema, the imported,
included, and redefined schemas. This information contains the schema target namespace, schema properties (attribute
form default, element form default, version) and schema location.

Figure 71: Information About a Schema

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are
grouped in the same mode. If you split the output by location, each file contains a schema description and the components
that you have chosen to include. If you split the output by namespace, each file contains information about schemas
from that namespace and the list with all included components. If you choose to split the output by component, each
file contains information about a schema component.

After the documentation is generated you can collapse details for some schema components. This can be done using the
Showing view:

148 | Oxygen XML Editor | Editing Documents

Figure 72:The Showing View

For each component included in the documentation, the section presents the component type follow by the component
name. For local elements and attributes, the name of the component is specified as parent name/component name. You
can easily go to the parent documentation by clicking the parent name.

Figure 73: Documentation for a Schema Component

If the schema contains imported or included modules, their dependencies tree is generated in the documentation.

Oxygen XML Editor | Editing Documents | 149

Generate Documentation in PDF, DocBook or a Custom Format

Schema documentation can be also generated in PDF, DocBook, or a custom format. You can choose the format from
the Schema Documentation Dialog. For the PDF and DocBook formats, the option to split the output in multiple files
is disabled.

When choosing PDF, the documentation is generated in DocBook format and after that a transformation using the FOP
processor is applied to obtain the PDF file. To configure the FOP processor, see the FO Processors preferences page.

If you generate the documentation in DocBook format you can apply a transformation scenario on the output file, for
example one of the scenarios proposed by Oxygen (DocBook PDF or DocBook HTML) or configure your own scenario
for it.

For the custom format, you can specify your stylesheet to transform the intermediary XML generated in the documentation
process. You have to write your stylesheet based on the schema xsdDocSchema.xsd from
{INSTALLATION_DIRECTORY}/frameworks/schema_documentation. You can create a custom format
starting from one of the stylesheets used in the predefined HTML, PDF, and DocBook formats. These stylesheets are
available in {INSTALLATION_DIRECTORY}/frameworks/schema_documentation/xsl.

When using a custom format you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating Documentation From the Command-Line Interface

You can export the settings of the Schema Documentation dialog to an XML file by pressing the Export settings
button. With the exported settings file, you can generate the same documentation from the command-line interface by
running the following scripts:

• schemaDocumentation.bat on Windows;
• schemaDocumentation.sh (on Mac OS X / Unix / Linux).

The scripts are located in the Oxygen installation folder. The scripts can be integrated in an external batch process
launched from the command-line interface.

The script command-line parameter is the relative path to the exported XML settings file. The files which are specified
with relative paths in the exported XML settings are made absolute, relative to the folder where the script is ran from.

XML Configuration File

<serialized>
 <map>
 <entry>
 <String

150 | Oxygen XML Editor | Editing Documents

xml:space="preserve">xsd.documentation.options</String>
 <xsdDocumentationOptions>
 <field name="outputFile">
 <String
xml:space="preserve">${cfn}.html</String>
 </field>
 <field name="splitMethod">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="openOutputInBrowser">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="format">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="customXSL">
 <null/>
 </field>
 <field name="deleteXMLFiles">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeIndex">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeSimpleTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeComplexTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeAttributesGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeRedefines">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeReferencedSchemas">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDiagram">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsNamespace">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsLocation">
 <Boolean xml:space="preserve">true</Boolean>

Oxygen XML Editor | Editing Documents | 151

 </field>
 <field name="detailsType">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsTypeHierarchy">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsModel">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsChildren">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsInstance">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsUsedby">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsProperties">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsFacets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsIdentityConstr">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsEscapeAnn">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSource">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAnnotations">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 </xsdDocumentationOptions>
 </entry>
 </map>
</serialized>

Searching and Refactoring Actions

All the following actions can be applied on attribute, attributeGroup, element, group, key, unique,
keyref, notation, simple, or complex types:

• Document > References > > References (Ctrl+Shift+R) - Searches all references of the item found at current
cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the
range of resources determined by this, a warning dialog is shown and you have the possibility to define another
search scope.

• Document > References > References in... - Searches all references of the item found at current cursor position
in the file or files that you specify when define a scope in the Search References dialog.

• Document > References > > Declarations (Ctrl+Shift+D) - Searches all declarations of the item found at
current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is not part
of the range of resources determined by this, a warning dialog will be shown and you have the possibility to define
another search scope.

152 | Oxygen XML Editor | Editing Documents

This action is not available in Design page.

• Document > References > Declarations in... - Searches all declarations of the item found at current cursor position
in the file or files that you specify when define a scope in the dialog above. Action is not available in Design page.

• Document > References > Occurrences in File (Ctrl+Shift+U) - Searches all occurrences of the item at the caret
position in the currently edited file.

• contextual menu of current editor > Rename Component... - Renames the selected component. Specify the new
component name and the file or files affected by the modification in the following dialog:

Figure 74: Rename Component Dialog

if you click the Preview button, you have the possibility to view the files affected by the Rename Component action.
The changes are shown in the following dialog:

Oxygen XML Editor | Editing Documents | 153

Figure 75: Preview Dialog

Search and Refactor Operations Scope

By scope you should understand the collection of documents that define the context of the search and refactor operations.
To control it you can use the Change scope operation, available in the Quick Assist action set or on the Resource
Hierarchy/Dependency View toolbar. Here you can restrict the scope to the current project or to one or multiple working
sets.

154 | Oxygen XML Editor | Editing Documents

Figure 76: Change Scope Dialog

The defined scope is applied to all future search and refactor operations until you alter it again. Contextual menu actions
allow you to add or delete files, folders and other resources to the working set structure.

Resource Hierarchy / Dependencies View

The Resource Hierarchy / Dependencies view allows you to easily see the hierarchy / dependencies for an XML
Schema, a Relax NG schema or an XSLT stylesheet. You can open the view from Window > Show View > Resource
Hierarchy / Dependencies .

This view is useful for example when you want to start from an XML Schema (XSD) file and build and review the
hierarchy of all the other XSD files that are imported, included or redefined in the given XSD file. Also the same view
is able to build the inversed-tree structure, that is the structure of all other XSD files that import, include or redefine the
given XSD file. The scope of the search is configurable: the current Oxygen project, a set of local folders, etc.

The build process for the hierarchy view is started with the Resource Hierarchy action available on the contextual
menu of the editor panel.

Oxygen XML Editor | Editing Documents | 155

Figure 77: Resource Hierarchy/Dependencies View - Hierarchy for mainOffice.xsd

The build process for the dependencies view is started with the Resource Dependencies action available on the contextual
menu.

Figure 78: Resource Hierarchy/Dependencies View - Dependencies for dml-baseTypes.xsd

In the Resource Hierarchy/Dependencies view you have several actions in the toolbar:

• - Refreshes the Hierarchy/Dependencies structure.
• - Stop the hierarchy/dependencies computing.
• - Allows you to choose a schema to compute the hierarchy structure.
• - Allows you to choose a schema to compute the dependencies structure.
• - Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically

using the defined scope for future operations.

156 | Oxygen XML Editor | Editing Documents

• - Repeats a previous dependencies computation.

The contextual menu contains the following actions:

• Open - Opens the schema. Also you can open the schema by a double-click on the Hierarchy/Dependencies structure.
• Copy location - Copies the location of the schema.
• Show Resource Hierarchy - Shows the hierarchy for the selected schema.
• Show Resource Dependencies - Shows the dependencies for the selected schema.
• Expand All - Expands all the children of the selected schema from the Hierarchy/Dependencies structure.
• Collapse All - Collapses all children of the selected schema from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon

.

Component Dependencies View

The Component Dependencies view allows you to spot the dependencies for the selected component of an XML
Schema, a Relax NG schema, a NVDL schema or an XSLT stylesheet. You can open the view from Window > Show
View > Component Dependencies .

If you want to see the dependencies of a schema component:

• select the desired schema component in the editor;
• choose the Component Dependencies action from the contextual menu.

The action is available for all named components (for example elements or attributes).

Figure 79: Component Dependencies View - Hierarchy for xhtml11.xsd

In the Component Dependencies view the following actions are available in the toolbar:

Oxygen XML Editor | Editing Documents | 157

• - Refreshes the dependencies structure.
• - Stop the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure.
• - Contains a list of previously executed dependencies computations.

The contextual menu contains the following actions:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the currently selected component in the dependencies tree.

Tip: If a component contains multiple references to another components, a small table is shown containing all

these references. When a recursive reference is encountered, it is marked with a special icon .

Highlight Component Occurrences

When a component (for example types, elements, attributes) is found at current cursor position, Oxygen performs a
search over the entire document to find the component declaration and all its references. When found, they are highlighted
both in the document and in the stripe bar, at the right side of the document. Customizable colors are used: one for the
component definition and another one for component references. Occurrences are displayed until another component is
selected and a new search is performed. All occurrences are removed when you start to edit the document.

This feature is set on automatic search by default and can be configured in the Options > Preferences > Editor > Mark
Occurrences page. A search can also be triggered with the Search > Search Occurrences in File (Ctrl+Shift+U)
contextual menu action. All matches are displayed in a separate tab of the Results view.

XML Schema Quick Assist Support

The Quick Assist action set was designed to help you improve the development work flow by offering quicker access
to the most commonly used actions.

It is activated automatically when the cursor is positioned inside a component name. It is accessible via a yellow bulb
help marker placed on the cursor line, in the editor line number stripe. Also, you can invoke the quick assist menu if
you press Alt + 1 keys (Meta + Alt + 1 on Mac OS X).

Figure 80: Quick Assist Support

The quick assist support offers direct access to the following actions:

• Rename Component - Renames the component and all its dependencies;
• Search Declaration - Searches the declaration of the component in a predefined scope. It is available only when

the context represents a component name reference;
• Search References - Searches all references of the component in a predefined scope;
• Component Dependencies - Searches the component dependencies in a predefined scope;
• Change Scope - Configures the scope that will be used for future search or refactor operations;
• Search Occurrences - Searches all occurrences of the file within the current scope.

158 | Oxygen XML Editor | Editing Documents

Linking Between Development and Authoring

The Author page is available on the XML Schema editor allowing you to edit visually the schema annotations. It presents
a polished and compact view of the XML Schema, with support for links on imported/included schemas. Embedded
Schematron is supported only in Relax NG schemas with XML syntax.

Editing Relax NG Schemas

Oxygen provides a special type of editor for Relax NG schemas. This editor presents the usual text view of an XML
document synchronized in real time with an outline view. The outline view has two display modes: the standard outline
mode and the components mode.

Relax NG Schema Diagram

This section explains how to use the graphical diagram of a Relax NG schema.

Introduction

Oxygen provides a simple, expressive, and easy to read Schema Diagram view for Relax NG schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG, or BMP images. It helps both schema authors in developing the schema and content authors who are using the
schema to understand it.

Oxygen is the only XML editor to provide a side by side source and diagram presentation and have them real-time
synchronized:

• the changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• changing the selected element in the diagram selects the underlaying code in the source editor.

Full Model View

When you create a new schema document or open an existing one, the editor panel is divided in two sections: one
containing the schema diagram and the second the source code. The Diagram view has two tabbed panes offering a
Full Model View and a Logical Model View.

Oxygen XML Editor | Editing Documents | 159

Figure 81: Relax NG Schema Editor - Full Model View

The following references can be expanded in place: patterns, includes, and external references. This expansion mechanism,
coupled with the synchronization support, makes the schema navigation easy.

All the element and attribute names are editable: double-click any name to start editing it.

Symbols Used in the Schema Diagram

The Full Model View renders all the Relax NG Schema patterns with intuitive symbols:

•

 - define pattern with the name attribute set to the value shown inside the rectangle (in this example
name).

•

 - define pattern with the combine attribute set to interleave and the name attribute
set to the value shown inside the rectangle (in this example attlist.person).

•

 - define pattern with the combine attribute set to choice and the name attribute set to
the value shown inside the rectangle (in this example attlist.person).

•

 - element pattern with the name attribute set to the value shown inside the rectangle (in this example
name).

•

 - attribute pattern with the name attribute set to the value shown inside de rectangle (in this case
note).

•

 - ref pattern with the name attribute set to the value shown inside the rectangle (in this case family).

160 | Oxygen XML Editor | Editing Documents

•

 - oneOrMore pattern.
•

 - zeroOrMore pattern.
•

 - optional pattern.
•

 - choice pattern.
•

 - value pattern, used for example inside a choice pattern.
•

 - group pattern.
•

 - pattern from the Relax NG Annotations namespace (http://relaxng.org/ns/compatibility/annotations/1.0)
which is treated as a documentation element in a Relax NG schema.

•

 - text pattern.
•

 - empty pattern.

Logical Model View

The Logical Model View presents the compiled schema which is a single pattern. The patterns that form the element
content are defined as top level patterns with generated names. These names are generated depending of the elements
name class.

Figure 82: Logical Model View for a Relax NG Schema

Oxygen XML Editor | Editing Documents | 161

Actions Available in the Diagram View

The contextual menu offers the following actions:

• Append child - Appends a child to the selected component.
• Insert Before - Inserts a component before the selected component.
• Insert After - Inserts a component after the selected component.
• Edit attributes - Edits the attributes of the selected component.
• Remove - Removes the selected component.
• Show only the selected component - Depending on its state (selected/not selected), either the selected component

or all the diagram components are shown.
• Show Annotations - Depending on its state (selected/not selected), the documentation nodes are shown or hidden.
• Auto expand to references - This option controls how the schema diagram is automatically expanded. If you select

it and then edit a top-level element or you make a refresh, the diagram is expanded until it reaches referred components.
If this option is left unchecked, only the first level of the diagram is expanded, showing the top-level elements. For
large schemas, the editor disables this option automatically.

• Collapse Children - Collapses the children of the selected view.
• Expand Children - Expands the children of the selected view.
• Print Selection... - Prints the selected view.
• Save as Image... - Saves the current selection as JPEG, BMP, SVG or PNG image.
• Refresh - Refreshes the schema diagram according to the changes in your code. They represent changes in your

imported documents or changes that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

Relax NG Outline View

The Relax NG Outline view presents a list with the patterns that appear in the diagram in both the Full Model View
and Logical Model View cases. It allows a quick access to a component by name. By default it is displayed on screen.
If you closed the Outline view you can reopen it from menu Window > Show View > Outline . You can switch

between the Relax NG patterns version and the standard XML version of the view by pressing the button.

162 | Oxygen XML Editor | Editing Documents

Figure 83: Relax NG Outline View

The tree shows the XML structure or the define patterns collected from the current document. By default, the Outline
view presents the define patterns. The following action is available in the Settings menu on the Outline view's toolbar:

• Show XML structure - Shows the XML structure of the current document.

When the XML elements are displayed, the following actions are available in the Settings menu on the Outline view's
toolbar:

• Selection update on caret move - Allows a synchronization between Outline view and schema diagram. The
selected view from the diagram will be also selected in the Outline view.

• Show components - Shows the define patterns collected from the current document.
• Flat presentation mode of the filtered results - when active, the application flattens the filtered result elements

to a single level.
• Show comments and processing instructions - show/hide comments and processing instructions in the Outline

view.
• Show text - show/hide additional text content for the displayed elements.
• Show attributes - show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel.
• Configure displayed attributes - displays the XML Structured Outline preferences page.

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Relax NG Editor Specific Actions

The list of actions specific for the Relax NG (full syntax) editor is:

Oxygen XML Editor | Editing Documents | 163

• Document > Schema > Show Definition (also available on the contextual menu of the editor panel) - Moves the
cursor to the definition of the current element in this Relax NG (full syntax) schema.

Searching and Refactoring Actions

All the following actions can be applied on ref and parentRef parameters only.

• Document > References > Search References - Searches all references of the item found at current cursor
position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of
resources determined by this scope, a warning dialog is shown and you can define another search scope. A search
scope includes the project or a collection of files and folders.

Note: This action and the following ones can also be accessed from RNG editor's contextual menu > Search
.

You can decide to use automatically the defined scope for future operations by checking the corresponding checkbox.

• Document > References > Search References in... - Searches all references of the item found at current cursor
position in the file or files specified in the defined scope.

All the following actions can be applied on named define parameters only.

• Document > References > Search Declarations - Searches all declarations of the item found at current cursor
position in the defined scope if any. If a scope is defined, but the current edited resource is not part of the range of
resources determined by this scope a warning dialog is shown and you can define another search scope. A search
scope includes the project or a collection of files and folders.

Note: This action and the following ones can also be accessed from RNG editor's contextual menu > Search
.

• Document > References > Search Declarations in... - Searches all declarations of the item found at current cursor
position in the files specified in the search scope.

• Document > References > Search Occurrences in File - Searches all occurrences of the item at the caret position
in the currently edited file.

• contextual menu of current editor > Refactoring > Rename Component... - Renames the selected component.

Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a schema. You can
open the view from Window > Show View > Resource Hierarchy/Dependencies .

If you want to see the hierarchy of a schema, select the desired schema in the project view and choose Resource
Hierarchy from the contextual menu.

164 | Oxygen XML Editor | Editing Documents

Figure 84: Resource Hierarchy/Dependencies View - hierarchy for dbmathml.rng

If you want to see the dependencies of a schema, select the desired schema in the project view and choose Resource
Dependencies from the contextual menu.

Figure 85: Resource Hierarchy/Dependencies View - Dependencies for third.rng

In the Resource Hierarchy/Dependencies view you have several actions in the toolbar:

• - Refreshes the Hierarchy/Dependencies structure.
• - Stops the hierarchy/dependencies computing.
• - Allows you to choose a schema to compute the hierarchy structure.
• - Allows you to choose a schema to compute the dependencies structure.
• - Allows you to configure a scope to compute the dependencies structure.
• - Repeats a previous dependencies computation.

The following actions are available in the contextual menu:

• Open - Opens the schema. Also you can open the schema by a double-click on the Hierarchy/Dependencies structure.
• Copy location - Copies the location of the schema.
• Resource Hierarchy - Shows the hierarchy for the selected schema.
• Resource Dependencies - Shows the dependencies for the selected schema.
• Expand All - Expands all the children of the selected schema from the hierarchy/dependencies structure.
• Collapse All - Collapses all the children of the selected schema from the hierarchy/dependencies structure.

Oxygen XML Editor | Editing Documents | 165

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon

.

Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected Relax NG component. You can
open the view from Window > Show View > Component Dependencies .

If you want to see the dependencies of a RelaxNG component, select the desired component in the editor and choose
the Component Dependencies action from the contextual menu. The action is available for all named defines.

Figure 86: Component Dependencies View - Hierarchy for base.rng

In the Component Dependencies view you have several actions in the toolbar:

• - Refreshes the dependencies structure.
• - Allows you to stop the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure.
• - Allows you to repeat a previous dependencies computation.

The following actions are available on the contextual menu:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another components, a small table is shown containing all

references. When a recursive reference is encountered, it is marked with a special icon .

RNG Quick Assist Support

The Quick Assist action set was designed to help you improve the development work flow by offering quicker access
to the most commonly used actions.

It is activated automatically when the cursor is positioned inside a component name. It is accessible via a yellow bulb
help marker placed on the cursor line, in the editor line number stripe. Also, you can invoke the quick assist menu if
you press Alt + 1 keys (Meta + Alt + 1 on Mac OS X).

166 | Oxygen XML Editor | Editing Documents

Figure 87: RNG Quick Assist Support

The quick assist support offers direct access to the following actions:

• Rename Component - Renames the component and all its dependencies;
• Search Declaration - Searches the declaration of the component in a predefined scope. It is available only when

the context represents a component name reference;
• Search References - Searches all references of the component in a predefined scope;
• Component Dependencies - Searches the component dependencies in a predefined scope;
• Change Scope - Configures the scope that will be used for future search or refactor operations;
• Search Occurrences - Searches all occurrences of the file within the current scope.

Configuring a Custom Datatype Library for a RELAX NG Schema

A RELAX NG schema can declare a custom datatype library for the values of elements found in XML document
instances. The datatype library must be developed in Java and it must implement the interface specified on the
www.thaiopensource.com website.

The jar file containing the custom library and any other dependent jar file must be added to the classpath of the application,
that is the jar files must be added to the folder [Oxygen-install-folder]/lib .

To load the custom library, restart Oxygen.

Linking Between Development and Authoring

The Author page is available on the Relax NG schema presenting the schema similar with the Relax NG compact syntax.
It links to imported schemas and external references. Embedded Schematron is supported only in Relax NG schemas
with XML syntax.

Editing NVDL Schemas

Some complex XML documents are composed by combining elements and attributes from different namespaces. More,
the schemas which define these namespaces are not even developed in the same schema language. In such cases, it is
difficult to specify in the document all the schemas which must be taken into account for validation of the XML document
or for content completion. An NVDL (Namespace Validation Definition Language) schema can be used. This schema
allows the application to combine and interleave multiple schemas of different types (W3C XML Schema, RELAX NG
schema, Schematron schema) in the same XML document.

Oxygen provides a special type of editor for NVDL schemas. This editor presents the usual text view of an XML
document synchronized in real time with an outline view. The outline view has two display modes: the standard outline
mode and the components mode.

Oxygen XML Editor | Editing Documents | 167

http://www.thaiopensource.com/relaxng/pluggable-datatypes.html
http://www.thaiopensource.com/relaxng/pluggable-datatypes.html

NVDL Schema Diagram

This section explains how to use the graphical diagram of a NVDL schema.

Introduction

Oxygen provides a simple, expressive, and easy to read Schema Diagram View for NVDL schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG, and BMP images. It helps both schema authors in developing the schema and content authors that are using the
schema to understand it.

Oxygen is the only XML Editor to provide a side by side source and diagram presentation and have them real-time
synchronized:

• the changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• changing the selected element in the diagram, selects the underlaying code in the source editor.

Full Model View

When you create a schema document or open an existing one, the editor panel is divided in two sections: one containing
the schema diagram and the second the source code. The diagram view has two tabbed panes offering a Full Model
View and a Logical Model View.

Figure 88: NVDL Schema Editor - Full Model View

The Full Model View renders all the NVDL elements with intuitive icons. This representation coupled with the
synchronization support makes the schema navigation easy.

Double click on any diagram component in order to edit its properties.

168 | Oxygen XML Editor | Editing Documents

Actions Available in the Diagram View

The contextual menu offers the following actions:

• Show only the selected component - Depending on its state (selected/not selected), either the selected component
or all the diagram components are shown.

• Show Annotations - Depending on its state (selected/not selected), the documentation nodes are shown or hidden.
• Auto expand to references - This option controls how the schema diagram is automatically expanded. For instance,

if you select it and then edit a top-level element or you trigger a diagram refresh, the diagram will be expanded until
it reaches the referred components. If this option is left unchecked, only the first level of the diagram is expanded,
showing the top-level elements. For large schemas, the editor disables this option automatically.

• Collapse Children - Collapses the children of the selected view.
• Expand Children - Expands the children of the selected view.
• Print Selection... - Prints the selected view.
• Save as Image... - Saves the current selection as image, in JPEG, BMP, SVG or PNG format.
• Refresh - Refreshes the schema diagram according to the changes in your code (changes in your imported documents

or those that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

NVDL Outline View

The NVDL Outline view presents a list with the named or anonymous rules that appear in the diagram. It allows a quick
access to a rule by name. It can be opened from the Window > Show View > Outline menu.

NVDL Editor Specific Actions

The list of actions specific for the Oxygen NVDL editor of is:

• Document > Schema > Show Definition (also available on the contextual menu of the editor panel) - Moves the
cursor to its definition in the schema used by NVDL in order to validate it.

Searching and Refactoring Actions

All the following actions can be applied on mode name, useMode, and startMode attributes only.

• Document > References > Search References - Searches all references of the item found at current cursor
position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of
resources determined by this scope, a warning dialog is shown. A search scope includes the project or a collection
of files and directories.

Note: This action and the following ones can also be accessed from NVDL editor's contextual menu > Search
.

You can decide to use automatically the defined scope for future operations by checking the corresponding checkbox.

• Document > References > Search References in... - Searches all references of the item found at current cursor
position in the file or files that you specify when define a scope in the dialog above.

All the following actions can be applied on named define parameters only.

• Document > References > Search Declarations - Searches all declarations of the item found at current cursor
position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of
resources determined by this scope, a warning dialog is shown. You have the possibility to define another search
scope. A search scope includes the project or a collection of files and folders.

Note: This action and the following ones can also be accessed from NVDL editor's contextual menu > Search
menu.

Oxygen XML Editor | Editing Documents | 169

• Document > References > Search Declarations in... - Searches all declarations of the item found at current cursor
position in the file or files specified in the search scope.

• Document > References > Search Occurrences in File - Searches all occurrences of the item at the caret position
in the currently edited file.

• contextual menu of current editor > Rename Component... - Allows you to rename the current component.

Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected NVDL named mode. You can
open the view from Window > Show View > Component Dependencies .

If you want to see the dependencies of an NVDL mode, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named modes.

Figure 89: Component Dependencies View - Hierarchy for test.nvdl

In the Component Dependencies the following actions are available on the toolbar:

• - Refreshes the dependencies structure.
• - Allows you to stop the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure. If you decide to set the application

to use automatically the defined scope for future operations, select the corresponding checkbox.
• - Repeats a previous dependencies computation.

The following actions are available in the contextual menu:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another component, a small table containing all references is

shown. When a recursive reference is encountered it is marked with a special icon .

Linking Between Development and Authoring

The Author page is available on the NVDL scripts editor presenting them in a compact and easy to understand
representation.

Editing XSLT Stylesheets

This section explains the features of the XSLT editor.

170 | Oxygen XML Editor | Editing Documents

Validating XSLT Stylesheets

Validation of XSLT stylesheets documents is performed with the help of an XSLT processor configurable from user
preferences according to the XSLT version: 1.0 or 2.0. For XSLT 1.0, the options are: Xalan, Saxon 6.5.5, Saxon 9.3.0.5,
MSXML 4.0, MSXML.NET, a JAXP transformer specified by the main Java class. For XSLT 2.0, the options are:
Saxon 9.3.0.5, a JAXP transformer specified by the main Java class.

The Validate toolbar provides a button Validation options for quick access to the XSLT options page in the Oxygen
user preferences.

Custom Validation of XSLT Stylesheets

If you must validate an XSLT stylesheet with other validation engine than the Oxygen's built-in ones, you have the
possibility to configure external engines as custom XSLT validation engines. After such a custom validator is properly
configured in Preferences page, it can be applied on the current document with just one click on the Custom Validation
Engines toolbar. The document is validated against the schema declared in the document.

There are two validators configured by default:

• MSXML 4.0 - included in Oxygen (Windows edition). It is associated to the XSL Editor type in Preferences page.
• MSXML.NET - included in Oxygen (Windows edition). It is associated to the XSL Editor type in Preferences page.

Associate a Validation Scenario

Validation of XSLT stylesheets documents can be also performed through a validation scenario. To define a validation
scenario, open the Configure Validation Scenario dialog. You do this with the Configure Validation Scenario action
available on the menu Document > Validate and on the Validate toolbar. .

You can validate an XSLT document using the engine from transformation scenario or a custom validation scenario. If
you choose to validate using the engine from transformation scenario, and a transformation scenario is not associated
with the current document or the engine has no validation support, the default engine set in Options > Preferences >
XML > XSLT/FO/XQuery > XSLT is used. The list of reusable scenarios for documents of the same type as the
current document is displayed in case you choose to use a custom validation scenario. For more details see Validation
Scenario.

Contextual Editing

Smaller interrelated modules that define a complex stylesheet cannot be correctly edited or validated individually, due
to their interdependency with other modules. For example, a function defined in a main stylesheet is not visible when
you edit an included or imported module. Oxygen provides the support for defining the main module (or modules), thus
allowing you to edit any of the imported/included files in the context of the larger stylesheet structure.

To set a main files, you need to define a validation scenario and add validation units that point to the main modules.
Oxygen warns you if the current module is not part of the dependencies graph computed for the main stylesheet. In this
case, it considers the current module as the main stylesheet.

The advantages of editing in the context of main file include:

• correct validation of a module in the context of a larger stylesheet structure;
• content completion assistant displays all components valid in the current context;
• the Outline displays the components collected from the entire stylesheet structure.

Content Completion in XSLT Stylesheets

Inside XSLT templates of an XSLT stylesheet, the content completion assistant presents all the elements allowed in any
context by the schema associated to the result of applying the stylesheet. That schema is defined by the user in the
Content Completion / XSL preferences page and can be of type: XML Schema, DTD, RELAX NG schema, or NVDL

Oxygen XML Editor | Editing Documents | 171

schema. There are presented all the elements because in a template there is no context defined for the result document.
The user is allowed to insert any element defined by the schema of the result document.

The content completion window lists the following item types defined in the current stylesheet and in the imported and
included XSLT stylesheets:

• template modes
• template name
• variable names
• parameter names

The extension functions built in the Saxon transformation engine are presented in the content completion list only if the
Saxon namespace (http://saxon.sf.net for XSLT version 2.0 or http://icl.com/saxon for XSLT version 1.0) is mapped to
a prefix and one of the following conditions is true:

• the edited file has a transformation scenario that uses as transformation engine Saxon 6.5.5 (for XSLT version 1.0),
Saxon 9.3.0.5 PE or Saxon 9.3.0.5 EE (for XSLT version 2.0);

• the edited file has a validation scenario that uses as validation engine Saxon 6.5.5 (for version 1.0), Saxon 9.3.0.5
PE or Saxon 9.3.0.5 EE (for version 2.0);

• the validation engine specified in Options page is Saxon 6.5.5 (for version 1.0), Saxon 9.3.0.5 PE or Saxon 9.3.0.5
EE (for version 2.0).

Namespace prefixes in the scope of the current context are presented at the top of the content completion window to
speed up the insertion into the document of prefixed elements.

For the common namespaces like XSL namespace (http://www.w3.org/1999/XSL/Transform), XML Schema namespace
(http://www.w3.org/2001/XMLSchema) or Saxon namespace (http://icl.com/saxon for version 1.0, http://saxon.sf.net/
for version 2.0), Oxygen provides an easy mode to map them by proposing a prefix for these namespaces.

Figure 90: Namespace Prefixes in the Content Completion Window

Content Completion in XPath Expressions

In XSLT stylesheets, the content completion assistant provides all the features available in the XML editor and also
adds some enhancements. In XPath expressions used in attributes of XSLT stylesheets elements like match, select
and test, the content completion assistant offers the names of XPath and XSLT functions, the XSLT axes, and
user-defined functions (the name of the function and its parameters). If a transformation scenario was defined and
associated to the edited stylesheet, the content completion assistant computes and presents elements and attributes based
on:

• the input XML document selected in the scenario;
• the current context in the stylesheet.

The associated document is displayed in the XSLT/XQuery Input view.

Content completion for XPath expressions is started:

• on XPath operators detected in one of the match, select and test attributes of XSLT elements: ", ', /, //, (, [, |,
:, ::, $

172 | Oxygen XML Editor | Editing Documents

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema
http://saxon.sf.net/

• for attribute value templates of non-XSLT elements, that is the { character when detected as the first character of
the attribute value

• on request, if the combination CTRL + Space is pressed inside an edited XPath expression.

The items presented in the content completion window are dependent on:

• the context of the current XSLT element;
• the XML document associated with the edited stylesheet in the stylesheet transformation scenario;
• the XSLT version of the stylesheet (1.0 or 2.0).

For example, if the document associated with the edited stylesheet is:

<personnel>
 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and you enter an xsl:template element using the content completion assistant, the following actions are triggered:

• the match attribute is inserted automatically;
• the cursor is placed between the quotes;
• the XPath content completion assistant automatically displays a popup window with all the XSLT axes, XPath

functions and elements and attributes from the XML input document that can be inserted in the current context.

The set of XPath functions depends on the XSLT version declared in the root element xsl:stylesheet: 1.0 or 2.0.

Figure 91: Content Completion in the match Attribute

If the cursor is inside the select attribute of an xsl:for-each, xsl:apply-templates, xsl:value-of or
xsl:copy-of element the content completion proposals depend on the path obtained by concatenating the XPath
expressions of the parent XSLT elements xsl:template and xsl:for-each as shown in the following figure:

Oxygen XML Editor | Editing Documents | 173

Figure 92: Content Completion in the select Attribute

Also XPath expressions typed in the test attribute of an xsl:if or xsl:when element benefit of the assistance of
the content completion.

Figure 93: Content Completion in the test Attribute

XSLT variable references are easier to insert in XPath expressions with the help of the content completion popup triggered
by the $ character which signals the start of such a reference in an XPath expression.

Figure 94: Content Completion in the test Attribute

If the { character is the first one in the value of the attribute, the same content completion assistant is available also in
attribute value templates of non-XSLT elements.

174 | Oxygen XML Editor | Editing Documents

Figure 95: Content Completion in Attribute Value Templates

The time delay configured in Preferences page for all content completion windows is applied also for the XPath
expressions content completion window.

Tooltip Helper for the XPath Functions Arguments

When editing the arguments of an XPath/XSLT function, Oxygen tracks the current entered argument by displaying a
tooltip containing the function signature. The currently edited argument is highlighted with a bolder font.

When moving the caret through the expression, the tooltip is updated to reflect the argument found at the caret position.

We want to concatenate the absolute values of two variables, named v1 and v2.

<xsl:template match="/">
 <xsl:value-of select="concat(abs($v1),
abs($v2))"></xsl:value-of>
</xsl:template>

When moving the caret before the first abs function, Oxygen identifies it as the first argument of
the concat function. The tooltip shows in bold font the following information about the first
argument:

• its name is $arg1;
• its type is xdt:anyAtomicType;
• it is optional (note the ? sign after the argument type).

The function takes also other arguments, having the same type, and returns a xs:string.

Figure 96: XPath Tooltip Helper - Identify the concat Function's First Argument

Moving the caret on the first variable $v1, the editor identifies the abs as context function and
shows its signature:

Figure 97: XPath Tooltip Helper - Identify the abs Function's Argument

Further, clicking the second abs function name, the editor detects that it represents the second
argument of the concat function. The tooltip is repainted to display the second argument in bold
font.

Oxygen XML Editor | Editing Documents | 175

Figure 98: XPath Tooltip Helper - Identify the concat Function's Second Argument

The tooltip helper is available also in the XPath toolbar and the XPath Builder view.

Code Templates

When the content completion is invoked by pressing (CTRL+Space), it also presents a list of code templates specific
to the type of the active editor. Such a code template provides a shortcut for inserting a small document fragment at the
current caret position. Oxygen comes with a large set of ready-to use templates for XSL and XML Schema documents.

The XSL code template called Template-Match-Mode

Typing t in an XSL document and selecting tmm in the content assistant pop-up window inserts
the following template at the caret position in the document:

<xsl:template match="" mode="">

</xsl:template>

The user can easily define other templates. Also, the code templates can be shared with other users.

The XSLT/XQuery Input View

The structure of the XML document associated to the edited XSLT stylesheet, or the structure of the source documents
of the edited XQuery is displayed in a tree form in a view called XSLT/XQuery Input. The tree nodes represent the
elements of the documents.

The XSLT Input View

If you click a node, the corresponding template from the stylesheet is highlighted. A node can be dragged from this view
and dropped in the editor area for quickly inserting xsl:template, xsl:for-each, or other XSLT elements that
have the match/select/test attribute already completed. The value of the attribute is the correct XPath expression
referring to the dragged tree node. This value is based on the current editing context of the drop spot.

Figure 99: XSLT Input View

176 | Oxygen XML Editor | Editing Documents

For example, for the following XML document:

<personnel>
 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and the following XSLT stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">
 <xsl:template match="personnel">
 <xsl:for-each select="*">

 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

if you drag the given element and drop it inside the xsl:for-each element, the following
popup menu is displayed:

Figure 100: XSLT Input Drag and Drop Popup Menu

Select for example Insert xsl:value-of and the result document is:

Figure 101: XSLT Input Drag and Drop Result

Oxygen XML Editor | Editing Documents | 177

The XSLT Outline View

The XSLT Outline View presents the list of all the components (templates, attribute-sets, character-maps, variables,
functions) from both the edited stylesheet and its imports or includes. It can be opened from menu Window > Show
View > Outline .

Figure 102:The XSLT Outline View

The following actions are available in the Settings menu on the Outline view's toolbar:

• Selection update on caret move - Allows a synchronization between Outline view and source document. The
selection in the Outline view can be synchronized with the caret's moves or the changes in the XSLT editor. Selecting
one of the components from the outline view also selects the corresponding item in the source document.

• Show XML structure - Displays the document's XML structure in a tree-like structure.
• Sort - Alphabetically sorts the stylesheet components.
• Show all components - Displays all components that were collected starting from the main file. This option is set

by default.
• Show local components - Displays components defined in the current file only.
• Group by location/type/mode - The stylesheet components can be grouped by location, type, and mode.
• Show components - Shows the define patterns collected from the current document.
• Flat presentation mode of the filtered results - when active, the application flattens the filtered result elements

to a single level.
• Show comments and processing instructions - show/hide comments and processing instructions in the Outline

view.
• Show text - show/hide additional text content for the displayed elements.
• Show attributes - show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel.
• Configure displayed attributes - displays the XML Structured Outline preferences page.

The following contextual menu actions are available:

• Append Child - Displays a list of elements that can be inserted as children of the current element.
• Insert Before - Displays a list of elements that can be inserted as siblings of the current element, before the current

element.

178 | Oxygen XML Editor | Editing Documents

• Insert After - Displays a list of elements that can be inserted as siblings of the current element, after the current
element.

• Toggle Comment - Comments/uncomments the currently selected element.
• Remove (Delete) - Removes the selected item from the stylesheet.
• Search References (Ctrl+Shift+R) - Searches all references of the item found at current cursor position in the

defined scope, if any. See Finding XSLT References and Declarations for more details.
• Search References in... - Searches all references of the item found at current cursor position in the specified scope.

See Finding XSLT References and Declarations for more details.
• Component Dependencies - Allows you to see the dependencies for the current selected component. See

Component Dependencies View for more details.
• Rename Component - Renames the selected component. See XSLT Refactoring Actions for more details.

The stylesheet components information is presented on two columns: the first column presents the name and match
attributes, the second column the mode attribute. If you know the component name, match or mode, you can search it
in the Outline view by typing one of these pieces of information in the filter text field from the bottom of the view or
directly on the tree structure. When you type de component name, match or mode in the text field, you can switch to
the tree structure using:

• keyboard arrow keys;
• Enter key;
• Tab key;
• Shift-Tab key combination.

To switch from tree structure to the filter text field, you can use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string;
• ? - any character;
• , - patterns separator.

If no wildcards are specified, the string to search is used as a partial match (like *textToFind*).

On the XSLT Outline view you have some contextual actions like: Edit Attributes, Cut, Copy, Delete.

The Outline content is synchronized with Text view; when you click a component in the Outline view, its definition
is highlighted in the Text view.

XSLT Stylesheet Documentation Support

Oxygen offers built-in support for documenting XSLT stylesheets. If the expanded QName of the element has a non-null
namespace URI, the xsl:stylesheet element may contain any element not from the XSLT namespace. Such
elements are referred to as user-defined data elements. Such elements can contain the documentation for the stylesheet
and its elements (top-level elements whose names are in the XSLT namespace). Oxygen offers its own XML schema
that defines such documentation elements. The schema is named stylesheet_documentation.xsd and can be
found in [oXygen-install-folder]/frameworks/stylesheet_documentation. The user can also
specify a custom schema in XSL Content Completion options.

When content completion is invoked inside an XSLT editor by pressing (CTRL+Space), it offers elements from the
XSLT documentation schema (either the built-in one or one specified by user). A contextual action for adding
documentation blocks is also available for the Text mode in the editor contextual menu (Ctrl+Alt+D)
(META+ALT+Comma on Mac) > Source > Add component documentation or for the Author contextual menu
(Ctrl+Alt+D) (META+ALT+Comma on Mac) > Component documentation > Add component documentation
. Other documentation actions available in the Author page from the Component Documentation contextual sub menu
are:

• Paragraph - Inserts a new documentation paragraph.
• Bold - Makes the selected documentation text bold.

Oxygen XML Editor | Editing Documents | 179

• Italic - Makes the selected documentation text italic.
• List - Inserts a new list.
• List Item - Inserts a list item.
• Reference - Inserts a documentation reference.

If the caret is positioned inside the xsl:stylesheet element context, documentation blocks are generated for all
XSLT elements. If the caret is positioned inside a specific XSLT element (like a template or a function), a documentation
block is generated for that element only.

Example of a documentation block using Oxygen built-in schema

<xd:doc>
 <xd:desc>
 <xd:p>Search inside parameter <xd:i>string</xd:i> for the last
 occurrence of parameter
 <xd:i>searched</xd:i>. The substring starting from the 0
position to the identified last
 occurrence will be returned. <xd:ref
name="f:substring-after-last" type="function"
xmlns:f="http://www.oxygenxml.com/doc/xsl/functions">See
also</xd:ref></xd:p>
 </xd:desc>
 <xd:param name="string">
 <xd:p>String to be analyzed</xd:p>
 </xd:param>
 <xd:param name="searched">
 <xd:p>Marker string. Its last occurrence will be
identified</xd:p>
 </xd:param>
 <xd:return>
 <xd:p>A substring starting from the beginning of
<xd:i>string</xd:i> to the last
 occurrence of <xd:i>searched</xd:i>. If no occurrence is found
 an empty string will be
 returned.</xd:p>
 </xd:return>
</xd:doc>

Generating Documentation for an XSLT Stylesheet

Oxygen can generate detailed documentation for the elements (top-level elements whose names are in the XSLT
namespace) of an XSLT stylesheet in HTML format. You can select the XSLT elements to include and the level of
detail to present for each of them. Also the elements are hyperlinked. The user can also use custom stylesheets to obtain
a custom format.

To generate documentation for an XSLT stylesheet document, use the XSLT Stylesheet Documentation dialog. It is
opened with the Tools > Generate Documentation > XSLT Stylesheet Documentation... (Ctrl+Alt+X) action. It
can be also opened from the Project view contextual menu: Generate Documentation > XSLT Stylesheet
Documentation... This dialog enables the user to configure a large set of parameters used by the application to generate
the documentation.

180 | Oxygen XML Editor | Editing Documents

Figure 103:The Output Panel of the XSLT Stylesheet Documentation Dialog

The XSL URL field of the dialog panel must contain the full path to the XSL Stylesheet file you want to generate
documentation for. The stylesheet can be either a local or a remote one. You can also specify the path of the stylesheet
using editor variables.

You can choose to split the output into multiple files using different split criteria. For large XSLT stylesheets being
documented, choosing a different split criterion may generate smaller output files providing a faster documentation
browsing.

The available split criteria are:

• by location - each output file contains the XSLT elements from the same stylesheet;
• by namespace - each output file contains information about elements with the same namespace;
• by component - each output file contains information about one stylesheet XSLT element.

You can export the settings of the XSLT Stylesheet Documentation dialog to an XML file by pressing the Export
settings button. With the exported settings file, you can generate the same documentation from the command-line
interface.

Oxygen XML Editor | Editing Documents | 181

Figure 104:The Settings Panel of the XSLT Stylesheet Documentation Dialog

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include in the output
(templates, functions, global parameters, global variables, attribute sets, character maps, keys, decimal formats, output
formats, XSLT elements from referenced stylesheets) and the details to include in the documentation:

• Documentation - Shows the documentation for each XSLT element. For HTML format, the user-defined data
elements that are recognized and transformed in documentation blocks of the XSLT elements they precede, are the
ones from the following schemas:

• Oxygen built-in XSLT documentation schema.
• A subset of Docbook 5 elements. The recognized elements are: section, sect1 to sect5, emphasis,

title, ulink, programlisting, para, orderedlist, itemizedlist;
• A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul,

ol, pre, sl, sli, step, steps, li, title, xref;
• Full XHTML 1.0 support;
• XSLStyle documentation environment. XSLStyle uses Docbook or DITA languages inside its own user-defined

data elements. The supported Docbook and DITA elements are the ones mentioned above;
• Doxsl documentation framework. Supported elements are : codefrag, description, para, docContent,

documentation, parameter, function, docSchema, link, list, listitem, module, parameter,
template, attribute-set;

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre element.
You can change this behavior by using a custom format instead of the built-in HTML format and providing your
own XSLT stylesheets.

• Use comments - Controls whether the comments that precede an XSLT element is treated as documentation for the
element they precede. Comments that precede or succeed the xsl:stylesheet element, are treated as
documentation for the whole stylesheet. Please note that comments that precede an import or include directive are
not collected as documentation for the imported/included module. Also comments from within the body of the XSLT
elements are not collected at all.

• Namespace - Shows the namespace for named XSLT elements.
• Location - Shows the stylesheet location for each XSLT element.
• Parameters - Shows parameters of templates and functions.
• References - Shows the named XSLT elements that are referred from within an element.
• Used by - Shows the list of all the XSLT elements that refer the current named element.

182 | Oxygen XML Editor | Editing Documents

• Supersedes - Shows the list of all the XSLT elements that are superseded the current element.
• Overriding - Shows the list of all the XSLT elements that override the current element.
• Return type - Shows the return type of the function.
• Source - Shows the text stylesheet source for each XSLT element.
• Import precedence - Shows the computed import precedence as declared in XSL transformation specifications.
• Generate index - Creates an index with all the XSLT elements included in the documentation.

Generate Documentation in HTML Format

The generated documentation looks like:

Figure 105: XSLT Stylesheet Documentation Example

The generated documentation includes the following:

• Table of Contents - You can group the contents by namespace, location, or component type. The XSLT elements
from each group are sorted alphabetically (named templates are presented first and the match ones second).

• Information about main, imported, and included stylesheets - This information consists of:

• XSLT modules included or imported by the current stylesheet;
• the XSLT stylesheets where the current stylesheet is imported or included
• and the stylesheet location.

Oxygen XML Editor | Editing Documents | 183

Figure 106: Information About an XSLT Stylesheet

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are
grouped using the same criteria as the split.

After the documentation is generated, you can collapse details for some stylesheet XSLT elements using the Showing
view.

Figure 107:The Showing View

For each element included in the documentation, the section presents the element type followed by the element name
(value of the name or match attribute for match templates).

184 | Oxygen XML Editor | Editing Documents

Figure 108: Documentation for an XSLT Element

Generate Documentation in a Custom Format

XSLT stylesheet documentation can be also generated in a custom format. You can choose the format from the XSLT
Stylesheet Documentation dialog. Specify your own stylesheet to transform the intermediary XML generated in the
documentation process. You must write your stylesheet based on the schema xslDocSchema.xsd from
[Oxygen-install-folder]/frameworks/stylesheet_documentation. You can create a custom format
starting from one of the stylesheets used in the predefined HTML, PDF, and DocBook formats. These stylesheets are
available in [Oxygen-install-folder]/frameworks/stylesheet_documentation/xsl.

Oxygen XML Editor | Editing Documents | 185

Figure 109:The Custom Format Options Dialog

When using a custom format, you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating Documentation From the Command Line

You can export the settings of the XSLT Stylesheet Documentation dialog to an XML file by pressing the Export
settings button. With the exported settings file, you can generate the same documentation from the command line by
running the script stylesheetDocumentation.bat (on Windows) / stylesheetDocumentation.sh (on
Mac OS X / Unix / Linux) located in the Oxygen installation folder. The script can be integrated in an external batch
process launched from the command-line interface.

The command-line parameter of the script is the relative path to the exported XML settings file. The files which are
specified with relative paths in the exported XML settings are resolved relative to the script directory.

Example of an XML Configuration File

<serialized>
 <map>
 <entry>
 <String
xml:space="preserve">xsd.documentation.options</String>
 <xsdDocumentationOptions>
 <field name="outputFile">
 <String
xml:space="preserve">${cfn}.html</String>
 </field>
 <field name="splitMethod">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="openOutputInBrowser">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="format">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="customXSL">
 <null/>
 </field>
 <field name="deleteXMLFiles">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeIndex">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalAttributes">
 <Boolean xml:space="preserve">true</Boolean>

186 | Oxygen XML Editor | Editing Documents

 </field>
 <field name="includeLocalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeSimpleTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeComplexTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeAttributesGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeRedefines">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeReferencedSchemas">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDiagram">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsNamespace">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsLocation">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsType">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsTypeHierarchy">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsModel">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsChildren">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsInstance">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsUsedby">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsProperties">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsFacets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsIdentityConstr">

Oxygen XML Editor | Editing Documents | 187

 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsEscapeAnn">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSource">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAnnotations">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 </xsdDocumentationOptions>
 </entry>
 </map>
</serialized>

Finding XSLT References and Declarations

The following actions are available for search operations related with XSLT references and declarations:

• Document > References > > Search References - Searches all references of the item found at current cursor
position in the defined scope, if any. If a scope is defined but the current edited resource is not part of the range of
determined resources, a warning dialog is shown. This dialog allows you to define another search scope.

• Document > References > Search References in... - Searches all references of the item found at current cursor
position in the file or files that you specify when define a scope in the dialog above.

• Document > References > Search Declarations - Searches all declarations of the item found at current cursor
position in the defined scope, if any. If a scope is defined but the current edited resource is not part of the range of
resources determined by this scope, a warning dialog is shown.

• Document > References > Search Declarations in... - Searches all declarations of the item found at current cursor
position in the file or files that you specify when define a new scope.

• Document > References > Search Occurrences in File - Searches all occurrences of the item at the caret position
in the currently edited file.

• Document > Schema > Show Definition - Moves the cursor to the location of the definition of the current item.

Highlight Component Occurrences

When a component (for example variable or named template) is found at current cursor position, Oxygen performs a
search over the entire document to find the component declaration and all its references. When found, they are highlighted
both in the document and in the stripe bar, at the right side of the document. Customizable colors are used: one for the
component definition and another one for component references. Occurrences are displayed until another component is
selected and a new search is performed. All occurrences are removed when you start to edit the document.

This feature is set on automatic search by default and can be configured in the Options > Preferences > Editor > Mark
Occurrences page. A search can also be triggered with the Search > Search Occurrences in File (Ctrl+Shift+U)
contextual menu action. Matches are displayed in separate tabs of the Results view.

XSLT Refactoring Actions

The following actions allow changing the structure of an XSLT stylesheet without changing the results of running it in
an XSLT transformation:

• Document > Refactoring > > Create Template from Selection... - Opens a dialog that allows the user to
specify the name of the new template to be created. The possible changes to perform on the document can be previewed
before altering the document. After pressing OK the template is created and the selection is replaced with a
<xsl:call-template> instruction referring the newly created template.

188 | Oxygen XML Editor | Editing Documents

Note: The selection must contain well-formed elements only.

• Document > Refactoring > > Create Stylesheet from Selection... - Creates a separate stylesheet and replaces
the selection with a <xsl:include> instruction referring the newly created stylesheet.

Note: The selection must contain a well-formed top-level element.

• Document > Refactoring > Extract Attributes as xsl:attributes... - Extracts the attributes from the selected
element and represents each of them with a <xsl:attribute> instruction. For example from the following
element:

<person id="Big{test}Boss"/>

you obtain:

<person>
 <xsl:attribute name="id">
 <xsl:text>Big</xsl:text>
 <xsl:value-of select="test"/>
 <xsl:text>Boss</xsl:text>
 </xsl:attribute>
</person>

• contextual menu of current editor > Refactoring > Rename Component... - Renames the selected component.
Specify the new name for the component and the files affected by the modification as described for XML Schema.

Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a stylesheet. You can
open the view from Window > Show View > Resource Hierarchy/Dependencies .

If you want to see the hierarchy of a stylesheet, select the desired stylesheet in the project view and choose Resource
Hierarchy from the contextual menu.

Figure 110: Resource Hierarchy/Dependencies View - Hierarchy for docbook.xsl

If you want to see the dependencies of a stylesheet, select the desired stylesheet in the project view and choose Resource
Dependencies from the contextual menu.

Oxygen XML Editor | Editing Documents | 189

Figure 111: Resource Hierarchy/Dependencies View - Dependencies for common.xsl

The following actions are available in the Resource Hierarchy/Dependencies toolbar:

• - Refreshes the hierarchy/dependencies structure.
• - Stop the hierarchy/dependencies computing.
• - Allows you to choose a schema to compute the hierarchy structure.
• - Allows you to choose a schema to compute the dependencies structure.
• - Allows you to configure a scope to compute the dependencies structure.
• - Allows you to repeat a previous dependencies computation.

The following actions are available in the contextual menu:

• Open - Opens the schema. Alternatively, you can open the schema by a double-click on the Hierarchy/Dependencies
structure.

• Copy location - Copies the location of the schema.
• Show Resource Hierarchy - Shows the hierarchy for the selected schema.
• Show Resource Dependencies - Shows the dependencies for the selected schema.
• Expand All - Expands all the children of the selected schema from the Hierarchy/Dependencies structure.
• Collapse All - Collapses all the children of the selected schema from the Hierarchy/Dependencies structure.

Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected XSLT component. You can open
the view from Window > Show View > Component Dependencies .

If you want to see the dependencies of an XSLT component, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named components (templates,
variables, parameters, attribute sets, keys, etc).

190 | Oxygen XML Editor | Editing Documents

Figure 112: Component Dependencies View - Hierarchy for table.xsl

In the Component Dependencies view you have several actions in the toolbar:

• - Refreshes the dependencies structure.
• - Stops the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure. You can decide to use

automatically the defined scope for future operations by checking the corresponding checkbox.
• - Allows you to repeat a previous dependencies computation.

The following actions are available on the contextual menu:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the current selected component in the dependencies tree.

Tip:

If a component contains multiple references to another, a small table is shown containing all references.

When a recursive reference is encountered, it is marked with a special icon .

XSLT Quick Assist Support

The Quick Assist action set was designed to help you improve the development work flow by offering quicker access
to the most commonly used actions.

It is activated automatically when the cursor is positioned inside a component name. It is accessible via a yellow bulb
help marker placed on the cursor line, in the editor line number stripe. Also, you can invoke the quick assist menu if
you press Alt + 1 keys (Meta + Alt + 1 on Mac OS X).

Oxygen XML Editor | Editing Documents | 191

Figure 113: XSLT Quick Assist Support

The quick assist support offers direct access to the following actions:

• Rename Component - Renames the component and all its dependencies;
• Search Declaration - Searches the declaration of the component in a predefined scope. It is available only when

the context represents a component name reference;
• Search References - Searches all references of the component in a predefined scope;
• Component Dependencies - Searches the component dependencies in a predefined scope;
• Change Scope - Configures the scope that will be used for future search or refactor operations;
• Search Occurrences - Searches all occurrences of the file within the current scope.

Linking Between Development and Authoring

The Author page is available for the XSLT editor presenting the stylesheets in a nice visual rendering. For more details,
see The XSLT Document Type.

Editing XQuery Documents

This section explains the features of the XQuery editor and how they should be used.

XQuery Outline View

The XQuery document structure is presented in the XQuery Outline view. The outline tree presents the list of all the
components (namespaces, imports, variables, and functions) from both the edited XQuery file and its imports. It allows
a quick access to a component by knowing its name. It is opened from menu Window > Show View > Outline .

192 | Oxygen XML Editor | Editing Documents

Figure 114: XQuery Outline View

The following actions are available in the Settings menu on the Outline view's toolbar:

• Selection update on caret move - Allows a synchronization between Outline view and source document. The
selection in the Outline view can be synchronized with the caret's moves or the changes in the XQuery editor.
Selecting one of the components from the Outline view also selects the corresponding item in the source document.

• Sort - Allows you to sort alphabetically the XQuery components.
• Show all components - Displays all components that were collected starting from the current file. This option is set

by default.
• Show local components - Displays components defined in the current file only.
• Group by location/namespace/type - Allows you to group the components by location, namespace, and type. When

grouping by namespace, the main XQuery module namespace is the first presented in the Outline view.

If you know the component name, you can search it in the Outline view by typing its name in the filter text field from
the bottom of the view or directly on the tree structure. When you type the component name in the filter text field you
can switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch from
tree structure to the filter text field, you can use (Tab), (Shift-Tab).

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is searched as a partial match (like *textToFind*).

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Oxygen XML Editor | Editing Documents | 193

Folding in XQuery Documents

In a large XQuery document, the instructions enclosed in the '{' and '}' characters can be collapsed so that only the
needed instructions remain in focus. The same folding features available for XML documents are also available in
XQuery documents.

Figure 115: Folding in XQuery Documents

There is available the action Go to Matching BracketCtrl+Shift+G on contextual menu of XQuery editor for going
to matching character when cursor is located at '{' character or '}' character. It helps for finding quickly matching character
of current folding element.

Generating HTML Documentation for an XQuery Document

To generate HTML documentation for an XQuery document, use the dialog XQuery Documentation. It is opened with
the action Tools > Generate Documentation > XQuery Documentation... . . It can be also opened from the Project
Tree's contextual menu > Generate Documentation > XQuery Documentation... . . The dialog enables the user to
configure a set of parameters of the process of generating the HTML documentation. The parameters are:

194 | Oxygen XML Editor | Editing Documents

Figure 116:The XQuery Documentation Dialog

• Input - The Input panel allows the user to specify either the File or the Folder which contains the files for which
to generate the documentation. One of the two text fields of the Input panel must contain the full path to the XQuery
file. Extensions for the XQuery files contained in the specified directory can be added as comma-separated values.
Default there are offered xquery, xq, xqy.

• Default function namespace - Optional URI for the default namespace for the submitted XQuery, only if it exists.
• Predefined function namespaces - Optional engine dependent, predefined namespaces that the submitted XQuery

refers to. They allow the conversion to generate annotation information to support the presentation component
hypertext linking, only if the predefined modules have been loaded into the local xqDoc XML repository.

• Open in browser - When checked, the generated documentation is opened in an external browser.
• Output - Allows the user to specify where the generated documentation is saved on disk.

Editing CSS Stylesheets

This section explains the features of the editor for CSS stylesheets and how these features should be used.

Validating CSS Stylesheets

Oxygen includes a built-in CSS validator integrated with the general validation support, bringing the usual validation
features to CSS stylesheets.

Oxygen XML Editor | Editing Documents | 195

When the current editor is a CSS type one, the Validate toolbar provides a Validation options button for quick
access to the CSS validator options in the Oxygen user preferences.

Content Completion in CSS Stylesheets

A content completion assistant like the one available for XML documents offers the CSS properties and the values
available for each property. It is activated on the (CTRL - Space) shortcut and it is context-sensitive when invoked for
the value of a property.

Figure 117: Content Completion in CSS Stylesheets

The properties and the values offered as proposals are dependent on the CSS Profile selected in the Options > Preferences
> CSS Validator page, Profile combo box. The CSS 2.1 set of properties and property values is used for most of the
profiles, excepting CSS 1 and CSS 3. For these two, specific proposal sets are used.

CSS Outline View

The CSS Outline view presents the import declarations for other CSS stylesheet files and all the selectors defined in
the current CSS document. The selector entries can be presented as follows:

• in the order they appear in the document;
• sorted by element name used in the selector;
• sorted by the entire selector string representation.

The selection in the Outline view can be synchronized with the caret moves or the changes made in the stylesheet
document. When selecting an entry from the Outline view, the corresponding import or selector is highlighted in the
CSS editor.

Figure 118: CSS Outline View

196 | Oxygen XML Editor | Editing Documents

The selectors presented in this view can be quickly found using the key search field. When you press a sequence of
character keys while the focus is in the view, the first selector that starts with that sequence is selected automatically.

Folding in CSS Stylesheets

In a large CSS stylesheet document, some styles can be collapsed so that only the needed styles remain in focus. The
same folding features available for XML documents are also available in CSS stylesheets.

Formatting and Indenting CSS Stylesheets (Pretty Print)

If the edited CSS stylesheet becomes unreadable because of the bad alignment of the text lines, the pretty-print operation
available for XML documents is also available for CSS stylesheets. It works in the same way as for XML documents
and is available as the same menu and toolbar action.

Other CSS Editing Actions

The CSS editor type offers a reduced version of the popup menu available in the XML editor. Only the split actions,
the folding actions, the edit actions and a part of the source actions (only the actions To lower case, To upper case,
Capitalize lines) are available.

Editing XProc Scripts

An XProc script is edited as an XML document that is validated against a RELAX NG schema. If the script has an
associated transformation scenario, then the XProc engine from the scenario is invoked as validating engine. The default
engine for XProc scenarios is the Calabash engine which comes with Oxygen version 12.2.

The content completion inside the element input/inline from the XProc namespace http://www.w3.org/ns/xproc
offers elements from the following schemas depending on the port attribute of input and the parent of input. When
invoking the content completion inside the XProc element inline, depending on the attribute port of its parent
input element and the parent of element input, elements from different schemas are offered inside the proposals
list.

• If the value of the port attribute is stylesheet and element xslt is the parent of element input, the content
completion offers XSLT elements.

• If the value of the port attribute is schema and element validate-with-relax-ng is the parent of element
input, the content completion offers RELAX NG schema elements.

• If the value of the port attribute is schema and element validate-with-xml-schema is the parent of element
input, the content completion offers XML Schema schema elements.

• If the value of the port attribute is schema and element validate-with-schematron is the parent of element
input, the content completion offers either ISO Schematron elements or Schematron 1.5 schema elements.

• If the above cases do not apply, then the content completion window offers elements from all the schemas from the
above cases.

Oxygen XML Editor | Editing Documents | 197

Figure 119: XProc Content Completion

Editing Schematron Schemas

Schematron is a simple and powerful Structural Schema Language for making assertions about patterns found in XML
documents. It relies almost entirely on XPath query patterns for defining rules and checks. Schematron validation rules
allow you to specify a meaningful error message (as opposed to a cryptic error code) which will be provided to the user
if an error is encountered during validation stage.

Oxygen uses for validation the Skeleton XSLT processor and conforms with ISO Schematron or Schematron 1.5. It
allows you to validate XML documents against Schematron schema or against combined RELAX NG / W3C XML
Schema and Schematron.

Oxygen assists you in editing Schematron documents by providing schema-based content completion and syntax coloring.
A basic Schematron template is available in the New Document wizard.

Any time you can validate the content using the Validate action. Another way to validate schemas is to check them
against their own Schematron schema rules using External validation action.

Combined RELAX NG / W3C XML Schemas and Schematron Schema

Schematron rules can be embedded into W3C Schema through annotation (using the appinfo element) or in any
element on any level of a RELAX NG Schema (taking into account that the RELAX NG validator ignores all elements
that are not in the RELAX NG namespace).

Oxygen accepts such documents as Schematron validation schemas and it is able to extract and use the embedded rules.
To validate a document with both RELAX NG schema and its embedded Schematron rules, you need two persistence
associations like in the following example:

<?oxygen RNGSchema="percent.rng">
<?oxygen SCHSchema="percent.rng">

The second association validates your document with Schematron rules extracted from the RELAX NG Schema. Similarly
you can specify as Schematron Schema a W3C XML Schema having the Schematron rules embedded:

<?oxygen SCHSchema="percent.xsd">

198 | Oxygen XML Editor | Editing Documents

Validate an XML Document

To validate an XML document against a Schematron schema, invoke the Validate action either from the application's
toolbar or from the Project view's contextual menu. If you would like to add a persistence association between your
Schematron rules and the current edited XML document, use the Associate Schema action. A custom processing
instruction is added into the document and the validation process will take into account the Schematron rules:

<?oxygen SCHSchema="percent.sch"?>

The possible errors which might occur during the validation process are presented in the Errors panel at the bottom
area of the Oxygen window. Each error is flagged with a severity level, which Errors are flagged with a security level,
which can be one of warning, error, fatal or info.

To set a severity level, Oxygen looks for the following information:

• the role attribute, which can have one of the following values:

• warn or warning, to set the severity level to warning;
• error, to set the severity level to error;
• fatal, to set the severity level to fatal;
• info or information, to set the severity level to info.

• the start of the message, after trimming leading white-spaces. Oxygen looks to match the following exact string of
characters (case sensitive):

• Warning:, to set the severity level to warning;
• Error:, to set the severity level to error;
• Fatal:, to set the severity level to fatal;
• Info:, to set the severity level to info;

Note: Displayed message does not contain the matched prefix.

• if none of the previous rules match, Oxygen sets the security level to error.

SVG Documents

SVG is a platform for two-dimensional graphics. It has two parts: an XML-based file format and a programming API
for graphical applications. Just to enumerate some of the key features: shapes, text, and embedded raster graphics with
many painting styles, scripting through languages such as ECMAScript and support for animation.

SVG is a vendor-neutral open standard that has important industry support. Companies like Adobe, Apple, IBM, and
others have contributed to the W3C specification. Many documentation frameworks, including DocBook, have support
for SVG by defining the graphics directly in the document.

Oxygen XML Editor adds SVG support by using the Batik package, an open source project developed by the Apache
Software foundation. Oxygen's default XML catalog solves the SVG DTD.

Tip: To render SVG images which use Java scripting, copy the js.jar library from the Batik distribution into
the Oxygen lib folder and restart the application.

Tip: There are many navigation shortcuts which can be used for navigation in the SVG Viewer like:

• The arrow keys or (Shift + Left Click) move the image.
• (Ctrl + Right Click) rotates the image.
• (Ctrl + I) and (Ctrl + O) or (Ctrl + Left Click) to zoom in or out.
• (Ctrl + T) to reset the transform.

Oxygen XML Editor | Editing Documents | 199

http://xml.apache.org/batik/

The Standalone SVG Viewer

You can use the action Tools > SVG Viewer ... to browse and open any SVG file having the .svg or .svgz extension.
If the file is included in the current project, then you can open it by right-clicking on it and selecting Open with > SVG
Viewer . The following actions are available in a contextual menu:

• Zoom in - Zooms in the image by a factor of 2. The action is also available on Mouse Wheel Up;
• Zoom out - Zooms out the image by a factor of 2. The action is also available on Mouse Wheel Down;
• Rotate - Rotates the image 90 degrees clockwise;
• Refresh - Refreshes the image, by reloading the SVG file.

Figure 120: SVG Viewer

The Preview Result Panel

This panel can render the result of an XSL transformation that generates SVG documents.

Figure 121: Integrated SVG Viewer

The basic use-case of Oxygen consists in the development of the XSL stylesheets capable of producing rich SVG
graphics. For example, you have an XML document describing the evolution of a parameter over time and you create

200 | Oxygen XML Editor | Editing Documents

a graphic from it. You can start with a static SVG, written directly in Oxygen or exported from a graphics tool like the
Adobe suite. Extract then the parts that are dependent of the data from the XML document and create the XSL templates.
Select the option Show as SVG in the dialog for configuring the XSLT transformation scenario. When you run the
transformation, the SVG result is displayed in the SVG result panel.

Integrating External Tools

Sometimes an external tool which can be launched from the command line and which is different than a FO processor
is needed. Oxygen offers you the option of integrating such a tool by specifying just the command line for starting the
executable file and its working directory. To integrate such a tool, go to Options > Preferences > External Tools

If the external tool is applied on one of the files opened in Oxygen, enable the option for saving all edited files
automatically when an external tool is applied.

External tools can be launched from the External tools toolbar or from the submenu Tools > External tools . While

the action is running its icon is a stop icon: . When the tool has finished running, it changes the icon back to the original

run icon: . Please note that even though you can stop the external tool by invoking the action again while it is running,
that doesn't mean you can also stop the processes spawned by that external tool. This is especially a limiting factor when
running a batch file as the batch will be stopped but without actually stopping the processes that the batch was running
at that time.

Integrating the Ant Tool

As example let us integrate the Ant build tool in Oxygen:

• Download and install Ant on your computer;
• Test your Ant installation from the command-line interface in the directory where you want to

use Ant from Oxygen, for example run the clean target of your build.xml file
C:\projects\XMLproject\build.xml:

ant clean

• Go to Options > Preferences > External Tools ;
• Create a new external tool entry with the name Ant tool, the working directory

C:\projects\XMLproject and the command line
"C:\projects\XMLproject\ant.bat" clean obtained by browsing to the ant.bat
file from directory C:\projects\XMLproject;

• Run the tool from Tools > External Tools > Ant tool . You can see the output in the Command
results panel:

 Started: "C:\projects\XMLproject\ant.bat" clean
 Buildfile: build.xml

 clean:
 [echo] Delete output files.
 [delete] Deleting 5 files from C:\projects\XMLproject

 BUILD SUCCESSFUL
 Total time: 1 second

Oxygen XML Editor | Editing Documents | 201

http://ant.apache.org/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/install.html

Editing Very Large Documents

For editing very large documents (file size up to 300 MB), a special memory optimization is implemented on loading
such a file so that the total memory allocated for the application is not exceeded. The minimum file size that enables
this large file optimization can be configured with the option Optimize loading in the Text page for files over (MB)
available from menu Options > Preferences > Editor > Open/Save .

A temporary buffer file is created on disk so you have to make sure that the available free disk space is at least double
the size of the large file that you want to edit. For example Oxygen can load a 200-MB file using a minimum memory
setting of 512 MB and at least 400-MB free disk space.

The increase of the maximum size of editable files comes with the following restrictions:

• A file larger than the value of the above option is edited only in Text mode.
• The automatic validation is not available when editing a very large file.
• The XPath filter is disabled in the Find/Replace dialog.
• The bidirectional Unicode support (right-to-left writing) is disabled.
• The option Format and indent the document on open is disabled for non-XML documents. For XML documents,

it is done optimizing the memory usage but without respecting the options set in the Format preferences page.

• Less precise localizations for the results of an XPath expression.

Insufficient Memory

If the application displays an out of memory (OutOfMemoryError) error when you try to edit very large files, this
means that the memory allocated to the application is insufficient. Apply one or more steps from the following list to
avoid the error:

• Use the -Xmx parameter to adjust the maximum memory available to the application at startup.
• Make sure that you close other files before opening the large file.
• The large file is opened in Text editing mode because it uses less memory than other editing modes. You can set the

default editing mode in the Preferences dialog.
• If the file is too large for the editor to handle, you can open it in Large File Viewer.

Large File Viewer

XML files tend to become larger and larger mostly because they are frequently used as a format for database export or
for porting between different database formats. Traditional XML text editors simply cannot handle opening these huge
export files, some having sizes exceeding one gigabyte, because all the file content must be loaded in memory before
the user can actually view it.

The best performance of the viewer is obtained for encodings that use a fixed number of bytes per character, like UTF-16
or ASCII. The performance for UTF-8 is very good for documents that use mostly characters of the European languages.
For the same encoding, the rendering performance is higher for files consisting of long lines (up to few thousands
characters) and may degrade for short lines. In fact, the maximum size of a file that can be rendered in the Large File
Viewer decreases when the total number of the text lines of the file increases. Trying to open a very large file, for example
a file of 4 GB with a very high number of short lines (100 or 200 characters per line) may produce an out of memory
error (OutOfMemoryError) which would require either increasing the Java heap memory with the -Xmx startup
parameter or decreasing the total number of lines in the file.

202 | Oxygen XML Editor | Editing Documents

The powerful Large File Viewer is available from the Tools menu or as a standalone application. You can also right
click a file in your project and choose to open it with the viewer. It uses an efficient structure for indexing the opened
document. No information from the file is stored in the main memory, just a list of indexes in the file. In this way the
viewer can open very large files, up to 10 gigabytes. If the opened file is XML, the encoding used to display the text is
detected from the XML prolog of the file. For other file types, the encoding is taken from the Oxygen options. See
Encoding for non XML files.

Figure 122:The Large File Viewer

Large File Viewer components:

• The menu bar provides menu driven access to all the features and functions available in Large File Viewer.

• File > Open opens files in the viewer (also available in the contextual pop-up menu).
• File > Close closes the viewer.
• Edit > Copy copies the selected text to clipboard (also available in the contextual pop-up menu).
• Find > Find opens a reduced Find dialog providing some basic search options like:

• Case sensitive - When checked, operations are case-sensitive.
• Regular Expression - When checked, allows using any regular expression in PERL syntax.
• Wrap around - Continues the find from the start (end) of the document after reaching the end (start) if the

search is in forward (backward) direction.

• Help > Help provides access to this User Manual.

• The status bar provides information about the current opened file path, the Unicode representation of the character
at caret position and the line and column in the opened document where the caret is located.

Attention: For faster computation the Large File Viewer uses a fixed font (plain, monospace font of size 12) to
display characters. The font is not configurable from the Oxygen Preferences page.

Tip: The best performance of the viewer is accomplished for encodings that use a fixed number of bytes per
character, like UTF-16 or ASCII. The performance for UTF-8 is very good for documents that use mostly characters

Oxygen XML Editor | Editing Documents | 203

of the European languages. For the same encoding the rendering performance is high for files consisting of short
lines (up to a few thousand characters) and may degrade for long lines.

Hex Viewer

When the Unicode characters that are visible in a text viewer or editor are not enough and you need to see the byte values
of each character of a document, you can start the hex viewer that is available on the Tools menu. It has two panels: the
characters are rendered in the right panel and the bytes of each character are displayed in the left panel. There is a 1:1
correspondence between the characters and their byte representation: the byte representation of a character is displayed
in the same matrix position of the left panel as the character in the matrix of the right panel.

Figure 123: Hex Viewer

Scratch Buffer

A handy addition to the document editing is the Scratch Buffer view used for storing fragments of arbitrary text during
the editing process. It can be used to drop bits of paragraphs (including arbitrary XML markup fragments) while
rearranging and editing the document and also to drag and drop fragments of text from the scratch buffer to the editor
panel. The Scratch Buffer is basically a text area offering XML syntax highlight. The view contextual menu contains
basic edit actions like Cut, Copy, and Paste.

Changing the User Interface Language

Oxygen comes with a user interface available in English, French, German, Japanese, Dutch, and Italian. If you want to
use Oxygen in other language you have to translate all the messages and labels available in the user interface (menu

204 | Oxygen XML Editor | Editing Documents

action names, button names, check box texts, view titles, error messages, status bar messages, etc.) and provide a text
file with all the translated messages in the form of a Java properties file. Such a file contains message key - translated
message pairs displayed in the user interface. To install the new set of translated messages, copy this file into the
[Oxygen-install-folder]/lib folder, restart Oxygen and set the new language in the Oxygen preferences.
You can get the keys of all the messages that must be translated from the properties file containing the English translation.
To get this file, contact us at support@oxygenxml.com.

Handling Read-Only Files

If a file marked as read-only is opened in Oxygen you can by default perform modifications to it. This behavior is
controlled by the Can edit read only files option. When attempting to save such files you will be prompted to save them
to another location.

You can check out the read-only state of the file by looking in the Properties view. If you modify the file properties
from the operating system and the file becomes writable, you are able to modify it on the spot without having to reopen
it.

The read-only state is marked with a lock decoration which appears in the editor tab and specified in the tooltip for a
certain tab.

Editing Documents with Long Lines

The documents containing long lines can affect performance when opened in the text editor. If you choose to present
the document with line wrap, some features are affected:

• The editor uses the Monospaced font.
• You cannot set font styles from Options > Preferences > Editor > Colors .
• Automatic validation is disabled.
• Automatic spell checking is disabled.
• XPath field is disabled in the Find/Replace dialog.
• Less precise localization for executed XPaths. The XPath executions use SAX sources for smaller memory footprint.

We recommend using XPath 2.0 instead of XPath 1.0 because it has increased speed and a smaller memory footprint.
Running an XPath expression requires additional memory about 2 or 3 times the size of the document on disk.

The last two restrictions are valid only for XML documents.

Oxygen XML Editor | Editing Documents | 205

Chapter

5

Authoring in the Tagless Editor

This chapter presents the WYSIWYG like editor targeted for content authors,
also called Author editor.

Topics:

• Authoring XML Documents
Without the XML Tags

• General Author Presentation

Authoring XML Documents Without the XML Tags

Once the structure of the XML document and the required restrictions on the elements and attributes are fixed with an
XML schema the editing of the document is easier in a WYSIWYG (what-you-see-is-what-you-get) editor in which the
XML markup is not visible.

This tagless editor is available as the Author mode of the XML editor. The Author mode is activated by pressing the
Author button at the bottom of the editing area where the mode switches of the XML editor are available: Text, Grid,
and Author. The Author mode renders the content of the XML document visually based on a CSS stylesheet associated
with the document. Many of the actions and features available in Text mode are also available in Author mode.

Figure 124: oXygen Author Editor

The tagless rendering of the XML document in the Author mode is driven by a CSS stylesheet which conforms to the
version 2.1 of the CSS specification from the W3C consortium. Also some CSS 3 features like namespaces and custom
extensions of the CSS specification are supported.

The CSS specification is convenient for driving the tagless rendering of XML documents as it is an open standard
maintained by the W3C consortium. A stylesheet conforming to this specification is easy to develop and edit in Oxygen
as it is a plain text file with a simple syntax.

The association of such a stylesheet with an XML document is also straightforward: an xml-stylesheet XML
processing instruction with the attribute type="text/css" must be inserted at the beginning of the XML document.
If it is an XHTML document, that is the root element is an html element, there is a second method for the association
of a CSS stylesheet: an element link with the href and type attributes in the head child element of the html
element as specified in the CSS specification.

There are two main types of users of the Author mode: developers and content authors. A developer is a technical person
with advanced XML knowledge who defines the framework for authoring XML documents in the tagless editor. Once
the framework is created or edited by the developer it is distributed as a deliverable component ready to plug into the
application to the content authors. A content author does not need to have advanced knowledge about XML tags or
operations like validation of XML documents or applying an XPath expression to an XML document. The author just

208 | Oxygen XML Editor | Authoring in the Tagless Editor

http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

plugs the framework set-up by the developer into the application and starts editing the content of XML documents
without editing the XML tags directly.

The framework set-up by the developer is called document type and defines a type of XML documents by specifying
all the details needed for editing the content of XML documents in tagless mode:

• the CSS stylesheet which drives the tagless visual rendering of the document;
• the rules for associating an XML schema with the document which is needed for content completion and validation

of the document;
• transformation scenarios for the document;
• XML catalogs;
• custom actions available as buttons on the toolbar.

The tagless editor comes with some ready to use predefined document types for XML frameworks largely used today
like DocBook, DITA, TEI, XHTML.

General Author Presentation

A content author edits the content of XML documents in tagless mode disregarding the XML tags as they are not visible
in the editor. If he edits documents conforming to one of the predefined types he does not need to configure anything
as the predefined document types are already configured when the application is installed. Otherwise he must plug the
configuration of the document type into the application. This is as easy as unzipping an archive directly in the
[Oxygen-install-folder]/frameworks folder.

In case the edited XML document does not belong to one of the document types set up in Preferences you can specify
the CSS stylesheets to be used by inserting an xml-stylesheet processing instructions. You can insert the processing

instruction by editing the document or by using the Associate XSLT/CSS stylesheet action.

The syntax of such a processing instruction is:

<?xml-stylesheet type="text/css" media="media type" title="title"
href="URL" alternate="yes|no"?>

You can read more about associating a CSS to a document in the section about customizing the CSS of a document type.

When the document has no CSS association or the referred stylesheet files cannot be loaded, a default one is used. A
warning message is also displayed at the beginning of the document presenting the reason why the CSS cannot be loaded.

Oxygen XML Editor | Authoring in the Tagless Editor | 209

Figure 125: Document with no CSS association default rendering

Author Views

The content author is supported by special views which are automatically synchronized with the current editing context
of the editor panel. The views present additional information about this context thus helping the author to see quickly
the current location in the overall document structure and the available editing options.

Outline View

The Outline view offers the following functionality:

• Document Overview
• Outline View Specific Actions
• Modification Follow-up
• Document Structure Change
• Document Tag Selection

210 | Oxygen XML Editor | Authoring in the Tagless Editor

Figure 126:The Outline View

XML Document Overview

The Outline view displays a general tag overview of the current edited XML Document. It also shows the correct
hierarchical dependencies between the tag elements. That makes easier for the user to be aware of the document structure
and the way tags are nested. It allows fast navigation of the document by displaying the start of the content of the child
elements in the node of the parent element thus allowing to see quickly the content of an element without expanding it
in the Outline tree. It also allows the user to insert or delete nodes using pop-up menu actions.

The Expand more and Collapse all items of the popup menu available on the Outline tree enlarge or reduce the set of
nodes of the edited document currently visible in the view. The tree expansion action is a faster alternative to mouse
clicks on the plus signs of the tree when one wants to access quickly a node deeply nested in the hierarchy of document
nodes. When a large number of nodes become expanded and the document structure is not clear any more, the collapsing
action clears the view quickly by reducing the depth of the expanded nodes to only one child of the currently selected
node.

Document errors (such as an element inserted in an invalid position, or a wrong attribute name, or a missing required
attribute value) are highlighted in the Outline tree. An easy-to-spot exclamation mark sign is used as element icon, a
red underline decorates the element name and value and a tooltip provides more information about the nature of the
error.

Modification Follow-up

When editing, the Outline view dynamically follows the modifications introduced by the user, showing in the middle
of the panel the node which is currently being modified. This gives the user better insight on location where in the
document one is positioned and how the structure of the document is affected by one's modifications.

Document Structure Change

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view in
drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another one in the same panel then the dragged
element will be moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will
be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

Oxygen XML Editor | Authoring in the Tagless Editor | 211

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or
lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the
target element.

• If you hold down the (Ctrl) key after dragging, there will be performed a copy operation instead of a move one.

The drag and drop action in the Outline view can be disabled and enabled from the Preferences dialog.

Tip: You can select and drag multiple nodes in the Author Outline tree.

Outline Filters

The following actions are available in the Settings menu on the Outline view's toolbar:

• Flat presentation mode of the filtered results - when active, the application flattens the filtered result elements
to a single level.

• Show comments and processing instructions - show/hide comments and processing instructions in the Outline
view.

• Show text - show/hide additional text content for the displayed elements.
• Show attributes - show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel.
• Configure displayed attributes - displays the XML Structured Outline preferences page.

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

The Contextual Menu of the Outline Tree

The contextual menu of the Outline tree contains the following actions:

• Edit attributes - A dialog is presented allowing the user to see and edit the attributes of the selected node.
• The Append child, Insert before and Insert after submenus allow to quickly insert new tags in the document at

the place of the element selected in the Outline tree. The Append child submenu lists the names of all the elements
which are allowed by the schema associated with the current document as child of the current element. The effect
is the same as typing the '<' character and selecting an element name from the popup menu offered by the content
completion assistant. The Insert before and Insert after submenus list the elements which are allowed by the schema
associated with the current document as siblings of the current element inserted immediately before respectively
after the current element.

• The Cut, Copy and Delete actions execute the same actions as the Edit menu items with the same name on the
elements currently selected in the Outline tree.

• You can insert a well-formed element before, after or as a child of the currently selected element by accessing the
Paste before, Paste after or Paste as Child actions.

• The Toggle Comment item encloses the currently selected element of the Outline tree in an XML comment, if the
element is not commented, or removes the comment if it is commented.

• Using the Rename Element action the element from the caret position and the elements that have the same name
as the current element can be renamed according with the options from the Rename dialog.

• The Expand More / Collapse All actions expand / collapse the selection and all its children.

Tip: You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting multiple
nodes in the tree.

Elements View

The Elements view presents a list of all defined elements that you can insert in your document. All elements from a
sequence are presented but the invalid proposals (which cannot be inserted in the current context) are grayed-out. The
upper part of the view features a combo box that contains the current element's ordered ancestors. Selecting a new
element in this combo box will update the list of the allowed elements in Before and After tabs.

212 | Oxygen XML Editor | Authoring in the Tagless Editor

Figure 127:The Elements View

Three tabs present information relative to the caret location:

• Caret - Shows a list of all the elements allowed at the current caret location. Double-clicking any of the listed
elements will insert that element at the caret position.

• Before - Shows a list of all elements that can be inserted before the element selected in the combo box. Double-clicking
any of the listed elements will insert that element before the element at the caret position.

• After - Shows a list of all elements that can be inserted after the element selected in the combo box. Double-clicking
any of the listed elements will insert that element after the element at the caret position.

Double clicking an element name in the list surrounds the current selection in the editor panel with the start tags and
end tags of the element. If there is no selection just an empty element is inserted in the editor panel at the cursor position.

Attributes View

The Attributes view presents all the possible attributes of the current element allowed by the schema of the document.
It allows you to insert attributes in the current element or change the value of the attributes already used in the element.
The already present attributes are painted with a bold font. Default values are painted with gray color. The Attributes
view uses a red color to highlight invalid attributes and values.

Clicking the Value column of a table row will start editing the value of the attribute from the selected row. If the possible
values of the attribute are specified as list in the schema associated with the edited document the Value column works
as a combo box where you can select one of the possible values to be inserted in the document. The attributes table is
sortable by clicking the column names. Thus the table's contents can be sorted in ascending order, in descending order
or in a custom order, where the used attributes are placed at the beginning of the table as they appear in the element
followed by the rest of the allowed elements as they are declared in the associated schema.

Oxygen XML Editor | Authoring in the Tagless Editor | 213

Figure 128:The Attributes View

A combo box located in the upper part of the view allows you to edit the attributes of the ancestors of the current element.

The contextual menu of the view allows you to insert a new element (Add action) or delete an existing one (Delete
action). Delete action can be invoked on a selected table entry by pressing (Del) or (Backspace).

The attributes of an element can be edited also in place in the editor panel by pressing the shortcut (Alt + Enter) which
pops up a small window with the same content of the Attributes view. In the initial form of the popup, only the two
text fields Name and Value are displayed, the list of all the possible attributes is collapsed.

Figure 129: Edit attributes in place

The small right arrow button expands the list of possible attributes allowed by the schema of the document as in the
Attributes panel.

214 | Oxygen XML Editor | Authoring in the Tagless Editor

Figure 130: Edit attributes in place - full version

The Name field auto-completes the name of the attribute: the complete name of the attribute is suggested based on the
prefix already typed in the field as the user types in the field.

Adding an attribute that is not in the list of all defined attributes is not possible when the Allow only insertion of valid
elements and attributes schema aware option is enabled.

Entities View

This view displays a list with all entities declared in the current document as well as built-in ones. Double clicking one
of the entities will insert it at the current cursor position.

Figure 131:The Entities View

The Author Editor

This section explains the features of the CSS-driven WYSIWYG-like editor for XML documents.

Oxygen XML Editor | Authoring in the Tagless Editor | 215

Navigating the Document Content

Fast navigating the document content can be done using the (Tab)/(Shift + Tab) for advancing forward / backwards.
The caret is moved to the next / previous editable position. To navigate one word forward or backwards, use Ctrl +
Right Arrow, and Ctrl + Left Arrow, respectively. Entities and hidden elements are skipped.

A left-hand side stripe paints a vertical thin light blue bar indicating the vertical span of the element found at caret
position. Also a top stripe called breadcrumb indicates the path from document root to the current element.

Figure 132:The breadcrumb in Editor view

The last element is also highlighted by a thin light blue bar for easier identification. Clicking one element from the top
stripe selects the entire element in the editor view.

The tag names displayed in the breadcrumb can be customized with an Author extension class that implements
AuthorBreadCrumbCustomizer. See the Author SDK for details about using it.

The locations of selected text are stored in an internal list which allows navigating between them with the buttons

Ctrl+Alt+[Back and Ctrl+Alt+] Forward that are available on the toolbar Navigation.

The Append child, Insert before and Insert after submenus of the top stripe popup menu allow you to insert new tags
in the document at the place of the selected element. The Append child submenu lists the names of all the elements
which are allowed by the schema associated with the current document as child of the current element. The effect is the
same as typing the '<' character and selecting an element name from the popup menu offered by the content completion
assistant. The Insert before and Insert after submenus list the elements which are allowed by the schema associated
with the current document as siblings of the current element inserted immediately before respectively after the current
element.

The Cut, Copy, Paste and Delete items of the popup menu execute the same actions as the Edit menu items with the
same name on the elements currently selected in the stripe. The Cut and Copy operations (like the display:block
property or the tabular format of the data from a set of table cells) preserve the styles of the copied content. The Paste
before, Paste after and Paste as Child actions allow the user to insert an well-formed element before, after or as a child
of the currently selected element.

The Toggle Comment item of the Outline tree popup menu encloses the currently selected element of the top stripe in
an XML comment, if the element is not commented, or removes the comment if it is commented.

Using the Rename Element action the selected element and the elements that have the same name as the current element
can be renamed according with the options from the Rename dialog.

When working on a large document, the folding support can be used to collapse some elements content leaving in focus
only the ones you need to edit. Foldable elements are marked with a small triangle painted in the upper left corner.
Hovering with the mouse pointer over that marker, the entire content of the element is highlighted by a dotted border
for quick identification of the foldable area.

When working on a suite of documents that refer to one another (references, external entities, XInclude, DITA conref,
etc), the linking support is useful for navigating between the documents. In the predefined customizations that are
bundled with Oxygen links are marked with an icon representing a chain link: . When hovering with the mouse pointer
over the marker, the mouse pointer changes its shape to indicate that the link can be followed and a tooltip presents the
destination location. Click a followable link to open the referred resource in an editor. The same effect can be obtained
by using the action Open file at caret when the caret is in a followable link element.

To position the cursor at the beginning or at the end of the document you can use (Ctrl+Home) and (Ctrl+End),
respectively.

Displaying the Markup

In Author view, the amount of displayed markup can be controlled using the following dedicated actions:

216 | Oxygen XML Editor | Authoring in the Tagless Editor

http://www.oxygenxml.com/developer.html

• Full Tags with Attributes - Displays full name tags with attributes for both block level as well as in-line level
elements.

• Full Tags - Displays full name tags without attributes for both block level as well as in-line level elements.
• Block Tags - Displays full name tags for block level elements and simple tags without names for in-line level

elements.
• Inline Tags - Displays full name tags for inline level elements, while block level elements are not displayed.
• Partial Tags - Displays simple tags without names for in-line level elements, while block level elements are

not displayed.
• No Tags - None of the tags is displayed. This is the most compact mode.

The default tags display mode can be configured in the Author options page. However, if the document opened in Author
editor does not have an associated CSS stylesheet, then the Full Tags mode will be used.

Block-level elements are those elements of the source document that are formatted visually as blocks (e. g. paragraphs),
while the inline level elements are distributed in lines (e. g. emphasizing pieces of text within a paragraph, inline images,
etc). The graphical format of the elements is controlled from the CSS sources via the display property.

Bookmarks

A position in a document can be marked with a bookmark. Later the cursor can go quickly to the marked position with
a keyboard shortcut or with a menu item. This is useful to ease the navigation in a large document or to work on more
than one document when the cursor must move between several marked positions.

A bookmark can be placed with:

• one of the menu items available on the menu Edit > Bookmarks > Create
• the menu item Edit > Bookmarks > Bookmarks Quick Creation (F9)
• the keyboard shortcuts associated with these menu items and visible on the menu Edit > Bookmarks

A bookmark can be removed when a new bookmark is placed in the same position as an old one or with the action Edit
> Bookmarks > Remove All . The cursor can go to a bookmark with one of the actions available on the menu Edit >
Bookmarks > Go to .

Position Information Tooltip

When the caret is positioned inside a new context, a tooltip will be shown for a couple of seconds displaying the position
of the caret relative to the current element context.

Here are the common situations that can be encountered:

• The caret is positioned before the first block child of the current node.

Figure 133: Before first block

• The caret is positioned between two block elements.

Figure 134: Between two block elements

• The caret is positioned after the last block element child of the current node.

Oxygen XML Editor | Authoring in the Tagless Editor | 217

Figure 135: After last block

• The caret is positioned inside a node.

Figure 136: Inside a node

• The caret is positioned inside an element, before an inline child element.

Figure 137: Before an inline element

• The caret is positioned between two inline elements.

Figure 138: Between two inline elements

• The caret is positioned inside an element, after an inline child element.

Figure 139: After an inline element

The nodes in the previous cases are displayed in the tooltip window using their names.

You can deactivate this feature by unchecking the Options > Preferences > Editor / Author > Show caret position
tooltip check box. Even if this option is disabled, you can trigger the display of the position tooltip by pressing Shift+F2.

Note: The position information tooltip is not displayed if one of the modes Full Tags with Attributes or Full Tags
is selected.

Displaying Referred Content

The references to entities, XInclude, and DITA conrefs are expanded by default in Author mode and the referred content
is displayed. You can control this behavior from the Author options page. The referred resources are loaded and displayed
inside the element or entity that refers them, however the displayed content cannot be modified directly.

Figure 140: XInclude reference

218 | Oxygen XML Editor | Authoring in the Tagless Editor

Figure 141: External entity reference

When the referred resource cannot be resolved, an error will be presented inside the element that refers them instead of
the content.

If you want to make modifications to the referred content, you must open the referred resource in an editor. The referred
resource can be opened quickly by clicking on the link (marked with the icon) which is displayed before the referred
content. The referred resource is resolved through the XML Catalog set in Preferences.

The referred content is refreshed:

• automatically, when it is modified and saved from Oxygen XML Author;
• on demand, by using the Refresh references action. Useful when the referred content is modified outside the Oxygen

XML Author scope.

Finding and Replacing Text

The Find / Replace dialog can be used in the Author page in the same way as in the Text page. However, there are
some features which are disabled:

• search in XPath
• search in selection
• search in tags

These limitations can be compensated by using the Find All Elements dialog.

Contextual Menu

More powerful support for editing the XML markup is offered via actions included in the contextual menu. Two types
of actions are available: generic actions (actions that not depends on a specific document type) and document type
actions (actions that are configured for a specific document type).

Figure 142: Contextual menu

Oxygen XML Editor | Authoring in the Tagless Editor | 219

The generic actions are:

• Edit Attributes - A pop-up window is displayed allowing you to manage the element attributes.
• Rename - The element from the caret position can be renamed quickly using the content completion window. If the

Allow only insertion of valid elements and attributes schema aware option is enabled only the proposals from the
content completion list are allowed, otherwise a custom element name can also be provided.

• Cut, Copy, Paste - Common edit actions with the same functionality as those found in the text editor.
• Paste As XML - Similar to Paste operation, except that the clipboard's content is considered to be XML.
• Edit Profiling Attributes - Allows you to select the profiling attributes.
• Select - Contains the following actions:

• Select > Select Element - Selects the entire element at the current caret position.
• Select > Select Content - Selects the entire content of the element at the current caret position, excluding the

start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of
the currently selected element content.

• Select > Select Parent - Selects the parent of the element at the current caret position.

Note: You can select an element by triple clicking inside its content. If the element is empty you can select it
by double clicking it.

• Refactoring - Contains a series of actions designed to alter the document's structure:

• Toggle Comment - Encloses the currently selected text in an XML comment, or removes the comment if it is
commented.

• Split Element - Splits the content of the closest element that contains the caret's position. Thus, if the caret is
positioned at the beginning or at the end of the element, the newly created sibling will be empty.

• Join Elements - Joins two adjacent elements that have the same name. The action is available only when the
caret position is between the two adjacent elements. Also, joining two elements can be done by pressing the
Delete or Backspace keys and the caret is positioned between the boundaries of these two elements.

• Surround with Tag... - Selected text in the editor is marked with the specified tag.
• Surround with '<Tag name>' - Selected text in the editor is marked with start and end tags of the last 'Surround

with Tag...' action.
• Rename Element - The element from the caret position and the elements that have the same name as the current

element can be renamed according with the options from the Rename dialog.
• Delete Element Tags - Deletes the tags of the closest element that contains the caret's position. This operation

is also executed if the start or end tags of an element are deleted by pressing the (Delete) or (Backspace) keys.

• Review - Provides access to Track Changes and Manage Comments actions.
• Insert Entity - Allows the user to insert a predefined entity or a character entity. Surrogate character entities (range

#x10000 to #x10FFFF) are also accepted. Character entities can be entered in one of the following forms:

• #<decimal value> - e. g. #65
• &#<decimal value>; - e. g. A
• #x<hexadecimal value> - e. g. #x41
• &#x<hexadecimal value>; - e. g. A

• Open File at Caret - Opens in a new editor panel the file with the name under the current position of the caret in
the current document. If the file does not exist at the specified location the error dialog that is displayed contains a
Create new file action which displays the New file dialog. This allows you to choose the type or the template for
the file. If the action succeeds, the file is created with the referred location and name and is opened in a new editor
panel. This is useful when you decide first on the file name and after that you want to create it in the exact location
specified at the current cursor position.

• Options - Opens the Author options page.

Document type actions are specific to some document type. Examples of such actions can be found in section Predefined
document types.

220 | Oxygen XML Editor | Authoring in the Tagless Editor

Editing XML Documents in Author

This section details how to edit the text content and the markup of XML documents in Author mode. It explains also
how to edit tables and MathML content in Author mode.

Editing the XML Markup

One of the most useful feature in Author editor is the content completion support. The fastest way to invoke it is to press
(Enter) or (Ctrl + Space) (on Mac OS X the shortcut is (Meta + Space)) in the editor panel.

Content completion window offers the following types of actions:

• inserting allowed elements for the current context according to the associated schema, if any;
• inserting element values if such values are specified in the schema for the current context;
• inserting new undeclared elements by entering their name in the text field;
• inserting CDATA sections, comments, processing instructions;
• inserting code templates.

Figure 143: Content completion window

If you press (Enter) the displayed content completion window will contain as first entries the Split <Element name>
items. Usually you can only split the closest block element to the caret position but if it is inside a list item, the list item
will also be proposed for split. Selecting Split <Element name> splits the content of the specified element around the
caret position. Thus, if the caret is positioned at the beginning or at the end of the element, the newly created sibling
will be empty.

If the caret is positioned inside a space preserve element the first choice in the content completion window is Enter
which inserts a new line in the content of the element. If there is a selection in the editor and you invoke content
completion, a Surround with operation can be performed. The tag used will be the selected item from the content
completion window.

By default you are not allowed to insert element names which are not considered by the associated schema as valid
proposals in the current context. This can be changed by unchecking the Allow only insertion of valid elements and
attributes check box from the Schema aware preferences page.

Joining two elements - You can choose to join the content of two sibling elements with the same name by using the
contextual menu > Join elements action.

The same action can be triggered also in the next situations:

• The caret is located before the end position of the first element and (Delete) key is pressed.
• The caret is located after the end position of the first element and (Backspace) key is pressed.
• The caret is located before the start position of the second element and (Delete) key is pressed.
• The caret is located after the start position of the second element and (Backspace) key is pressed.

In either of the described cases, if the element has no sibling or the sibling element has a different name, Unwrap
operation will be performed automatically.

Unwrapping the content of an element - You can unwrap the content of an element by deleting its tags using the
Delete element tags action from the editor contextual menu.

The same action can be triggered in the next situations:

• The caret is located before the start position of the element and (Delete) key is pressed.

Oxygen XML Editor | Authoring in the Tagless Editor | 221

• The caret is located after the start position of the element and (Backspace) key is pressed.
• The caret is located before the end position of the element and (Delete) key is pressed.
• The caret is located after the end position of the element and (Backspace) key is pressed.

Removing all the markup of an element - You can remove the markup of the current element and keep only the text

content with the action Remove All Markup available on the submenu Refactoring of the contextual menu and
on the toolbar XML Refactoring.

When you press (Delete) or (Backspace) in the presented cases the element is unwrapped or it is joined with its sibling.
If the current element is empty, the element tags will be deleted.

When you click on a marker representing the start or end tag of an element, the entire element will be selected. The
contextual menu displayed when you right-click on the marker representing the start or end tag of an element contains
Append child, Insert Before and Insert After submenus as first entries.

Code Templates

You can define short names for predefined blocks of code called code templates. The short names are displayed in the
Content Completion window if the word at cursor position is a prefix of such a short name. If there is no prefix at cursor
position, that is the character at the left of cursor is a whitespace, all the code templates are listed.

Oxygen comes with a lot of predefined code templates but you can define your own code templates for any type of
editor. For more details see the example for XSLT editor code templates.

To obtain the template list you can use the Content Completion on request shortcut key (usually CTRL-SPACE) or the
Code Templates on request shortcut key (CTRL-SHIFT-SPACE). The first shortcut displays the code templates in the
same content completion list with elements from the schema of the document. The second shortcut displays only the
code templates and is the default shortcut of the action Document > Content Completion > Show Code Templates
.

The following variables can appear in a code template:

• ${caret} - The caret position after inserting the code template.
• ${selection} - The position of the current selection in the inserted template.
• ${env(ENV_VAR_NAME)} - The value of the environment variable ENV_VAR_NAME.
• ${system(var.name)} - The value of the system variable var.name.
• ${date(yyyy-MM-dd)} - A date in the format: 4 digits for year, 2 digits for month, 2 digits for day.

Editing the XML Content

By default you can type only in elements which accept text content. So if the element is declared as empty or element
only in the associated schema you are not allowed to insert text in it. This is also available if you try to insert CDATA
inside an element. Instead a warning message is shown:

Figure 144: Editing in empty element warning

You can disable this behavior by checking the Allow Text in empty or element only content check box in the Author
preferences page.

Entire sections or chunks of data can be moved or copied by using the drag and drop support. The following situations
can be encountered:

• when both the drag and drop sources are Author pages, an well-formed XML fragment is transferred. The section
is balanced before dropping it by adding matching tags when needed.

• when the drag source is the Author page but the drop target is a text-based editor only the text inside the selection
is transferred as it is.

• the text dropped from another text editor or another application into the Author page is inserted without changes.

222 | Oxygen XML Editor | Authoring in the Tagless Editor

Styled content can be inserted in the Author editor by copying or dragging it from:

• Office-type applications (Microsoft Word and Microsoft Excel, OpenOffice.org Writer and OpenOffice.org
Calc);

• Web browsers (like Mozilla Firefox or Microsoft Internet Explorer);
• the Data Source Explorer view (where resources are available from WebDAV or CMS servers).

The styles and general layout of the copied content like: sections with headings, tables, list items, bold and italic text,
hyperlinks, etc. are preserved by the paste operation by transforming them to the equivalent XML markup of the target
document type. This is available by default in the following predefined document types: DITA, DocBook 4, DocBook
5, TEI 4, TEI 5, XHTML.

More details about setting up a custom copy/paste handler are available in the Author Developer Guide.

The font size of the current WYSIWYG-like editor can be increased and decreased on the fly with the same actions as
in the Text editor:

• (Ctrl - NumPad+) or (Ctrl - +) or (Ctrl - mouse wheel) - Increases font size.
• (Ctrl - NumPad-) or (Ctrl - -) or (Ctrl - mouse wheel) - Decreases font size.
• (Ctrl - NumPad0) or (Ctrl - 0) - Restores font size to the size specified in Preferences.

Removing the Text Content of the Current Element

You can remove the text content of the current element and keep only the markup with the action Remove Text
available on the submenu Refactoring of the contextual menu and on the toolbar XML Refactoring. This is useful
when the markup of an element must be preserved, for example a table structure but the text content must be replaced.

Duplicating Elements with Existing IDs

If the Auto generate IDs for elements option is turned off and you duplicate elements with existing IDs, the duplicates
lose these IDs. If the previously mentioned option is active, when you duplicate content, Oxygen makes sure that if there
is an ID attribute set in the XML markup, the newly created duplicate has a new, unique ID attribute value. If you cut
and paste content, the moved element retains its ID.

Table Layout and Resizing

The support for editing data in tabular form can manage table width and column width specifications from the source
document. The specified widths will be considered when rendering the tables and when visually resizing them using
mouse drag gestures. These specifications are supported both in fixed and proportional dimensions. The predefined
frameworks (DITA, DocBook and XHTML) already implement support for this feature. The layout of the tables from
these types of documents takes into account the table width and the column width specifications particular to them. The
tables and columns widths can be visually adjusted by dragging with the mouse their edges and the modifications will
be committed back into the source document.

Figure 145: Resizing a column in Oxygen Author editor

DocBook Table Layout

The DocBook table layout supports two models: CALS and HTML.

In the CALS model column widths can be specified by using the colwidth attribute of the associated colspec
element. The values can be fixed or proportional.

Oxygen XML Editor | Authoring in the Tagless Editor | 223

Figure 146: CALS table

XHTML Table Layout

The HTML table model accepts both table and column widths by using the width attribute of the table element and the
col element associated with each column. The values can be represented in fixed units, proportional units or percentages.

Figure 147: HTML table

DITA Table Layout

The DITA table layout accepts CALS tables and simple tables.

The simple tables accept only relative column width specifications by using the relcolwidth attribute of the
simpletable element.

Figure 148: DITA simple table

Image Rendering

The Author editor and the output transformation process might render differently the images referenced in the XML
document, since they use different rendering engines. The following image formats are supported by default: GIF, JPEG,
PNG, SVG, BMP. To extend this support for other formats (like TIFF, JPEG 2000 or WBMP, for example) install the
Java Advanced Imaging (JAI) Image I/O Tools plug-in.

When an image cannot be rendered, Oxygen XML Author displays a warning message that contains the reason why this
is happening. Possible causes:

• the image is very large and you need to enable Show very large images option;
• the image format is not supported by default. It is recommended to install the Java Advanced Imaging Image I/O

Tools plug-in.

224 | Oxygen XML Editor | Authoring in the Tagless Editor

Scaling Images

Image dimension and scaling attributes are taken into account when an image is rendered. The following rules apply:

• if you specify only the width attribute of an image, the height of the image is proportionally applied;
• if you specify only the height attribute of an image, the width of the image is proportionally applied;
• if you specify width and height attributes of an image, both of them controls the rendered image;
• if you want to scale proportionally both the width and height of an image, use the scale attribute.

Installing Java Advanced Imaging Image I/O Tools plug-in

Follow this procedure:

1. Start Oxygen and open the Help > About dialog. Open the System properties tab and look for java.runtime.name
and java.home properties. Keep their values for later use.

2. Go to Java Advanced Imaging Image I/O page and download the kit corresponding to your operating system and
Java distribution (found in the java.runtime.name property).

3. Execute the installer. When the installation wizard displays the Choose Destination Location page, fill-in the
Destination Folder field with the value of the java.home property. Continue with the installation procedure and
follow the on-screen instructions.

Adding an Image

An image can be inserted in an XML document edited in Author mode with the following methods:

• The insert image actions from the predefined document types. The following document types have an insert image
action: DocBook 4, DocBook 5, DITA, TEI P4, TEI P5, XHTML.

• Drag an image from other application and drop it in the Author editor. If it is an image file, it is inserted as a reference
to the image file. For example, in a DITA topic the path of the image file is inserted as the value of the href attribute
in an image element:

<image href="../images/image_file.png"/>

If it is only an image part, first it is saved as a file using the file save dialog which is displayed automatically. After
saving the image to a file the file path is inserted at the drop position as specified above.

• Copy the image from other application and paste it in your document. The content inserted in the document is similar
with that added after dragging and dropping an image.

Editing MathML Notations

The Author editor includes a built-in editor for MathML notations. Double clicking inside a MathML notation starts the
MathML editor in a new dialog where the mathematical symbols of the notation are edited.

Oxygen XML Editor | Authoring in the Tagless Editor | 225

http://java.net/projects/jai-imageio-core/

Figure 149:The default MathML editor

The minimum font size for mathematical symbols and the MathFlow SDK configuration are set in the Preferences.

If a MathML file is included in the current project that is opened in the Project view it can be opened directly in the
MathML editor with the action Open with > MathFlow editor that is available on the contextual menu of the Project
view.

Configure the MathFlow Editor

The MathFlow Components (the MathFlow SDK) can replace the default MathML editor with a specialized MathML
editor. You have to purchase a MathML component from Design Science and configure it in Oxygen with the following
procedure:

226 | Oxygen XML Editor | Authoring in the Tagless Editor

http://www.dessci.com/en/products/mathflow/

Figure 150:The default MathML editor

1. Install MathFlow Components (the MathFlow SDK).

2. On Windows make sure there is a copy of the FLEXlm DLL, that is the file
[MathFlow-install-folder]/resources/windows/lmgr10.dll, in a folder that is added to the
PATH environment variable.

3. Set the path to the MathFlow install folder in the Preferences.

4. Set the path to the MathFlow license file in the Preferences.

Refreshing the Content

On occasion you may need to reload the content of the document from the disk or reapply the CSS. This can be performed
by using the Reload action.

For refreshing the content of the referred resources you can use the action Refresh references. However, this action
will not refresh the expanded external entities, to refresh those you will need to use the Reload action.

Validation and Error Presenting

Automatic validation as well as validate on request operations are available while editing documents in the Author
editor. A detailed description of the document validation process and its configuration is described in section Validating
Documents.

Oxygen XML Editor | Authoring in the Tagless Editor | 227

Figure 151: Error presenting in Oxygen Author editor

A fragment with a validation error or warning will be marked by underlining the error region with a red color. Also a
red sign will mark the position of that line on the right side ruler of the editor panel. The same will happen for a validation
warning, only the color will be yellow instead of red.

The ruler on the right of the document is designed to display the errors found during the validation process and also to
help the user to locate them more easily. The ruler contains the following areas:

• The top area - a success validation indicator that will turn green in case the validation succeeded or red otherwise.A
more detailed report of the errors is displayed in the tool tip. In case there are errors, only the first three of them will
be presented in the tool tip.

• The middle area - the errors markers are depicted in red (with a darker color tone for the current selected one). The
number of markers shown can be limited by modifying the setting Options > Preferences > Editor > Document
checking > Limit error markers to .

Clicking on a marker will highlight the corresponding text area in the editor. The error message is displayed both in
the tool tip and in the error area on the bottom of the editor panel.

The Document checking user preferences are easily accessible from the button displayed at the beginning of the
error message on the bottom of the editor panel.

• The bottom area - two navigation arrows that will go to the next or to the previous error and a button for clearing all
the error markers from the ruler. The same actions can be triggered from Document > Automatic validation >
Next error (Ctrl + .) and Document > Automatic validation (Ctrl + ,) > Previous error (Ctrl + ,) .

The validation status area is the line at the bottom of the editor panel that presents the message of the current validation

error. Clicking on opens the Document checking page in Oxygen user preferences.

Status messages from every validation action are logged into the Information view.

Whitespace Handling

There are several major aspects of white-space handling in the Oxygen Author editor which are important in the following
cases:

• when opening documents
• when switching from other editing mode to Author mode
• when saving documents in Author mode
• when switching from Author mode to another one

• Open documents - When deciding if the white-spaces from a text node are to be preserved, normalized or stripped,
the following rules apply:

228 | Oxygen XML Editor | Authoring in the Tagless Editor

If the text node is inside an element context where the xml:space="preserve" is set then the white-spaces
are preserved.

•

• If the CSS property white-space is set to pre for the node style then the white-spaces are preserved.
• If the text node contains other non-white-space characters then the white-spaces are normalized.
• If the text node contains only white-spaces:

• If the node has a parent element with the CSS display property set to inline then the white-spaces are
normalized.

• If the left or right sibling is an element with the CSS display property set to inline then the white-spaces
are normalized.

• If one of its ancestors is an element with the CSS display property set to table then the white-spaces
are striped.

• Otherwise the white-spaces are ignored.

• Save documents - The Author editor will try to format and indent the document while following the white-space
handling rules:

• If text nodes are inside an element context where the xml:space="preserve" is set then the white-spaces
are written without modifications.

• If the CSS property white-space is set to pre for the node style then the white-spaces are written without
any changes.

• In other cases the text nodes are wrapped.

Also, when formatting and indenting an element that is not in a space-preserve context, additional line separators
and white-spaces are added as follows:

• Before a text node that starts with a white-space.
• After a text node that ends with a white-space.
• Before and after CSS block nodes.
• If the current node has an ancestor that is a CSS table element.

• Editing documents - You can insert space characters in any text nodes. Line breaks are permitted only in
space-preserve elements. Tabs are marked in the space-preserve elements with a little marker.

Minimize Differences Between Versions Saved on Different Computers

The number of differences between versions of the same file saved by different content authors on different computers
can be minimized by imposing the same set of formatting options when saving the file, for all the content authors. An
example for a procedure that minimizes the differences is the following.

1. Create an Oxygen project file that will be shared by all content authors.

2. Set your own preferences in the following panels of the Preferences dialog: Editor / Format and Editor / Format
/ XML.

3. Save the preferences of these two panels in the Oxygen project by selecting the button Project Options in these two
panels.

4. Save the project and commit the project file to your versioning system so all the content authors can use it.

5. Make sure the project is opened in the Project view.

6. Open and save your XML files in the Author mode.

7. Commit the saved XML files to your versioning system.

When other content authors will change the files only the changed lines will be displayed in your diff tool instead of
one big change that does not allow to see the changes between two versions of the file.

Oxygen XML Editor | Authoring in the Tagless Editor | 229

Review

Tracking Document Changes

Track Changes is a way to keep track of the changes you make to a document. You can activate change tracking for the
current document by choosing Edit > Review > Track Changes or by clicking the Track Changes button located on
the Author toolbar. When Track Changes is enabled your modifications will be highlighted using a distinctive color.
The name of the author who is currently making changes and the colors can be customized from the Review preferences
page.

Figure 152: Change Tracking in Oxygen Author

When hovering a change the tooltip will display information about the author and modification time.

If the selection in the Author contains track changes and you copy it the clipboard will contain the selection with all the
changes accepted. This filtering will happen only if the selection is not entirely inside a tracked change.

Tip: For each change the author name and the modification time are preserved. The changes are stored in the
document as processing instructions and they do not interfere with validating and transforming it.

Adding Comments into a Document

You can associate a note or a comment to a selected area of text content. Comments can highlight virtually any content
from your document, except read-only text. The difference between such comments and change tracking is that a
comment can be associated to an area of text without modifying or deleting the text.

The actions for managing comments are Add Comment..., Edit Comment..., Delete Comment... and Manage
Comments... and are available on the Author Comments toolbar and on the Review submenu of the contextual menu
of Author editor.

Comments are persistent highlights with a colored background. The background color is customizable or can be assigned
automatically by the application. This behaviour can be controlled from the Review options page.

230 | Oxygen XML Editor | Authoring in the Tagless Editor

Managing Changes

You can review the changes made by you or other authors and then accept or reject them using the Track Changes

toolbar buttons or the similar actions from the Edit > Review menu.

• Track Changes - Enables or disables track changes support for the current document.
• Accept Change(s) - Accepts the change located at the caret position. If you select a part of a delete or insert change,

then only the selected content is accepted. If you select multiple changes, all of them are accepted. For an insert
change, it means keeping the inserted text and for a delete change it means removing the content from the document.

• Reject Change(s) - Rejects the change located at the caret position. If you select a part of a delete or insert change,
then only the selected content is rejected. If you select multiple changes, all of them are rejected. For an insert change,
it means removing the inserted text and for a delete change it means preserving the original content from the document.

• Comment Change - You can decide to add additional comments to an already existing change. The additional
description appears in the tooltip when hovering over the change and in the Manage Tracked Changes dialog when
navigating changes.

• Manage Tracked Changes - Action designed to find and manage all changes in the current document.

Figure 153: Manage Tracked Changes

The dialog offers the following actions:

• Next - Finds the next change in the document.
• Previous - Finds the previous change in the document.
• Accept - Accepts the current change. This action is also available on the contextual menu.
• Reject - Rejects the current change. This action is also available on the contextual menu.
• Accept All - Accepts all changes in the document.
• Reject All - Rejects all changes in the document.

The dialog is not modal and it is reconfigured after switching between the dialog and one of the opened editors.

Track Changes Visualization Modes

Three specialized actions allow you to switch between the following visualization modes:

• View All Changes - default visualization mode, all tracked changes are represented in the Author mode;
• View Final - previews the document as if all tracked changes (both inserted and deleted) were accepted;
• View Original - previews the document as if all tracked changes (both inserted and deleted) were rejected. You

cannot edit the document in this mode. Attempting to do so switches the view mode to View All Changes.

Note: All three actions are available only in a drop-down list in the Track Changes toolbar.

Oxygen XML Editor | Authoring in the Tagless Editor | 231

Managing Comments

A comment is marked in Author editor with a background color which can be configured for each user name.

Figure 154: Manage Comments in Author Editor

You can manage comments using the following actions:

• Add Comment... - Allows you to insert a comment at the cursor position or on a specific selection of content.
The action is available on the Author page toolbar.

• Edit Comment... - Allows you to change an existing content. The action is available both on the Author page
toolbar and the contextual menu.

• Manage Comments... - Opens a dialog that allows you to manage all comments contained in the current
document. You can cycle through comments, edit, and remove individual comments or all comments. The action is
available on the Author page toolbar.

• Remove Comment(s)... - Removes the comment at the cursor position or all comments found in the selected
content. The action is available on the Author page contextual menu, Review sub-menu.

Profiling / Conditional Text

Conditional text is a way to mark blocks of text meant to appear in some renditions of the document, but not in others.
It differs from one variant of the document to another, while unconditional text appear in all document versions.

For instance you can mark a section of a document to be included in the manual designated for the expert users, other
for the novice users manual while unmarked sections are included in any rendition.

You can use conditional text when you develop documentation for:

• a series of similar products
• different releases of a product
• various audiences

The benefits of using conditional text include reduced effort for updating and translating your content and an easy way
to customize the output for various audiences.

Oxygen comes with a preconfigured set of profiling attribute values for some of the most popular document types. These
attributes can be redefined to match your specific needs. Also, you can define your own profiling attributes for a custom
document type.

232 | Oxygen XML Editor | Authoring in the Tagless Editor

Create Profiling Attributes

Note: To ensure the validity of the document, the attribute must be already defined in the document DTD or schema
before referring it here.

To create custom profiling attributes for a specific document type, follow these steps:

1. Open the Profiling/Conditional Text preferences page from application's toolbar Options > Preferences > Editor
> Pages > Author menu .

2. In the Profiling Attributes area, press the New button.

The following dialog is opened:

3. Fill-in the dialog as follows:

a) Choose the document type on which the profiling attribute is applied. * and ? are used as wildcards, while ,(comma
character) can be used to specify more patterns. For example use DITA* to match any document type name that
starts with DITA.

b) Set the attribute name.
c) Set a display name. This field is optional, being used only as a more descriptive rendering in application's profiling

dialogs.
d) Use the New, Edit, Delete buttons to add, edit and delete possible values of the attribute. Each attribute value

can have a description.
e) Choose whether the attribute accepts a single value (Single value option checked) or multiple values. Multiple

values can be separated by a default delimiter (space, comma, semicolon), or a custom one.

4. Click OK.

5. Click Apply to save the profiling attribute.

Create Profiling Condition Sets
Several profiling attributes can be aggregated into a profiling condition set that allow apply more complex filters on the
document content. A Profiling Condition Set is a very powerful and convenient tool used to preview the content that
goes into the published output. For example, an installation manual available both in Windows and Linux variants can
be profiled to highlight only the Linux procedures for more advanced users.

To create a new profiling condition set:

Oxygen XML Editor | Authoring in the Tagless Editor | 233

1. Open the Profiling/Conditional Text preferences page from application's toolbar Options > Preferences > Editor
> Pages > Author menu .

2. In the Profiling Condition Sets area, press the New button.

The following dialog is opened:

3. Fill-in the dialog as follows:

a) Type the condition set's name.
b) Choose the document type for which you have previously defined profiling attributes.

After choosing a document type, all profiling attributes and their possible values are listed in the central area of
the dialog.

c) Define the combination of attribute values by ticking the appropriate checkboxes.

4. Click OK.

5. Click Apply to save the condition set. All saved profiling condition sets are available in the Profiling / Conditional
Text toolbar menu.

Apply Profiling Condition Sets

All defined Profiling Condition Sets are available as shortcuts in the Profiling / Conditional Text menu. Just click on a
menu entry to apply the condition set. The filtered content is grayed-out.

An element is filtered-out when one of its attributes is part of the condition set and its value does not match any of the
value covered by the condition set.

As an example, let us suppose that you have the following document:

234 | Oxygen XML Editor | Authoring in the Tagless Editor

If you apply the following condition set it means that you want to filter-out the content written for non-expert audience
and having the Other attribute value different than prop1.

And this is how the document looks like after you apply the Expert user condition set:

Oxygen XML Editor | Authoring in the Tagless Editor | 235

Apply Profiling Attributes
Profiling attributes are applied on element nodes.

To set a profiling attribute:

1. Invoke the application's contextual menu. Click the Edit Profiling Attributes... action.
The displayed dialog shows all profiling attributes and their values, defined on the document type of the edited
content.

2. In the Edit Profiling Attributes dialog, tick the checkboxes corresponding to attribute values you want to apply on
the current element.

3. If Show Profiling Attributes option (available in the Profiling / Conditional Text toolbar menu) is set, a light
green border is painted around profiled text, in the Author page. Also, all profiling attributes set on the current
element are listed at the end of the highlighted block and in its tooltip message.

Profiling / Conditional Text Menu

The Profiling / Conditional Text toolbar menu groups the following actions:

• Show Profiling Attributes - Enable this option to turn on conditional text markers. They are displayed at the end
of conditional text block, as a list of attribute name and their currently set values.

• The list of all profiling condition sets that match the current document type. Click on a condition set entry to activate
it.

• Configure Profiling Condition Sets... - Link to the Profiling / Conditional Text preference page, where you
can manage profiling attributes and profiling condition sets.

236 | Oxygen XML Editor | Authoring in the Tagless Editor

Chapter

6

Author for DITA

This chapter presents the Author features that are specific for editing DITA
XML documents.

Topics:

• Creating DITA Maps and Topics
• Editing DITA Maps
• Transforming DITA Maps and

Topics
• DITA-OT Customization
• DITA Specialization Support
• Use a New DITA Open Toolkit in

Oxygen
• Reusing Content
• DITA Profiling / Conditional Text
• Working with MathML

Creating DITA Maps and Topics

The basic building block for DITA information is the DITA topic. DITA provides the following topic types:

• Concept - For general, conceptual information such as a description of a product or feature.
• Task - For procedural information such as how to use a dialog.
• Reference - For reference information.

You can organize topics into a DITA map or bookmap. A map is a hierarchy of topics. A bookmap supports also book
divisions such as chapters and book lists such as indexes. Maps do not contain the content of topics, but only references
to them. These are known as topic references. Usually the maps and bookmaps are saved on disk or in a CMS with the
extension '.ditamap'.

Maps can also contain relationship tables that establish relationships between the topics contained within the map.
Relationship tables are also used to generate links in your published document.

You can use your map or bookmap to generate a deliverable using an output type such as XHTML, PDF, HTML Help
or Eclipse Help.

Editing DITA Maps

Oxygen provides a special view for editing DITA maps. The DITA Maps Manager view presents a map in a simplified
table-of-contents manner allowing the user to navigate easily to the referred topics and maps, make changes and perform
transformations to various output formats using the DITA-OT framework bundled with Oxygen.

Figure 155:The DITA Maps Manager View

238 | Oxygen XML Editor | Author for DITA

The view supports opening multiple documents at the same time.

All files which have the extension .ditamap or .bookmap are open in the DITA Maps Manager view. In addition,
you can right click the file in the Project view and select Open with. If you opened the DITA map file in the editor
panel you can open it also in this special DITA map view by right clicking on the title tab of the editor panel and selecting
the Open in DITA Maps Manager action from the popup menu.

The toolbar includes the actions which are also available on menu DITA Maps:

•
Open - Allows opening the map in the DITA Maps Manager view. You can also open a map by dragging it

in the DITA Maps Manager view from the file system explorer.
• Open URL - Allows opening remote maps in the DITA Maps Manager view. See Open URL for details.
• Save (Ctrl+S) - Saves the current DITA map.
• Validate and Check for Completeness - Checks the validity and integrity of the map.
• Apply Transformation Scenario - Applies the DITA map transformation scenario that is associated with the

current map from the view.
• Configure Transformation Scenario - Allows associating a DITA map transformation scenario with the current

map.
• Refresh References - You can use this action to manually trigger a refresh and update of all titles of referred

topics. This action is useful when the referred topics are modified externally. When they are modified and saved
from the Oxygen Author, the DITA Map is updated automatically.

• Open Map in Editor with Resolved Topics - Opens the result of expanding all topic references in Author editor.
• Open Map in Editor - For complex operations which cannot be performed in the simplified DITA maps view

(like editing a relationship table) you can open the map in the main editing area.
• Link with Editor - Disables/Enables the synchronization between the file path of the current editor and the

selected topic reference in the DITA Maps Manager view.
• Profiling/Conditional Text menu with the following actions:

• Show Profiling Attributes - Enables/Disables displaying the values of the profiling attributes at the end of the
titles of topic references. When enabled, the values of the profiling attributes are displayed both in the DITA
Maps Manager view and in the Author editor.

• Configure Profiling Condition Sets ... - Opens the preferences panel for adding and editing the profiling
conditions that can be applied in the DITA Maps Manager view and the Author editor.

Tip: If your map references other DITA maps they will be shown expanded in the DITA Maps tree and you will
also be able to navigate their content. For editing you will have to open each referenced map in a separate editor.
You can choose not to expand referenced maps in the DITA Maps Manager view or referenced content in the
opened editors by unchecking the Display referred content checkbox available in the Author preferences page.

Tip: The additional edit toolbar can be shown by clicking the "Show/Hide additional toolbar" expand button located
on the general toolbar.

The following edit actions can be performed on an opened DITA Map:

• Insert Reference - Inserts a reference to a topic file. You can find more details about this action in the Inserting
a Reference, a Key Definition, a Topic Set topic.

• Insert Topic Heading - Inserts a topic heading. You can find more details about this action in the Inserting a
Topic Heading topic.

• Insert Topic Group - Inserts a topic group. You can find more details about this action in the Inserting a Topic
Group on page 246 topic.

• Edit Properties - Edit the properties of a selected node. You can find more details about this action in the Edit
Properties on page 246 topic.

Oxygen XML Editor | Author for DITA | 239

• Edit Profiling Attributes - Allows you to select the profiling attributes.
• Edit Attributes - Allows you to edit all the attributes of a selected node. You can find more details about this

action in the Attributes View on page 213 topic.
• Delete - Deletes the selected node.
• Move Up (Alt + Up) - Moves the selected nodes in front of their respective previous siblings.
• Move Down (Alt + Down) - Moves the selected nodes after their next respective siblings.
• Promote (Alt + Left) - Moves the selected nodes after their respective parents as a siblings.
• Demote (Alt + Right) - Moves the selected nodes as children to their respective previous siblings.

Editing Actions

Important: References can be made either by using the href attribute or by using the new keyref attribute to
point to a key defined in the map. Oxygen tries to resolve both cases. keyrefs are solved relative to the current
map.

In additional to being available on the toolbar and on the contextual menu, more navigation actions and all edit actions
appear in the DITA Maps menu. The menu is only available when the view is active on screen.

The contextual menu contains, in addition to the edit actions described above, the following actions:

• Open in Editor - Opens in the editor the resources referred by the selected nodes.
• Append Child/Insert After - Sub-menus containing the following actions:

• Reference - Appends/Inserts a topic reference as a child/sibling of the selected node.
• Reference to the current edited file - Appends/Inserts a topic reference to the current edited file as a child/sibling

of the selected node.
• New topic - Create a new topic from templates, saves it on disk and adds it into the DITA map.
• Anchor Reference, Key Definition, Map Reference, Topic Reference, Topic Set, Topic Set Reference -

Allows you to insert a reference to a topic file, a map file, a topic set, or a key definition.
• Topic heading - Appends/Inserts a topic heading as a child/sibling of the selected node.
• Topic group - Appends/Inserts a topic group as a child/sibling of the selected node.

• Find/Replace in Files - Find and replace in files using the scope of the current edited map.
• Check Spelling in Files - Checks the spelling of the files in the scope of the current edited map.
• Open Map in Editor with resolved topics - Opens the map in the main editing area with all the topic references

expanded in the map content.
• Cut, Copy, Paste, Undo, Redo - Common edit actions with the same functionality as those found in the text editor.
• Paste Before, Paste After - Pastes the content of the clipboard before, respectively after, the selected node.

You can also arrange the nodes by dragging and dropping one or more nodes at a time. Drop operations can be performed
before, after or as child of the targeted node. The relative location of the drop is indicated while hovering the mouse
over a node before releasing the mouse button for the drop.

Drag and drop operations allow you to:

• Copy - Select the nodes you want to copy and start dragging them. Before dropping them in the appropriate place,
press and hold the (Ctrl) key ((Meta) key on Mac). The mouse pointer changes to indicate that a copy operation
is performed.

• Move - Select the nodes you want to move and drag and drop them in the appropriate place.
• Promote Alt+Left Arrow / Demote Alt+Right Arrow - You can move nodes between child and parent nodes which

ensures both PromoteAlt+Left Arrow and DemoteAlt+Right Arrow operations.

Tip:

You can open and edit linked topics easily by double clicking the references or by right-clicking and choosing
Open in editor. If the referenced file does not exist you are allowed to create it.

240 | Oxygen XML Editor | Author for DITA

By right clicking the map root element you can open and edit it in the main editor area for more complex operations.

You can decide to open the reference directly in the Author page and keep this setting as a default.

Creating a Map

Here are the steps to create a DITA map are the following:

1. Go to menu File > New or click on the New toolbar button.

2. Select one of the DITA Map templates on the tab From templates of the New dialog.

3. Click the OK button.
A new tab is added in the DITA Maps Manager view.

4.
Press the Save button on the toolbar of the DITA Maps Manager view.

5. Select a location and a file name for the map in the Save As dialog.

Validating DITA Maps

The validation of DITA maps is done with the action Validate and Check for Completeness that is available on
the DITA Maps Manager view toolbar and on the DITA Maps menu.

Figure 156: DITA Map Completeness Check

The validation process does the following:

• Checks the file paths of the topic references. If a href attribute points to an invalid file path it is reported as a
separate error in the Errors view.

• Validate each referred topic and map. Each topic file is opened and validated against the appropriate DITA DTD. If
other map is referred in the main map, it is checked recursively applying the same algorithm as for the main map.

You can customize the operation setting the following options:

• Check the existence of non-DITA references resources - extends the validation of referred resources to non-DITA
files. You can also choose to include in the validation also the remote resources;

Oxygen XML Editor | Author for DITA | 241

• Use DITAVAL file - profiling conditions are applied. First the content of the map is filtered by applying a profiling
condition set. The condition set can be either the one applied currently in the DITA Maps Manager view (the radio
button From the current condition set) or the one specified explicitly as a DITAVAL file in the current transformation
scenario associated with the DITA map (the radio button From the associated transformation scenario). If a link
is invalid in the content that resulted from the filtering process then it is reported as error.

• Check for duplicate element IDs within a topic - if an ID is duplicated after assembling all topics referred in the
map, it is reported as error.

• Report links to topics not referenced in DITA Maps - checks that all referred topics are linked in the DITA map.
• Identify possible conflicts in profile attribute values - when a topic's profiling attributes contain values that are

not found in parent topics profiling attributes, the content of the topic is overshadowed when generating profiled
output. This option reports such possible conflicts.

• Report attributes and values that conflict with profiling preferences - looks for profiling attributes and values
not defined in the Profiling / Conditional Text preferences page. It also checks if profiling attributes defined as
single-value have multiple values set in the searched topics.

Create a Topic in a Map

You add a new topic to a DITA map with the following steps:

1. Run the action Insert Topic Reference in the view DITA Maps Manager.

The action Insert Topic Reference is available on the toolbar and on the contextual menu of the view. The action
is available both on the submenu Append Child (when you want to insert a topic reference in a map as a child of
the current topic reference) and on the submenu Insert After (when you want to insert it as a sibling of the current
topic reference). The toolbar action is the same as the action from the submenu Insert After.

2. Select a topic file in the file system dialog called Insert Topic Reference.

3. Press the Insert button or the Insert and close button in the dialog.
A reference to the selected topic is added to the current map in the view.

4. If you clicked the Insert button you can continue inserting new topic references using the Insert button repeatedly
in the same file system dialog.

5. Close the dialog using the Close button.

Organize Topics in a Map

You can understand better how to organize topics in a DITA map by working with a populated map. You should open
the sample map called flowers.ditamap, located in the samples/dita folder.

1. Open the file flowers.ditamap.

2. Select the topic reference Summer Flowers and press the Move Down button to change the order of the topic
references Summer Flowers and Autumn Flowers.

3. Make sure that Summer Flowers is selected and press the Demote button. This topic reference and all the nested
ones are moved as a unit inside the Autumn Flowers topic reference.

4. Close the map without saving.

Create a Bookmap

The procedure for creating a bookmap is similar with that for creating a map.

1. Go to menu File > New or click on the New toolbar button.
This action will open the New wizard.

2. Select the DITA Map - Bookmap template.

3. Click the OK button.

242 | Oxygen XML Editor | Author for DITA

A new tab with the new bookmap is added in the DITA Maps Manager view.

4.
Press the Save button on the toolbar of the DITA Maps Manager view.

5. In the Save As dialog select a location and a file name for the map.

Create a Subject Scheme

The procedure for creating a DITA subject scheme is similar with that for creating a map.

1. Go to menu File > New or click on the New toolbar button.
This action will open the New wizard.

2. Select the DITA Map - Subject Scheme template.

3. Click the OK button.
A new tab with the new subject scheme document is added in the DITA Maps Manager view.

4.
Press the Save button on the toolbar of the DITA Maps Manager view.

5. In the Save As dialog select a location and a file name for the map.

Create Relationships Between Topics

The DITA map offers the possibility of grouping different types of links between topics in a relationship table instead
of specifying the links of each topic in that topic.

1. Open the DITA map file where you want to create the relationship table.

Use the action Open that is available on the toolbar of the DITA Maps Manager view.

2. Place the cursor at the location of the relationship table.

3. Run the action Insert a DITA reltable.

The action is available on the Author toolbar, on the menu DITA > Table and on the Table submenu of the
contextual menu of the DITA map editor.

This action displays the Insert Relationship Table dialog.

4. Set the parameters of the relationship table that will be created: the number of rows, the number of columns, a table
title (optional), a table header (optional).

5. Press OK in the Insert Table dialog.

6. Set the type of the topics in the header of each column.

The header of the table (the relheader element) already contains a relcolspec element for each table column.
You should set the value of the attribute type of each relcolspec element to a value like concept, task, reference.
When you click in the header cell of a column (that is a relcolspec element) you can see all the attributes of that
relcolspec element including the type attribute in the Attributes view. You can edit the attribute type in this
view.

7. Place the cursor in a table cell and run the action Insert Topic Reference for inserting a topic reference in that
cell.

The action is available on the Author toolbar, on the menu DITA > Insert and on the Insert submenu of the
contextual menu.

8. Optionally for adding a new row to the table / removing an existing row you should run the action Insert Row/

Delete Row.

The actions are available on the Author toolbar, on the menu DITA > Table and on the Table submenu of the
contextual menu.

Oxygen XML Editor | Author for DITA | 243

9. Optionally for adding a new column to the table / removing an existing column you should run the action Insert

Column/ Delete Column.

The actions are available on the Author toolbar, on the menu DITA > Table and on the Table submenu of the
contextual menu.

Advanced Operations

This section explains how to insert references like chapter, topic reference, topic group or topic heading in a DITA map.

Inserting a Reference, a Key Definition, a Topic Set

A DITA map can contain various types of references. The targets of the references can be:

• an anchor
• a map
• a topic
• a topic set

The topicref element is a reference to a topic (such as a concept, task, or reference) or other resource. A topicref
can contain other topicref elements, and allows you to express navigation or table-of-contents hierarchies, as well
as implying relationships between the containing topicref and its children. You can set the collection type of a
container topicref to determine how its children are related to each other. You can also express relationships among
topicref's using group and table structures (using topicgroup and reltable). Relationships end up expressed
as links in the output (with each participant in a relationship having links to the other participants by default).

A reference to a topic file, a map file, a topic set, or a key definition may be inserted with the following dialog box which
is opened from the actions of the Append child and Insert after submenus of the DITA Maps Manager view's contextual
menu. The content of the Append child and Insert after submenus depend on the selected node of the DITA map tree
on which the contextual menu was invoked. For example if the selected node is the bookmap root node the possible
child nodes are:

• chapter (the chapter element),
• part (the part element),
• appendix (the appendix element),
• appendices (the appendices element)

If the selected node is a topicref the possible child nodes are:

• anchor reference (the anchorref element),
• topic reference (the topicref element),
• map reference (the mapref element),
• topic set reference (the topicsetref element),
• topic set (the topicset element),
• key definition (the keydef element),
• topic head (the topichead element),
• topic group (the topicgroup element)

The same dialog box can be used to insert a non-DITA file like a PDF document.

244 | Oxygen XML Editor | Author for DITA

Figure 157: Insert Topic Reference Dialog

By using the Insert Topic Reference dialog you can easily browse for and select the source topic file. The Target
combo box shows all available topics that can be targeted in the file. Selecting a target modifies the Href value to point
to it which corresponds to the href attribute of the inserted topicref element. The Format and Scope combos are
automatically filled based on the selected file and correspond to the format and scope attributes of the inserted
topicref element. You can specify and enforce a custom navigation title by checking the Navigation title checkbox
and entering the desired title.

The file chooser located in the dialog allows you to easily select the desired topic. The selected topic file will be added
as a child or sibling of the current selected topic reference, depending on the insert action selected from the contextual
menu of the DITA Maps view, that is an insert action from the Append child submenu or from the Insert after one.
You can easily insert multiple topic references by keeping the dialog opened and changing the selection in the DITA
Maps Manager tree. You can also select multiple resources in the file explorer and then insert them all as topic references.

Another easy way to insert a topic reference is to drag files from the Project view, file system explorer or Data Source
Explorer view and drop them into the map tree.

You can also define keys using the Keys text field on the inserted topicref or keydef element. Instead of using
the Href combo box to point to a location you can reference a key definition using the Keyref text field.

The Processing Role combo box allows setting the processing-role attribute to one of the allowed values for
DITA reference elements: resource-only, normal, -dita-use-conref-target.

Inserting a Topic Heading

The topichead element provides a title-only entry in a navigation map, as an alternative to the fully-linked title
provided by the topicref element.

A topic heading can be inserted both from the toolbar action and the contextual node actions.

Oxygen XML Editor | Author for DITA | 245

Figure 158: Insert Topic Heading Dialog

By using the Insert Topic Heading dialog you can easily insert a topichead element. The Navigation title is required
but other attributes can be specified as well from the dialog.

Inserting a Topic Group

The topicgroup element identifies a group of topics (such as a concepts, tasks, or references) or other resources. A
topicgroup can contain other topicgroup elements, allowing you to express navigation or table-of-contents hierarchies,
as well as implying relationships between the containing topicgroup and its children. You can set the collection-type of
a container topicgroup to determine how its children are related to each other. Relationships end up expressed as links
in the output (with each participant in a relationship having links to the other participants by default).

A topic group may be inserted both from the toolbar action and the contextual node actions.

Figure 159: Insert Topic Group Dialog

By using the Insert Topic Group dialog you can easily insert a topicgroup element. The Type, Format, Scope and
Collection type attributes can be specified from the dialog.

Edit Properties

The Edit properties action, available both on the toolbar and on the contextual menu, is used to edit the properties of
the selected node. Depending on the selected node, the action will perform the following tasks:

246 | Oxygen XML Editor | Author for DITA

• If a topicref or chapter element is selected, the action will show a dialog similar with the Insert Topic Reference
dialog allowing the editing of some important attributes.

• If a topichead element is selected, the action will show a dialog similar with the Insert Topic Heading dialog allowing
the editing of some important attributes.

• If a topicgroup element is selected, the action will show a dialog similar with the Insert Topic Group dialog allowing
the editing of some important attributes.

• If the map's root element is selected then the user will be able to easily edit the map's title using the Edit Map title
dialog. By using this dialog you can also specify whether the title will be specified as the title attribute to the map
or as a title element (for DITA-OT 1.1 and 1.2) or specified in both locations.

Transforming DITA Maps and Topics

Oxygen uses the DITA Open Toolkit (DITA-OT) to transform DITA maps and topics into an output format. For this
purpose both the DITA Open Toolkit 1.5.2 and ANT 1.7 come bundled in Oxygen.

More information about the DITA Open Toolkit are available at http://dita-ot.sourceforge.net/.

Available Output Formats

You can publish DITA-based documents in any of the following formats:

• PDF - DITA to PDF using the DITA OT IDIOM PDF plugin.
• WebHelp - DITA to XHTML.
• XHTML - DITA to XHTML.
• Compiled HTML Help (CHM) - DITA Map to HTML Help. If HTML Help Workshop is installed on your computer,

then Oxygen detects it and uses it to perform the transformation. When the transformation fails, the hhp (HTML
Help Project) file is already generated and it must be compiled to obtain the .chm file. Note that HTML Help Workshop
fails when the files used for transformation contain diacritics in their names, due to different encodings used when
writing the .hhp and .hhc files.

• JavaHelp - DITA Map to JavaHelp.
• Eclipse Help - DITA Map to Eclipse Help.
• Eclipse Content - DITA Map to Eclipse Content.
• TocJS - A JavaScript file that can be included in an HTML file to display in a tree-like manner the table of contents

of the transformed DITA map.
• Open Document Format - DITA Map to ODF.
• Docbook - DITA Map to Docbook.
• RTF - DITA Map to Rich Text Format.
• troff - DITA Map to Text Processor for Typesetters.
• Legacy PDF - DITA Map to PDF using the DITA OT deprecated PDF implementation.

The TocJS Transformation

The TocJS transformation of a DITA map does not generate all the files needed to display the tree-like table of contents.
To get a complete working set of output files you should follow these steps:

1. Run the XHTML transformation on the same DITA map. Make sure the output gets generated in the same output
folder as for the TocJS transformation.

2. Copy the content of ${frameworks}/dita/DITA-OT/demo/tocjs/basefiles folder in the transformation's
output folder.

3. Copy the ${frameworks}/dita/DITA-OT/demo/tocjs/sample/basefiles/frameset.html file
in the transformation's output folder.

4. Edit frameset.html file.

Oxygen XML Editor | Author for DITA | 247

http://dita-ot.sourceforge.net/

5. Locate element <frame name="contentwin" src="concepts/about.html">.

6. Replace "concepts/about.html" with "index.html".

WebHelp Output Format

WebHelp is a form of online help consisting of a series of web pages (XHTML format). Its advantages include continuous
content update and platform independence, since it can be viewed using a regular web browser.

Oxygen allows you to publish a DITA Map into a WebHelp format that provides both Table of Contents and advanced
search capabilities.

Figure 160: WebHelp Output

The layout is composed of two frames:

• left frame, containing separate tabs for Table of Contents and Search;
• central frame where help pages are displayed.

To publish the DITA map to WebHelp, you can use the DITA Map WebHelp transformation. You can further customize
the out-of-the-box transformation, by editing some of its parameters:

• args.xhtml.toc - name of the table of contents file. Default setting is toc.html;
• use.stemming - controls whether or not you want to include stemming search algorithms into the published

output. Stemming is the process for reducing inflected (or sometimes derived) words to their stem, base or root
form – generally a written word form. Default setting is false.

• clean.output - deletes all files from the output folder before the transformation is performed. Default setting is
no.

The Search tab is enhanced with a rating mechanism that computes scores for every page that matches the search criteria.
These scores are then translated into a 5-star rating scheme. The search results are sorted depending on:

• number of keywords found in a single page. The higher the number, the better.
• context - if a word is found in a title or emphasised section of text it scores better than a word found in a unformatted

text.

248 | Oxygen XML Editor | Author for DITA

Figure 161: WebHelp Search with Stemming Enabled

Rules applied during search:

• keywords are separated by the space character. An expression like spray painting counts as two separate keywords:
spray and painting.

• do not use quotes to perform exact search for multiple-word expressions. An expression like "spray painting", returns
no results in our case, because it searches for two separate words: "spray and painting" (note the quote signs attached
to each word).

Configuring a DITA Transformation

Creating map transformation scenarios is similar to creating scenarios in the main editing area.

The Configure Transformation Scenario dialog is opened from the toolbar action Configure Transformation
Scenario of the DITA Maps Manager view. Select as scenario type DITA OT transformation then press the New
button. Next step involves choosing the type of output the DITA-OT ANT scenario will generate:

Oxygen XML Editor | Author for DITA | 249

Figure 162: Select DITA Transformation type

Depending on the chosen type of output Oxygen generates values for the default ANT parameters so that you can execute
the scenario right away without further customization.

Running a DITA Map ANT Transformation

The transformation is run as an external ANT process so you can continue using the application as the transformation
unfolds. All output from the process appears in the DITA Transformation tab.

Tip: The HTTP proxy settings from Oxygen are also used for the ANT transformation so if the transformation
fails because it cannot connect to an external location you can check the HTTP/Proxy Configuration.

Customizing a DITA Scenario

This section explains how to edit the parameters of a DITA transformation in the dialog box for configuring such a
transformation.

The Parameters Tab

In the scenario Parameters tab you can customize all the parameters which will be sent to the DITA-OT build file.

250 | Oxygen XML Editor | Author for DITA

Figure 163: Edit DITA Ant transformation parameters

All the parameters that the DITA-OT documentation specifies as available for each chosen type of transformation (eg:
XHTML) are listed along with their description. The values for some important parameters are already filled in. You
can find more information about each parameter in the DITA OT Documentation. You can also add additional parameters
to the list.

Using the toolbar buttons you can add, edit or remove a parameter.

Depending on the parameter type the parameter value will be:

• a simple text field for simple parameter values
• a combo box with some predefined values
• a file chooser and an editor variables selector to simplify setting a file path as value to a parameter

The value of a parameter can be entered at runtime if a value ask('user-message', param-type, 'default-value' ?) is used
as value of parameter in the Configure parameters dialog:

• ${ask('message')} - Only the message displayed for the user is specified.
• ${ask('message', generic, 'default')} - 'message' will be displayed for the user, the type is not

specified (the default is string), the default value will be 'default'.
• ${ask('message', password)} - 'message' will be displayed for the user, the characters typed will be

replaced with a circle character.
• ${ask('message', password, 'default')} - Same as above, default value will be 'default'.
• ${ask('message', url)} - 'message' will be displayed for the user, the type of parameter will be URL.
• ${ask('message', url, 'default')} - Same as above, default value will be 'default'.

The Filters Tab

In the scenario Filters tab you can add filters to remove certain content elements from the generated output.

Oxygen XML Editor | Author for DITA | 251

http://dita-ot.sourceforge.net/quickstartguide/reference/dita-ot_ant_properties.html

Figure 164: Edit Filters tab

There are three ways to define filters:

• Use DITAVAL file - If you already have a DITAVAL file associated with the transformed map you can specify the
path to it and it will be used when filtering content. You can find out more about constructing a DITAVAL file in
the DITA OT Documentation topic.

• Use current profiling condition set - Allows you to use the currently active profiling condition set.
• Exclude from output all elements with any of the following attributes - You can configure a simple list of attribute

(name, value) pairs which when present on an element in the input will remove it from output.

The Advanced Tab

In the Advanced tab, you can specify advanced options for the transformation.

252 | Oxygen XML Editor | Author for DITA

http://docs.oasis-open.org/dita/v1.1/CD01/langspec/common/about-ditaval.html

Figure 165: Advanced settings tab

You have several parameters that you can specify here:

• Custom build file - If you use a custom DITA-OT build file you can specify the path to the customized build file.
If empty, the build.xml file from the dita.dir directory configured in the Parameters tab is used.

• Build target - You can specify a build target to the build file. By default no target is necessary and the default init
target is used.

• Additional arguments - You can specify additional command-line arguments to be passed to the ANT transformation
like -verbose.

• Ant Home - You can specify a custom ANT installation to run the DITA Map transformation. By default it is the
ANT installation bundled with Oxygen.

• Java Home - You can specify a custom Java Virtual Machine to run the ANT transformation. By default it is the
Java Virtual Machine used by Oxygen.

• JVM Arguments - This parameter allows you to set specific parameters to the Java Virtual Machine used by ANT.
By default it is set to -Xmx256m which means the transformation process is allowed to use 256 megabytes of memory.
Sometimes, when performing a large DITA map transformation you may want to increase the memory allocated to
the Java Virtual Machine from the default value (256 MB) to a higher value, like 512 MB. In this way, you can avoid
the Out of Memory error messages (OutOfMemoryError) received from the ANT process.

Note: If you are publishing DITA to PDF and still experience problems, you should also increase the amount
of memory allocated to the FO transformer. To do this, open the Parameters tab and increase the value of
maxJavaMemory parameter (default value is 500).

• Libraries - Oxygen adds by default as high priority libraries which are not transformation-dependent and also patches
for certain DITA Open Toolkit bugs. You can specify all the additional libraries (jar files or additional class paths)
which are used by the ANT transformer. You can also decide to control all libraries added to the classpath.

The Output Tab

In the Output tab you can configure options related to the place where the output will be generated.

Oxygen XML Editor | Author for DITA | 253

Figure 166: Output settings tab

You have several parameters that you can specify here:

• Base directory - All the relative paths which appear as values in parameters are considered relative to the base
directory. The default value is the directory where the transformed map is located.

• Temporary files directory - This directory will be used to store pre-processed temporary files until the final output
is obtained.

• Output folder - The folder where the final output content will be copied.
• Output file options - The transformation output can then be opened in a browser or even in the editor if specified.

The FO Processor Tab

This tab appears only when selecting to generate PDF output using the IDIOM FO Plugin and allows you to choose the
FO Processor.

254 | Oxygen XML Editor | Author for DITA

Figure 167: FO Processor configuration tab

You can choose between three processors:

• Apache FOP - This processor comes bundled with Oxygen.
• XEP - The RenderX XEP processor.

If you select XEP in the combo and XEP was already installed in Oxygen you can see the detected installation path
appear under the combo.

XEP is considered as installed if it was detected from one of the following sources:

• XEP was added as an external FO Processor in the Oxygen preferences.
• The system property com.oxygenxml.xep.location was set to point to the XEP executable file for the platform

(eg: xep.bat on Windows).
• XEP was installed in the frameworks/dita/DITA-OT/demo/fo/lib directory of the Oxygen installation

directory.

• Antenna House - The Antenna House AH (v5) or XSL (v4) Formatter processor.

If you select Antenna House in the combo and Antenna House was already installed in Oxygen you can see the
detected installation path appear under the combo.

Antenna House is considered as installed if it was detected from one of the following sources:

• Environment variable set by Antenna House installation (the newest installation version will be used, v5 being
preferred over v4).

• Antenna House was added as an external FO Processor in the Oxygen preferences.

Tip: The DITA-OT contributors recommend the use of the IDIOM FO Plugin to transform DITA Maps to PDF
as opposed to using the standard PDF target in the DITA-OT framework. As IDIOM is also bundled with Oxygen
the PDF2 - IDIOM FO Plugin output format should be your first choice in transforming your map to PDF. If you
do not have a commercial license for XEP or Antenna House you can transform using the Apache FO Processor.

Oxygen XML Editor | Author for DITA | 255

http://www.renderx.com/
http://www.antennahouse.com/

Set a Font for PDF Output Generated with Apache FOP

When a DITA map is transformed to PDF using the Apache FOP processor and it contains some Unicode characters
that cannot be rendered by the default PDF fonts then a font that is capable to render these characters must be configured
and embedded in the PDF result.

The settings that must be modified for configuring a font for the Apache FOP processor are detailed in this section.

DITA-OT Customization

This section explains how to customize specific parameters of a DITA transformation scenario like setting a custom
DITA Open Toolkit, a custom build file or a separate installation of the Ant tool.

Support for Transformation Customizations

You can change all DITA transformation parameters to customize your needs. In addition, you can specify a custom
build file, parameters to the JVM and many more for the transformation.

Using Your Custom Build File

You can specify a custom build file to be used in DITA-OT transformations by editing the transformation scenario that
you are using. In the Advanced tab you should change the Custom build file path to point to the custom build file.

Customizing the Oxygen Ant Tool

The Ant 1.7 tool which comes with Oxygen is located in the [Oxygen-install-folder]/tools/ant directory.
Any additional libraries for Ant must be copied to the Oxygen Ant lib directory.

If you are using Java 1.6 to run Oxygen the Ant tool should need no additional libraries to process JavaScript in build
files.

If you are using Java 1.5 you have to copy the bsf.jar and js.jar libraries in the
[Oxygen-install-folder]/tools/ant directory.

Upgrading to a New Version of DITA OT

The DITA OT framework bundled in Oxygen is located in the
[Oxygen-install-folder]/frameworks/dita/DITA-OT folder.

Important: There are a couple of modifications made to the DITA OT framework which will be overwritten if
you choose to copy the new DITA-OT version over the bundled one:

• The DTD's in the framework have been enriched with documentation for each element. If you overwrite you
will lose the documentation which is usually shown when hovering an element or in the Model view.

• Several build files from the IDIOM plugin have been modified to allow transformation using the Oxygen Apache
built-in FOP libraries and usage of the Oxygen classpath while transforming.

• Oxygen provides Java patches for some DITA OT problems. These patches are located in the
[Oxygen-install-folder]/frameworks/dita/DITA-OT/lib/dost-patches.jar library.
If the patches library conflicts with the new DITA OT libraries it either has to be removed from disk or removed
from the libraries list available in the DITA Map transformation scenario.

256 | Oxygen XML Editor | Author for DITA

http://jakarta.apache.org/bsf/
http://www.mozilla.org/rhino/download.html

Increasing the Memory for the Ant Process

For details about setting custom JVM arguments to the ANT process please see this section.

Resolving Topic References Through an XML Catalog

There are situations where you want to resolve URIs with an XML catalog:

• you customized your DITA map to refer topics using URI's instead of local paths
• you have URI content references in your DITA topic files and you want to map them to local files when the map is

transformed

In such situations you have to add the catalog to Oxygen. The DITA Maps Manager view will solve the displayed
topic refs through the added XML catalog and also the DITA map transformations (for PDF output, for XHTML output,
etc) will solve the URI references through the added XML catalog.

DITA Specialization Support

This section explains how you can integrate and edit a DITA specialization in Oxygen XML Author.

Integration of a DITA Specialization

A DITA specialization includes:

• DTD definitions for new elements as extensions of existing DITA elements
• optionally specialized processing, that is new XSLT template rules that match the extension part of the class

attribute values of the new elements and thus extend the default processing available in DITA Open Toolkit

A specialization can be integrated in Oxygen XML Author with minimum effort.

If the DTD's that define the extension elements are located in a folder outside the DITA Open Toolkit folder you should
add new rules to the DITA OT catalog file for resolving the DTD references from the DITA files that use the specialized
elements to that folder. This allows correct resolution of DTD references to your local DTD files and is needed for both
validation and transformation of the DITA maps or topics. The DITA OT catalog file is called catalog-dita.xml
and is located in the root folder of the DITA Open Toolkit.

If there is specialized processing provided by XSLT stylesheets that override the default stylesheets from DITA OT
these new stylesheets must be called from the Ant build scripts of DITA OT.

Important: If you are using DITA specialization elements in your DITA files it is recommended that you activate
the Enable DTD processing in document type detection checkbox in the Document Type Association page.

Editing DITA Map Specializations

In addition to recognizing the default DITA map formats: map and bookmap the DITA Maps Manager view can also
be used to open and edit specializations of DITA Maps.

All advanced edit actions available for the map like insertion of topic refs, heads, properties editing, allow the user to
specify the element in an editable combo box. Moreover the elements which appear initially in the combo are all the
elements which are allowed to appear at the insert position for the given specialization.

The topic titles rendered in the DITA Maps Manager view are collected from the target files by matching the class
attribute and not a specific element name.

When editing DITA specializations of maps in the main editor the insertions of topic reference, topic heading, topic
group and conref actions should work without modification. For the table actions you have to modify each action by

Oxygen XML Editor | Author for DITA | 257

hand to insert the correct element name at caret position. You can go to the DITA Map document type from the Document
Type Association page and edit the table actions to insert the element names as specified in your specialization. See this
section for more details.

Editing DITA Topic Specializations

In addition to recognizing the default DITA topic formats: topic, task, concept, reference and composite,
topic specializations can also be edited in the Author page.

The content completion should work without additional modifications and you can choose the tags which are allowed
at the caret position.

The CSS styles in which the elements are rendered should also work on the specialized topics without additional
modifications.

The toolbar/menu actions should be customized to insert the correct element names if this is the case. You can go to the
DITA document type from the Document Type Association page and edit the actions to insert the element names as
specified in your specialization. See this section for more details.

Use a New DITA Open Toolkit in Oxygen

Oxygen comes bundled with a DITA Open Toolkit, located in the
[Oxygen-install-folder]/frameworks/dita/DITA-OT directory. To use a new DITA Open Toolkit,
follow these steps:

1. Edit your transformation scenarios and in the Parameters tab change the value for the dita.dir directory to point
to the new directory.

2. If you want to use exclusively the libraries that come with the new DITA Open Toolkit you have to go to the Advanced
tab, click the Libraries button, uncheck the checkbox Allow Oxygen to add high priority libraries to classpath
and configure all libraries that will be used by the ANT process.

3. If there are also changes in the DTD's and you want to use the new versions for content completion and validation,
go to the Oxygen preferences in the Document Type Association page, edit the DITA and DITA Map document
types and modify the catalog entry in the Catalogs tab to point to the custom catalog file catalog-dita.xml.

If the transformation fails after completing these steps please also take a look at this note about upgrading the DITA OT
which comes bundled with Oxygen.

Reusing Content

The DITA framework allows reusing content from other DITA files with a content reference in the following ways:

• You can select content in a topic, create a reusable component from it and reference the component in other locations
using the actions Create Reusable Component and Insert Reusable Component. A reusable component is a file,
usually shorter than a topic. You also have the option of replacing the selection with the component that you are in
the process of creating.

• You can add, edit, and remove a content reference (conref) attribute to/from an existing element. The actions
Add/Edit Content Reference and Remove Content Reference are available on the contextual menu of the Author
editor and on the DITA menu. When a content reference is added or an existing content reference is edited, you can
select any topic ID or interval of topic IDs (set also the conrefend field in the dialog for adding/editing the content
reference) from a target DITA topic file.

258 | Oxygen XML Editor | Author for DITA

• You can insert an element with a content reference (conref or conkeyref) attribute using one of the actions
Insert Content Reference and Insert Content Key Reference that are available on the DITA menu, the Author
custom actions toolbar and the contextual menu of the Author editor.

DITA makes the distinction between local content, that is the text and graphics that are actually present in the element,
and referenced content that is referred by the element but is located in a different file. You have the option of displaying
referenced content by setting the option Display referred content that is available from menu Options > Preferences
> Editor > Pages > Author .

Working with Content References

The DITA feature called conref (short for content reference) enables a piece of content to be included by reference
in multiple contexts. When you need to update that content, you do it in only one place. Typical uses of content references
are for product names, warnings, definitions or process steps.

You can use either or both of the following strategies for managing content references:

• Reusable components - With this strategy, you create a new file for each piece of content that you want to reuse.
• Arbitrary content references - You may prefer to keep many pieces of reusable content in one file. For example, you

might want one file to consist of a list of product names, with each product name in a phrase (<ph> element)
within the file. Then, wherever you need to display a product name, you can insert a content reference that points to
the appropriate <ph> element in this file.

This strategy requires more setup than reusable components, but makes easier centrally managing the reused content.

Oxygen XML Author creates a reference to the external content by adding a conref attribute to an element in the local
document. The conref attribute defines a link to the referenced content, made up of a path to the file and the topic ID
within the file. The path may also reference a specific element ID within the topic. Referenced content is not physically
copied to the referencing file, but Oxygen XML Author displays it as if it is there in the referencing file. You can also
choose to view local content instead of referenced content, to edit the attributes or contents of the referencing element.

How to Work with Reusable Components

When you need to reuse a part of a DITA topic in different places (in the same topic or in different topics) it is
recommended to create a separate component and insert only a reference to the new component in all places. Below are
the steps for extracting a reusable component, inserting a reference to the component and quickly editing the content
inside the component.

1. Select with the mouse the content that you want to reuse in the DITA file opened in Author mode.

2. Start the action Create Reusable Component that is available on the DITA menu, the Author framework actions
toolbar and the contextual menu of the Author editor.

3. In the combo box Reuse Content select the DITA element with the content that you want to extract in a separate
component. The combo box contains the current DITA element where the cursor is located (for example a p element
- a paragraph - or a step or a taskbody or a conbody etc.) and also all the ancestor elements of the current
element.

4. In the Description area enter a textual description for quick identification by other users of the component.

5. If you want to replace the extracted content with a reference to the new component you should leave the checkbox
Replace selection with content reference with the default value (selected).

6. Press the Save button which will open a file system dialog where you have to select the folder and enter the name
of the file that will store the reusable component.

7. Press the Save button in the file system dialog to save the reusable component in a file. If the checkbox was selected
in the Create Reusable Component dialog the conref attribute will be added to the element that was extracted
as a separate component. In Author mode the content that is referenced by the conref attribute is displayed with
grey background and is read-only because it is stored in other file.

8. Optionally, to insert a reference to the same component in other location just place the cursor at the insert location
and run the action Insert Reusable Component that is available on the DITA menu, the Author framework actions

Oxygen XML Editor | Author for DITA | 259

toolbar and the contextual menu of the Author editor. Just select in the file system dialog the file that stores the
component and press the OK button. The action will add a conref attribute to the DITA element at the insert
location. The referenced content will be displayed in Author mode with grey background to indicate that it is not
editable.

9. Optionally, to edit the content inside the component just click on the open icon at the start of the grey background
area which will open the component in a separate editor.

Insert a Direct Content Reference

You should follow these steps for inserting an element with a content reference (conref) attribute:

1. Start one of the actions Insert a DITA Content Reference and Insert a DITA Content Key Reference.

2. In the dialog Insert Content Reference select the file with the referenced content in the URL field.

3. In the tree that presents the DITA elements of the specified file that have an id attribute you have to select the
element or the interval of elements that you want to reference. The conref field will be filled automatically with
the id value of the selected element. If you select an interval of elements the conrefend field will be filled with
the id value of the element that ends the selected interval.

4. Press the OK button to insert in the current DITA file an element with the same name and with the same conref
attribute value (and optionally with the same conrefend attribute value) as the element(s) selected in the dialog.

DITA Profiling / Conditional Text

Conditional text is a way to mark blocks of text meant to appear in some renditions of the document, but not in others.
It differs from one variant of the document to another, while unconditional text appear in all document versions.

For instance you can mark a section of a document to be included in the manual designated for the expert users, other
for the novice users manual while unmarked sections are included in any rendition.

You can use conditional text when you develop documentation for:

• a series of similar products
• different releases of a product
• various audiences

The benefits of using conditional text include reduced effort for updating and translating your content and an easy way
to customize the output for various audiences.

Oxygen offers full support for DITA conditional text processing: profiling attributes can be easily managed to filter
content in the published output. You can toggle between different profile sets to see how the edited content looks like
before publishing.

DITA offers support for profiling/conditional text by using profiling attributes. With Oxygen you can define values for
the DITA profiling attributes. The profiling configuration can be shared between content authors through the project
file. There is no need for coding or editing configuration files.

Several profiling attributes can be aggregated into a profiling condition set that allow apply more complex filters on the
document content. A Profiling Condition Set is a very powerful and convenient tool used to preview the content that
goes into the published output. For example, an installation manual available both in Windows and Linux variants can
be profiled to highlight only the Linux procedures for more advanced users.

260 | Oxygen XML Editor | Author for DITA

Profiling / Conditional Text Markers

If Show Profiling Attributes option (available in the Profiling / Conditional Text toolbar menu) is set all profiling
attributes set on the current element are listed at the end of the highlighted block. Profiled text is marked in the Author
page with a light green border.

Figure 168: Profiling in Author

In the DITA Maps Manager View view different decorators are user to mark profiled and non-profiled topics:

• - the topic contains profiling attributes;
• - the topic inherits profiling attribute from its ancestors;
• - the topic contains and inherits profiling attributes;
• (dash) - the topic neither contains, nor inherits profiling attributes.

Figure 169: Profiling in DITA Maps Manager

The profiled content that does not match the rules imposed by the current condition sets is grayed-out, meaning that it
will not be included in the published output.

Publish Profiled Text

Oxygen comes with preconfigured transformation scenarios for DITA. All these scenarios take into account the current
profiling condition set.

Oxygen XML Editor | Author for DITA | 261

Working with MathML

You can add MathML equations in a DITA document using one of the following methods:

• embed MathML directly into a DITA topic. You can start with the Framework templates / DITA / topic / Composite
with MathML document template, available in the New file action wizard.

• reference an external MathML file as an image, using the Insert Image Reference toolbar action.

Note that MathML equations contained in DITA topics can only be published out-of-the-box in PDF using the DITA
PDF transformation scenario. For other publishing formats users must employ additional customizations for handling
MathML content.

262 | Oxygen XML Editor | Author for DITA

Chapter

7

Predefined Document Types

This chapter includes short presentations of the document types that come
bundled with Oxygen. For each document type there are enumerated the built-in
transformation scenarios, document templates and Author extension actions.

Topics:

• Document Type
• The DocBook 4 Document Type
• The DocBook 5 Document Type
• The DocBook Targetset

Document Type
• The DITA Topics Document Type
• The DITA Map Document Type
• The XHTML Document Type
• The TEI P4 Document Type
• The TEI P5 Document Type
• The MathML Document Type
• The Microsoft Office OOXML

Document Type
• The Open Office ODF Document

Type
• The OASIS XML Catalog

Document Type
• The XML Schema Document

Type
• The Relax NG Document Type
• The NVDL Document Type
• The Schematron Document Type
• The Schematron 1.5 Document

Type
• The XSLT Document Type
• The XMLSpec Document Type
• The FO Document Type
• The EAD Document Type
• The EPUB Document Type

Document Type

A document type or framework is associated to an XML file according to a set of rules. It includes also many settings
that improve editing in the Tagless editor for the category of XML files it applies for. These settings include:

• a default grammar used for validation and content completion in both Author mode and Text mode
• CSS stylesheet(s) for rendering XML documents in Author mode
• user actions invoked from toolbar or menu in Author mode
• predefined scenarios used for transformation of the class of XML documents defined by the document type
• XML catalogs
• directories with file templates
• user defined extensions for customizing the interaction with the content author in Author mode

The tagless editor comes with some predefined document types already configured when the application is installed on
the computer. These document types describe well-known XML frameworks largely used today for authoring XML
documents. Editing a document which conforms to one of these types is as easy as opening it or creating it from one of
the predefined document templates which also come with the application.

Figure 170: Document Type preferences page

The DocBook 4 Document Type

DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly technical
documentation.

A file is considered to be a DocBook 4 document when one of the following conditions are true:

264 | Oxygen XML Editor | Predefined Document Types

• root element name is book or article
• the PUBLIC ID of the document contains the string -//OASIS//DTD DocBook XML

The schema of DocBook 4 documents is ${frameworks}/docbook/dtd/docbookx.dtd, where
${frameworks} is a subdirectory of the Oxygen install directory.

The CSS file used for rendering DocBook content is located in ${frameworks}/docbook/css/docbook.css.

The XML catalog is stored in ${frameworks}/docbook/catalog.xml.

Author Extensions

Specific actions for DocBook documents are:

• Bold emphasized text - Emphasizes the selected text by surrounding it with <emphasis role="bold"/>
tag.

• Italic emphasized text - Emphasizes the selected text by surrounding it with <emphasis role="italic"/>
tag.

• Underline emphasized text - Emphasizes the selected text by surrounding it with <emphasis
role="italic"/> tag.

Note: For all of the above actions, if there is no selection then a new emphasis tag with specific role is
inserted. These actions are available in any document context and are grouped under the Emphasize toolbar
actions group.

• link - Inserts a hypertext link.
• ulink - Inserts a link that addresses its target with an URL (Universal Resource Locator).
• olink - Inserts a link that addresses its target indirectly, using the targetdoc and targetptr values which are

present in a Targetset file.

Oxygen XML Editor | Predefined Document Types | 265

Figure 171: Insert OLink Dialog

After you choose the Targetset URL, the structure of the target documents is presented. For each target document
(targetdoc), the content is displayed allowing for easy identification of the targetptr for the olink element
which will be inserted. You can use the search fields to quickly identify a target. If you already know the values for
the targetdoc and targetptr, you can insert them directly in the corresponding fields. You also have the
possibility to edit an olink using the action Edit OLink available on the contextual menu. The last used Targetset
URL will be used to identify the edited target.

• URI - Inserts an URI element. The URI identifies a Uniform Resource Identifier (URI) in content.
• xref - Inserts a cross reference to another part of the document.

Note: These actions are grouped under the Link toolbar actions group.

• Insert Section - Inserts a new section / subsection in the document, depending on the current context. For
example if the current context is sect1 then a sect2 is inserted, and so on.

• Insert Paragraph - Inserts a new paragraph depending on the current context. If current context is a paragraph
context (one of the ancestors of the element at caret position is para) then a new paragraph will be inserted after
the paragraph at caret. Otherwise a new paragraph is inserted at caret position.

• Insert Graphic - Inserts a graphic object at the caret position. This is done by inserting either <figure> or
<inlinegraphic> element depending on the current context. The following graphical formats are supported:
GIF, JPG, JPEG, BMP, PNG, SVG.

• Insert Ordered List - Inserts an ordered list. A child list item is also inserted automatically by default.
• Insert Itemized List - Inserts an itemized list. A child list item is also inserted automatically by default.

266 | Oxygen XML Editor | Predefined Document Types

• Insert Variable List - Inserts a DocBook variable list. A child list item is also inserted automatically by default.
• Insert List Item - Inserts a new list item in any of the above three list types.
• Insert Table - Opens a dialog that allows you to configure the table to be inserted. The dialog allows the user

to configure the number of rows and columns of the table, if the header and footer will be generated and how the
table will be framed. CALS or HTML table model can be selected.

Note: If the Title checkbox is unchecked, an informaltable element is inserted.

• Insert Row - Inserts a new table row with empty cells. The action is available when the caret position is inside
a table.

• Insert Column - Inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Insert Cell - Inserts a new empty cell depending on the current context. If the caret is positioned between two
cells, a new one is inserted at caret position. If the caret is inside a cell, then the new one will be created after the
current cell.

• Delete Column - Deletes the table column where the caret is located.
• Delete Row - Deletes the table row where the caret is located.
• Join Row Cells - Joins the content of the selected cells. The operation is available if the selected cells are from

the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - Joins the content of cell from current caret position with that of the cell above it. This action
works only if both cells have the same column span.

• Join Cell Below - Joins the content of cell from current caret position with that of the cell below it. This action
works only if both cells have the same column span.

• Split Cell To The Left - Splits the cell from current caret position in two, inserting a new empty table cell to
the left. This action works only if the current cell spans over more than one column. The column span of the source
cell is decreased with one.

• Split Cell To The Right - Splits the cell from current caret position in two, inserting a new empty table cell to
the right. This action works only if the current cell spans over more than one column. The column span of the source
cell is decreased with one.

• Split Cell Above - Splits the cell from current caret position in two, inserting a new empty table cell above it.
This action works only if the current cell spans over more than one row. The row span of the source cell is decreased
with one.

• Split Cell Below - Splits the cell from current caret position in two, inserting a new empty table cell below it.
This action works only if the current cell spans over more than one row. The row span of the source cell is decreased
with one.

Note: DocBook 4 supports only CALS table model. HTML table model is supported only in DocBook 5.

Caution: Column specifications are required for table actions to work properly.

• Generate IDs - Allows generating ID for the current selection or for the element at caret position if the element
appears in ID Generation dialog.

In this dialog, you can specify the elements for which Oxygen generates an ID. You can choose to automatically
generate an ID for these elements by selecting Auto generate ID's for elements. You can choose a pattern for the
generated ID using the field ID Pattern. If the element already has an ID, this ID is preserved.

All actions described above are available in the contextual menu, the DocBook4 submenu of the main menu and in the
Author custom actions toolbar.

Oxygen XML Editor | Predefined Document Types | 267

Dragging a file from the Project view or from the DITA Maps Manager view and dropping it into a DocBook 4 document
that is edited in Author mode creates a link to the dragged file (the ulink DocBook element) at the drop location.
Dragging an image file from the default file system application (Windows Explorer on Windows or Finder on Mac OS
X, for example) and dropping it into a DocBook 4 document inserts an image element (the inlinegraphic DocBook
element with the fileref attribute) with the location of the dragged file at the drop location (similar with the Insert
Graphic toolbar action).

Transformation Scenarios

Default transformation scenarios allow you to convert DocBook 4 to DocBook 5 documents and transform DocBook
documents to HTML, HTML Chunk, PDF, XHTML, XHTML Chunk, WebHelp (experimental) and EPUB.

Templates

Default templates are available in the New File wizard and can be used for easily creating a skeletal form of a DocBook
4 book or article. These templates are stored in the ${frameworks}/docbook/templates/DocBook 4 folder.

The DocBook 5 Document Type

A file is considered to be a DocBook 5 document when the namespace is http://docbook.org/ns/docbook.

DocBook 5 documents use a Relax NG and Schematron schema located in
${frameworks}/docbook/5.0/rng/docbookxi.rng, where ${frameworks} is a subdirectory of the Oxygen
install directory.

The CSS file used for rendering DocBook content is located in ${frameworks}/docbook/css/docbook.css.

The XML catalog is stored in ${frameworks}/docbook/5.0/catalog.xml.

Author Extensions

The DocBook 5 extensions are the same as the DocBook 4 extensions. In addition the table actions work also for HTML
tables.

A drag and drop with a file from the Project view or from the DITA Maps Manager view to a DocBook 5 document
that is edited in Author mode will create a link to the dragged file (the link DocBook element) at the drop location. A
drag and drop with an image file from the default file system application (Windows Explorer on Windows, Finder on
Mac OS X, etc) will insert an image element (the inlinemediaobject DocBook element with an imagedata
child element) with the location of the dragged file at the drop location, like the Insert Graphic toolbar action.

Transformation Scenarios

Default transformation scenarios allow you to transform DocBook 5 documents to HTML, HTML Chunk, PDF, XHTML,
XHTML Chunk, WebHelp (experimental) and EPUB.

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when possible.
To use a specific font:

• first you need to declare it in your CSS file, like:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;

268 | Oxygen XML Editor | Predefined Document Types

src: url(fonts/MyFont.otf);
}

• tell the CSS where this font is used. To set it as default for h1 elements, use the font-family rule as in the
following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

• in your DocBook to EPUB transformation, set the epub.embedded.fonts parameter to fonts/MyFont.otf.
If you need to provide more files, use comma to separate their file paths.

Templates

Default templates are available in the New File wizard and can be used for easily creating a skeletal form of a DocBook
5 book or article. These templates are stored in the ${frameworks}/docbook/templates/DocBook 5 folder.

The DocBook Targetset Document Type

DocBook Targetset documents are used to resolve cross references with DocBook olink's.

A file is considered to be a Targetset when the root name is targetset.

This type of documents use a DTD and schema located in
${frameworks}/docbook/xsl/common/targetdatabase.dtd, where ${frameworks} is a subdirectory
of the Oxygen install directory.

Templates

There is a default template for Targetset documents in the ${frameworks}/docbook/templates/Targetset
folder. It is available when creating new documents from templates.

• Docbook Targetset - Map - New Targetset Map.

The DITA Topics Document Type

The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering technical information. It divides content into small, self-contained topics that can be reused in different
deliverables. The extensibility of DITA permits organizations to define specific information structures and still use
standard tools to work with them.

A file is considered to be a DITA topic document when either of the following occurs:

• the root element name is one of the following: concept, task, reference, dita, topic
• PUBLIC ID of the document is one of the PUBLIC ID's for the elements above
• the root element of the file has an attribute named DITAArchVersion attribute from the

“http://dita.oasis-open.org/architecture/2005/” namespace. This enhanced case of matching is only applied when the
Enable DTD processing option from the Document Type Detection option page is enabled.

Oxygen XML Editor | Predefined Document Types | 269

The default schema used for DITA topic documents is located in ${frameworks}/dita/dtd/ditabase.dtd,
where ${frameworks} is a subdirectory of the Oxygen install directory.

The CSS file used for rendering DITA content in Author mode is ${frameworks}/dita/css/dita.css.

The default XML catalog is ${frameworks}/dita/catalog.xml.

Author Extensions

The specific actions for DITA topic documents are:

• Bold - Surrounds the selected text with a b tag.
• Italic - Surrounds the selected text with an i tag.
• Underline - Surrounds the selected text with a u tag.

Note: For all of the above actions if there is no selection then a new specific tag will be inserted. These actions
are available in any document context.

• Cross Reference - Inserts an xref element with the value of attribute format set to dita. The target of the xref
is selected in a dialog which lists all the IDs available in a file selected by the user.

Figure 172: Insert a cross reference in a DITA document

• Key Reference - Inserts a user specified element with the value of attribute keyref attribute set to a specific key
name. As stated in the DITA 1.2 specification keys can be defined at map level which can be then referenced. The
target of the keyref is selected in a dialog which lists all the keys available in the current opened map from the
DITA Maps Manager.

You can also reference elements at sub-topic level by pressing the Sub-topic button and choosing the target.

Important: All keys which are presented in the dialog are gathered from the current opened DITA map.
Elements which have the keyref attribute set are displayed as links. The current opened DITA map is also
used to resolve references when navigating keyref links in the Author page. Image elements which use key
references are rendered as images.

• File Reference - Inserts an xref element with the value of attribute format set to xml.
• Web Link - Inserts an xref element with the value of attribute format set to html, and scope set to external.
• Related Link to Topic - Inserts a link element inside a related-links parent.

270 | Oxygen XML Editor | Predefined Document Types

• Related Link to File - Inserts a link element with the format attribute set to xml inside a related-links
parent.

• Related Link to Web Page - Inserts a link element with the attribute format set to html and scope set to
external inside a related-links parent.

Note: The actions for inserting references described above are grouped inside link toolbar actions group.

• Paste as Link (available on the contextual menu of Author editor for any topic file) - Inserts a link element or an
xref one (depending on the location of the paste) that points to the DITA XML element from the clipboard. An
entire DITA XML element with an ID attribute must be present in the clipboard when the action is invoked. The
href attribute of link/href will point to this ID value.

• Paste as Content Reference (available on the contextual menu of Author editor for any topic file) - Inserts a content
reference (a DITA element with a conref attribute) to the DITA XML element from the clipboard. An entire DITA
XML element with an ID attribute must be present in the clipboard when the action is invoked. The conref attribute
will point to this ID value.

• Insert Section / Step - Inserts a new section / step in the document, depending on the current context. A new
section will be inserted in either one of the following contexts:

• section context, when the value of class attribute of the current element or one of its ancestors contains topic
or section.

• topic's body context, when the value of class attribute of the current element contains topic/body.

A new step will be inserted in either one of the following contexts:

• task step context, when the value of class attribute of the current element or one of its ancestors contains
task/step.

• task steps context, when the value of class attribute of the current element contains task/steps.

• Insert Paragraph - Inserts a new paragraph depending on the current context. If current context is a paragraph
context (the value of class attribute of the current element or one of its ancestors contains topic/p) then a new
paragraph will be inserted after this paragraph. Otherwise a new paragraph is inserted at caret position.

• Insert Concept - Inserts a new concept. Concepts provide background information that users must know before
they can successfully work with a product or interface. This action is available in one of the following contexts:

• concept context, one of the current element ancestors is a concept. In this case an empty concept will be
inserted after the current concept.

• concept or DITA context, current element is a concept or dita. In this case an empty concept will be
inserted at current caret position.

• DITA topic context, current element is a topic child of a dita element. In this case an empty concept will
be inserted at current caret position.

• DITA topic context, one of the current element ancestors is a DITA topic. In this case an empty concept
will be inserted after the first topic ancestor.

• Insert Task - Inserts a new task. Tasks are the main building blocks for task-oriented user assistance. They
generally provide step-by-step instructions that will enable a user to perform a task. This action is available in one
of the following contexts:

• task context, one of the current element ancestors is a task. In this case an empty task will be inserted after
the last child of the first concept's ancestor.

• task context, the current element is a task. In this case an empty task will be inserted at current caret position.
• topic context, the current element is a dita topic. An empty task will be inserted at current caret position.
• topic context, one of the current element ancestors is a dita topic. An empty task will be inserted after the

last child of the first ancestor that is a topic.

• Insert Reference - Inserts a new reference in the document. A reference is a top-level container for a reference
topic. This action is available in one of the following contexts:

Oxygen XML Editor | Predefined Document Types | 271

reference context - one of the current element ancestors is a reference. In this case an empty reference
will be inserted after the last child of the first ancestor that is a reference.

•

• reference or dita context - the current element is either a dita or a reference. An empty reference
will be inserted at caret position.

• topic context - the current element is topic descendant of dita element. An empty reference will be
inserted at caret position.

• topic context - the current element is descendant of dita element and descendant of topic element. An empty
reference will be inserted after the last child of the first ancestor that is a topic.

• Insert Image Reference - Inserts a graphic object at the caret position. Depending on the current context, an
image-type DITA element is inserted. The following graphical formats are supported: GIF, JPG, JPEG, BMP, PNG,
SVG. Also you can use this action to refer MathML files.

• Insert Content Reference - Inserts a content reference at the caret position.

The DITA conref attribute provides a mechanism for reuse of content fragments. The conref attribute stores a
reference to another element and is processed to replace the referencing element with the referenced element. The
element containing the content reference acts as a placeholder for the referenced element. The identifier for the
referenced element must be either absolute or resolvable in the context of the referencing element. See here for more
details.

Oxygen will display the referred content of a DITA conref if it can resolve it to a valid resource. If you have URI's
instead of local paths in the XML documents and your DITA OT transformation needs an XML catalog to map the
URI's to local paths you have add the catalog to Oxygen. If the URI's can be resolved the referred content will be
displayed in Author mode and in the transformation output.

A content reference is inserted with the action Insert a DITA Content Reference available on the toolbar Author
custom actions and on the menu DITA > Insert .

Figure 173: Insert Content Reference Dialog

In the URL chooser you set the URL of the file from which you want to reuse content. Depending on the Target
type filter you will see a tree of elements which can be referred (which have ID's). For each element the XML content
is shown in the preview area. The Conref value is computed automatically for the selected tree element. After

272 | Oxygen XML Editor | Predefined Document Types

http://docs.oasis-open.org/dita/v1.0/archspec/conref.html

pressing OK an element with the same name as the target element and having the attribute conref with the value
specified in the Conref value field will be inserted at caret position.

According to the DITA 1.2 specification the conrefend attribute can be used to specify content reference ranges.
This is a very useful feature when referencing multiple consecutive steps or list items. If you use multiple contiguous
sibling selection the conrefend value will also be set to the value of the last selected ID path. Oxygen XML
Author will present the entire referenced range as read-only content.

• Insert Content Key Reference - Inserts a content key reference at the caret position.

As stated in the DITA 1.2 specification the conkeyref attribute provides a mechanism for reuse of content fragments
similar with the conref mechanism. Keys are defined at map level which can be referenced using conkeyref.
The conkeyref attribute contains a key reference to another element and is processed to replace the referencing
element with the referenced element. The element containing the content key reference acts as a placeholder for the
referenced element. The identifier for the referenced element must be either absolute or resolvable in the context of
the referencing element.

Oxygen will display the key referred content of a DITA conkeyref if it can resolve it to a valid resource in the
context of the current opened DITA map.

A content key reference is inserted with the action Insert a DITA Content Key Reference available on the toolbar
Author custom actions and on the menu DITA > Insert .

Figure 174: Insert Content Key Reference Dialog

To reference target elements at sub-topic level just press the Sub-topic button and choose the target.

According to the DITA 1.2 specification the conrefend attribute can be used to specify content reference ranges.
This is a very useful feature when referencing multiple consecutive steps or list items. If you use multiple contiguous
sibling selection for IDs at sub-topic level the conrefend value will also be set to the value of the last selected ID
path. Oxygen XML Author will present the entire referenced range as read-only content.

Important: All keys which are presented in the dialog are gathered from the current opened DITA map.
Elements which have the conkeyref attribute set are displayed by default with the target content expanded.
The current opened DITA map is also used to resolve references when navigating conkeyref links in the
Author page.

• Replace conref / conkeyref reference with content - Replaces the content reference fragment or the conkeyref
at caret position with the referenced content. This action is useful when you want to make changes to the content
but decide to keep the referenced fragment unchanged.

• Insert Equation - Allows you to insert an MathML equation. For more information, see section Editing MathML
Notations.

Oxygen XML Editor | Predefined Document Types | 273

• Create Reusable Component - Creates a reusable component from a selected fragment of text. For more information,
see Reusing Content.

• Insert Reusable Component - Inserts a reusable component at cursor location. For more information, see Reusing
Content.

• Remove Content Reference - Removes the conref attribute of an element. For more information, see Reusing
Content.

• Add/Edit Content Reference - Add or edit the conref attribute of an element. For more information, see Reusing
Content.

• Paste as Content Reference - Pastes the content of the clipboard as a content reference. Note that the copied
element must have the id attribute set.

• Paste as Link - Pastes the content of the clipboard as a link. Note that the copied element must have the id
attribute set.

• Insert Ordered List - Inserts an ordered list with one list item.
• Insert Unordered List - Inserts an unordered list with one list item.
• Insert List Item - Inserts a new list item for in any of the above two list types.
• Insert Table - Opens a dialog that allows you to configure the table to be inserted. The dialog allows the user

to configure:

• the number of rows and columns of the table
• if the header will be generated
• if the title will be added
• how the table will be framed

• Insert Row - Inserts a new table row with empty cells. The action is available when the caret position is inside
a table.

• Insert Column - Inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Insert Cell - Inserts a new empty cell depending on the current context. If the caret is positioned between two
cells, a new one will be inserted at caret's position. If the caret is inside a cell, then the new one will be created after
the current cell.

• Delete Column - Deletes the table column where the caret is located.
• Delete Row - Deletes the table row where the caret is located.
• Join Row Cells - Joins the content of the selected cells. The operation is available if the selected cells are from

the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - Joins the content of cell from current caret position with that of the cell above it. Note that
this action works only if both cells have the same column span.

• Join Cell Below - Joins the content of cell from current caret position with that of the cell below it. Note that
this action works only if both cells have the same column span.

• Split Cell To The Left - Splits the cell from current caret position in two, inserting a new empty table cell to
the left. Note that this action works only if the current cell spans over more than one column. The column span of
the source cell will be decreased with one.

• Split Cell To The Right - Splits the cell from current caret position in two, inserting a new empty table cell to
the right. Note that this action works only if the current cell spans over more than one column. The column span of
the source cell will be decreased with one.

• Split Cell Above - Splits the cell from current caret position in two, inserting a new empty table cell above.
Note that this action works only if the current cell spans over more than one row. The row span of the source cell
will be decreased with one.

274 | Oxygen XML Editor | Predefined Document Types

• Split Cell Below - splits the cell from current caret position in two, inserting a new empty table cell below.
Note that this action works only if the current cell spans over more than one row. The row span of the source cell
will be decreased with one.

Note: DITA supports the CALS table model similar with DocBook document type in addition to the simpletable
element specific for DITA.

Caution: Column specifications are required for table actions to work properly.

• Generate IDs - Allows you to generate an unique ID for the element at caret position. You can set the ID pattern
using the ID Generation dialog, available in the DITA main menu, ID Generation Options submenu. In this dialog
you can specify the elements for which Oxygen generates an ID if the Auto generate ID's for elements is enabled.
If the element already has an ID, it is preserved.

All actions described above are available in the contextual menu, the DITA submenu of the main menu and in the
Author custom actions toolbar.

A drag and drop with a file from the Project view or from the DITA Maps Manager view to a DITA topic document
that is edited in Author mode will create a link to the dragged file (the xref DITA element with the href attribute) at
the drop location. A drag and drop with an image file from the default file system application (Windows Explorer on
Windows, Finder on Mac OS X, etc) will insert an image element (the image DITA element with the href attribute)
with the location of the dragged file at the drop location, like the Insert Graphic toolbar action.

Transformation Scenarios

The following default transformation scenarios are available for DITA Topics:

• DITA XHTML - Transforms a DITA topic to XHTML using DITA Open Toolkit 1.5.2;
• DITA PDF (Idiom FO Plugin) - Transforms a DITA topic to PDF using the DITA Open Toolkit 1.5.2 and the

Apache FOP engine.

Templates

The default templates available for DITA topics are stored in ${frameworks}/dita/templates/topic folder.
They can be used for easily creating a DITA concept, reference, task or topic.

These templates are available when creating new documents from templates.

• DITA - Composite - New DITA Composite
• DITA - Concept - New DITA Concept
• DITA - General Task - New DITA Task
• DITA - Glossentry - New DITA Glossentry
• DITA - Reference - New DITA Reference
• DITA - Task - New DITA Task
• DITA - Topic - New DITA Topic
• DITA - Learning Assessment - New DITA Learning Assessment (learning specialization in DITA 1.2)
• DITA - Learning Content - New DITA Learning Content (learning specialization in DITA 1.2)
• DITA - Learning Summary - New DITA Learning Summary (learning specialization in DITA 1.2)
• DITA - Learning Overview - New DITA Learning Overview (learning specialization in DITA 1.2)

Oxygen XML Editor | Predefined Document Types | 275

The DITA Map Document Type

DITA maps are documents that collect and organize references to DITA topics to indicate the relationships among the
topics. They can also serve as outlines or tables of contents for DITA deliverables and as build manifests for DITA
projects.

Maps allow scalable reuse of content across multiple contexts. They can be used by information architects, writers, and
publishers to plan, develop, and deliver content.

A file is considered to be a DITA map document when either of the following occurs:

• root element name is one of the following: map, bookmap
• public id of the document is -//OASIS//DTD DITA Map or -//OASIS//DTD DITA BookMap.
• the root element of the file has an attribute named class which contains the value map/map and a

DITAArchVersion attribute from the http://dita.oasis-open.org/architecture/2005/ namespace. This enhanced
case of matching is only applied when the Enable DTD processing option from the Document Type Detection
option page is enabled.

The default schema used for DITA map documents is located in ${frameworks}/dita/DITA-OT/dtd/map.dtd,
where ${frameworks} is a subdirectory of the Oxygen install directory.

The CSS file used for rendering DITA content is located in ${frameworks}/dita/css/dita.css.

The default XML catalog is stored in ${frameworks}/dita/catalog.xml.

Author Extensions

Specific actions for DITA map documents are:

• Insert Topic Reference - Inserts a reference to a topic.
• Insert Content Reference - Inserts a content reference at the caret position.
• Insert Content Key Reference - Inserts a content reference at the caret position.
• Insert Table - Opens a dialog that allows you to configure the relationship table to be inserted. The dialog allows

the user to configure the number of rows and columns of the relationship table, if the header will be generated and
if the title will be added.

• Insert Row - Inserts a new table row with empty cells. The action is available when the caret position is inside
a table.

• Insert Column - Inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Delete Column - Deletes the table column where the caret is located.
• Delete Row - Deletes the table row where the caret is located.

All actions described above are available in the contextual menu, the DITA submenu of the main menu and in the
Author custom actions toolbar.

A drag and drop with a file from the Project view or from the DITA Maps Manager view to a DITA map document that
is edited in Author mode will create a link to the dragged file (a topicref element, a chapter one, a part one,
etc.) at the drop location.

Transformation Scenarios

Predefined transformation scenarios allow you to transform a DITA Map to PDF, XHTML, WebHelp, EPUB and CHM
files. Many more output formats are available by clicking the New button. The transformation process relies on DITA
Open Toolkit 1.5.2.

276 | Oxygen XML Editor | Predefined Document Types

Templates

The default templates available for DITA maps are stored in ${frameworks}/dita/templates/map folder.
They can be used for easily creating a DITA map and bookmap files.

These templates are available when creating new documents from templates.

• DITA Map - Bookmap - New DITA Bookmap
• DITA Map - Map - New DITA Map
• DITA Map - Learning Map - New DITA learning and training content specialization map
• DITA Map - Learning Bookmap - New DITA learning and training content specialization bookmap
• DITA Map - Eclipse Map - New DITA learning and training content specialization bookmap

The XHTML Document Type

The Extensible HyperText Markup Language, or XHTML, is a markup language that has the same depth of expression
as HTML, but also conforms to XML syntax.

A file is considered to be a XHTML document when the root element name is a html.

The schema used for these documents is located in ${frameworks}/xhtml/dtd/xhtml1-strict.dtd, where
${frameworks} is a subdirectory of the Oxygen install directory.

The default CSS options for the XHTML document type are set to merge the CSSs specified in the document with the
CSSs defined in the XHTML document type.

The CSS file used for rendering XHTML content is located in ${frameworks}/xhtml/css/xhtml.css.

There are three default catalogs for XHTML document type:

• ${frameworks}/xhtml/dtd/xhtmlcatalog.xml

• ${frameworks}/xhtml11/dtd/xhtmlcatalog.xml

• ${frameworks}/xhtml11/schema/xhtmlcatalog.xml

Author Extensions

Specific actions are:

• Bold - Changes the style of the selected text to bold by surrounding it with b tag.
• Italic - Changes the style of the selected text to italic by surrounding it with i tag.
• Underline - Changes the style of the selected text to underline by surrounding it with u tag.

Note: For all of the above actions if there is no selection then a new specific tag will be inserted. These actions
are available in any document context.

• Headings - Groups actions for inserting h1, h2, h3, h4, h5, h6 elements.
• Insert Paragraph - Inserts a new paragraph depending on the current context. If current context is a paragraph

context (one of the ancestors of the element at caret position is p) then a new paragraph will be inserted after the
paragraph at caret. Otherwise a new paragraph is inserted at caret position.

• Insert Graphic - Inserts a graphic object at the caret position. This is done by inserting an img element regardless
of the current context. The following graphical formats are supported: GIF, JPG, JPEG, BMP, PNG, SVG.

• Insert Ordered List - Inserts an ordered list (ol element) with one list item (li child element).

Oxygen XML Editor | Predefined Document Types | 277

• Insert Unordered List - Inserts an unordered list (ul element) with one list item (li child element).
• Insert Definition List - Inserts a definition list (dl element) with one list item (a dt child element and a dd

child element).
• Insert List Item - Inserts a new list item for in any of the above two list types.
• Insert Table - Opens a dialog that allows you to configure the table to be inserted. The dialog allows the user

to configure the number of rows and columns of the table, if the header and footer will be generated and how the
table will be framed.

• Insert Row - Inserts a new table row with empty cells. The action is available when the caret position is inside
a table.

• Insert Column - Inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Insert Cell - Inserts a new empty cell depending on the current context. If the caret is positioned between two
cells, a new one will be inserted at caret's position. If the caret is inside a cell, then the new one will be created after
the current cell.

• Delete Column - Deletes the table column where the caret is located.
• Delete Row - Deletes the table row where the caret is located.
• Join Row Cells - Joins the content of the selected cells. The operation is available if the selected cells are from

the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - Joins the content of cell from current caret position with that of the cell above it. Note that
this action works only if both cells have the same column span.

• Join Cell Below - Joins the content of cell from current caret position with that of the cell below it. Note that
this action works only if both cells have the same column span.

• Split Cell To The Left - Splits the cell from current caret position in two, inserting a new empty table cell to
the left. Note that this action works only if the current cell spans over more than one column. The column span of
the source cell will be decreased with one.

• Split Cell To The Right - Splits the cell from current caret position in two, inserting a new empty table cell to
the right. Note that this action works only if the current cell spans over more than one column. The column span of
the source cell will be decreased with one.

• Split Cell Above - Splits the cell from current caret position in two, inserting a new empty table cell above.
Note that this action works only if the current cell spans over more than one row. The row span of the source cell
will be decreased with one.

• Split Cell Below - Splits the cell from current caret position in two, inserting a new empty table cell below.
Note that this action works only if the current cell spans over more than one row. The row span of the source cell
will be decreased with one.

All actions described above are available in the contextual menu, the XHTML submenu of the main menu and in the
Author custom actions toolbar.

A drag and drop with a file from the Project view or from the DITA Maps Manager view to a DITA topic document
that is edited in Author mode will create a link to the dragged file (the xref DITA element with the href attribute) at
the drop location. A drag and drop with an image file from the default file system application (Windows Explorer on
Windows, Finder on Mac OS X, etc) will insert an image element (the image DITA element with the href attribute)
with the location of the dragged file at the drop location, like the Insert Graphic toolbar action.

Transformation Scenarios

The following default transformation scenarios are available for XHTML:

• XHTML to DITA concept - Converts an XHTML document to a DITA concept document

278 | Oxygen XML Editor | Predefined Document Types

• XHTML to DITA reference - Converts an XHTML document to a DITA reference document
• XHTML to DITA task - Converts an XHTML document to a DITA task document
• XHTML to DITA topic - Converts an XHTML document to a DITA topic document

Templates

Default templates are available for XHTML. They are stored in ${frameworksDir}/xhtml/templates folder
and they can be used for easily creating basic XHTML documents.

These templates are available when creating new documents from templates.

• XHTML - 1.0 Strict - New Strict XHTML 1.0
• XHTML - 1.0 Transitional - New Transitional XHTML 1.0
• XHTML - 1.1 DTD Based - New DTD based XHTML 1.1
• XHTML - 1.1 DTD Based + MathML 2.0 + SVG 1.1 - New XHTML 1.1 with MathML and SVG insertions
• XHTML - 1.1 Schema based - New XHTML 1.1 XML Schema based

The TEI P4 Document Type

The Text Encoding Initiative (TEI) Guidelines is an international and interdisciplinary standard that enables libraries,
museums, publishers, and individual scholars to represent a variety of literary and linguistic texts for online research,
teaching, and preservation.

A file is considered to be a TEI P4 document when either of the following occurs:

• the root's local name is TEI.2
• the document's public id is -//TEI P4

The DTD schema used for these documents is located in ${frameworks}/tei/tei2xml.dtd, where
${frameworks} is a subdirectory of the Oxygen install directory.

The CSS file used for rendering TEI P4 content is located in
${frameworks}/tei/xml/tei/css/tei_oxygen.css.

There are two default catalogs for TEI P4 document type:

• ${frameworks}/tei/xml/teip4/schema/dtd/catalog.xml

• ${frameworks}/tei/xml/teip4/custom/schema/dtd/catalog.xml

Author Extensions

The specific actions for TEI P4 documents are:

• Bold - Changes the style of the selected text to bold by surrounding it with hi tag and setting the rend attribute
to bold.

• Italic - Changes the style of the selected text to italic by surrounding it with hi tag and setting the rend
attribute to italic.

• Underline - Changes the style of the selected text to underline by surrounding it with hi tag and setting the
rend attribute to ul.

Note: For all of the above actions if there is no selection then a new specific tag will be inserted. These actions
are available in any document context.

Oxygen XML Editor | Predefined Document Types | 279

• Insert Section - Inserts a new section / subsection, depending on the current context. For example if the current
context is div1 then a div2 will be inserted and so on.

• Insert Paragraph - Inserts a new paragraph depending on the current context. If current context is a paragraph
context (one of the ancestors of the element at caret position is p) then a new paragraph will be inserted after the
paragraph at caret. Otherwise a new paragraph is inserted at caret position.

• Insert Image - Inserts a graphic object at the caret position. The following dialog is displayed allowing the user
to specify the entity that refers the image itself.

• Insert Ordered List - Inserts an ordered list (list element with type attribute set to ordered) with one
list item (item element).

• Insert Itemized List - Inserts an unordered list (list element with type attribute set to bulleted) with
one list item (item element).

• Insert List Item - Inserts a new list item for in any of the above two list types.
• Insert Table - Opens a dialog that allows you to configure the table to be inserted. The dialog allows the user

to configure the number of rows and columns of the table and if the header will be generated.
• Insert Row - Inserts a new table row with empty cells. The action is available when the caret position is inside

a table.
• Insert Column - Inserts a new table column with empty cells after the current column. The action is available

when the caret position is inside a table.
• Insert Cell - Inserts a new empty cell depending on the current context. If the caret is positioned between two

cells, a new one will be inserted at caret's position. If the caret is inside a cell, then the new one will be created after
the current cell.

• Delete Column - Deletes the table column where the caret is located.
• Delete Row - Deletes the table row where the caret is located.
• Join Row Cells - Joins the content of the selected cells. The operation is available if the selected cells are from

the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - Joins the content of cell from current caret position with that of the cell above it. Note that
this action works only if both cells have the same column span.

• Join Cell Below - Joins the content of cell from current caret position with that of the cell below it. Note that
this action works only if both cells have the same column span.

• Split Cell To The Left - Splits the cell from current caret position in two, inserting a new empty table cell to
the left. Note that this action works only if the current cell spans over more than one column. The column span of
the source cell will be decreased with one.

• Split Cell To The Right - Splits the cell from current caret position in two, inserting a new empty table cell to
the right. Note that this action works only if the current cell spans over more than one column. The column span of
the source cell will be decreased with one.

• Split Cell Above - Splits the cell from current caret position in two, inserting a new empty table cell above.
Note that this action works only if the current cell spans over more than one row. The row span of the source cell
will be decreased with one.

• Split Cell Below - Splits the cell from current caret position in two, inserting a new empty table cell below.
Note that this action works only if the current cell spans over more than one row. The row span of the source cell
will be decreased with one.

• Generate IDs - Allows you to generate ID for the current selection or for the element at caret position if the element
appears in ID Generation dialog. In this dialog you can specify the elements for which Oxygen should generate an
ID. You can choose to automatically generate an ID for these elements by selecting Auto generate ID's for elements.
You can choose a pattern for the generated ID using the field ID Pattern. If the element already has an ID, this ID
is preserved.

280 | Oxygen XML Editor | Predefined Document Types

All actions described above are available in the contextual menu, the TEI P4 submenu of the main menu and in the
Author custom actions toolbar.

A drag and drop with a file from the Project view or from the DITA Maps Manager view to a TEI P4 document that is
edited in Author mode will create a link to the dragged file (the ptr element with the target attribute) at the drop
location.

Transformation Scenarios

The following default transformations are available:

• TEI HTML - Transforms a TEI document into a HTML document
• TEI P4 -> TEI P5 Conversion - Convert a TEI P4 document into a TEI P5 document
• TEI PDF - Transforms a TEI document into a PDF document using the Apache FOP engine

Templates

The default templates are stored in ${frameworks}/tei/templates/TEI P4 folder and they can be used for
easily creating basic TEI P4 documents. These templates are available when creating new documents from templates.

• TEI P4 - Lite - New TEI P4 Lite
• TEI P4 - New Document - New TEI P4 standard document

The TEI P5 Document Type

The TEI P5 document type is the same with that for TEI P4 with the following exceptions:

• A file is considered to be a TEI P5 document when the namespace is http://www.tei-c.org/ns/1.0.
• The schema is located in ${frameworks}/tei/xml/tei/custom/schema/relaxng/tei_allPlus.rng,

where ${frameworks} is a subdirectory of the Oxygen install directory.
• A drag and drop with an image file from the default file system application (Windows Explorer on Windows, Finder

on Mac OS X, etc) will insert an image element (the graphic DITA element with the url attribute) with the
location of the dragged file at the drop location, like the Insert Graphic toolbar action.

Transformation Scenarios

The following default transformations are available:

• TEI P5 XHTML - Transforms a TEI document into a XHTML document
• TEI P5 PDF - Transforms a TEI document into a PDF document using the Apache FOP engine

Templates

The default templates are stored in ${frameworks}/tei/templates/TEI P5 folder and they can be used for
easily creating basic TEI P5 documents. These templates are available when creating new documents from templates.

• TEI P5 - All - New TEI P5 All
• TEI P5 - Bare - New TEI P5 Bare
• TEI P5 - Lite - New TEI P5 Lite
• TEI P5 - Math - New TEI P5 Math
• TEI P5 - Speech - New TEI P5 Speech
• TEI P5 - SVG - New TEI P5 with SVG extensions
• TEI P5 - XInclude - New TEI P5 XInclude aware

Oxygen XML Editor | Predefined Document Types | 281

The MathML Document Type

Mathematical Markup Language (MathML) is an application of XML for describing mathematical notations and capturing
both its structure and content. It aims at integrating mathematical formulae into World Wide Web documents.

Oxygen offers support for editing and validating MathML 2.0 documents.

A file is considered to be a MathML document when the root element name is a math or it's namespace is
http://www.w3.org/1998/Math/MathML.

The schema used for these documents is located in ${frameworks}/mathml2/dtd/mathml2.dtd, where
${frameworks} is a subdirectory of the Oxygen install directory.

Templates

There is one default template for MathML stored in the ${frameworks}/mathml2/templates folder.

This template is available when creating new documents from templates.

• Equation 2.0 DTD Based - DTD based MathML 2.0 equation template file.
• Equation 2.0 Schema Based - XML Schema-based MathML 2.0 equation template file.

The Microsoft Office OOXML Document Type

Office Open XML (also referred to as OOXML or OpenXML) is a free and open Ecma international standard document
format, and a proposed ISO/IEC standard for representing spreadsheets, charts, presentations and word processing
documents.

OOXML uses a file package conforming to the Open Packaging Convention. This format uses the ZIP file format and
contains the individual files that form the basis of the document. In addition to Office markup, the package can also
include embedded files such as images, videos, or other documents.

Oxygen offers support for editing, transforming and validating documents composing the OOXML package directly
through the archive support.

Figure 175: Editing OOXML packages in Oxygen

A file is considered to be an OOXML document when it has one of the following namespaces:

282 | Oxygen XML Editor | Predefined Document Types

http://www.ecma-international.org/publications/standards/Ecma-376.htm

• http://schemas.openxmlformats.org/wordprocessingml/2006/main
• http://schemas.openxmlformats.org/package/2006/content-types
• http://schemas.openxmlformats.org/drawingml/2006/main
• http://schemas.openxmlformats.org/package/2006/metadata/core-properties
• http://schemas.openxmlformats.org/package/2006/relationships
• http://schemas.openxmlformats.org/presentationml/2006/main
• http://schemas.openxmlformats.org/officeDocument/2006/custom-properties
• http://schemas.openxmlformats.org/officeDocument/2006/extended-properties
• http://schemas.openxmlformats.org/spreadsheetml/2006/main
• http://schemas.openxmlformats.org/drawingml/2006/chart

The schema used for these documents is located in ${frameworks}/ooxml/schemas/main.nvdl, where
${frameworks} is a subdirectory of the Oxygen install directory. The schema can be easily customized to allow user
defined extension schemas for use in the OOXML files. See the Markup Compatibility and Extensibility Ecma PDF
document for more details.

Templates

The default templates for OOXML documents are stored in the ${frameworks}/ooxml/templates folder. These
templates are available when creating new documents from templates.

• OOXML - Microsoft Excel Workbook - Simple Microsoft Excel XLSX template file
• OOXML - Microsoft PowerPoint Presentation - Simple Microsoft PowerPoint PPTX template file
• OOXML - Microsoft Word Document - Simple Microsoft Word DOCX template file

The Open Office ODF Document Type

The OpenDocument format (ODF) is a free and open file format for electronic office documents, such as spreadsheets,
charts, presentations and word processing documents. The standard was developed by the Open Office XML technical
committee of the Organization for the Advancement of Structured Information Standards (OASIS) consortium and based
on the XML format originally created and implemented by the OpenOffice.org office suite.

A basic OpenDocument file consists of an XML document that has <document> as its root element. OpenDocument
files can also take the format of a ZIP compressed archive containing a number of files and directories. These can contain
binary content and benefit from ZIP lossless compression to reduce file size. OpenDocument benefits from separation
of concerns by separating the content, styles, metadata and application settings into four separate XML files.

Oxygen offers support for editing, manipulating and validating documents composing the ODF package directly through
the archive support.

Oxygen XML Editor | Predefined Document Types | 283

http://www.ecma-international.org/news/TC45_current_work/Office%20Open%20XML%20Part%205%20-%20Markup%20Compatibility%20and%20Extensibility.pdf
http://www.oasis-open.org/committees/office/

Figure 176: Editing ODF packages in Oxygen

A file is considered to be an ODF document when it has the namespace
“urn:oasis:names:tc:opendocument:xmlns:office:1.0”.

The schema used for these documents is located in
${frameworks}/odf/schemas/OpenDocument-schema-v1.1.rng, where ${frameworks} is a
subdirectory of the Oxygen install directory.

Templates

The default templates for ODF documents are stored in the ${frameworks}/odf/templates folder. These
templates are available when creating new documents from templates.

• ODF - Presentation - Simple Open Office Presentation ODP template file
• ODF - Spreadsheet - Simple Open Office Spreadsheet ODS template file
• ODF - Text Document - Simple Open Office Text Document ODT template file

The OASIS XML Catalog Document Type

The OASIS XML catalog is a document describing a mapping between external entity references or URI's and
locally-cached equivalents.

A file is considered to be an XML Catalog document when it has the namespace
“urn:oasis:names:tc:entity:xmlns:xml:catalog” or when its root element name is catalog.

The OASIS 1.1 schema used for these documents is located in ${frameworks}/xml/catalog1.1.xsd, where
${frameworks} is a subdirectory of the Oxygen install directory.

Templates

The default templates for XML catalogs creation are stored in the ${frameworks}/xml/templates folder. These
templates are available when creating new documents from templates.

• OASIS XML Catalog - 1.0 - Sample OASIS 1.0 XML Catalog
• OASIS XML Catalog - 1.1 - Sample OASIS 1.1 XML Catalog

284 | Oxygen XML Editor | Predefined Document Types

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

The XML Schema Document Type

This document type is used to associated CSS stylesheets to an XML Schema so it can be visualized in the Author page.

A file is considered to be an XML Schema document when the root name is schema and namespace is
http://www.w3.org/2001/XMLSchema.

The following CSS alternatives are proposed for visualizing XML Schemas in the Author page.

• ${frameworks}/xmlschema/schema-main.css - Documentation - representation of XML Schema
optimized for editing and viewing documentation

• ${frameworks}/xmlschema/schemaISOSchematron.css - XMLSchema+ISOSchematron - representation
of XML Schema with embedded ISO Schematron rules

• ${frameworks}/xmlschema/schemaSchematron.css - XMLSchema+Schematron - representation of
XML Schema with embedded Schematron rules

• ${frameworks}/xmlschema/default.css - representation of XML Schema for general editing

The Relax NG Document Type

This document type is used to associated CSS stylesheets to an Relax NG file so it can be visualized in the Author page.

A file is considered to be an Relax NG document when the namespace is http://relaxng.org/ns/structure/1.0.

The following CSS alternatives are proposed for visualizing RelaxNG schemas in the Author page.

• ${frameworks}/relaxng/relaxng-main.css - Relax NG - representation of Relax NG optimized for
editing in the Author mode

• ${frameworks}/relaxng/relaxngISOSchematron.css - Relax NG (XML Syntax)+ISOSchematron
- representation of Relax NG (XML syntax) with embedded ISO Schematron rules. Embedded Schematron rules are
not supported in Relax NG schemas with compact syntax.

• ${frameworks}/relaxng/relaxngSchematron.css - Relax NG (XML Syntax)+Schematron -
representation of Relax NG (XML syntax) with embedded Schematron rules. Embedded Schematron rules are not
supported in Relax NG schemas with compact syntax.

The NVDL Document Type

This document type is used to associated CSS stylesheets to a NVDL file so it can be visualized in the Author page.

A file is considered to be a NVDL document when the namespace is http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0.

The following CSS is proposed for visualizing NVDL schemas in the Author page:

• ${frameworks}/nvdl/nvdl.css - Representation of Relax NG schema optimized for editing in the Author
mode.

The Schematron Document Type

This document type is used to associate CSS stylesheets to a Schematron file so it can be visualized in the Author page.

A file is considered to be a Schematron document when the namespace is http://purl.oclc.org/dsdl/schematron.

Oxygen XML Editor | Predefined Document Types | 285

The following CSS is proposed for visualizing Schematron schemas in the Author page:

• ${frameworks}/schematron/iso-schematron.css - Representation of Schematron optimized for
editing in the Author mode.

The Schematron 1.5 Document Type

This document type is used to associate CSS stylesheets to a Schematron 1.5 file so it can be visualized in the Author
page.

A file is considered to be a Schematron 1.5 document when the namespace is http://www.ascc.net/xml/schematron.

The following CSS is proposed for visualizing Schematron 1.5 schemas in the Author page:

• ${frameworks}/schematron/schematron15.css - Representation of Schematron 1.5 optimized for
editing in the Author mode.

The XSLT Document Type

This document type is used to associate CSS stylesheets to an XSLT stylesheet file so it can be visualized in the Author
page.

A file is considered to be a XSLT document when the namespace is http://www.w3.org/1999/XSL/Transform.

The following CSS is proposed for visualizing XSLT stylesheets in the Author page:

• ${frameworks}/xslt/xslt.css - Representation of XSLT optimized for editing in the Author mode.

The XMLSpec Document Type

XMLSpec is a markup language for W3C specifications and other technical reports.

A file is considered to be an XMLSpec document when the root name is spec.

XMLSpec documents use a Relax NG schema located in ${frameworks}/xmlspec/schema/xmlspec.rng,
where ${frameworks} is a subdirectory of the Oxygen install directory.

The default XML catalog is stored in ${frameworks}/xmlspec/catalog.xml.

Transformation Scenarios

The following default transformation scenarios are available:

• XMLSpec PDF - Transforms an XMLSpec document into PDF document using the Apache FOP engine
• XMLSpec HTML - Transforms an XMLSpec document into HTML document
• XMLSpec HTML Diff - Produces color-coded HTML from diff markup
• XMLSpec HTML Slices - Produces chunked HTML specifications

Templates

The default templates for XMLSpec are stored in ${frameworks}/xmlspec/templates folder and they can be
used for easily creating an XMLSpec. These templates are available when creating new documents from templates.

286 | Oxygen XML Editor | Predefined Document Types

• XMLSpec - New Document - New XMLSpec document

The FO Document Type

FO describes the formatting of XML data for output to screen, paper or other media.

A file is considered to be an FO document when the namespace is http://www.w3.org/1999/XSL/Format.

FO documents use a XML Schema located in ${frameworks}/fo/xsd/fo.xsd, where ${frameworks} is a
subdirectory of the Oxygen install directory.

Transformation Scenarios

The following default transformation scenarios are available:

• FO PDF - Transforms an FO document into PDF document using the Apache FOP engine.

The EAD Document Type

EAD Document Type Definition (DTD) is a standard for encoding archival finding aids using Extensible Markup
Language (XML). The standard is maintained in the Network Development and MARC Standards Office of the Library
of Congress (LC) in partnership with the Society of American Archivists.

A file is considered to be an EAD document when its namespace is “urn:isbn:1-931666-22-9” or its public ID is “//DTD
ead.dtd (Encoded Archival Description (EAD) Version 2002)//EN”.

EAD documents use a Relax NG Schema located in ${frameworks}/ead/rng/ead.rng, where ${frameworks}
is a subdirectory of the Oxygen install directory.

The default XML catalog is stored in ${frameworks}/ead/catalog.xml.

Templates

The default templates for EAD are stored in ${frameworks}/ead/templates folder and they can be used for
easily creating an EAD document. These templates are available when creating new documents from templates.

• EAD - NWDA Template 2008-04-08 - New EAD document

The EPUB Document Type

Three distinct frameworks support the EPUB document type:

• NCX - A declarative global navigation definition.
• OCF - The Open Container Format(OCF) defines a mechanism by which all components of an Open Publication

Structure(OPS) can be combined into a single file-system entity.
• OPF: - The Open Packaging Format(OPF) defines the mechanism by which all components of a published work

conforming to the Open Publication Structure(OPS) standard including metadata, reading order and navigational
information are packaged into an OPS Publication.

Oxygen XML Editor | Predefined Document Types | 287

Chapter

8

Author Developer Guide

The Author editor from Oxygen was designed to bridge the gap between the
XML source editing and a friendly user interface. The main achievement is the

Topics:

• Simple Customization Tutorial fact that the Author combines the power of source editing with the intuitive
interface of a text editor.• Advanced Customization Tutorial

- Document Type Associations This guide is targeted at advanced authors who want to customize the Author
editing environment and is included both as a chapter in the Oxygen user manual
and as a separate document in the Author SDK.

• CSS Support in Oxygen Author
• Example Files Listings - The

Simple Documentation
Framework Files

Figure 177: Oxygen Author Visual Editor

• Oxygen XML Author Component

Although Oxygen comes with already configured frameworks for DocBook,
DITA, TEI, XHTML, you might need to create a customization of the editor to
handle other types of documents. The common use case is when your
organization holds a collection of XML document types used to define the
structure of internal documents and they need to be visually edited by people
with no experience in working with XML files.

There are several ways to customize the editor:

1. Create a CSS file defining styles for the XML elements the user will work
with, and create XML files that refer the CSS through an xml-stylesheet
processing instruction.

2. Fully configure a document type association. This involves putting together
the CSSs, the XML schemes, actions, menus, etc, bundling them and
distributing an archive. The CSS and the GUI elements are settings of the
OxygenAuthor. The other settings like the templates, catalogs, transformation
scenarios are general settings and are enabled whenever the association is
active, no matter the editing mode (Text, Grid or Author).

http://www.oxygenxml.com/developer.html

Both approaches will be discussed in the following sections.

290 | Oxygen XML Editor | Author Developer Guide

Simple Customization Tutorial

The most important elements of a document type customization are represented by an XML Schema to define the XML
structure, the CSS to render the information and the XML instance template which links the first two together.

XML Schema

Let's consider the following XML Schema, test_report.xsd defining a report with results of a testing session.
The report consists of a title, few lines describing the test suite that was run and a list of test results, each with a name
and a boolean value indicating if the test passed or failed.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="report">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element ref="description"/>
 <xs:element ref="results"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="description">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="line">
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0"
 maxOccurs="unbounded">
 <xs:element name="important"
 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="results">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="entry">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="test_name"
 type="xs:string"/>
 <xs:element name="passed"
 type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The use-case is that several users are testing a system and must send report results to a content management system.
The Author customization should provide a visual editor for this kind of documents.

Oxygen XML Editor | Author Developer Guide | 291

CSS Stylesheet
A set of rules must be defined for describing how the XML document is to be rendered into the Oxygen Author. This
is done using Cascading Style Sheets or CSS on short. CSS is a language used to describe how an HTML or XML
document should be formatted by a browser. CSS is widely used in the majority of websites.

The elements from an XML document are displayed in the layout as a series of boxes. Some of the boxes contain text
and may flow one after the other, from left to right. These are called in-line boxes. There are also other type of boxes
that flow one below the other, like paragraphs. These are called block boxes.

For example consider the way a traditional text editor arranges the text. A paragraph is a block, because it contains a
vertical list of lines. The lines are also blocks. But any block that contains inline boxes is arranging its children in a
horizontal flow. That is why the paragraph lines are also blocks, but the traditional "bold" and "italic" sections are
represented as inline boxes.

The CSS allows us to specify that some elements are displayed as tables. In CSS a table is a complex structure and
consists of rows and cells. The "table" element must have children that have "table-row" style. Similarly, the "row"
elements must contain elements with "table-cell" style.

To make it easy to understand, the following section describes the way each element from the above schema is formatted
using a CSS file. Please note that this is just one from an infinite number of possibilities of formatting the content.

This element is the root element of the report document. It should be rendered as a box that contains
all other elements. To achieve this the display type is set to block. Additionally some margins are
set for it. The CSS rule that matches this element is:

report{
 display:block;

report

 margin:1em;
}

The title of the report. Usually titles have a larger font. The block display should also be used - the
next elements will be placed below it, and change its font to double the size of the normal text.

title {
 display:block;

title

 font-size:2em;
}

This element contains several lines of text describing the report. The lines of text are displayed one
below the other, so the description will have the same block display. To make it standout the
background color is changed.

description {
 display:block;

description

 background-color:#EEEEFF;
 color:black;
}

A line of text in the description. A specific aspect is not defined for it, just indicate that the display
should be block.

line {
 display:block;
}

line

292 | Oxygen XML Editor | Author Developer Guide

The important element defines important text from the description. Because it can be mixed with
text, its display property must be set to inline. To make it easier to spot, the text will be emphasized.

important {
 display:inline;

important

 font-weight:bold;
}

The results element shows the list of test_names and the result for each one. To make it easier
to read, it is displayed as a table with a green border and margins.

results{
 display:table;

results

 margin:2em;
 border:1px solid green;
}

An item in the results element. The results are displayed as a table so the entry is a row in the table.
Thus, the display is table-row.

entry {
 display:table-row;
}

entry

The name of the individual test, and its result. They are cells in the results table with display set to
table-cell. Padding and a border are added to emphasize the table grid.

test_name, passed{

test_name,
passed

 display:table-cell;
 border:1px solid green;
 padding:20px;
}

passed{
 font-weight:bold;
}

The full content of the CSS file test_report.css is:

report {
 display:block;
 margin:1em;
}

description {
 display:block;
 background-color:#EEEEFF;
 color:black;
}

line {
 display:block;
}

important {
 display:inline;
 font-weight:bold;
}

Oxygen XML Editor | Author Developer Guide | 293

title {
 display:block;
 font-size:2em;
}

results{
 display:table;
 margin:2em;
 border:1px solid green;
}

entry {
 display:table-row;
}

test_name, passed{
 display:table-cell;
 border:1px solid green;
 padding:20px;
}

passed{
 font-weight:bold;
}

Figure 178: A report opened in the Author

The XML Instance Template
Based on the XML Schema and the CSS file the Oxygen Author can help the content author in loading, editing and
validating the test reports. An XML file template must be created, a kind of skeleton, that the users can use as a starting
point for creating new test reports. The template must be generic enough and refer the XML Schema file and the CSS
stylesheet.

This is an example:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="test_report.css"?>

294 | Oxygen XML Editor | Author Developer Guide

<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="test_report.xsd">
 <title>Automated test report</title>
 <description>
 <line>This is the report of the test automatically ran. Each test suite is
ran at 20:00h each
 day. Please <important>check</important> the failed ones!</line>
 </description>
 <results>
 <entry>
 <test_name>Database connection test</test_name>
 <passed>true</passed>
 </entry>
 <entry>
 <test_name>XSLT Transformation test</test_name>
 <passed>true</passed>
 </entry>
 <entry>
 <test_name>DTD validation test</test_name>
 <passed>false</passed>
 </entry>
 </results>
</report>

The processing instruction xml-stylesheet associates the CSS stylesheet to the XML file. The href pseudo attribute
contains the URI reference to the stylesheet file. In our case the CSS is in the same directory as the XML file.

The next step is to place the XSD file and the CSS file on a web server and modify the template to use the HTTP URLs,
like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css"
 href="http://www.mysite.com/reports/test_report.css"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.mysite.com/reports/test_report.xsd">
 <title>Test report title</title>
 <description>
.......

The alternative is to create an archive containing the test_report.xml, test_report.css and
test_report.xsd and send it to the content authors.

Advanced Customization Tutorial - Document Type Associations

Oxygen Author is highly customizable. Practically you can associate an entire class of documents (grouped logically
by some common features like namespace, root element name or filename) to a bundle consisting of CSS stylesheets,
validation schemas, catalog files, new files templates, transformation scenarios and even custom actions. The bundle is
called document type and the association is called Document Type Association.

In this tutorial a Document Type Association will be created for a set of documents. As an example a light documentation
framework (similar to DocBook) will be created, then complete customization of the Author editor will be set up.

Note: The samples used in this tutorial can be found in the Example Files Listings.

Note: The complete source code can be found in the Simple Documentation Framework project, included in the
Oxygen Author SDK zip available for download on the Oxygen website.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

Oxygen XML Editor | Author Developer Guide | 295

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

Author Settings

You can add a new Document Type Association or edit the properties of an existing one from the Options > Preferences
> Document Type Association option pane. All the changes can be made into the Document type edit dialog.

Figure 179:The Document Type Dialog

You can specify the following properties for a document type:

• Name - The name of the document type.
• Description - The document type description displayed as a tooltip in the Document Type Association table.
• Storage - The location where the document type is saved. If you select the External storage, the document type is

saved in the specified file with a mandatory framework extension, located in a subfolder of the current frameworks
directory. If you select the Internal storage option, the document type data is saved in the current .xpr Oxygen
project file for Project-level Document Type Association Options or in the Oxygen internal options for Global-level
Document Type Association Options. You can change the Document Type Association Options level in the Document
Type Association panel.

• Initial page - Allows you to select the initial editing mode (Text, Author, Grid, Design - available only for the
W3C XML Schema editor) for this document type.

Note: The initial page for an document type can also be customized from the Pages preferences panel located in
Options > Preferences > Editor > Pages

296 | Oxygen XML Editor | Author Developer Guide

You can specify the association rules used for determining a document type for an opened XML document. A rule can
define one or more conditions. All conditions need to be fulfilled in order for a specific rule to be chosen. Conditions
can specify:

• Namespace - The namespace of the document that matches the document type.
• Root local name of document - The local name of the document that matches the document type.
• File name - The file name (including the extension) of the document that matches the document type.
• Public ID (for DTDs) - The PUBLIC identifier of the document that matches the document type.
• Java class - Name of Java class that is called for finding if the document type should be used for an XML document.

Java class must implement ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher
interface from Author API.

In the Schema tab, you can specify the type and URI of schema used for validation and content completion of all
documents from the document type, when there is no schema detected in the document.

You can choose one of the following schema types:

• DTD
• Relax NG schema (XML syntax)
• Relax NG schema (XML syntax) + Schematron
• Relax NG schema (compact syntax)
• XML Schema
• XML Schema + Schematron rules
• NVDL schema

Configuring Actions, Menus and Toolbars

The Oxygen Author toolbars and menus can be changed to provide a productive editing experience for the content
authors. You can create a set of actions that are specific to a document type.

In the example with the sdf framework, you created the stylesheet and the validation schema. Now let's add some
actions to insert a section and a table. To add a new action, follow the procedure:

1. Open the Options Dialog, and select the Document Types Association option pane.

2. In the lower part of the Document Type Association dialog, click on the Author tab, then select the Actions label.

3. To add a new action click on the Add button.

The Insert Section Action

This section shows all the steps needed to define the Insert Section action. We assume the icon files (Section16.png)

for the menu item and (Section20.png) for the toolbar, are already available. Although you could use the same
icon size for both menu and toolbar, usually the icons from the toolbars are larger than the ones found in the menus.
These files should be placed in the frameworks / sdf directory.

Oxygen XML Editor | Author Developer Guide | 297

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html

Figure 180:The Action Edit Dialog

1. Set the ID field to insert_section. This is an unique action identifier.

2. Set the Name field to Insert Section. This will be the action's name, displayed as a tooltip when the action is placed
in the toolbar, or as the menu item name.

3. Set the Menu access key to i. On Windows, the menu items can be accessed using (ALT + letter) combination, when
the menu is visible. The letter is visually represented by underlining the first letter from the menu item name having
the same value.

4. Set the Description field to Insert a section at caret position.

5. Set the Large icon (20x20) field to ${frameworks} / sdf / Section20.png. A good practice is to store the image files
inside the framework directory and use editor variable ${frameworks} to make the image relative to the framework
location.

If the images are bundled in a jar archive together with some Java operations implementation for instance, it might
be convenient for you to refer the images not by the file name, but by their relative path location in the class-path.

If the image file Section20.png is located in the images directory inside the jar archive, you can refer to it by
using /images/Section20.png. The jar file must be added into the Classpath list.

6. Set the Small icon (16x16) field to ${frameworks} / sdf / Section16.png.

7. Click the text field next to Shortcut key and set it to Ctrl+Shift+S. This will be the key combination to trigger the
action using the keyboard only.

298 | Oxygen XML Editor | Author Developer Guide

The shortcut is enabled only by adding the action to the main menu of the Author mode which contains all the actions
that the author will have in a menu for the current document type.

8. At this time the action has no functionality added to it. Next you must define how this action operates. An action
can have multiple operation modes, each of them activated by the evaluation of an XPath version 2.0 expression.
The scope of the XPath expression must be only element nodes and attribute nodes of the edited document, otherwise
the expression will not return a match and will not fire the action. For this example we'll suppose you want allow
the action to add a section only if the current element is either a book, article or another section.

a) Set the XPath expression field to:

local-name()='section' or local-name()='book' or
 local-name()='article'

b) Set the invoke operation field to InsertFragmentOperation built-in operation, designed to insert an XML
fragment at caret position. This belongs to a set of built-in operations, a complete list of which can be found in
the Author Default Operations section. This set can be expanded with your own Java operation implementations.

c) Configure the arguments section as follows:

<section xmlns=
"http://www.oxygenxml.com/sample/documentation">
 <title/>
</section>

insertLocation - leave it empty. This means the location will be at the caret position.

insertPosition - select "Inside".

The Insert Table Action

You will create an action that inserts into the document a table with three rows and three columns. The first row is the
table header. Similarly to the insert section action, you will use the InsertFragmentOperation.

Place the icon files for the menu item and for the toolbar in the frameworks / sdf directory.

1. Set ID field to insert_table.

2. Set Name field to Insert table.

3. Set Menu access key field to t.

4. Set Description field to Adds a section element.

5. Set Toolbar icon to ${frameworks} / sdf / toolbarIcon.png.

6. Set Menu icon to ${frameworks} / sdf / menuIcon.png.

7. Set Shortcut key to Ctrl+Shift+T.

8. Set up the action's functionality:

a) Set XPath expression field to true().

true() is equivalent with leaving this field empty.

b) Set Invoke operation to use InvokeFragmentOperation built-in operation that inserts an XML fragment to the
caret position.

c) Configure operation's arguments as follows:

fragment - set it to:

<table xmlns=
"http://www.oxygenxml.com/sample/documentation">
 <header><td/><td/><td/></header>
 <tr><td/><td/><td/></tr>
 <tr><td/><td/><td/></tr>
</table>

insertLocation - to add tables at the end of the section use the following code:

ancestor::section/*[last()]

Oxygen XML Editor | Author Developer Guide | 299

insertPosition - Select After.

Configuring the Toolbars

Now that you have defined the Insert Section action and the Insert Table action, you can add them to the toolbar. You
can configure additional toolbars on which to add your custom actions.

The first thing to check is that the toolbar Author custom actions 1 is displayed when switching to the Author mode:
right click in the upper part of application window, in the area that contains the toolbar buttons and check if Author
custom actions 1 in the displayed menu if it is unchecked.

1. Open the Document Type edit dialog for the SDF framework and select on the Author tab. Next click on the Toolbar
label.

Figure 181: Configuring the Toolbar

The panel is divided in two sections: the left side contains a list of actions, while the right one contains an action
tree, displaying the list of actions added in the toolbar. The special entry called Separator allows you to visually
separate the actions in the toolbar.

2. Select the Insert section action in the left panel section and the Toolbar label in the right panel section, then press
the Add as child button.

3. Select the Insert table action in the left panel section and the Insert section in the right panel section. Press the
Add as sibling button.

4. When opening a Simple Documentation Framework test document in Author mode, the toolbar below will be
displayed at the top of the editor.

Figure 182: Author Custom Actions Toolbar

Tip: If you have many custom toolbar actions or want to group actions according to their category you can add
additional toolbars with custom names and split the actions to better suit your purpose.

300 | Oxygen XML Editor | Author Developer Guide

Configuring the Main Menu

Defined actions can be grouped into customized menus in the Oxygen menu bar.

1. Open the Document Type dialog for the SDF framework and click on the Author tab.

2. Click on the Menu label. In the left side you have the list of actions and some special entries:

• Submenu - Creates a submenu. You can nest an unlimited number of menus.
• Separator - Creates a separator into a menu. This way you can logically separate the menu entries.

3. The right side of the panel displays the menu tree with Menu entry as root. To change its name click on this label
to select it, then press the Edit button. Enter SD Framework as name, and D as menu access key.

4. Select the Submenu label in the left panel section and the SD Framework label in the right panel section, then press
the Add as child button. Change the submenu name to Table, using the Edit button.

5. Select the Insert section action in the left panel section and the Table label in the right panel section, then press the
Add as sibling button.

6. Now select the Insert table action in the left panel section and the Table in the right panel section. Press the Add
as child button.

Figure 183: Configuring the Menu

When opening a Simple Documentation Framework test document in Author mode, the menu you created is displayed
in the editor menu bar, between the Debugger and the Document menus. The upper part of the menu contains generic
Author actions (common to all document types) and the two actions created previously (with Insert table under the
Table submenu).

Oxygen XML Editor | Author Developer Guide | 301

Figure 184: Author Menu

Configuring the Contextual Menu

The contextual menu is shown when you right click (ctrl + mouse click on Mac) in the Author editing area. In fact you
are configuring the bottom part of the menu, since the top part is reserved for a list of generic actions like Copy, Paste,
Undo, etc.

1. Open the Document Type dialog for the SDF framework and click on the Author tab. Next click on the Contextual
Menu label.

2. Follow the same steps as explained in the Configuring the Main Menu, except changing the menu name because the
contextual menu does not have a name.

Figure 185: Configuring the Contextual Menu

To test it, open the test file, and open the contextual menu. In the lower part there is shown the Table sub-menu and the
Insert section action.
Customize Content Completion

You can customize the content of the following Author controls, adding items (which, when invoked, perform custom
actions) or filtering the default contributed ones:

• Content Completion window;
• Elements view;
• Element Insert menus (from the Outline view or breadcrumb contextual menus).

302 | Oxygen XML Editor | Author Developer Guide

You can use the content completion customization support in the Simple Documentation Framework following the next
steps:

1. Open the Document type edit dialog for the SDF framework and select the Author tab. Next click on the Content
Completion tab.

Figure 186: Customize Content Completion

The top side of the Content Completion section contains the list with all the actions defined within the simple
documentation framework and the list of actions that you decided to include in the Content Completion items lists.
The bottom side contains the list with all the items that you decided to remove from the Content Completion items
lists.

2. If you want to add a custom action to the list of current Content Completion items, select the action item from the
Available actions list and press the Add as child or Add as sibling button to include it in the Current
actions list. The following dialog appears, giving you the possibility to select where to provide the selected action:

Figure 187: Insert action dialog

3. If you want to exclude a certain item from the Content Completion items list, you can use the Add button from
the Filter - Remove content completion items list. The following dialog is displayed, allowing you to input the
item name and to choose the controls that filter it.

Oxygen XML Editor | Author Developer Guide | 303

Figure 188: Remove item dialog

Author Default Operations

Below are listed all the operations and their arguments.

Inserts an XML fragment at the current cursor position. The selection - if there
is one, remains unchanged. The fragment will be inserted in the current context

InsertFragmentOperation

of the cursor position meaning that if the current XML document uses some
namespace declarations then the inserted fragment must use the same
declarations. The inserted fragment will not be copied and pasted to the cursor
position, but the namespace declarations of the fragment will be adapted if
needed to the existing namespace declarations of the XML document.

Similar to InsertFragmentOperation, except it removes the selected content
before inserting the fragment.

InsertOrReplaceFragmentOperation

Inserts a text at current position removing the selected content, if any.
InsertOrReplaceTextOperation

The text section to insert.
text

Surrounds the selected content with a text fragment. Since the fragment can
have multiple nodes, the surrounded content will be always placed in the first

SurroundWithFragmentOperation

leaf element. If there is no selection, the operation will simply insert the
fragment at the caret position.

This operation has two arguments (two text values) that will be inserted before
and after the selected content. If there is no selected content, the two sections
will be inserted at the caret position. The arguments of the operation are:

SurroundWithTextOperation

The text that will be placed before the selection.
header

The text that will be placed after the selection.
footer

The arguments of InsertFragmentOperation operation

The value for this argument is a text. This is parsed by Oxygen Author as it was already in the document
at the caret position. You can use entity references declared in the document and it is namespace aware.
The fragment may have multiple roots.

fragment

304 | Oxygen XML Editor | Author Developer Guide

Note:

You can even use namespace prefixes that are not declared in the inserted fragment, if they are
declared in the document where the insertion is done. For the sake of clarity, you should always
prefix and declare namespaces in the inserted fragment!

Note:

If the fragment contains namespace declarations that are identical to those found in the document,
the namespace declaration attributes will be removed from elements contained by the inserted
fragment.

There are two possible scenarios:

1. Prefixes that are not bound explicitly

For instance, the fragment:

<x:item id="dty2"/>
&ent;
<x:item id="dty3"/>

Can be correctly inserted in the document: ('|' marks the insertion point):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE x:root [
 <!ENTITY ent "entity">
]>

<x:root xmlns:x="nsp">
 |
</x:root>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE x:root [
 <!ENTITY ent "entity">
]>
<x:root xmlns:x="nsp">
 <x:item id="dty2"/>
 &ent;
 <x:item id="dty3"/>
</x:root>

2. Default namespaces

If there is a default namespace declared in the document and the document fragment does not declare
a namespace, the elements from the fragment are considered to be in no namespace.

For instance the fragment:

<item id="dty2"/>
<item id="dty3"/>

Inserted in the document:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">
|
</root>

Gives the result document:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">
 <item xmlns="" id="dty2"/>

Oxygen XML Editor | Author Developer Guide | 305

 <item xmlns="" id="dty3"/>
</root>

An XPath expression that is relative to the current node. It selects the reference node for the fragment
insertion.

insertLocation

One of the three constants: "Inside", "After", or "Before" , showing where the insertion is made relative
to the reference node selected by the insertLocation. "Inside" has the meaning of the first child of the
reference node.

insertPosition

The arguments of SurroundWithFragmentOperation

The Author operation SurroundWithFragmentOperation has only one argument:

• fragment -

The XML fragment that will surround the selection. For example let's consider the fragment:

<F>
 <A>

 <C></C>

</F>

and the document:

<doc>
 <X></X>
 <Y></Y>
 <Z></Z>
<doc>

Considering the selected content to be surrounded is the sequence of elements X and Y, then the result is:

<doc>
 <F>
 <A>
 <X></X>
 <Y></Y>

 <C></C>

 </F>
 <Z></Z>
<doc>

Because the element A was the first leaf in the fragment, it received the selected content. The fragment was then
inserted in the place of the selection.

How to Add a Custom Action to an Existing Document Type

This task explains how to add a custom Author operation to an existing document type.

1. Download the Author SDK toolkit:http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

2. Create a Java project with a custom implementation of ro.sync.ecss.extensions.api.AuthorOperation which performs
your custom operation and updates the Author page using our API like:
AuthorAccess.getDocumentController().insertXMLFragment.

3. Pack the operation class inside a Java jar library.

4. Copy the jar library to the OXYGEN_INSTALL_DIR/frameworks/framework_dir directory.

306 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

5. Go to Oxygen Preferences > Document Type Association page and set the user role to Developer (you need write
access to the OXYGEN_INSTALLATION_DIR). Edit the document type.

a) In the Classpath tab, add a new entry like: ${frameworks}/docbook/customAction.jar.
b) In the Author tab, add a new action which uses your custom operation.
c) Mount the action to the toolbars or menus.

6. Share the modifications with your colleagues. The files which should be shared are your customAction.jar
library and the .framework configuration file from the
OXYGEN_INSTALL_DIR/frameworks/framework_dir directory.

Java API - Extending Author Functionality through Java

Oxygen Author has a built-in set of operations covering the insertion of text and XML fragments (see the Author Default
Operations) and the execution of XPath expressions on the current document edited in Author mode. However, there
are situations in which you need to extend this set. For instance if you need to enter an element whose attributes should
be edited by the user through a graphical user interface. Or the users must send the selected element content or even the
whole document to a server, for some kind of processing or the content authors must extract pieces of information from
a server and insert it directly into the edited XML document. Or you need to apply an XPath expression on the current
Author document and process the nodes of the result nodeset.

The following sections contain the Java programming interface (API) available to the developers. You will need the
Oxygen Author SDK available on the Oxygen website which includes the source code of the Author operations in the
predefined document types and the full documentation in Javadoc format of the public API available for the developer
of Author custom actions.

The next Java examples are making use of AWT classes. If you are developing extensions for the Oxygen XML Editor
plugin for Eclipse you will have to use their SWT counterparts.

It is assumed you already read the Configuring Actions, Menus, Toolbar section and you are familiar with the Oxygen
Author customization. You can find the XML schema, CSS and XML sample in the Example Files Listings.

Attention:

Make sure the Java classes of your custom Author operations are compiled with the same Java version used by
OxygenXML Editor . Otherwise the classes may not be loaded by the Java virtual machine. For example if you run
OxygenXML Editor with a Java 1.5 virtual machine but the Java classes of your custom Author operations are
compiled with a Java 1.6 virtual machine then the custom operations cannot be loaded and used by the Java 1.5
virtual machine.

Example 1. Step by Step Example. Simple Use of a Dialog from an Author Operation.

Let's start adding functionality for inserting images in the Simple Documentation Framework (shortly SDF). The
images are represented by the image element. The location of the image file is represented by the value of the href
attribute. In the Java implementation you will show a dialog with a text field, in which the user can enter a full URL, or
he can browse for a local file.

1. Create a new Java project, in your IDE of choice. Create the lib folder in the project folder. Copy the oxygen.jar
file from the {oXygen_installation_directory}/lib folder into the newly created lib folder.
oxygen.jar contains the Java interfaces you have to implement and the API needed to access the Author features.

2. Create the simple.documentation.framework.InsertImageOperation class that implements the
ro.sync.ecss.extensions.api.AuthorOperation interface. This interface defines three methods:
doOperation, getArguments and getDescription

A short description of these methods follows:

• The doOperation method is invoked when the action is performed either by pressing the toolbar button, by
selecting the menu item or by pressing the shortcut key. The arguments taken by this methods can be one of the
following combinations:

Oxygen XML Editor | Author Developer Guide | 307

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

an object of type AuthorAccess and a map•
• argument names and values

• The getArguments method is used by Oxygen when the action is configured. It returns the list of arguments
(name and type) that are accepted by the operation.

• The getDescription method is used by Oxygen when the operation is configured. It returns a description
of the operation.

Here is the implementation of these three methods:

/**
 * Performs the operation.
 */
public void doOperation(
 AuthorAccess authorAccess,
 ArgumentsMap arguments)
 throws IllegalArgumentException,
 AuthorOperationException {

 JFrame oxygenFrame = (JFrame) authorAccess.getParentFrame();
 String href = displayURLDialog(oxygenFrame);
 if (href.length() != 0) {
 // Creates the image XML fragment.
 String imageFragment =
 "<image xmlns='http://www.oxygenxml.com/sample/documentation' href='"

 + href + "'/>";

 // Inserts this fragment at the caret position.
 int caretPosition = authorAccess.getCaretOffset();
 authorAccess.insertXMLFragment(imageFragment, caretPosition);
 }
}

/**
 * Has no arguments.
 *
 * @return null.
 */
public ArgumentDescriptor[] getArguments() {
 return null;
}

/**
 * @return A description of the operation.
 */
public String getDescription() {
 return "Inserts an image element. Asks the user for a URL reference.";
}

Note: The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the Oxygen website.

Important:

Make sure you always specify the namespace of the inserted fragments.

<image xmlns='http://www.oxygenxml.com/sample/documentation'
 href='path/to/image.png'/>

308 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

3. Package the compiled class into a jar file. An example of an ANT script that packages the classes folder content
into a jar archive named sdf.jar is listed below:

<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="dist">
 <target name="dist">
 <jar destfile="sdf.jar" basedir="classes">
 <fileset dir="classes">
 <include name="**/*"/>
 </fileset>
 </jar>
 </target>
</project>

4. Copy the sdf.jar file into the frameworks / sdf folder.

5. Add the sdf.jar to the Author class path. To do this, open the Options > Preferences > Document Type
Association dialog, select SDF and press the Edit button.

6. Select the Classpath tab in the lower part of the dialog and press the Add button . In the displayed dialog enter
the location of the jar file, relative to the Oxygen frameworks folder.

7. Let's create now the action which will use the defined operation. Click on the Actions label. Copy the icon files for
the menu item and for the toolbar in the frameworks / sdf folder.

8. Define the action's properties:

• Set ID to insert_image.
• Set Name to Insert image.
• Set Menu access key to letter i.
• Set Toolbar action to ${frameworks}/sdf/toolbarImage.png.
• Set Menu icon to ${frameworks}/sdf/menuImage.png.
• Set Shortcut key to Ctrl+Shift+i.

9. Now let's set up the operation. You want to add images only if the current element is a section, book or article.

• Set the value of XPath expression to

local-name()='section' or local-name()='book'
 or local-name()='article'

• Set the Invoke operation field to simple.documentation.framework.InsertImageOperation.

Oxygen XML Editor | Author Developer Guide | 309

Figure 189: Selecting the Operation

10. Add the action to the toolbar, using the Toolbar panel.

To test the action, you can open the sdf_sample.xml sample, then place the caret inside a section between two
para elements for instance. Press the button associated with the action from the toolbar. In the dialog select an image
URL and press OK. The image is inserted into the document.

Example 2. Operations with Arguments. Report from Database Operation.

In this example you will create an operation that connects to a relational database and executes an SQL statement. The
result should be inserted in the edited XML document as a table. To make the operation fully configurable, it will
have arguments for the database connection string, the user name, the password and the SQL expression.

1. Create a new Java project in your preferred IDE. Create the lib folder in the Java project directory and copy the
oxygen.jar file from the {oXygen_installation_directory}/lib directory.

2. Create the class simple.documentation.framework.QueryDatabaseOperation. This class must
implements the ro.sync.ecss.extensions.api.AuthorOperation interface.

import ro.sync.ecss.extensions.api.ArgumentDescriptor;
import ro.sync.ecss.extensions.api.ArgumentsMap;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperation;
import ro.sync.ecss.extensions.api.AuthorOperationException;

public class QueryDatabaseOperation implements AuthorOperation{

3. Now define the operation's arguments. For each of them you will use a String constant representing the argument
name:

private static final String ARG_JDBC_DRIVER ="jdbc_driver";
private static final String ARG_USER ="user";
private static final String ARG_PASSWORD ="password";

310 | Oxygen XML Editor | Author Developer Guide

private static final String ARG_SQL ="sql";
private static final String ARG_CONNECTION ="connection";

4. You must describe each of the argument name and type. To do this implement the getArguments method which
will return an array of argument descriptors:

public ArgumentDescriptor[] getArguments() {
 ArgumentDescriptor args[] = new ArgumentDescriptor[] {
 new ArgumentDescriptor(
 ARG_JDBC_DRIVER,
 ArgumentDescriptor.TYPE_STRING,
 "The name of the Java class that is the JDBC driver."),
 new ArgumentDescriptor(
 ARG_CONNECTION,
 ArgumentDescriptor.TYPE_STRING,
 "The database URL connection string."),
 new ArgumentDescriptor(
 ARG_USER,
 ArgumentDescriptor.TYPE_STRING,
 "The name of the database user."),
 new ArgumentDescriptor(
 ARG_PASSWORD,
 ArgumentDescriptor.TYPE_STRING,
 "The database password."),
 new ArgumentDescriptor(
 ARG_SQL,
 ArgumentDescriptor.TYPE_STRING,
 "The SQL statement to be executed.")
 };
 return args;
 }

These names, types and descriptions will be listed in the Arguments table when the operation is configured.

5. When the operation is invoked, the implementation of the doOperation method extracts the arguments, forwards
them to the method that connects to the database and generates the XML fragment. The XML fragment is then
inserted at the caret position.

public void doOperation(AuthorAccess authorAccess, ArgumentsMap map)
 throws IllegalArgumentException, AuthorOperationException {

 // Collects the arguments.
 String jdbcDriver =
 (String)map.getArgumentValue(ARG_JDBC_DRIVER);
 String connection =
 (String)map.getArgumentValue(ARG_CONNECTION);
 String user =
 (String)map.getArgumentValue(ARG_USER);
 String password =
 (String)map.getArgumentValue(ARG_PASSWORD);
 String sql =
 (String)map.getArgumentValue(ARG_SQL);

 int caretPosition = authorAccess.getCaretOffset();
 try {
 authorAccess.insertXMLFragment(
 getFragment(jdbcDriver, connection, user, password, sql),
 caretPosition);
 } catch (SQLException e) {
 throw new AuthorOperationException(
 "The operation failed due to the following database error: "
 + e.getMessage(), e);
 } catch (ClassNotFoundException e) {
 throw new AuthorOperationException(
 "The JDBC database driver was not found. Tried to load ' "

Oxygen XML Editor | Author Developer Guide | 311

 + jdbcDriver + "'", e);
 }
 }

6. The getFragment method loads the JDBC driver, connects to the database and extracts the data. The result is a
table element from the http://www.oxygenxml.com/sample/documentation namespace. The
header element contains the names of the SQL columns. All the text from the XML fragment is escaped. This
means that the '<' and '&' characters are replaced with the '<' and '&' character entities to ensure the fragment
is well-formed.

private String getFragment(
 String jdbcDriver,
 String connectionURL,
 String user,
 String password,
 String sql) throws
 SQLException,
 ClassNotFoundException {

 Properties pr = new Properties();
 pr.put("characterEncoding", "UTF8");
 pr.put("useUnicode", "TRUE");
 pr.put("user", user);
 pr.put("password", password);

 // Loads the database driver.
 Class.forName(jdbcDriver);
 // Opens the connection
 Connection connection =
 DriverManager.getConnection(connectionURL, pr);
 java.sql.Statement statement =
 connection.createStatement();
 ResultSet resultSet =
 statement.executeQuery(sql);

 StringBuffer fragmentBuffer = new StringBuffer();
 fragmentBuffer.append(
 "<table xmlns=" +
 "'http://www.oxygenxml.com/sample/documentation'>");

 //
 // Creates the table header.
 //
 fragmentBuffer.append("<header>");
 ResultSetMetaData metaData = resultSet.getMetaData();
 int columnCount = metaData.getColumnCount();
 for (int i = 1; i <= columnCount; i++) {
 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(metaData.getColumnName(i)));
 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</header>");

 //
 // Creates the table content.
 //
 while (resultSet.next()) {
 fragmentBuffer.append("<tr>");
 for (int i = 1; i <= columnCount; i++) {
 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(resultSet.getObject(i)));

312 | Oxygen XML Editor | Author Developer Guide

 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</tr>");
 }

 fragmentBuffer.append("</table>");

 // Cleanup
 resultSet.close();
 statement.close();
 connection.close();
 return fragmentBuffer.toString();
}

Note: The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the Oxygen website.

7. Package the compiled class into a jar file.

8. Copy the jar file and the JDBC driver files into the frameworks / sdf directory.

9. Add the jars to the Author class path. For this, Open the options Document Type Dialog, select SDF and press the
Edit button. Select the Classpath tab in the lower part of the dialog.

10. Click on the Actions label. The action properties are:

• Set ID to clients_report.
• Set Name to Clients Report.
• Set Menu access key to letter r.
• Set Description to Connects to the database and collects the list of clients.
• Set Toolbar icon to ${frameworks}/sdf/TableDB20.png (image TableDB20.png is already stored in the

frameworks / sdf folder).
• Leave empty the Menu icon.
• Set shortcut key to Ctrl+Shift+C.

11. The action will work only if the current element is a section. Set up the operation as follows:

• Set XPath expression to:

local-name()='section'

• Use the Java operation defined earlier to set the Invoke operation field. Press the Choose button, then select
simple.documentation.framework.QueryDatabaseOperation. Once selected, the list of arguments
is displayed. In the figure below the first argument, jdbc_driver, represents the class name of the MySQL JDBC
driver. The connection string has the URL syntax : jdbc://<database_host>:<database_port>/<database_name>.

The SQL expression used in the example follows, but it can be any valid SELECT expression which can be
applied to the database:

SELECT userID, email FROM users

12. Add the action to the toolbar, using the Toolbar panel.

Oxygen XML Editor | Author Developer Guide | 313

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

Figure 190: Java Operation Arguments Setup

To test the action you can open the sdf_sample.xml sample place the caret inside a section between two para

elements for instance. Press the Create Report button from the toolbar. You can see below the toolbar with the
action button and sample table inserted by the Clients Report action.

Figure 191:Table Content Extracted from the Database

Configuring New File Templates

You will create a set of document templates that the content authors will use as starting points for creating new Simple
Document Framework books and articles.

314 | Oxygen XML Editor | Author Developer Guide

Each of the Document Type Associations can point to a directory usually named templates containing the file
templates. All files found here are considered templates for the respective document type. The template name is taken
from the file name, and the template type is detected from the file extension.

1. Create the templates directory into the frameworks / sdf directory. The directory tree for the documentation
framework is now:

oxygen
 frameworks
 sdf
 schema
 css
 templates

2. Now let's create in this templates directory two files, one for the book template and another for the article template.

The Book.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
 <title>Book Template Title</title>
 <section>
 <title>Section Title</title>
 <abs:def/>
 <para>This content is copyrighted:</para>
 <table>
 <header>
 <td>Company</td>
 <td>Date</td>
 </header>
 <tr>
 <td/>
 <td/>
 </tr>
 </table>
 </section>
 </book>

The Article.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<article
 xmlns="http://www.oxygenxml.com/sample/documentation"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <title></title>
 <section>
 <title></title>
 <para></para>
 <para></para>
 </section>
</article>

You can also use editor variables in the template files' content and they will be expanded when the files are opened.

3. Open the Document Type dialog for the SDF framework and click on the Templates tab. Enter in the Templates
directory text field the value ${frameworksDir} / sdf / templates. As you already seen before, it is
recommended that all the file references made from a Document Type Association to be relative to the
${frameworksDir} directory. Binding a Document Type Association to an absolute file (e. g.:
"C:\some_dir\templates") makes the association difficult to share between users.

4. To test the templates settings, press the File/New menu item to display the New dialog. The names of the two
templates are prefixed with the name of the Document Type Association, in our case SDF. Selecting one of them
should create a new XML file with the content specified in the template file.

Oxygen XML Editor | Author Developer Guide | 315

Configuring XML Catalogs

In the XML sample file for SDF you did not use a xsi:schemaLocation attribute, but instead you let the editor use the
schema from the association. However there are cases in which you must refer for instance the location of a schema file
from a remote web location and an Internet connection may not be available. In such cases an XML catalog may be
used to map the web location to a local file system entry. The following procedure presents an example of using an
XML catalogs, by modifying our sdf.xsd XML Schema file from the Example Files Listings.

1. Create a catalog file that will help the parser locate the schema for validating the XML document. The file must map
the location of the schema to a local version of the schema.

Create a new XML file called catalog.xml and save it into the {oXygen_installation_directory}
/ frameworks / sdf directory. The content of the file should be:

<?xml version="1.0"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <system systemId="http://www.oxygenxml.com/SDF/abs.xsd"
 uri="schema/abs.xsd"/>
 <uri name="http://www.oxygenxml.com/SDF/abs.xsd"
 uri="schema/abs.xsd"/>
</catalog>

2. Add catalog files to your Document Type Association using the Catalogs tab from the Document Type dialog.

To test the catalog settings, restart Oxygen and try to validate a new sample Simple Documentation Framework
document. There should be no errors.

The sdf.xsd schema that validates the document refers the other file abs.xsd through an import
element:

<xs:import namespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts"
 schemaLocation="http://www.oxygenxml.com/SDF/abs.xsd"/>

The schemaLocation attribute references the abs.xsd file:

xsi:schemaLocation="http://www.oxygenxml.com/sample/documentation/abstracts

http://www.oxygenxml.com/SDF/abs.xsd"/>

The catalog mapping is:

http://www.oxygenxml.com/SDF/abs.xsd -> schema/abs.xsd

This means that all the references to http://www.oxygenxml.com/SDF/abs.xsd must be resolved to
the abs.xsd file located in the schema directory. The URI element is used by URI resolvers,
for example for resolving a URI reference used in an XSLT stylesheet.

Configuring Transformation Scenarios

When distributing a framework to the users, it is a good idea to have the transformation scenarios already configured.
This would help the content authors publish their work in different formats. Being contained in the Document Type
Association the scenarios can be distributed along with the actions, menus, toolbars, catalogs, etc.

These are the steps that allow you to create a transformation scenario for your framework.

1. Create a xsl folder inside the frameworks / sdf folder.

The folder structure for the documentation framework should be:

oxygen
 frameworks
 sdf

316 | Oxygen XML Editor | Author Developer Guide

 schema
 css
 templates
 xsl

2. Create the sdf.xsl file in the xsl folder. The complete content of the sdf.xsl file is found in the Example
Files Listings.

3. Open the Options/Preferences/Document Type Associations. Open the Document Type dialog for the SDF
framework then choose the Transformation tab. Click the New button.

In the Edit Scenario dialog, fill the following fields:

• Fill in the Name field with SDF to HTML. This will be the name of your transformation scenario.
• Set the XSL URL field to ${frameworks}/sdf/xsl/sdf.xsl.
• Set the Transformer to Saxon 9B.

Figure 192: Configuring a transformation scenario

4. Change to the Output tab. Configure the fields as follows:

• Set the Save as field to ${cfd}/${cfn}.html. This means the transformation output file will have the name
of the XML file and the html extension and will be stored in the same folder.

• Enable the Open in browser option.
• Enable the Saved file option.

Now the scenario is listed in the Transformation tab:

Oxygen XML Editor | Author Developer Guide | 317

Figure 193:The transformation tab

To test the transformation scenario you just created, open the SDF XML sample from the Example Files Listings. Click

on the Apply Transformation Scenario button to display the Configure Transformation Dialog. Its scenario
list contains the scenario you defined earlier SDF to HTML. Click it then choose Transform now. The HTML file
should be saved in the same folder as the XML file and displayed in the browser.

Figure 194: Selecting the predefined scenario

Configuring Validation Scenarios

You can distribute a framework with a series of already configured validation scenarios. Also, this provides enhanced
validation support allowing you to use multiple grammars to check the document. For example, you can use Schematron
rules to impose guidelines, otherwise impossible to enforce using conventional validation.

To associate a validation scenario with a specific framework, follow these steps:

1. Open the Options/Preferences/Document Type Associations. Open the Document Type dialog for the SDF
framework, then choose the Validation tab. This tab holds a list of document types for which you can define validation
scenarios. To set one of the validation scenarios as default for a specific document type, select it and press /
Toggle default.

2. Press the New button to add a new scenario.

3. Press the Add button to add a new validation unit with default settings.
The dialog that lists all validation units of the scenario is opened.

318 | Oxygen XML Editor | Author Developer Guide

Figure 195: Add / Edit a Validation Unit

The table holds the following information:

• URL of the file to validate - The URL of the main module which includes the current module. It is also the entry
module of the validation process when the current one is validated.

• File type - The type of the document validated in the current validation unit. Oxygen automatically selects the
file type depending on the value of the URL of the file to validate field.

• Validation engine - One of the engines available in Oxygen for validation of the type of document to which the
current module belongs. Default engine is the default setting and means that the validation is done by the default
engine set in Preferences pages for the type of the current document (XML document, XML Schema, XSLT
stylesheet, XQuery file, etc) instead of a validation scenario.

• Automatic validation - If this option is checked, then the validation operation defined by this row of the table
is applied also by the automatic validation feature. If the Automatic validation feature is disabled in Preferences
then this option does not take effect as the Preference setting has higher priority.

• Schema - Active when you set the File type to XML Document.
• Settings - Contains an action that allows you to set a schema, when validating XML documents, or a list of

extensions when validating XSL or XQuery documents.

4. Edit the URL of the main validation module.

Specify the URL of the main module:

• browsing for a local, remote or archived file;
• using an editor variable or a custom editor variable, available in the following pop-up menu, opened after pressing

the button:

Figure 196: Insert an Editor Variable

Oxygen XML Editor | Author Developer Guide | 319

5. Select the type of the validated document.

Note that it determines the list of possible validation engines.

6. Select the validation engine.

7. Select the Automatic validation option if you want to validate the current unit when automatic validation feature
is turned on.

8. Choose what schema is used during validation: the one detected after parsing the document or a custom one.

Configuring Extensions

You can add extensions to your Document Type Association using the Extensions tab from the Document Type dialog.

Figure 197: Configure extensions for a document type

Configuring an Extensions Bundle

Starting with Oxygen 10.3 version a single bundle was introduced acting as a provider for all other extensions. The
individual extensions can still be set and if present they take precedence over the single provider, but this practice is
being discouraged and the single provider should be used instead.

The extensions bundle is represented by the ro.sync.ecss.extensions.api.ExtensionsBundle class.
The provided implementation of the ExtensionsBundle is instantiated when the rules of the Document Type
Association defined for the custom framework match a document opened in the editor. Therefor references to objects
which need to be persistent throughout the application running session must not be kept in the bundle because the next
detection event can result in creating another ExtensionsBundle instance.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

1. Create a new Java project, in your IDE. Create the lib folder in the Java project folder and copy in it the
oxygen.jar file from the {oXygen_installation_directory}/lib folder.

2. Create the class simple.documentation.framework.SDFExtensionsBundle which must extend the
abstract class ro.sync.ecss.extensions.api.ExtensionsBundle.

public class SDFExtensionsBundle extends ExtensionsBundle {

320 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

3. A Document Type ID and a short description should be defined first by implementing the methods
getDocumentTypeID and getDescription. The Document Type ID is used to uniquely identify the current
framework. Such an ID must be provided especially if options related to the framework need to be persistently stored
and retrieved between sessions.

 public String getDocumentTypeID() {
 return "Simple.Document.Framework.document.type";
 }

 public String getDescription() {
 return "A custom extensions bundle used for the Simple Document" +
 "Framework document type";
 }

4. In order to be notified about the activation of the custom Author extension in relation with an opened document an
ro.sync.ecss.extensions.api.AuthorExtensionStateListener should be implemented. The
activation and deactivation events received by this listener should be used to perform custom initializations and to
register / remove listeners like ro.sync.ecss.extensions.api.AuthorListener,
ro.sync.ecss.extensions.api.AuthorMouseListener or
ro.sync.ecss.extensions.api.AuthorCaretListener. The custom author extension state listener
should be provided by implementing the method createAuthorExtensionStateListener.

 public AuthorExtensionStateListener createAuthorExtensionStateListener() {
 return new SDFAuthorExtensionStateListener();
 }

The AuthorExtensionStateListener is instantiated and notified about the activation of the framework
when the rules of the Document Type Association match a document opened in the Author editor page. The listener
is notified about the deactivation when another framework is activated for the same document, the user switches to
another page or the editor is closed. A complete description and implementation of an
ro.sync.ecss.extensions.api.AuthorExtensionStateListener can be found in the Implementing
an Author Extension State Listener.

If Schema Aware mode is active in Oxygen, all actions that can generate invalid content will be redirected toward
the AuthorSchemaAwareEditingHandler. The handler can either resolve a specific case, let the default
implementation take place or reject the edit entirely by throwing an InvalidEditException. The actions that
are forwarded to this handler include typing, delete or paste.

See the Implementing an Author Schema Aware Editing Handler section for more details about this handler.

5. Customizations of the content completion proposals are permitted by creating a schema manager filter extension.
The interface that declares the methods used for content completion proposals filtering is
ro.sync.contentcompletion.xml.SchemaManagerFilter. The filter can be applied on elements,
attributes or on their values. Responsible for creating the content completion filter is the method
createSchemaManagerFilter. A new SchemaManagerFilter will be created each time a document
matches the rules defined by the Document Type Association which contains the filter declaration.

 public SchemaManagerFilter createSchemaManagerFilter() {
 return new SDFSchemaManagerFilter();
 }

A detailed presentation of the schema manager filter can be found in Configuring a Content completion handler
section.

6. The Oxygen Author supports link based navigation between documents and document sections. Therefore, if the
document contains elements defined as links to other elements, for example links based on the id attributes, the
extension should provide the means to find the referred content. To do this an implementation of the
ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface should be returned by

Oxygen XML Editor | Author Developer Guide | 321

the createElementLocatorProvider method. Each time an element pointed by a link needs to be located
the method is invoked.

 public ElementLocatorProvider createElementLocatorProvider() {
 return new DefaultElementLocatorProvider();
 }

The section that explains how to implement an element locator provider is Configuring a Link target element finder.

7. The drag and drop functionality can be extended by implementing the
ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener interface. Relevant methods
from the listener are invoked when the mouse is dragged, moved over, or exits the author editor page, when the drop
action changes, and when the drop occurs. Each method receives the DropTargetEvent containing information
about the drag and drop operation. The drag and drop extensions are available on Author page for both Oxygen
Eclipse plugin and standalone application. The Text page corresponding listener is available only for Oxygen Eclipse
plugin. The methods corresponding to each implementation are: createAuthorAWTDndListener,
createTextSWTDndListener and createAuthorSWTDndListener.

 public AuthorDnDListener createAuthorAWTDndListener() {
 return new SDFAuthorDndListener();
 }

For more details about the Author drag and drop listeners see the Configuring a custom Drag and Drop listener
section.

8. Another extension which can be included in the bundle is the reference resolver. In our case the references are
represented by the ref element and the attribute indicating the referred resource is location. To be able to obtain the
content of the referred resources you will have to implement a Java extension class which implements the
ro.sync.ecss.extensions.api.AuthorReferenceResolver. The method responsible for creating
the custom references resolver is createAuthorReferenceResolver. The method is called each time a
document opened in an Author editor page matches the Document Type Association where the extensions bundle
is defined. The instantiated references resolver object is kept and used until another extensions bundle corresponding
to another Document Type is activated as result of the detection process.

 public AuthorReferenceResolver createAuthorReferenceResolver() {
 return new ReferencesResolver();
 }

A more detailed description of the references resolver can be found in the Configuring a References Resolver section.

9. To be able to dynamically customize the default CSS styles for a certain AuthorNode an implementation of the
ro.sync.ecss.extensions.api.StylesFilter can be provided. The extensions bundle method responsible
for creating the StylesFilter is createAuthorStylesFilter. The method is called each time a document
opened in an Author editor page matches the document type association where the extensions bundle is defined. The
instantiated filter object is kept and used until another extensions bundle corresponding to another Document Type
is activated as a result of the detection process.

 public StylesFilter createAuthorStylesFilter() {
 return new SDFStylesFilter();
 }

See the Configuring CSS styles filter section for more details about the styles filter extension.

10. In order to edit data in custom tabular format implementations of the
ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider and the
ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interfaces should be provided.
The two methods from the ExtensionsBundle specifying these two extension points are
createAuthorTableCellSpanProvider and createAuthorTableColumnWidthProvider.

 public AuthorTableCellSpanProvider createAuthorTableCellSpanProvider() {
 return new TableCellSpanProvider();
 }

 public AuthorTableColumnWidthProvider

322 | Oxygen XML Editor | Author Developer Guide

 createAuthorTableColumnWidthProvider() {
 return new TableColumnWidthProvider();
 }

The two table information providers are not reused for different tables. The methods are called for each table in the
document so new instances should be provided every time. Read more about the cell span and column width
information providers in Configuring a Table Cell Span Provider and Configuring a Table Column Width Provider
sections.

If the functionality related to one of the previous extension point does not need to be modified then the developed
ExtensionsBundle should not override the corresponding method and leave the default base implementation
to return null.

11. Package the compiled class into a jar file.

12. Copy the jar file into the frameworks / sdf directory.

13. Add the jar file to the Author class path.

14. Register the Java class by clicking on the Extensions tab. Press the Choose button and select from the displayed
dialog the name of the class: SDFExtensionsBundle.

Note: The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the Oxygen website.

Preserve Style Markup on Copy and Paste from External Applications

Styled content can be inserted in the Author editor by copying or dragging it from:

• Office-type applications (Microsoft Word and Microsoft Excel, OpenOffice.org Writer and OpenOffice.org
Calc);

• Web browsers (like Mozilla Firefox or Microsoft Internet Explorer);
• the Data Source Explorer view (where resources are available from WebDAV or CMS servers).

The styles and general layout of the copied content like: sections with headings, tables, list items, bold and italic text,
hyperlinks, etc. are preserved by the paste operation by transforming them to the equivalent XML markup of the target
document type. This is available by default in the following predefined document types: DITA, DocBook 4, DocBook
5, TEI 4, TEI 5, XHTML.

For other document types the default behavior of the paste operation is to keep only the text content without the styling
markup but it can be customized by setting an XSLT stylesheet in that document type. The XSLT stylesheet should
accept as input an XHTML flavor of the copied content and transform it to the equivalent XML markup that is appropriate
for the target document type of the paste operation. The stylesheet is set up by implementing the
getImporterStylesheetFileName method of an instance object of the
AuthorExternalObjectInsertionHandler class which is returned by the
createExternalObjectInsertionHandler method of the ExtensionsBundle instance of the target
document type.

Implementing an Author Extension State Listener

The ro.sync.ecss.extensions.api.AuthorExtensionStateListener implementation is notified
when the Author extension where the listener is defined is activated or deactivated in the Document Type detection
process.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorExtensionStateListener;

public class SDFAuthorExtensionStateListener implements
 AuthorExtensionStateListener {

Oxygen XML Editor | Author Developer Guide | 323

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

 private AuthorListener sdfAuthorDocumentListener;
 private AuthorMouseListener sdfMouseListener;
 private AuthorCaretListener sdfCaretListener;
 private OptionListener sdfOptionListener;

The activation event received by this listener when the rules of the Document Type Association match a document
opened in the Author editor page, should be used to perform custom initializations and to register listeners like
ro.sync.ecss.extensions.api.AuthorListener,
ro.sync.ecss.extensions.api.AuthorMouseListener or
ro.sync.ecss.extensions.api.AuthorCaretListener.

 public void activated(AuthorAccess authorAccess) {
 // Get the value of the option.
 String option = authorAccess.getOptionsStorage().getOption(
 "sdf.custom.option.key", "");
 // Use the option for some initializations...

 // Add an option listener.
 authorAccess.getOptionsStorage().addOptionListener(sdfOptionListener);

 // Add author document listeners.
 sdfAuthorDocumentListener = new SDFAuthorListener();
 authorAccess.getDocumentController().addAuthorListener(
 sdfAuthorDocumentListener);

 // Add mouse listener.
 sdfMouseListener = new SDFAuthorMouseListener();
 authorAccess.getEditorAccess().addAuthorMouseListener(sdfMouseListener);

 // Add caret listener.
 sdfCaretListener = new SDFAuthorCaretListener();
 authorAccess.getEditorAccess().addAuthorCaretListener(sdfCaretListener);

 // Other custom initializations...

 }

The authorAccess parameter received by the activated method can be used to gain access to Author specific actions
and informations related to components like the editor, document, workspace, tables, or the change tracking manager.

If options specific to the custom developed Author extension need to be stored or retrieved, a reference to the
OptionsStorage can be obtained by calling the getOptionsStorage method from the author access. The same
object can be used to register OptionListener listeners. An option listener is registered in relation with an option
key and will be notified about the value changes of that option.

An AuthorListener can be used if events related to the Author document modifications are of interest. The listener
can be added to the AuthorDocumentController. A reference to the document controller is returned by the
getDocumentController method from the author access. The document controller can also be used to perform
operations involving document modifications.

To provide access to Author editor component related functionality and information, the author access has a reference
to the AuthorEditorAccess that can be obtained when calling the getEditorAccess method. At this level
AuthorMouseListener and AuthorCaretListener can be added which will be notified about mouse and
caret events occurring in the Author editor page.

The deactivation event is received when another framework is activated for the same document, the user switches to
another editor page or the editor is closed. The deactivate method is typically used to unregister the listeners
previously added on the activate method and to perform other actions. For example, options related to the deactivated
author extension can be saved at this point.

 public void deactivated(AuthorAccess authorAccess) {
 // Store the option.
 authorAccess.getOptionsStorage().setOption(
 "sdf.custom.option.key", optionValue);

324 | Oxygen XML Editor | Author Developer Guide

 // Remove the option listener.
 authorAccess.getOptionsStorage().removeOptionListener(sdfOptionListener);

 // Remove document listeners.
 authorAccess.getDocumentController().removeAuthorListener(
 sdfAuthorDocumentListener);

 // Remove mouse listener.
 authorAccess.getEditorAccess().removeAuthorMouseListener(sdfMouseListener);

 // Remove caret listener.
 authorAccess.getEditorAccess().removeAuthorCaretListener(sdfCaretListener);

 // Other actions...

 }

Implementing an Author Schema Aware Editing Handler

You can implement your own handler for actions like typing, delete or paste by providing an implementation of
ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler. The Schema Aware Editing
must be On or Custom in order for this handler to be called. The handler can either resolve a specific case, let the default
implementation take place or reject the edit entirely by throwing an InvalidEditException.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

package simple.documentation.framework.extensions;

/**
 * Specific editing support for SDF documents.
 * Handles typing and paste events inside section and tables.
 */
public class SDFSchemaAwareEditingHandler implements
AuthorSchemaAwareEditingHandler {

Typing events can be handled using the handleTyping method. For example, the
SDFSchemaAwareEditingHandler checks if the schema is not a learned one, was loaded successfully and Smart
Paste is active. If these conditions are met, the event will be handled.

/**
 * @see
ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleTyping(int,
char, ro.sync.ecss.extensions.api.AuthorAccess)
 */
public boolean handleTyping(int offset, char ch, AuthorAccess authorAccess)
throws InvalidEditException {
 boolean handleTyping = false;
 AuthorSchemaManager authorSchemaManager =
authorAccess.getDocumentController().getAuthorSchemaManager();
 if (!authorSchemaManager.isLearnSchema() &&
 !authorSchemaManager.hasLoadingErrors() &&
 authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartTyping())
{
 try {
 AuthorDocumentFragment characterFragment =

authorAccess.getDocumentController().createNewDocumentTextFragment(String.valueOf(ch));

 handleTyping = handleInsertionEvent(offset, new AuthorDocumentFragment[]
{characterFragment}, authorAccess);
 } catch (AuthorOperationException e) {

Oxygen XML Editor | Author Developer Guide | 325

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

 throw new InvalidEditException(e.getMessage(), "Invalid typing event: " +
 e.getMessage(), e, false);
 }
 }
 return handleTyping;
}

Implementing the AuthorSchemaAwareEditingHandler gives the possibility to handle other events like: the
keyboard delete event at the given offset (using Delete or Backspace keys), delete element tags, delete selection, join
elements or paste fragment.

Note: The complete source code can be found in the Simple Documentation Framework project, included in the
Oxygen Author SDK zip available for download on the Oxygen website.

Configuring a Content Completion Handler

You can filter or contribute to items offered for content completion by implementing the
ro.sync.contentcompletion.xml.SchemaManagerFilter interface.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

import java.util.List;

import ro.sync.contentcompletion.xml.CIAttribute;
import ro.sync.contentcompletion.xml.CIElement;
import ro.sync.contentcompletion.xml.CIValue;
import ro.sync.contentcompletion.xml.Context;
import ro.sync.contentcompletion.xml.SchemaManagerFilter;
import ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatPossibleValuesHasAttributeContext;

public class SDFSchemaManagerFilter implements SchemaManagerFilter {

You can implement the various callbacks of the interface either by returning the default values given by Oxygen or by
contributing to the list of proposals. The filter can be applied on elements, attributes or on their values. Attributes filtering
can be implemented using the filterAttributes method and changing the default content completion list of
ro.sync.contentcompletion.xml.CIAttribute for the element provided by the current
ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext context. For example, the
SDFSchemaManagerFilter checks if the element from the current context is the table element and adds the
frame attribute to the table list of attributes.

/**
 * Filter attributes of the "table" element.
 */
public List<CIAttribute> filterAttributes(List<CIAttribute> attributes,
 WhatAttributesCanGoHereContext context) {
 // If the element from the current context is the 'table' element add the
 // attribute named 'frame' to the list of default content completion proposals

 if (context != null) {
 ContextElement contextElement = context.getParentElement();
 if ("table".equals(contextElement.getQName())) {
 CIAttribute frameAttribute = new CIAttribute();
 frameAttribute.setName("frame");
 frameAttribute.setRequired(false);
 frameAttribute.setFixed(false);
 frameAttribute.setDefaultValue("void");
 if (attributes == null) {
 attributes = new ArrayList<CIAttribute>();
 }

326 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

 attributes.add(frameAttribute);
 }
 }
 return attributes;
}

The elements that can be inserted in a specific context can be filtered using the filterElements method. The
SDFSchemaManagerFilter uses this method to replace the td child element with the th element when header
is the current context element.

public List<CIElement> filterElements(List<CIElement> elements,
 WhatElementsCanGoHereContext context) {
 // If the element from the current context is the 'header' element remove the

 // 'td' element from the list of content completion proposals and add the
 // 'th' element.
 if (context != null) {
 Stack<ContextElement> elementStack = context.getElementStack();
 if (elementStack != null) {
 ContextElement contextElement = context.getElementStack().peek();
 if ("header".equals(contextElement.getQName())) {
 if (elements != null) {
 for (Iterator<CIElement> iterator = elements.iterator();
iterator.hasNext();) {
 CIElement element = iterator.next();
 // Remove the 'td' element
 if ("td".equals(element.getQName())) {
 elements.remove(element);
 break;
 }
 }
 } else {
 elements = new ArrayList<CIElement>();
 }
 // Insert the 'th' element in the list of content completion proposals
 CIElement thElement = new SDFElement();
 thElement.setName("th");
 elements.add(thElement);
 }
 }
 } else {
 // If the given context is null then the given list of content completion
elements contains
 // global elements.
 }
 return elements;
}

The elements or attributes values can be filtered using the filterElementValues or filterAttributeValues
methods.

Note: The complete source code can be found in the Simple Documentation Framework project, included in the
Oxygen Author SDK zip available for download on the Oxygen website.

Configuring a Link target element finder

The link target reference finder represents the support for finding references from links which indicate specific elements
inside an XML document. This support will only be available if a schema is associated with the document type.

If you do not define a custom link target reference finder, the DefaultElementLocatorProvider implementation
will be used by default. The interface which should be implemented for a custom link target reference finder is
ro.sync.ecss.extensions.api.link.ElementLocatorProvider. As an alternative, the

Oxygen XML Editor | Author Developer Guide | 327

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider implementation can also be
extended.

The used ElementLocatorProvider will be queried for an ElementLocator when a link location must be
determined (when a link is clicked). Then, to find the corresponding (linked) element, the obtained ElementLocator
will be queried for each element from the document.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

The DefaultElementLocatorProvider implementation

The DefaultElementLocatorProvider implementation offers support for the most common types of links:

• links based on ID attribute values

• XPointer element() scheme

The method getElementLocator determines what ElementLocator should be used. In the default implementation
it checks if the link is an XPointer element() scheme otherwise it assumes it is an ID. A non-null IDTypeVerifier
will always be provided if a schema is associated with the document type.

The link string argument is the "anchor" part of the of the URL which is composed from the value of the link property
specified for the link element in the CSS.

public ElementLocator getElementLocator(IDTypeVerifier idVerifier,
 String link) {
 ElementLocator elementLocator = null;
 try {
 if(link.startsWith("element(")){
 // xpointer element() scheme
 elementLocator = new XPointerElementLocator(idVerifier, link);
 } else {
 // Locate link element by ID
 elementLocator = new IDElementLocator(idVerifier, link);
 }
 } catch (ElementLocatorException e) {
 logger.warn("Exception when create element locator for link: "
 + link + ". Cause: " + e, e);
 }
 return elementLocator;
}

The XPointerElementLocator implementation

XPointerElementLocator is an implementation of the abstract class
ro.sync.ecss.extensions.api.link.ElementLocator for links that have one of the following XPointer
element() scheme patterns:

Locate the element with the specified id.
element(elementID)

A child sequence appearing alone identifies an element by means of stepwise
navigation, which is directed by a sequence of integers separated by slashes (/); each
integer n locates the nth child element of the previously located element.

element(/1/2/3)

A child sequence appearing after a NCName identifies an element by means of stepwise
navigation, starting from the element located by the given name.

element(elementID/3/4)

The constructor separates the id/integers which are delimited by slashes(/) into a sequence of identifiers (an XPointer
path). It will also check that the link has one of the supported patterns of the XPointer element() scheme.

public XPointerElementLocator(IDTypeVerifier idVerifier, String link)
 throws ElementLocatorException {

328 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

 super(link);
 this.idVerifier = idVerifier;

 link = link.substring("element(".length(), link.length() - 1);

 StringTokenizer stringTokenizer = new StringTokenizer(link, "/", false);
 xpointerPath = new String[stringTokenizer.countTokens()];
 int i = 0;
 while (stringTokenizer.hasMoreTokens()) {
 xpointerPath[i] = stringTokenizer.nextToken();
 boolean invalidFormat = false;

 // Empty xpointer component is not supported
 if(xpointerPath[i].length() == 0){
 invalidFormat = true;
 }

 if(i > 0){
 try {
 Integer.parseInt(xpointerPath[i]);
 } catch (NumberFormatException e) {
 invalidFormat = true;
 }
 }

 if(invalidFormat){
 throw new ElementLocatorException(
 "Only the element() scheme is supported when locating XPointer links."
 + "Supported formats: element(elementID), element(/1/2/3),
 element(elemID/2/3/4).");
 }
 i++;
 }

 if(Character.isDigit(xpointerPath[0].charAt(0))){
 // This is the case when xpointer have the following pattern /1/5/7
 xpointerPathDepth = xpointerPath.length;
 } else {
 // This is the case when xpointer starts with an element ID
 xpointerPathDepth = -1;
 startWithElementID = true;
 }
}

The method startElement will be invoked at the beginning of every element in the XML document(even when the
element is empty). The arguments it takes are

The namespace URI, or the empty string if the element has no namespace URI or if
namespace processing is disabled.

uri

Local name of the element.
localName

Qualified name of the element.
qName

Attributes attached to the element. If there are no attributes, this argument will be empty.
atts

The method returns true if the processed element is found to be the one indicated by the link.

The XPointerElementLocator implementation of the startElement will update the depth of the current
element and keep the index of the element in its parent. If the xpointerPath starts with an element ID then the

Oxygen XML Editor | Author Developer Guide | 329

current element ID is verified to match the specified ID. If this is the case the depth of the XPointer is updated taking
into account the depth of the current element.

If the XPointer path depth is the same as the current element depth then the kept indices of the current element path are
compared to the indices in the XPointer path. If all of them match then the element has been found.

public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {
 boolean linkLocated = false;
 // Increase current element document depth
 startElementDepth ++;

 if (endElementDepth != startElementDepth) {
 // The current element is the first child of the parent
 currentElementIndexStack.push(new Integer(1));
 } else {
 // Another element in the parent element
 currentElementIndexStack.push(new Integer(lastIndexInParent + 1));
 }

 if (startWithElementID) {
 // This the case when xpointer path starts with an element ID.
 String xpointerElement = xpointerPath[0];
 for (int i = 0; i < atts.length; i++) {
 if(xpointerElement.equals(atts[i].getValue())){
 if(idVerifier.hasIDType(
 localName, uri, atts[i].getQName(), atts[i].getNamespace())){
 xpointerPathDepth = startElementDepth + xpointerPath.length - 1;
 break;
 }
 }
 }
 }

 if (xpointerPathDepth == startElementDepth){
 // check if xpointer path matches with the current element path
 linkLocated = true;
 try {
 int xpointerIdx = xpointerPath.length - 1;
 int stackIdx = currentElementIndexStack.size() - 1;
 int stopIdx = startWithElementID ? 1 : 0;
 while (xpointerIdx >= stopIdx && stackIdx >= 0) {
 int xpointerIndex = Integer.parseInt(xpointerPath[xpointerIdx]);
 int currentElementIndex =
 ((Integer)currentElementIndexStack.get(stackIdx)).intValue();
 if(xpointerIndex != currentElementIndex) {
 linkLocated = false;
 break;
 }

 xpointerIdx--;
 stackIdx--;
 }

 } catch (NumberFormatException e) {
 logger.warn(e,e);
 }
 }
 return linkLocated;
}

The method endElement will be invoked at the end of every element in the XML document (even when the element
is empty).

330 | Oxygen XML Editor | Author Developer Guide

The XPointerElementLocator implementation of the endElement updates the depth of the current element
path and the index of the element in its parent.

public void endElement(String uri, String localName, String name) {
 endElementDepth = startElementDepth;
 startElementDepth --;
 lastIndexInParent = ((Integer)currentElementIndexStack.pop()).intValue();
}

The IDElementLocator implementation

The IDElementLocator is an implementation of the abstract class
ro.sync.ecss.extensions.api.link.ElementLocator for links that use an id.

The constructor only assigns field values and the method endElement is empty for this implementation.

The method startElement checks each of the element's attribute values and when one matches the link, it considers
the element found if one of the following conditions is satisfied:

• the qualified name of the attribute is xml:id

• the attribute type is ID

The attribute type is checked with the help of the method IDTypeVerifier.hasIDType.

public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {
 boolean elementFound = false;
 for (int i = 0; i < atts.length; i++) {
 if (link.equals(atts[i].getValue())) {
 if("xml:id".equals(atts[i].getQName())) {
 // xml:id attribute
 elementFound = true;
 } else {
 // check if attribute has ID type
 String attrLocalName =
 ExtensionUtil.getLocalName(atts[i].getQName());
 String attrUri = atts[i].getNamespace();
 if (idVerifier.hasIDType(localName, uri, attrLocalName, attrUri)) {
 elementFound = true;
 }
 }
 }
 }

 return elementFound;
}

Creating a customized link target reference finder

If you need to create a custom link target reference finder you can do so by creating the class which will implement the
ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface. As an alternative, your
class could extend ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider, the
default implementation.

Note: The complete source code of the DefaultElementLocator, IDElementLocator or
XPointerElementLocator can be found in the Oxygen Default Frameworks project, included in the Oxygen
Author SDK zip available for download on the Oxygen website.

Configuring a custom Drag and Drop listener

You can add your own drag and drop listener implementation of ro.sync.ecss.extensions.api.DnDHandler.
You can choose from three interfaces to implement depending on whether you are using the framework with the Oxygen
Eclipse plugin or the standalone version or if you want to add the handler for the Text or Author pages.

Oxygen XML Editor | Author Developer Guide | 331

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

Table 2: Interfaces for the DnD listener

DescriptionInterface

Receives callbacks from the Oxygen standalone application
for Drag And Drop in Author mode.

ro.sync.exml.editor.xmleditor.pageauthor.AuthorCustomDnDHandler

Receives callbacks from the Oxygen Eclipse plugin for
Drag And Drop in Author mode.

com.oxygenxml.editor.editors.author.AuthorDnDListener

Receives callbacks from the Oxygen Eclipse plugin for
Drag And Drop in Text mode.

com.oxygenxml.editor.editors.TextDnDListener

Configuring a References Resolver

You need to provide a handler for resolving references and obtain the content they refer. In our case the element which
has references is ref and the attribute indicating the referred resource is location. You will have to implement a Java
extension class for obtaining the referred resources.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

1. Create the class simple.documentation.framework.ReferencesResolver. This class must implement
the ro.sync.ecss.extensions.api.AuthorReferenceResolver interface.

import ro.sync.ecss.extensions.api.AuthorReferenceResolver;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;
import ro.sync.ecss.extensions.api.node.AuthorNode;

public class ReferencesResolver
 implements AuthorReferenceResolver {

2. The hasReferences method verifies if the handler considers the node to have references. It takes as argument
an AuthorNode that represents the node which will be verified. The method will return true if the node is
considered to have references. In our case, to be a reference the node must be an element with the name ref and it
must have an attribute named location.

public boolean hasReferences(AuthorNode node) {
 boolean hasReferences = false;
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 hasReferences = attrValue != null;
 }
 }
 return hasReferences;
}

3. The method getDisplayName returns the display name of the node that contains the expanded referred content.
It takes as argument an AuthorNode that represents the node for which the display name is needed. The referred
content engine will ask this AuthorReferenceResolver implementation what is the display name for each

332 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

node which is considered a reference. In our case the display name is the value of the location attribute from the ref
element.

public String getDisplayName(AuthorNode node) {
 String displayName = "ref-fragment";
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 displayName = attrValue.getValue();
 }
 }
 }
 return displayName;
}

4. The method resolveReference resolves the reference of the node and returns a SAXSource with the parser
and the parser's input source. It takes as arguments an AuthorNode that represents the node for which the reference
needs resolving, the systemID of the node, the AuthorAccess with access methods to the Author data model and
a SAX EntityResolver which resolves resources that are already opened in another editor or resolve resources
through the XML catalog. In the implementation you need to resolve the reference relative to the systemID, and
create a parser and an input source over the resolved reference.

public SAXSource resolveReference(
 AuthorNode node,
 String systemID,
 AuthorAccess authorAccess,
 EntityResolver entityResolver) {
 SAXSource saxSource = null;

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 String attrStringVal = attrValue.getValue();
 try {
 URL absoluteUrl = new URL(new URL(systemID),
 authorAccess.correctURL(attrStringVal));

 InputSource inputSource = entityResolver.resolveEntity(null,
 absoluteUrl.toString());
 if(inputSource == null) {
 inputSource = new InputSource(absoluteUrl.toString());
 }

 XMLReader xmlReader = authorAccess.newNonValidatingXMLReader();
 xmlReader.setEntityResolver(entityResolver);

 saxSource = new SAXSource(xmlReader, inputSource);
 } catch (MalformedURLException e) {
 logger.error(e, e);
 } catch (SAXException e) {
 logger.error(e, e);
 } catch (IOException e) {
 logger.error(e, e);
 }
 }
 }
 }

 return saxSource;
}

Oxygen XML Editor | Author Developer Guide | 333

5. The method getReferenceUniqueID should return an unique identifier for the node reference. The unique
identifier is used to avoid resolving the references recursively. The method takes as argument an AuthorNode that
represents the node with the reference. In the implementation the unique identifier is the value of the location attribute
from the ref element.

public String getDisplayName(AuthorNode node) {
 String displayName = "ref-fragment";
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 displayName = attrValue.getValue();
 }
 }
 }
 return displayName;
}

6. The method getReferenceSystemIDshould return the systemID of the referred content. It takes as arguments
an AuthorNode that represents the node with the reference and the AuthorAccess with access methods to the
Author data model. In the implementation you use the value of the location attribute from the ref element and resolve
it relatively to the XML base URL of the node.

public String getReferenceSystemID(AuthorNode node,
 AuthorAccess authorAccess) {
 String systemID = null;
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 String attrStringVal = attrValue.getValue();
 try {
 URL absoluteUrl = new URL(node.getXMLBaseURL(),
 authorAccess.correctURL(attrStringVal));
 systemID = absoluteUrl.toString();
 } catch (MalformedURLException e) {
 logger.error(e, e);
 }
 }
 }
 }
 return systemID;
}

Note: The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the Oxygen website.

In the listing below, the XML document contains the ref element:

<ref location="referred.xml">Reference</ref>

When no reference resolver is specified, the reference has the following layout:

Figure 198: Reference with no specified reference resolver

When the above implementation is configured, the reference has the expected layout:

334 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

Figure 199: Reference with reference resolver

Configuring CSS Styles Filter

You can modify the CSS styles for each ro.sync.ecss.extensions.api.node.AuthorNode rendered in
the Author page using an implementation of ro.sync.ecss.extensions.api.StylesFilter. You can
implement the various callbacks of the interface either by returning the default value given by Oxygen or by contributing
to the value. The received styles ro.sync.ecss.css.Styles can be processed and values can be overwritten with
your own. For example you can override the KEY_BACKGROUND_COLOR style to return your own implementation of
ro.sync.exml.view.graphics.Color or override the KEY_FONT style to return your own implementation
of ro.sync.exml.view.graphics.Font.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

For instance in our simple document example the filter can change the value of the KEY_FONT property for the table
element:

package simple.documentation.framework;

import ro.sync.ecss.css.Styles;
import ro.sync.ecss.extensions.api.StylesFilter;
import ro.sync.ecss.extensions.api.node.AuthorNode;
import ro.sync.exml.view.graphics.Font;

public class SDFStylesFilter implements StylesFilter {

 public Styles filter(Styles styles, AuthorNode authorNode) {
 if (AuthorNode.NODE_TYPE_ELEMENT == authorNode.getType()
 && "table".equals(authorNode.getName())) {
 styles.setProperty(Styles.KEY_FONT, new Font(null, Font.BOLD, 12));
 }
 return styles;
 }
}

Configuring a Table Column Width Provider

In the documentation framework the table element as well as the table columns can have specified widths. In order
for these widths to be considered by Oxygen Author we need to provide the means to determine them. As explained in
the Styling the Table Element section which describes the CSS properties needed for defining a table, if you use the
table element attribute width Oxygen can determine the table width automatically. In this example the table has col
elements with width attributes that are not recognized by default. You will need to implement a Java extension class to
determine the column widths.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

1. Create the class simple.documentation.framework.TableColumnWidthProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interface.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperationException;

Oxygen XML Editor | Author Developer Guide | 335

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip
http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;
import ro.sync.ecss.extensions.api.WidthRepresentation;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableColumnWidthProvider
 implements AuthorTableColumnWidthProvider {

2. Method init is taking as argument an AuthorElement that represents the XML table element. In our case
the column widths are specified in col elements from the table element. In such cases you must collect the span
information by analyzing the table element.

 public void init(AuthorElement tableElement) {
 this.tableElement = tableElement;
 AuthorElement[] colChildren =
tableElement.getElementsByLocalName("customcol");
 if (colChildren != null && colChildren.length > 0) {
 for (int i = 0; i < colChildren.length; i++) {
 AuthorElement colChild = colChildren[i];
 if (i == 0) {
 colsStartOffset = colChild.getStartOffset();
 }
 if (i == colChildren.length - 1) {
 colsEndOffset = colChild.getEndOffset();
 }
 // Determine the 'width' for this col.
 AttrValue colWidthAttribute = colChild.getAttribute("width");
 String colWidth = null;
 if (colWidthAttribute != null) {
 colWidth = colWidthAttribute.getValue();
 // Add WidthRepresentation objects for the columns this 'customcol'
specification
 // spans over.
 colWidthSpecs.add(new WidthRepresentation(colWidth, true));
 }
 }
 }
 }

3. The method isTableAcceptingWidth should check if the table cells are td.

public boolean isTableAcceptingWidth(String tableCellsTagName) {
 return "td".equals(tableCellsTagName);
}

4. The method isTableAndColumnsResizable should check if the table cells are td. This method determines
if the table and its columns can be resized by dragging the edge of a column.

public boolean isTableAndColumnsResizable(String tableCellsTagName) {
 return "td".equals(tableCellsTagName);
}

5. Methods getTableWidth and getCellWidth are used to determine the table and column width. The table
layout engine will ask this AuthorTableColumnWidthProvider implementation what is the table width for
each table element and the cell width for each cell element from the table that was marked as cell in the CSS using
the property display:table-cell. The implementation is simple and just parses the value of the width attribute.
The methods must return null for the tables / cells that do not have a specified width.

 public WidthRepresentation getTableWidth(String tableCellsTagName) {
 WidthRepresentation toReturn = null;
 if (tableElement != null && "td".equals(tableCellsTagName)) {
 AttrValue widthAttr = tableElement.getAttribute("width");
 if (widthAttr != null) {
 String width = widthAttr.getValue();
 if (width != null) {

336 | Oxygen XML Editor | Author Developer Guide

 toReturn = new WidthRepresentation(width, true);
 }
 }
 }
 return toReturn;
 }

 public List<WidthRepresentation> getCellWidth(AuthorElement cellElement, int
 colNumberStart,
 int colSpan) {
 List<WidthRepresentation> toReturn = null;
 int size = colWidthSpecs.size();
 if (size >= colNumberStart && size >= colNumberStart + colSpan) {
 toReturn = new ArrayList<WidthRepresentation>(colSpan);
 for (int i = colNumberStart; i < colNumberStart + colSpan; i ++) {
 // Add the column widths
 toReturn.add(colWidthSpecs.get(i));
 }
 }
 return toReturn;
 }

6. Methods commitTableWidthModification and commitColumnWidthModifications are used to
commit changes made to the width of the table or its columns when using the mouse drag gestures.

 public void commitTableWidthModification(AuthorDocumentController
authorDocumentController,
 int newTableWidth, String tableCellsTagName) throws AuthorOperationException
 {
 if ("td".equals(tableCellsTagName)) {
 if (newTableWidth > 0) {
 if (tableElement != null) {
 String newWidth = String.valueOf(newTableWidth);

 authorDocumentController.setAttribute(
 "width",
 new AttrValue(newWidth),
 tableElement);
 } else {
 throw new AuthorOperationException("Cannot find the element representing
 the table.");
 }
 }
 }
 }

public void commitColumnWidthModifications(AuthorDocumentController
authorDocumentController,
 WidthRepresentation[] colWidths, String tableCellsTagName) throws
AuthorOperationException {
 if ("td".equals(tableCellsTagName)) {
 if (colWidths != null && tableElement != null) {
 if (colsStartOffset >= 0 && colsEndOffset >= 0 && colsStartOffset <
colsEndOffset) {
 authorDocumentController.delete(colsStartOffset,
 colsEndOffset);
 }
 String xmlFragment = createXMLFragment(colWidths);
 int offset = -1;
 AuthorElement[] header = tableElement.getElementsByLocalName("header");
 if (header != null && header.length > 0) {
 // Insert the cols elements before the 'header' element
 offset = header[0].getStartOffset();
 }

Oxygen XML Editor | Author Developer Guide | 337

 if (offset == -1) {
 throw new AuthorOperationException("No valid offset to insert the columns
 width specification.");
 }
 authorDocumentController.insertXMLFragment(xmlFragment, offset);
 }
 }
 }

 private String createXMLFragment(WidthRepresentation[] widthRepresentations)
 {
 StringBuffer fragment = new StringBuffer();
 String ns = tableElement.getNamespace();
 for (int i = 0; i < widthRepresentations.length; i++) {
 WidthRepresentation width = widthRepresentations[i];
 fragment.append("<customcol");
 String strRepresentation = width.getWidthRepresentation();
 if (strRepresentation != null) {
 fragment.append(" width=\"" + width.getWidthRepresentation() + "\"");
 }
 if (ns != null && ns.length() > 0) {
 fragment.append(" xmlns=\"" + ns + "\"");
 }
 fragment.append("/>");
 }
 return fragment.toString();
 }

7. The following three methods are used to determine what type of column width specifications the table column width
provider support. In our case all types of specifications are allowed:

 public boolean isAcceptingFixedColumnWidths(String tableCellsTagName) {
 return true;
 }

 public boolean isAcceptingPercentageColumnWidths(String tableCellsTagName) {

 return true;
 }

 public boolean isAcceptingProportionalColumnWidths(String tableCellsTagName)
 {
 return true;
 }

Note: The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the Oxygen website.

In the listing below, the XML document contains the table element:

<table width="300">
 <customcol width="50.0px"/>
 <customcol width="1*"/>
 <customcol width="2*"/>
 <customcol width="20%"/>
 <header>
 <td>C1</td>
 <td>C2</td>
 <td>C3</td>
 <td>C4</td>
 </header>
 <tr>

338 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

 <td>cs=1, rs=1</td>
 <td>cs=1, rs=1</td>
 <td row_span="2">cs=1, rs=2</td>
 <td row_span="3">cs=1, rs=3</td>
 </tr>
 <tr>
 <td>cs=1, rs=1</td>
 <td>cs=1, rs=1</td>
 </tr>
 <tr>
 <td column_span="3">cs=3, rs=1</td>
 </tr>
</table>

When no table column width provider is specified, the table has the following layout:

Figure 200:Table layout when no column width provider is specified

When the above implementation is configured, the table has the correct layout:

Figure 201: Columns with custom widths

Configuring a Table Cell Span Provider

In the documentation framework the table element can have cells that span over multiple columns and rows. As
explained in the Styling the Table Element section which describes the CSS properties needed for defining a table, you
need to indicate Oxygen Author a method to determine the cell spanning. If you use the cell element attributes rowspan
and colspan or rows and cols, Oxygen can determine the cell spanning automatically. In our example the td element
uses the attributes row_span and column_span that are not recognized by default. You will need to implement a Java
extension class for defining the cell spanning.

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

Oxygen XML Editor | Author Developer Guide | 339

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

1. Create the class simple.documentation.framework.TableCellSpanProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSpanProvider
 implements AuthorTableCellSpanProvider {

2. The init method is taking as argument the AuthorElement that represents the XML table element. In our
case the cell span is specified for each of the cells so you leave this method empty. However there are cases like the
table CALS model when the cell spanning is specified in the table element. In such cases you must collect the
span information by analyzing the table element.

public void init(AuthorElement table) {
}

3. The getColSpan method is taking as argument the table cell. The table layout engine will ask this
AuthorTableSpanSupport implementation what is the column span and the row span for each XML element
from the table that was marked as cell in the CSS using the property display:table-cell. The implementation
is simple and just parses the value of column_span attribute. The method must return null for all the cells that do
not change the span specification.

public Integer getColSpan(AuthorElement cell) {
 Integer colSpan = null;

 AttrValue attrValue = cell.getAttribute("column_span");
 if(attrValue != null) {
 // The attribute was found.
 String cs = attrValue.getValue();
 if(cs != null) {
 try {
 colSpan = new Integer(cs);
 } catch (NumberFormatException ex) {
 // The attribute value was not a number.
 }
 }
 }
 return colSpan;
}

4. The row span is determined in a similar manner:

public Integer getRowSpan(AuthorElement cell) {
 Integer rowSpan = null;

 AttrValue attrValue = cell.getAttribute("row_span");
 if(attrValue != null) {
 // The attribute was found.
 String rs = attrValue.getValue();
 if(rs != null) {
 try {
 rowSpan = new Integer(rs);
 } catch (NumberFormatException ex) {
 // The attribute value was not a number.
 }
 }
 }
 return rowSpan;
}

340 | Oxygen XML Editor | Author Developer Guide

5. The method hasColumnSpecifications always returns true considering column specifications always
available.

public boolean hasColumnSpecifications(AuthorElement tableElement) {
 return true;
}

Note: The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the Oxygen website.

6. In the listing below, the XML document contains the table element:

<table>
 <header>
 <td>C1</td>
 <td>C2</td>
 <td>C3</td>
 <td>C4</td>
 </header>
 <tr>
 <td>cs=1, rs=1</td>
 <td column_span="2" row_span="2">cs=2, rs=2</td>
 <td row_span="3">cs=1, rs=3</td>
 </tr>
 <tr>
 <td>cs=1, rs=1</td>
 </tr>
 <tr>
 <td column_span="3">cs=3, rs=1</td>
 </tr>
</table>

When no table cell span provider is specified, the table has the following layout:

Figure 202:Table layout when no cell span provider is specified

When the above implementation is configured, the table has the correct layout:

Oxygen XML Editor | Author Developer Guide | 341

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html

Figure 203: Cells spanning multiple rows and columns.

Configuring an Unique Attributes Recognizer

The ro.sync.ecss.extensions.api.UniqueAttributesRecognizer interface can be implemented if
you want to provide for your framework the following features:

Note: The Javadoc documentation of the Author API used in the example files is available on the Oxygen website.
Also it can be downloaded as a zip archive from the website.

You can automatically generate unique IDs for newly inserted elements. Implementations are already
available for the DITA and Docbook frameworks. The following methods can be implemented to accomplish
this:

/**
 * Assign unique IDs between a start

Automatic
ID
generation

 * and an end offset in the document
 * @param startOffset Start offset
 * @param endOffset End offset
 */
void assignUniqueIDs(int startOffset, int endOffset);

/**
 * @return true if auto
 */
boolean isAutoIDGenerationActive();

You can split the current block element by pressing the "Enter" key and then choosing "Split". This is a
very useful way to create new paragraphs, for example. All attributes are by default copied on the new

Avoiding
copying
unique

element but if those attributes are IDs you sometimes want to avoid creating validation errors in the editor.
attributes

Implementing the following method, you can decide whether an attribute should be copied or not during
the split:

 /**
 * Check if the attribute specified by QName can

when
"Split" is
called
inside an
element * be considered as a valid attribute to copy

 * when the element is split.
 *

342 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/Developer/doc.zip

 * @param attrQName The attribute qualified name
 * @param element The element
 * @return true if the attribute should be copied
 * when Split is performed.
 */
 boolean copyAttributeOnSplit(String attrQName,
 AuthorElement element);

Tip:

The ro.sync.ecss.extensions.commons.id.DefaultUniqueAttributesRecognizer
class is an implementation of the interface which can be extended by your customization to provide
easy assignation of IDs in your framework. You can also check out the DITA and Docbook
implementations of ro.sync.ecss.extensions.api.UniqueAttributesRecognizer
to see how they were implemented and connected to the extensions bundle.

Customizing the Default CSS of a Document Type

The easiest way of customizing the default CSS stylesheet of a document type is to create a new CSS stylesheet in the
same folder as the customized one, import the customized CSS stylesheet and set the new stylesheet as the default CSS
of the document type. For example let us customize the default CSS for DITA documents by changing the background
color of the task and topic elements to red.

1. First you create a new CSS stylesheet called my_dita.css in the folder ${frameworks}/dita/css_classed
where the default stylesheet called dita.css is located. ${frameworks} is the subfolder frameworks of the
Oxygen XML Editor. The new stylesheet my_dita.css contains:

@import "dita.css";

task, topic{
 background-color:red;
}

2. To set the new stylesheet as the default CSS stylesheet for DITA documents first open the Document Type Association
preferences panel from menu Options > Preferences > Document Type Association . Select the DITA document
type and start editing it by pressing the Edit button. The user role must be set to Developer otherwise a warning is
displayed and a duplicate copy of the DITA document type is created and edited. This check makes sure that regular
content authors who just edit the content of XML documents do not accidentally modify the document type. In the
Author tab of the document type edit dialog change the URI of the default CSS stylesheet from
${frameworks}/dita/css_classed/dita.css to
${frameworks}/dita/css_classed/my_dita.css.

Figure 204: Set the location of the default CSS stylesheet

Oxygen XML Editor | Author Developer Guide | 343

3. Press OK in all the dialogs to validate the changes. Now you can start editing DITA documents based on the new
CSS stylesheet. You can edit the new CSS stylesheet itself at any time and see the effects on rendering DITA XML
documents in the Author mode by running the Refresh action available on the Author toolbar and on the DITA menu.

Document Type Sharing

Oxygen has support for allowing you to share the customizations which you have made for a specific XML type by
creating your own Document Type in the Document Type Association preferences page.

A document type can be shared between authors in two ways:

• Save it externally in a separate framework folder in the OXYGEN_INSTALL_DIR/frameworks directory.

Important: In order for this approach to work you will need to have Oxygen installed to a folder with full
write access.

Please see the following steps:

1. Create a new directory in the OXYGEN_INSTALL_DIR/frameworks for your new framework. This directory
will contain resources for your framework (CSS files, new file templates, schemas used for validation, catalogs).
See the Docbook framework structure from the OXYGEN_INSTALL_DIR/frameworks/docbook as an
example.

2. Switch the user role to Developer in the Oxygen Preferences Document Type Association page.
3. Create your new custom document type and save it external in the newly created framework directory (with a

name like custom.framework).
4. Configure the custom document type according to your needs, take special care to make all file references relative

to the OXYGEN_INSTALL_DIR/frameworks directory by using the ${frameworks} editor variable. The
Author Developer Guide contains all details necessary for creating and configuring a new document type.

5. If everything went fine then you should have a new configuration file saved in:
OXYGEN_INSTALL_DIR/frameworks/your_framework_dir/custom.framework after the
Preferences are saved.

6. You can then share the new framework directory with other users (have them copy it to their
OXYGEN_INSTALL_DIR/frameworks directory) and the new document type will be available in the list of
Document Types when Oxygen is started.

• Save the document type at project level in the Document Type Association page.

Please see the following steps:

1. Create a new directory with full write access somewhere on your local drive which will contain the Oxygen
project file and associated document type resources (CSS files, new file templates, schemas used for validation,
catalogs).

2. From the Oxygen Project view create a new project and save it in the newly created directory.
3. In the Oxygen Preferences Document Type Association page switch the radio button at the bottom of the page

to Project Options.
4. Create your new custom document type using the default internal storage for it. It will actually be saved in the

previously chosen Oxygen project .xpr file.
5. Configure the custom document type according to your needs, take special care to make all file references relative

to the project directory by using the ${pd} editor variable. The Author Developer Guide contains all details
necessary for creating and configuring a new document type.

6. You can then share the new project directory with other users and if they open in the Project view the customized
project then the new document type will be available in the list of Document Types.

344 | Oxygen XML Editor | Author Developer Guide

CSS Support in Oxygen Author

Author editing mode supports most CSS 2.1 selectors, a lot of CSS 2.1 properties and a few CSS 3 selectors. Also some
custom functions and properties that extend the W3C CSS specification and are useful for URL and string manipulation
are available to the developer who creates an Author editing framework.

CSS 2.1 Features

This section enumerates the CSS 2.1 features that are supported by Oxygen XML Author.

Supported CSS 2.1 Selectors

Description / ExampleNameExpression

Matches any elementUniversal selector*

Matches any E element (i. e. an element with the local
name E)

Type selectorE

Matches any F element that is a descendant of an E
element.

Descendant selectorE F

Matches any F element that is a child of an element
E.

Child selectorsE > F

Matches element E when E is the first child of its
parent.

The :first-child pseudo-classE:first-child

Matches element of type E if it is in (human) language
c (the document language specifies how language is
determined).

The :lang() pseudo-classE:lang(c)

Matches any F element immediately preceded by a
sibling element E.

Adjacent selectorE + F

Matches any E element with the "foo" attribute set
(whatever the value).

Attribute selectorE[foo]

Matches any E element whose "foo" attribute value
is exactly equal to "warning".

Attribute selectorE[foo="warning"]

Matches any E element whose "foo" attribute value
is a list of space-separated values, one of which is
exactly equal to "warning".

Attribute selectorE[foo~="warning"]

Matches any E element whose "lang" attribute has
a hyphen-separated list of values beginning (from the
left) with "en".

Attribute selectorE[lang|="en"]

The ':before' and ':after' pseudo-elements
can be used to insert generated content before or after
an element's content.

Pseudo elementsE:before and
E:after

Unsupported CSS 2.1 Selectors

Description / ExampleNameExpression

Matches any E element with ID equal to "myid".ID selectorsE#myid

Oxygen XML Editor | Author Developer Guide | 345

Description / ExampleNameExpression

Matches element E if E is the source anchor of a hyperlink of which
the target is not yet visited (:link) or already visited (:visited).

The link pseudo-classE:link, E:visited

Matches E during certain user actions.The dynamic
pseudo-classes

E:active, E:hover,
E:focus

The :first-line pseudo-element applies special styles to the contents of
the first formatted line of a paragraph.

The :first-line
pseudo-class

E:first-line

The :first-letter pseudo-element must select the first letter of the first
line of a block, if it is not preceded by any other content (such as images

The :first-letter
pseudo-class

E:first-letter

or inline tables) on its line. The :first-letter pseudo-element may be
used for "initial caps" and "drop caps", which are common
typographical effects.

CSS 2.1 Properties

All the properties belonging to the aural and paged categories are not supported in Oxygen Author. The properties
from the table below belong to the visual category.

Not Supported ValuesSupported ValuesName

ALL'background-attachment'

transparent<color> | inherit'background-color'

ALL'background-image'

ALL'background-position'

ALL'background-repeat'

ALL'background'

ALL'border-collapse'

transparent<color> | inherit'border-color'

ALL'border-spacing'

<border-style> | inherit'border-style'

[<border-width> ||
<border-style> ||

'border-top' 'border-right'
'border-bottom'
'border-left' 'border-top-color'] |

inherit

transparent<color> | inherit'border-top-color'
'border-right-color'
'border-bottom-color'
'border-left-color'

<border-style> | inherit'border-top-style'
'border-right-style'
'border-bottom-style'
'border-left-style'

<border-width> | inherit'border-top-width'
'border-right-width'
'border-bottom-width'
'border-left-width'

346 | Oxygen XML Editor | Author Developer Guide

Not Supported ValuesSupported ValuesName

<border-width> | inherit'border-width'

[<border-width> ||
<border-style> ||

'border'

'border-top-color'] |
inherit

ALL'bottom'

ALL'caption-side'

ALL'clear'

ALL'clip'

<color> | inherit'color'

no-open-quote |
no-close-quote

normal | none | [<string>
| <URI> | <counter> |
attr(<identifier>) |

'content'

open-quote | close-quote
]+ | inherit

[<identifier> <integer>
?]+ | none | inherit

'counter-increment'

[<identifier> <integer>
?]+ | none | inherit

'counter-reset'

ALL'cursor'

rtl | inheritltr'direction'

run-in | inline-block |
inline-table - considered
block

inline | block | list-item
| table | table-row-group
| table-header-group |
table-footer-group |

'display'

table-row |
table-column-group |
table-column | table-cell
| table-caption | none |
inherit

show | hide | inherit'empty-cells'

ALL'float'

[[<family-name> |
<generic-family>] [,

'font-family'

<family-name> |
<generic-family>]*] |
inherit

<absolute-size> |
<relative-size> | <length>
| <percentage> | inherit

'font-size'

normal | italic | oblique
| inherit

'font-style'

ALL'font-variant'

Oxygen XML Editor | Author Developer Guide | 347

Not Supported ValuesSupported ValuesName

normal | bold | bolder |
lighter | 100 | 200 | 300

'font-weight'

| 400 | 500 | 600 | 700 |
800 | 900 | inherit

'font-variant'
'line-height' caption |

[['font-style' ||
'font-weight']?

'font'

icon | menu | message-box'font-size' [/
| small-caption |
status-bar

'line-height']?
'font-family'] | inherit

ALL'height'

ALL'left'

ALL'letter-spacing'

normal | <number> |
<length> | <percentage> |
inherit

'line-height'

ALL'list-style-image'

ALL'list-style-position'

lower-greek | armenian |
georgian

disc | circle | square |
decimal | lower-roman |
upper-roman | lower-latin

'list-style-type'

| upper-latin |
lower-alpha | upper-alpha
| none | inherit

'list-style-position' ||
'list-style-image'

['list-style-type'] |
inherit

'list-style'

<margin-width> | inherit
| auto

'margin-right' 'margin-left'

<margin-width> | inherit'margin-top' 'margin-bottom'

<margin-width> | inherit
| auto

'margin'

ALL'max-height'

<length> | <percentage> |
none | inherit - supported for

'max-width'

block-level and replaced elements, e.g.
images, tables, table cells.

ALL'min-height'

<length> | <percentage> |
inherit - supported for block-level

'min-width'

and replaced elements, e. g. images,
tables, table cells.

ALL'outline-color'

ALL'outline-style'

ALL'outline-width'

348 | Oxygen XML Editor | Author Developer Guide

Not Supported ValuesSupported ValuesName

ALL'outline'

ALL'overflow'

<padding-width> | inherit'padding-top'
'padding-right'
'padding-bottom'
'padding-left'

<padding-width> | inherit'padding'

ALL'position'

ALL'quotes'

ALL'right'

fixed | inheritauto'table-layout'

justifyleft | right | center |
inherit

'text-align'

blinknone | [underline ||
overline || line-through
] | inherit

'text-decoration'

ALL'text-indent'

ALL'text-transform'

ALL'top'

ALL'unicode-bidi'

<percentage> | <length>baseline | sub | super |
top | text-top | middle |

'vertical-align'

bottom | text-bottom |
inherit

collapsevisible | hidden | inherit'visibility'

normal | pre | nowrap |
pre-wrap | pre-line

'white-space'

<length> | <percentage> |
auto | inherit - supported for

'width'

block-level and replaced elements, e.g.
images, tables, table cells.

ALL'word-spacing'

ALL'z-index'

CSS 3 Features

This section enumerates the CSS 3 features that are supported by Oxygen XML Author.

CSS 3 Namespace Selectors

In the CSS 2.1 standard the element selectors are ignoring the namespaces of the elements they are matching. Only the
local name of the elements are considered in the selector matching process.

Oxygen XML Editor | Author Developer Guide | 349

Oxygen Author uses a different approach similar to the CSS Level 3 specification. If the element name from the CSS
selector is not preceded by a namespace prefix it is considered to match an element with the same local name as the
selector value and ANY namespace, otherwise the element must match both the local name and the namespace.

In CSS up to version 2.1 the name tokens from selectors are matching all elements from ANY namespace that have the
same local name. Example:

<x:b xmlns:x="ns_x"/>
<y:b xmlns:y="ns_y"/>

Are both matched by the rule:

b {font-weight:bold}

Starting with CSS Level 3 you can create selectors that are namespace aware.

Defining both prefixed namespaces and the default namespace

Given the namespace declarations:

@namespace sync "http://sync.example.org";
@namespace "http://example.com/foo";

In a context where the default namespace applies:

represents the name A in the http://sync.example.org namespace.
sync|A

represents the name B that belongs to NO NAMESPACE.
|B

represents the name C in ANY namespace, including NO NAMESPACE.
*|C

represents the name D in the http://example.com/foo namespace.
D

Defining only prefixed namespaces

Given the namespace declaration:

@namespace sync "http://sync.example.org";

Then:

represents the name A in the http://sync.example.org namespace.
sync|A

represents the name B that belongs to NO NAMESPACE.
|B

represents the name C in ANY namespace, including NO NAMESPACE.
*|C

represents the name D in ANY namespace, including NO NAMESPACE.
D

The attr() Function: Properties Values Collected from the Edited Document.

In CSS Level 2.1 you may collect attribute values and use them as content only for the pseudo-elements. For instance
the :before pseudo-element can be used to insert some content before an element. This is valid in CSS 2.1:

title:before{
 content: "Title id=(" attr(id) ")";
}

If the title element from the XML document is:

<title id="title12">My title.</title>

350 | Oxygen XML Editor | Author Developer Guide

Then the title will be displayed as:

Title id=(title12) My title.

In Oxygen Author the use of attr() function is available not only for the content property, but also for any other
property. This is similar to the CSS Level 3 working draft:
http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional. The arguments of the function are:

attr (attribute_name , attribute_type , default_value)

The attribute name. This argument is required.
attribute_name

The attribute type. This argument is optional. If it is missing, argument's type is considered
string. This argument indicates what is the meaning of the attribute value and helps to perform
conversions of this value. Oxygen Author accepts one of the following types:

attribute_type

The value represents a color. The attribute may specify a color in different
formats. Oxygen Author supports colors specified either by name: red, blue,
green, etc. or as an RGB hexadecimal value #FFEEFF.

color

The value is an URL pointing to a media object. Oxygen Author supports only
images. The attribute value can be a complete URL, or a relative one to the

url

XML document. Please note that this URL is also resolved through the catalog
resolver.

The value must be interpreted as an integer.
integer

The value must be interpreted as a float number.
number

The value must be interpreted as an integer.
length

The value must be interpreted relative to another value (length, size) expressed
in percents.

percentage

The value must be interpreted as a size. 1 em is equal to the font-size of the
relevant font.

em

The value must be interpreted as a size. 1 ex is equal to the height of the x
character of the relevant font.

ex

The value must be interpreted as a size expressed in pixels relative to the
viewing device.

px

The value must be interpreted as a size expressed in millimeters.
mm

The value must be interpreted as a size expressed in centimeters.
cm

The value must be interpreted as a size expressed in inches. 1 inch is equal to
2.54 centimeters.

in

The value must be interpreted as a size expressed in points. The points used
by CSS2 are equal to 1/72th of an inch.

pt

Oxygen XML Editor | Author Developer Guide | 351

http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional

The value must be interpreted as a size expressed in picas. 1 pica is equal to
12 points.

pc

This argument specifies a value that is used by default if the attribute value is missing. This
argument is optional.

default_value

Usage samples for the attr() function

Consider the following XML instance:

<sample>
 <para bg_color="#AAAAFF">Blue paragraph.</para>
 <para bg_color="red">Red paragraph.</para>
 <para bg_color="red" font_size="2">Red paragraph with large
font.</para>
 <para bg_color="#00AA00" font_size="0.8" space="4">
 Green paragraph with small font and margin.</para>
</sample>

The para elements have bg_color attributes with RGB color values like #AAAAFF. You can
use the attr() function to change the elements appearance in the editor based on the value of
this attribute:

background-color:attr(bg_color, color);

The attribute font_size represents the font size in em units. You can use this value to change
the style of the element:

font-size:attr(font_size, em);

The complete CSS rule is:

para{
 display:block;
 background-color:attr(bg_color, color);
 font-size:attr(font_size, em);
 margin:attr(space, em);
}

The document is rendered as:

352 | Oxygen XML Editor | Author Developer Guide

Additional Custom Selectors

Oxygen Author provides support for selecting additional types of nodes. These custom selectors apply to: document,
doctype sections, processing-instructions, comments, CDATA sections, and entities. In order for the custom selectors to
work in your CSSs you will have to declare the Author extensions namespace at the beginning of the stylesheet documents:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');

Example rules:

• document:

oxy|document {
 display:block;
}

• doctype sections:

oxy|doctype {
 display:block;
 color:blue;
 background-color:transparent;
}

• processing-instructions:

oxy|processing-instruction {
 display:block;
 color:purple;
 background-color:transparent;
}

• comments:

oxy|comment {
 display:block;
 color:green;
 background-color:transparent;
}

• CDATA sections:

oxy|cdata{
 display:block;
 color:gray;
 background-color:transparent;
}

• entities:

oxy|entity {
 display:morph;
 editable:false;
 color:orange;
 background-color:transparent;
}

A sample document rendered using these rules:

Oxygen XML Editor | Author Developer Guide | 353

Oxygen CSS Extensions

CSS stylesheets provide support mainly for displaying documents. When editing documents some extensions of the
W3C CSS specification are useful, for example:

• property for marking foldable elements in large files
• enforcing a display mode for the XML tags regardless of the current mode selected by the author user
• construct a URL from a relative path location
• string processing functions

Media Type oxygen

The style sheets can specify how a document is to be presented on different media: on the screen, on paper, speech
synthesizer, etc. You can specify that some of the features of your CSS stylesheet should be taken into account only in
the Oxygen Author and ignored in the rest. This can be accomplished by using the media type oxygen.

For instance using the following CSS:

b{
 font-weight:bold;
 display:inline;
}

@media oxygen{
 b{
 text-decoration:underline;
 }
}

would make a text bold if the document was opened in a web browser who does not recognize @media oxygen and
bold and underlined in Oxygen Author.

You can use this media type to group specific Oxygen CSS features and also to hide them when opening the documents
with other viewers.

Folding Elements: foldable and not-foldable-child Properties

Oxygen Author allows you to declare some elements to be foldable (collapsible). This is especially useful when working
with large documents organized in logical blocks, editing a large DocBook article or book for instance.

To define the element whose content can be folded by the user, you must use the property: foldable:true;.

When collapsing an element, it is useful to keep some of its content visible, like a short description of the collapsed
region. The property not-foldable-child is used to identify the child elements that are kept visible. It accepts as
value an element name or a list of comma separated element names. If the element is marked as foldable
(foldable:true;) but it doesn't have the property not-foldable-child or none of the specified non-foldable
children exists then the element will still be foldable. In this case the element that will be kept visible when folded will
be the before pseudo-element.

354 | Oxygen XML Editor | Author Developer Guide

Folding DocBook Elements

All the elements below can have a title child element and are considered to be logical sections.
You mark them as being foldable leaving the title element visible.

set,
book,
part,
reference,
chapter,
preface,
article,
sect1,
sect2,
sect3,
sect4,
section,
appendix,
figure,
example,
table {
 foldable:true;
 not-foldable-child: title;
}

Link Elements

Oxygen Author allows you to declare some elements to be links. This is especially useful when working with many
documents which refer each other. The links allow for an easy way to get from one document to another. Clicking on
the link marker will open the referred resource in an editor.

To define the element which should be considered a link, you must use the property link on the before or after pseudo
element. The value of the property indicates the location of the linked resource. Since links are usually indicated by the
value of an attribute in most cases it will have a value similar to attr(href)

Docbook Link Elements

All the elements below are defined to be links on the before pseudo element and their value is
defined by the value of an attribute.

*[href]:before{
 link:attr(href);
 content: "Click " attr(href) " for opening" ;
}

ulink[url]:before{
 link:attr(url);
 content: "Click to open: " attr(url);
}

olink[targetdoc]:before{
 link: attr(targetdoc);
 content: "Click to open: " attr(targetdoc);
}

Display Tag Markers

Oxygen Author allows you to choose whether tag markers of an element should never be presented or the current display
mode should be respected. This is especially useful when working with :before and :after pseudo-elements in
which case the element range is already visually defined so the tag markers are redundant.

The property is named display-tags. Its possible values are :

Oxygen XML Editor | Author Developer Guide | 355

• none Tags markers must not be presented regardless of the current Display mode.

• default The tag markers will be created depending on the current Display mode.

• inherit The value of the property is inherited from an ancestor element.

display-tags
 Value: none | default | inherit
 Initial: default
 Applies to: all nodes(comments, elements, CDATA, etc)
 Inherited: false
 Media: all

Docbook Para elements

In this example the para element from Docbook is using an :before and :after element so
you don't want its tag markers to be visible.

para:before{
 content: "{";
}

para:after{
 content: "}";
}

para{
 display-tags: none;
 display:block;
 margin: 0.5em 0;
}

Oxygen Custom CSS Functions

In Oxygen Author there are implemented a few Oxygen specific custom CSS functions. Imbricated custom functions
are also supported.

Imbricated functions

The result of the functions below will be the local name of the current node with the first letter
capitalized.

capitalize(local-name())

The local-name() Function

This function evaluates the local name of the current node. It does not have any arguments.

The name() Function

This function evaluates the qualified name of the current node. It does not have any arguments.

The url() function

This function evaluates the URL of a location relative to the CSS file location and appends each of the relative path
components to the final location.

url (location , loc_1 , loc_2)

The location as string. If not absolute, will be solved relative to the CSS file URL.location

Relative location path components as string. (optional)loc_1 ... loc_n

The base-uri() Function

This function evaluates the base URL in the context of the current node. It does not have any arguments and takes into
account the xml:base context of the current node. See the XML Base specification for more details.

356 | Oxygen XML Editor | Author Developer Guide

http://www.w3.org/TR/xmlbase/

The parent-url() Function

This function evaluates the parent URL of an URL received as string.

parent-url (URL)

The URL as string.URL

The capitalize() Function

This function capitalizes the first letter of the text received as argument.

capitalize (text)

The text for which the first letter will be capitalized.text

The uppercase() Function

This function transforms to upper case the text received as argument.

uppercase (text)

The text to be capitalized.text

The lowercase() Function

This function transforms to lower case the text received as argument.

lowercase (text)

The text to be lower cased.text

The concat() Function

This function concatenates the received string arguments.

concat (str_1 , str_2)

The string arguments to be concatenated.str_1 ... str_n

The replace() Function

This function has two signatures:

• replace (text , target , replacement)

This function replaces each substring of the text that matches the literal target string with the specified literal
replacement string.

The text in which the replace will occur.text

The target string to be replaced.target

The string replacement.replacement

• replace (text , target , replacement , isRegExp)

This function replaces each substring of the text that matches the target string with the specified replacement string.

The text in which the replace will occur.text

The target string to be replaced.target

The string replacement.replacement

If true the target and replacement arguments are considered regular expressions
in PERL syntax, if false they are considered literal strings.

isRegExp

The unparsed-entity-uri() Function

This function returns the URI value of an unparsed entity name.

Oxygen XML Editor | Author Developer Guide | 357

unparsed-entity-uri (unparsedEntityName)

The name of an unparsed entity defined in the DTD.unparsedEntityName

This function can be useful to display images which are referred with unparsed entity names.

CSS for displaying the image in Author for an imagedata with entityref to an
unparsed entity

imagedata[entityref]{
content: url(unparsed-entity-uri(attr(entityref)));
}

The attributes() Function

This function concatenates the attributes for an element and returns the serialization.

attributes ()

attributes()

For the following XML fragment:<element att1="x" xmlns:a="2" x="""/>
the attributes() function will return att1="x" xmlns:a="2" x=""".

The substring() Function

This function has two signatures:

• substring (text , startOffset)

Returns a new string that is a substring of the original text string. It begins with the character at the specified index
and extends to the end of text string.

The original string.text

The beginning index, inclusivestartOffset

• substring (text , startOffset , endOffset)

Returns a new string that is a substring of the original text string. The substring begins at the specified startOffset
and extends to the character at index endOffset - 1.

The original string.text

The beginning index, inclusivestartOffset

The ending index, exclusive.endOffset

substring('abcd', 1) returns the string 'bcd'.

substring('abcd', 4) returns an empty string.

substring('abcd', 1, 3) returns the string 'bc'.

The indexof() Function

This function has two signatures:

• indexof (text , toFind)

Returns the index within text string of the first occurrence of the toFind substring.

Text to search in.text

The searched substring.toFind

358 | Oxygen XML Editor | Author Developer Guide

• indexof (text , toFind , fromOffset)

Returns the index within text string of the first occurrence of the toFind substring. The search starts from fromOffset
index.

Text to search in.text

The searched substring.toFind

The index from which to start the search.fromOffset

indexof('abcd', 'bc') returns 1.

indexof('abcdbc', 'bc', 2) returns 4.

The lastindexof() Function

This function has two signatures:

• lastindexof (text , toFind)

Returns the index within text string of the rightmost occurrence of the toFind substring.

Text to search in.text

The searched substring.toFind

• lastindexof (text , toFind , fromOffset)

The search starts from fromOffset index. Returns the index within text string of the last occurrence of the toFind
substring, searching backwards starting from the fromOffset index.

Text to search in.text

The searched substring.toFind

The index from which to start the search backwards.fromOffset

lastindexof('abcdbc', 'bc') returns 4.

lastindexof('abcdbccdbc', 'bc', 2) returns 1.

The xpath() Function

This function has one signature:

• xpath (expression)

Evaluates the given XPath expression and returns the result.

XPath expression to be evaluated.expression

The following example counts the number of words from a paragraph and displays the result in
front of it:

para:before{ content: concat("|Number of words:",
xpath("count(tokenize(normalize-space(string-join(text(), '')), '
'))"), "| "); }

Oxygen XML Editor | Author Developer Guide | 359

Example Files Listings - The Simple Documentation Framework Files

This section lists the files used in the customization tutorials: the XML Schema, CSS files, XML files, XSLT stylesheets.

XML Schema files

sdf.xsd

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples\Simple
Documentation Framework - SDF\framework\schema" directory.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oxygenxml.com/sample/documentation"
 xmlns:doc="http://www.oxygenxml.com/sample/documentation"
 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
 elementFormDefault="qualified">

 <xs:import
 namespace="http://www.oxygenxml.com/sample/documentation/abstracts"
 schemaLocation="abs.xsd"/>

 <xs:element name="book" type="doc:sectionType"/>
 <xs:element name="article" type="doc:sectionType"/>
 <xs:element name="section" type="doc:sectionType"/>

 <xs:complexType name="sectionType">
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element ref="abs:def" minOccurs="0"/>
 <xs:choice>
 <xs:sequence>
 <xs:element ref="doc:section"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="doc:para"/>
 <xs:element ref="doc:ref"/>
 <xs:element ref="doc:image"/>
 <xs:element ref="doc:table"/>
 </xs:choice>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="para" type="doc:paragraphType"/>

 <xs:complexType name="paragraphType" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="b"/>
 <xs:element name="i"/>
 <xs:element name="link"/>
 </xs:choice>
 </xs:complexType>

 <xs:element name="ref">
 <xs:complexType>
 <xs:attribute name="location" type="xs:anyURI"
 use="required"/>
 </xs:complexType>

360 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

 </xs:element>

 <xs:element name="image">
 <xs:complexType>
 <xs:attribute name="href" type="xs:anyURI"
 use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="table">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="customcol" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="width" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="header">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="td"
 maxOccurs="unbounded"
 type="doc:paragraphType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="tr" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="td"
 type="doc:tdType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="width" type="xs:string"/>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="tdType">
 <xs:complexContent>
 <xs:extension base="doc:paragraphType">
 <xs:attribute name="row_span"
 type="xs:integer"/>
 <xs:attribute name="column_span"
 type="xs:integer"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

abs.xsd

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples\Simple
Documentation Framework - SDF\framework\schema" directory.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts">

Oxygen XML Editor | Author Developer Guide | 361

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

 <xs:element name="def" type="xs:string"/>
</xs:schema>

CSS Files

sdf.css

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples\Simple
Documentation Framework - SDF\framework\css" directory.

/* Element from another namespace */
@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";

abs|def{
 font-family:monospace;
 font-size:smaller;
}
abs|def:before{
 content:"Definition:";
 color:gray;
}

/* Vertical flow */
book,
section,
para,
title,
image,
ref {
 display:block;
}

/* Horizontal flow */
b,i {
 display:inline;
}

section{
 margin-left:1em;
 margin-top:1em;
}

section{
 foldable:true;
 not-foldable-child: title;
}

link[href]:before{
 display:inline;
 link:attr(href);
 content: "Click to open: " attr(href);
}

/* Title rendering*/
title{
 font-size: 2.4em;
 font-weight:bold;
}

* * title{
 font-size: 2.0em;
}
* * * title{

362 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

 font-size: 1.6em;
}
* * * * title{
 font-size: 1.2em;
}

book,
article{
 counter-reset:sect;
}
book > section,
article > section{
 counter-increment:sect;
}
book > section > title:before,
article > section > title:before{
 content: "Section: " counter(sect) " ";
}

/* Inlines rendering*/
b {
 font-weight:bold;
}

i {
 font-style:italic;
}

/*Table rendering */
table{
 display:table;
 border:1px solid navy;
 margin:1em;
 max-width:1000px;
 min-width:150px;
}

table[width]{
 width:attr(width, length);
}

tr, header{
 display:table-row;
}

header{
 background-color: silver;
 color:inherit
}

td{
 display:table-cell;
 border:1px solid navy;
 padding:1em;
}

image{
 display:block;
 content: attr(href, url);
 margin-left:2em;
}

Oxygen XML Editor | Author Developer Guide | 363

XML Files

sdf_sample.xml

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples\Simple
Documentation Framework - SDF\framework" directory.

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
 <title>My Technical Book</title>
 <section>
 <title>XML</title>
 <abs:def>Extensible Markup Language</abs:def>
 <para>In this section of the book I will explain
 different XML applications.</para>
 </section>
 <section>
 <title>Accessing XML data.</title>
 <section>
 <title>XSLT</title>
 <abs:def>Extensible stylesheet language
 transformation (XSLT) is a language for
 transforming XML documents into other XML
 documents.</abs:def>
 <para>A list of XSL elements and what they do..</para>
 <table>
 <header>
 <td>XSLT Elements</td>
 <td>Description</td>
 </header>
 <tr>
 <td>
 xsl:stylesheet
 </td>
 <td>The <i>xsl:stylesheet</i> element is
 always the top-level element of an
 XSL stylesheet. The name
 <i>xsl:transform</i> may be used
 as a synonym.</td>
 </tr>
 <tr>
 <td>
 xsl:template
 </td>
 <td>The <i>xsl:template</i> element has
 an optional mode attribute. If this
 is present, the template will only
 be matched when the same mode is
 used in the invoking
 <i>xsl:apply-templates</i>
 element.</td>
 </tr>
 <tr>
 <td>
 for-each
 </td>
 <td>The xsl:for-each element causes
 iteration over the nodes selected by
 a node-set expression.</td>
 </tr>
 <tr>

364 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

 <td column_span="2">End of the list</td>
 </tr>
 </table>
 </section>
 <section>
 <title>XPath</title>
 <abs:def>XPath (XML Path Language) is a terse
 (non-XML) syntax for addressing portions of
 an XML document. </abs:def>
 <para>Some of the XPath functions.</para>
 <table>
 <header>
 <td>Function</td>
 <td>Description</td>
 </header>
 <tr>
 <td>format-number</td>
 <td>The <i>format-number</i> function
 converts its first argument to a
 string using the format pattern
 string specified by the second
 argument and the decimal-format
 named by the third argument, or the
 default decimal-format, if there is
 no third argument</td>
 </tr>
 <tr>
 <td>current</td>
 <td>The <i>current</i> function returns
 a node-set that has the current node
 as its only member.</td>
 </tr>
 <tr>
 <td>generate-id</td>
 <td>The <i>generate-id</i> function
 returns a string that uniquely
 identifies the node in the argument
 node-set that is first in document
 order.</td>
 </tr>
 </table>
 </section>
 </section>
 <section>
 <title>Documentation frameworks</title>
 <para>One of the most important documentation
 frameworks is Docbook.</para>
 <image
 href="http://www.xmlhack.com/images/docbook.png"/>
 <para>The other is the topic oriented DITA, promoted
 by OASIS.</para>
 <image
href="http://www.oasis-open.org/images/standards/oasis_standard.jpg"
 />
 </section>
</book>

Oxygen XML Editor | Author Developer Guide | 365

XSL Files

sdf.xsl

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples\Simple
Documentation Framework - SDF\framework\xsl" directory.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"
 xpath-default-namespace=
 "http://www.oxygenxml.com/sample/documentation">

 <xsl:template match="/">
 <html><xsl:apply-templates/></html>
 </xsl:template>

 <xsl:template match="section">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="image">

 </xsl:template>

 <xsl:template match="para">
 <p>
 <xsl:apply-templates/>
 </p>
 </xsl:template>

 <xsl:template match="abs:def"
 xmlns:abs=
 "http://www.oxygenxml.com/sample/documentation/abstracts">
 <p>
 <u><xsl:apply-templates/></u>
 </p>
 </xsl:template>

 <xsl:template match="title">
 <h1><xsl:apply-templates/></h1>
 </xsl:template>

 <xsl:template match="b">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="i">
 <i><xsl:apply-templates/></i>
 </xsl:template>

 <xsl:template match="table">
 <table frame="box" border="1px">
 <xsl:apply-templates/>
 </table>
 </xsl:template>

 <xsl:template match="header">
 <tr>
 <xsl:apply-templates/>
 </tr>
 </xsl:template>

366 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

 <xsl:template match="tr">
 <tr>
 <xsl:apply-templates/>
 </tr>
 </xsl:template>

 <xsl:template match="td">
 <td>
 <xsl:apply-templates/>
 </td>
 </xsl:template>

 <xsl:template match="header/header/td">
 <th>
 <xsl:apply-templates/>
 </th>
 </xsl:template>

</xsl:stylesheet>

Oxygen XML Author Component

The Oxygen XML Author component was designed as a separate product to provide the functionality of the standard
Author page. The component can be embedded either in a third-party standalone Java application or customized as a
Java Web Applet to provide WYSIWYG-like XML editing directly in your web browser of choice.

The Author Component SDK for Java/Swing integrations is available online on the oXygen XML website:
http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-sample.zip

Licensing

Just like the oXygen standard deployment, the Author component requires license information in order to run. Licensing
information must follow the same models imposed for the standard oXygen application, namely the floating, named-user
based or group licenses. You can license an Author component using standard oXygen XML Editor/Author license keys.

You can set the component to:

• display the license registration dialog to the end user. This is the default behavior and transfers the licensing
responsibility to the end-user. The standard licensing procedure applies.

• programmatically inject the licensing information directly in the component. This is especially useful when you use
a multiple-user or group license.

: You must make sure only the authorized users will access the application.

• programmatically set-up floating license server details.

The most common use-case is when you as a developer customize the component and then want to deliver it to end
users (either embedded in a Java application or a Java Web applet). Your licensing options are:

• named-user based model, where users provide their own oXygen license keys and register the component;
• floating license model, where the component comes pre-configured to use one of the oXygen floating license servers

(either the standalone or the servlet version).

Oxygen XML Editor | Author Developer Guide | 367

http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-sample.zip

Installation Requirements

Running the Author component as a Java applet requires:

• Oracle (Sun) Java JRE version 1.6 update 10 or newer;
• At least 100 MB disk space and 100MB free memory;
• The applet needs to be signed with a valid certificate and will request full access to the user machine, in order to

store customization data (like options and framework files);
• The applet was tested for compatibility with the following browsers:

ChromeSafari 5Firefox 4Firefox 3IE 9 (64bit)IE 8 (32bit)IE 7

Passed-PassedPassed-PassedPassedWindows XP

PassedFailedPassedPassedFailedPassedFailedVista

Passed-PassedPassedPassed--Windows 7

FailedPassedPassedFailed---Mac OS X
10.6

Failed--Failed---Linux
Ubuntu 10

Running the Author component embedded in a third-party Java/Swing application requires:

• Oracle (Sun) Java JRE version 1.6 or newer;
• At least 100 MB disk space and 100MB free memory;

Customization

For a special type of XML, you can create a custom framework (which also works in an Oxygen standalone version).
Oxygen already has frameworks for editing DocBook, DITA, TEI, and so on. Their sources are available in the Author
SDK. This custom framework is then packed in a zip archive and used to deploy the component.

The following diagram shows the components of a custom framework.

368 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK
http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK

More than one framework can coexist in the same component and can be used at the same time for editing XML
documents.

You can add on your custom toolbar all actions available in the standalone Oxygen application for editing in the Author
page. You can also add custom actions defined in the framework customized for each XML type.

The Author component can also provide the Outline, Model, Elements and Attributes views which can be added to your
own developed containers.

Oxygen XML Editor | Author Developer Guide | 369

Deployment

The Author Component Java API allows you to use it in your Java application or as a Java applet. The JavaDoc for the
API can be found in the sample project in the lib/apiSrc.zip archive. The sample project also comes with Java
sources (ro/sync/ecss/samples/AuthorComponentSample.java) demonstrating how the component is
created, licensed and used in a Java application.

Web Deployment

The Author Component can be deployed as a Java Applet using the new Applet with JNLP Java technology, available
in Oracle (Sun) Java JRE version 1.6 update 10 or newer.

The sample project demonstrates how the Author component can be distributed as an applet.

Here are the main steps you need to follow in order to deploy the Author component as a Java Applet:

• Unpack the sample project archive and look for Java sources of the sample Applet implementation. They can be
customized to fit your requirements.

• The default.properties configuration file must first be edited to specify your custom certificate information
used to sign the applet libraries. You also have to specify the code base from where the applet will be downloaded.

• You can look inside the author-component-dita.html and author-component-dita.js sample
Web resources to see how the applet is embedded in the page and how it can be controlled using Javascript (to set
and get XML content from it).

• The sample Applet author-component-dita.jnlp JNLP file can be edited to add more libraries. The packed
frameworks and options are delivered using the JNLP file as JAR archives:

<jar href="resources/frameworks.zip.jar"/>
<jar href="resources/options.zip.jar"/>

• The sample frameworks and options JAR archives can be found in the resources directory.
• Use the build.xmlANT build file to pack the component. The resulting applet distribution is copied in the dist

directory. From this on, you can copy the applet files on your web server.

370 | Oxygen XML Editor | Author Developer Guide

http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-sample.zip
http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-sample.zip

Figure 205: Oxygen Author Component deployed as a Java applet

Troubleshooting

When the applet fails to start:

1. Make sure that your Web browser really runs the next generation Java plug-in and not the legacy Java plug-in.
2. Refresh the web page.
3. Remove the Java Webstart cache from the local drive and try again.

• On Windows this folder is located in: %APPDATA%\LocalLow\Sun\Java\Deployment\cache;
• On Mac OSX this folder is located in: /Users/user_name/Library/Caches/Java/cache;
• On Linux this folder is located in: /home/user/.java/deployment/cache.

4. Remove the Author Applet Frameworks cache from the local drive and try again:

• On Windows Vista or 7 this folder is located in:
%APPDATA%\Roaming\com.oxygenxml.author.component;

• On Windows XP this folder is located in: %APPDATA%\com.oxygenxml.author.component;
• On Mac OSX this folder is located in:

/Users/user_name/Library/Preferences/com.oxygenxml.author.component;
• On Linux this folder is located in: /home/user/.com.oxygenxml.author.component.

5. Problems sometimes occur after upgrading the Web browser and/or the JavaTM runtime. Redeploy the applet on
the server by running ANT in your Author Component project. However, doing this does not always fix the problem,
which often lies in the Web browser and/or in the Java plug-in itself.

Enable JavaWebstart logging on your computer to get additional debug information:

1. Open a console and run javaws -viewer;
2. In the Advanced tab expand the Debugging category and check all boxes.
3. Expand the Java console category and choose Show console.

Oxygen XML Editor | Author Developer Guide | 371

4. Save settings.
5. After running the applet you will find the log files in:

• On Windows this folder is located in: %APPDATA%\LocalLow\Sun\Java\Deployment\log;
• On Mac OSX this folder is located in: /Users/user_name/Library/Caches/Java/log;
• On Linux this folder is located in: /home/user/.java/deployment/log.

372 | Oxygen XML Editor | Author Developer Guide

Chapter

9

Grid Editor

In the grid editor the XML document is displayed as a structured grid of nested
tables in which the text content can be modified by non technical users without

Topics:

• Layouts: Grid and Tree editing directly the XML tags. The tables can be expanded and collapsed with
• Navigating the Grid a mouse click to show or hide the elements of the document as needed. Also

the document structure can be changed easily with drag and drop operations on• Specific Grid Actions
the grid components. The tables can be zoomed using (Ctrl - +) , (Ctrl - -),
(Ctrl - 0) or (Ctrl - mouse wheel).

• Drag and Drop in the Grid Editor
• Copy and Paste in the Grid Editor

Figure 206:The Grid Editor

• Bidirectional Text Support in the
Grid Editor

You can switch between the text tab and the grid tab of the editor panel with
the two buttons Text and Grid available at the bottom of the editor panel. Also
the switch can be performed with the actions Document > Edit mode > Grid
and Document > Edit mode > Text .

If the edited document is associated with a schema (DTD, XML Schema, Relax
NG, etc.), the editor offers content completion for the element and attributes
names and values. If you choose to insert an element that has required content,
it will be inserted automatically including the subtree of needed elements and
attributes.

To display the content completion popup you have to start editing, for example
by double clicking the cell. When editing, pressing (Ctrl - Space) redisplays
the popup.

Figure 207: Content Completion in Grid Editor

374 | Oxygen XML Editor | Grid Editor

Layouts: Grid and Tree

The grid editor has two modes for the layout. The default one is the grid layout. This smart layout detects the recurring
elements in the XML document and creates tables having as columns the children (including the attributes) of these
elements. In this way it is possible to have tables nested in other tables, reflecting the structure of your document.

Figure 208: Grid Layout

The other layout mode is tree-like. This layout does not create any table. It presents the structure of the document directly.

Figure 209:Tree Layout

You can switch between the two modes using the menu Document > Grid Layout > Grid mode/Tree mode .

Navigating the Grid

When you open a document first in the grid tab, the document is collapsed so that it shows just the root element and its
attributes. The grid disposition of the node names and values are very similar to a web form or a dialog. The same set
of key shortcuts used to select dialog components are used in the grid. For instance moving to the next editable value
in a table row is done using the (Tab) key. Moving to the previous cell employs the (Shift-Tab) key. Changing a value
assumes pressing the (Enter) key or start typing directly the new value, and, when the editing is finished, pressing
(Enter) again to commit the data into the document.

The arrow keys and the (Page Up/Down) keys can be used for navigation. By pressing (Shift) while using these keys
you can create a selection zone. To add other nodes that are not close to this zone, you can use the mouse and the (Ctrl)
key ((Command) on Mac OS X).

The following key combination may be used to scroll the grid:

• Ctrl - Up scrolls the grid upwards
• Ctrl - Down scrolls the grid downwards
• Ctrl - Left scrolls the grid to the left
• Ctrl - Right scrolls the grid to the right

Oxygen XML Editor | Grid Editor | 375

A left arrow sign displayed to the left of the node name indicates that this node has child nodes. You can click this sign
to display the children. The expand/collapse actions can be also invoked by pressing the (NumPad Plus) and (NumPad
Minus) keys.

A set of expand/collapse actions can be accessed from the submenu Expand/Collapse of the contextual menu.

The same actions can be accessed from the menu Document > Grid Expand/Collapse .

The following actions are available on the Expand/Collapse menu:

• Expand All - Expands the selection and all its children.
• Collapse All - Collapses the selection and all its children.
• Expand Children - Expands all the children of the selection but not the selection.
• Collapse Children - Collapses all the children of the selection but not the selection.
• Collapse Others - Collapses all the siblings of the current selection but not the selection.

Specific Grid Actions

In order to access these actions you can click the column header and choose from the contextual menu the item Table
. The same set of actions are available in the menu Document and on the Grid toolbar which is opened from menu
Window > Show Toolbar > Grid .

Sorting a Table Column

You can sort the table by a specific column. The sorting can be either ascending or descending.

The icons for this pair of actions are:

The sorting result depends on the data type of the column content. It can be different in case of number (numerical
sorting) or text information (alphabetical sorting). The editor analyses automatically the content and decides what type
of sorting to apply. If there is present a mixed set of values in the column, a dialog will be displayed allowing to choose
the desired type between numerical and alphabetical.

Inserting a Row in a Table

You can add a row by either a copy/paste operation over a row, or directly, by invoking the action from the contextual
menu: Table > Insert row .

A shorter way of inserting a new row is to move the selection over the row header, and then to press (Enter). The row
header is the zone in the left of the row that holds the row number. The inserted row will be below the selection.

Inserting a Column in a Table

You can insert a column after the selected one, using the action from the contextual menu Table > Insert column
.

Clearing the Content of a Column

You can clear all the cells from a column, using the action from the contextual menu: Table > Clear content .

Adding Nodes

Using the contextual menu you can add nodes before, after, or as last child of the currently selected node.

The sub-menus containing detailed actions are:

376 | Oxygen XML Editor | Grid Editor

• Insert before
• Insert after
• Append child

Duplicating Nodes

A quicker way of creating new nodes is to duplicate the existing ones. The action is available in the contextual menu:
Duplicate and in the menu Document > Grid Edit > Duplicate .

Refresh Layout

When using drag and drop to reorganize the document, the resulted layout may be different from the expected one. For
instance, the layout may contain a set of sibling tables that could be joined together. To force the layout to be recomputed
you can use the action Refresh. The action is available in the contextual menu Refresh selected and in the menu
Document > Grid Edit > Refresh selected .

Start Editing a Cell Value

You can simply press (Enter) after you have selected the grid cell.

The action is found in the menu Document > Grid Edit > Start Editing .

Stop Editing a Cell Value

You stop editing a cell value when you press (Enter).

The action is found in the menu Document > Grid Edit > End Editing .

To cancel the editing without saving in the document the current changes, you have to press the (Esc) key.

Drag and Drop in the Grid Editor

The drag and drop features of the grid editor make easy the arrangement of the different sections in your XML document.

Using drag and drop you can:

• Copy or move a set of nodes.
• Change the order of columns in the tables.
• Move the rows from the tables.

These operations are available for single selection and multiple selection.

Note that when dragging the editor paints guide-lines showing accepted locations where the nodes can be dropped.

Nodes can be dragged outside the grid editor and text from other applications can be dropped inside the grid. See Copy
and Paste in the Grid Editor for details.

Copy and Paste in the Grid Editor

The selection in the grid is a bit complex relative to the selection in a text component. It consists of a current selected
cell and additional selected cells. These additional cells are either hand picked by the user using the mouse, or are implied
by the current selected cell. To be more specific, let's consider you click the name of the column - this becomes the

Oxygen XML Editor | Grid Editor | 377

current selected cell; the editor automatically extends the selection so it contains also all the cells from that column. The
current selected cell is painted with a color that is different from the rest of the selection.

You can select discontinuous regions of nodes and place them in the clipboard using the copy action. Pasting these nodes
may be done in two ways, relative to the current selected cell: by default as brother, just below (after) , or as last child
of the selected cell.

The Paste as Child action is available in the contextual menu.

The same action can be found in the menu Document > Grid Edit > Paste as Child .

The copied nodes from the grid can be pasted also into the text editor or other applications. When copying from grid
into the text editor or other text based applications the inserted string represents the nodes serialization. The nodes from
tables can be copied using HTML or RTF in table format. The resulting cells contain only the concatenated values of
the text nodes.

Figure 210: Copying from grid to other editors

In the grid editor you can paste wellformed xml content or tab separated values from other editors. If you paste xml
content the result will be the insertion of the nodes obtained by parsing this content.

Figure 211: Copying XML data into grid

378 | Oxygen XML Editor | Grid Editor

If the pasted text contains multiple lines of tab separated values it can be considered as a matrix of values. By pasting
this matrix of values into the grid editor the result will be a matrix of cells. If the operation is performed inside existing
cells the values from these cells will be overwritten and new ones will be created if needed. This is useful for example
when trying to transfer data from Excel like editors into grid editor.

Figure 212: Copying tab separated values into grid

Bidirectional Text Support in the Grid Editor

If you are editing documents employing a different text orientation you can change the way text is rendered and edited
in the grid cells. For this, you can use the shortcut (Ctrl-Shift-O) to toggle from the default left to right text orientation
to the right to left orientation.

Note that this change applies only to the text from the cells, not to the layout of the grid editor.

Figure 213: Default left to right text orientation

Figure 214: Right to left text orientation

Oxygen XML Editor | Grid Editor | 379

Chapter

10

Transforming Documents

XML is designed to store, carry, and exchange data, not to display data. When
you want to view the data, you must either have an XML-compliant user agent

Topics:

• Output Formats or transform it to a format that can be read by other user agents. This process is
known as transformation.• Transformation Scenario

• XSLT Processors Status messages generated during transformation are displayed in the
Information view.• XSL-FO Processors

• XProc Transformations

Output Formats

Within the current version of Oxygen you can transform your XML documents to the following formats without having
to exit from the application. For transformation to formats not listed simply install the tool chain required to perform
the transformation and process the xml files created with Oxygen in accordance with the processor instructions.

• PDF - Adobe Portable Document Format (PDF) is a compact binary file format that can be viewed and printed by
anyone, anywhere across a broad range of hardware and software using the free PDF Viewer from Adobe.

• PS - PostScript is the leading printing technology from Adobe for high-quality, best-in-class printing solutions
ranging from desktop devices to the most advanced digital presses, platemakers, and large format image setters in
the world. PostScript files can be viewed using viewers such as GhostScript, but are more commonly created as a
prepress format.

• TXT - Text files are Plain ASCII Text and can be opened in any text editor or word processor.
• XML - XML stands for eXtensible Markup Language and is a W3C standard markup language, much like HTML,

which was designed to describe data. XML tags are not predefined in XML. You must define your own tags. XML
uses a Document Type Definition (DTD), an XML Schema or a Relax NG schema to describe the data. XML with
a DTD, XML Schema or Relax NG schema is designed to be self-descriptive. XML is not a replacement for HTML.
XML and HTML were designed with different goals:

• XML was designed to describe data and to focus on what data is.
• HTML was designed to display data and to focus on how data looks.
• HTML is about displaying information, XML is about describing information.

• XHTML - XHTML stands for eXtensible HyperText Markup Language, a W3C standard. XHTML is aimed to
replace HTML. While almost identical to HTML 4.01, XHTML is a stricter and cleaner version of HTML. XHTML
is HTML defined as an XML application.

All formatting during a transformation is provided under the control of an Extensible Stylesheet (XSLT). Specifying
the appropriate XSLT enables transformation to the above formats and preparation of output files for specific user agent
viewing applications, including:

• HTML - HTML stands for Hyper Text Markup Language and is a W3C Standard for the World Wide Web. HTML
is a text file containing small markup tags. The markup tags tell the Web browser how to display the page. An HTML
file must have an htm or html file extension. An HTML file can be created using a simple text editor.

• HTML Help - Microsoft HTML Help is the standard help system for the Windows platform. Authors can use HTML
Help to create online help for a software application or to create content for a multimedia title or Web site. Developers
can use the HTML Help API to program a host application or hook up context-sensitive help to an application.

• JavaHelp - JavaHelp software is a full-featured, platform-independent, extensible help system from Sun
Microsystems/Oracle that enables developers and authors to incorporate online help in applets, components,
applications, operating systems, and devices. JavaHelp is a free product and the binaries for JavaHelp can be
redistributed.

• Eclipse Help - Eclipse Help is the help system incorporated in the Eclipse platform that enables Eclipse plugin
developers to incorporate online help in their plugins.

Many other target formats are possible, these are the most popular. The basic condition for transformation to any format
is that your source document is well-formed. Always, make sure that the XSL used for the transformation is the right
one according to the desired output format and with the input source definition. For example, if you want to transform
to HTML format using a DocBook html stylesheet, your source xml document should respect the DocBook DTD.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an instance of the class
is transformed into an output document by using special formatting vocabulary.

XSL consists of three parts:

• XSL Transformations (XSLT) - XSLT is a language for transforming XML documents.

382 | Oxygen XML Editor | Transforming Documents

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com:80/products/postscript/main.html
http://www.w3c.org/XML/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://javahelp.java.net/
http://javahelp.java.net/
http://www.eclipse.org/

• XML Path (XPath) Language - XPath is an expression language used by XSLT to access or refer parts of an XML
document. XPath is also used by the XML Linking specification.

• XSL Formatting Objects (XSL:FO) - XSL:FO is an XML vocabulary for specifying formatting semantics.

Oxygen supports XSLT/XPath version 1.0 using Saxon 6.5.5, Xalan, Xsltproc, MSXML (3.0, 4.0, .NET) and XSLT/XPath
2.0 by using Saxon 9.3.0.5 HE, Saxon 9.3.0.5 PE, and Saxon 9.3.0.5 EE. Also the validation is done in function of the
stylesheet version.

Transformation Scenario

Before transforming an XML document in Oxygen you must define a transformation scenario to apply to that document.
A scenario is a set of values for various parameters defining a transformation. It is not related to any particular document
but to a document type:

• Scenarios that apply to XML files - Such a scenario contains the location of an XSLT stylesheet that is applied on
the edited XML document and other transform parameters.

• Scenarios that apply to XSLT files - Such a scenario contains the location of an XML document that the edited
XSLT stylesheet is applied on and other transform parameters.

• Scenarios that apply to XQuery files - Such a scenario contains the location of an XML source that the edited
XQuery file is applied on and other transform parameters. When the XML source is a native XML database the XML
source field of the scenario is empty because the XML data is read with XQuery functions like document(). When
the XML source is a local XML file the URL of the file is specified in the XML input field of the scenario.

• Scenarios that apply to SQL files - Such a scenario specifies a database connection for the database server that
will run the SQL file associated with the scenario. The data processed by the SQL script is located in the database.

• Scenarios that apply to XProc files - Such a scenario contains the location of an XProc script and other transform
parameters.

• DITA-OT scenarios - Such a scenario provides the parameters for an Ant transformation that will execute a DITA-OT
build script. Oxygen comes with a built-in version of Ant and a built-in version of DITA-OT but different versions
can be set in the scenario.

A scenario can be created at document type level or at global level. The scenarios defined at document type level are
available only for the documents that match that document type. The global scenarios are available for any document.

In order to apply a transformation scenario one has to press the Apply Transformation Scenario button from the
Transformation toolbar.

Batch Transformation

A transform action can be applied on a batch of files from the Project view's contextual menu without having to open
the files:

• Apply Transformation Scenario - Applies to each selected file the transformation scenario associated to that
file. If the currently processed file does not have an associated transformation scenario then a warning is displayed
in the Warnings view to let the user know about it.

• Transform with... - allows the user to select one transformation scenario to be applied to each one of the currently
selected files.

Built-in Transformation Scenarios

If the Apply Transformation Scenario button from the Transformation toolbar is pressed, currently there is no scenario
associated with the edited document and the edited document contains a xml-stylesheet processing instruction
referring to a XSLT stylesheet (commonly used for display in Internet browsers), then Oxygen will prompt the user and
offer the option to associate the document with a default scenario. The default scenario contains in the XSL URL field

Oxygen XML Editor | Transforming Documents | 383

the URL from the href attribute of the processing instruction. This scenario will have the Use xml-stylesheet declaration
checkbox set by default, will use Saxon as transformation engine, will perform no FO processing and will store the result
in a file with the same URL as the edited document except the extension which will be changed to html. The name
and path will be preserved because the output file name is specified with the help of two editor variables: ${cfd} and
${cfn}.

Oxygen comes with preconfigured built-in scenarios for usual transformations that enable the user to obtain quickly the
desired output: associate one of the built-in scenarios with the current edited document and then apply the scenario with
just one click.

Defining a New Transformation Scenario

The Configure Transformation Scenario dialog is used to associate a scenario from the list of all scenarios with the

edited document by selecting an entry from the list. The dialog is opened by pressing the Configure Transformation
Scenario button on the Transformation toolbar of the document view. Once selected the scenario will be applied with

only one click on the Apply Transformation Scenario on the same toolbar. Pressing the Apply Transformation
Scenario button before associating a scenario with the edited document will invoke first the Configure Transformation
Scenario dialog and then apply the selected scenario.

If there is only one scenario that can be associated with edited document, Configure Transformation Scenario dialog
is not displayed, scenario is associated with edited document and transformation is executed. This situation can appear
both for project scenarios and global scenarios when there is only one scenario in list of possible scenarios that include
document type scenarios and project/global scenarios. Association of that scenario can be changed by opening Configure

Transformation Scenario dialog with an action having the same name (Configure Transformation Scenario)
from the toolbar.

Open the Configure Transformation Scenario dialog using one of the methods previously presented or by selecting
Document > Transformation > Configure transformation scenario. (Ctrl+Shift+C) .

Figure 215: Configure Transformation Scenario Dialog

The Scenario type allows you to choose what type of user defined transformation scenario is displayed:

• All - No filtering. All user-defined scenarios are displayed.
• XML transformation with XSLT - Transformation scenarios that apply an XSLT stylesheet over an XML.
• XML transformation with XQuery - Transformation scenarios that apply an XQuery over an XML.

384 | Oxygen XML Editor | Transforming Documents

• DITA OT transformation - Transformation scenarios that use the DITA Open Toolkit (DITA-OT) to transform
XML content into an output format.

• ANT transformation - Transformation scenarios that execute ANT scripts.
• XSLT transformation - Transformation scenarios that apply an XSLT stylesheet over an XML file.
• XProc transformation - Transformation scenarios that execute XProc XML pipelines.
• XQuery transformation - Represents a transformation that consists in applying an XQuery over an XML.
• SQL transformation - Executes an SQL over a database.

If you want an XSLT scenario select as Scenario type either XML transformation with XSLT or XSLT transformation
then complete the dialog as follows:

Figure 216:The Configure Transformation Dialog - XSLT Tab

• XML URL - Specifies an input XML file to be used for the transformation. Please note that this URL is resolved
through the catalog resolver. If the catalog does not have a mapping for the URL, then the editor will try to use the
file directly.

Note: If the transformer engine is Saxon 9 and a custom URI resolver is configured for Saxon 9 in Preferences
then the XML input of the transformation is passed to that URI resolver.

Note: If the transformer engine is one of the built-in XSLT 2.0 engines and the name of an initial template is
specified in the scenario then the XML URL field can be empty. Also the XML URL field can be empty in
case of external XSLT processors. In all other cases a non-empty XML URL value is mandatory.

The following buttons are shown immediately after the input field:

• Insert Editor Variables - Opens a pop-up menu allowing to introduce special Oxygen editor variables or
custom editor variables in the XML URL field.

• Browse for local file - Opens a local file browser dialog allowing to select a local file name for the text field.
• Browse for remote file - Opens a URL browser dialog allowing to select a remote file name for the text field.
• Browse for archived file - Opens a zip archive browser dialog allowing to select a file name from a zip

archive that will be inserted in the text field.
• Open in editor - Opens the file with the path specified in the text field in an editor panel.

Oxygen XML Editor | Transforming Documents | 385

• XSL URL - Specifies an input XSL file to be used for the transformation. Please note that this URL is resolved
through the catalog resolver. If the catalog does not have a mapping for the URL, then the editor will try to use the
file directly. The above set of browsing buttons are available also for this input.

• Use "xml-stylesheet" declaration - Use the stylesheet declared with an xml-stylesheet declaration instead
of the stylesheet specified in the XSL URL field. By default this checkbox is not selected and the transformation
applies the XSLT stylesheet specified in the XSL URL field. If it is checked the scenario applies the stylesheet
specified explicitly in the XML document with the xml-stylesheet processing instruction.

• Transformer - This combo box contains all the transformer engines available for applying the stylesheet. These are
the built-in engines and the external engines defined in the user preferences. If you want to change the default selected
engine just select other engine from the drop down list of the combo box. For XSLT/XQuery files only, if no validation
scenario is associated, the transformer engine will be used in validation process, if it has validation support.

• Parameters - Opens the dialog for configuring the XSLT parameters. In this dialog you set any global XSLT
parameters of the main stylesheet set in the XSL URL field or of the additional stylesheets set with the button
Additional XSLT stylesheets. If the XSLT transformer engine is custom defined this dialog cannot be used to
configure the parameters sent to the custom engine. In this case you can copy all parameters from the dialog using
the contextual menu actions and edit the custom XSLT engine to include in the command line the necessary parameters.

• Append header and footer - Opens a dialog for specifying a URL for a header HTML file added at the beginning
of the result of an HTML transformation and a URL for a footer HTML file added at the end of the HTML result of
the transformation.

• Additional XSLT stylesheets - Opens the dialog for adding XSLT stylesheets which are applied on the result of the
main stylesheet specified in the XSL URL field. This is useful when a chain of XSLT stylesheets must be applied
to the input XML document.

• Extensions - Opens the dialog for configuring the XSLT/XQuery extension jars or classes which define extension
Java functions or extension XSLT elements used in the XSLT/XQuery transformation.

• Advanced options - Configure advanced options specific for the Saxon HE / PE / EE engine. They are the same
options as the ones set in the user preferences but they are configured as a specific set of transformation options for
each transformation scenario. By default if you do not set a specific value in the transformation scenario each advanced
option has the same value as the global option with the same name set in the user preferences.

The advanced options include two options that are not available globally in the user preferences: the initial XSLT
template and the initial XSLT mode of the transformation. They are Saxon specific options that allow imposing the
name of the first XSLT template that starts the XSLT transformation or the initial mode of transformation.

386 | Oxygen XML Editor | Transforming Documents

Figure 217:The advanced options of Saxon HE / PE / EE

The advanced options specific for Saxon HE / PE / EE are:

• Mode ("-im") - Specifies to the transformer the initial template mode
• Template ("-it") - Specifies the name of the initial template to the transformer. When specified, the XML input

URL for the transformation scenario is optional.
• Use a configuration file ("-config") - The URL input points to Saxon advanced options configuration file.
• Version warnings ("-versmsg") - Warns you when the transformation is applied to an XSLT 1.0 stylesheet.
• Line numbering ("-l") - Error line number is included in the output messages.
• Debugger trace into XPath expressions (applies to debugging sessions) - Instructs the XSLT Debugger to step

into XPath expressions.
• DTD validation of the source ("-dtd") - The following options are available:

• On, requests DTD-based validation of the source file and of any files read using the document() function;
• Off (default setting) suppresses DTD validation.
• Recover, performs DTD validation but treats the error as non-fatal if it fails

Note that any external DTD is likely to be read even if not used for validation, because DTDs can contain definitions
of entities.

• Recoverable errors ("-warnings") - Policy for handling recoverable errors in the stylesheet: Allows you to choose
how dynamic errors are handled. Either one of the following options can be selected:

Oxygen XML Editor | Transforming Documents | 387

Recover silently ("silent") ;•
• Recover with warnings ("recover") . Default setting;
• Signal the error and do not attempt recovery ("fatal").

• Strip whitespaces ("-strip") - Strip whitespaces feature can be one of the following three options:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless
of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the source document.

• Ignorable ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes
in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or
schema as having element-only content.

• None ("none") - Default setting. Strips no whitespace before further processing. However, whitespace will still
be stripped if this is specified in the stylesheet using xsl:strip-space.

• Optimization level ("-opt") - Set optimization level. The value is an integer in the range 0 (no optimization) to 10
(full optimization); currently all values other than 0 result in full optimization but this is likely to change in future.
The default is full optimization; this feature allows optimization to be suppressed in cases where reducing compile
time is important, or where optimization gets in the way of debugging, or causes extension functions with side-effects
to behave unpredictably. (Note however, that even with no optimization, lazy evaluation may still cause the evaluation
order to be not as expected.)

The advanced options available only in Saxon PE / EE are:

• Allow calls on extension functions ("-ext") - If checked, the stylesheet is allowed to call external Java functions.
This does not affect calls on integrated extension functions, including Saxon and EXSLT extension functions. This
option is useful when loading an untrusted stylesheet, perhaps from a remote site using an http:// URL; it ensures
that the stylesheet cannot call arbitrary Java methods and thereby gain privileged access to resources on your machine.

The advanced options available only in Saxon EE are:

• Validation of the source file ("-val") - Requests schema-based validation of the source file and of any files read
using the document() or similar functions. Validation is available only with Saxon-EE, and this flag automatically
switches on the -sa option. Available options:

• Schema validation ("strict") - This mode requires an XML Schema and determines whether source documents
should be parsed with schema-validation enabled.

• Lax schema validation ("lax") - This mode determines whether source documents should be parsed with
schema-validation enabled if an XML Schema is provided.

• Disable schema validation - This determines whether source documents should be parsed with schema-validation
disabled.

• Validation errors in the results tree treated as warnings ("-outval") - Normally, if validation of result documents
is requested, a validation error is fatal. Enabling this option causes such validation failures to be treated as warnings.

• Write comments for non-fatal validation errors of the result document - The validation messages are written
(where possible) as a comment in the result document itself.

When creating a scenario that applies to an XML file, Oxygen fills the XML URL field with the default variable
${currentFileURL}. This means the input for the transformation is taken from the currently edited file. You can modify
this value to other file path. This is the case of currently editing a section from a large document, and you want the
transformation to be performed on the main document, not the section. You can specify in this case either a full absolute
path: file:/c:/project/docbook/test.xml or a path relative to one of the editor variables, like the current
project file: ${pdu}/docbook/test.xml .

When the scenario applies to XSL files, the field XSL URL is containing ${currentFile}. Just like in the XML case,
you can specify here the path to a master stylesheet. The path can be configured using the editor variables or the custom
editor variable.

388 | Oxygen XML Editor | Transforming Documents

Figure 218:The Configure Transformation Dialog - FO Processor Tab

• Perform FO Processing - Enables or disables applying an FO processor (either the built-in Apache FOP engine or
an external engine defined in Preferences) during the transformation.

• XSLT result as input - The FO processor is applied to the result of the XSLT transformation defined on the XSLT
tab of the dialog.

• XML URL as input - The FO processor is applied to the input XML file.
• Method - The output format of the FO processing. Available options depend on the selected processor type.
• Processor - The FO processor, which can be the built-in Apache FOP processor or an external processor.

Figure 219:The Configure Transformation Dialog - Output Tab

• Prompt for file - At the end of the transformation a file browser dialog will be displayed for specifying the path and
name of the file which will store the transformation result.

• Save As - The path of the file where it will be stored the transformation result. The path can include special Oxygen
editor variables or custom editor variables.

Oxygen XML Editor | Transforming Documents | 389

• Open in browser - If this is checked Oxygen will open automatically the transformation result in a browser application
specific for the type of that result (HTML/XHTML, PDF, text).

• Saved file - When Open in browser is selected this button can be selected to specify that Oxygen should open
automatically at the end of the transformation the file specified in the Save As text field.

• Other location - When Open in browser is selected this button can be used to specify that Oxygen should not open
the file specified in the Save As text field, it should open the file specified in the text field of the Other location
radio button. The file path can include special Oxygen editor variables or custom editor variable.

• Open in editor - When this is checked the transformation result set in the Save As field is opened in a new editor
panel in Oxygen with the appropriate built-in editor type: if the result is an XML file it is opened with the built-in
XML editor, if it is an XSL-FO file it is opened with the built-in FO editor, etc.

• Show As XHTML - It is enabled only when Open in browser is disabled. If this is checked Oxygen will display
the transformation result in a built-in XHTML browser panel at the bottom of the Oxygen window.

Important: When transforming very large documents you should be aware that enabling this feature will result
in a very long time necessary for rendering the transformation result in the XHTML result viewer panel. This
drawback appears due to the built-in Java XHTML browser implementation. In this situations if you wish to
see the XHTML result of the transformation you should use an external browser by checking the Open in
browser checkbox.

• Show As XML - If this is checked Oxygen will display the transformation result in an XML viewer panel at the
bottom of the Oxygen window with syntax highlight specific for XML documents.

• Show As SVG - If this is checked Oxygen will display the transformation result in a SVG viewer panel at the bottom
of the Oxygen window by rendering the result as a SVG image.

• Image URLs are relative to - If Show As XHTML is checked this text field specifies the path for resolving image
paths contained in the transformation result.

XSLT Stylesheet Parameters

The global parameters of the XSLT stylesheet used in the transformation scenario are configured from the dialog available
from the Parameters button:

Figure 220: Configure parameters dialog

The table presents all the parameters of the XSLT stylesheet, all imported and included stylesheets and all additional
stylesheets with their current values. If a parameter value was not edited then the table presents its default value. The

390 | Oxygen XML Editor | Transforming Documents

bottom panel presents the default value of the parameter selected in the table, a description of the parameter if it is
available and the system ID of the stylesheet that declares it.

For setting the value of a parameter having a namespace, for example like:

<xsl:param name="p:param" xmlns:p="namespace">default</xsl:param>

use the following expression in the Name column of the Parameters dialog:

{namespace}param

If the XPath column is checked, the parameter value is evaluated as an XPath expression before starting the XSLT
transformation.

For example you can use expressions like:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XSL stylesheet location. You can use full paths or editor
variables like ${cfdu} (current file directory) to specify other locations: doc('${cfdu}/test.xml')//*

2. You cannot use XSLT Functions. Only the XPath functions are allowed.

The following actions are available for managing parameters:

• New - Adds a new parameter to the list.
• Edit - Edits the value of the selected parameter.
• Unset - Resets the selected parameter to its default value. Available only for parameters with set values.
• Delete - Removes the selected parameter from the list. It is enabled only for parameters added to the list with the

New button.

The editor variables displayed at the bottom of the dialog (${frameworks}, ${home}, ${cfd}, etc) can be used in the
values of the parameters to make the value independent of the location of the XSLT stylesheet or the XML document.

The value of a parameter can be entered at runtime if a value ask('user-message', param-type, 'default-value' ?) is used
as value of parameter in the Configure parameters dialog:

• ${ask('message')} - Only the message displayed for the user is specified.
• ${ask('message', generic, 'default')} - 'message' will be displayed for the user, the type is not

specified (the default is string), the default value will be 'default'.
• ${ask('message', password)} - 'message' will be displayed for the user, the characters typed will be

replaced with a circle character.
• ${ask('message', password, 'default')} - Same as above, default value will be 'default'.
• ${ask('message', url)} - 'message' will be displayed for the user, the type of parameter will be URL.
• ${ask('message', url, 'default')} - Same as above, default value will be 'default'.

Additional XSLT Stylesheets

The list of additional XSLT stylesheets can be edited in the dialog opened by the button Additional XSLT Stylesheets.

• Add - Adds a stylesheet in the Additional XSLT stylesheets list using a file browser dialog. You can type an editor
variable in the file name field of the browser dialog. The name of the stylesheet will be added in the list after the
current selection.

• New - Opens a dialog in which you can type the name of a stylesheet. The name is considered relative to the URL
of the current edited XML document. You can use editor variables in the name of the stylesheet. The name of the
stylesheet will be added in the list after the current selection.

Oxygen XML Editor | Transforming Documents | 391

• Remove - Deletes the selected stylesheet from the Additional XSLT stylesheets list.
• Open - Opens the selected stylesheet in a separate view.
• Up - Moves the selected stylesheet up in the list.
• Down - Moves the selected stylesheet down in the list.

This dialog allows the user to add additional XSLT stylesheets to the transformation.

The path specified in the URL text field can include special Oxygen editor variables.

XSLT/XQuery Extensions

The Edit Extensions dialog is used to specify the jars and classes containing extension functions called from the
XSLT/XQuery file of the current transformation scenario.

An extension function called from the XSLT or XQuery file of the current transformation scenario will be searched in
the specified extensions in the order of the list displayed in the dialog. For changing the order of the items the user must

select the item that must be moved to other position in the list and press the up and down buttons.

Creating a Transformation Scenario

Use the following procedure to create a transformation scenario.

1. Go to menu Document > Transformation > Configure Transformation Scenario (Ctrl+Shift+C) to open the
Configure Transformation dialog.

2. Click the Duplicate Scenario button of the dialog to create a copy of the current scenario.

3. Click in the Name field and type a new name.

4. Click OK or Transform Now to save the scenario.

ANT Transformations

The following options are available in the Options tab:

• Working directory - Path of the directory where results are stored.
• Build file - ANT script file.
• Build target - You can specify a build target to the ANT script file. By default no target is necessary and the default

init target is used.
• Additional arguments - Additional command-line arguments to be passed to the ANT transformation (for example

-verbose).
• Ant Home - Path to the custom ANT installation to run the transformation. By default it is the ANT installation

bundled with Oxygen.
• Java Home - You can specify a custom Java Virtual Machine to run the ANT transformation. By default it is the

Java Virtual Machine used by Oxygen.
• JVM Arguments - This parameter allows you to set specific parameters to the Java Virtual Machine used by ANT.

By default it is set to -Xmx256m which means the transformation process is allowed to use 256 megabytes of memory.
Sometimes, when performing a large DITA map transformation you may want to increase the memory allocated to
the Java Virtual Machine from the default value (256 MB) to a higher value, like 512 MB. In this way, you can avoid
running out of memory (OutOfMemoryError) when running and ANT process.

In the Parameters tab use the toolbar buttons to add, edit or remove transformation parameters.

Use the Output tab to set the file to open after the transformation has finished. Also you can choose what application
is used for opening the output file.

392 | Oxygen XML Editor | Transforming Documents

Sharing the Transformation Scenarios

The transformation scenarios can be shared with other users by saving them at project level. In the upper part of the
dialog showing the list of scenarios you will find two radio buttons controlling where the scenarios are stored: Global
Scenarios and Project Scenarios.

Figure 221:Transformation Scenario List Dialog

Selecting Global Scenarios ensures that the scenarios are saved in the user home directory.

After changing the selection to Project Scenarios, the scenario list will be stored in the project file. If your project is
saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc..) then your team can use the scenarios you
defined.

Predefined scenarios are presented according to the current document's detected type. The screenshot above shows all

default scenarios for a DocBook 4 document and one custom transformation scenario. The key symbol before the
scenario name indicates that the scenario can only be modified from the Document Type Association options page.

Other preferences can also be stored at the project level. For more information, see the Preference Sharing section.

Transformation Scenarios View

The list of transformation scenarios may be easier to manage for some users as a list presented in a dockable and floating
view called Transformation Scenarios.

Oxygen XML Editor | Transforming Documents | 393

Figure 222:The Scenarios view

The actions available on the right click menu allow the same operations as in the dialog Configure Transformation
Scenario:

• Apply - Runs the current transformation scenario that is selected in the list of scenarios.
• Debug Scenario - Switches to the Debugger perspective and initialize it with the parameters from the scenario:

the XML input, the XSLT or XQuery input, the transformation engine, the XSLT parameters.
• New - Creates a new transformation scenario.
•

Duplicate - Adds a new scenario to the list that is a duplicate of the current scenario. It is useful for creating a
new scenario that is the same as an existing one but needs some changes.

• Edit - Opens the dialog for editing the parameters of a transformation scenario.
• Remove - Removes the current scenario from the list. This action is also available on the Delete key.
• Show all scenarios / Show current editor scenarios - A toggle action that switches between two modes: show

/ hide the scenarios that are specified in the document type corresponding to the current editor. All global scenarios
(the scenarios that are not specified in a document type) are always displayed in the view regardless of the state of
this action.

XSLT Processors

This section explains how to configure an XSLT processor and extensions for such a processor in Oxygen.

Supported XSLT Processors

Oxygen comes with the following XSLT processors:

• Xalan 2.7.1 - Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or other XML
document types. It implements XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Version
1.0.

• Saxon 6.5.5 - Saxon 6.5.5 is an XSLT processor, which implements the Version 1.0 XSLT and XPath with a number
of powerful extensions. This version of Saxon also includes many of the new features that were first defined in the
XSLT 1.1 working draft, but for conformance and portability reasons these are not available if the stylesheet header
specifies version="1.0".

• Saxon 9.3.0.5 Home Edition (HE), Professional Edition (PE) - Saxon-HE/PE implements the basic conformance
level for XSLT 2.0 and XQuery 1.0. The term basic XSLT 2.0 processor is defined in the draft XSLT 2.0 specifications:

394 | Oxygen XML Editor | Transforming Documents

http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sf.net/

it is a conformance level that requires support for all features of the language other than those that involve schema
processing. The HE product remains open source, but removes some of the more advanced features that were present
in Saxon-PE.

• Saxon 9.3.0.5 Enterprise Edition (EE) - Saxon EE is the schema-aware edition of Saxon and it is one of the built-in
processors of Oxygen. Saxon EE includes an XML Schema processor, and schema-aware XSLT, XQuery, and XPath
processors.

The validation in schema aware transformations is done according to the W3C XML Schema 1.0 specification or
according to the W3C XML Schema 1.1 one. This can be configured in Preferences.

Besides the above list Oxygen supports the following processors:

• Xsltproc (libxslt) - Libxslt is the XSLT C library developed for the Gnome project. Libxslt is based on libxml2
the XML C library developed for the Gnome project. It also implements most of the EXSLT set of processor-portable
extensions functions and some of Saxon's evaluate and expressions extensions. The libxml2 version included in
Oxygen is 2.7.6 and the libxslt version is 1.1.26

Oxygen uses Libxslt through its command line tool (Xsltproc). The XSLT processor is included into the distribution
kit of the stand-alone version for Windows and Mac OS X. Because there are differences between different Linux
distributions, on Linux you must install Libxslt on your machine as a separate application and set the PATH
variable to contain the Xsltproc executable.

The Xsltproc processor can be configured from the XSLTPROC options page.

Caution: Known problem: file paths containing spaces are not handled correctly in the LIBXML processor.
For example the built-in XML catalog files of the predefined document types (DocBook, TEI, DITA, etc) are
not handled by LIBXML if Oxygen is installed in the default location on Windows (C:\Program Files) because
the built-in XML catalog files are stored in the frameworks subdirectory of the installation directory which
in this case contains at least a space character.

• MSXML 3.0/4.0 - MSXML 3.0/4.0 is available only on Windows 2000, Windows NT and Windows XP platforms.
It can be used for transformation and validation of XSLT stylesheets .

Oxygen use the Microsoft XML parser through its command line tool msxsl.exe.

Because msxsl.exe is only a wrapper, Microsoft Core XML Services (MSXML) must be installed on the computer
otherwise you get an corresponding warning. You can get the latest Microsoft XML parser from Microsoft web-site

• MSXML .NET - MSXML .NET is available only on Windows NT4, Windows 2000 and Windows XP platforms. It
can be used for transformation and validation of XSLT stylesheets .

Oxygen performs XSLT transformations and validations using .NET Framework's XSLT implementation
(System.Xml.Xsl.XslTransform class) through the nxslt command line utility. The nxslt version included
in Oxygen is 1.6.

You should have the .NET Framework version 1.0 already installed on your system otherwise you get this warning:
MSXML.NET requires .NET Framework version 1.0 to be installed. Exit code: 128

You can get the .NET Framework version 1.0 from the Microsoft website

• .NET 1.0 - A transformer based on the System.Xml 1.0 library available in the .NET 1.0 and .NET 1.1 frameworks
from Microsoft (http://msdn.microsoft.com/xml/). It is available only on Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed on your system otherwise you get this
warning: MSXML.NET requires .NET Framework version 1.0 to be installed. Exit
code: 128

You can get the .NET Framework version 1.0 from the Microsoft website

• .NET 2.0 - A transformer based on the System.Xml 2.0 library available in the .NET 2.0 framework from Microsoft.
It is available only on Windows.

You should have the .NET Framework version 2.0 already installed on your system otherwise you get this warning:
MSXML.NET requires .NET Framework version 2.0 to be installed. Exit code: 128

Oxygen XML Editor | Transforming Documents | 395

http://www.saxonica.com/
http://xmlsoft.org/XSLT/
http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/

You can get the .NET Framework version 2.0 from the Microsoft website

The button Transformation options available on the Transformation toolbar allows quick access to the XSLT
options in the Oxygen user preferences.

Configuring Custom XSLT Processors

You can configure other XSLT transformation engines than the ones which come with the Oxygen distribution. Such an
external engine can be used for XSLT transformations within Oxygen, in the Editor perspective, and is available in the
list of engines in the dialog for editing transformation scenarios . However it cannot be used in the XSLT Debugger
perspective.

The output messages of a custom processor are displayed in an output view at the bottom of the Oxygen window. If an
output message follows the format of an Oxygen linked message then a click on the message in the output view highlights
the location of the message in an editor panel containing the file referred in the message.

Configuring the XSLT Processor Extensions Paths

The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike a literal result
element, which the stylesheet simply transfers to the result tree, an extension element performs an action. The extension
is usually used because the XSLT stylesheet fails in providing adequate functions to the user for accomplishing a more
complex task.

The DocBook extensions for Xalan and Saxon are included in the
[Oxygen-install-directory]\frameworks\docbook\xsl\extensions folder.

Samples on how to use extensions can be found at:

• for Xalan - http://xml.apache.org/xalan-j/extensions.html
• for Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html
• for Saxon 9.3.0.5 - http://www.saxonica.com/documentation/extensibility/intro.xml

In order to set an XSLT processor extension (a directory or a jar file), you have to use the Extensions button of the
scenario edit dialog. The old way of setting an extension (using the parameter -Dcom.oxygenxml.additional.classpath)
was deprecated and you should use the extension mechanism of the XSLT transformation scenario.

XSL-FO Processors

This section explains how to apply XSL-FO processors when transforming XML documents to various output formats
in Oxygen.

The Built-in XSL-FO Processor

The Oxygen installation package is distributed with the Apache FOP that is a Formatting Objects processor for rendering
your XML documents to PDF. FOP is a print and output independent formatter driven by XSL Formatting Objects.
FOP is implemented as a Java application that reads a formatting object tree and renders the resulting pages to a specified
output.

To include PNG images in the final PDF document you need the JIMI or JAI libraries. For TIFF images you need the
JAI library. For PDF images you need the fop-pdf-images library. These libraries are not bundled with Oxygen.
Using them is as easy as downloading them and creating a external FO processor based on the built-in FOP libraries
and the extension library. The external FO processor created in Preferences will have a command line like:

java -cp "${oxygenInstallDir}/lib/xercesImpl.jar:
${oxygenInstallDir}/lib/fop.jar:${oxygenInstallDir}/lib/
avalon-framework-4.2.0.jar:
${oxygenInstallDir}/lib/batik-all-1.7.jar:${oxygenInstallDir}/lib/

396 | Oxygen XML Editor | Transforming Documents

http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://xml.apache.org/xalan-j/extensions.html
http://saxon.sourceforge.net/saxon6.5.5/extensions.html
http://www.saxonica.com/documentation/extensibility/intro.xml
http://xml.apache.org/fop/index.html
http://java.sun.com/products/jimi/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://www.jeremias-maerki.ch/download/fop/pdf-images/

commons-io-1.3.1.jar:
${oxygenInstallDir}/lib/xmlgraphics-commons-1.3.1.jar:
${oxygenInstallDir}/lib/commons-logging-1.0.4.jar:
${oxygenInstallDir}/lib/saxon9ee.jar:${oxygenInstallDir}/lib/
saxon9-dom.jar:
${oxygenInstallDir}/lib/xalan.jar:${oxygenInstallDir}/lib/
serializer.jar:
${oxygenInstallDir}/lib/resolver.jar:${oxygenInstallDir}/lib/
fop-pdf-images-1.3.jar:
${oxygenInstallDir}/lib/PDFBox-0.7.3.jar"
org.apache.fop.cli.Main -fo ${fo} -${method} ${out}

You need to add to the classpath JimiProClasses.zip for JIMI and jai_core.jar, jai_codec.jar and
mlibwrapper_jai.jar for JAI. For the JAI package you can include the directory containing the native libraries
(mlib_jai.dll and mlib_jai_mmx.dll on Windows) in the PATH system variable.

The Mac OS X version of the JAI library can be downloaded from
http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html. In order to use it, install
the downloaded package.

Other FO processors can be configured in the Preferences dialog.

Add a Font to the Built-in FOP - The Simple Version

If the font that must be set to Apache FOP is one of the fonts that are installed in the operating system you should follow
the next steps for creating and setting a FOP configuration file that looks for the font that it needs in the system fonts.
It is a simplified version of the procedure for setting a custom font in Apache FOP.

1. Register the font in FOP configuration. (not necessary in case of DITA PDF transformations, see next step)

a) Create a FOP configuration file that specifies that FOP should look for fonts in the installed fonts of the operating
system.

<fop version="1.0">
 <renderers>
 <renderer mime="application/pdf">
 <fonts>
 <auto-detect/>
 </fonts>
 </renderer>
 </renderers>
</fop>

b) Set the FOP configuration file in Preferences.

Go to menu Options > Preferences > XML > XSLT/FO/XQuery > FO Processors and enter the path of the
FOP configuration file in the Configuration file for the built-in FOP text field.

2. Set the font on the document content.

This is done usually with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.

• For DocBook documents you can start with the predefined scenario called DocBook PDF, edit the XSLT parameters
and set the font name (in our example the font family name is Arial Unicode MS) to the parameters
body.font.family and title.font.family.

• For TEI documents you can start with the predefined scenario called TEI PDF, edit the XSLT parameters and
set the font name (in our example Arial Unicode MS) to the parameters bodyFont and sansFont.

• For DITA transformations using DITA-OT you should use an IDIOM FOP transformation and modify the
following two files:

• ${frameworks}/dita/DITA-OT/demo/fo/cfg/fo/font-mappings.xml - the font-face
element included in each element physical-font having the attribute char-set="default"
must contain the name of the font (Arial Unicode MS in our example)

Oxygen XML Editor | Transforming Documents | 397

http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html

• ${frameworks}/dita/DITA-OT/demo/fo/fop/conf/fop.xconf - an element auto-detect
must be inserted in the element fonts which is inside the element renderer having the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .
 <fonts>
 <auto-detect/>
 </fonts>
 . . .
</renderer>

Add a Font to the Built-in FOP

If an XML document is transformed to PDF using the built-in Apache FOP processor but it contains some Unicode
characters that cannot be rendered by the default PDF fonts then a special font that is capable to render these characters
must be configured and embedded in the PDF result.

Important: If the special font that must be set to Apache FOP is installed in the operating system there is a simple
way of telling FOP to look for the font. See the simplified procedure for adding a font to FOP.

1. Locate the font.

First, you have to find out the name of a font that has the glyphs for the special characters you used. One font that
covers the majority of characters, including Japanese, Cyrillic and Greek, is Arial Unicode MS.

On Windows the fonts are located into the C:\Windows\Fonts directory. On Mac they are placed in
/Library/Fonts. To install a new font on your system is enough to copy it in the Fonts directory.

2. Generate a font metrics file from the font file.

a) Open a terminal.
b) Change the working directory to the Oxygen install directory.
c) Create the following script file in the Oxygen installation directory.

For Mac OS X and Linux create a file ttfConvert.sh:

#!/bin/sh
export LIB=lib
export CMD=java -cp
"$LIB/fop.jar:$LIB/avalon-framework-4.2.0.jar:$LIB/xercesImpl.jar"
export CMD=$CMD org.apache.fop.fonts.apps.TTFReader
export FONT_DIR='/Library/Fonts'
$CMD $FONT_DIR/Arialuni.ttf Arialuni.xml

For Windows create a file ttfConvert.bat:

set LIB=lib
set CMD=java -cp
"%LIB%\fop.jar;%LIB%\avalon-framework-4.2.0.jar;%LIB%\xercesImpl.jar"
set CMD=%CMD% org.apache.fop.fonts.apps.TTFReader
set FONT_DIR=C:\Windows\Fonts
%CMD% %FONT_DIR%\Arialuni.ttf Arialuni.xml

The relative paths specified in the file are relative to the Oxygen installation directory so if you decide to create
it in other directory you have to change the file paths.

The FONT_DIR can be different on your system. Make sure it points to the correct font directory. If the Java
executable is not in the PATH you will have to specify the full path of the executable.

If the font has bold and italic variants, you will have to convert those too. For this you add two more lines to the
script file:

398 | Oxygen XML Editor | Transforming Documents

• for Mac OS X and Linux:

$CMD $FONT_DIR/Arialuni-Bold.ttf Arialuni-Bold.xml
$CMD $FONT_DIR/Arialuni-Italic.ttf Arialuni-Italic.xml

• for Windows:

%CMD% %FONT_DIR%\Arialuni-Bold.ttf Arialuni-Bold.xml
%CMD% %FONT_DIR%\Arialuni-Italic.ttf Arialuni-Italic.xml

d) Execute the script.

On Linux and Mac OS X you should execute the command sh ttfConvert.sh from the command line. On
Windows you should run the command ttfConvert.bat from the command line or double click on the file
ttfConvert.bat.

3. Register the font in FOP configuration. (not necessary in case of DITA PDF transformations, see next step)

a) Create a FOP configuration file that specifies the font metrics file for your font.

<fop version="1.0">
 <base>./</base>
 <font-base>file:/C:/path/to/FOP/font/metrics/files/</font-base>
 <source-resolution>72</source-resolution>
 <target-resolution>72</target-resolution>
 <default-page-settings height="11in" width="8.26in"/>
 <renderers>
 <renderer mime="application/pdf">
 <filterList>
 <value>flate</value>
 </filterList>
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 </renderer>
 </renderers>
</fop>

The embed-url attribute points to the font file to be embedded. You have to specify it using the URL convention.
The metrics-url attribute points to the font metrics file with a path relative to the base element. The triplet
refers to the unique combination of name, weight, and style (italic) for each variation of the font. In our case is
just one triplet, but if the font had variants, you would have to specify one for each variant. Here is an example
for Arial Unicode if it had italic and bold variants:

<fop version="1.0">
 ...
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 <font metrics-url="Arialuni-Bold.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Bold.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="bold"/>

 <font metrics-url="Arialuni-Italic.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Italic.ttf">
 <font-triplet name="Arialuni" style="italic"
 weight="normal"/>

Oxygen XML Editor | Transforming Documents | 399

 </fonts>
 ...
</fop>

More details about the FOP configuration file are available on
http://xmlgraphics.apache.org/fop/0.93/configuration.htmlthe FOP website.

b) Set the FOP configuration file in Preferences.

Go to menu Options > Preferences > XML > XSLT/FO/XQuery > FO Processors and enter the path of the
FOP configuration file in the Configuration file for the built-in FOP text field.

4. Set the font on the document content.

This is done usually with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.

For DocBook documents you can start with the predefined scenario called DocBook PDF, edit the XSLT parameters
and set the font name (in our example Arialuni) to the parameters body.font.family and title.font.family.
For TEI documents you can start with the predefined scenario called TEI PDF, edit the XSLT parameters and set
the font name (in our example Arialuni) to the parameters bodyFont and sansFont.
For DITA transformations using DITA-OT you should use an IDIOM FOP transformation and modify the following
two files:

• ${frameworks}/dita/DITA-OT/demo/fo/cfg/fo/font-mappings.xml - the font-face
element included in each element physical-font having the attribute char-set="default" must
contain the name of the font (Arialuni in our example)

• ${frameworks}/dita/DITA-OT/demo/fo/fop/conf/fop.xconf - an element font must be
inserted in the element fonts which is inside the element renderer having the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 . . .
</renderer>

XProc Transformations

This section explains how to configure and run XProc transformations in Oxygen.

XProc Transformation Scenario

A sequence of transformations described by an XProc script can be executed with an XProc transformation scenario. In
the scenario the parameters of the transformation are specified:

• the URL of the XProc script
• the XProc engine
• the input ports
• the output ports

On the XProc tab of the scenario edit dialog it is selected the URL of the XProc script and the XProc engine. The engine
can be the built-in one (Calabash) or a custom engine configured in the Preferences dialog.

400 | Oxygen XML Editor | Transforming Documents

http://xmlgraphics.apache.org/fop/0.93/configuration.html

On the Inputs tab of the dialog is configured each port that is used in the XProc script for reading input data. Each input
port has a name that is assigned in the XProc script and that is used for identifying the port in the list from the Port
combo box. The XProc engine will read data from the URLs specified in the URLs list. The built-in editor variables
and the custom editor variables can be used for specifying a URL.

On the Parameters tab you can specify the parameters available on each port.

Each port where is sent the output of the XProc transformation is associated with a URL on the Outputs tab of the
dialog. The built-in editor variables and the custom editor variables can be used for specifying a URL.

The result of the XProc transformation can be displayed as a sequence in an output view with two sides: a list with the
output ports on the left side and the content of the document(s) that correspond to the output port selected on the left
side. If the option Open in editor is selected, the XProc transformation result will be opened automatically in an editor
panel. If the option Open in browser is selected, you can specify a file to be opened in the default browser at the end
of the XProc transformation.

Figure 223: XProc Transformation results view

Integration of an External XProc Engine

The Javadoc documentation of the XProc API is available for download in the following zip file: xprocAPI.zip. In
order to create an XProc integration project the following requirements must be fulfilled:

1. Take the oxygen.jar from [Oxygen-install-folder]/lib and put it in the lib folder of your project.

2. Implement the ro.sync.xml.transformer.xproc.api.XProcTransformerInterface interface.
The Javadoc documentation for the XProc API is available on our website: xprocAPI.zip.

3. Create a new Java archive (jar) from the classes you created.

4. Create a new engine.xml file according with the engine.dtd file. The attributes of the engine tag have the
following meanings:

1. name - The name of the XProc engine.
2. description - A short description of the XProc engine.
3. class - The complete name of the class that implements

ro.sync.xml.transformer.xproc.api.XProcTransformerInterface.
4. version - The version of this integration.
5. engineVersion - The version of the integrated engine.
6. vendor - The name of the vendor / implementor.
7. supportsValidation - true if the engine supports validation, false otherwise.

The engine tag has only one child, runtime. The runtime tag contains several library elements who's
attribute name contains the relative or absolute location of the libraries necessary to run this integration.

5. Create a new folder with the name of the integration in the [Oxygen-install-folder]/lib/xproc.

6. Put there the engine.xml, and all the libraries necessary to run properly the new integration.

Oxygen XML Editor | Transforming Documents | 401

http://www.oxygenxml.com/InstData/Editor/Developer/xprocAPI.zip
http://www.oxygenxml.com/InstData/Editor/Developer/xprocAPI.zip

Chapter

11

Querying Documents

This chapter shows how to query XML documents in Oxygen with XPath
expressions and with the XQuery language.

Topics:

• Running XPath Expressions
• Working with XQuery

Running XPath Expressions

This section explains possible ways of running an XPath expression on an XML document.

What is XPath

XPath is a language for addressing specific parts of an XML document. XPath, like the Document Object Model (DOM),
models an XML document as a tree of nodes. An XPath expression is a mechanism for navigating through and selecting
nodes from the XML document. An XPath expression is in a way analogous to a Structured Query Language (SQL)
query used to select records from a database.

XPath models an XML document as a tree of nodes. There are different types of nodes, including element nodes, attribute
nodes and text nodes. XPath defines a way to compute a string-value for each type of node.

XPath defines a library of standard functions for working with strings, numbers and boolean expressions.

Some examples:

• child::* - Selects all children of the root node.
• .//name - Selects all elements having the name "name", descendants of the current node.
• /catalog/cd[price>10.80] - Selects all the cd elements that have a price element with

a value larger than 10.80.

To find out more about XPath, the following URL is recommended: http://www.w3.org/TR/xpath.

Oxygen's XPath Console

To use XPath effectively requires at least an understanding of the XPath Core Function Library. If you have this
knowledge the Oxygen XPath expression field part of the current editor toolbar can be used to aid you in XML document
development.

In Oxygen a XPath 1.0 or XPath 2.0 expression is typed and executed on the current document from the XPath console
available on the XPath toolbar for every open XML document.. Both XPath 2.0 basic and XPath 2.0 schema aware
expressions can be executed in the XPath console. XPath 2.0 schema aware also takes into account the Saxon EE XML
Schema version option.

The content completion assistant that helps in entering XPath expressions in attributes of XSLT stylesheets elements
is also available in the XPath console and offers always proposals dependent of the current context of the cursor inside
the edited document. The set of XPath functions proposed by the assistant depends on the XPath version selected from
the drop-down menu of the XPath button (1.0 or 2.0).

In the following figure the cursor is on a person element and the content completion assistant offers all the child
elements of the person element and all XPath 2.0 functions:

Figure 224: Content Completion in the XPath console

The evaluation of the XPath expression tries to resolve the locations of documents referred in the expression through
the XML catalogs which are configured in Preferences and the current XInclude preferences. An example is evaluating

404 | Oxygen XML Editor | Querying Documents

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath#corelib

the collection(URIofCollection) function (XPath 2.0). If you need to resolve the references from the files
returned by the collection() function with an XML catalog set up in the Oxygen preferences you have to specify
the class name of the XML catalog enabled parser for parsing these collection files. The class name is
ro.sync.xml.parser.CatalogEnabledXMLReader and you specify it like this:

let $docs := collection(iri-to-uri(
 "file:///D:/temp/test/XQuery-catalog/mydocsdir?recurse=yes;select=*.xml;
 parser=ro.sync.xml.parser.CatalogEnabledXMLReader"))

If you want to see in the XPath console the XPath expression at the current cursor position when navigating in the
document you have to check the button XPath update on caret move.

The results of an XPath query are returned in the message panel. Clicking a record in the result list highlights the nodes
within the text editor panel with a character level precision. Results are returned in a format that is a valid XPath
expression:

- [FileName.xml] /node[value]/node[value]/node[value] -

Figure 225: XPath results highlighted in editor panel with character precision

When using the grid editor, clicking a result record will highlight the entire node.

Oxygen XML Editor | Querying Documents | 405

Figure 226: XPath results highlighted in the Grid Editor

When the limit of long expressions is reached (60 characters) a dialog pops up and offers to switch the focus to the
XPath builder view. This is a view specially designed to assist you with typing and testing complex XPath 1.0 / 2.0
expressions.

XPath Utilization with DocBook DTD

The following examples are taken from a DocBook book based on the DocBook XML DTD. The
book contains a number of chapters. DocBook defines that chapters have a <chapter> start tag
and a matching </chapter> end tag to close the element. To return all the chapter nodes of the
book you should enter //chapter into the XPath expression field then press (Enter). This will
return all the chapter nodes of the DocBook book, in the message panel. If your book has six
chapters, they will be six records in the result list. Each record when clicked will locate and highlight
the chapter and all sibling nodes contained between the start and end tags of the chapter.

If you want to find all example nodes contained in the section 2 nodes of a DocBook XML
document you should use the following XPath expression:
//chapter/sect1/sect2/example. If an example node is found in any section 2
node, a result will be returned to the message panel. For each occurrence of the element node a
record will be created in the result list.

For example one of the results of the previous XPath query on the file oxygen.xml is:

- [oxygen.xml] /chapter[1]/sect1[3]/sect2[7]/example[1]

which means that in the file oxygen.xml, first chapter, third section level 1, seventh section level
2, the example node found is the first in the section.

Important: If the document defines a default namespace then Oxygen will bind this namespace to the first free
prefix from the list: default, default1, default2, etc. For example if the document defines the default
namespace xmlns="something" and the prefix default is not associated with a namespace then you can
match tags without prefix in a XPath expression typed in the XPath console by using the prefix default. For
example to find all the level elements when the root element defines a default namespace you should execute in
the XPath console the expression: //default:level.

406 | Oxygen XML Editor | Querying Documents

To define default mappings between prefixes that can be used in the XPath console and namespace URIs go to the
XPath Options user preferences panel and enter the mappings in the Default prefix-namespace mappings table. The
same preferences panel allows also the configuration of the default namespace used in XPath 2.0 expressions entered
into the XPath toolbar and the creation of different message panels for XPath queries executed on different XML
documents.

To apply a XPath expression relative to the element on which the caret is positioned use the following actions:

• Document > XML Document > Copy XPath (Ctrl+Alt+.) (also available on the context menu of the main editor
panel) to copy the XPath expression of the current element or attribute to the clipboard

• the Paste action of the contextual menu of the XPath console to paste this expression in the console
• add your relative expression in the console and execute the resulting complete expression

The XPath Builder View

The XPath Builder view allows you can compose complex XPath expressions with the help of XPath content
completion assistant and color syntax highlight support. The view is opened from Window > Show View > XPath
Builder menu action.

Figure 227:The XPath Builder View

The Execute button runs the expression against the edited document and takes into account the value selected in the
combo box with the XPath version number: 1.0 or 2.0. Both XPath 2.0 basic and XPath 2.0 schema aware expressions

can be evaluated. The XPath preferences panel is accessible from the XPath Options shortcut button near the
Execute button. Oxygen keeps a history list of the XPath expressions executed in the current session, so you can reuse
them to compose new ones.

The XPath update on caret move button enables the XPath Builder view to display the XPath expression at the
current cursor position when navigating in the document.

The evaluation of the XPath expression tries to resolve the locations of documents referred in the expression through
the XML catalogs which are configured in Preferences pages and the current XInclude preferences. For example, the
preferences are used when evaluating the collection(URIofCollection) function (XPath 2.0).

The results of the XPath query are displayed in the same message panel as for the XPath console and are computed with
the same character level precision.

The usual edit actions Cut, Copy, Paste, Select All, Undo, Redo are available in the popup menu of the top part of the
view, where XPath expressions are edit. For the history list area of the view the popup menu contains two actions:

• Execute - Executes again the expression selected in the list.
• Remove - Removes the selected expression from the list.

Oxygen XML Editor | Querying Documents | 407

Working with XQuery

This section explains how to edit and run XQuery queries in Oxygen.

What is XQuery

XQuery is the query language for XML and is officially defined by a W3C Recommendation document. The many
benefits of XQuery include:

• XQuery allows you to work in one common model no matter what type of data you're working with: relational,
XML, or object data.

• XQuery is ideal for queries that must represent results as XML, to query XML stored inside or outside the database,
and to span relational and XML sources.

• XQuery allows you to create many different types of XML representations of the same data.
• XQuery allows you to query both relational sources and XML sources, and create one XML result.

Syntax Highlight and Content Completion

To create a new XQuery document select File > New (Ctrl+N) and when the New dialog appears select XQuery entry.

In the XQuery document Oxygen provides syntax highlight for keywords and all known XQuery functions and operators.
Also for these there is available a content completion component that is activated with the (Ctrl-Space) shortcut. The
functions and operators are presented together with a comment about parameters and functionality. For some supported
database engines like eXist and Berkeley DB, the content completion lists contain the XQuery functions implemented
by that engine. The XQuery file must have an associated transformation scenario which uses one of the specified engines
or the validation uses one of these engines.

The extension functions built in the Saxon product are available on content completion if one of the following conditions
are true:

• the edited file has a transformation scenario associated that uses as transformation engine Saxon 9.3.0.5 PE or Saxon
9.3.0.5 EE

• the edited file has a validation scenario associated that use as validation engine Saxon 9.3.0.5 PE or Saxon 9.3.0.5
EE

• the validation engine specified in Preferences is Saxon 9.3.0.5 PE or Saxon 9.3.0.5 EE.

If the Saxon namespace (http://saxon.sf.net) is mapped to a prefix this prefix is used when the functions are presented,
otherwise the default prefix for the Saxon namespace (saxon) is used.

If you want to use a function from a namespace mapped to a prefix, just type that prefix and the content completion will
display all the XQuery functions from that namespace. The XQuery functions from default namespace offered by content
completion are prefixed if the default namespace is mapped to a prefix, otherwise is displayed just the name of this.

The content completion popup window presents all the variables and functions from both the edited XQuery file and its
imports.

Figure 228: XQuery Content Completion

408 | Oxygen XML Editor | Querying Documents

http://www.w3.org/TR/xquery/
http://saxon.sf.net/

XQuery Outline View

The XQuery document structure is presented in the XQuery Outline view. The outline tree presents the list of all the
components (namespaces, imports, variables, and functions) from both the edited XQuery file and its imports. It allows
a quick access to a component by knowing its name. It is opened from menu Window > Show View > Outline .

Figure 229: XQuery Outline View

The following actions are available in the Settings menu on the Outline view's toolbar:

• Selection update on caret move - Allows a synchronization between Outline view and source document. The
selection in the Outline view can be synchronized with the caret's moves or the changes in the XQuery editor.
Selecting one of the components from the Outline view also selects the corresponding item in the source document.

• Sort - Allows you to sort alphabetically the XQuery components.
• Show all components - Displays all components that were collected starting from the current file. This option is set

by default.
• Show local components - Displays components defined in the current file only.
• Group by location/namespace/type - Allows you to group the components by location, namespace, and type. When

grouping by namespace, the main XQuery module namespace is the first presented in the Outline view.

If you know the component name, you can search it in the Outline view by typing its name in the filter text field from
the bottom of the view or directly on the tree structure. When you type the component name in the filter text field you
can switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch from
tree structure to the filter text field, you can use (Tab), (Shift-Tab).

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is searched as a partial match (like *textToFind*).

Oxygen XML Editor | Querying Documents | 409

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

The XQuery Input View

A node can be dragged and dropped in the editor area for quickly inserting doc() or other XQuery expressions.

Figure 230: XQuery Input view

Create FLWOR by drag and drop

For the following XML documents:

 <movies>
 <movie id="1">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 <movie id="2">
 <title>Taxi Driver</title>
 <year>1976</year>
 </movie>
 </movies>

and

 <reviews>
 <review id="100" movie-id="1">
 <rating>5</rating>
 <comment>It is made after a great Stephen King
 book.
 </comment>
 <author>Paul</author>
 </review>
 <review id="101" movie-id="1">
 <rating>3</rating>
 <comment>Tom Hanks does a really nice
acting.</comment>
 <author>Beatrice</author>
 </review>
 <review id="104" movie-id="2">
 <rating>4</rating>
 <comment>Robert De Niro is my favorite
actor.</comment>
 <author>Maria</author>

410 | Oxygen XML Editor | Querying Documents

 </review>
 </reviews>

and the following XQuery:

 let $review := doc("reviews.xml")
 for $movie in doc("movies.xml")/movies/movie
 let $movie-id := $movie/@id
 return
 <movie id="{$movie/@id}">
 {$movie/title}
 {$movie/year}
 <maxRating>
 {

 }
 </maxRating>
 </movie>

if you drag the rating element and drop between the braces a popup menu will be displayed.

Figure 231: XQuery Input drag and drop popup menu

Select FLWOR rating and the result document will be:

Figure 232: XQuery Input drag and drop result

XQuery Validation

With Oxygen you can validate your documents before using them in your transformation scenarios. The validation uses
the Saxon 9.3.0.5 PE processor or the 9.3.0.5 EE, IBM DB2, eXist, Software AG Tamino, Berkeley DB XML or
Documentum xDb (X-Hive/DB) 10 if you installed them. Also any XQuery processor that offers an XQJ API
implementation can be used. This is in conformance with the XQuery Working Draft. The processor is used in two cases:
validation of the expression and execution. Although the execution implies a validation, it is faster to syntactically check
the expression without executing it. The errors that occurred in the document are presented in the messages view at the
bottom of editor window, with a full description message. As with all error messages, if you click on one entry, the line
where the error appeared is highlighted.

Oxygen XML Editor | Querying Documents | 411

http://www.w3.org/TR/xquery/

Figure 233: XQuery Validation

Please note that if you choose a processor that doesn't support XQuery validation you will receive a warning when trying
to validate.

The Validate toolbar provides a button Validation options for quick access to the XQuery options in the Oxygen
user preferences.

Other XQuery Editing Actions

The XQuery editor type offers a reduced version of the popup menu available in the XML editor type, that means:

• the split actions,
• the folding actions
• the edit actions
• a part of the source actions:

• To lower case
• To upper case
• Capitalize lines

• open actions:

• Open file at Caret
• Open file at Caret in System Application

Transforming XML Documents Using XQuery

XQueries are very similar to the XSL stylesheets in the sense they both are capable of transforming an XML input into
another format. You specify the input URL when you define the transformation scenario. The result can be saved and
opened in the associated application. You can even run a FO processor on the output of an XQuery. The transformation
scenarios may be shared between many XQuery files, are exported at the same time with the XSLT scenarios and can
be managed in the dialog Configure Transformation Scenario or in the Scenarios view. The transformation performed
can be based on the XML document specified in the XML URL field, or, if this field is empty, the documents referred
from the query expression are used instead. The parameters of XQuery transforms must be set in the Parameters dialog.
Parameters that are in a namespace must be specified using the qualified name, for example a param parameter in the
http://www.oxygenxml.com/ns namespace must be set with the name {http://www.oxygenxml.com/ns}param.

412 | Oxygen XML Editor | Querying Documents

The transformation uses the processor Saxon 9.3.0.5 HE, Saxon 9.3.0.5 PE, Saxon 9.3.0.5 EE or a database connection
(details can be found in the Working with Databases chapter - in the XQuery transformation section) or any XQuery
processor that provides an XQJ API implementation.

The Saxon 9.3.0.5 EE processor supports also XQuery 1.1 transformations. If the option Enable XQuery 1.1 support
is enabled Saxon EE runs an XQuery transformation as an XQuery 1.1 one.

XQJ Transformers

This section describes the procedures necessary to apply before running an XQJ transformation.

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming XML
documents.

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select XQuery API for Java(XQJ) in the Type combo box.

5. Press the Add button to add XQJ API specific files.

You can manage the driver files using the Add, Remove, Detect and Stop buttons.

Oxygen will detect any implementation of javax.xml.xquery.XQDataSource and present it in Driver class
field.

6. Select the most suited driver in the Driver class combo box.

7. Click the OK button to finish the data source configuration.

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Connections panel.

3. Enter a unique name for this connection.

4. Select one of the previously configured XQJ data sources in the Data Source combo box.

5. Fill-in the connection details.

The properties presented in the connection details table are automatically detected depending on the selected data
source.

6. Click the OK button.

Display Result in Sequence View

The result of an XQuery executed on a database can be very large and sometimes only a part of the full result is needed.
For avoiding the long time necessary for fetching the full result the Evaluate as sequence option of the XQuery
transformation scenario should be used. This option fetches only the first chunk of the result and the user decides if he
wants to fetch the next chunk after looking at the first chunk in the Sequence result view. The size of a chunk can be
set with a user option.

The Evaluate as sequence option of the XQuery scenario must be selected in the Output tab of the dialog for editing
the transformation scenario.

Oxygen XML Editor | Querying Documents | 413

Figure 234:The XQuery transformation result displayed in Sequence view

A chunk of the XQuery transformation result is displayed in the Sequence view.

Figure 235:The XQuery transformation result displayed in Sequence view

Advanced Saxon HE/PE/EE Transform Options

The XQuery transformation scenario allows configuring advanced options specific for the Saxon HE (Home Edition) /
PE (Professional Edition) / EE (Enterprise Edition) engine. They are the same options as the ones set in the user
preferences but they are configured as a specific set of transformation options for each transformation scenario. The
default values of the options in the transformation scenario are the values set in the user preferences. The advanced
options specific for Saxon HE / PE / EE are:

• Use a configuration file - If checked, the specified Saxon configuration file will be used to specify the Saxon
advanced options.

• Recoverable errors - Policy for handling recoverable errors in the stylesheet. Allows the user to choose how dynamic
errors will be handled. Either one of the following options can be selected:

• recover silently
• recover with warnings
• signal the error and do not attempt recovery

414 | Oxygen XML Editor | Querying Documents

• Strip whitespaces - Can have one of the three options:

• All - Strips all whitespace text nodes from source documents before any further processing, regardless of any
xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the source document.

• Ignorable - Strips all ignorable whitespace text nodes from source documents before any further processing,
regardless of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the
source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema
as having element-only content.

• None - Strips no whitespace before further processing. (However, whitespace will still be stripped if this is
specified in the stylesheet using xsl:strip-space).

• Optimization level - Allows optimization to be suppressed in cases where reducing compile time is important, or
where optimization gets in the way of debugging, or causes extension functions with side-effects to behave
unpredictably.

• Disable calls on extension functions - If checked, calling external Java functions is disallowed.
• Validation of the source file - Available only for Saxon EE. It can have the values:

• Schema validation - This mode requires an XML Schema and determines whether source documents should be
parsed with schema-validation enabled.

• Lax schema validation - This mode determines whether source documents should be parsed with
schema-validation enabled if an XML Schema is provided.

• Disable schema validation - This determines whether source documents should be parsed with schema-validation
disabled.

• Validation errors in the results tree treated as warnings - Available only for Saxon EE. If checked, all validation
errors are treated as warnings, otherwise they are treated as fatal.

• Enable XQuery 1.1 support - If it is checked Saxon EE runs the XQuery transformation with the XQuery 1.1
support.

• Backup files updated by XQuery ("-backup:(on|off)") - If checked, a backup version is generated for any XML
files that is updated with XQuery Update.

Updating XML Documents using XQuery

Using the bundled Saxon 9.3.0.5 EE XQuery processor Oxygen now offers support for XQuery Update 1.0. The XQuery
Update Facility provides expressions that can be used to make persistent changes to instances of the XQuery 1.0 and
XPath 2.0 Data Model. Thus, besides querying XML documents, you can modify them using the various
insert/delete/modify/create methods available in the XQuery Update 1.0 standard.

Just choose Saxon 9.3.0.5 EE as a transformer in the scenario associated with XQuery files containing update statements
and Oxygen will notify you if the update was successful.

Using XQuery Update to modify a tag name in an XML file

rename node doc("books.xml")//publisher[1]//book[1] as "firstBook"

Oxygen XML Editor | Querying Documents | 415

http://www.w3.org/TR/xquery-update-10/#introduction

Chapter

12

Debugging XSLT Stylesheets and XQuery Documents

This chapter explains the user interface and how to use the debugger with XSLT
transformations and XQuery ones.

Topics:

• Overview
• Layout
• Working with the XSLT / XQuery

Debugger
• Debugging Java Extensions
• Supported Processors for XSLT

/ XQuery Debugging

Overview

The XSLT Debugger and XQuery Debugger perspectives enable you to test and debug XSLT 1.0 / 2.0 stylesheets and
XQuery 1.0 documents including complex XPath 2.0 expressions. The interface presents simultaneous views of the
source XML document, the XSLT/XQuery document and the result document. As you go step by step through the
XSLT/XQuery document the corresponding output is generated step by step, and the corresponding position in the XML
file is highlighted for each step. At the same time, special views in the interface provide various types of debugging
information and events useful for understanding the transformation process.

The user benefits of a rich set of features for testing and solving XSLT/XQuery problems:

• Support for XSLT 1.0 stylesheets (through the Saxon 6.5.5 and Xalan XSLT engines), XSLT 2.0 stylesheets and
XPath 2.0 expressions that are included in the stylesheets (through the Saxon 9.3.0.5 XSLT engine) and XQuery 1.0
(through the Saxon 9.3.0.5 XQuery engine).

• Stepping capabilities: step in, step over, step out, run, run to cursor, run to end, pause, stop.
• Output to source mapping between every line of output and instruction element / source context that generated it.
• Breakpoints on both source and XSLT/XQuery documents.
• Call stack on both source and XSLT/XQuery documents.
• Trace history on both source and XSLT/XQuery documents.
• Support for XPath expression evaluation during debugging.
• Step into imported/included stylesheets as well as included source entities.
• Available templates and hits count.
• Variables view.
• Dynamic output generation.

Layout

The debugger interface looks like below. It is comprised of 4 panes as follows:

• Source document view (XML) - Displays and allows editing of data or document oriented XML files (documents).
• XSLT/XQuery document view (XSLT/XQuery) - Displays and allows editing of XSL files(stylesheets) or XQuery

documents.
• Output document view - Displays the transformed output that results from the input of a selected document (XML)

and selected stylesheet (XSL) or XQuery document to the transformer. The result of transformation is dynamically
written as the transformation is processed.There are two views for the output: a text view (with XML syntax highlight)
and an XHTML view. For large output the XHTML view can be can disabled (see Debugger Settings).

• Control view - The control view provides functionality for configuration and control of debugging operations. It
also provides a series of Information views types. This pane is comprised of two parts:

• Control toolbar
• Information views

418 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

Figure 236: Debugger Mode Interface

XML documents and XSL stylesheets or XQuery documents that were opened in Editor perspective are automatically
sorted into the first two panes. When multiple files of each type are opened, the individual documents and stylesheets
are separated using the familiar tab management system of the Editor perspective. Selecting a tab brings the document
or stylesheet into focus and enables editing without toggling back to the Editor perspective.

When editing in the Editor perspective the editor toolbar is displayed. In Debugger mode this toolbar is not available,
however the functions are still accessible from the Document menu and the context menus that are activated by a right
click of the mouse. On Windows the context menu can be displayed with the mouse on a right click or with the keyboard
by pressing the special context menu key available on Windows keyboards. Bookmarks are replaced by breakpoints in
Debugger perspective.

During debugging the current execution node is highlighted in both document (XML) and XSLT/XQuery views.

Control Toolbar

The toolbar contains all actions you need to configure and control the debug process. Items are described below from
left to right as they appear in the toolbar.

Figure 237: Control Toolbar

• XML source selector - The current selection represents the source document used by the transformation engine as
input. A drop-down list contains all open files (the XML ones being emphasized). This gives you the possibility to
use other file types as source. In a XQuery debugging session this selection field can be set to default value NONE,
as usually XQuery documents do not require an input source.

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 419

• XSL / XQuery selector - The current selection represents the stylesheet or XQuery document to be used by the
transformation engine. The selection list is filled-in with all opened files (the XSLT / XQuery ones being emphasized).

• Link with editor - When enabled, the XML and XSLT/XQuery selectors display the names of the files opened
in the central editor panels. Enabled by default.

• Output selector - The selection represents the output file specified in the associated transformation scenario.
• XSLT / XQuery parameters - XSLT / XQuery parameters to be used by the transformation.
• Edit extensions - Add and remove the Java classes and jars used as XSLT extensions.
• Turn on profiling - Enables / Disables current transformation profiling.
• Enable XHTML output - Enables rendering of output to the XHTML output view during the transformation

process. For performance issues, disable XHTML output when working with very large files. Also, the XHTML
area is only able to render XHTML documents. In order to view the output result of other formats, such as HTML,
save the Text output area to a file and use the required external browser for viewing.

When starting a debug session from the editor perspective using the Debug Scenario action, the state of this toolbar
button reflects the state of the Show as XHTML output option from the scenario.

• Turn on/off output to source mapping - Enables or disables the output to source mapping between every line
of output and instruction element / source context that generated it.

• Debugger Preferences - Quick link to Debugger preferences page.

• XSLT / XQuery engine selector - Lists the available processors for debugging XSLT and XQuery transformations.
• XSLT / XQuery engine advanced options - Advanced options available for Saxon 9.
• Step into - Starts the debugging process and runs until the next stylesheet node or the next XPath 2.0 expression

step (next step in transformation).
• Step over - Executes the current stylesheet node (including its sub-elements) and goes to next node in document

order (usually the next sibling of the current node) or to next step of an XPath 2.0 expression.

Figure 238: Step over

• Step out - Steps out to the parent node (equivalent to the Step over on the parent).

Figure 239: Step out

420 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

• Run - Starts the debugging process. The execution of the process is paused when a breakpoint is encountered.
(see breakpoints).

• Run to cursor - Starts the debugging process and runs until one of the following conditions occur: the line of
cursor is reached, a valid breakpoint is reached or end of execution.

• Run to end - Runs the transformation until the end, without taking into account enabled breakpoints (if any).
• Pause - Interrupts the current transformation. This is useful for long transformations (DocBook for instance)

when you want to find out what point the transformation has reached. The transformation can be resumed after.
• Stop - Ends the transformation process.
• Show current execution nodes - Positions the cursor at the current debug context. Possible displayed states:

• entering () or leaving () an XML execution node;
• entering () or leaving () an XSL execution node;
• entering () or leaving () an XPath execution node.

Information View

The information view is comprised of two panes that are used to display various types of information used to understand
the transformation process. For each information type there is a corresponding tab. While running a transformation,
relevant events are displayed in the various information views. This enables the developer to obtain a clear view of the
transformation progress. Using the debug controls developers can easily isolate parts of stylesheet therefore they may
be understood and modified. The information types include:

Left side information views

• Context Node view
• XWatch view
• Breakpoints view
• Messages view (XSLT only)
• Variables view

Right side information views

• Stack view
• Trace view
• Templates view (XSLT only)
• Nodeset view

Context Node View

The context node is valid only for XSLT debugging session and is a source node corresponding to the XSL expression
being evaluated. It is also called the context of execution. The context node implicitly changes as the processor hits
various steps (at the point where XPath expressions are evaluated). This node has the same value as evaluating '.' (dot)
XPath expression in XWatch view. The value of the context node is presented as a tree in the view.

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 421

Figure 240:The Context node view

The context node is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed
using the qualified name. If the namespace is not bound to a prefix, the namespace URI is presented before the node
name. The value of the selected attribute or node is shown in the right side panel.

The title bar displays the current element index and the number of elements that compose the current context (this
information is not available if you choose Saxon 6 as processing engine).

XPath Watch (XWatch) View

This view shows XPath expressions to be evaluated during debugging. Expressions are evaluated dynamically as the
processor changes its source context.

When the XPath expression is typed in the Expression column the usual content completion assistant is activated and
supports the process of composing the expression just like in the XSLT editor.

Figure 241:The XPath watch view

Table 3: XWatch columns

DescriptionColumn

XPath expression to be evaluated (should be XPath 1.0 or
2.0 compliant).

Expression

Result of XPath expression evaluation. Value has a type
(see the possible values in the section Variables View on

Value

page 429). For Node Set results the number of nodes in the
set is shown in parenthesis.

422 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

Important: Remarks about working with the XWatch view:

• Expressions referring to variables names are not evaluated. In case of an XPath error, you get an Error line.
• The expression list is not deleted at the end of transformation (it is preserved between debugging sessions).
• To insert a new expression click the last line on the expression column and enter it. As alternative right click

and select the Add action. Press (Enter) on the cell to add and evaluate.
• To delete an expression click on its Expression column and delete its content. As alternative right click and

select the Remove action. Press (Enter) on the cell to commit changes.
• If the expression result type is a Node Set you can click on it (Value column) and you will see on the right side

its value. (see Nodeset view).
• The Copy, Add, Remove and Remove All actions are offered in every row's contextual menu.

Breakpoints View

This view lists all breakpoints set on opened documents. Once you set a breakpoint it is automatically added in this list.
Breakpoints can be set in XSLT/XQuery documents and in XML documents for XSLT debugging sessions. A breakpoint
can have an associated break conditions which represent XPath expressions evaluated in the current debugger context.
In order to be processed their evaluation result should be a boolean value. A breakpoint with an associated condition
stops the execution of the Debugger only if the breakpoint condition is evaluated to true.

Figure 242:The Breakpoints View

Table 4: Breakpoints columns

DescriptionColumn

If checked, the current condition is evaluated and taken
into account.

Enabled

Resource file and number of the line where the breakpoint
is set. The Entire path of resource file is available as tooltip.

Resource

XSLT/XQuery expression to be evaluated during
debugging. The expression will be evaluated at every debug
step.

Condition

Important: Not all set breakpoints are valid. You should check that your breakpoint is valid:

• For example if the breakpoint is set on an empty line or commented line or the line is not reached by the processor
(no template to match it, line containing only an end tag), that breakpoint is invalid.

• Clicking a record highlights the breakpoint line into the document.
• The breakpoints list is not deleted at the end of transformation (it is preserved between debugging sessions).

The following actions are available on the table's contextual menu:

• Go to - Moves the cursor on the breakpoint's source.

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 423

• Enable - Enables the breakpoint.
• Disable - Disables the breakpoint. A disabled breakpoint will not be evaluated by the Debugger.
• Add - Allows you to add a new breakpoint and breakpoint condition.
• Edit - Allows you to edit an existing breakpoint.
• Remove - Deletes the selected breakpoint.
• Enable all - Enables all breakpoints.
• Disable all - Disables all breakpoints.
• Remove all - Removes all breakpoints.

Messages View

xsl:message instructions are one way to signal special situations encountered during transformation as well as a raw
way of doing the debugging. This view is available only for XSLT debugging sessions and shows all xsl:message
calls executed by the XSLT processor during transformation.

Figure 243:The Messages View

Table 5: Messages columns

DescriptionColumn

Message content.Message

Signals if processor terminates the transformation or not
once it encounters the message (yes/no respectively)

Terminate

Resource file where xsl:message instruction is defined
and the message line number. The complete path of the
resource is available as tooltip.

Resource

The following actions are available in the contextual menu:

• Go to - Highlight the XSL fragment that generated the message.
• Copy Value - Copies to clipboard message details (system ID, severity info, description, start location, terminate

state).

Important: Remarks

• Clicking a record from the table highlights the xsl:message declaration line.
• Message table values can be sorted by clicking the corresponding column header. Clicking the column header

switches the sorting order between: ascending, descending, no sort.

Stack View

This view shows the current execution stack of both source and XSLT/XQuery nodes. During transformation two stacks
are managed: one of source nodes being processed and the other for XSLT/XQuery nodes being processed. Oxygen
shows both node types into one common stack. The source (XML) nodes are preceded by a red color icon while
XSLT/XQuery nodes are preceded by a green color icon. The advantage of this approach is that you can always see the
source scope on which a XSLT/XQuery instruction is executed (the last red color node on the stack). The stack is oriented
upside down.

424 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

Figure 244:The Stack View

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT element that is displayed on the selected line from the view.

Table 6: Stack columns

DescriptionColumn

Order number, represents the depth of the node (0 is the
stack base).

#

Node from source or stylesheet document currently being
processed. One particular stack node is the document root,
noted as #document.

XML/XSLT/XQuery Node

Attributes of the node (a list of id="value" pairs).Attributes

Resource file where the node is located. The entire path is
available as tooltip.

Resource

Important: Remarks:

• Clicking a record from the stack highlights that node's location inside resource.
• Using Saxon, the stylesheet elements are qualified with XSL proxy, while using Xalan you only see their names.

(example: xsl:template using Saxon and template using Xalan).
• Only the Saxon processor shows element attributes.
• The Xalan processor shows also the built-in rules.

Output Mapping Stack View

This view is useful at the end of the transformation and shows the whole stack of XSLT templates/XQuery elements
that generated a specific area of the output. It provides context data in addition to the highlight of the XML element and
the XSLT template/XQuery element available in the editor panel and in the Stack view and Trace view.

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 425

Figure 245:The Output Mapping Stack view

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT element that is displayed on the selected line from the view.

Table 7: Output Mapping Stack columns

DescriptionColumn

The order number in the stack of XSLT templates/XQuery
elements. Number 0 corresponds to the bottom of the stack

#

in the status of the XSLT/XQuery processor. The highest
number corresponds to the top of the stack.

The name of an XSLT template/XQuery element that
participated in the generation of the selected output area.

XSL/XQuery Node

The attributes of the XSLT template/XQuery node.Attributes

The name of the file containing the XSLT template/XQuery
element.

Resource

Important: Remarks:

• Clicking a record highlights that XSLT template definition/XQuery element inside the resource (XSLT stylesheet
file/XQuery file).

• Saxon only shows the applied XSLT templates having at least one hit from the processor. Xalan shows all
defined XSLT templates, with or without hits.

• The table can be sorted by clicking the corresponding column header. When clicking a column header the sorting
order switches between: ascending, descending, no sort.

• Xalan shows also the built-in XSLT rules.

Trace History View

Usually the XSLT/XQuery processors signal the following events during transformation:

• - Entering a source (XML) node.
• - Leaving a source (XML) node.
• - Entering a XSLT/XQuery node.
• - Leaving a XSLT/XQuery node.

The trace history catches all these events, so you can see how the process evolved. The red icon lines denote source
nodes while the green icon lines denote XSLT/XQuery nodes.

426 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

It is possible to save the element trace in a structured XML document. The action is available on the context menu of
the view. In this way you have the possibility to compare the trace results from different debug sessions.

Figure 246:The Trace History View

The contextual menu contains the following actions:

• Go to - moves the selection in the editor panel to the line containing the XSLT element or XML element that is
displayed on the selected line from the view;

• Export to XML - saves the entire trace list into XML format.

Table 8:Trace History columns

DescriptionColumn

Shows you how deep the node is nested in the XML or
stylesheet structure. The bigger the number, the more nested
the node is. A depth 0 node is the document root.

Depth

Represents the node from the processed source or stylesheet
document. One particular node is the document root, noted

XML/XSLT/XQuery Node

as #document. Every node is preceded by an arrow that
represents what action was performed on it (entering or
leaving the node).

Attributes of the node (a list of id="value" pairs).Attributes

Resource file where the node is located. The complete path
of the resource file is provided as tooltip.

Resource

Important: Remarks:

• Clicking a record highlights that node's location inside the
resource.

• Only the Saxon processor shows the element attributes.
• The Xalan processor shows also the built-in rules.

Templates View

The xsl:template is the basic element for stylesheets transformation. This view is only available during XSLT
debugging sessions and shows all xsl:template instructions used by the transformation. By seeing the number of
hits for each of the templates you get an idea of the stylesheet coverage by template rules with respect to the input source.

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 427

Figure 247:The Templates view

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT template that is displayed on the selected line from the view.

Table 9:Templates columns

DescriptionColumn

The match attribute of the xsl:template.Match

The number of hits for the xsl:template. Shows how
many times the XSLT processor used this particular
template.

Hits

The template priority as established by XSLT processor.Priority

The mode attribute of the xsl:template.Mode

The name attribute of the xsl:template.Name

The resource file where the template is located. The
complete path of the resource file is available as tooltip.

Resource

Important: Remarks:

• Clicking a record highlights that template definition inside the resource.
• Saxon only shows the applied templates having at least one hit from the processor. Xalan shows all defined

templates, with or without hits.
• Template table values can be sorted by clicking the corresponding column header. When clicking a column

header the sorting order switches between: ascending, descending, no sort.
• Xalan shows also the built-in rules.

Node Set View

This view is always used in relation with The Variables view and the XWatch viewl. It shows an XSLT node set value
in a tree form. The node set view is updated as response to the following events:

• You click a variable having a node set value in one of the above 2 views.
• You click a tree fragment in one of the above 2 views.
• You click an XPath expression evaluated to a node set in one of the above 2 views.

428 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

Figure 248:The Node Set view

The nodes / values set is presented in a tree-like fashion. The total number of items is presented in the title bar. Nodes
from a defined namespace bound to a prefix are displayed using the qualified name. If the namespace is not bound to a
prefix the namespace URI is presented before the node name. The value of the selected attribute or node is shown in
the right side panel.

Important: Remarks:

• In case of longer values in the right side panel the interface shows three suspension points (...) at the end. A
more detailed value is available as tooltip.

• Clicking a record highlights the location of that node into the source or stylesheet view.

Variables View

Variables and parameters play an important role during an XSLT/XQuery transformation. Oxygen uses the following
icons to differentiate variables and parameters:

• - Global variable.
• - Local variable.
• - Global parameter.
• - Local parameter.

The following value types are available:

• Boolean
• String
• Date - XSLT 2.0 only.
• Number
• Set
• Object
• Fragment - Tree fragment.
• Any
• Undefined - The value was not yet set, or it is not accessible.

Note:

When Saxon 6.5 is used, if the value is unavailable, then the following message is displayed in the Value field:
"The variable value is unavailable".

When Saxon 9 is used:

• if the variable is not used, the Value field displays "The variable is declared but never used";
• if the variable value cannot be evaluated, the Value field displays "The variable value is unavailable".

• Document

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 429

• Element
• Attribute
• ProcessingInstruction
• Comment
• Text
• Namespace
• Evaluating - Value under evaluation.
• Not Known - Unknown types.

Figure 249:The Variables View

Table 10: Variables columns

DescriptionColumn

Name of variable / parameter.Name

Type of variable/parameter.Value type

Current value of variable / parameter.Value

The value of a variable (the Value column) can be copied to the clipboard for pasting it to other editor area with the
action Copy value from the contextual menu of the table from the view. This is useful in case of long and complex
values which are not easy to remember by looking at them once.

Important: Remarks:

• Local variables and parameters are the first entries presented in the table.
• Clicking a record highlights the variable definition line.
• Variable values could differ depending on the transformation engine used or stylesheet version set.
• If the value of the variable is a node set or a tree fragment, clicking on it causes the Node Set view to be shown

with the corresponding set of values.
• Variable table values can be sorted by clicking the corresponding column header. Clicking the column header

switches between the orders: ascending, descending, no sort.

Multiple Output Documents in XSLT 2.0

For XSLT 2.0 stylesheets that store the output in more than one file by using the xsl:result-document instruction
the content of the file created in this way is displayed dynamically while the transformation is running in an output view.
There is one view for each xsl:result-document instruction so that the output of different instructions is not
mixed but is presented in different views.

430 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

Working with the XSLT / XQuery Debugger

This section describes how to work with the debugger in the most common use cases.

Steps in a Typical Debug Process

To debug a stylesheet or XQuery document follow the procedure:

1. Open the source XML document and the XSLT/XQuery document.

2. If you are in the Editor perspective switch to the XSLT Debugger perspective or XQuery Debugger perspective with
one of the actions (here explained for XSLT):

• Menu Window > Open perspective > XSLT Debugger or the toolbar button XSLT Debugger
• Menu Document > XML Document > Debug Scenario or the toolbar button Debug Scenario. This action

initializes the Debugger perspective with the parameters of the transformation scenario. Any modification applied
to the scenario parameters (the transformer engine, the XSLT parameters, the transformer extensions, etc) will
be saved back in the scenario when exiting from the Debugger perspective.

3. Select the source XML document in the XML source selector of the Control toolbar. In case of XQuery debugging
if your XQuery document has no implicit source set the source selector value to NONE.

4. Select the XSLT/XQuery document in the XSLT/XQuery selector of the Control toolbar.

5. Set XSLT/XQuery parameters from the button available on the Control toolbar.

6. Set one or more breakpoints.

7. Step through the stylesheet using the buttons available on the Control toolbar:

• Step into
• Step over
• Step out
• Run
• Run to cursor
• Run to end
• Pause
• Stop

8. Examine the information in the Information views to find the bug in the transformation process.

You may find the procedure for determining the XSLT template/XQuery element that generated an output section
useful for fixing bugs in the transformation.

Using Breakpoints

The Oxygen XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to gather information about
variables and processor execution at particular points. To ensure breakpoints persistence between work sessions, they
are saved at project level. You can set maximum 100 breakpoints per project.

Inserting Breakpoints

To insert a breakpoint, follow these steps:

1. Place your cursor on the line where you want the breakpoint to be in the XML source document or the XSLT /
XQuery document.

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 431

You can set breakpoints on XML source only for XSLT debugging sessions.

2. Select Edit > Breakpoints > Breakpoints quick creation or directly click the left side stripe of the editor panel.

Removing Breakpoints

Only one action must be executed for removing a breakpoint:

Click the breakpoint icon on the left side stripe of the editor panel. As alternative go to menu Edit > Breakpoints
> Remove All .

Determining What XSLT / XQuery Expression Generated Particular Output

In order to quickly spot the XSLT templates or XQuery expressions with problems it is important to know what XSLT
template in the XSLT stylesheet or XQuery expression in the XQuery document and what element in the source XML
document generated a specified area in the output.

Some of the debugging capabilities, for example Step in can be used for this purpose. Using Step in you can see how
output is generated and link it with the XSLT/XQuery element being executed in the current source context. However,
this can become difficult on complex XSLT stylesheets or XQuery documents that generate a large output.

Output to source mapping is a powerful feature that makes this output to source mapping persistent. You can click on
the text from the Text output view or XHTML output view and the editor will select the XML source context and the
XSLT template/XQuery element that generated the text. Also inspecting the whole stack of XSLT templates/XQuery
elements that determined the state of the XSLT/XQuery processor at the moment of generating the specified output area
speeds up the debugging process.

1. Switch to the XSLT Debugger perspective or the XQuery Debugger perspective with one of the actions (here explained
for XSLT):

•
Go to menu Window > Open perspective > XSLT Debugger or the toolbar button XSLT Debugger

• Go to menu Document > XML Document > Debug scenario or the toolbar button Debug scenario .
This action initializes the Debugger perspective with the parameters of the transformation scenario. Any
modification applied to the scenario parameters (the transformer engine, the XSLT parameters, the transformer
extensions, etc) will be saved back in the scenario when exiting from the Debugger perspective.

2. Select the source XML document in the XML source selector of the Control toolbar. In case of XQuery debugging
without an implicit source choose the NONE value.

3. Select the XSLT / XQuery document in the XSLT / XQuery selector of the Control toolbar.

4. Select the XSLT / XQuery engine in the XSLT / XQuery engine selector of the Control toolbar.

5. Set XSLT / XQuery parameters from the button available on the Control toolbar.

6. Apply the XSLT stylesheet or XQuery transformation using the button Run to end available on the Control
toolbar.

7. Inspect the mapping by clicking a section of the output from the Text view tab or from the XHTML view tab of the
Output document view .

432 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

Figure 250: XHTML Output to Source Mapping

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 433

Figure 251:Text Output to Source Mapping

This action will highlight the XSLT / XQuery element and the XML source context. This XSLT template/XQuery
element that is highlighted in the XSLT/XQuery editor represents only the top of the stack of XSLT templates/XQuery
elements that determined the state of the XSLT/XQuery processor at the moment of generating the clicked output
section. In case of complex transformations inspecting the whole stack of XSLT templates/XQuery elements speeds
up the debugging process. This stack is available in the Output Mapping Stack view.

Debugging Java Extensions

The XSLT/XQuery debugger does not step into Java classes that are configured as XSLT/XQuery extensions of the
transformation. For stepping into Java classes, inspecting variable values and setting breakpoints in Java methods you
should set up a Java debug configuration in an IDE like the Eclipse SDK as described below.

1. Create a debug configuration.

a) Set at least 256 MB as heap memory for the Java virtual machine (recommended 512 MB) by setting the -Xmx
parameter in the debug configuration, for example “-Xmx512m”.

b) Make sure the [Oxygen-install-folder]/lib/oxygen.jar file and your Java extension classes are
on the Java classpath.

434 | Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents

The Java extension classes should be the same classes that were set as an extension of the XSLT/XQuery
transformation in the Oxygen debugging perspective.

c) Set the class ro.sync.exml.Oxygen as the main Java class of the configuration.

The main Java class ro.sync.exml.Oxygen is located in the oxygen.jar file.

2. Start the debug configuration.

Now you can set breakpoints and inspect Java variables as in any Java debugging process executed in the selected
IDE (Eclipse SDK, etc.).

Supported Processors for XSLT / XQuery Debugging

The following built-in XSLT processors are integrated in the debugger and can be selected in the Control Toolbar:

• Saxon 9.3.0.5 HE (Home Edition) - a limited version of the Saxon 9 processor, capable of running XSLT 1.0, XSLT
2.0 basic and XQuery 1.0 transformations, available in both the XSLT debugger and the XQuery one,

• Saxon 9.3.0.5 PE (Professional Edition) - capable of running XSLT 1.0 transformations, XSLT 2.0 basic ones and
XQuery 1.0 ones, available in both the XSLT debugger and the XQuery one,

• Saxon 9.3.0.5 EE (Enterprise Edition) - a schema aware processor, capable of running XSLT 1.0 transformations,
XSLT 2.0 basic ones, XSLT 2.0 schema aware ones and XQuery 1.0 ones, available in both the XSLT debugger and
the XQuery debugger,

• Saxon 6.5.5 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger,
• Xalan 2.7.1 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger.

Oxygen XML Editor | Debugging XSLT Stylesheets and XQuery Documents | 435

Chapter

13

Profiling XSLT Stylesheets and XQuery Documents

This chapter explains the user interface and how to use the profiler for finding
performance problems in XSLT transformations and XQuery ones.

Topics:

• Overview
• Viewing Profiling Information
• Working with XSLT/XQuery

Profiler

Overview

Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery transformation
to not meet customer expectations or you are trying to proactively identify issues prior to deploying your XSLT/XQuery
transformation, using the XSLT/XQuery profiler feature is essential to helping you save time and ultimately ensure a
better performing, more scalable XSLT/XQuery transformation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processors that could be used for debugging
and it is available from the debugging perspective.

Enabling and disabling the profiler is controlled by the Profiler button from the debugger control toolbar. The
XSLT/XQuery profiler is off by default. This option is not available during a debugger session so you should set it
before starting the transformation.

Viewing Profiling Information

This section explains the views that display the profiling data collected by the profiles during the transformation.

Invocation Tree View

This view shows a top-down call tree representing how XSLT instructions or XQuery expressions are processed.

Figure 252: Invocation tree view

The entries in the invocation tree have different meanings which are indicated by the displayed icons:

• - Points to a call whose inherent time is insignificant compared to its call tree time.
• - Points to a call whose inherent time is significant compared to its call tree time (greater than 1/3rd of its call

tree time).

Every entry in the invocation tree has textual information attached which depends on the XSLT/XQuery profiler settings
:

• A percentage number of total time which is calculated with respect to either the root of the tree or the calling
instruction.

• A total time measurement in milliseconds or microseconds. This is the total execution time that includes calls into
other instructions.

• A percentage number of inherent time which is calculated with respect to either the root of the tree or the calling
instruction.

• An inherent time measurement in milliseconds or microseconds. This is the inherent execution time of the instruction.
• An invocation count which shows how often the instruction has been invoked on this path.

438 | Oxygen XML Editor | Profiling XSLT Stylesheets and XQuery Documents

• An instruction name which contains also the attributes description.

Hotspots View

This view shows a list of all instruction calls which lie above the threshold defined in the XSLT/XQuery profiler settings
.

Figure 253: Hotspots View

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calculated and shown.

Every hotspot is described by the values from the following columns:

• The instruction name.
• The inherent time in milliseconds or microseconds of how much time has been spent in the hotspot together with a

bar whose length is proportional to this value. All calls into this instruction are summed up regardless of the particular
call sequence.

• The invocation count of the hotspot.

If you click on the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it which depends on the XSLT/XQuery profiler
settings:

• A percentage number which is calculated with respect either to the total time or the called instruction.
• A time measured in milliseconds or microseconds of how much time has been contributed to the parent hotspot on

this path.
• An invocation count which shows how often the hotspot has been invoked on this path.

Note: This is not the number of invocations of this instruction.

• An instruction name which contains also its attributes.

Working with XSLT/XQuery Profiler

Profiling activity is linked with debugging activity, so the first step in order to profile is to switch to debugging perspective
and follow the corresponding procedure for debugging (see Working with XSLT Debugger).

Immediately after turning the profiler on two new information views are added to the current debugger information
views:

• Invocation tree view on left side
• Hotspots view on right side

Oxygen XML Editor | Profiling XSLT Stylesheets and XQuery Documents | 439

Profiling data is available only after the transformation ends successfully.

Looking to the right side (Hotspots view), you can immediately spot the time the processor spent in each instruction.
As an instruction usually calls other instructions the used time of the called instruction is extracted from the duration
time of the caller (the hotspot only presents the inherent time of the instruction).

Looking to the left side (Invocation tree view), you can examine how style instructions are processed. This result view
is also named call-tree, as it represents the order of style processing. The profiling result shows the duration time for
each of the style-instruction including the time needed for its called children.

Figure 254: Source backmapping

In any of the above views you can use the backmapping feature in order to find the XSLT stylesheet or XQuery expression
definition. Clicking on the selected item cause Oxygen to highlight the XSLT stylesheet or XQuery expression source
line where the instruction is defined.

When navigating through the trees by opening instruction calls, Oxygen automatically expands instructions which are
only called by one other instruction themselves.

The profiling data can be saved into XML and HTML format. On any view you should right click , use the pop-up menu
and select the corresponding choice. Basically saving HTML means saving XML and applying an XSLT stylesheet to
render the report as XML. These stylesheets are included in the Oxygen distribution (see the subfolder
frameworks/profiler/ of the Oxygen installation folder) so you can make your own report based on the profiling
raw data.

If you like to change the XSLT/XQuery profiler settings you should right click on view, use the pop-up menu and choose
the corresponding View settings entry.

Caution: Profiling exhaustive transformation may run into an OutOfMemory error due to the large amount of
information being collected. If this is the case you can close unused projects when running the profiling or use high
values for Java VM options -Xms and -Xmx. If this does not help you can shorten your source xml file and try
again.

440 | Oxygen XML Editor | Profiling XSLT Stylesheets and XQuery Documents

Chapter

14

Comparing and Merging Documents

In large teams composed either of developers or technical writers, the usage of
a shared repository for the source or document files is a must. Often many
authors are changing the same file at the same time.

Topics:

• Directories Comparison
• Files Comparison

Finding what has been modified in your files and folders can be hard. If your
data is changing, you can benefit from accurate identification and processing• XML Diff API

of changes in your files and folders with Oxygen XML Editor 's features for
comparing files and directories. These are powerful and easy to use tools that
will do the job fast and thoroughly. With the new possibilities of differencing
and merging, it is now easy to manage multiple changes.

Oxygen XML Editor provides a simple means of performing file and folder
comparisons. You can see the differences in your files and folders and also you
can merge the changes.

There are two levels on which the comparison can be done, namely comparing
directories or comparing individual files. These two operations are available
from the Tools menu.

Also the comparison tool can be started using command line arguments. In the
installation folder there are 2 executable shells (diffFiles.bat and
diffDirs.bat on Windows, diffFiles.sh and diffDirs.sh on
Unix/Linux, diffFilesMac.sh and diffDirsMac.sh on Mac OS X).
You can give one or two command line arguments to each of these shells.

For example, to start the comparison between 2 directories on Windows use:

diffDirs.bat "c:\Program Files" "c:\ant"

Note that if there are spaces in the path names, the paths need to be surrounded
by quotes. Also one argument can be missing in which case the second directory
will be chosen manually by the user.

The same goes for the files diff utility as well.

If you run the diff tool from the command line (diffFiles.exe or
diffFiles.bat on Windows, diffFiles.sh on Linux,
diffFilesMac.sh on Mac OS X), you must specify one or two parameters,
because Diff Files perform only two-way comparing.

Directories Comparison

The directories comparison result is presented as a tree of files and directories. The directories that contain different
files are expanded automatically, so you can focus directly on the differences. You can merge the directories contents
using the copy actions. A double click or an Enter key on a line with a pair of files starts comparing the file content of
the two files from that line in the Compare Files window. Please note that the content is compared only in case of
known file types, that is the files associated with the built-in editors and the file types associated with a built-in editor
when the user was prompted to specify such an association (when opening for the first time a file of an unknown type).

Figure 255:The Compare Directories Window

Directories Comparison User Interface

This section explains the user interface of the Directories Comparison window.

Compare Menu

This menu contains the following action:

• Perform directories differencing - Looks for differences between the two directories displayed in the left and
right side of the application window.

• Perform files differencing - Compares the currently selected files.
• Copy change from left to right - Copies the selected change from the left side to the right side (if there is no

file/folder in the left side, the right file/folder is deleted).
• Copy change from right to left - Copies the selected change from the right side to the left side (if there is no

file/folder in the right side, the left file/folder is deleted).

442 | Oxygen XML Editor | Comparing and Merging Documents

Compare Toolbar

The toolbar contains the following actions:

Figure 256:The Compare toolbar

• Perform directories differencing - Looks for differences between the two directories displayed in the left and
right side of the application window.

• Diff Options - Opens the Directories Comparison preferences page.
• Perform files differencing - Compares the currently selected files.
• Copy change from left to right - Copies the selected change from the left side to the right side (if there is no

file/folder in the left side, the right file/folder is deleted).
• Copy change from right to left - Copies the selected change from the right side to the left side (if there is no

file/folder in the right side, the left file/folder is deleted).
• Binary Compare - Performs a byte-level comparison on the selected files.
• Show Only Modifications - Displays a more uncluttered file structure by hiding all identical files.
• Files and folders filters - Differences can be filtered using three filter boxes: Include files, Exclude files, Exclude

folders. They come with predefined values and are editable to allow more custom values. All of them accept multiple
comma separated values and the * and ? wildcards. For example, to filter out all jpeg and gif image files, edit the
Exclude files filter box to read *.jpeg, *.png. Each filter keeps a list with the latest 15 filters applied in the
drop-down list of the filter box.

Directories Selector

To open the directories you want to compare, select a folder from each Browse for local directory button. Oxygen
XML Editor keeps track of the folders you are currently working with and those you opened in this window. You can
see and select them from the two combo-boxes.

If you want to compare two archives' content you can select the archives from the Browse for archive file button.

Tip: By default Oxygen XML Editor treats supported archives as directories and the comparison is also done with
the files inside them. You can disable this behaviour by unchecking the Look in archives checkbox from the Diff
preferences page .

Comparison Result

The directory comparison result is presented using two tree-like structures, showing files and folders names, size and
modification date.

Oxygen XML Editor | Comparing and Merging Documents | 443

Figure 257: Comparison result

A column holding graphic symbols separate the two tree-like structures. The graphic symbols can be:

• an "X" sign, when a file or a folder exists only in one of the compared directories;
• a "not-equal" sign, if a file exists in both directories, but the content is different. The same sign appears when a

collapsed folder contains modified files.

The color used for painting the sign and the directory or file name can be customized in the Directories Comparison /
Appearance preferences page.Oxygen XML Editor You can double-click the line marked with the "not-equal" sign and
a new File Content Comparison window is opened, showing the differences between the two files.

Compare Images

By double-click a line containing two different images a compare images dialog is displayed. The dialog presents the
images in the left and right part scaled to fit the view available area. You can use the contextual menu actions to scale
the images at their original size or scale them down to fit in the view available area.

The supported image types are: GIF, JPG / JPEG, PNG, BMP.

Files Comparison

The comparison of a pair of files is done by opening them in two editors arranged in a side-by-side layout. The line
numbers on the left side of each editor help you to identify quickly the locations of the differences.

You can edit both the source and the target file. The differences are refreshed when you save the modified document.

444 | Oxygen XML Editor | Comparing and Merging Documents

Figure 258:The Compare Files Window

Main Menu

This section explains the menu actions of the Files Comparison window.

File Menu

The following actions are available:

• Source - The file is displayed in the left side of the application window

• Source > Open - Browses for a source file.
• Source > Open URL - Opens URL to be used as a source file. See Open URL for details.
• Source > Open File from Archive - Browses an archive content for a source file.
• Source > Save - Saves the changes made in the source file.

• Target - The file is displayed in the right side of the application window

• Target > Open - Browses for a target file.
• Target > Open URL - Opens URL to be used as a target file. See Open URL for details.
• Target > Open File from Archive - Browses an archive content for a source file.
• Target > Save - Saves the changes made in the target file.

• Exit - Quits the application.

Oxygen XML Editor | Comparing and Merging Documents | 445

Edit Menu

The following actions are available:

• Cut - Cut selection to clipboard from the local file currently opened in the Editor view or the Compare view.
• Copy - Copy selection to clipboard from the local file currently opened in the Editor view or the Compare view.
• Paste - Paste selection from clipboard in the local file currently opened in the Editor view or the Compare view.
• Undo - Undo edit changes in the local file currently opened in the Editor view or the Compare view.
• Redo - Redo edit changes in the local file currently opened in the Editor view or the Compare view.

Find Menu

The find actions are the following:

• Find/Replace - Perform find/replace operations in the local file currently opened in the Editor view or the
Compare view.

• Find Next - Go to the next match using the same options of the last find operation. The action runs in the editor
panel and in any non-editable text area, for example the Console view.

• Find Previous - Go to the previous match using the same options of the last find operation. The action runs in
the editor panel and in any non-editable text area, for example the Console view.

Compare Menu

The following actions are available in this menu:

 Perform Files Differencing - Performs a comparison between the source and target files.

 Go to First Modification - Selects the first found difference. (The button becomes available if the selection is not
on the first modification).

 Go to Previous Modification - Navigates backwards in the list of found differences. (The button becomes available
if the selection is not on the first modification). When the first modification in the current file is reached, the behaviour
of this action is controlled by Navigation options.

 Go to Next Modification - Navigates forwards in the list of found differences. (The button becomes available if
the selection is not on the last modification). When the last modification in the current file is reached, the behaviour of
this action is controlled by Navigation options.

 Go to Last Modification - Selects the last found difference. (The button becomes available if the selection is not
on the last modification)

 Copy All Changes from Left to Right - Copies all changes from source to target file.

 Copy All Changes from Right to Left - Copies all changes from target to source file.

 Copy Change from Left to Right - Copies the selected difference from source to target file.

 Copy Change from Right to Left - Copies the selected difference from target to source file.

 Show Modification Details at Word Level - Provides a word-level comparison of the differences selected in the
source and file.

 Show Modification Details at Char Level - Provides a character-level comparison of the differences selected in
the source and file.

Options Menu

• Preferences - Opens the options pages.

446 | Oxygen XML Editor | Comparing and Merging Documents

• Menu Shortcut Keys - Opens the Menu Shortcut Keys option page. Here you can configure all keyboard shortcuts
available for menu items available in Oxygen XML Diff.

• Reset Global Options - Resets options to their default values.

• Import Global Options - Allows you to import options you have previously exported.

• Export Global Options - Allows you to export the current options to a file.

Help Menu

• Help - Opens the Help dialog.

•

Compare Toolbar

This toolbar contains the operations that can be performed on the source and target files.

Figure 259:The Compare Toolbar

The following actions are available:

• Algorithm - This option box allows you to select one of the 6 available compare algorithms:

• Characters algorithm computes the differences at character level;

• Words algorithm computes the differences at word level;

• Lines algorithm computes the differences at line level;

• Syntax Aware for file types known by Oxygen XML Editor . It computes the differences considering the documents
syntax.

• XML Fast works on larger files but it is less precise than XML Accurate.

• XML Accurate works best on small files XML files.

• Auto selects the most appropriate algorithm, based on the files content and size. By default, an Auto mode is
selected.

• Diff Options - Opens the Files Comparison page.

• Perform Files Differencing - Performs a comparison between the source and target files.

• Go to First Modification - Selects the first found difference. (The button becomes available if the selection is
not on the first modification).

• Go to Previous Modification - Navigates backwards in the list of found differences. (The button becomes
available if the selection is not on the first modification). When the first modification in the current file is reached,
the behaviour of this action is controlled by Navigation options.

• Go to Next Modification - Navigates forwards in the list of found differences. (The button becomes available
if the selection is not on the last modification). When the last modification in the current file is reached, the behaviour
of this action is controlled by Navigation options.

• Go to Last Modification - Selects the last found difference. (The button becomes available if the selection is
not on the last modification)

• Copy All Changes from Left to Right - Copies all changes from source to target file.

• Copy Change from Left to Right - Copies the selected difference from source to target file.

• Copy Change from Right to Left - Copies the selected difference from target to source file.

Oxygen XML Editor | Comparing and Merging Documents | 447

• Copy All Changes from Right to Left - Copies all changes from target to source file.

• Show Modification Details at Word Level - Provides a word-level comparison of the differences selected in
the source and file.

• Show Modification Details at Char Level - Provides a character-level comparison of the differences selected
in the source and file.

• Ignore Whitespaces - Enables or disables the whitespace ignoring feature. Ignoring whitespace means that
before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

• Enable/Disable scrolling synchronization - Synchronizes scrolling of the two open files, so that a selected
difference can be seen on both sides of the application window. This action enables/disables the previous described
behavior.

•

Files Selector

To open the source and target files where you want to see the differences, select a file from the Open or Open URL
button. Oxygen XML Editor keeps track of the files you are currently working with and those you opened in this window.
You can see and select them from the two combo-boxes.

You can also save the changes in the source file or the target file by clicking the corresponding "Save" button.

File Contents Panel

The files are opened in two side-by-side editors. The text view is used, offering a better view of the differences.

The two editors are kept in sync, so if you scroll the text in one of them, the other one will also scroll to show the
difference. The differences are indicated using highlights connected through colored areas. You can use the Go to
modification buttons to navigate between differences or simply select a change by clicking it in the overview ruler
located in the right-most part of the window. Also, the overview ruler contains a success indicator in its upper part that
will turn green in case the are no differences and red if differences are found. You can also do this by clicking a colored
area between the text editors.

You can edit either the source or the target file. The differences are refreshed when you save the modified document.

Both editors provide a contextual menu that contains the Cut, Copy, Paste and Select all actions. The Find/Replace
dialog is displayed by pressing Ctrl+F (Cmd+F on Mac). Also there are available the Find/Replace options: F3 used
to perform another search using the last search configuration, and Shift+F3 to perform another search in backward
direction using the last search configuration.

If the compared blocks of text are too large and you want to see the differences at a finer level, you can use the comparison
at Word or Character level.

Word Level Comparison

This option is only available if modifications exist between the source and the target file. You can go to Word Level
Comparison by clicking the Show modification details at word level button from the Compare Panel or from the
Operations menu.

448 | Oxygen XML Editor | Comparing and Merging Documents

Figure 260: Word Level Comparison

Character Level Comparison

This option is only available if modifications exist between the source and the target file. You can go to Character Level
Comparison by clicking the Show Modification Details at Char Level button from the compare panel or from the
Compare menu.

Figure 261: Character Level Comparison

XML Diff API

The following interface is available for calling the XML diff processor from a custom Java application:

• ro.sync.diff.api.DifferencePerformer - It compares two resources of a given content type using a
set of options. It has the following methods:

Oxygen XML Editor | Comparing and Merging Documents | 449

performDiff - Perform a diff operation between the two specified resources. It returns a list with the differences.
The parameters are the following:

•

1. leftContentReader - A value of type java.io.Reader that provides the content of the first resource.
2. rightContentReader - A value of type java.io.Reader that provides the content of the second resource.
3. leftSystemId - A string value that is the location of the first resource.
4. rightSystemId - A string value that is the location of the second resource
5. contentType - A constant from the ro.sync.diff.api.DiffContentTypes interface.
6. diffOptions - The user options like algorithm strength, ignore whitespaces, ignore comments, merge adjacent

differences, etc. It is a value of type ro.sync.diff.api.DiffOptions.
7. diffProgressListener - An object that will be notified about the progress of the diff operation. It is a value of

type ro.sync.diff.api.DiffProgressListener.

• stop - Signal to the diff performer that it must stop.

An example of this interface can be found in the class ro.sync.diff.api.sample.DiffXMLFilesSample
which is included in the XML Diff SDK.

450 | Oxygen XML Editor | Comparing and Merging Documents

http://www.oxygenxml.com/InstData/Diff/Developer/oxygenXMLDiffSDK.zip

Chapter

15

Working with Archives

Oxygen offers the means to manipulate files directly from ZIP type archives.
By manipulation one should understand opening and saving files directly in

Topics:

• Browsing and Modifying Archive
Structure

archives, browsing and modifying archive structures. The archive support is
available for all ZIP-type archives, which includes:

• Working with EPUB
• ZIP archives

• Editing Files From Archives • EPUB books
• JAR archives
• Office Open XML (OOXML) files
• Open Document Format (ODF) files
• IDML files

This means that you can modify, transform, validate files directly from OOXML
or ODF packages. The structure and content of an EPUB book, OOXML file
or ODF file can be opened, edited and saved as for any other ZIP archive.

You can transform, validate and perform many other operations on files directly
from an archive. When selecting an URL for a specific operation like
transformation or validation you can click the Browse for archived file
button to navigate and choose the file from a certain archive.

Browsing and Modifying Archive Structure

You can open an archive in the Archives Browser view doing one of the following:

• Open an archive from the Project view;
• Choose an archive in the Oxygen file chooser dialog;
• Drag an archive from the file explorer and drop it in the Archives Browser view.

When displaying an archive, the Archive Browser view locks the archive file. It is then automatically unlocked when
the Archive Browser view is closed.

Important: If a file is not recognized by Oxygen as a supported archive type, you can add it from the Archive
preferences page.

Figure 262: Browsing an Archive

The following operations are available on the Archive Browser toolbar:

• Open Archive menu - Provides access to the Open Archive... action which opens a new archive in the
browser. If the extension is not known as an archive extension, you will be directed to the Archive preferences page
to add a new extension. The sub-menu keeps a list of recently open archive files and a Clear history action which
allows you to delete the list.

• Close - Closes the browsed archive and unlocks the archive file.
• New folder... - Creates a new folder as child of the selected folder in the browsed archive.
• New file... - Creates a new file as child of the selected folder in the browsed archive.
• Add files... - Adds already existing files as children of the selected folder in the browsed archive.

Note: You can also add files in the archive by dragging them from the file browser and dropping them in the
Archive Browser view.

• Delete - Deletes the selected resource in the browsed archive.
• Archive Options... - Opens the Archive preferences page.

The following additional operations are available from the Archive Browser contextual menu:

• Open - Opens a resource from the archive in the editor.
• Extract... - Extracts a resource from the archive in a specified folder.
• New folder... - Creates a new folder as child of the selected folder in the browsed archive.

452 | Oxygen XML Editor | Working with Archives

• New file... - Creates a new file as child of the selected folder in the browsed archive.
• Add files... - Adds already existing files as children of the selected folder in the browsed archive.

Note: On Mac OS X, there is also available the Add file... action, which allows you to add one file at a time.

• Rename... - Renames a resource in the archive.
•

Find/Replace in Files - Allows you to search for and replace specific pieces of text inside the archive.
• Preview - Previews an image contained in the archive See the Image Preview section for more details.
• Copy location - Copies the URL location of the selected resource.
• Refresh - Refreshes the selected resource.
• Properties - Views properties for the selected resource.

Working with EPUB

EPUB is a free and open electronic book standard by the International Digital Publishing Forum (IDPF). It was designed
for reflowable content, meaning that the text display can be optimized for the particular display device used by the reader
of the EPUB-formatted book.

Oxygen opens EPUB files in the Archive Browser view, exposing all their internal bits and pieces:

• document content (XHTML and image files);
• packaging files;
• container files.

Figure 263: EPUB file displayed in the Archive Browser view

Oxygen XML Editor | Working with Archives | 453

Here you can edit, delete and add files that compose the EPUB structure. To check that the EPUB file you are currently
working is valid, invoke the Validate and Check for Completeness action. To perform the operation, Oxygen uses
the open-source EpubCheck validator which detects many types of errors, including OCF container structure, OPF and
OPS mark-up, as well as internal reference consistency. All errors found during validation are displayed in a separate
tab in the Errors view.

Create an EPUB

To begin writing an EPUB file from scratch, do the following:

1.
Select File > New (Ctrl+N) or press the New toolbar button.

2. Choose EPUB Book template. Click Create. Choose the name and location of the file. Click Save.
A skeleton EPUB file is saved on disk and open in the Archive Browser view.

3. Use the Archive Browser view specific actions to edit, add and remove resources from the archive.

4. Use the Validate and Check for Completeness action to verify the integrity of the EPUB archive.

Publish to EPUB

Oxygen comes with built-in support for publishing Docbook and DITA XML documents directly to EPUB.

1. Open the Configure Transformation Scenario dialog and choose a predefined transformation scenario.

2. Start the transformation scenario.

Editing Files From Archives

You can open in Oxygen and edit files directly from an archive using the Archive Browser view. When saving the
archived file you will be prompted with some backup operations which can be performed to ensure that your archive
data will not be corrupted. You have the following backup before save options:

• No backup - No backups are made.
• Single file backup - When you modify an archive, its content is backed up under the name

originalArchiveFileName.bak. You can find the backup file in the same folder as the original archive.

Note: The backup is done only once per application session for each archive open in the Archive Browser
view.

• Incremental backup - When you modify an archive, its content is backed up under the name
originalArchiveFileName.bakNumber. Number is an incremental integer, indicating how many backups
were made so far. You can find the backup file in the same folder as the original archive.

Note: The backup is done only once per application session for each archive open in the Archive Browser
view.

• Never ask me again - Check this option if you do not want to be notified again to backup. The last backup option
you chose will always be used as the default one. You can re-enable the dialog pop-up from the Messages preferences
page.

454 | Oxygen XML Editor | Working with Archives

Chapter

16

Working with Databases

XML is a storage and interchange format for structured data and it is supported
by all major database systems. Oxygen offers the means of managing the

Topics:

• Relational Database Support interaction with some of the widely used databases, both relational ones and
• Native XML Database (NXD)

Support
Native XML Databases. By interaction, one should understand browsing,
querying, SQL execution support, content editing, importing from databases,
generating XML Schema from database structure.• XQuery and Databases

• WebDAV Connection

Relational Database Support

Relational databases use a relational model and are based on tables linked by a common key. Oxygen offers support for
the following relational databases: IBM DB2, JDBC-ODBC Bridge, MySQL, Microsoft SQL Server, Oracle 11g:

• browsing the tables of these types of database in the Data Source Explorer view
• executing SQL queries against them
• calling stored procedures with input and output parameters

Configuring Database Data Sources

This section describes the procedures for configuring the data sources for relational databases.

How to Configure an IBM DB2 Data Source

The steps for configuring a data source for connecting to an IBM DB2 server are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Figure 264: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select DB2 in the driver type combo box.

5. Add the driver files for IBM DB2 using the Add button.

The IBM DB2 driver files are:

456 | Oxygen XML Editor | Working with Databases

• db2jcc.jar
• db2jcc_license_cisuz.jar
• db2jcc_license_cu.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing IBM DB2 databases in Oxygen.

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure a Generic JDBC Data Source

Oxygen's default configuration already contains a generic JDBC data source called JDBC-ODBC Bridge. Oxygen can
display and edit XML data stored in PostgreSQL and Microsoft SQL Server databases accessible through a JDBC 4
driver. To do this, configure a Generic JDBC data source that uses a JDBC 4 driver. The following procedure shows
you how to configure a generic JDBC data source:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

The following dialog is displayed:

Figure 265: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select Generic JDBC in the driver type combo box.

5. Add the driver file(s) using the Add button.

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

Oxygen XML Editor | Working with Databases | 457

How to Configure a Microsoft SQL Server Data Source

The steps for configuring a data source for connecting to a Microsoft SQL server are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Figure 266: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select SQLServer in the driver type combo box.

5. Add the Microsoft SQL Server driver file using the Add button.

The SQL Server driver file is called sqljdbc.jar. In the Download links for database drivers section there are
listed the URLs from where to download the drivers necessary for accessing Microsoft SQL Server databases in
Oxygen.

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure a MySQL Data Source

Previous versions of Oxygen (up to version 11.2) included a built-in type of data sources called MySQL and based on
the JDBC driver for the MySQL 4 server. That type of data source is still available but is marked outdated because it
does not support more recent versions of the MySQL server (starting from version 5.0) and it will be removed in a future
version of Oxygen.For connecting to a MySQL server you should create a new data source of type Generic JDBC based
on the MySQL JDBC driver available from the MySQL website. The steps for configuring such a data source are the
following:

1. Go to menu Preferences > Data Sources .

458 | Oxygen XML Editor | Working with Databases

http://www.mysql.com/downloads/connector/j/

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Figure 267: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select Generic JDBC in the driver type combo box.

5. Add the MySQL 5 driver files using the Add button.

The driver file for the MySQL server is called mysql-com.jar. In the Download links for database drivers section
there are listed the URLs from where to download the drivers necessary for accessing MySQL databases in Oxygen.

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure an Oracle 11g Data Source

The steps for configuring a data source for connecting to an Oracle 11g server are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Oxygen XML Editor | Working with Databases | 459

Figure 268: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select Oracle in the driver type combo box.

5. Add the Oracle driver file using the Add button.

The Oracle driver file is called ojdbc5.jar. In the Download links for database drivers section there are listed
the URLs from where to download the drivers necessary for accessing Oracle databases in Oxygen.

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure a PostgreSQL 8.3 Data Source

The steps for configuring a data source for connecting to a PostgreSQL server are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

3. Enter a unique name for the data source.

4. Select PostgreSQL in the driver type combo box.

5. Add the PostgreSQL driver file using the Add button.

The PostgreSQL driver file is called postgresql-8.3-603.jdbc3.jar. In the Download links for database
drivers section there are listed the URLs from where to download the drivers necessary for accessing PostgreSQL
databases in Oxygen.

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

460 | Oxygen XML Editor | Working with Databases

Configuring Database Connections

This section describes the procedures for configuring the connections for relational databases:

How to Configure an IBM DB2 Connection

Available in the Enterprise edition only.

The steps for configuring a connection to an IBM DB2 server are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Figure 269:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select an IBM DB2 data sources in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL to the installed IBM DB2 engine.
b) Fill-in the user name to access the IBM DB2 engine.
c) Fill-in the password to access the IBM DB2 engine.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a JDBC-ODBC Connection

The steps for configuring a connection to an ODBC data source are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Oxygen XML Editor | Working with Databases | 461

Figure 270:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select JDBC-ODBC bridge in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the ODBC source.
b) Fill-in the user name of the ODBC source.
c) Fill-in the password of the ODBC source.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a Microsoft SQL Server Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a Microsoft SQL Server server are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

462 | Oxygen XML Editor | Working with Databases

Figure 271:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select a SQL Server data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the SQL Server server.
b) Fill-in the user name for the connection to the SQL Server.
c) Fill-in the password for the connection to the SQL Server.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a MySQL Connection

The steps for configuring a connection to a MySQL server are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Oxygen XML Editor | Working with Databases | 463

Figure 272:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select a MySQL data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the MySQL server.
b) Fill-in the user name for the connection to the MySQL server.
c) Fill-in the password for the connection to the MySQL server.

6. Click the OK button to finish the configuration of the database connection.

How to Configure an Oracle 11g Connection

Available in the Enterprise edition only.

The steps for configuring a connection to an Oracle 11g server are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

464 | Oxygen XML Editor | Working with Databases

Figure 273:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select an Oracle 11g data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the Oracle server.
b) Fill-in the user name for the connection to the Oracle server.
c) Fill-in the password for the connection to the Oracle server.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a PostgreSQL 8.3 Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a PostgreSQL 8.3 server are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Oxygen XML Editor | Working with Databases | 465

Figure 274:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select a PostgreSQL 8.3 data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the PostgreSQL 8.3 server.
b) Fill-in the user name for the connection to the PostgreSQL 8.3 server.
c) Fill-in the password for the connection to the PostgreSQL 8.3 server.

6. Click the OK button to finish the configuration of the database connection.

Resource Management

This section explains the resource management actions for relational databases.

Data Source Explorer View

This view presents in a tree-like fashion the database connections configured from menu Options > Preferences >
Data Sources . You can connect to a database simply by expanding the connection node. The database structure can be
expanded up to column level. Oxygen supports multiple simultaneous database connections and the connections tree
provides an easy way to browse them.

466 | Oxygen XML Editor | Working with Databases

Figure 275: Data Source Explorer View

The following objects are displayed by the Data Source Explorer view:

• Connection
• Catalog (Collection)
• XML Schema Repository
• XML Schema Component
• Schema
• Table
• System Table
• Table Column

A collection (called catalog in some databases) is a hierarchical container for resources and further
sub-collections. There are two types of resources:

• XML resource - an XML document or a document fragment, selected by a previously executed XPath query.
• non XML resource

The following actions are available in the view's toolbar:

• The Filters button opens the Data Sources / Table Filters Preferences page, allowing you to decide which
table types will be displayed in the Data Source Explorer view.

• The Configure Database Sources button opens the Data Sources preferences page where you can configure
both data sources and connections.

Actions Available at Connection Level in Data Source Explorer View

The contextual menu of a Connection node of the tree from the Data Source Explorer view contains the following
actions:

Oxygen XML Editor | Working with Databases | 467

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection. If a table is already open, you are warned to close it before

proceeding.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.

Actions Available at Catalog Level in Data Source Explorer View

The contextual menu of a Catalog node of the tree from the Data Source Explorer view contains the following
actions:

• Refresh - Performs a refresh of the selected node's subtree.

Actions Available at Schema Level in Data Source Explorer View

The contextual menu of a Schema node of the tree from the Data Source Explorer view contains the following
actions:

• Refresh - Performs a refresh of the selected node's subtree.

Actions Available at Table Level in Data Source Explorer View

The contextual menu of a Table node of the tree from the Data Source Explorer view contains the following
actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Edit - Opens the selected table in the Table Explorer view.
• Export to XML - Opens the Export Criteria dialog (a thorough description of this dialog can be found in the

Import from Database chapter) .

XML Schema Repository Level

This section explains the actions available at XML Schema Repository level.

Oracle's XML Schema Repository Level

The Oracle database supports XML schema repository (XSR) in the database catalogs. The contextual menu of a
XML Schema Repository node of the tree from the Data Source Explorer view contains the following actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Register - Opens a dialog for adding a new schema file in the XML repository. To add an XML Schema, enter the

schema URI and location on your file system. Local scope means that the schema will be visible only to the user
who registers it. Global scope means that the schema is public.

IBM DB2's XML Schema Repository Level

The contextual menu of a XML Schema Repository node of the tree from the Data Source Explorer view
contains the following actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Register - Opens a dialog for adding a new schema file in the XML Schema repository. In this dialog the following

fields can be set:

• XML schema file - Location on your file system.
• XSR name - Schema name.
• Comment - Short comment (optional).
• Schema location - Primary schema name (optional).

Decomposition means that parts of the XML documents are stored into relational tables. Which parts map to which
tables and columns is specified into the schema annotations.

Schema dependencies management is done by using the Add and Remove buttons.

468 | Oxygen XML Editor | Working with Databases

The actions available at Schema level are the following:

• Refresh - Performs a refresh of the selected node (and it's subtree).
• Unregister - Removes the selected schema from the XML Schema Repository.
• View - Opens the selected schema in Oxygen.

Microsoft SQL Server's XML Schema Repository Level

The contextual menu of a XML Schema Repository node of the tree from the Data Source Explorer view
contains the following actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Register - Opens a dialog for adding a new schema file in the DB XML repository. In this dialog you enter a collection

name and the necessary schema files. XML Schema files management is done by using the Add and Remove buttons.

The actions available at Schema level are the following:

• Refresh - Performs a refresh of the selected node (and it's subtree).
• Add - Adds a new schema to the XML Schema files.
• Unregister - Removes the selected schema from the XML Schema Repository.
• View - Opens the selected schema in Oxygen.

Table Explorer View

Every table from the Data Source Explorer view can be displayed and edited in the Table Explorer view by pressing
the Edit button from the contextual menu or by double-clicking one of its fields. To modify a cell's content, double click
it and start typing. When editing is finished, Oxygen will try to update the database with the new cell content.

Figure 276:The Table Explorer View

You can sort the content of a table by one of its columns by clicking on its column header.

Note the following:

• The first column is an index (does not belong to the table structure).
• Every column header contains the field name and its data type.
• The primary key columns are marked with this symbol: .
• Multiple tables are presented in a tabbed manner

For performance issues, you can set the maximum number of cells that will be displayed in the Table Explorer view (
the Limit the number of cells field from the Data Sources Preferences page). If a table having more cells than the value
set in Oxygen's options is displayed in the Table Explorer view, a warning dialog will inform you that the table is only
partially shown.

You will be notified if the value you have entered in a cell is not valid (and thus it cannot be updated).

Oxygen XML Editor | Working with Databases | 469

• If the content of the edited cell does not belong to the data type of the column, the cell will be marked by a red square
and it will remain in editing state until a correct value is inserted. For example, in the following figure propID
contains LONG values. If a character or string was inserted, the cell will look like this:

Figure 277: Cell containing an invalid value.

• If the constraints of the database are not met (like primary key constraints for example), an Information dialog will
appear, notifying you of the reason the database has not been updated. For example, if you'd try to set the primary
key propID for the second record in the table to 10 also, you would get the following message:

Figure 278: Duplicate entry for primary key

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the popup menu of the edited cell.

The contextual menu available on every cell has the following actions:

• Set NULL - Sets the content of the cell to (null). This action is disabled for columns that cannot be null.
• Insert row - Inserts an empty row in the table.
• Duplicate row - Makes a copy of the selected row and adds it in the Table Explorer view. You should note

that the new row will not be inserted in the database table until all conflicts are solved.
• Commit row - Commits the selected row.
• Delete row - Deletes the selected row.
• Copy - Copies the content of the cell.
• Paste - Performs paste in the selected cell.

470 | Oxygen XML Editor | Working with Databases

Some of the above actions are also available on the Table Explorer toolbar:

• Export to XML - Opens the Export Criteria dialog (a thorough description of this dialog can be found in the
Import from database chapter) .

• Refresh - Performs a refresh of the selected node's subtree.
• Insert row - Inserts an empty row in the table.
• Duplicate row - Makes a copy of the selected row and adds it in the Table Explorer view. You should note

that the new row will not be inserted in the database table until all conflicts are solved.
• Commit row - Commits the selected row.
• Delete row - Deletes the selected row.

SQL Execution Support

Oxygen's support for writing SQL statements includes syntax highlight, folding and drag&drop (DND) from the Data
Source Explorer view. It also includes transformation scenarios for executing the statements and the results are displayed
in the Table Explorer view.

Drag and Drop from Data Source Explorer View

Drag and drop(DND) from the Data Source Explorer view to the SQL editor allows creating SQL statements quickly
by inserting the names of tables and columns in the SQL statements.

1. Configure a database connection (see the procedure specific for your database server).

2. Browse to the table you will use in your statement.

3. Drag the table or a column of the table into the editor where a SQL file is open.

DND is available both on the table and on its fields. A popup menu is displayed in the SQL editor.

Oxygen XML Editor | Working with Databases | 471

Figure 279: SQL statement editing with DND

4. Select the type of statement from the popup menu.

If you dragged a table depending on your choice, one of the following statements are inserted into the document:

• SELECT `field1`,`field2`, FROM `catalog`. `table` (for this example: SELECT
`DEPT`,`DEPTNAME`,`LOCATION` FROM `test`.`department`)

• UPDATE ̀ catalog`. ̀ table` SET ̀ field1`=, ̀ field2`=,.... (for this example: UPDATE `test`.`department`
SET `DEPT`=, `DEPTNAME`=, `LOCATION`=)

• INSERT INTO`catalog`. `table` (`field1`,`field2`,) VALUES (, ,) (for this example: INSERT INTO
`test`.`department` (`DEPT`,`DEPTNAME`,`LOCATION`) VALUES (, ,))

• DELETE FROM `catalog`. `table` (for this example: DELETE FROM `test`.`department`)

If you dragged a column depending on your choice, one of the following statements are inserted into the document:

• SELECT `field` FROM `catalog`. `table` (for this example: SELECT `DEPT` FROM
`test`.`department`)

• UPDATE `catalog`. `table` SET `field`= (for this example: UPDATE `test`.`department` SET
`DEPT`=)

• INSERT INTO`catalog`. `table` (`field1) VALUES () (for this example: INSERT INTO
`test`.`department` (`DEPT`) VALUES ())

• DELETE FROM `catalog`. `table` (for this example: DELETE FROM `test`.`department` WHERE
`DEPT`=)

472 | Oxygen XML Editor | Working with Databases

SQL Validation

Currently, SQL validation support is offered for IBM DB2. Please note that if you choose a connection that doesn't
support SQL validation you will receive a warning when trying to validate. The SQL document will be validated using
the connection from the associated transformation scenario.

Executing SQL Statements

The steps for executing an SQL statement on a relational database are the following:

1. Configure a transformation scenario from the Configure Transformation Scenario button from the
Transformation toolbar.

A SQL transformation scenario needs a database connection. You can configure a connection from the
Preferences button from the scenario dialog.

The dialog that appears contains the list of existing scenarios that apply to SQL documents.

2. Set parameter values for SQL placeholders from the Parameters button from the scenario dialog.
For example in SELECT * FROM `test`.`department` where DEPT = ? or DEPTNAME = ? two
parameters can be configured for the place holders (?) in the transformation scenario.

When the SQL statement will be executed, the first placeholder will be replaced with the value set for the first
parameter in the scenario, the second placeholder will be replaced by the second parameter value and so on.

Restriction: When a stored procedure is called in an SQL statement executed on an SQL Server database
mixing in-line parameter values with values specified using the Parameters button of the scenario dialog is
not recommended. It is due to a limitation of the SQL Server driver for Java applications. An example of stored
procedure call that is not recommended is: call dbo.Test(22, ?).

3. Execute the SQL scenario from the Transform now button of the scenario dialog.

The result of a SQL transformation will be displayed in the Table Explorer view at the bottom of the Oxygen
window.

4. View more complex return values of the SQL transformation in a separate editor panel.

A more complex value returned by the SQL query (for example an XMLTYPE value or a CLOB one) cannot be
displayed entirely in the result table.

a) Right click on the cell containing the complex value.
b) Select the action Copy cell from the popup menu.

The action will copy the value in the clipboard.
c) Paste the value where you need it.

For example you can paste the value in an opened XQuery editor panel of Oxygen .

Native XML Database (NXD) Support

Native XML databases have an XML-based internal model and their fundamental unit of storage is XML. Oxygen offers
support for the following native XML databases:

• Berkeley DB XML
• eXist
• MarkLogic
• Software AG Tamino
• Raining Data TigerLogic
• Documentum xDb (X-Hive/DB) 10
• Oracle XML DB

Oxygen XML Editor | Working with Databases | 473

Configuring Database Data Sources

This section describes the procedures for configuring the data sources for native databases.

How to Configure a Berkeley DB XML Data Source

The latest instructions on how to configure Berkeley DB XML support in Oxygen can be found on our website.

Oxygen supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. The following directory definitions shall
apply:

• OXY_DIR - Oxygen installation root directory. (for example on Windows C:\Program Files\Oxygen 12.2)
• DBXML_DIR - Berkeley DB XML database root directory. (for example on Windows C:\Program

Files\Oracle\Berkeley DB XML <version>)
• DBXML_LIBRARY_DIR (usually on Mac and Unix is DBXML_DIR / lib and on Windows is DBXML_DIR

/ bin)

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select Berkeley DBXML from the Driver type combo box.

5. Press the Add button to add the Berkeley DB driver files.

The driver files for the Berkeley DB database are the following:

• db.jar (check for it into DBXML_DIR / lib or DBXML_DIR / jar)
• dbxml.jar (check for it into DBXML_DIR / lib or DBXML_DIR / jar)

6. Click the OK button to finish the data source configuration.

How to Configure an eXist Data Source

The latest instructions on how to configure eXist support in Oxygen can be found on our website.

Oxygen supports eXist database server versions 1.3, 1.4 and 1.5.

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select eXist from the Driver type combo box.

5. Press the Add button to add the eXist driver files.

The following driver files should be added in the dialog box for setting up the eXist datasource. They are found in
the installation directory of the eXist database server. Please make sure you copy the files from the installation of
the eXist server where you want to connect from Oxygen.

• exist.jar

• lib/core/xmldb.jar

• lib/core/xmlrpc-client-3.1.1.jar

• lib/core/xmlrpc-common-3.1.1.jar

• lib/core/ws-commons-util-1.0.2.jar

The version number from the driver file names may be different for your eXist server installation.

6. Click the OK button to finish the data source configuration.

474 | Oxygen XML Editor | Working with Databases

http://www.oxygenxml.com/doc/ug-oxygen/tasks/configure-berkeley-datasource.html
http://www.oxygenxml.com/doc/ug-oxygen/tasks/configure-exist-datasource.html

How to Configure a MarkLogic Data Source

The latest instructions on how to configure MarkLogic support in Oxygen can be found on our website.

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select MarkLogic from the Driver type combo box.

5. Press the Add button to add the MarkLogic driver files.

The driver file for the MarkLogic database is called xcc.jar. In the Download links for database drivers section
there are listed the URLs from where to download the drivers necessary for accessing MarkLogic databases in
Oxygen.

6. Click the OK button to finish the data source configuration.

How to Configure a Software AG Tamino Data Source

The latest instructions on how to configure Software AG Tamino support in Oxygen can be found on our website .

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select Tamino from the Driver type combo box.

5. Press the Add button to add the Tamino driver files.

The driver files for the Tamino database are the following:

• TaminoAPI4J.jar

• TaminoAPI4J-l10n.jar

• TaminoJCA.jar

Note: You must use the jar files from the version 4.4.1 of the Tamino database.

6. Click the OK button to finish the data source configuration.

How to Configure a Raining Data TigerLogic Data Source

The latest instructions on how to configure TigerLogic support in Oxygen can be found on our website .

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select TigerLogic from the Driver type combo box.

5. Press the Add button to add the TigerLogic driver files.

The driver files for the TigerLogic database are found in the TigerLogic JDK lib directory from the server side:

• connector.jar

• jca-connector.jar

• tlapi.jar

• tlerror.jar

• utility.jar

• xmlparser.jar

• xmltypes.jar

Oxygen XML Editor | Working with Databases | 475

http://www.oxygenxml.com/doc/ug-oxygen/tasks/configure-marklogic-datasource.html
http://www.oxygenxml.com/doc/ug-oxygen/tasks/configure-tamino-datasource.html
http://www.oxygenxml.com/doc/ug-oxygen/tasks/configure-tigerlogic-datasource.html

6. Click the OK button to finish the data source configuration.

How to Configure a Documentum xDb (X-Hive/DB) 10 Data Source

The latest instructions on how to configure support for Documentum xDb (X-Hive/DB) 10 (X-Hive/DB version 9) in
Oxygen can be found on our website.

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select XHive from the Driver type combo box.

5. Press the Add button to add the XHive driver files.

The driver files for the Documentum xDb (X-Hive/DB) 10 database are found in the Documentum xDb (X-Hive/DB)
10 lib directory from the server installation folder:

• antlr-runtime.jar

• aspectjrt.jar

• icu4j.jar

• xhive.jar

• google-collect.jar

6. Click the OK button to finish the data source configuration.

Configuring Database Connections

This section describes the procedures for configuring the connections for native databases.

How to Configure a Berkeley DB XML Connection

Oxygen supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. The steps for configuring a connection
to a Berkeley DB XML database are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the path to the Berkeley DB XML home directory in the Environment home directory field.
b) Select the Verbosity level: DEBUG, INFO, WARNING or ERROR.
c) Optionally, you can select the checkbox Join existing environment.

If checked, an attempt will be made to join an existing environment in the specified home directory and all the
original environment settings will be preserved. If that fails, you should consider reconfiguring the connection
with this option unchecked.

6. Click the OK button to finish the connection configuration.

How to Configure an eXist Connection

The steps for configuring a connection to an eXist database are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

476 | Oxygen XML Editor | Working with Databases

http://www.oxygenxml.com/doc/ug-oxygen/tasks/configure-xhive-datasource.html

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the URI to the installed eXist engine in the XML DB URI field.
b) Set the user name in the User field.
c) Set the password in the Password field.
d) Enter the start collection in the Collection field.

eXist organizes all documents in hierarchical collections. Collections are like directories. They are used to group
related documents together. This text field allows the user to set the default collection name.

6. Click the OK button to finish the connection configuration.

How to Configure a MarkLogic Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a MarkLogic database are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) The host name or IP address of the installed MarkLogic engine in the XDBC Host field.

Oxygen uses XCC connector to interact with MarkLogic XDBC server and requires the basic authentication
schema to be set. Starting with version MarkLogic 4.0 the default authentication method when you create a HTTP
or WebDAV Server is digest, so make sure to change it to basic.

b) Set the port number of the MarkLogic engine the Port field.
c) Set the user name to access the MarkLogic engine in the User field.
d) Set the password to access the MarkLogic engine in the Password field.
e) Optionally set the URL used for browsing the MarkLogic database in the Data Source Explorer view in the

WebDAV URL field.

6. Click the OK button to finish the connection configuration.

How to Configure a Software AG Tamino Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a Tamino database are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the URI to the installed Tamino engine in the XML DB URI field.
b) Set the user name to access the Tamino engine in the User field.
c) Set the password to access the Tamino engine in the Password field.
d) Set the name of the database to access from the Tamino engine in the Database field.
e) Check the checkbox Show system collections if you want to see the Tamino system collections in the Data

Source Explorer view.

6. Click the OK button to finish the connection configuration.

Oxygen XML Editor | Working with Databases | 477

How to Configure a Raining Data TigerLogic Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a TigerLogic database are the following:

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the host name or IP address of the TigerLogic engine in the Host field.
b) Set the port number of the TigerLogic engine in the Port field.
c) Set the user name to access the TigerLogic engine in the User field.
d) Set the password to access the TigerLogic engine in the Password field.
e) Set the name of the database to access from the TigerLogic database engine in the Database field.

6. Click the OK button to finish the connection configuration.

How to Configure an Documentum xDb (X-Hive/DB) 10 Connection

The steps for configuring a connection to a Documentum xDb (X-Hive/DB) 10 database are the following.

Note: The bootstrap type of X-Hive/DB connections is not supported in Oxygen. The following procedure explains
the xhive:// protocol connection type.

1. Go to menu Preferences > Data Sources .

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the URL property of the connection in the URL field.

If the property is a URL of the form xhive://host:port, the Documentum xDb (X-Hive/DB) 10 connection will
attempt to connect to a Documentum xDb (X-Hive/DB) 10 server running behind the specified TCP/IP port.

b) Set the user name to access the Documentum xDb (X-Hive/DB) 10 engine in the User field.
c) Set the password to access the Documentum xDb (X-Hive/DB) 10 engine in the Password field.
d) Set the name of the database to access from the Documentum xDb (X-Hive/DB) 10 engine in the Database field.
e) Check the checkbox Run XQuery in read / write session (with committing) if you want to end the session

with a commit, otherwise the session ends with a rollback.

6. Click the OK button to finish the connection configuration.

Data Source Explorer View

This view presents in a tree-like fashion the database connections configured from menu Options > Preferences >
Data Sources . You can connect to a database simply by expanding the connection node. The database structure can be
expanded up to column level. Oxygen supports multiple simultaneous database connections and the connections tree
provides an easy way to browse them.

478 | Oxygen XML Editor | Working with Databases

Figure 280: Data Source Explorer View

The following objects are displayed by the Data Source Explorer view:

• Connection
• Catalog (Collection)
• XML Schema Repository
• XML Schema Component
• Schema
• Table
• System Table
• Table Column

A collection (called catalog in some databases) is a hierarchical container for resources and further
sub-collections. There are two types of resources:

• XML resource - an XML document or a document fragment, selected by a previously executed XPath query.
• non XML resource

The following actions are available in the view's toolbar:

• The Filters button opens the Data Sources / Table Filters Preferences page, allowing you to decide which
table types will be displayed in the Data Source Explorer view.

• The Configure Database Sources button opens the Data Sources preferences page where you can configure
both data sources and connections.

Oxygen XML Editor | Working with Databases | 479

Oracle XML DB Browser

Oracle XML DB is a feature of the Oracle database. It provides a high-performance, native XML storage and retrieval
technology. Oxygen allows the user to browse the native Oracle XML Repository and perform various operations on
the resources in the repository.

Figure 281: Browsing the Oracle XML DB Repository

The actions available at XML Repository level are the following:

• Refresh - Performs a refresh of the XML Repository.
• Add container - Adds a new child container to the XML Repository
• Add resource - Adds a new resource to the XML Repository.

The actions available at container level are the following:

• Refresh - Performs a refresh of the selected container.
• Add container - Adds a new child container to the current one
• Add resource - Adds a new resource to the folder.
• Delete - Deletes the current container.
• Properties - Shows various properties of the current container.

The actions available at resource level are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Renames the current resource.
• Move - Moves the current resource to a new container (also available through drag and drop).
• Delete - Deletes the current resource.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Properties - Shows various properties of the current resource.

For running XQuery transformation on collections from XML Repository please see a tutorial from Oracle.

PostgreSQL Connection

Oxygen allows the user to browse the structure of the PostgreSQL database in the Data Source Explorer view and
open the tables in the Table Explorer view.

480 | Oxygen XML Editor | Working with Databases

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28369/xdb_xquery.htm#top

Figure 282: Browsing a PostgreSQL repository

The actions available at container level are the following:

• Refresh - Performs a refresh of the selected container.

The actions available at resource level are the following:

• Refresh - Performs a refresh of the selected database table.
• Edit - Opens the selected database table in the Table Explorer view.
• Export to XML ... - Exports the content of the selected database table as an XML file using the dialog from

importing data from a database.

Berkeley DB XML Connection

This section explains the actions that are available on a Berkeley DB XML connection.

Actions Available at Connection Level

In a Berkeley DB XML repository the actions available at connection level in the Data Source Explorer view are the
following:

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.

Oxygen XML Editor | Working with Databases | 481

• Add container - Adds a new container in the repository with the following attributes.

• Name - The name of the new container.
• Container type - At creation time, every container must have a type defined for it. This container type identifies

how XML documents are stored in the container. As such, the container type can only be determined at container
creation time; you cannot change it on subsequent container opens. Containers can have one of the following
types specified for them:

• Node container - XML documents are stored as individual nodes in the container. That is, each record in the
underlying database contains a single leaf node, its attributes and attribute values if any, and its text nodes,
if any. Berkeley DB XML also keeps the information it needs to reassemble the document from the individual
nodes stored in the underlying databases. This is the default, and preferred, container type.

• Whole document container - The container contains entire documents. The documents are stored without
any manipulation of line breaks or whitespace.

• Allow validation - If checked it causes documents to be validated when they are loaded into the container. The
default behavior is to not validate documents.

• Index nodes - If checked it causes indices for the container to return nodes rather than documents. The default
is to index at the document level. This property has no meaning if the container type is whole document container.

• Properties - Shows a dialog containing a list of the Berkeley connection properties: version, home location, default
container type, compression algorithm, etc.

Actions Available at Container Level

In a Berkeley DB XML repository the actions available at container level in the Data Source Explorer view are the
following:

• Add Resource - Adds a new XML resource to the selected container.
• Rename - Allows you to specify a new name for the selected container.
• Delete - Removes the selected container from the database tree.
• Edit indices - Allows you to edit the indices for the selected container.

482 | Oxygen XML Editor | Working with Databases

Figure 283: Container indices

The fields of the dialog are the following:

• Granularity:

• Document level granularity is good for retrieving large documents.
• Node level granularity is good for retrieving nodes from within documents.

• Add / Edit indices:

• Node - The node name.
• Namespace - The index namespace
• Index strategy:

• Index type:

• Uniqueness - Indicates whether the indexed value must be unique within the container
• Path type:

• node - Indicates that you want to index a single node in the path
• edge - Indicates that you want to index the portion of the path where two nodes meet

• Node type:

• element - An element node in the document content.
• attribute - An attribute node in the document content.
• metadata - A node found only in a document's metadata content.

• Key type:

• equality - Improves the performances of tests that look for nodes with a specific value
• presence - Improves the performances of tests that look for the existence of a node regardless of

its value

Oxygen XML Editor | Working with Databases | 483

• substring - Improves the performance of tests that look for a node whose value contains a given
substring

• Syntax types - The syntax describes what sort of data the index will contain and is mostly used to determine
how indexed values are compared.

• Refresh - Performs a refresh of the selected node's subtree.
• Properties - Displays a dialog with a list of properties of the Berkeley container like: container type, auto indexing,

page size, validate on load, compression algorithm, number of documents, etc.

Actions Available at Resource Level

In a Berkeley DB XML repository the actions available at resource level in the Data Source Explorer view are the
following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.
• Move - Allows you to move the selected resource in a different container in the database tree (also available through

drag and drop).
• Delete - Removes the selected resource from the container.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.

eXist Connection

This section explains the actions that are available on an eXist connection.

Actions Available at Connection Level

For an eXist database the actions available at connection level in the Data Source Explorer view are the following:

• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data
sources and connections.

• Disconnect - Closes the current database connection.
• Refresh - Performs a refresh of the selected node's subtree.

Actions Available at Container Level

For an eXist database the actions available at container level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected node's subtree.
• New Collection - Creates a new collection.
• Import Folders - Adds recursively the content of specified folders from the local filesystem.
• Import Files - Adds a set of XML resources from the local filesystem.
• Delete - Removes the selected collection.
• Rename - Allows you to change the name of the selected collection.
• Move - Allows you to move the selected collection in a different location in the database tree (also available through

drag and drop).

Actions Available at Resource Level

For an eXist database the actions available at resource level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.

484 | Oxygen XML Editor | Working with Databases

• Move - Allows you to move the selected resource in a different collection in the database tree (also available through
drag and drop).

• Delete - Removes the selected resource from the collection.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Properties - Allows the user to view various useful properties associated with the resource.
• Save As - Allows you to save the name of the selected binary resource as a file on disk.

MarkLogic Connection

The resource management for a MarkLogic database ca be done through WebDAV. For this a WebDAV URL must be
configured in the MarkLogic connection. The actions that can be performed on MarkLogic resources through WebDAV
are the same used for a WebDAV connection (see more about this in WebDAV Connection section).

Software AG Tamino Connection

This section explains the actions that are available on a Tamino connection.

Actions Available at Connection Level

For a Tamino database the actions available at connection level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.
• Add container - Allows you to create a new collection in the database.

Actions Available at Collection Level

For every new Tamino collection created in the Data Source Explorer view, you can specify if a schema is required,
optional or prohibited. The following actions are available at collection level:

• Refresh - Performs a refresh of the selected node's subtree.
• Filter ... - An XQuery expression can be specified for filtering the nodes displayed in the selected Tamino container.

It is only possible to specify one predicate. In the XQuery syntax a predicate is enclosed in square brackets. The
square brackets, however, must not be specified in the dialog box displayed by this action. Only the predicate must
be specified and it will be applied on the selected document type. For example: name/surname between 'B',
'C'

• Insert XML instance - Allows you to load a new XML document.
• Insert non XML instance - Allows you to load a non XML document.
• Modify Collection Properties - Allows you to change the schema usage for the selected collection to optional. This

action is available on collections with required and prohibited schema usage.
• Define schema - Allows you to add a new schema in the Schema Repository. This action is available on collections

with optional and required schema usage.
• Delete - Removes the selected collection. If it is a Tamino doctype then the action removes all the XML instances

contained in the document type.
• Set default - Sets this collection as the default collection for running queries with the input() function.

Actions Available at Schema Level

For a Tamino database the actions available at schema level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected schema.
• Open - Opens the selected schema in the editor. There are supported schema changes that preserve the validity

relative to the existent instances.
• Delete - Removes the selected schema from the Schema Repository.

Oxygen XML Editor | Working with Databases | 485

Actions Available at Resource Level

For a Tamino database the actions available at resource level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.
• Delete - Removes the selected resource.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Properties - Allows the user to view various useful properties associated with the resource.
• Save As - Allows you to save the name of the selected binary resource as a file on disk.

Validation of an XML resource stored in a Tamino database is done against the schema associated with the resource in
the database.

Documentum xDb (X-Hive/DB) Connection

This section explains the actions that are available on a Documentum xDb (X-Hive/DB) 10 connection.

Actions Available at Connection Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at connection level in the Data Source Explorer
view are the following:

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.
• Add library - Allows you to add a new library.
• Insert XML Instance - Allows you to add a new XML resource directly into the database root. See Documentum

xDb (X-Hive/DB) 10 Parser Configuration for more details.
• Insert non XML Instance - Allows you to add a new non XML resource directly into the database root.
• Properties - Displays the connection properties.

Actions Available at Catalog Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at catalog level in the Data Source Explorer
view are the following:

• Refresh - Performs a refresh of the selected catalog.
• Add AS models - Allows you to add a new abstract schema model to the selected catalog.
• Set default schema - Allows you to set a default DTD to be used for parsing. It is not possible to set a default XML

Schema.
• Clear default schema - Allows you to clear the default DTD. The action is available only if there is a DTD set as

default.
• Properties - Displays the catalog properties.

Actions Available at Schema Resource Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at schema resource level in the Data Source
Explorer view are the following:

• Refresh - Performs a refresh of the selected schema resource.
• Open - Opens the selected schema resource in the editor.
• Rename - Allows you to change the name of the selected schema resource.
• Save As - Allows you to save the selected schema resource as a file on disk.
• Delete - Removes the selected schema resource from the catalog

486 | Oxygen XML Editor | Working with Databases

• Copy location - Allows you to copy to clipboard the URL of the selected schema resource.
• Set default schema - Allows you to set the selected DTD to be used as default for parsing. The action is available

only for DTD.
• Clear default schema - Allows you to unset the selected DTD. The action is available only if the selected DTD is

the current default to be used for parsing.

Actions Available at Library Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at library level in the Data Source Explorer
view are the following:

• Refresh - Performs a refresh of the selected library.
• Add library - Adds a new library as child of the selected library.
• Add local catalog - Adds a catalog to the selected library. By default, only the root-library has a catalog, and all

models would be stored there.
• Insert XML Instance - Allows you to add a new XML resource to the selected library. See Documentum xDb

(X-Hive/DB) 10 Parser Configuration for more details.
• Insert non XML Instance - Allows you to add a new non XML resource to the selected library.
• Rename - Allows you to specify a new name for the selected library.
• Move - Allows you to move the selected library to a different one (also available through drag and drop).
• Delete - Removes the selected library.
• Properties - Displays the library properties.

Actions Available at Resource Level

When an XML instance document is added For a Documentum xDb (X-Hive/DB) 10 database the actions available at
resource level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.
• Move - Allows you to move the selected resource in a different library in the database tree (also available through

drag and drop).
• Save As - Allows you to save the selected binary resource as a file on disk.
• Delete - Removes the selected resource from the library.
• Copy location - Allows you to copy to clipboard the URL of the selected resource.
• Add AS model - Allows you to add an XML schema to the selected XML resource.
• Set AS model - Allows you to set an active AS model for the selected XML resource.
• Clear AS model - Allows you to clear the active AS model of the selected XML resource.
• Properties - Displays the resource properties. Available only for XML resources.

Validation of an XML resource stored in an Documentum xDb (X-Hive/DB) 10 database is done against the schema
associated with the resource in the database.

Documentum xDb (X-Hive/DB) 10 Parser Configuration for Adding XML Instances

When an XML instance document is added to a Documentum xDb (X-Hive/DB) 10 connection or library it is parsed
with an internal XML parser of the database server. The following options are available for configuring this parser:

• DOM Level 3 parser configuration parameters. More about each parameter can be found here: DOM Level 3
Configuration.

• Documentum xDb (X-Hive/DB) 10 specific parser parameters (for more information please consult the Documentum
xDb (X-Hive/DB) 10 manual):

• xhive-store-schema - If checked, the corresponding DTD's or XML schemas are stored in the catalog during
validated parsing.

Oxygen XML Editor | Working with Databases | 487

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration

• xhive-store-schema-only-internal-subset - Stores only the internal subset of the document (not any external
subset). This options modifies the xhive-store-schema one (only has a function when that parameter is set to
true, and when DTD's are involved). Select this option this option if you only want to store the internal subset
of the document (not the external subset).

• xhive-ignore-catalog - Ignores the corresponding DTD's and XML schemas in the catalog during validated
parsing.

• xhive-psvi - Stores psvi information on elements and attributes. Documents parsed with this feature turned on,
give access to psvi information and enable support of data types by XQuery queries.

• xhive-sync-features - Convenience setting. With this setting turned on, parameter settings of XhiveDocumentIf
are synchronized with the parameter settings of LSParser. Note that parameter settings xhive-psvi and
schema-location are always synchronized.

XQuery and Databases

XQuery is a native XML query language which is useful for querying XML views of relational data to create XML
results. It provides the mechanism to efficiently and easily extract information from Native XML Databases (NXD) and
relational data as well. The following database systems supported in Oxygen offer XQuery support:

• Native XML Databases:

• Berkeley DB XML
• eXist
• MarkLogic (validation support not available)
• Software AG Tamino
• Raining Data TigerLogic (validation support not available)
• Documentum xDb (X-Hive/DB) 10

• Relational Databases:

• IBM DB2
• Microsoft SQL Server (validation support not available)
• Oracle (validation support not available)

Build Queries With Drag and Drop From Data Source Explorer View

When a query is edited in the XQuery editor the XPath expressions can be composed quickly with drag and drop actions
from the Data Source Explorer view to the editor panel.

1. Configure the data source to the relational database.

2. Configure the connection to the relational database.

3. Browse the connection in the Data Source Explorer view up to the table or column that you want to insert in the
query.

4. Drag the table name or the column name to the XQuery editor panel.

5. Drop the table name / column name where the XPath expression is needed.

An XPath expression that selects the dragged name will be inserted in the XQuery document at caret position.

XQuery Transformation

XQuery is designed to retrieve and interpret XML data from any source, whether it is a database or a document. Data
is stored in relational databases but often it is required that data is extracted and transformed as XML when interfacing

488 | Oxygen XML Editor | Working with Databases

to other components and services. Also, it is an XPath-based querying language supported by most NXD vendors. To
perform a query you need an XQuery transformation scenario.

1. Configure a data source for the database.

The data source can be relational or XML native.

2. Configure an XQuery transformation scenario.

a) Click the Configure Transformation Scenario toolbar button or go to menu Document > Transformation
> Configure Transformation Scenario .

The dialog for configuring a scenario will be opened.

b) Click the New button of the dialog.

The dialog for editing an XQuery scenario will be opened.

Figure 284: Edit Scenario Dialog

c) Insert the scenario name in the dialog for editing the scenario.

Oxygen XML Editor | Working with Databases | 489

d) Choose the database connection in the Transformer combo box.
e) Configure any other parameters if necessary.

For an XQuery transformation the output tab has an option called Sequence which allows you to execute an
XQuery in lazy mode. The amount of data extracted from the database is controlled from option Size limit on
Sequence view. If you choose Perform FO Processing in the FO Processor tab, the Sequence option is ignored.

f) Click the OK button to finish editing the scenario.

Once the scenario is associated with the XQuery file, the query can include calls to specific XQuery functions
implemented by that engine. The available functions depend on the target database engine selected in the scenario.
For example for eXist and Berkeley DB XML the content completion assistant lists the functions supported by that
database engine. This is useful for inserting in the query only calls to the supported functions (standard XQuery
functions or extension ones).

Note: An XQuery transformation is executed against a Berkeley DB XML server as a transaction using the
query transaction support of the server.

3. Run the scenario.

To view a more complex value returned by the query that cannot be displayed entirely in the XQuery query result
table at the bottom of the Oxygen window, for example an XMLTYPE value or a CLOB value, do the following
actions:

• right click on that table cell
• select the action Copy cell from the popup menu for copying the value in the clipboard
• paste the value where you need it, for example an opened XQuery editor panel of Oxygen .

XQuery Database Debugging

This section describes the procedures for debugging XQuery transformations that are executed against MarkLogic
databases and Berkeley DB XML ones.

Debugging with MarkLogic

To start a debug session against the MarkLogic engine you will first need to configure a MarkLogic data source and a
MarkLogic connection. Also you have to make sure that the debugging support is enabled in the MarkLogic server that
will be accessed from Oxygen. On the server side debugging must be activated both in the XDBC server and in the
section Task Server of the server control console (the switch debug allow) otherwise the error DBG-TASKDEBUGALLOW
is reported by the MarkLogic server.

The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective. If you already have a
MarkLogic scenario configured for the XQuery file you can choose directly to debug the scenario. If not, you just have
to switch to the XQuery Debugger perspective, open the XQuery file in the editor and select the MarkLogic connection
in the XQuery engine selector from the debug control toolbar. For general information about how a debugging session
is started and controlled see the Working with the Debugger section.

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is available only for MarkLogic server versions 3.2 or newer.
• For MarkLogic server versions 4.0 or newer there are three XQuery syntaxes which are supported: '0.9-ml' (inherited

from MarkLogic 3.2), '1.0-ml' and '1.0'
• All the debugging steps are executed by the MarkLogic server and the results or possible errors of each step are

presented by the local debugger user interface.
• All declared variables are presented as strings. The Value column of the Variables view contains the expression

from the variable declaration. It can be evaluated by copying the expression with the Copy value action from the
contextual menu of the Variables view and pasting it in the XWatch view.

• No support for Output to Source Mapping.

490 | Oxygen XML Editor | Working with Databases

• No support for showing the trace.
• Breakpoints can be set in the imported modules but they are only active if the modules are opened in the editor at

the time of debugging.
• The modules can only be opened in the editor during the debugging session by stepping in repeatedly until reaching

the module.
• There should not be any breakpoints set in modules from the same server which are not involved in the current

debugging session.
• No support for profiling when an XQuery transformation is executed in the debugger.

Debugging Queries Which Import Modules

When debugging queries on a MarkLogic database which import modules stored in the database the recommended steps
for placing a breakpoint in a module are the following:

1. Start the debugging session with the action Debug Scenario from the Transformation toolbar or the
XQuery Debugger toolbar button.

2. Step into repeatedly until reaching the desired module.

3. Add the module to the current project for easy access.

4. Set breakpoints in the module as needed.

5. Continue debugging the query.

When starting a new debugging session make sure that the modules which you will debug are already opened in the
editor. This is necessary so that the breakpoints in modules will be considered. Also make sure there are no other opened
modules which are not involved in the current debugging session.

Debugging with Berkeley DB XML

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is 2.5.13
and it is supported in Oxygen's XQuery Debugger. The same restrictions and peculiarities apply for the Berkeley
debugger as for the MarkLogic one.

WebDAV Connection

This section explains how to work with a WebDAV connection in the Data Source Explorer view.

How to Configure a WebDAV Connection

Oxygen's default configuration already contains a WebDAV data source called WebDAV. Based on this data source
you can create a WebDAV connection for browsing and editing data from a database that provides a WebDAV interface.
The connection will be available in the Data Source Explorer view. The steps for configuring a WebDAV connection
are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

3. Enter a unique name for the connection.

4. Select one of the WebDAV data sources in the Data Source combo box.

5. Fill-in the connection details:

a) Set the URL to the WebDAV repository in the field WebDAV URL.
b) Set the user name to access the WebDAV repository in the field User.
c) Set the password to access the WebDAV repository in the field Password.

6. Click the OK button.

Oxygen XML Editor | Working with Databases | 491

WebDAV Connection Actions

This section explains the actions that are available on a WebDAV connection in the Data Source Explorer view.

Actions Available at Connection Level

The contextual menu of a WebDAV connection in the Data Source Explorer view contains the following actions:

• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data
sources and connections.

• Add Resource ... - Allows you to add a new file on the server.
• Add Container ... - Allows you to create a new folder on the server.
• Refresh - Performs a refresh of the connection.

Actions Available at Folder Level

The contextual menu of a folder node in a WebDAV connection in the Data Source Explorer view contains the following
actions:

• Add Container - Allows you to create a new folder on the server.
• Add Resource - Allows you to add a new file on the server in the current folder.
• Rename - Allows you to change the name of the selected folder.
• Move - Allows you to move the selected folder in a different location in the tree (also available through drag and

drop).
• Delete - Removes the selected folder.
• Refresh - Performs a refresh of the selected node's subtree.

Actions Available at File Level

The contextual menu of a file node in a WebDAV connection in the Data Source Explorer view contains the following
actions:

• Open - Allows you to open the selected file in the editor.
• Unlock - Removes the lock from the current file in the database.
• Rename - Allows you to change the name of the selected file.
• Move - Allows you to move the selected file in a different location in the tree (also available through drag and drop).
• Delete - Removes the selected file.
• Copy Location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Refresh - Performs a refresh of the selected node.
• Properties - Displays the properties of the current file in a dialog.

492 | Oxygen XML Editor | Working with Databases

Chapter

17

Importing Data

This chapter shows you how to import data that is stored in text format, in an
Excel sheet or in relational database tables into XML documents.

Topics:

• Introduction
• Import from Database
• Import from MS Excel Files
• Import from HTML Files
• Import from Text Files

Introduction

XML was designed to describe data. Computer systems and databases contain data in incompatible formats and one of
the most time-consuming activities has been to exchange data between these systems. Converting the data to XML can
greatly reduce complexity and create data that can be read by many different types of applications.

This is why Oxygen now offers you support for importing text files, MS Excel files, Database Data and HTML files
into XML documents. The XML documents can be further converted into other formats using the Transform features.

Import from Database

This section explains how to import data from a database into Oxygen.

Import Table Content as XML Document

The steps for importing the data of a table from a relational database are the following:

1. Go to menu File > Import > Database Data...

This steps opens a dialog with all the database connections:

Figure 285: Select Database Table Dialog

494 | Oxygen XML Editor | Importing Data

2. Select the connection to the database that contains the data.

Only connections configured on relational data sources can be used to import data.

3. If you want to edit, delete or add a data source or connection click on the Configure Database Sources button.
The Preferences dialog will be opened at Data Sources section.

4. Click the Connect button.

5. From the catalogs list click on a schema and choose the required table.

6. Click the OK button.

The Import Criteria dialog will open next, showing a default query string like select * from table in the
SQL Query pane:

Figure 286: Import from Database Criteria Dialog

The dialog contains the following items:

Oxygen XML Editor | Importing Data | 495

• SQL Preview - Displays the labels that will be used in the XML document in the preview from the panel Import
settings. If the SQL Preview button is pressed, it shows the labels that will be used in the XML document and
the first 5 lines from the database. All data items in the input will be converted by default to element content, but
this can be over-ridden by clicking on the individual column headers. Clicking once on a column header (ex
Heading0) will cause the data from this column to be used as attribute values on the row elements. Clicking a
second time - the column's data will be ignored when generating the XML file. You can cycle through these three
options by continuing to click on the column header. If the data column will be converted to element content,
the header will contain the <> symbol. If the data column will be converted to attribute content, the header will
contain the = symbol, and if it will be skipped, the header will contain an x.

• Change labels - This button opens a new dialog, allowing you to edit the names of the root and row elements,
change the XML name and the conversion criterion. The XML names can be edited by double-clicking on the
desired item and entering the required label. The conversion criterion can also be modified by selecting from the
drop-down list ELEMENT, ATTRIBUTE or SKIPPED.

• Open in editor - If checked, the new XML document created from the imported text file will be opened in the
editor.

• Save in file - If checked, the new XML document will be saved at the specified path.

Note: If only Open in editor is checked, the newly created document will be opened in the editor, but as
an unsaved file.

• Generate XML Schema - Allows you to specify the path of the generated XML Schema file.

7. Click the SQL Preview button.

The SQL Query string is editable. You can specify which fields should be taken into consideration.

If you edit the query string so that the query does a join of two or more tables and selects columns with the same
name from different tables you should use an alias for the columns like in the following example. That will avoid a
confusion of two columns mapped to the same name in the result document of the importing operation.

 select s.subcat_id,
 s.nr as s_nr,
 s.name,
 q.q_id,
 q.nr as q_nr,
 q.q_text
 from faq.subcategory s,
 faq.question q
 where ...

The input data will be displayed in a tabular form in the Import Settings panel. The XML Import Preview panel
will contain an example of what the generated XML will look like.

Convert Table Structure to XML Schema

The structure of a table from a relational database can be imported in Oxygen as an XML Schema. For this the checkbox
Generate XML Schema must be selected in the dialog Import criteria from the procedure for importing table data
as an XML instance document.

Import from MS Excel Files

Oxygen can also import MS (Microsoft) Excel files into XML format documents with the following steps:

1. Go to menu File > Import > MS Excel File... .
A dialog Select Excel Sheet will be opened.

496 | Oxygen XML Editor | Importing Data

2. Enter the URL of the Excel document in the dialog.

3. Choose one of the available sheets of the Excel document.
The input data is displayed next in the Import Criteria dialog in a tabular form and the XML Import Preview
contains an example of what the generated XML will look like. The Import Criteria dialog has a similar behaviour
with the one shown in case of Import from text files.

4. Click the OK button.

Import from HTML Files

HTML is one of the formats that can be imported as an XML document. The steps are the following:

1. Go to menu File > Import > HTML File
The Import HTML dialog is displayed.

2. Enter the URL of the HTML document.

3. Type a name for the new document that will contain the imported XML content.

4. Select the type of the result XHTML document:

• XHTML 1.0 Transitional
• XHTML 1.0 Strict

5. Click the OK button.

The resulted document will be an XHTML file containing a DOCTYPE declaration referring to the XHTML DTD
definition on the Web. The parsed content of the imported file will be transformed to XHTML Transitional or XHTML
Strict depending on what radio button the user chose when performing the import operation.

Import from Text Files

The steps for importing a text file into an XML file are the following:

1. Go to menu File > Import > Text File...
The Select text file dialog will be displayed.

2. Select the URL of the text file.

3. Select the encoding of the text file.

4. Click the OK button.

The Import Criteria dialog will be displayed:

Oxygen XML Editor | Importing Data | 497

Figure 287: Import from text file

The input data is displayed in a tabular form. The XML Import Preview panel contains an example of what the
generated XML will look like. The names of the XML elements and the transformation of the first 5 lines from the
text file are displayed. All data items in the input will be converted by default to element content, but this can be
over-ridden by clicking on the individual column headers. Clicking once on a column header will cause the data
from this column to be used as attribute values on the row elements. Clicking a second time - the column's data will
be ignored when generating the XML file. You can cycle through these three options by continuing to click on the
column header. If the data column will be converted to element content, the header will contain the <> symbol. If
the data column will be converted to attribute content, the header will contain the = symbol. If it will be skipped,
the header will contain an x.

5. Select the field delimiter for the import settings:

• comma
• semicolon
• tab
• space

6. Set other optional settings of the conversion.

The dialog offers the following settings:

498 | Oxygen XML Editor | Importing Data

• First row contains field names - If the option is checked, you'll notice that the table has moved up. The default
column headers are replaced (where there is information) by the content of the first row. In other words, the first
row is interpreted as containing the field names. The changes are also visible in the preview of the XML document.
To return to default (where the first row is interpreted as not containing field names), simply uncheck the option.

• Change labels - If the above option is set, the first row of the input file contains presentation names and these
will be used as tokens in the created XML files, otherwise some generic heading names will be used. This button
opens a new dialog, allowing you to edit the names of the root and row elements, change the XML name and the
conversion criterion.

The XML names can be edited by double-clicking on the desired item and entering the required label. The
conversion criterion can also be modified by selecting from the drop-down list one of the options: ELEMENT,
ATTRIBUTE or SKIPPED.

• Open in editor - If checked, the new XML document created from the imported text file will be opened in the
editor.

• Save in file - If checked, the new XML document will be saved at the specified path.

Note: If only Open in editor is checked, the newly created document will be opened in the editor, but as
an unsaved file.

Oxygen XML Editor | Importing Data | 499

Chapter

18

Content Management System (CMS) Integration

This chapter explains how Oxygen can be integrated with a content management
system (CMS) so that the data stored in the CMS can be edited directly in the

Topics:

• Integration with Documentum
(CMS)

Oxygen editor. Only the integration with the Documentum (CMS) is explained
but other CMSs can use the plugin support for similar integrations.

Integration with Documentum (CMS)

Oxygen provides support for browsing and managing Documentum repositories in the Data Source Explorer. You can
easily create new resources on the repository, copy and move them using contextual actions or the drag and drop support,
edit and transform the documents in the editor. The operations that can be performed on repository resources are described
in the Documentum (CMS) actions section.

Oxygen supports Documentum (CMS) version 6.5 or later with Documentum Foundation Services 6.5 or later installed.

Attention:

It is recommended to use the latest 1.5.x or 1.6.x Java version. It is possible that the Documentum (CMS) support
will not work properly if you use other Java versions.

Configure Connection to Documentum Server

This section explains how to configure a connection to a Documentum server.

How to Configure a Documentum (CMS) Data Source

To configure a Documentum (CMS) data source you need the Documentum Foundation Services Software Development
Kit (DFS SDK) corresponding to your server version. The DFS SDK can be found in the Documentum (CMS) server
installation kit or it can be downloaded from EMC Community Network.

Note: The DFS SDK can be found in the form of an archive named, for example, emc-dfs-sdk-6.5.zip for
Documentum (CMS) 6.5.

1. Go to menu Preferences > Data Sources .
The Preferences dialog is opened at the Data Sources panel.

2. In the Data Sources panel click the New button.

3. Enter a unique name for the data source.

4. Select Documentum (CMS) from the driver type combo box.

5. Press the Choose DFS SDK Folder button.

6. Select the folder where you have unpacked the DFS SDK archive file.

If you have indicated the correct folder the following Java libraries (jar files) will be added to the list (some variation
of the library names is possible in future versions of the DFS SDK):

• lib/java/emc-bpm-services-remote.jar

• lib/java/emc-ci-services-remote.jar

• lib/java/emc-collaboration-services-remote.jar

• lib/java/emc-dfs-rt-remote.jar

• lib/java/emc-dfs-services-remote.jar

• lib/java/emc-dfs-tools.jar

• lib/java/emc-search-services-remote.jar

• lib/java/ucf/client/ucf-installer.jar

• lib/java/commons/*.jar (multiple jar files)
• lib/java/jaxws/*.jar (multiple jar files)
• lib/java/utils/*.jar (multiple jar files)

Note: If for some reason the jar files are not found, you can add them manually by using the Add Files and
Add Recursively buttons and navigating to the lib/java folder from the DFS SDK.

7. Click the OK button to finish the data source configuration.

502 | Oxygen XML Editor | Content Management System (CMS) Integration

https://community.emc.com/index.jspa

How to Configure a Documentum (CMS) Connection

The steps for configuring a connection to a Documentum (CMS) server are the following:

1. Go to menu Preferences > Data Sources .

2. In the Connections panel click the New button.

3. Enter a unique name for the connection.

4. Select one of the previously configured Documentum (CMS) data sources in the Data Source combo box.

5. Fill-in the connection details:

• URL - The URL to the Documentum (CMS) server: http://<hostname>:<port>

• User - The user name to access the Documentum (CMS) repository.
• Password - The password to access the Documentum (CMS) repository.
• Repository - The name of the repository to log into.

6. Click the OK button to finish the configuration of the connection.

Known Issues

The following are known issues with the Documentum (CMS):

1. Please note that at the time of this implementation there is a problem in the UCF Client implementation for MAC
OS X which prevents you from viewing or editing XML documents from the repository. The UCF Client is the
component responsible for file transfer between the repository and the local machine. This component is deployed
automatically from the server.

2. In order for the Documentum driver to work faster, you need to specify to the JVM to use a weaker random generator,
instead of the very slow native implementation. This can be done by modifying in the Oxygen startup scripts (or in
the *.vmoptions file) the system property:

-Djava.security.egd=file:/dev/./urandom

Documentum (CMS) Actions in the Data Source Explorer View

Oxygen allows you to browse the structure of a Documentum repository in the Data Source Explorer view and perform
various operations on the repository resources.

You can drag and drop folders and resources to other folders to perform move or copy operations with ease. If the drag
and drop is between resources (drag the child item to the parent item) you can create a relationship between the respective
resources.

Oxygen XML Editor | Content Management System (CMS) Integration | 503

Figure 288: Browsing a Documentum repository

Actions Available on Connection

The actions available on a Documentum (CMS) connection in the Data Source Explorer view are the following:

• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data
sources and connections.

• New Cabinet - Creates a new cabinet in the repository. The cabinet properties are:

• Type - The type of the new cabinet (default is dm_cabinet).
• Name - The name of the new cabinet.
• Title - The title property of the cabinet.
• Subject - The subject property of the cabinet.

• Refresh - Refreshes the connection.

Actions Available on Cabinets / Folders

The actions available on a Documentum (CMS) cabinet in the Data Source Explorer view are the following:

• New Folder - Creates a new folder in the current cabinet / folder. The folder properties are the following:

• Path - Shows the path where the new folder will be created.
• Type - The type of the new folder (default is dm_folder).
• Name - The name of the new folder.
• Title - The title property of the folder.
• Subject - The subject property of the folder.

• New Document - Creates a new document in the current cabinet / folder. The document properties are the
following:

• Path - Shows the path where the new document will be created.

504 | Oxygen XML Editor | Content Management System (CMS) Integration

• Name - The name of the new document.
• Type - The type of the new document (default is dm_document).
• Format - The document content type format.

• Import - Imports local files / folders in the selected cabinet / folder of the repository. Actions available in the import
dialog:

• Add Files - Shows a file browse dialog and allows you to select files to add to the list.
• Add Folders - Shows a folder browse dialog that allows you to select folders to add to the list. The subfolders

will be added recursively.
• Edit - Shows a dialog where you can change the properties of the selected file / folder from the list.
• Remove - Removes the selected files / folders from the list.

• Rename - Changes the name of the selected cabinet / folder.
• Copy - Copies the selected folder to a different location in the tree (available only upon folders). This action can

also be performed with drag and drop while holding the (Ctrl) key pressed.
• Move - Moves the selected folder to a different location in the tree (available only upon folders). This action can

also be performed with drag and drop.
• Delete - Deletes the selected cabinet / folder from the repository. The following options are available:

• Folder(s) - Allows you to delete only the selected folder or to delete recursively the folder and all subfolders and
objects.

• Version(s) - Allows you to specify what versions of the resources will be deleted.
• Virtual document(s) - Here you can specify what happens when virtual documents are encountered. They can

be either deleted either by themselves or together with their descendants.

• Refresh - Performs a refresh of the selected node's subtree.
• Properties - Displays the list of properties of the selected cabinet / folder.

Actions Available on Resources

The actions available on a Documentum (CMS) resource in the Data Source Explorer view are the following:

• Edit - Checks out (if not already checked out) and opens the selected object in the editor.
• Edit with - Checks out (if not already checked out) and opens the selected object in the specified editor / tool.
• Open (Read-only) - Opens the selected object in the editor for viewing. The files are marked as read-only in the

editor using a lock icon on the file tab. If you want to edit those files you must enable the Can edit read only files
option.

• Open with - Opens the selected object in the specified editor / tool for viewing.
• Check Out - Checks out the selected object from the repository. The action is not available if the object is already

checked out.
• Check In - Checks in the selected object (commits changes) into the repository. The action is only available if the

object is checked out.

Oxygen XML Editor | Content Management System (CMS) Integration | 505

Figure 289: Check In Dialog

The properties of a resource are the following:

• Name - The name the file will have on the repository.
• Version - Allows you to choose what version the object will have after being checked in.
• Version label - The label of the updated version.
• Description - An optional description of the file.
• Keep Locks - If checked the updated file is checked into the repository but it is also kept checked out in your

name.
• Make this the current version - Makes the updated file the current version (will have the CURRENT version

label).

• Cancel Checkout - Cancels the check out and loses all modifications since the check out. Action is only available
if the object is checked out.

• Export - Allows you to export the object and save it locally.
• Rename - Changes the name of the selected object.
• Copy - Copies the selected object to a different location in the tree. Action is not available on virtual document

descendants. This action can also be performed with drag and drop while holding the (Ctrl) key pressed.
• Move - Moves the selected object to a different location in the tree. Action is not available on virtual document

descendants and on checked out objects. This action can also be performed with drag and drop.
• Delete - Deletes the selected object from the repository. Action is not available on virtual document descendants

and on checked out objects.
• Add Relationship - Adds a new relationship for the selected object. This action can also be performed with drag

and drop between objects.
• Convert to Virtual Document - Allows you to convert a simple document to a virtual document. Action is available

only if the object is a simple document.
• Convert to Simple Document - Allows you to convert a virtual document to a simple document. Action is available

only if the object is a virtual document with no descendants.
• Copy location - Allows you to copy to clipboard an application specific URL for the object which can then be used

for various actions like opening or transforming the resources.
• Refresh - Performs a refresh of the selected object.
• Properties - Displays the list of properties of the selected object.

506 | Oxygen XML Editor | Content Management System (CMS) Integration

Transformations on DITA Content from Documentum (CMS)

Oxygen comes with the DITA Open Toolkit which is able to transform a DITA map to various output formats. However
DITA Open Toolkit requires local DITA files so first you need to check out a local version of your DITA content. Once
you have a local version of a DITA map just load it in the DITA Maps Manager view and run one of the DITA
transformations that are predefined in Oxygen or a customization of such a predefined DITA transformation.

Oxygen XML Editor | Content Management System (CMS) Integration | 507

Chapter

19

Composing Web Service Calls

This chapter presents how to compose a SOAP request based on a WSDL file,
how to send the request to a server and how to generate HTML documentation
for WSDL files.

Topics:

• Overview
• Composing a SOAP Request
• Testing Remote WSDL Files
• The UDDI Registry Browser
• Generate WSDL Documentation

Overview

Web Services Description Language (WSDL) is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented information.

The WSDL files contain information about the published services, like the name, the message types and the bindings.
The editor is offering a way to edit the WSDL files that is similar to editing XML, the content completion and validation
being driven by a mix of the WSDL and SOAP schemas. Oxygen supports WSDL version 1.1 and 2.0 and SOAP versions
1.1 and 1.2. That means that in the location where a SOAP extension can be inserted the content completion assistant
offers elements from both SOAP 1.1 and SOAP 1.2. Validation of SOAP requests is executed first against a SOAP 1.1
schema and after that against a SOAP 1.2 schema. In addition to validation against the XSD schemas the WSDL file is
also analysed during validation so that more element reference specific problems can be detected.

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP it is
very easy to check if the defined SOAP messages are accepted by the remote Web Services server using Oxygen's
WSDL SOAP Analyser integrated tool.

Composing a SOAP Request

To design, compose, and test Web service calls in Oxygen follow the procedure:

1. Create a new document or open an existing document of type WSDL.

2. Design the Web Service descriptor in the WSDL editor.

The content completion is driven by a mix of the WSDL and SOAP schemas. You do not need to specify the schema
location for the WSDL standard namespaces because Oxygen comes with these schemas and uses them by default
to assist the user in editing Web Service descriptors.

Figure 290: Content completion for WSDL documents

3. While editing the Web-Services descriptors check their conformance to the WSDL and SOAP schemas.

In the following example you can see how the errors are reported.

510 | Oxygen XML Editor | Composing Web Service Calls

Figure 291: Validating a WSDL file

4. Check if the defined messages are accepted by the Web Services server.

Oxygen is providing two ways of testing, one for the currently edited WSDL file and other for the remote WSDL
files that are published on a web server. For the currently edited WSDL file the WSDL SOAP Analyser tool can be
opened by:

• pressing the toolbar button WSDL SOAP Analyser
• going to the menu item Document > Tools > WSDL SOAP Analyser
• going to submenu Open with > WSDL SOAP Analyser of the Project view contextual menu

Oxygen XML Editor | Composing Web Service Calls | 511

Figure 292: WSDL SOAP Analyser

This dialog contains a SOAP analyser and sender for Web Services Description Language file types. The analyser
fields are:

• Services - The list of services defined by the WSDL file.
• Ports - The ports for the selected service.
• Operations - The list of available operations for the selected service.
• Action URL - Shows the script that serves the operation.
• SOAP Action - Identifies the action performed by the script.
• Version - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected

port.
• Request Editor - It allows you to compose the web service request. When an action is selected, Oxygen tries to

generate as much content as possible for the SOAP request. The envelope of the SOAP request has the correct
namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/envelope/ for SOAP 1.1 or
http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to change few values in order
for the request to be valid. The content completion is available for this editor and is driven by the schema that
defines the type of the current message. While selecting different operations Oxygen will remember the modified
request for each one. You can press the Regenerate button in order to overwrite your modifications for the current
request with the initial generated content.

512 | Oxygen XML Editor | Composing Web Service Calls

• Attachments List - You can define a list of file's URLs to be attached to the request.
• Response Area - Initially it displays an auto generated server sample response so you can have an idea about

how the response will look like. After pressing the Send button it will present the message received from the
server in response to the Web Service request. It may show also error messages. In case the response message
contains attachments, Oxygen will prompt you to save them, then will try to open them with the associated system
application.

• Errors List - There may be situations in which the WSDL file is respecting the WSDL XML Schema, but it fails
to be valid for example in the case of a message that is defined by means of an element that is not found in the
types section of the WSDL. In such a case, the errors will be listed here. This list is presented only when there
are errors.

• Send Button - Executes the request. A status dialog is shown when Oxygen is connecting to the server.

The testing of a WSDL file is straight-forward: just click on the WSDL analysis button, then select the service, the
port and the operation. The editor will generate the skeleton for the SOAP request. You can edit the request, eventually
attach files to it and send it to the server. Watch the server response in the response area. For testing remote WSDL
files see this section.

5. Save the request derived from the Web Service descriptor.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web Service
SOAP Call (WSSC) file for later reuse. In this way you will save time in configuring the URLs and parameters.

6. Open the result of a Web Service call in an editor panel.

In this way you can save the SOAP request or process it further.

Testing Remote WSDL Files

To open and test a remote WSDL file the steps are the following:

1. Go to menu Tools > WSDL SOAP Analyser

2. On the WSDL File tab enter the URL of the remote WSDL file.

You enter the URL:

• by typing
• by browsing the local file system
• by browsing a remote file system
• by browsing a UDDI Registry

3. Press the OK button.
This will open the WSDL SOAP Analyser tool. In the Saved SOAP Request tab you can open directly a previously
saved Web Service SOAP Call (WSSC) file thus skipping the analysis phase.

The UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog (menu Tools > WSDL SOAP Analyzer) opens the UDDI
Registry Browser dialog.

Oxygen XML Editor | Composing Web Service Calls | 513

Figure 293: UDDI Registry Browser dialog

The fields of the dialog are the following:

• URL - Type the URL of an UDDI registry or choose one from the default list.
• Keywords - Enter the string you want to be used when searching the selected UDDI registry for available Web

services.
• Rows to fetch - The maximum number of rows to be displayed in the result list.
• Search by - You can choose to search whether by company or by provided service.
• Case sensitive - When checked, the search will take into account the keywords' case.
• Search - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the OK button the UDDI Registry Browser dialog is closed and you
are returned to the WSDL File Opener dialog.

Generate WSDL Documentation

To generate documentation for a WSDL document use the action from menu Tools > Generate Documentation >
WSDL Documentation .

The WSDL documentation dialog can be also opened from the Project tree contextual menu: Generate Documentation
> WSDL Documentation... .

The fields of the dialog are the following:

• Input URL - Type the URL of the file or click on the browse button and select it from the file system.
• Output file (HTML) - In this field you will have to enter the path and the filename where the documentation will

be generated.
• Open in browser - If you want the result to be opened in a browser, select this checkbox.

514 | Oxygen XML Editor | Composing Web Service Calls

• Generate - Press this button for generating the documentation of the WSDL file.

Oxygen XML Editor | Composing Web Service Calls | 515

Chapter

20

Digital Signatures

This chapter explains how to apply and verify digital signatures on XML
documents.

Topics:

• Overview
• Canonicalizing Files
• Certificates
• Signing Files
• Verifying the Signature

Overview

Digital signatures are widely used as security tokens, not just in XML. A digital signature provides a mechanism for
assuring integrity of data, the authentication of its signer, and the non-repudiation of the entire signature to an external
party:

• A digital signature must provide a way to verify that the data has not been modified or replaced to ensure integrity.
• The signature must provide a way to establish the identity of the data's signer for authentication.
• The signature must provide the ability for the data's integrity and authentication to be provable to a third party for

non-repudiation.

A public key system is used to create the digital signature and it's also used for verification. The signature binds the
signer to the document because digitally signing a document requires the originator to create a hash of the message and
then encrypt that hash value with his own private key. Only the originator has that private key and he is the only one
that can encrypt the hash so that it can be unencrypted using his public key. The recipient, upon receiving both the
message and the encrypted hash value, can decrypt the hash value, knowing the originator's public key. The recipient
must also try to generate the hash value of the message and compare the newly generated hash value with the unencrypted
hash value received from the originator. If the hash values are identical, it proves that the originator created the message,
because only the actual originator could encrypt the hash value correctly.

XML Signatures can be applied to any digital content (data object), including XML (see W3C Recommendation,
XML-Signature Syntax and Processing). An XML Signature may be applied to the content of one or more resources:

• enveloped or enveloping signatures are applied over data within the same XML document as the signature
• detached signatures are applied over data external to the signature element; the signature is "detached" from the

content it signs. This definition typically applies to separate data objects, but it also includes the instance where the
signature and data object reside within the same XML document but are sibling elements.

The XML Signature is a method of associating a key with referenced data. It does not normatively specify how keys
are associated with persons or institutions, nor the meaning of the data being referenced and signed.

The original data is not actually signed. Instead, the signature is applied to the output of a chain of canonicalization and
transformation algorithms, which are applied to the data in a designated sequence. This system provides the flexibility
to accommodate whatever "normalization" or desired preprocessing of the data that might be required or desired before
subjecting it to being signed.

To canonicalize something means to put it in a standard format that everyone generally uses. Because the signature is
dependent on the content it is signing, a signature produced from a not canonicalized document could possibly be different
from one produced from a canonicalized document. The canonical form of an XML document is physical representation
of the document produced by the method described in this specification. The term canonical XML refers to XML that
is in canonical form. The XML canonicalization method is the algorithm defined by this specification that generates the
canonical form of a given XML document or document subset. The term XML canonicalization refers to the process of
applying the XML canonicalization method to an XML document or document subset. XML canonicalization is designed
to be useful to applications that require the ability to test whether the information content of a document or document
subset has been changed. This is done by comparing the canonical form of the original document before application
processing with the canonical form of the document result of the application processing.

A digital signature over the canonical form of an XML document or document subset would allows the signature digest
calculations to be oblivious to changes in the original document's physical representation. During signature generation,
the digest is computed over the canonical form of the document. The document is then transferred to the relying party,
which validates the signature by reading the document and computing a digest of the canonical form of the received
document. The equivalence of the digests computed by the signing and relying parties (and hence the equivalence of
the canonical forms over which they were computed) ensures that the information content of the document has not been
altered since it was signed.

518 | Oxygen XML Editor | Digital Signatures

http://www.w3.org/TR/xmldsig-core/

The following canonicalization algorithms are used in Oxygen: Canonical XML (or Inclusive XML
Canonicalization)(XMLC14N) and Exclusive XML Canonicalization(EXCC14N). The first is used for XML where the
context doesn't change while the second was designed for canonicalization where the context might change.

Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of the signature. In
this way all the declarations you might use will be unambiguously specified. A problem appears when the signed XML
is moved into another XML document which has other declarations because the Inclusive Canonicalization will copy
then and the signature will be invalid.

Exclusive Canonicalization finds out what namespaces you are actually using (the ones that are a part of the XML
syntax) and just copies those. It does not look into attribute values or element content, so the namespace declarations
required to process these are not copied.

This type of canonicalization is useful when you have a signed XML document that you wish to insert into other XML
documents and it will insure the signature verifies correctly every time, so it is required when you need self-signed
structures that support placement within different XML contexts.

Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it's the safer method from the security perspective because it requires no knowledge of the data that are to be secured
in order to safely sign them.

The canonicalization method can specify whether or not comments should be included in the canonical form output by
the XML canonicalization method. If a canonical form contains comments corresponding to the comment nodes in the
input node-set, the result is called canonical XML with comments. In an uncommented canonical form comments are
removed, including delimiter for comments outside document element.

These three operations: Digital Signing, Canonicalization and Verification of the signature are available from the Tools
menu or from the Editor's contextual menu > Source .

Canonicalizing Files

The user can select the canonicalization algorithm to be used for his document from the following dialog displayed by
the action Canonicalize available from the editor panel's contextual menu > Source and also from menu Tools .

Figure 294: Canonicalization settings dialog

Oxygen XML Editor | Digital Signatures | 519

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

The fields of the dialog are the following:

• URL - Specifies the location of the input URL.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.
• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.
• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• Output - Specifies the output file path where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in the editor.

Certificates

A certificate is a digitally signed statement from the issuer (an individual, an organization, a website or a firm), saying
that the public key (and some other information) of some other entity has a particular value. When data is digitally
signed, the signature can be verified to check the data integrity and authenticity. Integrity means that the data has not
been modified. Authenticity means the data comes indeed from the entity that claims to have created and signed it.
Certificates are kept in special repositories called keystores.

A keystore is an encrypted file that contains private keys and certificates. All keystore entries (key and trusted certificate
entries) are accessed via unique aliases. An alias must be assigned for every new entry of either a key or certificate as
a reference for that entity. No keystore can store an entity if it's alias already exists in that keystore and no keystore can
store trusted certificates generated with keys in it's keystore.

In Oxygen there are provided two types of keystores: Java Key Store (JKS) and Public-Key Cryptography Standards
version 12 (PKCS-12). A keystore file is protected by a password. In a PKCS 12 keystore you should not store a certificate
without alias together with other certificates, with or without alias, as in such a case the certificate without alias cannot
be extracted from the keystore.

To set the options for a certificate or to validate it, go to menu Options > Preferences > Certificates .

Signing Files

The user can select the type of signature to be used for his document from the following dialog displayed by the action
Sign available from the editor panel's contextual menu > Source and also from menu Tools .

520 | Oxygen XML Editor | Digital Signatures

Figure 295: Signature settings dialog

The following options are available:

• Input - Specifies the location of the input URL.
• None - If selected, no canonicalization algorithm is used.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.
• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.
• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• ID - Provides ID of the XML element to be signed.
• Envelope - If selected, the enveloping signature is used.
• Detached - If selected, the detached signature is used.
• Append KeyInfo - The element ds:KeyInfo will be added in the signed document only if this option is checked.
• Signature algorithm - Algorithm used for signing the document. The following options are available: RSA with

SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
• Output - Specifies the output file path where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in the editor.

Verifying the Signature

The user can select a file to verify its signature in the dialog opened by the action Verify Signature available from the
editor panel's contextual menu > Source and also from menu Tools . The dialog has a field URL that specifies the
location of the document for which to verify the signature.

Oxygen XML Editor | Digital Signatures | 521

If the signature is valid, a dialog displaying the name of the signer will be opened. If not, an error message will show
details about the problem.

522 | Oxygen XML Editor | Digital Signatures

Chapter

21

Syncro SVN Client

Syncro SVN is a client for the Subversion version control system compatible
with Subversion 1.6 servers. It manages files and directories that change over

Topics:

• Main Window time and are stored in a central repository. The version control repository is
• Getting Started much like an ordinary file server, except that it remembers every change ever

made to your files and directories. This allows you to access older versions of
your files and examine the history of how and when your data changed.

• Syncro SVN Client Views
• The Revision Graph of a SVN

Resource
• Syncro SVN Client Preferences
• Command Line Reference

Main Window

This section explains the main window of Syncro SVN Client.

Views

The main window consists of the following views:

• Repositories view - Allows you to define and manage Subversion repository locations.
• Working Copy view - Allows you to manage with ease the content of the working copy.
• History view - Displays information (author name, revision number, commit message) about the changes made to a

resource during a specified period of time.
• Editor view - Allows you to edit different types of text files, with full syntax-highlight.
• Annotations view - Displays a list with information regarding the structure of a document (author and revision for

each line of text).
• Compare view - Displays the differences between two revisions of a text file from the working copy.
• Image Preview - Allows you to preview standard image files supported by Syncro SVN Client: JPG, GIF and PNG.
• Compare Images view - Displays two images side by side.
• Properties view - Displays the SVN properties of a resource under version control.
• Console view - Displays information about the currently running operation, similar with the output of the Subversion

command line client.
• Help view - Shows information about the currently selected view.

The main window's status bar presents in the left side the operation in progress or the final result of the last performed
action. In the right side there is a progress bar for the running operation and a stop button to cancel the operation.

Main Menu

The main menu of the Syncro SVN Client is composed of the following menus:

• File menu:

• New submenu:

• New File - This operation creates a file in the working copy and adds it to version control. If the selected
path is not under version control, the newly created file is added to the repository only by an explicit action.
Creating a file in the working copy does not add it automatically to the repository. This action works only
for selected paths in the Working Copy tree.

• New Folder (Ctrl + Shift + F) - This operation creates a new folder as child of the selected folder from the
Repositories view tree or from the Working Copy view tree, depending on which view was focused last when
performing this action. For the Working Copy view, the folder is added to version control only if the selected
path is under version control, otherwise the newly created directory is not added to version control.

• New External Folder (Ctrl + Shift + W) - This operation sets a folder name in the property svn:externals
of the selected folder. The repository URL to the folder to which the new external folder points and the revision
number of that repository URL can be selected easily with the Browse and History buttons of the dialog.
This action works only for selected paths in the Working Copy tree.

Subversion clients 1.5 and higher support relative external URLs. You can specify the repository URLs to
which the external folders point using the following relative formats:

• ../ - Relative to the URL of the directory on which the svn:externals property is set.
• ^/ - Relative to the root of the repository in which the svn:externals property is versioned.
• // - Relative to the scheme of the URL of the directory on which the svn:externals property is set.
• / - Relative to the root URL of the server on which the svn:externals property is versioned.

524 | Oxygen XML Editor | Syncro SVN Client

• Open (Ctrl + O) - This action opens the selected file in an editor where you can modify it. The action is
active only when a single item is selected. The action opens a file with the internal editor or the external application
associated with that file type. In case of a folder the action opens the selected folder with the system application
for folders (for example Windows Explorer on Windows, Finder on Mac OS X, etc). Folder opening is available
only for folders selected in the Working Copy view. This action works on any file selection from the Repositories
view, Working Copy view, History view or Directory Change Set view, depending on which view was last focused
when invoking it.

• Open with ...(Ctrl + Shift + O) - Displays the Open with dialog for specifying the editor in which the selected
file is opened. In case multiple files are selected only external applications can be used to open the files. This
action works on any file selection from Repositories view, Working Copy view, History view or Directory Change
Set view, depending on which view was last focused when invoking it.

• Save (Ctrl + S) - Saves the local file currently opened in the editor or the Compare view.
• Copy URL Location (Ctrl + Alt + U) - Copies to clipboard the URL location of the resource currently selected

in the Repositories view.
• Copy/Move to (Ctrl + M) - Copies or moves to a specified location the resource currently selected either

in Repositories or Working copy view.
• Rename (F2) - Renames the resource currently selected either in Repositories or Working copy view.
• Delete (Delete) - Deletes the resource currently selected either in Repositories or Working copy view.
• Show SVN Properties (Ctrl + Shift + P) - Brings up the Properties view and displays the SVN properties

for a selected resource from Repositories view or Working Copy view, depending on which view was last focused
when invoking it.

• File Information (Ctrl + I) - Provides additional information for a selected resource from the Working Copy
view. For more details please see the section Obtain information for a resource.

• Exit (Ctrl + Q) - Closes the application.

• Edit menu:

• Undo (Ctrl + Z) - Undo edit changes in the local file currently opened in the editor or the Compare view.
• Redo (Ctrl + Y) - Redo edit changes in the local file currently opened in the editor or the Compare view.
• Cut (Ctrl + X) - Cut selection to clipboard from the local file currently opened in the editor view or the

Compare view.
• Copy (Ctrl + C) - Copy selection to clipboard from the local file currently opened in the editor or the Compare

view.
• Paste (Ctrl + V) - Paste selection from clipboard in the local file currently opened in editor or the Compare

view.
• Find/Replace (Ctrl + F) - Perform find / replace operations in the local file currently opened in the editor

or the Compare view.
• Find Next (F3) - Go to the next find match using the same find options of the last find operation. The action

runs in the editor panel and in any non-editable text area, for example the Console view.
• Find Previous (Shift + F3) - Go to the previous find match using the same find options of the last find

operation. The action runs in the editor panel and in any non-editable text area, for example the Console view.

• Repository menu:

• New Repository Location (Ctrl + Alt + N) - Displays the Add SVN Repository dialog. This dialog allows
you to define a new repository location.

Oxygen XML Editor | Syncro SVN Client | 525

Figure 296: Add SVN Repository

If the Validate repository connection option is selected, the URL connection is validated before being added
to the Repositories view.

• Edit Repository Location (Ctrl + Alt + E) - Context-dependent action that allows you to edit the selected
repository location by means of the Edit SVN Repository dialog. It is active only when a repository location
root is selected.

• Change the Revision to Browse (Ctrl + Alt + Shift + B) - Context-dependent action that allows you to change
the selected repository revision by means of the Change the Revision to Browse dialog. It is active only when
a repository location root is selected.

• Remove Repository Location (Ctrl + Alt + Shift + R) - Allows you to remove the selected repository
location from the view. It shows you a confirmation dialog before removal. It is active only when a repository
location root is selected.

• Refresh - Refreshes the resource selected in the Repositories view.
• Check Out (Ctrl + Alt + Shift + C) - Allows you to copy resources from a repository into your local file

system. To use this operation, you must select a repository root location or a folder from a repository, but never
a file. If you don't select anything, you can specify an URL to a folder resource from a repository in the Check
Out dialog that appears when performing this operation. To read more about this operation, see the section Check
out a working copy.

• Export - Exports a folder from the repository to the local file system.

• Import sub-menu:

• Import Folder Content (Ctrl + Alt + Shift + M) - Depending on the selected folder from a repository,
allows you to import the contents of a specified folder from the file system into it. To read more about this
operation, see the section Importing resources into a repository.

• Import File(s) (Ctrl + Alt + I) - Imports the files selected from the files system into the selected folder from
the repository.

• Working Copy menu:

• Add / Remove Working Copy - Opens dialog with a list of working copies that the Subversion client is
aware of. In this dialog you can add existing working copies or remove no longer needed ones.

• Switch to - Selects one of the following view modes: All Files, Modified, Incoming, Outgoing,
or Conflicts.

• Refresh (F5) - Refreshes the state of the selected resources or of the entire working copy if there is no
selection.

• Synchronize (Ctrl + Shift + S) - Connects to the repository and determines the working copy and repository
changes made to the selected resources. The application switches to Modified view mode if the Always switch
to 'Modified' mode option is selected.

• Update (Ctrl + U) - Updates all the selected resources that have incoming changes to the HEAD revision. If one
of the selected resources is a directory then the update for that resource will be recursive.

• Update to revision/depth - Allows you to update the selected resources from the working copy to an earlier
revision from the repository. You can also select the update depth for the current folder. You can find out more
about the depth term in the sparse checkouts section.

526 | Oxygen XML Editor | Syncro SVN Client

• Commit - Collects the outgoing changes from the selected resources in the working copy and allows you to
choose exactly what to commit by selecting or not resources. A directory will always be committed recursively.
The unversioned resources will be deselected by default. In the commit dialog you can also enter a commit
comment before sending your changes to the repository.

• Update all (Ctrl + Shift + U) - Updates all resources from the working copy that have incoming changes. It
performs a recursive update on the synchronized resources.

• Commit all - Commits all the resources with outgoing changes. It is disabled when Incoming mode is selected
or the synchronization result does not contain resources with outgoing changes. It performs a recursive commit
on the synchronized resources.

• Revert (Ctrl + Shift + V) - Undoes all local changes for the selected resources. It does not contact the
repository, the files are obtained from Subversion's pristine copy. It is enabled only for modified resources. See
Revert your changes for more information.

• Edit conflict (Ctrl + E) - Opens the Compare editor, allowing you to modify the content of the currently
conflicting resources. For more information on editing conflicts, see Edit conflicts.

• Mark Resolved (Ctrl + Shift + R) - Instructs the Subversion system that you resolved a conflicting resource.
For more information, see Merge conflicts.

• Mark as Merged (Ctrl + Shift + M) - Instructs the Subversion system that you resolved the pseudo-conflict
by merging the changes and you want to commit the resource. Read the Merge conflicts section for more
information about how you can solve the pseudo-conflicts.

• Override and Update - Drops any outgoing change and replaces the local resource with the HEAD revision.
Action available on resources with outgoing changes, including the conflicting ones. See the Revert your changes
section.

• Override and Commit - Drops any incoming changes and sends your local version of the resource to the
repository. Action available on conflicting resources. See also the section Drop incoming modifications.

• Add to version control (Ctrl + Alt + V) - Adds the selected resources to version control. A directory will
be added recursively to version control. It is not mandatory to explicitly add resources to version control but it
is recommended. At commit time unversioned resources will have to be manually selected in the commit dialog.
This action is only active on unversioned resources.

• Add to "svn:ignore" (Ctrl + Alt + I) - Allows you to keep inside your working copy files that should not
participate to the version control operations. This action can only be performed on resources not under version
control. It actually modifies the value of the svn:ignore property of the resource's parent directory. Read more
about this in the Ignore Resources Not Under Version Control section.

• Cleanup (Ctrl + Shift + C) - Performs a maintenance cleanup operation to the selected resources from the
working copy. This operation removes the Subversion maintenance locks that were left behind. Useful when you
already know where the problem originated and want to fix it as quickly as possible. Only active for resources
under version control.

• Locking:

• Scan for locks (Ctrl + L) - Contacts the repository and recursively obtains the list of locks for the selected
resources. A dialog containing the locked files and the lock description will be displayed. Only active for
resources under version control. For more details see Scanning for locks.

• Lock (Ctrl + K) - Allows you to lock certain files for which you need exclusive access. You can write
a comment describing the reason for the lock and you can also force(steal) the lock. The action is active only
on files under version control. For more details on the use of this action see Locking a file.

• Unlock (Ctrl + Alt + K) - Releases(unlocks) the exclusive access to a file from the repository. You can
also choose to unlock it by force(break the lock).

• Expand all (Ctrl + Alt + X) - Displays all descendants of the selected folder. You can obtain a similar
behavior by double-clicking on a collapsed folder.

Oxygen XML Editor | Syncro SVN Client | 527

• Collapse all (Ctrl + Alt + Z) - Collapses all descendants of the selected folder. The same behavior is obtained
by double-clicking on a expanded folder.

• Compare menu:

• Perform Files Differencing (Ctrl + D) - Performs file differencing on request.
• Go to First Modification (Ctrl + B) - Navigates to the first difference.
• Go to Previous Modification (Ctrl + Shift + N) - Navigates to the previous difference.
• Go to Next Modification (Ctrl + N) - Navigates to the next difference.
• Go to Last Modification (Ctrl + E) - Navigates to the last difference.
• Copy All Non-Conflicting Changes from Right to Left - This action copies all non-conflicting changes

from the right editor to the left editor. A non-conflicting change from the right editor is a change that does not
overlap with a left editor change.

• Copy Change from Right to Left (Ctrl + Shift + Comma) - This action copies the selected change from
the right editor to the left editor.

• Show Modification Details at Word Level - Because the differences are computed using a line differencing
algorithm sometimes is useful to see exactly what words are different in a changed section.

• Show Modification Details at Character Level - Useful when you want to find out exactly what characters
are different between the two analyzed sections.

• Ignore Whitespaces - Enables or disables the whitespace ignoring feature. Ignoring whitespace means that
before the strings are compared they are first normalized and then the whitespace at the beginning and the end
of the strings is trimmed.

• History menu:

• Show History (Ctrl + H) - Displays the history for a SVN resource at a given revision. The resource can be
one selected from the Repositories view, Working Copy view, or from the Affected Paths table from the
History view, depending on which view was last focused when this action was invoked.

• Show Annotation (Ctrl + Shift + A) - Complex action that does the following operations:

• opens the selected resource in the Annotations editor;
• displays corresponding annotations list in the Annotations view;
• displays the history of the selected resource.

• This operation is available for any resource selected from Repositories view, Working Copy view, History
view or Directory Change Sets view, depending on which view was last focused when this action was invoked.

• Revision Graph (Ctrl + Shift + G) - This action allows you to see the graphical representation of a resource's
history. For more details about a resource's revision graph see the section Revision Graph. This operation is
enabled for any resource selected into the Repositories view or Working Copy view.

• Tools menu:

• Branch / Tag - Allows you to copy the selected resource from the Repositories view or Working Copy view
to a branch or tag into the repository. To read more about this operation, see the section Creating a Branch / Tag.

• Merge (Ctrl + J) - Allows you to merge the changes made on one branch back into the trunk, or vice versa,
using the selected resource from the working copy. To read more about this operation, see the section Merging.

• Switch (Ctrl + Alt + W) - Allows you to change the repository location of a working copy or only of a versioned
item of the working copy within the same repository. It is available when the selected item of the working copy
is a versioned resource, except an external folder. To read more about this action, see the section Switching the
Repository Location.

• Relocate - Allows you to change the base URL of the root folder of the working copy to a new URL, when the
base URL of the repository changed, for example the repository itself was relocated to a different server. This
operation is available for a selected item of the working copy tree that is a versioned folder. To read more about
this operation, see the section Relocate a Working Copy.

528 | Oxygen XML Editor | Syncro SVN Client

• Create patch (Ctrl + Alt + P) - Allows you to create a file containing all the differences between two
resources, based on the svn diff command. To read more about creating patches, see the section about patches.

• Working copy format - this submenu contains the following two operations:

• Upgrade - Allows you to upgrade the format of the current working copy to the newest one known by
Syncro SVN Client, to allow you to benefit of all the new features of the client.

• Downgrade - Allows you to downgrade the format of the current working copy to an older format. The
formats allowed to downgrade to are SVN 1.5 and SVN 1.4. This is useful in case you wish to use older SVN
clients with the current working copy, or, by mistake, you have upgraded the format of an older working copy
by using a newer SVN client.

See the section Working Copy Format to read more about this subject.

• Options menu:

• Preferences - Opens the Preferences dialog.
• Menu Shortcut Keys - Opens the Preferences dialog directly on the Menu Shortcut Keys option page, where

users can configure in one place the keyboard shortcuts available for menu items available in Syncro SVN Client.
• Global Run-Time Configuration - Allows you to configure SVN general options, that should be used by all

the SVN clients you may use:

• Edit 'config' file - In this file you can configure various SVN client-side behaviors.
• Edit 'servers' file - In this file you can configure various server-specific protocol parameters, including HTTP

proxy information and HTTP timeout settings.

• Export Options - Allows you to export the current options to a file.
• Import Options - Allows you to import options you have previously exported.
• Reset Options - Resets all your options to the default ones.
• Reset Authentication - Resets the Subversion authentication information.

• Window menu:

• Show View - Allows you to select the view you want to bring to front.
• Show Toolbar - Allows you to select the toolbar you want to be visible.
• Reset Layout - Resets all the views to their default position.

• Help menu:

• Help (F1) - Opens the Help dialog.
• Dynamic Help - Shows the Dynamic Help view.
• Check for New Versions - Checks the availability of new Syncro SVN Client versions.
• Register - Opens the registration dialog.
• Improvement Program Options - Allows you to activate or deactivate the Syncro Soft Product Improvement

Program.
• Report Problem - Opens a dialog that allows the user to write the description of a problem that was encountered

while using the application.
• Support Center - Opens the Support Center web page in a browser.

Main Toolbar

The toolbar of the SVN Client SVN Repositories window contains the following actions:

•
Check Out - Checks out a working copy from a repository. The repository URL and the working copy format

must be specified.
•

Synchronize - Synchronizes the current working copy with the repository.

Oxygen XML Editor | Syncro SVN Client | 529

•
Update All - Updates all resources of the working copy that have an older revision that repository.

•
Commit All - Commits all resources of working copy that have a newer version compared to that of the

repository.
•

Refresh - Refreshes the whole content of the current working copy from disk starting from the root folder. At
the end of the operation, the modified files and folders that were not committed to repository yet, are displayed in
the Working Copy view.

•
Compare - The selected resource is compared with:

• the BASE revision, when the selected resource is:

• locally modified and the All Files view mode is currently selected (no matter if there are incoming changes);
• locally modified and there are no incoming changes when any other view mode is selected.

• the remote version of the same resource, when remote information is available after a Synchronize operation
(only when one of Modified, Incoming, Outgoing and Conflicts view modes is selected).

• the working copy revision, when the selected resource is from the History view;

•
Show History - Displays the history of the selected resource (from the Working Copy or Repository views)

in the History view.
•

Show Annotation - Displays the annotations of the selected resource. The selected resource can be in the
Working Copy or the History views.

•
 Revision Graph - Displays the revision graph of the selected resource. The selected resource can be in the

Working Copy or the Repositories views.

Status Bar

The status bar of the Syncro SVN Client window displays important details of the current status of the application. This
information is available only in the Working Copy view.

Figure 297: Status bar

The status bar is composed of the following areas:

• the path of the currently processed file from the current working copy (during an operation like Checkout or
Synchronize) or the result of the last operation;

• the current status of the following working copy options:

• Show ignored files ()
• Show deleted files ()
• Process svn:externals definitions ()

The options for ignored and deleted files are switched on and off from the Settings menu of the Working Copy
panel;

• the current numbers of incoming changes (), outgoing changes () and conflicting changes ();
• a progress bar for the currently running SVN operation and a button () that allows you to stop it.

530 | Oxygen XML Editor | Syncro SVN Client

Getting Started

This section explains the basic operations that can be done in Syncro SVN Client.

SVN Repository Location

This section explains how to add and edit the repository locations in Syncro SVN Client.

Add / Edit / Remove Repository Locations

Usually team members do all of their work separately, in their own working copies and must share their work. This is
done via a Subversion repository. Syncro SVN Client supports the versions 1.3, 1.4, 1.5 and 1.6 of the SVN repository
format.

Before you can begin working with a Subversion repository, define a repository location in the Repositories view.

To create a repository location, click the New Repository Location toolbar button or right click inside the view and
select New Repository Location... from the popup menu. On Windows, the context menu can be displayed on a right
click with the mouse or with the keyboard by pressing the special context menu key available on Windows keyboards.
This action opens the Add SVN Repository dialog which prompts you for the URL of the repository you want to connect
to. No authentication information is requested at the time the location is defined. It is left to the Subversion client to
request the user and password information when it is needed. The main benefit of allowing Subversion to manage your
password in this way is that it prompts you for a new password only when your password changes.

Once you enter the repository URL Syncro SVN Client tries to contact the server and get the content of the repository
for displaying it in the Repositories view. If the server does not respond in the timeout interval set in Preferences, an
error is reported. If you do not want to wait until the timeout expires, you can end the waiting process with the Stop
button from the toolbar of the view.

To edit a repository location, click the Edit Repository Location toolbar button or right click inside the view on a
repository root entry and select Edit Repository Location... from the popup menu.

The Edit SVN Repository dialog works in the same way as the Add SVN Repository dialog. It shows the previously
defined repositories URLs and it allows you to change them.

To remove a repository location, click the Remove Repository Location toolbar button or right click inside the
view on a repository entry and select Remove Repository Location... from the popup menu. A confirmation dialog is
displayed to make sure that you do not accidentally remove locations.

The order of the repositories can be changed in the Repositories view at any time with the two buttons on the toolbar

of the view, the up arrow and the down arrow . For example, pressing the up arrow once moves up the selected
repository in the list with one position.

To set the reference revision number of an SVN repository right-click on the repository in the list displayed in the
Repositories view and select the Change the Revision to Browse... action. The revision number of the repository is
used for displaying the contents of the repository when it is viewed in the Repositories view. Only the files and folders
that were present in the repository at the moment when this revision number was generated on the repository are displayed
as contents of the repository tree. Also this revision number is used for all the file open operations executed directly
from the Repositories view.

Authentication

Five protocols are supported: HTTP, SVN, HTTPS, SVN + SSH and FILE. If the repository that you are trying to access
is password protected, the Enter authentication data dialog requests a user name and a password. If the Store
authentication data checkbox is checked, the credentials are stored in Subversion's default directory:

• on Windows - %HOME%\Application Data\Subversion\auth. Example: C:\Documents and
Settings\John\Application Data\Subversion\auth

Oxygen XML Editor | Syncro SVN Client | 531

• on Linux and Mac OS X - $HOME/.subversion/auth. Example: /home/John/.subversion/auth

There is one file for each server that you access. If you want to make Subversion forget your credentials, you can use
the Reset authentication command from the Options menu. This causes Subversion to forget all your credentials.

Note: When you reset the authentication data, restart the application in order for the change to take effect.

Tip: The FILE protocol is recommended if the SVN server and Syncro SVN Client are located on the same
computer as it ensures faster access to the SVN server than the other protocols.

For HTTPS connections where client authentication is required by your SSL server, you must choose the certificate file
and enter the corresponding certificate password which is used to protect your certificate.

When using a secure HTTP (HTTPS) protocol for accessing a repository, a Certificate Information dialog pops up
and asks you whether you accept the certificate permanently, temporarily or simply deny it.

If the repository has SVN+SSH protocol, the SSH authentication can also be made with a private key and a pass phrase.

Figure 298: User & Private key authentication dialog

After the SSH authentication dialog, another dialog pops up for entering the SVN user name that accesses the SVN
repository. The SVN user name is recorded as the committer in SVN operations.

Defining a Working Copy

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files. You can
edit these files however you wish, your working copy being your private work area. In order to make your own changes
available to others or incorporate other people's changes, you must explicitly tell Subversion to do so. You can even
have multiple working copies of the same project.

532 | Oxygen XML Editor | Syncro SVN Client

Figure 299: Working Copy View

A Subversion working copy also contains some extra files, created and maintained by Subversion, to help it keep track
of your files. In particular, each directory in your working copy contains a subdirectory named .svn, also known as
the working copy administrative directory. This administrative directory contains an unaltered copy of the last updated
files from the repository. This copy is usually referred to as the pristine copy or the BASE revision of the working copy.
These files help Subversion recognize which files contain unpublished changes, and which files are out-of-date with
respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects. Usually each project is a
subdirectory in the repository's file system tree. In this arrangement, a user's working copy usually corresponds to a
particular subtree of the repository.

Check Out a Working Copy

Check Out is the term used to describe the process of making a copy of a project from a repository into your local file
system. This checked-out copy is called a working copy. A Subversion working copy is a specially formatted folder
structure which contains additional .svn folders that store Subversion information, as well as a pristine copy of each
item that is checked out.

You check out a working copy from the Repositories view. If you have not yet defined a connection to your repository,
you need to add a new repository location.

1. Navigate to the desired repository folder in the Repositories view.

2. Right click on the folder and select Check Out... from the popup menu.

Oxygen XML Editor | Syncro SVN Client | 533

The Check Out dialog is displayed:

Figure 300: Check Out Dialog

3. Click on the Browse button.

4. Select the location where the working copy is created.

5. Select the version of the working copy format: SVN 1.4, SVN 1.5 or SVN 1.6.

6. Select the depth for the checkout folder in the Depth combo box.

This allows you to specify the recursion level into child resources. It is used if you want to check out only a portion
of a working copy and then bring in a future update operation previously ignored files and subdirectories. You can
find out more about checkout depth in the sparse checkouts section.

7. Select the revision number that is checked out.

By default the last (HEAD) revision is checked out. If you need another revision, you have to select the Revision
radio button. To specify the revision number you can simply type the revision number in the corresponding text field
or click on the History button which opens the History dialog.

After a check out operation, the new working copy will be added to the list in the Working Copy view. The working
copy content is displayed in that view.
The History Dialog

The History dialog presents a list of revisions for a resource. It is opened from the dialogs that require setting an SVN
revision number like the Check Out dialog or the Branch / Tag dialog. It presents information about revision, commit
date, author, and commit comment.

534 | Oxygen XML Editor | Syncro SVN Client

Figure 301: History Dialog

The initial number of entries in the list is 50. Additional revisions can be added to the list using the Get next 50
and Get all buttons. The list of revisions can be refreshed at any time with the Refresh button.

The Affected Paths area displays all paths affected by the commit of the revision selected in history. The contextual
menu invoked on a revision selected in the Affected Paths area contains the following actions:

• Compare with previous version - Makes a diff between the selected revision and the previous one. If there is no
external application specified for executing diff operations, the built-in diff tool is applied. The same action is also
executed when double clicking a file in the Affected Paths area.

• Open - Opens the revision in the editor panel.
• Save revision to ... - Saves the revision to a new file.
• Revert changes from this revision - The changes committed by the selected revision are reverted in the current

version of the file in the working copy. If the committed changes represented in fact an SVN delete operation, the
result is restoring the deleted file in the working copy.

• Update to revision - Makes the selected revision the current revision in the working copy.
• Show History - Displays the history of the selected revision.
• Show Annotation - Opens the Annotations view for the selected revision.

Use an Existing Working Copy

Using an existing working copy is the process of taking a working copy that exists on your file system and connecting
it to Subversion. If you have a brand new project that you want to import into your repository, then see the section Import
resources into the repository. The following procedure assumes that you have an existing valid working copy on your
file system.

1. Click on the Add / Remove Working Copy toolbar button in the Working Copy view.
This action opens the Working copies list dialog.

2. Press the Add button.

3. Select the working folder copy from the file system.

Oxygen XML Editor | Syncro SVN Client | 535

4. Optionally you can press the Edit button to change the name of the working copy that is displayed in the Working
Copy view.

The name is useful to differentiate between working copies located in folders with the same name. The default name
is the name of the root folder of the working copy.

The order of the working copies can be changed in the list using the two arrow buttons which move the selected
working copy with one position up or down.

5. Press the OK button.

The selected working copy is loaded and presented in the Working Copy view.

Manage Working Copy Resources

This section explains how to work with the resources that are displayed in the Working Copy view.

Edit Files

You can edit files from the Working Copy view by double clicking them or by right clicking them and choosing Open
from the contextual menu.

Please note that only one file can be edited at a time. If you try to open another file, it is opened in the same editor
window. The editor has syntax highlighting for known file types, meaning that a different color is used for each type of
recognized token in the file. If the selected file is an image, then it is previewed in the editor, with no access to modifying
it.

After modifying and saving a file from a working copy, a modified marker - an asterisk (*) - will be added to the file's
icon in the Working Copy view. The asterisk marks the files that have local modifications that were not committed to
the repository.

Add Resources to Version Control

The new files and folders you create during the development process must be added to Version Control, using the Add
command from the contextual menu in the Working Copy view. If you do not do this, the resource is marked with a
question mark (?), meaning that it is unversioned (unknown). After you have added it to version control, the resource
will be marked as added (+), which means you first have to commit your working copy to make that resource available
to other developers. Adding a resource to version control does not affect the repository.

If you try to add to version control an unversioned directory, the entire subtree starting with that directory is added.

When you commit your changes, if you forgot to add a resource, it will still be presented in the commit dialog, but will
be de-selected by default. When you commit the unversioned resource, it is automatically added to version control before
being committed and the marking is removed.

Ignore Resources Not Under Version Control

Some resources inside your working copy do not need to be subject to version control. These resources can be files
created by the compiler, *.obj, *.class, *.lst, or output folders used to store temporary files. Whenever you
commit changes, Subversion shows your modified files but also the unversioned files, which fill up the file list in the
commit dialog. Though the unversioned files are committed unless otherwise specified, it is difficult to see exactly what
you are committing.

The best way to avoid these problems is to add the derived files to the Subversion's ignore list. That way they are never
displayed in the commit dialog and only genuine unversioned files which must be committed are shown.

You can choose to ignore a resource by using the Add to svn:ignore action in the contextual menu of the Working
Copy view.

In the Add to svn:ignore dialog you can specify the resource to be ignored by name or by a custom pattern. The custom
pattern can contain the following wildcard characters:

• * - Matches any string of characters of any size, including the empty string.

536 | Oxygen XML Editor | Syncro SVN Client

• ? - Matches any single character.

For example, you can choose to ignore all text documents by using the pattern: *.txt.

The action Add to svn:ignore adds a predefined Subversion property called svn:ignore to the parent directory of
the specified resource. In this property, there are specified all the child resources of that directory that must be ignored.
The result is visible in the Working Copy view. The ignored resources are represented with grayed icons.

Delete Resources

The delete command can be found in the Edit submenu of the context menu from the Working Copy view. When you
delete a resource from the Subversion working copy, it is removed from the file system and it is also marked as deleted.
If unversioned, added or modified resources are encountered, a dialog prompts you to confirm their deletion.

The delete command does not delete from the file system the directories under version control, it only marks them as
deleted. This is because the directories also contain the pristine copy of that directory content. In the Working Copy
view this action is transparent as all resources have the deleted mark (the minus (-) sign). The directories are removed
from the file system when you commit them to the repository. You can also change your mind completely and revert
the deleted files to their initial, pristine state.

If you delete a resource from the file system without Subversion's knowledge, you render the working copy in an
inconsistent state.

If a resource is deleted from the file system without Subversion's knowledge, your working copy is in an inconsistent
state. The resource will be considered and marked as missing (the sign '!'). If a file was deleted, it will be treated in the
same way as if it was deleted by Subversion. However if a directory is missing you will be unable to commit. If you
update your working copy, Subversion will replace the missing directory with the latest version from the repository and
you can then delete it the correct way using the Delete command.

Note: The Delete action is not enabled when the selection contains missing resources.

Copy Resources

You can copy several resources from different locations of the working copy. You select them in the Working Copy
view and then you initiate the copy command from the contextual menu. This is not a simple file system copy but a
Subversion command. It will copy the resource and the copy will also have the original resource's history. This is one
of Subversion's very important features, as you can keep track of where the copied resources originated.

Please note that you can only copy resources that are under version control and are committed to the repository or
unversioned resources. You cannot copy resources that are added but not yet committed.

In the Copy File(s) dialog you can navigate through the working copy directories in order to choose a target directory.
If you try to copy a single resource you are also able to change that resource's name in the corresponding text field.

If an entire directory is copied the Override and Update action will be enabled only for it and not for its descendants.
In the Commit dialog will appear only the directory in question without its children.

Move Resources

As in the case of the copy command you can perform the move operation on several resources at once. Just select the
resources in the Working Copy view and choose the Move command from the contextual menu. The move command
actually behaves as if a copy followed by a delete command were issued. You will find the moved resources at the
desired destination and also at their original location but marked as deleted.

Rename Resources

The rename action can be found in the contextual menu of the Working Copy view. This action can only be performed
on a single resource. The rename command acts as a move command with the destination being the same as the original
location of the resource. A copy of the original resource will be made with the new name and the original will be marked
as deleted.

Oxygen XML Editor | Syncro SVN Client | 537

Lock / Unlock Resources

The idea of version control is based on the copy-modify-merge model of file sharing. This model states that each user
contacts the repository and creates a local working copy (check out). Users can then work independently and make
modifications to their working copies as they please. When their goal has been accomplished, it is time for the users to
share their work with the others, to send them to the repository (commit). When a user has modified a file that has been
also modified on the repository, the two files will have to be merged. The version control system assists the user with
the merging as much as it can, but in the end the user is the one that must make sure it is done correctly.

The copy-modify-merge model only works when files are contextually mergeable: this is usually the case of line-based
text files (such as source code). However this is not always possible with binary formats, such as images or sounds. In
these situations, the users must each have exclusive access to the file, ending up with a lock-modify-unlock model.
Without this, one or more users could end up wasting time on changes that cannot be merged.

A Subversion lock is a piece of metadata which grants exclusive access to a user. This user is called the lock owner. A
lock is uniquely identified by a lock token (a string of characters). If someone else attempts to commit the file (or delete
a parent of the file), the repository will demand two pieces of information:

• User authentication - The user performing the commit must be the lock owner.
• Software authorization - The user's working copy must have the same lock token as the one from the repository,

proving that it is the same working copy where the lock originated from.

Scanning for Locks

When starting to work on a file that is not contextually mergeable (usually a binary file), it is better to verify if someone
else isn't already working on that file. You can do this in the Working Copy view by selecting one or more resources,
then right clicking on them and choosing the Scan for Locks action from the context menu.

Figure 302:The locked items dialog

The Locked items dialog contains a table with all the resources that were found locked on the repository. For each
resource there are specified: resource path, state of the lock, owner of the lock, lock comment, creation and expiration
date for the lock (if any).

The state of the lock can be one of:

• Other - If someone else locked the file.
• Locked - If the current user locked the file.
• Broken - If the current user locked the file but it was forcefully unlocked by someone else afterwards.
• Stolen - If the current user locked the file but it was forcefully locked by someone else afterwards.

You can unlock a resource by selecting it and pressing the Unlock button.

538 | Oxygen XML Editor | Syncro SVN Client

Locking a File

A locked file allows you exclusive write access to a file from the repository, meaning that you are the only one who can
modify and commit the file to the repository.

You can lock a file from the contextual menu of the Working Copy view. Note that you can only lock several files at
once but no directories. This is a restriction of Subversion which is used to discourage the use of the lock-modify-unlock
model at large scale or when unnecessary.

In the Lock dialog you can write a comment for the lock and if necessary steal (force) the lock. Note that you should
only steal a lock after you made sure that the previous owner no longer needs it, otherwise you may cause an unsolvable
conflict which is exactly why the lock was put there in the first place. The Subversion server can have a policy concerning
lock stealing, it may not allow you to steal a lock if a certain condition is not satisfied.

The lock will stay in place until you commit the locked file or until someone unlocks it. There is also the possibility that
the lock will expire after a period of time specified in the Subversion server policy.

Unlocking a File

A file can be unlocked from the contextual menu of the Working Copy view. A dialog will prompt you to confirm the
unlocking and it will also allow you to break the lock (unlock it by force).

Synchronize with Repository

In the work cycle you will need to incorporate other people's changes (update) and to make your own work available to
others (commit). This is what the Incoming and Outgoing modes of the Working Copy view was designed for, to help
you send and receive modifications from the repository.

The Incoming and Outgoing modes of this view focus on incoming and outgoing changes. The incoming changes are
the changes that other users have committed since you last updated your working copy. The outgoing changes are the
modifications you made to your working copy as a result of editing, removing or adding resources.

The view presents the status of the working copy resources against the BASE revision after a Refresh operation. You
can view the state of the resources versus a repository HEAD revision by using the Synchronize action from the Working
Copy view.

View Differences

One of the most common requirements in project development is to see what changes have been made to the files from
your Working Copy or to the files from the repository. You can examine these changes after a synchronize operation
with the repository, by using the Open in compare editor action from the contextual menu.

The text files are compared using a built-in Compare view which uses a line differencing algorithm or a specified external
diff application if such an application is set in the SVN preferences. When a file with outgoing status is involved, the
compare is performed between the file from the working copy and the BASE revision of the file. When a file with
incoming or conflict status is involved, the differences are computed using a three-way algorithm which means that the
local file and the repository file are each compared with the BASE revision of the file. The results are displayed in the
same view. The differences obtained from the local file comparison are considered outgoing changes and the ones
obtained from the repository file comparison are considered incoming changes. If any of the incoming changes overlap
outgoing changes then they are in conflict.

A special case of difference is a diff pseudo-conflict. This is the case when the left and the right sections are identical
but the BASE revision does not contain the changes in that section. By default this type of changes are ignored. If you
want to change this you can go to SVN Preferences and change the corresponding option.

The right editor of the internal compare view presents either the BASE revision or a revision from the repository of the
file so its content cannot be modified. By default when opening a synchronized file in the Compare view, a compare
is automatically performed. After modifying and saving the content of the local file presented in the left editor, another
compare is performed. You will also see the new refreshed status in the Working Copy view.

Oxygen XML Editor | Syncro SVN Client | 539

Figure 303: Compare View

At the top of each of the two editors, there are presented the name of the opened file, the corresponding SVN revision
number (for remote resources) and the author who committed the associated revision.

There are three types of differences:

• incoming changes - Changes committed by other users and not present yet in your working copy file. They are
marked with a blue highlight and on the middle divider the arrows point from right to left.

• outgoing changes - Changes you have done in the content of the working copy file. They are marked with a gray
highlight and the arrows on the divider are pointing from left to right.

• conflicting changes - This is the case when the same section of text which you already modified in the local file has
been modified and committed by some other person. They are marked with a red highlight and red diamonds on the
divider.

There are numerous actions and options available in the Compare View toolbar or in the Compare menu from the main
menu. You can decide that some changes need adjusting or that new ones must be made. After you perform the
adjustments, you may want to perform a new compare between the files. For this case there is an action called Perform
files differencing. After each files differencing operation the first found change will be selected. You can navigate from
one change to another by using the actions Go to first, Go to previous, Go to next and Go to last modification. If you
decide that some incoming change needs to be present in your working file you can use the action Copy change from
right to left. This is useful also when you want to override the outgoing modifications contained in a conflicting section.
The action Copy all non-conflicting changes from right to left copies all incoming changes which are not contained
inside a conflicting section in your local file.

Let us assume that only a few words or letters are changed. Considering that the differences are performed taking into
account whole lines of text, the change will contain all the lines involved. For finding exactly what words or letters have
changed there are available two dialogs which present a more detailed compare result when you double click on the
middle divider of a difference: Word Details and Character Details.

When you want to examine only the changes in the real text content of the files disregarding the changes in the number
of white spaces between words or lines there is available an option in the SVN Preferences which allows you to enable
or disable the white space ignoring feature of the compare algorithm.

540 | Oxygen XML Editor | Syncro SVN Client

Conflicts

A file conflict occurs when two or more developers have changed the same few lines of a file or the properties of the
same file. As Subversion knows nothing of your project, it leaves resolving the conflicts to the developers. Whenever
a conflict is reported, you should open the file in question, and try to analyse and resolve the conflicting situation.

Real Conflicts vs Mergeable Conflicts

There are two types of conflicts:

• real conflict (decorator in Name column) - Syncro SVN Client considers the following resource states to be real
conflicts:

• conflicted state - a file reported by SVN as being in this state is obtained after it was updated/merged while having
incoming and outgoing content or property changes at the same time, changes which could not be merged. A
content conflict (symbol in Local file status column) is reported when the modified file has binary content or
it is a text file and both local and remote changes were found on the same line. A properties conflict (symbol
in Local properties status column) is reported when a property's value was modified both locally and remotely;

• tree conflicted state (symbol in Local file status column) - obtained after an update or merge operation, while
having changes at the directory structure level (for example, file is locally modified and remotely deleted or
locally scheduled for deletion and remotely modified);

• obstructed state (symbol in Local file status column) - obtained after a resource was versioned as one kind of
object (file, directory, symbolic link), but has been replaced outside Syncro SVN Client by a different kind of
object.

• pseudo-conflict (decorator in Name column) - a file is considered to be in pseudo-conflict when it contains both
incoming and outgoing changes. When incoming and outgoing changes do not intersect, an update operation may
automatically merge the incoming file content into the existing locally one. In this case, the pseudo-conflict marker
is removed. This marker is used only as a warning which should prevent you to run into a real conflict.

Note:

• A conflicting resource cannot be committed to repository. You have to resolve it first, by using Mark Resolved
action (after manually editing/merging file contents) or by using Mark as Merged action (for pseudo-conflicts).

• and decorators are presented only when one of the following view modes is selected: Modified, Incoming,
Outgoing, Conflicts.

• The marker is used also for folders to signal that they contain a file in real conflict or pseudo-conflict state.

Content Conflicts vs Property Conflicts

A Content conflict appears in the content of a file. A merge occurs for every inbound change to a file which is also
modified in the working copy. In some cases, if the local change and the incoming change intersect each other, Subversion
cannot merge these changes without intervention. So if the conflict is real when updating the file in question the conflicting
area is marked like this:

 <<<<<<< filename
 your changes
 =======
 code merged from repository
 >>>>>>> revision

Also, for every conflicted file Subversion places three additional temporary files in your directory:

• filename.ext.mine - This is your file as it existed in your working copy before you updated your working
copy, that is without conflict markers. This file has your latest changes in it and nothing else.

• filename.ext.rOLDREV - This is the file that was the BASE revision before you updated your working copy,
that is the file revision that you updated before you made your latest edits.

Oxygen XML Editor | Syncro SVN Client | 541

• filename.ext.rNEWREV - This is the file that Subversion client just received from the server when you updated
your working copy. This file corresponds to the HEAD revision of the repository.

OLDREV and NEWREV are revision numbers. If you have conflicts with binary files, Subversion does not attempt to
merge the files by itself. The local file remains unchanged (exactly as you last changed it) and you will get
filename.ext.r* files also.

A Property conflict is obtained when two people modify the same property of the same file or folder. When updating
such a resource a file named filename.ext.prej is created in your working copy containing the nature of the
conflict. Your local file property that is in conflict will not be changed. After resolving the conflict you should use the
Mark resolved action in order to be able to commit the file. Note that the Mark resolved action does not really resolve
the conflict. It just removes the conflicted flag of the file and deletes the temporary files.

Edit Real Content Conflicts

The conflicts of a file in the conflicted state (a file with the red double arrow icon) can be edited visually with the
Compare view (the built-in file diff tool) or with an external diff application. Resolving the conflict means deciding
for each conflict if the local version of the change will remain or the remote one instead of the special conflict markers
inserted in the file by the SVN server.

The Compare view (or the external diff application set in Preferences) is opened with the action Edit Conflict which
is available on the contextual menus of the Working Copy view and is enabled only for files in the conflicted state (an
update operation was executed but the differences could not be merged without conflicts). The external diff application
is called with 3 parameters because it is a 3-way diff operation between the local version of the file from the working
copy and the HEAD version from the SVN repository with the BASE version from the working copy as common
ancestor.

If the option Show warning dialog when edit conflicts is enabled you will be warned at the beginning of the operation
that the operation will overwrite the conflict version of the file received from the SVN server (the version which contains
the conflict markers <<<<<<<, =======, >>>>>>>) with the original local version of the file that preceded the update
operation. If you press the OK button the visual conflict editing will proceed and a backup file of the conflict version
received from the SVN server is created in the same working copy folder as the file with the edited conflicts. The name
of the backup file is obtained by appending the extension .sync.bak to the file as stored on the SVN server. If you
press the Cancel button the visual editing will be aborted.

The usual operations on the differences between two versions of a file are available on the toolbar of this view:

• Save - Saves the modifications of the local version of the file displayed in the left side of the view.
• Perform Files Differencing - Applies the diff operation on the two versions of the file displayed in the view. It is

useful after modifying the local version displayed in the left side of the view.
• Go to First Modification - Scrolls the view to the topmost difference.
• Go to Previous Modification - Scrolls the view to the previous difference. The current difference is painted with a

darker color than the other ones.
• Go to Next Modification - Scrolls the view to the next difference. The current difference is painted with a darker

color than the other ones.
• Go to Last Modification - Scrolls the view to the last difference.
• Copy All Non Conflicting Changes from Left to Right - Not applicable for editing conflicts so it is disabled.
• Copy Change from Left to Right - Not applicable for editing conflicts so it is disabled.
• Copy Change from Right to Left - Copies the current difference from the left side to the right side by replacing

the highlighted text of the current difference from the left side with the one from the right side.
• Copy All Non Conflicting Changes from Right to Left - Applies the previous operation for all the differences.
• Show Modification Details at Word Level - Displays a more detailed version of the current difference computed

at word level.
• Show Modification Details at Char Level - Displays a more detailed version of the current difference computed

at character level.
• Ignore Whitespaces - The text nodes are normalized before computing the difference so that if two text nodes differ

only in whitespace characters they are reported as equal.

542 | Oxygen XML Editor | Syncro SVN Client

The operation begins by overwriting the conflict version of the file received from the SVN server (the version which
contains the conflict markers <<<<<<<, =======, >>>>>>>) with the original local version of the file before running
the update action which created the conflict. After that the differences between this original local version and the
repository version are displayed in the Compare view.

If you want to edit the conflict version of the file directly in a text editor instead of the visual editing offered by the
Compare view you should work on the local working copy file after the update operation without running the action
Edit Conflict. If you decide that you want to edit the conflict version directly after running the action Edit Conflict
you have to work on the .sync.bak file.

If you did not finish editing the conflicts in a file at the first run of the action Edit Conflict you can run the action again
and you will be prompted to choose between resuming the editing where the previous run left it and starting again from
the conflict file received from the SVN server.

After the conflicts are edited and saved in the local version of the file you should run:

• either the action Mark Resolved on the file so that the result of the conflict editing process can be committed to the
SVN repository,

• or the action Revert so that the repository version overwrites all the local modifications.

Both actions remove the backup file and other temporary files created with the conflict version of the local file.

Revert Your Changes

If you want to undo all changes you made in a file since the last update you need to select the file, right click to pop up
the contextual menu and then select Revert. A dialog will pop up showing you the files that you have changed and can
be reverted. Select those you want to revert and click the OK button. Revert will only undo your local changes. It does
not undo any changes which have already been committed. If you choose to revert the file to the pristine copy which
resides in the administration folders then the eventual conflict is solved by losing your outgoing modifications. If you
try to revert a resource not under version control, the resource will be deleted from the file system.

If you want some of your outgoing changes to be overridden you must first open the file in Compare view and choose
the sections to be replaced with ones from the repository file. This can be achieved either by editing directly the file or
by using the action Copy change from right to left from the Compare view toolbar. After editing the conflicting file
you have to run the action Mark as merged before committing it.

If you want to drop all local changes and in the same time bring all incoming changes into your working copy resource
you can use the Override and update action which discards the changes in the local file and updates it from the
repository. A dialog will show you the files that will be affected.

Oxygen XML Editor | Syncro SVN Client | 543

Figure 304: Override and update dialog

In the first table in the dialog you will be able to see the resources that will be overridden. You can also select or deselect
them as you wish. In the second table you will find the list of resources that will be updated. Only resources that have
an incoming status are updated.

Merge Conflicted Resources

Before you can safely commit your changes to the repository you must first resolve all conflicts. In the case of
pseudo-conflicts they can be resolved in most cases with an update operation which will merge the incoming modifications
into your working copy resource. In the case of real conflicts, conflicts that persist after an update operation, it is necessary
to resolve the conflict using the built-in compare view and editor or, in the case of properties conflict, the Properties
view. Before you can commit you must mark as resolved the affected files.

Both pseudo and real conflicts can be resolved without an update. You should open the file in the compare editor and
decide which incoming changes need to be copied locally and which outgoing changes must be overridden or modified.
After saving your local file you have to use the Mark as merged action from the contextual menu before committing.

Drop Incoming Modifications

In the situation when your file is in conflict but you decide that your working copy file and its content is the correct one,
you can decide to drop some or all of the incoming changes and commit afterwards. The action Mark as merged proves
to be useful in this case too. After opening the conflicting files with Compare view, Editor or editing their properties in
the Properties view and deciding that your file can be committed in the repository replacing the existing one, you should
use the Mark as merged action. When you want to override completely the remote file with the local file you should
run the action Override and commit which drops any remote changes and commits your file.

In general it is much safer to analyze all incoming and outgoing changes using the Compare view and only after to
update and commit.

Tree Conflicts

A tree conflict is a conflict at the directory tree structure level and occurs when the user runs an update action on a
resource that:

544 | Oxygen XML Editor | Syncro SVN Client

• it is locally modified and the same resource was deleted from the repository (or deleted as a result of being renamed
or moved);

• it was locally deleted (or deleted as a result of being renamed or moved) and the same resource is incoming as
modified from the repository.

The same conflict situation can occur after a merge or a switch action. The action ends with an error and the folder
containing the file that is now in the tree conflict state is also marked with a conflict icon.

Such a conflict can be resolved in one of the following ways which are available when the user double clicks on the
conflicting resource or when running the Edit conflict action:

Figure 305: Resolve a tree conflict

• Keep the local modified file - If there is a renamed version of the file committed by other user that will be added to
the working copy too.

• Delete the local modified file - Keeps the incoming change that comes from the repository.

Update the Working Copy

While you are working on a project, other members of your team may be committing changes to the project repository.
To get these changes, you have to update your working copy. Updating may be done on single files, a set of selected
files, or recursively on entire directory hierarchies. The update operation can be performed from Working Copy view.
It updates the selected resources to the last synchronized revision (if remote information is available) or to the HEAD
revision of the repository.

There are three different kinds of incoming changes:

• Non-conflicting - A non-conflicting change occurs when a file has been changed remotely but has not been modified
locally.

• Conflicting, but auto-mergeable - An auto-mergeable conflicting change occurs when a text file has been changed
both remotely and locally (i.e. has non-committed local changes) but the changes are on different lines of text. Not
applicable to binary resources (for example multimedia files, PDFs, executable program files)

• Conflicting - A conflicting change occurs when one or more of the same lines of a text file have been changed both
remotely and locally.

Oxygen XML Editor | Syncro SVN Client | 545

If the resource contains only incoming changes or the outgoing changes do not intersect with incoming ones then the
update will end normally and the Subversion system will merge incoming changes into the local file. In the case of a
conflicting situation the update will have as result a file with conflict status.

The Syncro SVN Client allows you to update your working copy files to a specific revision, not only the most recent
one. This can be done by using the Update to revision/depth action from the Working Copy view (All Files view
mode) or the Update to revision action from the History view contextual menu.

If you select multiple files and folders and then you perform an Update operation, all of those files and folders are
updated one by one. The Subversion client makes sure that all files and folders belonging to the same repository are
updated to the exact same revision, even if between those updates another commit occurred.

When the update fails with a message saying that there is already a local file with the same name Subversion tried to
checkout a newly versioned file, and found that an unversioned file with the same name already exists in your working
folder. Subversion will never overwrite an unversioned file unless you specifically do this with an Override and update
action. If you get this error message, the solution is simply to rename the local unversioned file. After completing the
update, you can check whether the renamed file is still needed.

Send Your Changes to the Repository

Sending the changes you made to your working copy is known as committing the changes. If your working copy is up
to date and there are no conflicts, you are ready to commit your changes.

The Commit action sends the changes in your local working copy to the repository. After selecting the action from the
contextual menu you will see a dialog displaying the resources that can be committed.

Figure 306: Commit dialog

Enter a comment to associate with the commit or choose a previously entered comment from the list (the last 10 commit
messages will be remembered even after restarting the SVN client application). The dialog will list modified, added,
deleted and unversioned resources. All modified, added and deleted resources will be selected by default. If you don't

546 | Oxygen XML Editor | Syncro SVN Client

want a changed file to be committed, just uncheck that file. The unversioned items are not selected by default unless
you have selected them specifically before issuing the commit command.

To select all resources, click Select All. To deselect all resources, click Deselect All. Checking the Keep locks option
will preserve any locks you have on repository resources. Your working copy must be up-to-date with respect to the
resources you are committing. This is ensured by using the Update action prior to committing, resolving conflicts and
re-testing as needed. If your working copy resources you are trying to commit are out of date you will get an appropriate
error message.

The table presented in the dialog is sortable. For example if you want to see all the resources that are in the modified
state click on the State column header to sort the table by that column.

The modifications that will be committed for each file can be reviewed in the compare editor window by double clicking
on the file in the Commit dialog or by right clicking and selecting the action Show Modifications from the contextual
menu.

If you have modified files which have been included from a different repository using svn:externals, those changes
cannot be included in the same commit operation.

Integration with Bug Tracking Tools

Users of bug tracking systems can associate the changes they make in the repository resources with a specific ID in their
bug tracking system. The only requirement is that the user includes the bug ID in the commit message that he enters in
the Commit dialog. The format and the location of the ID in the commit message are configured with SVN properties.

To make the integration possible Syncro SVN Client needs some data about the bug tracking tool used in the project.
You can configure this using the following SVN properties which must be set on the folder containing resources associated
with the bug tracking system. Usually they are set recursively on the root folder of the working copy.

• bugtraq:message - A string property. If it is set the Commit dialog will display a text field for entering the bug ID.
It must contain the string %BUGID%, which is replaced with the bug number on commit.

• bugtraq:label - A string property that sets the label for the text field configured with the bugtraq:message property.
• bugtraq:url - A string property that is the URL pointing to the bug tracking tool. The URL string should contain

the substring %BUGID% which Syncro SVN Client replaces with the issue number. That way the resulting URL
will point directly to the correct issue.

• bugtraq:warnifnoissue - A boolean property with the values true/yes or false/no. If set to true, the Syncro SVN
Client will warn you if the bug ID text field is left empty. The warning will not block the commit, only give you a
chance to enter an issue number.

• bugtraq:number - A boolean property with the value true or false. If this property is set to false, then any character
can be entered in the bug ID text field. If the property is set to true or is missing then only numbers are allowed as
the bug ID.

• bugtraq:append - A boolean property. If set to false, then the bug ID is inserted at the beginning of the commit
message. If yes or not set, then it's appended to the commit message.

• bugtraq:logregex - This property contains one or two regular expressions, separated by a newline. If only one
expression is set, then the bug ID's must be matched in the groups of the regular expression string, for example
[Ii]ssue #?(\d+) If two expressions are set, then the first expression is used to find a string which relates to
a bug ID but may contain more than just the bug ID (e.g. Issue #123 or resolves issue 123). The second
expression is then used to extract the bug ID from the string extracted with the first expression. An example: if you
want to catch every pattern issue #XXX and issue #890, #789 inside a log message you could use the
following strings:

• [Ii]ssue #?(\d+)(,? ?#?(\d+))+

• (\d+)

The data configured with these SVN properties is stored on the repository when a revision is committed. A bug tracking
system or a statistics tools can retrieve from the SVN server the revisions that affected a bug and present the commits
related to that bug to the user of the bug tracking system.

Oxygen XML Editor | Syncro SVN Client | 547

If the bugtraq:url property was filled in with the URL of the bug tracking system and this URL includes the %BUGID%
substring as specified above in the description of the bugtraq:url property then the History view presents the bug ID
as a hyperlink in the commit message. A click on such a hyperlink in the commit message of a revision opens a Web
browser at the page corresponding to the bug affected by that commit.

Obtain Information for a Resource

This section explains how to obtain information for a SVN resource:

Request Status Information for a Resource

While you are working you often need to know which files you have changed, added, removed or renamed, or even
which files got changed and committed by others. That's where the Synchronize action from Working Copy view comes
in handy. The Working Copy view will show you every file that has changed in any way in your working copy, as well
as any unversioned files you may have.

If you want more detailed information about a given resource you can use the Information action from the Working
Copy view contextual menu. A dialog called SVN Information will pop up showing remote and local information
regarding the resource, such as:

• local path and repository location
• revision number
• last change author, revision and date
• commit comment
• information about locks
• local file status
• local properties status
• remote file status
• remote properties status
• file size, etc.

The value of a property of the resource displayed in the dialog can be copied by right clicking on the property and
selecting the Copy action.

A less detailed list of information is also presented when you hover with the mouse pointer over a resource and the
tooltip window is displayed.

Request History for a Resource

In Subversion, both files and directories are versioned and have a history. If you want to examine the history for a
selected resource and find out what happened at a certain revision you should load the history data of a resource in the
History view by running the Show History action. This action is available in the Working Copy and Repositories
views and also from the menus with the same name.

From the Repositories view you can display the log history regarding any remote resource residing in repository. From
the Working Copy view you can display the history of local versioned resources and newly incoming resources.

History View

In Subversion, both files and directories are versioned and have a history. If you want to examine the history for a
selected resource and find out what happened at a certain revision you can use the History view that can be accessed
from any of the following three views: Repository view menu or Working copy view menu. From the Working copy
view you can display the history of local versioned resources.

The view consists of three distinct areas:

• The revision table showing revision numbers, date/time of revision, the author's name, as well as the first line of the
commit message;

• The list of resources affected by this revision (modified, added, deleted or changed properties);

548 | Oxygen XML Editor | Syncro SVN Client

• The commit message for the selected revision.

Figure 307: History View

The Contextual Menu of the History View

When a single resource is selected in the History view, the contextual menu contains the following actions:

• Compare - Compares the selected revision with your working copy file. It is enabled only when you select a file.
• Open - Opens the selected revision of the file into the Editor. This action is enabled only if the resource is a file.
• Open With... - Displays the Open with... dialog for specifying the editor in which the selected file revision is opened.

This action is enabled only if the resource is a file.
• Get Contents - Replaces the current content of the local version of the selected file with the content of the selected

revision.
• Save revision to... - Saves the selected revision to a file so you have an older version of that file. This option is

available only when you access the history of a file, and it saves a version of that one file only.
• Revert changes from this revision - Reverts changes which were made in the selected revision. The changes are

reverted in your working copy so this operation does not affect the repository file. The action undoes the changes
made only in selected revision. It does not replace your working copy file with the entire file at the earlier revision.
This action is useful for undoing an earlier change when other unrelated changes have been made since the date of
the revision. This action is enabled when the resource history was launched for a local working copy resource.

• Update to revision - Updates your working copy resource to the selected revision. Useful if you want to have your
working copy reflect a time in the past. It is best to update a whole directory in your working copy, not just one file,
otherwise your working copy is inconsistent and you are unable to commit your changes.

• Check out from revision... - Gets the content of the selected revision into local file system.
• Show Annotation... - Brings up a dialog for selecting the start revision and the end revision of the interval of revisions

for which the SVN annotations is computed and marked in the selected resource in the editor panel. This action is
available only when you access the history of a file.

• Change - Allows you to change commit data for a file:

• Author - Allows you to change the user name that committed the selected file revision.

Oxygen XML Editor | Syncro SVN Client | 549

• Message - Allows you to change the commit message of the selected file revision.

When two resources are selected in the History view, the contextual menu contains the following actions:

• Compare revisions - When the resource is a file the action compares the two selected revisions using the Compare
view. When the resource is a folder, the action displays the set of all resources from that folder that were changed
between the two revision numbers.

• Revert changes from these revisions - Similar to the svn-merge command, it merges two selected revisions into
the working copy resource. This action is only enabled when the resource history was requested for a working copy
item.

Directory Change Set View

The result of comparing two reference revisions from the history of a folder resource is a set with all the resources
changed between the two revision numbers. The changed resources can be contained in the folder or in a subfolder of
that folder. These resources are presented in a tree format. For each changed resource all the revisions committed between
the two reference revision numbers are presented.

Figure 308: Directory Change Set View

The set of changed resources displayed in the tree is obtained by running the action Compare revisions available on
the context menu of the History view when two revisions of a folder resource are selected in the History view.

The left side panel of the view contains the tree hierarchy with the names of all the changed resources between the two
reference revision numbers. The right side panel presents the list with all the revisions of the resource selected in the
left side tree. These revisions were committed between the two reference revision numbers. Selecting one revision in
the list displays the commit message of that revision in the bottom area of the right side panel.

A double click on a file listed in the left side tree performs a diff operation between the two revisions of the file
corresponding to the two reference revisions. A double click on one of the revisions displayed in the right side list of
the view performs a diff operation between that revision and the previous one of the same file.

The context menu of the right side list contains the following actions:

• Compare with previous version - Performs a diff operation between the selected revision in the list and the previous
one.

• Open - Opens the selected revision in the associated editor type.
• Open with... - Displays a dialog with the available editor types and allows the user to select the editor type for

opening the selected revision.
• Save revision to... - Saves the selected revision in a file on disk.
• Show Annotation - Requests the annotations of the file and displays them in the Annotations view.

550 | Oxygen XML Editor | Syncro SVN Client

Management of SVN Properties

In the Properties view you can read and set the Subversion properties of a file or folder. There is a set of predefined
properties with special meaning to Subversion. For more information about properties in Subversion see the SVN
Subversion specification. Subversion properties are revision dependent. After you change, add or delete a property for
a resource, you have to commit your changes to the repository.

If you want to change the properties of a given resource you need to select that resource from the Working Copy view
and run the Show properties action from the contextual menu. The Properties view will show the local properties for
the resource in the working copy. Once the Properties view is visible, it will always present the properties of the currently
selected resource. In the Properties view toolbar there are available actions which allow you to add, change and delete
the properties.

If you choose the Add a new property action, a new dialog will pop-up containing:

• Name - Combo box which allows you to enter the name of the property. The drop down list of the combo box presents
the predefined Subversion properties such as svn:ignore, svn:externals, svn:needs-lock, etc.

• Current value - Text area which allows you to enter the value of the new property.

If the selected item is a directory, you can also set the property recursively on its children by checking the Set property
recursively checkbox.

If you want to change the value for a previously set property you can use the Edit property action which will display
a dialog where you can set:

• Name - Property name (cannot be changed).
• Current value - Presents the current value and allows you to change it.
• Base value - The value of the property, if any, from the resource in the pristine copy. It cannot be modified.

If you want to completely remove a property previously set you can choose the Remove property action. It will display
a confirmation dialog in which you can choose also if the property will be removed recursively.

In the Properties view there is a Refresh action which can be used when the properties have been changed from outside
the view. This can happen, for example, when the view was already presenting the properties of a resource and they
have been changed after an Update operation.

Branches and Tags

One of the fundamental features of version control systems is the ability to create a new line of development from the
main one. This new line of development will always share a common history with the main line if you look far enough
back in time. This line is known as a branch. Branches are mostly used to try out features or fixes. When the feature or
fix is finished, the branch can be merged back into the main branch (trunk).

Another feature of version control systems is the ability to take a snapshot of a particular revision, so you can at any
time recreate a certain build or environment. This is known as tagging. Tagging is especially useful when making release
versions.

In Subversion there is no difference between a tag and a branch. On the repository both are ordinary directories that are
created by copying. The trick is that they are cheap copies instead of physical copies. Cheap copies are similar to hard
links in Unix, which means that they merely link to a specific tree and revision without making a physical copy. As a
result branches and tags occupy little space on the repository and are created very quickly.

As long as nobody ever commits to the directory in question, it remains a tag. If people start committing to it, it becomes
a branch.

Create a Branch / Tag

In the Working Copy view or in the Repositories view, select the resource which you want to copy to a branch or tag,
then select the command Branch / Tag... from the Tools menu.

Oxygen XML Editor | Syncro SVN Client | 551

Figure 309:The Branch / Tag dialog

The default target URL for the new branch / tag will be the repository URL of the selected resource from your working
copy, divided in two: the URL of the parent and the selected resource's name. You may specify other resource name if
you want to make a branch / tag using a different name than the one of the selected resource, by modifying the field
labeled Under the name:. The new branch / tag will be created as child of the specified repository directory URL and
having the new provided name. To change the parent directory URL to the new path for your branch / tag, click on the
Browse button and choose a repository target directory for your resource.

You can also specify the source of the copy. There are three options:

• HEAD revision in the repository - The new branch / tag will be copied in the repository from the HEAD revision.
The branch will be created very quickly as the repository will make a cheap copy.

• Specific revision in the repository - The new branch will be copied in the repository but you can specify exactly
the desired revision. This is useful for example if you forgot to make a branch / tag when you released your application.
If you click on the History button on the right you can select the revision number from the History dialog. This type
of branch will also be created very quickly.

• Working copy - The new branch will be a copy of your local working copy. If you have updated some files to an
older revision in your working copy, or if you have made local changes, that is exactly what goes into the copy. This
involves transferring some data from your working copy back to the repository, more exactly the locally modified
files.

When you are ready to create the new branch / tag, write a commit comment in the corresponding field and press the
OK button.

Merging

At some stage during the development you will want to merge the changes made on one branch back into the trunk, or
vice versa. Merge is closely related to Diff. The merge is accomplished by comparing two points (branches or revisions)
in the repository and applying the obtained differences to your working copy.

552 | Oxygen XML Editor | Syncro SVN Client

It is a good idea to perform a merge into an unmodified working copy. If you have made changes to your working copy,
commit them first. If the merge does not go as you expect, you may want to revert the changes and revert cannot recover
your uncommitted modifications.

The Merge action can be found in the Tools menu of Syncro SVN Client. The directory selected when you issued the
command will be the result directory of the merge operation.

There are three common types of merging which are handled in different ways:

• merge revisions - integrate the modifications from a branch into the trunk or a different branch, when the branches
are created from the same trunk;

• reintegrate a branch - integrate the modifications from a branch into the trunk;
• merge two different trees - the general case of integrating some changes between two different branches.

Merge Revisions

This is the case when you have made one or more revisions to a branch (or to the trunk) and you want to port those
changes across to a different branch or trunk. An example of such operation can be the following: calculate the changes
necessary to get (from) revision 17 of branch B1 (to) revision 25 of branch B1, and apply those changes to my working
copy, of the trunk or another branch.

1. Go to menu Tools > Merge ...
The Merge wizard is opened:

Figure 310:The Merge Wizard - The Merge Type

2. Select the option Merge revisions.

3. Press the Next button.
The second step of the Merge wizard is displayed:

Oxygen XML Editor | Syncro SVN Client | 553

Figure 311:The Merge Wizard - Revisions Range

4. In the From URL field enter the folder URL of the branch or tag containing the changes that you want to port into
your working copy.

You may also click the Browse button to browse the repository and find the desired branch. If you have merged
from this branch before, then just use the drop down list which shows a history of previously used URLs.

5. Select the revision range.

a) Choose between all revisions and a revision range.

In the Revision range to merge section you can choose to merge all revisions or enter the list of revisions you
want to merge in the Revision range field. This can be a single revision, a list of comma separated specific
revisions, or a range of revisions separated by a dash, or any combination of these.

The History button opens the the History dialog which allows selecting the list of revisions to be merged in the
easiest way. One or several revisions can be selected in that dialog.

Be careful about using the HEAD revision. It may not refer to the revision you think it does if someone else made
a commit after your last update.

b) Check the Reverse merge box (optional).

If you want to merge changes back out of your working copy, to revert a change which has already been committed,
select the revisions to revert and check the Reverse merge box.

6. Specify the target where the changes of the branch will be integrated.

a) Enter the working copy folder in the Working copy field.

By default the root folder of the current working copy from the Working Copy view is set in this field.

If you have already merged some changes from this branch and you remember the last merged revision, you can
select that revision for the working copy using the History button. For example, if you have merged revisions
27 to 33 last time, then the start point for this merge operation should be revision 33.

b) Specify the URL of the target branch that will receive the changes.

554 | Oxygen XML Editor | Syncro SVN Client

By default the URL of the repository of the current working copy from the Working Copy view is set in this
field.

Subversion has merge tracking features and automatically records the last merged revision so you do not need
to remember when you performed the last merge.

7. Press the Next button.
The Merge Options step of the wizard is opened:

Figure 312:The Merge Wizard - Advanced Options

8. Set advanced options if necessary before starting the merge process.

a) Set the depth of the merge operation in the Merge depth combo box.

You can specify how far down into your working copy the merge should go by selecting one of the following
values:

• Current depth
• Recursive (infinity)
• Immediate children (immediates)
• File children only (files)
• This folder only (empty)

The depth term is described in the Sparse checkouts section. The default depth is the depth of the current working
copy.

b) Check the Ignore ancestry checkbox (optional).

The Ignore ancestry checkbox allows a merge to be applied between a branch and the trunk or between two
branches even if they do not share a common ancestry. Normally the branch and the trunk or the two branches
that are merged must have a common ancestor revision in the same repository. In case the two merged trees were
imported in the repository they are not related in the sense of a common ancestor tree and the merge operation
is possible by ignoring the missing common ancestry of the two merged trees.

c) Check the Ignore line endings checkbox (optional).
d) Check the Ignore Whitespaces checkbox (optional).

Oxygen XML Editor | Syncro SVN Client | 555

The Ignore line endings and Ignore whitespaces checkboxes allow you to specify how the line endings and
whitespace changes should be handled. If they are checked the changes due only to the line endings and whitespaces
are ignored. The default behavior is to treat all whitespace and line-end differences as real changes to be merged.
Ignore whitespace changes excludes changes which are caused by a change in the amount or type of whitespace,
for example changing the indentation or changing tabs to spaces. Adding whitespace where there was none before,
or removing a whitespace completely is still shown as a change. If Ignore all whitespaces is checked all
whitespace-only changes are excluded.

e) Check the Only record the merge checkbox (optional).

If you are using merge tracking support and you want to mark a revision as having been merged, without actually
doing the merge here, check the Only record the merge checkbox. You might want to do this for two possible
reasons. You make the changes by hand, then mark the change as merged so that the merge tracking algorithm
is aware of it. Or you might want to prevent a particular revision from being merged by marking it as already
merged. This will prevent future merging.

f) Press the Test merge button (optional).

By pressing the Test merge button you do a dry run of the merge operation in order to see what files are affected
and how without modifying the working copy at all. This is very helpful in detecting where conflicts may occur.

9. Press the Merge button.
The merge operation is executed.

10. Optionally resolve the conflicts that were created by the merge operation.

After the merge operation is finished it is possible to have some resources in conflict. This means that some incoming
modifications for a resource could not be merged with the current modifications from the working copy. If there are
such conflicts, the following dialog will appear presenting you the resources that are in conflict. In this dialog you
can choose a way in which every conflict should be resolved.

Figure 313: Merge Conflicts Dialog

The options to resolve a conflict are:

• Resolve later - Used to leave the conflict as it is for manual resolving it later.
• Keep incoming - This option keeps all the incoming modifications, discarding all current ones from your working

copy.
• Keep outgoing - This option keeps all current modifications from your working copy, discarding all incoming

ones.

556 | Oxygen XML Editor | Syncro SVN Client

• Mark resolved - You should chose this option after you have manually edited the conflict. To do that, use the
Edit conflict button, which will bring to you a dialog presenting the conflicting resource's content for current
working copy version and the one with the incoming modifications. After manually resolving the conflict, the
resource will be marked as resolved.

When the merge is completed it's a good idea to look at the result of the merge in the specified working copy and see
if it meets your expectations. Because merging is sometimes complicated, when there are major changes, conflicts may
appear.
Reintegrate a Branch

There are some conditions which apply to a reintegrate merge: Firstly, the server must support merge tracking. The
working copy must be of depth infinite (no sparse checkouts), and it must not have any local modifications, switched
items or items that have been updated to revisions other than HEAD. All changes to trunk made during branch development
must have been merged across to the branch (or marked as having been merged).

• The server must support merge tracking.
• The working copy must be of depth infinite (no sparse checkouts), and it must not have any local modifications,

switched items or items that have been updated to revisions other than HEAD.
• All changes to trunk made during branch development must have been merged across to the branch (or marked as

having been merged).

This method covers the case when you have made a feature branch. All trunk changes have been ported to the feature
branch, and now you want to merge it back into the trunk. Because you have kept the feature branch synchronized with
the trunk, the latest versions of branch and trunk will be absolutely identical except for your branch changes. These
changes can be reintegrated into the trunk by this method.

It uses the merge-tracking features of Subversion to calculate the correct revision ranges and to perform additional
checks which ensure that the branch has been fully updated with trunk changes. The range of revisions to merge will
be calculated automatically. This ensures that you don't accidentally undo work that others have committed to trunk
since you last synchronized changes. After the merge, all branch development has been completely merged back into
the main development line. The branch is now redundant and can be deleted.

1. Go to menu Tools > Merge ...
The Merge wizard is opened:

Oxygen XML Editor | Syncro SVN Client | 557

Figure 314:The Merge Wizard - The Merge Type

2. Select the option Reintegrate a branch.

3. Press the Next button.
The second step of the Merge wizard is displayed:

Figure 315:The Merge Wizard - Reintegrate Branch

558 | Oxygen XML Editor | Syncro SVN Client

4. In the From URL field enter the folder URL of the branch or tag containing the changes that you want to integrate.

You may also click the Browse button to browse the repository and find the desired branch. If you have merged
from this branch before, then just use the drop down list which shows a history of previously used URLs.

The History button opens the History dialog which allows you to select a revision number of the repository with the
changes.

5. Select the target of the operation.

a) Select the path of the working copy.
b) Select the URL of the repository corresponding to the working copy.

The target panel of the dialog reminds you the location of the target resource from the working copy where the merge
result will be saved and its corresponding repository URL.

6. Press the Next button.
The Merge Options step of the wizard is opened:

Figure 316:The Merge Wizard - Advanced Options

7. Set advanced options if necessary before starting the merge process.

a) Set the depth of the merge operation in the Merge depth combo box.

You can specify how far down into your working copy the merge should go by selecting one of the following
values:

• Current depth
• Recursive (infinity)
• Immediate children (immediates)
• File children only (files)
• This folder only (empty)

The depth term is described in the Sparse checkouts section. The default depth is the depth of the current working
copy.

b) Check the Ignore ancestry checkbox (optional).

Oxygen XML Editor | Syncro SVN Client | 559

The Ignore ancestry checkbox allows a merge to be applied between a branch and the trunk or between two
branches even if they do not share a common ancestry. Normally the branch and the trunk or the two branches
that are merged must have a common ancestor revision in the same repository. In case the two merged trees were
imported in the repository they are not related in the sense of a common ancestor tree and the merge operation
is possible by ignoring the missing common ancestry of the two merged trees.

c) Check the Ignore line endings checkbox (optional).
d) Check the Ignore Whitespaces checkbox (optional).

The Ignore line endings and Ignore whitespaces checkboxes allow you to specify how the line endings and
whitespace changes should be handled. If they are checked the changes due only to the line endings and whitespaces
are ignored. The default behavior is to treat all whitespace and line-end differences as real changes to be merged.
Ignore whitespace changes excludes changes which are caused by a change in the amount or type of whitespace,
for example changing the indentation or changing tabs to spaces. Adding whitespace where there was none before,
or removing a whitespace completely is still shown as a change. If Ignore all whitespaces is checked all
whitespace-only changes are excluded.

e) Check the Only record the merge checkbox (optional).

If you are using merge tracking support and you want to mark a revision as having been merged, without actually
doing the merge here, check the Only record the merge checkbox. You might want to do this for two possible
reasons. You make the changes by hand, then mark the change as merged so that the merge tracking algorithm
is aware of it. Or you might want to prevent a particular revision from being merged by marking it as already
merged. This will prevent future merging.

f) Press the Test merge button (optional).

By pressing the Test merge button you do a dry run of the merge operation in order to see what files are affected
and how without modifying the working copy at all. This is very helpful in detecting where conflicts may occur.

8. Press the Merge button.
The merge operation is executed.

9. Optionally resolve the conflicts that were created by the merge operation.

After the merge operation is finished it is possible to have some resources in conflict. This means that some incoming
modifications for a resource could not be merged with the current modifications from the working copy. If there are
such conflicts, the following dialog will appear presenting you the resources that are in conflict. In this dialog you
can choose a way in which every conflict should be resolved.

Figure 317: Merge Conflicts Dialog

560 | Oxygen XML Editor | Syncro SVN Client

The options to resolve a conflict are:

• Resolve later - Used to leave the conflict as it is for manual resolving it later.
• Keep incoming - This option keeps all the incoming modifications, discarding all current ones from your working

copy.
• Keep outgoing - This option keeps all current modifications from your working copy, discarding all incoming

ones.
• Mark resolved - You should chose this option after you have manually edited the conflict. To do that, use the

Edit conflict button, which will bring to you a dialog presenting the conflicting resource's content for current
working copy version and the one with the incoming modifications. After manually resolving the conflict, the
resource will be marked as resolved.

When the merge is completed it's a good idea to look at the result of the merge in the specified working copy and see
if it meets your expectations. Because merging is sometimes complicated, when there are major changes, conflicts may
appear.
Merge Two Different Trees

This is a general case of the reintegrate method. You can consider the following example: calculate the changes necessary
to get (from) the HEAD revision of the trunk (to) the HEAD revision of the branch, and apply those changes to my
working copy (of the trunk). The result is that trunk will be identical with the branch.

Note: If the server does not support merge-tracking then this is the only way to merge a branch back to trunk.

1. Go to menu Tools > Merge ...
The Merge wizard is opened:

Figure 318:The Merge Wizard - The Merge Type

2. Select the option Merge two different trees.

3. Press the Next button.
The second step of the Merge wizard is displayed:

Oxygen XML Editor | Syncro SVN Client | 561

Figure 319:The Merge Wizard - Merge Two Different Trees

4. Specify the URL of the first tree in the From field.

If you are using this method to merge a feature branch back to trunk, you need to start the merge wizard from within
a working copy of trunk. In the From field enter the full folder URL of the trunk. This may sound wrong, but
remember that the trunk is the start point to which you want to add the branch changes. In the To field enter the full
folder URL of the feature branch.

By default the start URL will be the URL of the selected file in the working copy. If you want to specify a different
URL you should browse the repository and select a start URL and a revision.

a) Select a URL in the From field.
b) Select a revision of the repository from the From field.

In the Revision field enter the last revision number at which the two trees were synchronized. If you are sure
no-one else is making commits you can use the HEAD revision in both cases. If there is a chance that someone
else may have made a commit since that synchronization, use the specific revision number to avoid losing more
recent commits.

By default the HEAD revision is selected. If you want a previous revision you have to select the Other revision
option and press the History button to see a list of all revisions.

5. Specify the URL of the second tree in the To field.

a) Select a URL in the To field.
b) Select a revision of the repository from the To field.

By default the HEAD revision is selected. If you want a previous revision you have to select the Other revision
option and press the History button to see a list of all revisions.

6. Specify the target of the merge operation in the Target panel.

The Target panel of the dialog reminds you the location of the target resource from the working copy where the
merge result will be saved and its corresponding repository URL.

a) Specify the working copy path in the Working copy field.
b) Specify the repository URL corresponding to the working copy.

562 | Oxygen XML Editor | Syncro SVN Client

7. Press the Next button.
The Merge Options step of the wizard is opened:

Figure 320:The Merge Wizard - Advanced Options

8. Set advanced options if necessary before starting the merge process.

a) Set the depth of the merge operation in the Merge depth combo box.

You can specify how far down into your working copy the merge should go by selecting one of the following
values:

• Current depth
• Recursive (infinity)
• Immediate children (immediates)
• File children only (files)
• This folder only (empty)

The depth term is described in the Sparse checkouts section. The default depth is the depth of the current working
copy.

b) Check the Ignore ancestry checkbox (optional).

The Ignore ancestry checkbox allows a merge to be applied between a branch and the trunk or between two
branches even if they do not share a common ancestry. Normally the branch and the trunk or the two branches
that are merged must have a common ancestor revision in the same repository. In case the two merged trees were
imported in the repository they are not related in the sense of a common ancestor tree and the merge operation
is possible by ignoring the missing common ancestry of the two merged trees.

c) Check the Ignore line endings checkbox (optional).
d) Check the Ignore Whitespaces checkbox (optional).

The Ignore line endings and Ignore whitespaces checkboxes allow you to specify how the line endings and
whitespace changes should be handled. If they are checked the changes due only to the line endings and whitespaces
are ignored. The default behavior is to treat all whitespace and line-end differences as real changes to be merged.
Ignore whitespace changes excludes changes which are caused by a change in the amount or type of whitespace,
for example changing the indentation or changing tabs to spaces. Adding whitespace where there was none before,

Oxygen XML Editor | Syncro SVN Client | 563

or removing a whitespace completely is still shown as a change. If Ignore all whitespaces is checked all
whitespace-only changes are excluded.

e) Check the Only record the merge checkbox (optional).

If you are using merge tracking support and you want to mark a revision as having been merged, without actually
doing the merge here, check the Only record the merge checkbox. You might want to do this for two possible
reasons. You make the changes by hand, then mark the change as merged so that the merge tracking algorithm
is aware of it. Or you might want to prevent a particular revision from being merged by marking it as already
merged. This will prevent future merging.

f) Press the Test merge button (optional).

By pressing the Test merge button you do a dry run of the merge operation in order to see what files are affected
and how without modifying the working copy at all. This is very helpful in detecting where conflicts may occur.

9. Press the Merge button.
The merge operation is executed.

10. Optionally resolve the conflicts that were created by the merge operation.

After the merge operation is finished it is possible to have some resources in conflict. This means that some incoming
modifications for a resource could not be merged with the current modifications from the working copy. If there are
such conflicts, the following dialog will appear presenting you the resources that are in conflict. In this dialog you
can choose a way in which every conflict should be resolved.

Figure 321: Merge Conflicts Dialog

The options to resolve a conflict are:

• Resolve later - Used to leave the conflict as it is for manual resolving it later.
• Keep incoming - This option keeps all the incoming modifications, discarding all current ones from your working

copy.
• Keep outgoing - This option keeps all current modifications from your working copy, discarding all incoming

ones.
• Mark resolved - You should chose this option after you have manually edited the conflict. To do that, use the

Edit conflict button, which will bring to you a dialog presenting the conflicting resource's content for current
working copy version and the one with the incoming modifications. After manually resolving the conflict, the
resource will be marked as resolved.

564 | Oxygen XML Editor | Syncro SVN Client

Merge Options

1. Press the Next button.
The Merge Options step of the wizard is opened:

Figure 322:The Merge Wizard - Advanced Options

2. Set advanced options if necessary before starting the merge process.

a) Set the depth of the merge operation in the Merge depth combo box.

You can specify how far down into your working copy the merge should go by selecting one of the following
values:

• Current depth
• Recursive (infinity)
• Immediate children (immediates)
• File children only (files)
• This folder only (empty)

The depth term is described in the Sparse checkouts section. The default depth is the depth of the current working
copy.

b) Check the Ignore ancestry checkbox (optional).

The Ignore ancestry checkbox allows a merge to be applied between a branch and the trunk or between two
branches even if they do not share a common ancestry. Normally the branch and the trunk or the two branches
that are merged must have a common ancestor revision in the same repository. In case the two merged trees were
imported in the repository they are not related in the sense of a common ancestor tree and the merge operation
is possible by ignoring the missing common ancestry of the two merged trees.

c) Check the Ignore line endings checkbox (optional).
d) Check the Ignore Whitespaces checkbox (optional).

The Ignore line endings and Ignore whitespaces checkboxes allow you to specify how the line endings and
whitespace changes should be handled. If they are checked the changes due only to the line endings and whitespaces
are ignored. The default behavior is to treat all whitespace and line-end differences as real changes to be merged.

Oxygen XML Editor | Syncro SVN Client | 565

Ignore whitespace changes excludes changes which are caused by a change in the amount or type of whitespace,
for example changing the indentation or changing tabs to spaces. Adding whitespace where there was none before,
or removing a whitespace completely is still shown as a change. If Ignore all whitespaces is checked all
whitespace-only changes are excluded.

e) Check the Only record the merge checkbox (optional).

If you are using merge tracking support and you want to mark a revision as having been merged, without actually
doing the merge here, check the Only record the merge checkbox. You might want to do this for two possible
reasons. You make the changes by hand, then mark the change as merged so that the merge tracking algorithm
is aware of it. Or you might want to prevent a particular revision from being merged by marking it as already
merged. This will prevent future merging.

f) Press the Test merge button (optional).

By pressing the Test merge button you do a dry run of the merge operation in order to see what files are affected
and how without modifying the working copy at all. This is very helpful in detecting where conflicts may occur.

3. Press the Merge button.
The merge operation is executed.

When the merge is completed it's a good idea to look at the result of the merge in the specified working copy and see
if it meets your expectations. Because merging is sometimes complicated, when there are major changes, conflicts may
appear.
Merge Branches Task - First Step

Go to menu Tools > Merge ...
The Merge wizard is opened:

Figure 323:The Merge Wizard - The Merge Type

Resolve Merge Conflicts

Optionally resolve the conflicts that were created by the merge operation.

After the merge operation is finished it is possible to have some resources in conflict. This means that some incoming
modifications for a resource could not be merged with the current modifications from the working copy. If there are

566 | Oxygen XML Editor | Syncro SVN Client

such conflicts, the following dialog will appear presenting you the resources that are in conflict. In this dialog you
can choose a way in which every conflict should be resolved.

Figure 324: Merge Conflicts Dialog

The options to resolve a conflict are:

• Resolve later - Used to leave the conflict as it is for manual resolving it later.
• Keep incoming - This option keeps all the incoming modifications, discarding all current ones from your working

copy.
• Keep outgoing - This option keeps all current modifications from your working copy, discarding all incoming

ones.
• Mark resolved - You should chose this option after you have manually edited the conflict. To do that, use the

Edit conflict button, which will bring to you a dialog presenting the conflicting resource's content for current
working copy version and the one with the incoming modifications. After manually resolving the conflict, the
resource will be marked as resolved.

Switch the Repository Location

The Switch action is useful when the repository location of a working copy or only of a versioned item of the working
copy must be changed within the same repository. The action is available on the Tools menu when a versioned resource
is selected in the current working copy that is displayed in the Working Copy view.

Relocate a Working Copy

Sometimes the base URL of the repository is changed after a working copy is checked out from that URL, for example
the repository itself is relocated to a different server. In such cases you do not have to check out again a working copy
from the new repository location. It is easier to change the base URL of the root folder of the working copy to the new
URL of the repository. This action is called Relocate and is available on the Tools menu when the selected item in the
Working Copy view is a versioned folder.

If the selected item is not the root folder of the working copy then the effect is the same as for the Switch action applied
on the same selected item.

Oxygen XML Editor | Syncro SVN Client | 567

Patches

This section explains how to work with patches in Syncro SVN Client.

What Is a Patch

Let's suppose you are working to a set of XML files, that you distribute to other people. From time to time you are
tagging the project and distribute the releases. If you continue working for a period correcting problems, you may find
yourself in the situations to notify your users that you have corrected a problem. In this case you may prefer to distribute
them a patch, a collection of differences that applied over the last distribution would correct the problem. The SVN
client creates the patch in the Unified Diff format.

Creating a patch in Subversion implies the access to two states (revisions) of a project:

• the current working copy and a revision from the repository - if you have not committed yet your current working
copy and prefer not to do it, you create a patch between the current working copy and a revision from the repository;

• two repository revisions - if both states are two revisions already committed to the repository.

Create a Patch Between Working Copy and Repository Revision

When the changes that must be included in a patch were not committed to the repository the patch should be created
with the differences between the selected item(s) of the working copy and a repository revision. The steps are the
following:

1. Go to menu Tools > Create patch .
This opens the Create patch wizard:

Figure 325:The Create Patch Wizard - Patch Type

2. Select the first option in the dialog.

3. Press the Next button.
The second step of the wizard is opened:

568 | Oxygen XML Editor | Syncro SVN Client

http://en.wikipedia.org/wiki/Diff#Unified_format

Figure 326:The Create Patch Wizard - Step 2

4. Specify the working copy resource.

a) Specify the local file path of the working copy resource.
b) Specify the repository URL corresponding to the working copy resource.

5. Select the repository revision.

You have the option of choosing between the HEAD revision and a specific revision number. For the second option
you should press the History button to display a list of the repository revisions.

6. Press the Next button.
The next step of the wizard is displayed:

Oxygen XML Editor | Syncro SVN Client | 569

Figure 327:The Create Patch Wizard - Options

7. Select the depth of the patch operation.

In case of a file resource the depth is always zero. In case of a folder resource the depth has one of the following
values:

• Current depth - The depth of going into the folder for creating the patch is the same as the depth of that folder
in the working copy.

• Recursive (infinity) - The patch is created on all the files and folders contained in the selected folder.
• Immediate children (immediates) - The patch is created only on the child files and folders without going in

subfolders.
• File children only (files) - The patch is created only on the child files.
• This folder only (empty) - The patch is created only on the selected folder (that is no child file or folder is

included in the patch).

8. Select the Ignore ancestry checkbox (optional).

If checked, the SVN ancestry that exists when the two URLs have a common SVN history is ignored.

9. Select the Ignore line endings checkbox (optional).

If checked, the differences in line endings are ignored when the patch is created.

10. Select the Ignore whitespaces checkbox (optional).

If checked, the differences in whitespaces are ignored when the patch is created.

11. Select the output location.

• Save in clipboard - The patch will be created and saved in clipboard. This is useful when you do not want to
save the patch in a file on disk.

• Save in file - The patch will be created and saved in the specified file.

12. Press the Next button.
This will go to the final step of the wizard:

570 | Oxygen XML Editor | Syncro SVN Client

Figure 328:The Patch Wizard - Add Unversioned Resources

13. Select the unversioned files that will be included in the patch.

If the patch is applied on a folder of the working copy and that folder contains unversioned files this step of the
wizard offers the option of selecting the ones that will be included in the patch.

14. Press the OK button.
The patch is created by applying all the specified options.

Create a Patch Between Two Repository Revisions

When a patch must include the differences between two repository revisions, in the same repository or in two different
repositories, the steps for creating the patch are the following:

1. Go to menu Tools > Create patch .
This opens the Create patch wizard:

Oxygen XML Editor | Syncro SVN Client | 571

Figure 329:The Create Patch Wizard - Patch Type

2. Select the second option in the dialog.

3. Press the Next button.
The second step of the wizard is opened:

Figure 330:The Create Patch Wizard - Step 2

4. Select the first repository revision in the From panel.

5. Select the second repository revision in the To panel.

572 | Oxygen XML Editor | Syncro SVN Client

For both revisions you have the option of choosing between the HEAD revision and a specific revision number. For
a specific number you should press the History button to display a list of the repository revisions.

6. Press the Next button.
The next step of the wizard is displayed:

Figure 331:The Create Patch Wizard - Options

7. Select the depth of the patch operation.

In case of a file resource the depth is always zero. In case of a folder resource the depth has one of the following
values:

• Current depth - The depth of going into the folder for creating the patch is the same as the depth of that folder
in the working copy.

• Recursive (infinity) - The patch is created on all the files and folders contained in the selected folder.
• Immediate children (immediates) - The patch is created only on the child files and folders without going in

subfolders.
• File children only (files) - The patch is created only on the child files.
• This folder only (empty) - The patch is created only on the selected folder (that is no child file or folder is

included in the patch).

8. Select the Ignore ancestry checkbox (optional).

If checked, the SVN ancestry that exists when the two URLs have a common SVN history is ignored.

9. Select the Ignore line endings checkbox (optional).

If checked, the differences in line endings are ignored when the patch is created.

10. Select the Ignore whitespaces checkbox (optional).

If checked, the differences in whitespaces are ignored when the patch is created.

11. Select the output location.

• Save in clipboard - The patch will be created and saved in clipboard. This is useful when you do not want to
save the patch in a file on disk.

• Save in file - The patch will be created and saved in the specified file.

Oxygen XML Editor | Syncro SVN Client | 573

12. Press the Next button.
This will go to the final step of the wizard:

Figure 332:The Patch Wizard - Add Unversioned Resources

13. Select the unversioned files that will be included in the patch.

If the patch is applied on a folder of the working copy and that folder contains unversioned files this step of the
wizard offers the option of selecting the ones that will be included in the patch.

14. Press the OK button.
The patch is created by applying all the specified options.

Working with Repositories

This section explains how to locate and browse SVN repositories in Syncro SVN Client.

Importing Resources Into a Repository

This is the process of taking a project and importing it into a repository so that it can be managed by a Subversion server.
If you have already been using Subversion and you have an existing working copy you want to use, then you will likely
want to follow the procedure for using an existing working copy.

This process is started from menu Repository > Import > Import Folder Content . The same action is available in
the Repositories view contextual menu. A dialog will ask you to select a directory that will be imported into the selected
repository location. The complete directory tree will be imported into the repository including all files. The name of the
imported folder will not appear in the repository, but only the contents of the folder will.

Exporting Resources From a Repository

This is the process of taking a resource from the repository and saving it locally in a clean form, with no version control
information. This is very useful when you need a clean build for an installation kit.

The export dialog is very similar to the check out dialog:

574 | Oxygen XML Editor | Syncro SVN Client

Figure 333: Export from Repository

You can choose the target directory from the file system by pressing the Browse button. If you need to export a specific
revision, you can select the Revision radio button and then click on the History button and choose a revision from the
new dialog. Or you could simply type the revision number in the corresponding text field.

Please note that the content of the selected directory from the repository and not the directory itself will be exported to
the file system.

Copy / Move / Delete Resources From a Repository

Once you have a location defined in the Repositories view you can execute commands like copy, move and delete directly
on the repository. The commands correspond to the following actions in the contextual menu:

• The Copy/Move action allows you to copy and move individual or multiple resources. After invoking the action the
Copy/Move dialog will pop up. The dialog displays the path of the resource that is copied and the tree structure of
the repository allowing you to choose the destination directory. The path of this target directory will be presented
in the text field URL. If you choose to copy a single resource then an additional checkbox called Change name and
a text field allow you to choose the new name of the copied/moved resource.

Figure 334: Copy/Move Resources on a Repository

Oxygen XML Editor | Syncro SVN Client | 575

• Another useful action is Delete. This action allows you to delete resources directly from the repository. After choosing
the action from the Repositories view contextual menu a confirmation dialog will be displayed.

All three actions are commit operations and you will be prompted with the Commit message dialog.

Sparse Checkout

Sometimes you need to check out only certain parts of a directory tree. For this you can checkout the top folder (the
action Check Out from the Repositories view) and then update recursively only the needed directories (the action Update
from the Working Copy view). Each directory now understands the notion of depth which has four possible values:

• Recursive (infinity) - Updates all descendant folders and files recursively.
• Immediate children - Updates the folder including direct child folders and files but does not populate the child

folders.
• File children only (files) - Updates the directory including only child files without the child folders.
• This folder only (empty) - Updates only the selected directory without updating any children.

For some operations you can use as depth the current depth of the resource from working copy (the value Current
depth). This is the depth of directories from the working copy and it can have one of the values defined above. This is
the depth value defined in a previous checkout or update operation.

The sparse checked out directories are marked in the Working Copy view with a marker corresponding to the depth
value as follows:

• Recursive (infinity) - This is the default value and it is has no mark.
• Immediate children (immediates) - The directory is marked with a purple bubble in the top left corner.
• File children only (files) - The directory is marked with a blue bubble in the top left corner.
• This folder only (empty) - The directory is marked with a gray bubble in the top left corner.

The depth information is also presented in the Information view and the tool tip displayed when hovering over the
directory in the Working Copy view.

This feature requires the SVN client to support the SVN format 1.5 or above and will work most efficiently if the server
is 1.5 or above. The client will work also with a 1.4 server or lower but will be less efficient.

Syncro SVN Client Views

The main working area occupies the center of the application window, which contains the three most important views:

• Working Copy View
• History View
• Console View

The other views that support the main working area are also presented in this section.

Repositories View

The Repositories view allows you to define and manage Subversion repository locations and browse repositories.
Repository files and folders are presented in a tree view with the repository locations at the first level, where each location
represents a connection to a specific repository. More information about each resource is displayed in a tabular form:

• Date - Date when the resource was last modified;
• Revision - The revision number at which the resource was last time modified;
• Author - Name of the person who made the last modification on the resource;
• Size - Resource size on disk;

576 | Oxygen XML Editor | Syncro SVN Client

• Type - Contains the resource type or file extension.

Figure 335: Repositories View

Toolbar

The Repositories view's toolbar contains the following buttons:

• New Repository Location - Allows you to enter a new repository location by means of the Add SVN Repository
dialog.

• Move Up - Move the selected repository up one position in the list of repositories in the Repositories view.

• Move Down - Move the selected repository down one position in the list of repositories in the Repositories
view.

• Collapse all - Collapses all repository trees.

• Stop - Stops the current repository browsing operation executed when a repository node is expanded. This is
useful when the operation takes too long or the server is not responding.

• Settings - Allows you to configure the resource table appearance.

Contextual Menu Actions

The Repositories view contextual menu contains different actions depending on the selected item. If a repository location
is selected, the following management actions are available :

• New Repository Location (Ctrl + Alt + N) - Displays the Add SVN Repository dialog. This dialog allows you
to define a new repository location.

Oxygen XML Editor | Syncro SVN Client | 577

Figure 336: Add SVN Repository

If the Validate repository connection option is selected, the URL connection is validated before being added to the
Repositories view.

• Edit Repository Location (Ctrl + Alt + E) - Context-dependent action that allows you to edit the selected
repository location by means of the Edit SVN Repository dialog. It is active only when a repository location root
is selected.

• Change the Revision to Browse (Ctrl + Alt + Shift + B) - Context-dependent action that allows you to change the
selected repository revision by means of the Change the Revision to Browse dialog. It is active only when a
repository location root is selected.

• Remove Repository Location (Ctrl + Alt + Shift + R) - Allows you to remove the selected repository location
from the view. It shows you a confirmation dialog before removal. It is active only when a repository location root
is selected.

The following action are common to all repository resources:

• Refresh - Refreshes the resource selected in the Repositories view.
• Check Out (Ctrl + Alt + Shift + C) - Allows you to copy resources from a repository into your local file system.

To use this operation, you must select a repository root location or a folder from a repository, but never a file. If you
don't select anything, you can specify an URL to a folder resource from a repository in the Check Out dialog that
appears when performing this operation. To read more about this operation, see the section Check out a working
copy.

• Export - Exports a folder from the repository to the local file system.

• Import sub-menu:

• Import Folder Content (Ctrl + Alt + Shift + M) - Depending on the selected folder from a repository, allows
you to import the contents of a specified folder from the file system into it. To read more about this operation,
see the section Importing resources into a repository.

• Import File(s) (Ctrl + Alt + I) - Imports the files selected from the files system into the selected folder from the
repository.

• New Folder - Allows you to create a new folder in the selected repository path.

• Open - Opens the selected file in the Editor view in read-only mode.

• Open with - Displays the Open with... dialog to specify the editor in which the selected file will be opened. In case
multiple files are selected, only external applications can be used to open the files.

• Copy/Move to (Ctrl + M) - Copies or moves to a specified location the selected resource.
• Rename (F2) - Renames the selected resource.
• Delete (Delete) - Deletes the selected resource.

• Copy URL Location (Ctrl + Alt + U) - Copies to clipboard the URL location of the selected resource.
• Branch/Tag - Allows you to create a branch or a tag from the selected folder in the repository. To read more about

how to create a branch/tag, please see the Creation and management of Branches/Tags section.

• Show History (Ctrl + H) - Displays the history of the selected resource. At the start of the operation you can
set filtering options.

• Show Annotation (Ctrl + Shift + A) - Complex action that does the following operations:

578 | Oxygen XML Editor | Syncro SVN Client

opens the selected resource in the Annotations editor;•
• displays corresponding annotations list in the Annotations view;
• displays the history of the selected resource.

• Revision Graph (Ctrl + Shift + G) - This action allows you to see the graphical representation of a resource's
history. For more details about a resource's revision graph see the section Revision Graph. This operation is enabled
for any resource selected into the Repositories view or Working Copy view.

• Show SVN Properties (Ctrl + Shift + P) - Brings up the Properties view displaying the SVN properties for the
selected resource. This view does not allow adding, editing or removing SVN properties of a repository resource.
These operations are allowed only for working copy resources.

• File Information (Ctrl + I) - provides additional information for the selected resource. For more details please
see the section Information view.

Assistant Actions

When there is no repository configured, the Repositories view mode lists the following two actions:

Working Copy View

The Working Copy view allows you to manage the content of an SVN working copy.

The toolbar contains the list of defined working copies, a set of view modes that allow you to filter the content of the
working copy based on the resource status (like incoming or outgoing changes), and a Settings menu.

If you click any of the view modes (All Files, Modified, Incoming, Outgoing, Conflicts), the information displayed
changes as follows:

• All Files - Resources (files and folders) are presented in a hierarchical structure with the root of the tree
representing the location of the working copy on the file system. Each resource has an icon representation which
describes the type of resource and also depicts the state of that resource with a small overlay icon.

Oxygen XML Editor | Syncro SVN Client | 579

Figure 337: Working Copy View - All Files View Mode

• Modified - The resource tree presents resources modified locally (including those with conflicting content) and
remotely. Decorator icons are used to differentiate between various resource states:

• - incoming modification from repository:

• - file content modified remotely;
• - new file added remotely;
• - file deleted remotely;

• - outgoing modification to repository:

• - file content modified locally;
• - new file added locally;
• - file deleted locally;

• - pseudo-conflict state - a resource being locally and remotely modified at the same time;
• - real conflict state - a resource that had both incoming and outgoing changes and not all the differences could

be merged automatically by the update operation (manually editing the local file is necessary for resolving the
conflict).

580 | Oxygen XML Editor | Syncro SVN Client

Figure 338: Working Copy View - Modified View Mode

• Incoming - The resource tree presents only incoming changes.
• Outgoing - The resource tree presents only outgoing changes.
• Conflicts - The resource tree presents only conflicting changes (real conflicts and pseudo-conflicts).

The following columns provide information about the resources:

• Name - Resource name. Resource icons can have the following decorator icons:

• Additional status information:

• Propagated modification marker - A folder marked with this icon indicates that the folder itself presents
some changes (like modified properties) or a child resource has been modified.

• External - This indicates a mapping of a local directory to the URL of a versioned resource. It is declared
with a svn:externals property in the parent folder.

• Switched - This indicates a resource that has been switched from the initial repository location to a new
location within the same repository. The resource goes to this state as a result of the Switch action executed
from the contextual menu of the Working Copy view.

• Grayed - A resource with a grayed icon but no overlaid icon is an ignored resource. It is obtained with
the Add to svn:ignore action.

• Current SVN depth of a folder:

• Immediate children (immediates) (a variant of sparse checkout) - The directory contains only direct
file and folder children. Child folders ignore their content.

Oxygen XML Editor | Syncro SVN Client | 581

• File children only (files) (a variant of sparse checkout) - The directory contains only direct file children,
disregarding any child folders.

• This folder only (empty) (a variant of sparse checkout) - The directory will discard any child resource.

Note: Any folder unmarked with one of the depth icons, has recursive depth (infinity) set by default (presents
all levels of child resources).

• Size - Resource size on disk;
• Local file status - Shows the changes of working copy resources that were not committed to the repository yet.

The following icons are used to mark resource status:

• - Resource is not under version control.
• - Resource is being ignored because it is not under version control and its name matches a file name pattern

defined in one of the following places:

• global-ignores section in the SVN client-side 'config' file;
• Application global ignores option of Syncro SVN Client;
• the value of a svn:ignore property set on the parent folder of the resource being ignored.

• - Marks a newly created resource, scheduled for addition to the version control system.
• - Marks a resource scheduled for addition, created by copying a resource already under version control and

inheriting all its SVN history.
• - The content of the resource has been modified.
• - Resource has been replaced in your working copy (the file was scheduled for deletion, and then a new file

with the same name was scheduled for addition in its place).
• - Resource is scheduled for deletion.
• - The resource is incomplete (as a result of an interrupted checkout or update operation).
• - The resource is missing because it was moved or deleted without using a SVN aware application.
• - The contents of the resource is in real conflict state.
• - Resource is in tree conflict state after an update operation because:

• Resource was locally modified and incoming deleted from repository;
• Resource was locally scheduled for deletion and incoming modified.

• - Resource is obstructed (versioned as one kind of object: file, directory or symbolic link, but has been replaced
outside Syncro SVN Client by a different kind of object).

• Local properties status - Marks the resources that have SVN properties, with the following possible states:

• - The resource has SVN properties set.
• - The resource properties have been modified.
• - Properties for this resource are in real conflict with property updates received from the repository.

• Date - Date when the resource was last time modified.
• Revision - The revision number at which the resource was last time modified.
• Author - Name of the person who made the last modification on the resource.
• Remote file status - Shows changes of resources recently modified in the repository. The following icons are

used to mark incoming resource status:

• - Resource is newly added in repository.
• - The content of the resource has been modified in repository.
• - Resource was replaced in repository.
• - Resource was deleted from repository.

582 | Oxygen XML Editor | Syncro SVN Client

• Remote properties status - Resources marked with the icon have incoming modified properties from the
repository.

• Remote date - Date of the resource's latest modification committed on the repository.
• Remote revision - Revision number of the resource's latest committed modification.
• Remote author - Name of the author who committed the latest modification on the repository.
• Type - Contains the resource type or file extension.

Note: The working copy table allows you to show or hide any of its columns and also to sort its contents by any
of the displayed columns. The table header provides a contextual menu which allows you to customize the displayed
information.

The toolbar allows you to switch between two working copies:

• Drop down list - Contains all the working copies Syncro SVN Client is aware of. When you select another working
copy from the list, the newly selected working copy content will be scanned and displayed in the Working Copy
view.

• Add/Remove Working Copy - opens the Working copies list dialog which displays the working copies Syncro
SVN Client is aware of. In this dialog you can add existing working copies or remove the no longer needed ones. If
you try to add a folder which is not a valid Subversion working copy, a warning dialog will inform you that the
selected directory is not under version control. Please note that removing a working copy from this dialog will NOT
remove it from your file system; you will have to do that manually.

Working Copy Settings

The Settings button from the toolbar of the Working Copy view provides the following actions:

• Show ignored files - When selected, the application displays the ignored resource inside the All Files mode.
• Show deleted files - Allows displaying or hiding the deleted resource inside the All Files mode. All other modes

always display deleted resources, disregarding this action.
• Tree / Compressed / Flat - Affect the way the information is displayed inside the Modified, Incoming,

Outgoing, and Conflicts view modes.
• Configure columns - Allows changing the order and width of table columns and showing/hiding table columns.

This action opens the following dialog box:

Figure 339: Configure Columns of Working Copy View

Oxygen XML Editor | Syncro SVN Client | 583

The order of the columns can be changed with the two arrow buttons. The column size can be edited in the Width
of selected column field. The Restore Defaults button reverts all columns to the default order, width and
enabled/disabled state from the installation of the application.

Working Copy Format

When a SVN working copy is loaded, Syncro SVN Client first checks the working copy's format. If it is a SVN 1.6
format, the admin data of that working copy is loaded and displayed in a tree like form in the view using the icons
specific to the status of each resource: normal, unversioned, modified, etc. If it is the old format (SVN 1.5, SVN 1.4 or
SVN 1.3), a confirmation dialog is displayed allowing the automatic conversion of the working copy to the new format,
that is the SVN 1.6 one.

If you select the Never ask me again checkbox before pressing the Yes button, then the Automatically upgrade working
copies to the client's version option is automatically checked. From now on, all other older version working copies will
be automatically updated to the latest version.

The format of the working copy can be downgraded or upgraded at any time with the Upgrade and Downgrade actions
available in the Tools menu. These actions allow switching between SVN 1.4, SVN 1.5 and SVN 1.6 working copy
formats.

Refresh a Working Copy

A refresh is a frequent operation triggered automatically when you switch between two working copies using the toolbar
selector of the Working Copy view and when you switch between Syncro SVN Client and other applications.

The Working Copy view features a fast refresh mechanism: the content is cached locally when loading the working
copy for the first time. Later on, when the same working copy is displayed again, the application uses this cache to detect
the changes between the cached content and the current content found on disk. The refresh operation is run on these
changes only, thus improving the response time. improvement is noticeable especially when working with large working
copies.

Contextual Menu Actions

The contextual menu in the Working Copy view contains the following actions:

• Edit conflict (Ctrl + E) - Opens the Compare editor, allowing you to modify the content of the currently conflicting
resources. For more information on editing conflicts, see Edit conflicts.

• Open in Compare Editor (Ctrl + Alt + C) - Displays changes made in the currently selected file.

• Open (Ctrl + O) - Opens the selected resource from the working copy. Files are opened with an internal editor
or an external application associated with that file type, while folders are opened with a default file system browsing
application (e.g. Windows Explorer on Windows, Finder on Mac OS X, etc).

• Open with submenu that allows you to open the selected resource either with <oXygen/> XML or with another
application.

• Expand all (Ctrl + Alt + X) - Displays all descendants of the selected folder. You can obtain a similar behavior
by double-clicking on a collapsed folder.

• Refresh (F5) - Re-scans the selected resources recursively and refreshes their status in the working copy view.

• Synchronize (Ctrl + Shift + S) - Connects to the repository and determines the working copy and repository
changes made to the selected resources. The application switches to Modified view mode if the Always switch to
'Modified' mode option is selected.

• Update (Ctrl + U) - Updates the selected resources to the HEAD revision (latest modifications) from the repository.
If the selection contains a directory, it will be updated depending on its depth.

• Update to revision/depth - Allows you to update the selected resources from the working copy to an earlier revision
from the repository. You can also select the update depth for the current folder. You can find out more about the
depth term in the sparse checkouts section.

584 | Oxygen XML Editor | Syncro SVN Client

• Commit - Collects the outgoing changes from the selected resources in the working copy and allows you to choose
exactly what to commit by selecting or not resources. A directory will always be committed recursively. The
unversioned resources will be deselected by default. In the commit dialog you can also enter a commit comment
before sending your changes to the repository.

• Revert (Ctrl + Shift + V) - Undoes all local changes for the selected resources. It does not contact the repository,
the files are obtained from Subversion's pristine copy. It is enabled only for modified resources. See Revert your
changes for more information.

• Override and Update - Drops any outgoing change and replaces the local resource with the HEAD revision. Action
available on resources with outgoing changes, including the conflicting ones. See the Revert your changes section.

• Override and Commit - Drops any incoming changes and sends your local version of the resource to the repository.
Action available on conflicting resources. See also the section Drop incoming modifications.

• Mark Resolved (Ctrl + Shift + R) - Instructs the Subversion system that you resolved a conflicting resource.
For more information, see Merge conflicts.

• Mark as Merged (Ctrl + Shift + M) - Instructs the Subversion system that you resolved the pseudo-conflict by
merging the changes and you want to commit the resource. Read the Merge conflicts section for more information
about how you can solve the pseudo-conflicts.

• Create patch (Ctrl + Alt + P) - Allows you to create a file containing all the differences between two resources,
based on the svn diff command. To read more about creating patches, see the section about patches.

• Compare with:

• Latest from HEAD (Ctrl + Alt + H) - Performs a 3-way diff operation between the selected file and the HEAD
revision from the repository and displays the result in the Compare view. The common ancestor of the 3-way
diff operation is the BASE version of the file from the local working copy.

• BASE revision (Ctrl + Alt + C) - Compares the working copy file with the BASE revision file (the so-called
pristine copy).

• Revision (Ctrl + Alt + R) - Shows the History view containing the log history of that resource.

• Branch/Tag - Compares the working copy file with a revision of the file from a branch or tag. The revision is
specified by URL (selected with a repository browser dialog) and revision number (selected with a revision
browser dialog).

• Each other - Compares two selected files with each other.

These compare actions are enabled only if the selected resource is a file.

• Replace with:

• Latest from HEAD - Replaces the selected resources with their versions from the HEAD revision of the repository.

• BASE revision - Replace the selected resources with their versions from the pristine copy (the BASE revision).

Note: In some cases it is impossible to replace the current selected resources with their versions from the
BASE/HEAD revision:

• for Replace with BASE revision action, the resources being unversioned or added have no BASE revision,
so they cannot be replaced. However, they will be deleted if the action is invoked on a parent folder. The
action will never work for missing folders or for obstructing files (folders being obstructed by a file), because
you cannot recover a tree of folders;

• for Replace with latest from HEAD action, you must be aware that there are cases when resources will be
completely deleted or reverted to BASE revision and after that updated to HEAD revision, in order to avoid
conflicts. These cases are:

• the resource is unversioned, added, obstructed or modified;
• the resource is affected by a svn:ignore or svn:externals property which is locally added on the parent

folder and not yet committed to the repository.

Oxygen XML Editor | Syncro SVN Client | 585

• Show History (Ctrl + H) - Displays the History view where the log history for the selected resource will be
presented. For more details about resource history see the sections about the resource history view and requesting
the history for a resource.

• Show Annotation (Ctrl + Shift + A) - It will display the Annotations view where all the users that modified
the selected resource will be presented together with the specific lines and revision numbers modified by each user.
For more details about resource annotations see Annotations View.

• Revision Graph (Ctrl + Shift + G) - This action allows you to see the graphical representation of a resource's
history. For more details about a resource's revision graph see Revision Graph.

• Copy URL Location (Ctrl + Alt + U) - Copies the encoded URL of the selected resource from the Working Copy
to the clipboard.

• Copy/Move to (Ctrl + M) - Copies or moves to a specified location the currently selected resource.

• Rename (F2) - You can only rename one resource at a time. As for the move command, a copy of the original
resource will be made with the new name and the original will be marked as deleted.

• Delete (Delete) - Allows you to delete resources from the Subversion working copy. If unversioned, added or
modified resources will be encountered, a dialog will prompt you to confirm their deletion, because their content
cannot be recovered. The action is not enabled when the selection contains missing resources.

• New:

• New File - Creates a new file inside the selected folder. The newly created file will be added under version
control only if the parent folder is already versioned.

• New Folder (Ctrl + Shift + F) - Creates a child folder inside the selected folder. The newly created folder will
be added under version control only if its parent is already versioned.

• New External Folder (Ctrl + Shift + W) - Creates a new folder inside the selected folder, having the contents
of a target folder from the current working copy's repository. The application does this by setting a svn:externals
property on the selected folder and updating the folder in order to bring all the newly pointed resources inside
your current working copy. The operation shows a dialog which allows you to specify the new folder's name and
easily select the target folder by browsing the repository's contents.

Subversion 1.5 and higher clients support relative external URLs. You can specify the repository URLs to which
the external folders point using the following relative formats:

• ../ - Relative to the URL of the directory on which the svn:externals property is set.

• ^/ - Relative to the root of the repository in which the svn:externals property is versioned.

• // - Relative to the scheme of the URL of the directory on which the svn:externals property is set.

• / - Relative to the root URL of the server on which the svn:externals property is versioned.

• Add to version control (Ctrl + Alt + V) - Adds the selected resources to version control. A directory will be
added recursively to version control. It is not mandatory to explicitly add resources to version control but it is
recommended. At commit time unversioned resources will have to be manually selected in the commit dialog. This
action is only active on unversioned resources.

• Add to "svn:ignore" (Ctrl + Alt + I) - Allows you to keep inside your working copy files that should not participate
to the version control operations. This action can only be performed on resources not under version control. It actually
modifies the value of the svn:ignore property of the resource's parent directory. Read more about this in the Ignore
Resources Not Under Version Control section.

• Cleanup (Ctrl + Shift + C) - Performs a maintenance cleanup operation to the selected resources from the
working copy. This operation removes the Subversion maintenance locks that were left behind. Useful when you
already know where the problem originated and want to fix it as quickly as possible. Only active for resources under
version control.

• Locking:

586 | Oxygen XML Editor | Syncro SVN Client

Scan for locks (Ctrl + L) - Contacts the repository and recursively obtains the list of locks for the selected
resources. A dialog containing the locked files and the lock description will be displayed. Only active for resources
under version control. For more details see Scanning for locks.

•

• Lock (Ctrl + K) - Allows you to lock certain files for which you need exclusive access. You can write a
comment describing the reason for the lock and you can also force(steal) the lock. The action is active only on
files under version control. For more details on the use of this action see Locking a file.

• Unlock (Ctrl + Alt + K) - Releases(unlocks) the exclusive access to a file from the repository. You can also
choose to unlock it by force(break the lock).

• Show SVN Properties (Ctrl + P) - Brings up the Properties view and displays the SVN properties for the
selected resource.

• File Information (Ctrl + I) - Provides additional information for the selected resource from the working copy.
For more details please see Obtain information for a resource.

Drag and Drop Operations

Files and folders can be added to the file tree of the Working Copy view as unversioned resources by drag and drop
operations from other applications, for example Windows Explorer on Windows or Finder on Mac OS X. Also the
structure of the files tree can be changed with drag and drop operations inside the view.

Assistant Actions

To ensure a continuous and productive work flow, when a view mode has no files to present, it offers a set of guiding
actions with some possible paths to follow.

Initially, when there is no working copy configured the All Files view mode lists the following two actions:

Figure 340: All Files Panel

For Modified, Incoming, Outgoing, Conflicts view modes, the following actions may be available, depending on the
current working copy state in different contexts:

•
 Information message - Informs you why there are no resources presented in the currently selected view mode;

•
Synchronize with Repository - Available only when there is nothing to present in the Modified and Incoming

view modes;
•

Switch to Incoming - Selects the Incoming view mode.
•

Switch to Outgoing - Selects the Outgoing view mode.
•

Switch to Conflicts - Selects the Conflicts view mode.
•

Show all changes/incoming/outgoing/conflicts - Depending on the currently selected view mode, this action
presents the corresponding resources after a synchronize operation was executed only on a part of the working copy
resources.

Icons

The icons in the working copy view have a small overlaid icon which describes the current state of the resource in the
working copy. These state icons are:

Oxygen XML Editor | Syncro SVN Client | 587

• Modified - The resource has been locally modified since the last update. This is obtained after editing a file and
making changes.

• External - This indicates a mapping of a local directory to the URL of a versioned resource. It is declared with
a svn:externals property in the parent folder.

• Grayed - A resource with a grayed icon but no overlaid icon is an ignored resource. It is obtained with the Add
to svn:ignore action.

• Switched - This indicates a resource that has been switched from the initial repository location to a new location
within the same repository. The resource goes to this state as a result of the Switch action executed from the contextual
menu of the Working Copy view.

• Immediate children (sparse checkout) - The directory is marked with a purple bubble in the top left corner.

• File children only (sparse checkout) - The directory is marked with a blue bubble in the top left corner.

• This folder only - empty (sparse checkout)- The directory is marked with a gray bubble in the top left corner.

History View

In Subversion, both files and directories are versioned and have a history. If you want to examine the history for a
selected resource and find out what happened at a certain revision you can use the History view that can be accessed
from any of the following three views: Repository view menu or Working copy view menu. From the Working copy
view you can display the history of local versioned resources.

The view consists of three distinct areas:

• The revision table showing revision numbers, date/time of revision, the author's name, as well as the first line of the
commit message;

• The list of resources affected by this revision (modified, added, deleted or changed properties);

• The commit message for the selected revision.

588 | Oxygen XML Editor | Syncro SVN Client

Figure 341: History View

The History Filter Dialog

The History view does not always show all the changes ever made to a resource because there may be thousands of
changes and retrieving the entire list can take a long time. Normally you are interested in the more recent ones. That is
why you can specify the criteria for the revisions displayed in the History view by selecting one of several options
presented in the History dialog which is displayed when you invoke the Show History action.

Figure 342: History Filters Dialog

Options for the set of revisions presented in the History view are:

• all revisions of the selected resource;

Oxygen XML Editor | Syncro SVN Client | 589

• only revisions between a start revision number and an end revision number;

• only revisions added in a period of time like today, last week, last month, etc.;

• only revisions between a start and an end date;

• only revisions committed by a specified SVN user.

The toolbar of the History view has two buttons for extending the set of revisions presented in the view: Get next 50
and Get all.

The History Filter Field

When only the history entries which contain a specified substring need to be displayed in the History view the filter
field displayed at the top of this view is the perfect fit. Just enter the search string in the field next to the label Find.
Only the items with an author name, commit message, revision number or date which match the search string are kept

in the History view. The filter action is executed and the content of the table is updated when the button Search
is pressed.

Features

Single selection actions:

• Compare with working copy - Compares the selected revision with your working copy file. It is enabled only when
you select a file.

• Open - opens the selected revision of the file into the Editor. This is enabled only for files.

• Open with ... - Displays the Open with... dialog to specify the editor in which the selected file will be opened.

• Get Contents - Replaces the current version from the working copy with the contents of the selected revision from
the history of the file. The BASE version of the file is not changed in the working copy so that after this action the
file will appear as modified in a synchronization operation, that is newer than the BASE version, even if the contents
is from an older version from history.

• Save revision to - Saves the selected revision to a file so you have an older version of that file. This option is only
available when you access the history of a file, and it saves a version of that file only.

• Revert changes from this revision - Reverts changes made in the selected revision.

• Update to revision - Updates your working copy resource to the selected revision.

• Check out from revision - Gets the content of the selected revision for the resource into local file system.

• Show Annotation - Computes the latest revision number and author name that modified each line of the file up
to the selected revision, that is no modification later than the selected revision is taken into account.

• Change Author - Changes the name of the SVN user that committed the selected revision.

• Change Message - Changes the commit message of the selected revision.

Double selection actions:

• Compare revisions - When the resource is a file, the action compares the two selected revisions using the Compare
view. When the resource is a folder, the action displays the set of all resources from that folder that were changed
between the two revision numbers.

• Revert changes from these revisions - Similar to the svn-merge command, it merges two selected revisions into
the working copy resource. This action is only enabled when the resource history was requested for a working copy
item.

For more information about the History view and its features please read the sections Request history for a resource
and Using the resource history view

590 | Oxygen XML Editor | Syncro SVN Client

The Editor Panel of SVN Client

You can open a file for editing in an internal built-in editor. There are default associations between frequently used file
types and the internal editors in the File Types preferences panel.

The internal editor can be accessed either from the Working copy view or from the History view. No actions that modify
the content are allowed when the editor is opened with a revision from history.

Only one file at a time can be edited in an internal editor. If you try to open another file it will be opened in the same
editor window. The editor provides syntax highlighting for known file types. This means that a different color will be
used for each recognized token type found in the file. If the file's content type is unknown you will be prompted to
choose the proper way the file should be opened.

After editing the content of the file in an internal editor you can save it to disk by using the Save action from the File
menu or the Ctrl + S key shortcut. After saving your file you can see the file changed status in the Working Copy view.

If the internal editor associated with a file type is not the XML Editor, then the encoding set in the preference Encoding
for non XML files is used for opening and saving a file of that type. This is necessary because in case of XML files the
encoding is usually declared at the beginning of the XML file in a special declaration or it assumes the default value
UTF-8 but in case of non XML files there is no standard mechanism for declaring the file's encoding.

Annotations View

Sometimes you need to know not only what was changed in a file, but also who made those changes. This view displays
the author and the revision that changed every line in a file. Just click on a line in the editor panel where the file is opened
to see the revision that edited that line last time highlighted in the History view and to see all the lines changed by that
revision highlighted in the editor panel. Also the entries of the Annotations view corresponding to that revision are
highlighted. So the Annotations view, the History view and the editor panel are synchronized. Clicking on a line in
one of them highlights the corresponding lines in the other two.

Oxygen XML Editor | Syncro SVN Client | 591

Figure 343:The Annotations View

The annotations of a file are computed with the Show Annotation action available on the right click menu of the History
view and the Repository view.

If the file has a very long history, the computation of the annotation data can take long. If you want only the annotations
of a range of revisions you can specify the start revision and the end revision of the range in a dialog similar with the
History filter dialog that will be displayed in the History view. The action is called Show Annotation and is available
on the right click menu of the Working Copy view.

Compare View

In the Syncro SVN Client there are three types of files that can be checked for differences: text files, image files and
binary files. For the text files and image files you can use the built-in Compare view.

592 | Oxygen XML Editor | Syncro SVN Client

Figure 344: Compare View

At the top of each of the two editors, there are presented the name of the opened file, the corresponding SVN revision
number (for remote resources) and the author who committed the associated revision.

When comparing text, the differences are computed using a line differencing algorithm. The view can be used to show
the differences between two files in the following cases:

• after obtaining the outgoing status of a file with a Refresh operation, the view can be used to show the differences
between your working file and the pristine copy. In this way you can find out what changes you will be committing;

• after obtaining the incoming and outgoing status of the file with the Synchronize operation, you can examine the
exact differences between your local file and the HEAD revision file;

• you can use the Compare view from the History view to compare the local file and a selected revision or compare
two revisions of the same file.

The Compare view contains two editors. Edits are allowed only in the left editor and only when it contains the working
copy file. To learn more about how the view can be used in the day by day work see View differences.

Toolbar

The list of actions available in the toolbar consists of:

• Save action - Saves the content of the left editor when it can be edited.

• Perform files differencing - Performs files differencing on request.

• Go to first modification - Navigates to the first found difference.

• Go to previous modification - Navigates to the previous found difference.

• Go to next modification - Navigates to the next found difference.

• Go to last modification - Navigates to the last found difference.

• Copy change from right to left - Copies the selected change from the right editor to the left editor.

• Copy all non-conflicting changes from right to left - Copies all non-conflicting changes from the right editor
to the left editor. A non-conflicting change from the right editor is a change that does not overlap with a left editor
change.

Oxygen XML Editor | Syncro SVN Client | 593

• Show modification details at word level - Compares the currently selected change at word level to provide
more details about that change.

• Show modification details at character level - Compares the currently selected change at character level to
provide more details about that change.

• Ignore whitespaces - Enables or disables the whitespace ignoring feature. Ignoring whitespace means that
before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

• Synchronized scrolling - Scrolls both the views of the Compare view at the same time so that the two sides of
a difference are visible at the same time.

These actions are available also from the Compare menu.

Image Preview

You can view your local files by using the built-in Image preview component. The view can be accessed from the
Working copy view or from the Repository view. It can also be used from the History view to view a selected revision
of a image file.

Only one image file can be opened at a time. If an image file is opened in the Image preview and you try to open another
one it will be opened in the same window. Supported image types are GIF, JPEG/JPG, PNG, BMP. Once the image is
displayed in the Image preview panel using the actions from the contextual menu one can scale the image at its original
size (1:1 action) or scale it down to fit in the view's available area (Scale to fit action).

Compare Images View

The images are compared using the Compare images view. The images are presented in the left and right part of the
view, scaled to fit the view's available area. You can use the contextual menu actions to scale the images at their original
size or scale them down to fit the view's available area.

The supported image types are: GIF, JPG / JPEG, PNG, BMP.

Properties View

The properties view presents Subversion properties for the currently selected resource from either the Working Copy
view or the Repositories view.

Figure 345:The Properties View

Above the table it is specified the currently active resource for which the properties are presented. Here you will also
find a warning when an unversioned resource is selected.

594 | Oxygen XML Editor | Syncro SVN Client

The table in which the properties are presented has four columns:

• State - can be one of:

• (empty) - normal unmodified property, same current and base values;

• *(asterisk) - modified property, current and base values are different;

• +(plus sign) - new property;

• -(minus sign) - removed property.

• Name - the property name.

• Current value - the current value of the property.

• Base value - the base(original) value of the property.

The svn:externals Property

The svn:externals property can be set on a folder or a file. In the first case it stores the URL of a folder from other
repository.

In the second case it stores the URL of a file from other repository. The external file will be added into the working
copy as a versioned item. There are a few differences between directory and file externals:

• The path to the file external must be in a working copy that is already checked out. While directory externals can
place the external directory at any depth and it will create any intermediate directories, file externals must be placed
into a working copy that is already checked out.

• The external file URL must be in the same repository as the URL that the file external will be inserted into;
inter-repository file externals are not supported.

• While commits do not descend into a directory external, a commit in a directory containing a file external will commit
any modifications to the file external.

The differences between a normal versioned file and a file external:

• File externals cannot be moved or deleted; the svn:externals property must be modified instead; however, file
externals can be copied.

A file external shows up as a X in the switched status column.

Attention:

Incomplete support - In subversion 1.6 it is not possible to remove a file external from your working copy once
you have added it, even if you delete the svn:externals property altogether. You have to checkout a fresh
working copy to remove the file.

Toolbar / Contextual Menu

The properties view toolbar and contextual menu contain the following actions:

• Add a new property - This button invokes the Add property dialog in which you can specify the property name
and value.

• Edit property - This button invokes the Edit property dialog in which you can change the property value and
also see its original(base) value.

• Remove property - This button will prompt a dialog to confirm the property deletion. You can also specify if
you want to remove the property recursively.

• Refresh - This action will refresh the properties for the current resource.

Oxygen XML Editor | Syncro SVN Client | 595

Console View

The Console View shows the traces of all the actions performed by the application. Part of the displayed messages
mirror the communication between the application and the Subversion server. The output is expressed as subcommands
to the Subversion server and simulates the Subversion command-line notation. For a detailed description of the Subversion
console output read the SVN User Manual.

The view has a simple layout, with most of its space occupied by a message area. On its right side, there is a toolbar
holding the following buttons:

• Clear - Erases all the displayed messages;
• Lock scroll - Disables the automatic scrolling when new messages are appended in the view.

The maximum number of lines displayed in the console (length of the buffer) can be modified in the Preferences page.
By default this value is set to 100.

Dynamic Help View

Dynamic Help view is a help window that changes its content to display the help section referring to the currently
selected view. As you change the focused view, you are able to read a short description of it and its functionality.

The Revision Graph of a SVN Resource

The history of a SVN resource can be watched on a graphical representation of all the revisions of that resource together
with the tags in which the resource was included. The graphical representation is identical to a tree structure and very
easy to follow.

The graphical representation of a resource history is invoked with the Revision graph action available on the right
click menu of a SVN resource in the Working Copy view and the Repository view.

596 | Oxygen XML Editor | Syncro SVN Client

Figure 346:The Revision Graph of a File Resource

In every node of the revision graph an icon and the background color represent the type of operation that created the
revision represented in that node. Also the commit message associated with that revision, the repository path and the
revision number are contained in the node. The tooltip displayed when the mouse pointer hovers over a node specifies
the URL of the resource, the SVN user who created the revision of that node, the revision number, the date of creation,
the commit message, the modification type and the affected paths.

The types of nodes used in the graph are:

• Added resource - the icon for a new resource added to the repository () and green background;
• Copied resource - the icon for a resource copied to other location, for example when a SVN tag is created ()

and green background;
• Modified resource - the icon for a modified resource () and blue background;
• Deleted resource - the icon for a resource deleted from the repository () and red background;
• Replaced resource - the icon for a resource removed and replaced with another one on the repository () and

orange background;
• Indirect resource - the icon for a revision from where the resource was copied or an indirectly modified resource,

that is a directory in which a resource was modified () and grey background; the Modification type field of the
tooltip specifies how that revision was obtained in the history of the resource.

A directory resource is represented with two types of graphs:

• simplified graph - lists only the changes applied directly to the directory;
• complete graph - lists also the indirect changes of the directory resource, that is the changes applied to the resources

contained in the directory.

Oxygen XML Editor | Syncro SVN Client | 597

Figure 347:The Revision Graph of a Directory (Direct Changes)

Figure 348:The Revision Graph of a Directory (Also Indirect Changes)

The Revision graph dialog toolbar contains the following actions:

598 | Oxygen XML Editor | Syncro SVN Client

• Save as image - Saves the graphical representation as image. For a large revision graph you have to set more
memory in the startup script. The default memory size is not enough when there are more than 100 revisions that
are included in the graph.

• Show/Hide indirect modifications - Switches between simplified and complete graph.
• Zoom In - Zooms in the graph.
• Zoom Out - Zooms out the graph. When the font reaches its minimum size, the graph nodes will display only

the icons, leading to a very compact representation of the graph.
• Reset scale - Resets the graphical scale to a default setting.
• Print - Prints the graph.
• Print preview - Offers a preview of the graph to allow you to check the information to be printed.

Right clicking any of the graph nodes display a contextual menu containing the following actions:

• Open - Opens the selected revision in the editor panel. Available only for files.
• Open with... - Opens the selected revision in the editor panel. Available only for files.
• Compare with HEAD - Compares the selected revision with the HEAD revision and displays the result in the

diff panel. Available only for files.
• Show History - Displays the history of the resource in the History view. Available for both files and directories.
• Check Out - Checks out the selected revision of the directory. Available only for directories.

When two nodes are selected in the revision graph of a file the right click menu of this selection contains only the
Compare for comparing the two revisions corresponding to the selected nodes. If the resource for which the revision
graph was built is a folder then the right click menu displayed for a two nodes selection also contains the Compare
action but it computes the differences between the two selected revisions as a set of directory changes. The result is
displayed in the Directory Change Set view in the same way as for the compare action invoked from the History view
on two revisions of a folder.

Attention:

Generating the revision graph of a resource with many revisions may be a slow operation. You should enable
caching for revision graph actions so that future actions on the same repository will not request the same data again
from the SVN server which will finish the operation much faster.

Syncro SVN Client Preferences

The options used in the SVN client are saved and loaded independently from the Oxygen XML Editor options. However
if at the Syncro SVN Client's first startup it cannot be determined a set of SVN options to be loaded, some of the
preferences are imported from the XML Editor options (e.g. License key and HTTP Proxy settings).

The preferences dialog can be accessed from the Options -> Preferences. The preferences panels are called Global ,
SVN , Diff colors and HTTP/Proxy Configuration.

There is a second set of preferences applied to the SVN client: the preferences set in the global SVN files called 'config'
and 'servers'. These are the files holding parameters that act as defaults applied to all the SVN client tools that are used
by the same user on his/hers login account on the computer. These files can be opened for editing with the two edit
actions available in the SVN client tool on the Global Runtime Configuration submenu of the Options menu.

Oxygen XML Editor | Syncro SVN Client | 599

Command Line Reference

This section specifies the equivalent Subversion commands for each action available in the graphical user interface of
Syncro SVN Client.

Checkout Command
Used to pull a SVN tree from the server to the local file system. The syntax of checkout command is the following.

svn checkout --revision rev URL PATH

The desired revision number (optional)rev

Repository URL you want to check out from.URL

Checkout target on file system.PATH

Update Command
Brings changes from the repository into your working copy. The syntax of update command is the following.

svn update --revision rev PATH

The desired revision number (optional)rev

Checkout target on file system.PATH

Updates resources to the last revision on which they were synchronized or to the HEAD revision, if no repository
information is available.

Commit Command
Sends changes from your working copy to the repository.

svn commit -m "log message"--no-unlock PATH

Specifies the commit
comment.

-m "log message"

Specifies that the resource should keep locks after commit
if this is the case.

--no-unlock

Location on the file system of the resource to commit. Can
be more than one.

PATH

Diff Command
Displays the differences found between two revisions.

svn diff --revision rev1:rev2 PATH

Specifies the revisions to be compared.rev1:rev2

Location on the file system of the resource to be
compared.

PATH

600 | Oxygen XML Editor | Syncro SVN Client

If you use the Compare with latest from HEAD from the Working copy view you will be comparing the local file with
the HEAD revision file. If you use Compare with BASE revision the local file will be compared with the pristine copy.
You can choose to compare the local file with an older revision or two revisions of the same file from the History view.

Show History
Display commit log messages.

svn log --revision rev1:rev2 --limit N --verbose PATH

Specifies the range of revisions for
which to obtain the log.

rev1:rev2

Limits the number of messages brought to N.--limit N

Gives detailed information about this command's
execution.

--verbose

Syncro SVN Client uses by default the --limit option in order to obtain only 50 log messages.

Refresh
Print the status of working copy files and directories.

svn status --verbose PATH

Specifies that the status of all files should be reported.--verbose

Location on the file system of the resource to get status for.PATH

Synchronize

svn status --show-updates PATH

Gets the resource status by contacting the repository.--show-updates

Location on the file system of the resource to get status for.PATH

Import
Commits an unversioned file or tree into the repository.

svn import -m "log message" PATH URL

Specifies the commit log message.-m "log message"

Local path to the resource on the
file system.

PATH

URL on the repository where the resource will be
imported.

URL

Export
Exports a directory tree.

svn export --revision rev URL PATH

Specifies the desired revision(if
necessary).

rev

Oxygen XML Editor | Syncro SVN Client | 601

Repository URL you want to export from.URL

Location on the file system where to export.PATH

Information
Displays information about a local or remote item.

svn info --revision rev PATH|URL

Specifies the revision number for which the
information will be requested.

rev

Local file system path to the resource.PATH

Repository URL for the resource.URL

Add
Add files, directories, or symbolic links.

svn add PATH...

Local file system path of the unversioned resources to be added to version control. More than
one can be specified.

PATH

Add to svn:ignore

svn propset svn:ignore PATH PARENTPATH

Predefined property name for
ignoring resources.

svn:ignore

Relative path from the working copy root for the
resource to be ignored.

PATH

Path to the parent of the resource to be ignored.PARENTPATH

Delete
Deletes resources from a working copy or from a Subversion repository.

svn delete --recursive PATH|URL

Specifies that the operation should be
performed recursively.

--recursive

Local file system path of the resource to delete.PATH

Repository URL of the resource to delete.PARENTPATH

Copy
Copy a file or directory in a working copy or in the repository.

svn copy(SRCPATH DSTPATH)|(SRCURL DSTURL)

Working copy path of the resource to be copied.SRCPATH

602 | Oxygen XML Editor | Syncro SVN Client

Working copy path where the
resource will be copied to.

DSTPATH

Repository path of the resource to be copied.SRCURL

Repository path where the resource will be copied to.DSTURL

Move / Rename
Move a file or directory.

svn move(SRCPATH DSTPATH)|(SRCURL DSTURL)

Working copy path of the resource to be moved.SRCPATH

Working copy path where the
resource will be moved to.

DSTPATH

Repository path of the resource to be moved.SRCURL

Repository path where the resource will be moved to.DSTURL

Mark resolved

svn resolved --recursive PATH

Specifies that the operation should be performed
recursively.

--recursive

Path to the resource in the local working
copy.

PATH

Revert
Undo all local edits.

svn revert [--recursive] PATH

Specifies that the operation should be performed
recursively.

--recursive

Local working copy path to revert to.PATH

Cleanup
Recursively cleans up the working copy.

svn cleanup PATH

Local working copy path to clean up.PATH

Show / Refresh Properties

svn proplist PATH

svn propget PROPNAME PATH

Oxygen XML Editor | Syncro SVN Client | 603

Local path of the resource.PATH

Property name.PROPNAME

First you can discover the property names with svn proplist, then you can obtain their values with svn propget.

Branch / Tag

svn copy -m "log message" URL1 URL2

svn copy -m "log message" URL1@rev1 URL2

svn copy -m "log message" PATH URL

Commit message.-m "log message"

Source repository URL.URL1

Revision of the source.rev1

Destination repository URL.URL2

Source working copy path.PATH

Destination repository URL.URL

Merge
Apply the differences between two sources to a working copy path.

svn merge [--dry-run] rev1:rev2 URL PATH

svn merge [--dry-run] URL1@rev1 URL2@rev2 PATH

Specifies that the operation will be simulated without making any
modifications.

--dry-run

Repository URL for the
resource to merge.

URL

Repository URL for the start branch to merge.URL1

Start revision for the resource to merge.rev1

Repository URL for the end branch to merge.URL2

End revision for the resource to merge.rev2

Destination path in the working copy for the result of the merge.PATH

Scan for locks
Obtains the repository status for all the resources in the path.

svn status --show-updates --verbose PATH

Get the resource status by contacting
the repository.

--show-updates

Specifies that the status of all files should be
reported.

--verbose

The location on the file system to get status for.PATH

604 | Oxygen XML Editor | Syncro SVN Client

Lock
Lock working copy paths or URLs in the repository so that no other user can commit changes to them.

svn lock [--force] [-m "log message"] PATH

Forces(steals) the lock.--force

Lock message.-m "log message"

Path to the file to be locked.PATH

Unlock
Unlock working copy paths or URLs.

svn unlock [--force] PATH

Forces(breaks) the lock.--force

Path to the file from the working copy..PATH

Mark as merged

rename FILE FILE.TMP

svn update FILE

rename FILE.TMP FILE

File to be marked as merged.FILE

Temporary filename.FILE.TMP

Override and update

svn revert PATH

svn update PATH

Path of the resource to be overridden.PATH

Override and Commit

If the resource is in conflict first you should perform a Mark Resolved action. If the resource has incoming changes you
should perform a Mark as Merged action followed by a Commit action.

Add / Edit property

svn propset [--recursive] PROPNAME PROPVALUE PATH

Specifies that the property should be set
recursively.

--recursive

Property name.PROPNAME

Property value.PROPVALUE

Oxygen XML Editor | Syncro SVN Client | 605

Resource's path.PATH

Remove property
Removes a property from an item.

svn propdel [--recursive] PROPNAME PATH

Specifies that the property should be deleted
recursively.

--recursive

Property name.PROPNAME

Resource's path.PATH

Revert changes from this revision

svn merge rev:rev-1 URL

Revision whose changes must be reverted.rev

The SVN URL corresponding to the resource.URL

Revert changes from these revisions
Short reference description.

svn merge rev1:rev2 URL

First revision number.rev1

Second revision number.rev2

The SVN URL corresponding to the resource.URL

606 | Oxygen XML Editor | Syncro SVN Client

Chapter

22

Extending Oxygen with Plugins

This chapter explains how to write and install a plugin of the Oxygen XML
Editor . It treats only the standalone version, as the Eclipse plugin version can
be extended with other plugins following the rules of the Eclipse platform.

Topics:

• Introduction
• Oxygen Plugins
• How to Install a Plugin
• Example - A Selection Plugin

Introduction

Oxygen defines a couple of extension points to allow providing custom functionality via plugins. The plugin support
includes the following types of plugins:

• General plugins
• Selection plugins
• Document plugins
• Custom protocol plugins
• Resource locking custom protocol plugins
• Components validation plugins
• Workspace access plugins
• Open redirect plugins

A selection plugin can be applied to both an XML document and a non-XML document. Other types of plugins can be
applied only to XML documents.

A components validation plugin and a workspace access plugin are not connected with one document type, they have
access to some resources of the application workspace used by all opened documents.

In order to develop a plugin a Java development environment must be installed. Apart from any library that the specific
plugin requires, the file oxygen.jar is necessary for plugin compilation. Also an Oxygen installation is helpful for
testing the deployment and plugin the functionality.

Oxygen Plugins
The Oxygen functionality can be extended with plugins that implement a clearly specified API. A plugin includes at least a
descriptor file which is an XML file called plugin.xml and two Java classes that extend ro.sync.exml.plugin.Plugin
and ro.sync.exml.plugin.PluginExtension. Most plugins work only in the Text mode of the XML editor panel
while others work at the workspace level. For extending the Author mode of the XML editor panel, see Author Developer
Guide for the custom Author actions API.

On the Oxygen website there is a plugin development kit with some sample plugins (source code and compiled code)
and the Javadoc API necessary for developing custom plugins.

The minimal implementation of a plugin must provide:

• a Java class that extends the ro.sync.exml.plugin.Plugin class
• a Java class that implements the ro.sync.exml.plugin.PluginExtension interface
• a plugin descriptor file called plugin.xml

A ro.sync.exml.plugin.PluginDescriptor object is passed to the constructor of the subclass of the
ro.sync.exml.plugin.Plugin class. It contains the following data items about the plugin:

• basedir - File object - the base directory of the plugin.
• description - String object - the description of the plugin.
• name - String object - the name of the plugin.
• vendor - String object - the vendor name of the plugin.
• version - String object - the plugin version.

The ro.sync.exml.plugin.PluginDescriptor fields are filled with information from the plugin descriptor
file.

The plugin descriptor is an XML file that defines how the plugin is integrated in Oxygen and what libraries are loaded.
The structure of the plugin descriptor file is fully described in a DTD grammar located in

608 | Oxygen XML Editor | Extending Oxygen with Plugins

http://www.oxygenxml.com/InstData/Editor/Plugins/OxygenPluginsDevelopmentKit.zip

OXYGEN_INSTALLATION_FOLDER/plugins/plugin.dtd. Here is a sample plugin descriptor used by the
Capitalize Lines sample plugin:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="Capitalize Lines"
 description="Capitalize the first character on each line"
 version="1.0.0"
 vendor="SyncRO"
 class="ro.sync.sample.plugin.caplines.CapLinesPlugin">
 <runtime>
 <library name="lib/caplines.jar"/>
 </runtime>
 <extension type="selectionProcessor"
 class="ro.sync.sample.plugin.caplines.CapLinesPluginExtension"
keyboardShortcut="ctrl shift EQUALS"/>
</plugin>

If your plugin is of type Selection, Document or General, and thus contributes an action either to the contextual menu
or to the main menu, then you can assign a keyboard shortcut for it. You can use the keyboardShortcut attribute
for each extension element to specify the desired shortcut.

Tip: To compose string representations of the desired shortcut keys you can go to the Oxygen Menu Shortcut
Keys preferences page, press Edit on any action, press the desired key sequence and use the representation which
appears in the edit dialog.

General Plugin

This plugin is the most general plugin type. It provides a limited API:

• The interface GeneralPluginExtension - Intended for general-purpose plugins, kind of external tools but
triggered from the Plugins menu. The implementing classes must provide the method
process(GeneralPluginContext) which must provide the plugin processing. This method takes as a
parameter a GeneralPluginContext object.

• The class GeneralPluginContext - Represents the context in which the general plugin extension does its
processing. The only method available is getFrame() which returns the currently editing frame
(java.awt.Frame). It is useful if the plugin wants to display graphical components as they in general need a
parent in order to appear properly on screen.

Selection Plugin
A selection plugin can be applied to both an XML document and a non-XML document. It works as follows: the user makes
a selection in the editor, displays the contextual menu, and selects from the Plugins submenu the item corresponding to the
plugin.

This plugin type provides the following API:

• The interface SelectionPluginExtension - The context containing the selected text is passed to the extension
and the processed result is going to replace the initial selection. The process(GeneralPluginContext)
method must return a SelectionPluginResult object which contains the result of the processing. The String
value returned by the SelectionPluginResult object can include editor variables like ${caret} and ${selection}.

• The SelectionPluginContext object represents the context. It provides two methods:

• getSelection() - Returns a String that is the current selection of text.
• getFrame() - Returns a Frame that is the currently editing frame.

Oxygen XML Editor | Extending Oxygen with Plugins | 609

Document Plugin
This plugin type can be applied only to an XML document. It can modify the current document which is received as callback
parameter.

The plugin is started by selecting the corresponding menu item from the contextual menu of the XML editor (Text
mode), Plugins submenu. It provides the following API:

• The interface DocumentPluginExtension - Receives the context object containing the current document in
order to be processed. The process(GeneralPluginContext) method can return a
DocumentPluginResult object containing a new document.

• The DocumentPluginContext object represents the context. It provides two methods:

• getDocument() - Returns a javax.swing.text.Document object that represents the current document.
• getFrame() - Returns a java.awt.Frame object that represents the currently editing frame.

Custom Protocol Plugin
This type of plugins allows the developer to work with a custom designed protocol for retrieving and storing files.

It provides the following API:

• The interface URLStreamHandlerPluginExtension - There is one method that must be implemented:

• getURLStreamHandler(String protocol) - It takes as an argument the name of the protocol and
returns a URLStreamHandler object, or null if there is no URL handler for the specified protocol.

• With the help of the URLChooserPluginExtension interface, it is possible to write your own dialog that works
with the custom protocol. This interface provides two methods:

• chooseURLs() - Returns a URL[] object that contains the URLs the user decided to open with the custom
protocol. You can invoke your own URL chooser dialog here and then return the chosen URLs having your own
custom protocol.

• getMenuName() - Returns a String object that is the name of the entry added in the File menu.

• With the help of the URLChooserToolbarExtension interface, it is possible to provide a toolbar entry which
is used for launching the custom URLs chooser from the URLChooserPluginExtension implementation. This
interface provides two methods:

• getToolbarIcon() - Returns the javax.swing.Icon image used on the toolbar.
• getToolbarTooltip() - Returns a String that is the tooltip used on the toolbar button.

Resource Locking Custom Protocol Plugin
This plugin type allows the developer to work with a custom designed protocol for retrieving and storing files. It can lock a
resource on opening it in Oxygen. This type of plugin extends the custom protocol plugin type with resource locking support.

Such a plugin provides the following API:

• The interface URLStreamHandlerWithLockPluginExtension - The plugin receives callbacks following
the simple protocol for resource locking and unlocking imposed by Oxygen.

There are two additional methods that must be implemented:

• getLockHandler() - Returns a LockHandler implementation class with the implementation of the lock
specific methods from the plugin.

• isSupported(String protocol) - Returns a boolean that is true if the plugin accepts to manage
locking for a certain URL protocol scheme like ftp, http, https, or customName.

610 | Oxygen XML Editor | Extending Oxygen with Plugins

Components Validation Plugin
This plugin type allows the developer to make customization of the editor menus, toolbars, and some other components
by allowing or filtering them from the user interface.

This plugin provides the following API:

• The interface ComponentsValidatorPluginExtension - There is one method that must be implemented:

• getComponentsValidator() - Returns a ro.sync.exml.ComponentsValidator implementation
class used for validating the menus, toolbars, and their actions.

• The interface ComponentsValidator provides methods to filter various features from being added to the
application GUI:

• validateMenuOrTaggedAction(String[] menuOrActionPath) - Checks if a menu or a tag action
from a menu is allowed and returns a boolean value. A tag is used to uniquely identifying an action. The
String[] argument is the tag of the menu / action and the tags of its parent menus if any.

• validateToolbarTaggedAction(String[] toolbarOrAction) - Checks if an action from a
toolbar is allowed and returns a boolean value. The String[] argument is the tag of the action from a toolbar
and the tag of its parent toolbar if any.

• validateComponent(String key) - Checks if the given component is allowed and returns a boolean
value. The String argument is the tag identifying the component. You can remove toolbars entirely using this
callback.

• validateAccelAction(String category, String tag) - Checks if the given accelerator action
is allowed to appear in the GUI and returns a boolean value. An accelerator action can be uniquely identified
so it will be removed both from toolbars or menus. The first argument represents the action category, the second
is the tag of the action.

• validateContentType(String contentType) - Checks if the given content type is allowed and
returns a boolean value. The String argument represents the content type. You can instruct the application
to ignore content types like text / xsl or text / xquery and the application will no longer be able to recognize them.

• validateOptionPane(String optionPaneKey) - Checks if the given options page can be added in
the preferences option tree and returns a boolean value. The String argument is the option pane key.

• validateOption(String optionKey) - Checks if the given option can be added in the option page and
returns a boolean value. The String argument is the option key. This method is mostly used for internal use
and it is not called for each option in a preferences page.

• validateLibrary(String library) - Checks if the given library is allowed to appear listed in the
About dialog and returns a boolean value. The String argument is the library. This method is mostly for
internal use.

• validateNewEditorTemplate(EditorTemplate editorTemplate) - Checks if the given template
for a new editor is allowed and returns a boolean value. The EditorTemplate argument is the editor
template. An EditorTemplate is used to create an editor for a given extension. You can thus filter what
appears in the New dialog list.

• isDebuggerperspectiveAllowed() - Check if the debugger perspective is allowed and returns a
boolean value.

• validateSHMarker(String marker) - Checks if the given marker is allowed and returns a boolean
value. The String argument represents the syntax highlight marker to be checked. If you decide to filter certain
content types, you can also filter the syntax highlight options so that the content type is no longer present in the
Preferences options tree.

Tip: The best way to decide what to filter is to observe the values the application passes when these callbacks are
called. You have to create an implementation for this interface which lists in the console all values received by
each function. Then you can decide on the values to filter and act accordingly.

Oxygen XML Editor | Extending Oxygen with Plugins | 611

Workspace Access Plugin
Many complex integrations, like integrations with Content Management Systems (CMS) usually requires access to some
workspace resources like the toolbar, menus and to the opened XML editors. This type of plugin is also useful because it
allows you to make modifications to an opened editor's XML content.

The plugin must implement the interface
ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension. The callback method
applicationStarted of this interface allows access to a parameter of type
ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace which in its turn allows
for API access to the application workspace.

The interface StandalonePluginWorkspace has three methods which can be called in order to customize the
toolbars, menus and views:

• addToolbarComponentsCustomizer - Contributes to or modifies existing toolbars. You can specify in the
associated plugin.xml descriptor additional toolbar IDs using the following construct:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess">
 <runtime>

 </runtime>

 <extension type="WorkspaceAccess"/>

<toolbar id="SampleWorkspaceAccessToolbarID" initialSide="NORTH"

initialRow="1"/>
</plugin>

The toolbar element adds a toolbar in the Oxygen interface and allows you to contribute your own plugin specific
actions. The following attributes are available:

• id - unique identifier of the plugin toolbar;
• initialSide - specifies the place where the toolbar is initially displayed. The allowed values are NORTH

and SOUTH.
• initialRow - specifies the initial row on the specified side where the toolbar is displayed. For example the

main menu has an initial row of "0" and the "Edit" toolbar has an initial row of "1".

The ro.sync.exml.workspace.api.standalone.ToolbarInfo toolbar component information with
the specified id will be provided to you by the customizer interface. You will thus be able to provide Swing components
which will appear on the toolbar when the application starts.

• addViewComponentCustomizer - Contributes to or modifies existing views or contributes to the reserved
custom view. You can specify in the associated plugin.xml descriptor additional view IDs using the following
construct:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess">
 <runtime>

 </runtime>

 <extension type="WorkspaceAccess"/>

<view id="SampleWorkspaceAccessID" initialSide="WEST" initialRow="0"/>
</plugin>

The view element adds a view in the Oxygen interface and allows you to contribute your own plugin specific UI
components. The following attributes are available:

612 | Oxygen XML Editor | Extending Oxygen with Plugins

• id - unique identifier of the view component.
• initialSide - specifies the place where the view is initially displayed. The allowed values are NORTH,

SOUTH, EAST and WEST.
• initialRow - specifies the initial row on the specified side where the view is displayed. For example the

Project view has an initial row of 0 and the Outline view has an initial row of 1. Both views are in the WEST
part of the workbench.

The ro.sync.exml.workspace.api.standalone.ViewInfo view component information with the
specified id will be provided to you by the customizer interface. You will thus be able to provide Swing components
which will appear on the view when the application starts.

• addMenuBarCustomizer - Contributes to or modifies existing menu components.

Access to the opened editors can be done first by getting access to all URLs opened in the workspace using the API
method StandalonePluginWorkspace.getAllEditorLocations(int editingArea). There are two
available editing areas: the DITA Maps Manager editing area where only DITA Maps are edited and the main editing
area. Using the URL of an opened resource you can gain access to it using the
StandalonePluginWorkspace.getEditorAccess(URL location, int editingArea)API method.
A ro.sync.exml.workspace.api.editor.WSEditor allows then access to the current editing page. Special
editing API is supported only for the Text
(ro.sync.exml.workspace.api.editor.page.text.WSTextEditorPage) and the Author
(ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPage) pages.

In order to be notified when editors are opened, selected and closed you can use the API method
StandalonePluginWorkspace.addEditorChangeListener to add a listener.

Open Redirect Plugin
This type of plugin is useful for opening more than one file with only one open action. For example when a zip archive or an
ODF file or an OOXML file is open in the Archive Browser view a plugin of this type can decide to open a file also from the
archive in an XML editor panel. This file can be the document.xml main file from an OOXML file archive or a specific
XML file from a zip archive.

The plugin must implement the interface OpenRedirectExtension. It has only one callback: redirect(URL)
that receives the URL of the file opened by the Oxygen user. If the plugin decides to open also other files it must return
an array of information objects (OpenRedirectInformation[]) that correspond to these files. Such an information
object must contain the URL that is opened in a new editor panel and the content type, for example text/xml. The
content type is used for determining the type of editor panel. A null content type allows auto-detection of the file type.

How to Write a CMS Integration Plugin

In order to have a complete integration between Oxygen and any CMS you usually have to write a plugin which combines
two available plugin extensions:

• Workspace Access
• Custom protocol

The usual set of requirements for an integration between Oxygen and the CMS are the following:

• Contribute to the Oxygen toolbars and main menu with your custom Check Out and Check In actions:

• Check Out triggers your custom dialogs which allow you to browse the remote CMS and choose the resources
you want to open;

• Check In allows you to send back to the server the modified content.

You can use the Workspace Access plugin extension (and provided sample Java code) for all these operations.

• When Check Out is called, use the Oxygen API to open your custom URLs (URLs created using your custom
protocol). It is important to implement and use a Custom Protocol extension in order to be notified when the files
are opened and saved and to be able to provide to Oxygen the content for the relative references the files may contain.

Oxygen XML Editor | Extending Oxygen with Plugins | 613

Your custom java.net.URLStreamHandler implementation checks out the resource content from the server,
stores it locally and provides its content. Sample Check Out implementation:

 /**
 * Sample implementation for the "Check Out" method.
 *
 * @param pluginWorkspaceAccess The plugin workspace access (Workspace Access
 plugin).
 * @throws MalformedURLException
 */
 private void checkOut(StandalonePluginWorkspace pluginWorkspaceAccess) throws
 MalformedURLException {
 //TODO Show the user a custom dialog for browsing the CMS
 //TODO after the user selected the resource create an URL with a custom
protocol
 // which will uniquely map to the resource on the CMS using the URLHandler

 //something like:
 URL customURL = new URL("mycms://host/path/to/file.xml");
 //Ask Oxygen to open the URL
 pluginWorkspaceAccess.open(customURL);
 //Oxygen will then your custom protocol handler to provide the contents
for the resource "mycms://host/path/to/file.xml"
 //Your custom protocol handler will check out the file in a temporary
directory for example and provide the content from it.
 //Oxygen will also pass through your URLHandler if you have any relative
references which need to be opened/obtained.
 }

Here is a diagram of the Check Out process:

Each phase is described below:

1. Browse CMS repository
2. User chooses a resource
3. Use API to open custom URL: mycms://path/to/file.xml
4. Get content of URL: mycms://path/to/file.xml

614 | Oxygen XML Editor | Extending Oxygen with Plugins

5. Get content of resource
6. Store on disk for faster access
7. Retrieve content from disk if already checked out
8. Retrieved content

• Contribute a special Browse CMS action to every dialog in Oxygen where an URL can be chosen to perform a
special action (like the Insert a DITA Content Reference action or the Insert Image action). Sample code:

 //Add an additional browse action to all dialogs/places where Oxygen
allows selecting an URL.
 pluginWorkspaceAccess.addInputURLChooserCustomizer(new
InputURLChooserCustomizer() {
 public void customizeBrowseActions(List<Action> existingBrowseActions,
 final InputURLChooser chooser) {
 //IMPORTANT, you also need to set a custom icon on the action for
situations when its text is not used for display.
 Action browseCMS = new AbstractAction("CMS") {
 public void actionPerformed(ActionEvent e) {
 URL chosenResource = browseCMSAndChooseResource();
 if (chosenResource != null) {
 try {
 //Set the chosen resource in the dialog's combo box chooser.

 chooser.urlChosen(chosenResource);
 } catch (MalformedURLException e1) {
 //
 }
 }
 }
 };
 existingBrowseActions.add(browseCMS);
 }
 });

When inserting references to other resources using the actions already implemented in Oxygen, the reference to the
resource is made by default relative to the absolute location of the edited XML file. You can gain control over the
way in which the reference is made relative for a specific protocol like:

 //Add a custom relative reference resolver for your custom protocol.
 //Usually when inserting references from one URL to another Oxygen makes
 the inserted path relative.
 //If your custom protocol needs special relativization techniques then
it should set up a custom relative
 //references resolver to be notified when resolving needs to be done.
 pluginWorkspaceAccess.addRelativeReferencesResolver(
 //Your custom URL protocol for which you already have a custom
URLStreamHandlerPluginExtension set up.
 "mycms",
 //The relative references resolver
 new RelativeReferenceResolver() {
 public String makeRelative(URL baseURL, URL childURL) {
 //Return the referenced path as absolute for example.
 //return childURL.toString();
 //Or return null for the default behavior.
 return null;
 }
 });

• Write the plugin.xml descriptor. Your plugin combines the two extensions using a single set of libraries. The
descriptor would look like:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin

Oxygen XML Editor | Extending Oxygen with Plugins | 615

 name="CustomCMSAccess"
 description="Test"
 version="1.0.0"
 vendor="ACME"
 class="custom.cms.CMSAccessPlugin">
 <runtime>
 <library name="lib/cmsaccess.jar"/>
 </runtime>
 <!--Access to add actions to the main menu and toolbars or to add custom
views.-->
 <!--See the
"ro.sync.sample.plugin.workspace.CustomWorkspaceAccessPluginExtension" Java
sample for more details-->
 <extension type="WorkspaceAccess"
 class="custom.cms.CustomWorkspaceAccessPluginExtension"/>
 <!--The custom URL handler which will communicate with the CMS
implementation-->
 <!--See the
"ro.sync.sample.plugin.workspace.customprotocol.CustomProtocolURLHandlerExtension"
 Java sample for more details-->
 <extension type="URLHandler"
 class="custom.cms.CustomProtocolURLHandlerExtension"/>
</plugin>

• Create a cmsaccess.jar JAR archive containing your implementation classes.

• Copy your new plugin directory in the plugins subfolder of the Oxygen install folder and start Oxygen.

Class Loading Issues

It is possible that the Java libraries you have specified in the plugin libraries list conflict with the ones already loaded
by Oxygen. In order to instruct the plugin to prefer its libraries over the ones used by Oxygen, you can add the following
attribute on the <plugin> root element:classLoaderType="preferReferencedResources" from the
plugin.xml descriptor.

A Late Delegation Class Loader (the main class loader in Oxygen) is a java.net.URLClassLoader extension
which prefers to search classes in its own libraries list and only if a class is not found there to delegate to the parent class
loader.

The main Oxygen Class Loader uses as libraries all jars specified in the OXYGEN_INSTALL_DIR\lib directory. Its
parent class loader is the default JVM Class loader. For each instantiated plugin a separate class loader is created having
as parent the Oxygen Class Loader.

The plugin class loader can be either a standard java.net.URLClassLoader or a
LateDelegationClassLoader (depending on the attribute classLoaderType in the plugin.xml). Its
parent class loader is always the Oxygen LateDelegationClassLoader.

If you experience additional problems like the following:

java.lang.LinkageError: ClassCastException: attempting to cast
jar:file:/C:/jdk1.6.0_06/jre/lib/rt.jar!/javax/xml/ws/spi/Provider.classtojar:file:/D:/Program

 Files/Oxygen XML Editor

12/plugins/wspcaccess/../../xdocs/lib/jaxws/jaxws-api.jar!/javax/xml/ws/spi/Provider.class

 at javax.xml.ws.spi.Provider.provider(Provider.java:94) at
 javax.xml.ws.Service.<init>(Service.java:56)
..

616 | Oxygen XML Editor | Extending Oxygen with Plugins

The cause could be the fact that some classes are instantiated using the context class loader of the current thread. The
most straightforward fix is to write your code in a try/finally statement:

 ClassLoader oldClassLoader = Thread.currentThread().getContextClassLoader();
 try {
 //This is the implementation of the WorkspaceAccessPluginExtension plugin
interface.
 Thread.currentThread().setContextClassLoader(
 CustomWorkspaceAccessPluginExtension.this.getClass().getClassLoader());

 //WRITE YOUR CODE HERE
 } finally {
 Thread.currentThread().setContextClassLoader(oldClassLoader);
 }

How to Write A Custom Protocol Plugin

For creating a custom protocol plugin, apply the following steps:

1. Write the handler class for your protocol that implements the java.net.URLStreamHandler interface.

Be careful to provide ways to correct and uncorrect the URLs of your files.

2. Write the plugin class by extending ro.sync.exml.plugin.Plugin.

3. Write the plugin extension class that implements the
ro.sync.exml.plugin.urlstreamhandler.URLStreamHandlerPluginExtension interface.

It is necessary that the plugin extension for the custom protocol implements the
URLStreamHandlerPluginExtension interface. Without it, you cannot use your plugin, because Oxygen
is not able to find the protocol handler.

You can choose also to implement the URLChooserPluginExtension interface. It allows you to write and
display your own customized dialog for selecting resources that are loaded with the custom protocol.

An implementation of the extension URLHandlerReadOnlyCheckerExtension allows you to:

• mark a resource as read-only when it is opened
• switch between marking the resource as read-only and read-write while it is edited

It is useful when opening and editing CMS resources.

4. Write the plugin.xml descriptor.

Remember to set the name of the plugin class to the one from the second step and the plugin extension class name
with the one you have chosen at step 3.

5. Create a .jar archive with all these files.

6. Install your new plugin in the plugins subfolder of the Oxygen install folder.

How to Install a Plugin

In the directory where Oxygen is installed there exists a directory called plugins that contains all the available plugins.
In order for Oxygen to use the new functionality you provided, follow the next steps:

1. In the plugins folder create a subfolder to store the plugin files.

2. Put in this new folder the plugin descriptor file plugin.xml, the Java classes of the plugin and the other files that
are referenced in the descriptor file.

3. Restart Oxygen.

Oxygen XML Editor | Extending Oxygen with Plugins | 617

Example - A Selection Plugin

The following plugin is called UppercasePlugin and is an example of selection plugin. It is used in Oxygen for
capitalizing the characters in the current selection. This example consists of two Java classes and the plugin descriptor:

• UppercasePlugin.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.Plugin;
import ro.sync.exml.plugin.PluginDescriptor;

public class UppercasePlugin extends Plugin {
 /**
 * Plugin instance.
 */
 private static UppercasePlugin instance = null;

 /**
 * UppercasePlugin constructor.
 *
 * @param descriptor Plugin descriptor object.
 */
 public UppercasePlugin(PluginDescriptor descriptor) {
 super(descriptor);

 if (instance != null) {
 throw new IllegalStateException("Already instantiated !");
 }
 instance = this;
 }

 /**
 * Get the plugin instance.
 *
 * @return the shared plugin instance.
 */
 public static UppercasePlugin getInstance() {
 return instance;
 }
}

• UppercasePluginExtension.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.selection.SelectionPluginContext;
import ro.sync.exml.plugin.selection.SelectionPluginExtension;
import ro.sync.exml.plugin.selection.SelectionPluginResult;
import ro.sync.exml.plugin.selection.SelectionPluginResultImpl;

public class UppercasePluginExtension implements SelectionPluginExtension {
 /**
 * Convert the text to uppercase.
 *
 *@param context Selection context.
 *@return Uppercase plugin result.
 */
 public SelectionPluginResult process(SelectionPluginContext context) {
 return new SelectionPluginResultImpl(

618 | Oxygen XML Editor | Extending Oxygen with Plugins

 context.getSelection().toUpperCase());
 }
}

• plugin.xml:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="UpperCase"
 description="Convert the selection to uppercase"
 version="1.0.0"
 vendor="SyncRO"
 class="ro.sync.sample.plugin.uppercase.UppercasePlugin">
 <runtime>
 <library name="lib/uppercase.jar"/>
 </runtime>
 <extension type="selectionProcessor"
 class="ro.sync.sample.plugin.uppercase.UppercasePluginExtension"/>
</plugin>

Oxygen XML Editor | Extending Oxygen with Plugins | 619

Chapter

23

Text Editor Specific Actions

The Text mode of the editor panel provides the usual actions specific for a plain
text editor: undo / redo, copy / paste, find / replace, etc. These actions are

Topics:

• Undoing and Redoing User
Actions

executed from the menu bar or toolbar and also by invoking their usual keyboard
shortcuts.

• Copying and Pasting Text
• Finding and Replacing Text in the

Current File
• Finding and Replacing Text in

Multiple Files
• Spell Checking
• Changing the Font Size
• Word/Line Editor Actions
• Dragging and Dropping the

Selected Text
• Inserting a File at Caret Position
• Opening the File at Caret in

System Application
• Opening the File at Caret Position
• Switching Between Opened Tabs
• Printing a File
• Exiting the Application

Undoing and Redoing User Actions

•
Undo - menu Edit > Undo (Ctrl+Z) or the toolbar button Undo - Reverses a maximum of 100 editing
actions to return to the preceding state. Complex operations like Replace All, Indent selection, etc are treated as a
single undo event.

• Redo - menu Edit > Redo (Ctrl+Y for Windows, Ctrl+Shift+Z for Mac OSX and Linux) or the toolbar button

 Redo - Recreates a maximum of 100 editing actions that were undone by the Undo function.

Copying and Pasting Text

•
Edit > Cut (Ctrl+X) or the toolbar button Cut - Removes the current selected node from the document and
places it in the clipboard.

•
Edit > Copy (Ctrl+C) or the toolbar button Copy - Places a copy of the current selection in the clipboard
as RTF. All text attributes such as color, font or syntax highlight are preserved when pasting into another application.

•
Edit > Paste (Ctrl+V) or the toolbar button Paste - Places the current clipboard content into the document
at the cursor position.

• Edit > Select All (Ctrl+A) - Selects the entire body of the current document, including whitespace preceding the
first and following the last character.

Finding and Replacing Text in the Current File

This section explains how to use the find and replace features of the application.

The Find / Replace Dialog

The Find / Replace dialog is opened from menu Find > Find / Replace... (Ctrl+F) or the toolbar button Find
/ Replace. It enables you to define search and replace operations on the current document. The find works on multiple
lines, which means a find match can cover characters on more than one line. Special characters like newline and tab can
be inserted using the contextual menu.

To insert a new line in the find or replace text area, press (CTRL + Enter) instead of (Enter). The replace operation
can bind Perl 5 regular expression group variables ($1, $2, etc.) from the find match. For example to replace the tag
with attributes called tag-name with the tag tag-name1 use <tag-name(\s+)(.*)> in the Text to find area and
<tag-name1$1$2> in the Replace with area.

The following actions can be executed in the Find / Replace dialog:

• Find occurrences of a word or string of characters including white spaces, represented on one or multiple lines.
Highlight their position in the editor.

• Replace occurrences of target defined in the Text to find area with a word or string of characters, including white
spaces, that can be on a line or on multiple lines, defined in the Replace with area.

• Find all occurrences of a word or string of characters including white spaces that can be on a line or on multiple lines
and display a result list to the message panel.

• Replace all occurrences of a word or string of characters including white spaces that can be on a line or on multiple
lines.

622 | Oxygen XML Editor | Text Editor Specific Actions

Figure 349: Find / Replace Dialog

The dialog contains the following options:

• Text to find - The target character string to search for. You can search for Unicode characters specified in the
\uNNNN format. Also, hexadecimal notation (\xNNNN) and octal notation (\0NNNN) can be used. In this case you
have to check the Regular expression checkbox. For example, to search for a space character you can use the
\u0020 code.

• Replace with - The character string with which to replace the target. The string for replace can be on a line or on
multiple lines. Special characters like newline and tab can be inserted using the contextual menu. It may contain Perl
5 regular expression group markers, only if the search expression is a regular expression and the Regular expression
checkbox is checked.

Note: Some regular expressions may block indefinitely the Java Regular Expressions engine. If the execution
of the regular expression does not end in about five seconds, the application displays a dialog that allows you
to interrupt the operation.

Unicode characters can also be used in the Replace with area.

• The history buttons - The last find and replace operations history is available using the history buttons from
the top of the find and replace text areas.

• XPath - The XPath 2.0 expression you input in this combo is used to restrict the search scope.

The content completion assistant helps you input XPath expressions, valid in the current context.

Oxygen XML Editor | Text Editor Specific Actions | 623

• Direction - Specifies if the search direction is from current position to end of file (Forward direction) or to start of
file (Backward direction).

• Scope - Specifies if the search is executed on all file or only on the lines that were selected when the dialog was
invoked. If the selection was on a single line the search is executed on the whole file (by default the All option is
selected).

• Find - Executes a find operation for the next occurrence of the target. It stops after highlighting the find match in
the editor panel.

• Replace - Executes a replace operation for the target followed by a find operation for the next occurrence.
• Find All - Executes a find operation and displays all results to the message panel.
• Replace All - Executes a replace operation in the entire scope of the document.
• Replace to End - Executes a replace operation starting from current target until the end of the document, in the

direction specified by the current selection of the Direction switch (Forward or Backward).
• Case sensitive - When checked, operations are case-sensitive.
• Whole words only - When checked, only whole occurrences of a word will be included in the operation.
• Incremental - When checked, the search operation is started every time you type or delete a letter in the Text to

find text box.
• Regular expression - When checked, it allows you to use regular expressions in Perl 5 syntax. A content completion

assistant window is available to help you edit regular expressions. It is activated every time you type \(backslash
key) or on-demand if you press Ctrl-Space.

• Dot matches all - A dot used in a regular expression matches also end of line characters.
• Wrap around - Continues the find from the start (end) of the document after reaching the end (start) when the search

is in forward (backward) direction.
• Enable XML search options - When checked, the dialog is enlarged and the XML search options are shown below.

This option restricts the search domain to the checked XML component types.

The supported XML component types are the following:

• Element names - Only the names are searched, without '<', '/', '>', attributes or white-spaces. e. g.: <element />.
• Element contents - Search in the text content of XML elements.
• Attribute names - Only the attribute names are searched, without the leading or trailing white-spaces.
• Attribute values - Only the attribute values are searched, without single quotes(') or double quotes("). e. g.:

'value' or "value"
• Comments - Only the content of comments are searched, skipping '<!--', '-->'. e. g.: <!--Comment content-->
• Processing Instructions (PIs) - Only the content are searched, skipping '<?', '?>'. e. g.: <?processing instruction?>
• CDATA - Only the content are searched, skipping '<![CDATA[', ']]>'. e. g.: <![CDATA[cdata content]]>
• DOCTYPE - Only the content of the DOCTYPE section are searched.
• Entities - Only the entity names are searched.

The two buttons Select All and Deselect All allow a simple activation and deactivation of all types of XML
components.

Note: Please note that since searching in some XML component types is performed only on their content
skipping some of their headers / footers (see the list above), even if all the XML component types are checked,
some filtering is still performed. To completely disable it you have to uncheck the option Enable XML search
options.

• Find All Elements / Attributes ... - In Author mode an attribute cannot be searched directly. For finding an attribute
just click on the link Find All Elements / Attributes ... in the dialog which opens the dialog with the same name.

The Find All Elements / Attributes Dialog

This dialog is opened from menu Find > Find All Elements... (Ctrl+Shift+E) or from the shortcut Find All Elements
/ Attributes that is available in the Find / Replace dialog . It assists you in defining XML elements / attributes search
operations on the current document.

624 | Oxygen XML Editor | Text Editor Specific Actions

Figure 350: Find All Elements / Attributes dialog

The dialog can perform the following actions:

• Find all the elements with a specified name.
• Find all the elements which contain or not a specified string in their text content.
• Find all the elements which have a specified attribute.
• Find all the elements which have an attribute with or without a specified value.

All these search criteria can be combined to fine filter your results.

The results of all the operations in the Find All Elements / Attributes dialog will be presented as a list in the message
panel.

The dialog fields are described as follows:

• Element name - The target element name to search for. Only the elements with this exact name are returned. For
any element name just leave the field empty.

• Element text - The target element text to search for. The combo box beside this field allows you to specify that you
are looking for an exact or partial match of the element text. For any element text, select contains in the combo box
and leave the field empty.

If you leave the field empty but select equals in the combo box, only elements with no text will be found. Select not
contains to find all elements which do not have the specified text inside.

• Attribute name - The name of the attribute which needs to be present in the elements. Only the elements which
have an attribute with this name will be returned. For any / no attribute name just leave the field empty.

• Attribute value - The combo box beside this field allows you to specify that you are looking for an exact or partial
match of the attribute value. For any / no attribute value select contains in the combo box and leave the field empty.

If you leave the field empty but select equals in the combo box, only elements that have at least an attribute with an
empty value will be found.

Select not contains to find all elements which have attributes without a specified value.

• Case sensitive - When this option is checked, operations are case sensitive.

The Quick Find Toolbar

A reduced version of the Find / Replace dialog is available as a toolbar that is activated by the shortcut specified in the
Find menu: (Ctrl+Alt+F) on Windows and Linux, (Cmd+Alt+F) on Mac OS X. The toolbar is displayed by default
at the bottom of the Oxygen window, above the status bar.

The Next, Previous, All, Incremental and Case sensitive controls work in the same way as in the Find / Replace dialog.
The search process works as if the Search also in tags option of the Find / Replace dialog is true, the Whole words
only one is false, the Regular expression one is false and the Wrap around one is true. You can also use the last two
toolbar actions to quickly open the Find / Replace and the Find / Replace in Files dialogs. The toolbar becomes invisible
again when the (ESC) key is pressed.

Oxygen XML Editor | Text Editor Specific Actions | 625

The enabling shortcut can be changed in Options > Preferences > Menu Shortcut Keys > Quick Find . As with any
dockable toolbar, the screen location of the Quick Find toolbar can be changed at any time by dragging (and docking)
it to the desired location. However the buttons of this toolbar can be used only if it has a horizontal layout so docking
it to the West side or the East side of the window is not allowed.

Keyboard Shortcuts for Finding the Next and Previous Match

Navigation from a find match to the next one or the previous one is very easy with two keyboard shortcuts: F3 and Shift
F3. They are useful to quickly repeat the last find action performed with the Find / Replace dialog, taking into account
the same find options set there through check boxes.

• Find > Find Next (F3) - Performs another search in forward direction using the last search configuration.
• Find > Find Previous (Shift+F3) - Performs another search in backward direction using the last search configuration.

Finding and Replacing Text in Multiple Files

The Find / Replace in Files dialog is opened from menu Find > Find / Replace in Files... or from the toolbar button

 Find / Replace in Files. It enables you to define "search for" or "search for and replace" operations across a number
of files. The find works at line level, which means a find match cannot cover characters on more than one line. The
replace operation can bind Perl 5 regular expression group variables ($1, $2, etc.) from the find match. For example to
replace the tag with attributes called tag-name with the tag tag-name1 use as Text to find the expression
<tag-name(\s+)(.*)> and as the Replace with expression <tag-name1$1$2>.

The encoding used to read and write the files is detected from the XML header or from the BOM. If a file does not have
an XML header or BOM Oxygen uses by default the UTF-8 encoding for files of type XML, that is for files with one
of the extensions: .xml, .xsl, .fo, .xsd, .rng, .nvdl, .sch, .wsdl or an extension associated with the XML
editor type. For the other files it uses the encoding configured for non-XML files.

You can cancel a long operation at any time by pressing the Cancel button of the progress dialog displayed when the
operation is executed.

Because the content of read-only files cannot be modified, the Replace operation is not processing those files. For every
such file, a warning message is displayed in the message panel.

626 | Oxygen XML Editor | Text Editor Specific Actions

Figure 351: Find / Replace in Files

The dialog contains the following options:

• Text to find - The target character string to search for. You can search for Unicode characters specified in the
\uNNNN format. Also, hexadecimal notation (\xNNNN) and octal notation (\0NNNN) can be used. In this case you
have to check the Regular expression checkbox. For example, to search for a space character you can use the
\u0020 code.

• Case sensitive - When checked, operations are case-sensitive.
• Whole words only - When checked, only whole occurrences of a word will be included in the operation.
• Regular expression - When checked, it allows you to use regular expressions in Perl 5 syntax. A content completion

assistant window is available to help you edit regular expressions. It is activated every time you type \(backslash
key) or on-demand if you press Ctrl-Space.

• XPath - The XPath 2.0 expression you input in this combo is used to restrict the search scope.

The content completion assistant helps you input XPath expressions, valid in the current context.

• Enable XML search options - When checked, the dialog is enlarged and the XML search options are shown below.
This option restricts the search domain to the checked XML component types.

The supported XML component types are the following:

Oxygen XML Editor | Text Editor Specific Actions | 627

• Element names - Only the names are searched, without '<', '/', '>', attributes or white-spaces. e. g.: <element />.
• Element contents - Search in the text content of XML elements.
• Attribute names - Only the attribute names are searched, without the leading or trailing white-spaces.
• Attribute values - Only the attribute values are searched, without single quotes(') or double quotes("). e. g.:

'value' or "value"
• Comments - Only the content of comments are searched, skipping '<!--', '-->'. e. g.: <!--Comment content-->
• Processing Instructions (PIs) - Only the content are searched, skipping '<?', '?>'. e. g.: <?processing instruction?>
• CDATA - Only the content are searched, skipping '<![CDATA[', ']]>'. e. g.: <![CDATA[cdata content]]>
• DOCTYPE - Only the content of the DOCTYPE section are searched.
• Entities - Only the entity names are searched.

The two buttons Select All and Deselect All allow a simple activation and deactivation of all types of XML
components.

Note: Please note that since searching in some XML component types is performed only on their content
skipping some of their headers / footers (see the list above), even if all the XML component types are checked,
some filtering is still performed. To completely disable it you have to uncheck the option Enable XML search
options.

• Replace with - The character string with which to replace the target. It may contain regular expression group markers
if the search expression is a regular expression and the Regular expression checkbox is checked.

• Make backup files with extension - In the replace process Oxygen makes backup files of the modified files. The
default extension is .bak but you can change the extension as you prefer.

• Selected project files - Searches only in the selected files of the current opened project. Not displayed when dialog
is started from contextual menu of DITA Maps view and Archive Browser view.

Note: The search is performed only on local files. If you have added to the project remote files from an FTP
or WebDAV server, these files are skipped.

• Project files - Searches in all files from the current project. Not displayed when dialog is started from contextual
menu of DITA Maps view and Archive Browser view.

• All opened files - Searches in all files opened in Oxygen (regular files or DITA Maps). You are prompted to save
all modified files before any operation is performed. Not displayed when dialog is started from contextual menu of
DITA Maps view and Archive Browser view.

• Current file directory - The search is done in the directory of the file opened in the current editor panel. If there is
no opened file, this option is disabled in the dialog. Not displayed when dialog is started from contextual menu of
DITA Maps view and Archive Browser view.

• Current DITA Map hierarchy - The search is done in all maps and topics referenced by the current edited DITA
Map. If Recurse referenced maps option is checked, the references from the maps referenced in the main DITA
map are also searched in. If there is no opened DITA Map, this option is disabled in the dialog. You are prompted
to save all modified files before any operation is performed. Displayed only when dialog is opened from DITA Maps
view.

• Opened archive - The search is done in archive opened in Archive Browser view. Displayed only when dialog is
opened from Archive Browser view.

• Specified path - Chooses the search path.
• File filter - Narrows the scope of the operation only to the files that match the given filters.
• Recurse subdirectories - When checked, the search is performed recursively in the sub directories found in the

specified directory path.
• Include hidden files - When checked, the search is performed also in the hidden files.
• Include archives - When checked, the search is also done in all individual file entries from all supported ZIP-type

archives.
• Show separate results for each search expression - When checked, the application opens a new tab to display the

result of each new search expression. When the option is unchecked, the search results are displayed in the Find in
Files tab, replacing any previous search results.

• Find All - Executes a find operation and returns the result list to the message panel.

628 | Oxygen XML Editor | Text Editor Specific Actions

• Replace All - Replaces all occurrences of the target contained in the specified files.

Caution: Use this option with caution. Global search and replace across all project files does not open the files
containing the targets, nor does it prompt on a per occurrence basis, to confirm that a replace operation must be
performed. As the operation simply matches the string defined in the find field, this may result in replacement of
matching strings that were not originally intended to be replaced.

Spell Checking

The Spelling dialog enables you to check the spelling of the current document. It is opened from menu Edit > Check

Spelling (F4) (or the toolbar button Check Spelling.

Figure 352:The Check Spelling Dialog

The dialog contains the following fields:

• Unrecognized word - Contains the word that cannot be found in the selected dictionary. The word is also highlighted
in the XML document.

• Replace with - The character string which is suggested to replace the unrecognized word.
• Guess - Displays a list of words suggested to replace the unknown word. Double click a word to automatically insert

it in the document and resume the spell checking process.
• Default language - Allows you to select the default dictionary used by the spelling engine.
• Paragraph language - In an XML document you can mix content written in different languages. To tell the spell

checker engine what language was used to write a specific section, you need to set the language code in the lang
or xml:lang attribute to that section. Oxygen automatically detects such sections and instructs the spell checker
engine to apply the appropriate dictionary.

• Replace - Replaces the currently highlighted word in the XML document, with the selected word in the Replace
with field.

• Replace All - Replaces all occurrences of the currently highlighted word in the XML document, with the selected
word in the Replace with field.

Oxygen XML Editor | Text Editor Specific Actions | 629

• Ignore - Ignores the first occurrence of the unrecognized word and allows you to continue checking the document.
Oxygen skips the content of the XML elements marked as ignorable.

• Ignore All - Ignores all instances of the unknown word in the current document.
• Learn - Includes the unrecognized word in the list of valid words.
• Options - Sets the configuration options of the spell checker.
• Begin at caret position - Instructs the spell checker to begin checking the document starting from the current cursor

position.
• Close - Closes the dialog.

Spell Checking Dictionaries

There are two spell checking engines available in Oxygen: Hunspell checker (default setting) and Java checker. You
can set the spell check engine in the Spell checking engine preferences page. The dictionaries used by the two engines
differ in format, so you need to follow specific procedures in order to add another dictionary to your installation of
Oxygen.

Dictionaries for the Hunspell Checker

The Hunspell spell checker is open source and has LGPL license. The format of the Hunspell spell dictionary is supported
by Mozilla, OpenOffice and the Chrome browser. Oxygen comes with the following built-in dictionaries for the Hunspell
checker:

• English (US)
• English (UK)
• French
• German (old orthography)
• German (new orthography)
• Spanish

There is one dictionary for each language-country variant combination. If you cannot find a Hunspell dictionary that is
already built for your language you can build such a dictionary. First you need a list of correct words which you want
to check in your documents. You build a dictionary from this list following these instructions.

Adding a Dictionary for the Hunspell Checker

To add a new spelling dictionary to Oxygen or to replace an existing one you should follow these steps:

1. Download the archive with the files of your language dictionary.

A dictionary has two files with the same name and different extensions: a file with .dic extension and a file with
.aff extension.

2. Copy the .aff and .dic files to the spell subfolder (.spell subfolder on Linux and Mac OS X) of the Oxygen
preferences folder only if it is a new dictionary (it is not available as built-in dictionary in Oxygen).

The Oxygen preferences folder is [APPLICATION-DATA-FOLDER]/com.oxygenxml, where
[APPLICATION-DATA-FOLDER] is:

• C:\Documents and Settings\[LOGIN-USER-NAME]\Application Data on Windows XP
• C:\Users\[LOGIN-USER-NAME]\AppData\Roaming on Windows Vista
• [USER-HOME-FOLDER]/Library/Preferences on Mac OS X
• [USER-HOME-FOLDER] on Linux

3. Copy the .aff and .dic files into the folder [Oxygen-install-folder]/dicts only if it is an existing
dictionary.

4. Restart the application after copying the dictionary files.

630 | Oxygen XML Editor | Text Editor Specific Actions

http://www.suares.an/index.php?page_id=25&news_id=233
http://www.oxygenxml.com/spell_checking.html

Dictionaries for the Java Checker

A Java checker dictionary has the form of a .dar file located in the directory [Oxygen-install-folder]/dicts.
Oxygen comes with the following built-in dictionaries for the Java checker:

• English (US)
• English (UK)
• English (Canada)
• French (France)
• French (Belgium)
• French (Canada)
• French (Switzerland)
• German (old orthography)
• German (new orthography)
• Spanish

A pre-built dictionary can be added by copying the corresponding .dar file to the folder
[Oxygen-install-folder]/dicts and restarting Oxygen. There is one dictionary for each language-country
variant combination. If you cannot find a dictionary that is already built for your language you can build such a dictionary
with the tool available at http://www.xmlmind.com/spellchecker/dictbuilder.shtml.

Learned Words

Spell checker engines rely on dictionary to decide that a word is correctly spelled. To tell the spell checker engine that
an unknown word is actually correctly spelled, you need to add that word to its dictionary. There are two ways to do so:

• press the Learn button from the Spelling dialog;
• invoke the contextual menu on an unknown word, then press Learn word.

Learned words are stored into a persistent dictionary file. Its name is composed of the currently checked language code
and the .tdi extension, for example en_US.tdi. It is located in the folder:

• [user-home-folder]/Application Data/com.oxygenxml/spell folder on Windows XP
• [user-home-folder]/AppData/Roaming/com.oxygenxml/spell folder on Windows Vista
• [user-home-folder]/Library/Preferences/com.oxygenxml/spell folder on Mac OS X
• [user-home-folder]/com.oxygenxml/.spell folder on Linux

To delete items from the list of learned words, press Delete learned words from Spell Check preferences page.

Ignored Words

The content of some XML elements like programlisting, codeblock or screen should always be skipped by
the spell checking process. The skipping can be done manually word by word by the user using the Ignore button of
the Spelling dialog or, more conveniently, automatically by maintaining a set of known element names that should never
be checked. You maintain this set of element names in the user preferences as a list of XPath expressions that match
the elements.

Only a small subset of XPath expressions is supported, that is only the '/' and '//' separators and the '*' wildcard. Two
examples of supported expressions are /a/*/b and //c/d/*.

Automatic Spell Check

To allow Oxygen to automatically check the spelling as you write, you need to enable the Automatic spell check option
from the Spell Check preferences page. Unknown words are highlighted and feature a contextual menu which offers the
following:

• Delete Repeated Word action - allows you to delete repeated words;

Oxygen XML Editor | Text Editor Specific Actions | 631

http://www.xmlmind.com/spellchecker/dictbuilder.shtml

• a list of words suggested by the spell checking engine as possible replacements of the unknown word;
• Learn Word action - allows you to add the current unknown word to the persistent dictionary.

Spell Checking in Multiple Files

The Check Spelling in Files action available from the Edit menu or from the Project contextual menu enables you
to check spelling on multiple documents.

Figure 353: Check Spelling in Files Dialog

The following scopes are available:

• All opened files - Spell check in all opened files.
• Directory of the current file - All the files from the folder of the current edited file.
• Scope of the current DITA Map - All the files referred in the current DITA map opened in the DITA Maps

Manager view.
• Project files - All files from the current project.
• Selected project files - The selected files from the current project.
• Specified path - A custom path.

You can also choose a file filter, decide whether to recurse subdirectories or process hidden files.

The spell checker processor uses the options available in the Spell Check preferences panel .

Changing the Font Size

The font size of the editor panel can be changed with the following actions:

• Document > Font size > Increase editor font (Ctrl + NumPad + +) - Increases the font size with one point for
each execution of the action.

• Document > Font size > Decrease editor font (Ctrl + NumPad + -) - Decreases the font size with one point for
each execution of the action.

• Document > Font size > Normal editor font (Ctrl + 0) - Resets the font size to the value of the editor font set in
Preferences.

632 | Oxygen XML Editor | Text Editor Specific Actions

Word/Line Editor Actions

The Text editor implements the following actions:

• (Ctrl+Delete (Meta+Delete on Mac)) - Deletes the next word.
• (Ctrl+Backspace (Meta+Backspace on Mac)) - Deletes the previous word.
• (Ctrl+W (Meta+W on Mac)) - Cuts the previous word.
• (Ctrl+K (Meta+K on Mac)) - Cuts to end of line.

Dragging and Dropping the Selected Text

To move a whole region of text to other location in the same edited document just select the text, drag the selection by
holding down the left mouse button and drop it to the target location.

Inserting a File at Caret Position

The action from menu Document > File > Insert file... inserts in the current document the content of the file with the
file path at the current position of the caret.

Opening the File at Caret in System Application

The action from menu Document > File > Open File at Caret in System Application opens the filename under the
current position of the caret with the default system application associated with the file.

Opening the File at Caret Position

The action from menu Document > File > Open File at Caret opens in a new panel the file with the file path at the
current position of the caret. If the file does not exist at the specified location the error dialog that is displayed contains
a Create new file button which starts the New document wizard. This allows you to choose the type or the template
for the file. If the action succeeds, the file is created with the referred location and name and is opened in a new editor
panel. This is useful when you decide first on the file name and after that you want to create it in the exact location
specified at the current caret position.

Switching Between Opened Tabs

There are two actions for cycling through the opened file tabs:

• (Ctrl + Tab) - Switches between the tabs with opened files in the order most recent ones first.
• (Ctrl + Shift + Tab) - Switches between the tabs with opened files in the reverse order.

Oxygen XML Editor | Text Editor Specific Actions | 633

Printing a File

Printing is supported in Text, Grid and Author modes of the XML editor panel. The action from menu File > Print
(Ctrl+P) displays the Page Setup dialog used to define the page size and orientation properties for printing.

A Print Preview action is available in the File menu. This allows you to manage the format of the printed document:

Figure 354: Print Preview Dialog

The main window is split in three sections:

• Preview area - Displays the formatted document page as it will appear on printed paper.
• Left stripe - The left-hand side stripe which displays a list of thumbnail pages. Clicking any of them will display

the page in the main preview area.
• Toolbar - The toolbar top area which contains controls for printing, page settings, page navigation, print scaling and

zoom.

634 | Oxygen XML Editor | Text Editor Specific Actions

Exiting the Application

The action from menu File > Exit (Ctrl+Q) terminates Oxygen . Session information such as the current project, open
documents and user preferences is made persistent. When Oxygen is re-opened, this persistent information returns to
the last saved state.

Oxygen XML Editor | Text Editor Specific Actions | 635

Chapter

24

Configuring the Application

This chapter presents all the user preferences that allow you to configure the
application and the editor variables that are available for customizing the user
defined commands.

Topics:

• Importing / Exporting Global
Options

• Preferences
• Sharing Preferences
• Automatically Importing the

Preferences from the Other
Distribution

• Reset Global Options
• Scenarios Management
• Editor Variables
• Configure Toolbars

Importing / Exporting Global Options

In the Options menu you can find the import / export preferences operations which allow you to move your global
preferences in XML format from one computer to another.

Preferences

Once the application is installed you can use the Preferences dialog accessed from menu Options > Preferences to
customize the application settings for your requirements and network environment.

There is a search field available in the dialog for selecting only the preferences panels containing required words in the
panel title or in the text of labels, buttons, tables, etc contained in the panel. If you want to go to first match press
(Enter), (Up Arrow) or (Down Arrow).

Figure 355:The Search field from the Preferences dialog

You can always revert modifications to their default values by pressing the Restore Defaults button, available in each
preference page.

If you don't know how to use a specific preference that is available in any Preferences panel or what effect it will have
you can open a help page about the current panel at any time pressing the help button located in the left bottom
corner of the dialog or pressing the F1 key.

Global

The Global preferences panel is opened from menu Options > Preferences > Global .

638 | Oxygen XML Editor | Configuring the Application

Figure 356:The Global preferences panel

The following user preferences are av available in this panel:

• Automatic Version Checking - When enabled, checks the availability of new Oxygen versions at
http://www.oxygenxml.com .

• Language - The application supports a number of languages for localization of the GUI. Go to menu Options >
Preferences > Global and select the Language drop-down list to display the language choices.

Note: After restarting the application, if some GUI labels are not rendered correctly (for example Chinese or
Korean characters) you will need to install the corresponding language pack from your OS installation kit (for
example the East-Asian language pack).

• Other language - To change the user interface language of Oxygen you must set here the properties file with all the
user interface messages and labels translated to your preferred language. For details about creating this file see the
section describing the creation process. After setting the file you have to restart Oxygen in order to change the user
interface language to your preferred language.

• Look and Feel - Use this option to change graphic style (look and feel) of the GUI.
• Styles - On Windows there are available the following styles:

• Office 2003
• Vsnet
• Eclipse
• Xerto
• Default

Oxygen XML Editor | Configuring the Application | 639

http://www.oxygenxml.com

Note: After changing the style you have to restart the application in order for the modification to take effect.

On Linux there are available the following styles:

• Eclipse
• Default

Note: After changing the style you have to restart the application in order for the modification to take effect.

On Mac OS X this option is not available.

• Themes - On Windows this option is enabled only for the Office 2003 and Default styles. In these cases, the following
themes are available:

• Normal Color
• Home Stead
• Metallic
• Default
• Gray

On Linux and Mac OS X this option is not available.

• Line separator - This option defines the line separator. The System Default choice sets the line separator of the
platform.

• Detect the line separator on file open - When this option is checked the editor will detect the line separator when
the edited file is loaded and it will use it when the file is saved. The new files are saved using the line separator
defined by the Line separator option.

• Default Internet browser - The path to a web browser executable. The browser is used for:

• opening (X)HTML or PDF transformation results
• opening the Oxygen home page
• pointing to specific paragraphs in the W3C recommendation of XML Schema on the W3C website in case of

XML Schema validation errors

• Open last edited files from project - When enabled, Oxygen will open the last edited files from project at start-up.
• Beep on operation finished - If checked, it notifies the user through a beep that an action has ended. It will notify

the user only at the end of validate, check well-formedness and transform actions.
• Show Java vendor warning at startup - Sun Microsystems/Oracle Java VM (on Windows and Linux) or Apple

Computer Java VM (on Mac OS X) is recommended for running Oxygen . If a different VM is used, then a warning
is displayed. This option allows the user to choose whether the warning dialog is shown or not.

• Use custom frameworks directory - For editing different types of XML documents (for content completion,
validation, authoring) Oxygen can use information from the document types which are stored in the frameworks
subfolder of the Oxygen install folder. If a custom frameworks folder is specified then Oxygen will load the
document types from this location.

• Auto update unmodified editors on file system changes - Checked by default. If checked, the synchronization of
the unmodified (not dirty) editors with the system changes is done automatically, without the user's interaction.

• Last visited directory - The dialog for opening files remembers the last visited folder and the next time it starts
directly in this folder.

• Directory of the edited file - The dialog for opening files starts in the folder where the currently edited file is stored.
• Show hidden files and directories - Shows system hidden files and folders in the file browser dialog and the folder

browser dialog. This setting is not available on Mac OS X.

Fonts

The Fonts preferences panel is opened from menu Options > Preferences > Fonts .

640 | Oxygen XML Editor | Configuring the Application

Figure 357:The Fonts preferences panel

The fonts that can be configured in Oxygen are the following:

• Editor - The font family and font size used to display text in the editor. This option affects both the text and grid
page of the editor.

• Author default font - The font family and font size used to display text in Author mode of the XML editor. This
value is used as default in case another one is not specified in the CSS associated with the opened document.

• Schema default font - The font family and font size used for displaying text in:

• the Design mode of the W3C XML Schema editor (the schema diagram);
• images with schema diagram fragments that are included in the HTML documentation generated from an XML

Schema.

• Text antialiasing - Enables text anti-aliasing at the specified level. On JVM versions before 1.6 this combo box
contains only the values Default, On and Off. Default means that Oxygen does not set anything special for text
anti-aliasing but the JVM uses the setting of the operating system, if available. The On option sets the text anti-aliasing
to pixel level and the Off option disables it. Starting with version 1.6 the combo contains also values specific for
sub-pixel anti-aliasing, like GASP, LCD_HRGB, LCD_VRGB which sets the respective anti-aliasing mode for the
text displayed in the Oxygen editors and views.

• Text components - The font family and font size used to display text in text components. After changing the font,
restart the application to see the effect.

• GUI - The font family and font size used to display GUI labels. After changing the font, restart the application to
see the effect.

Document Type Association

The Document Type Association preferences panel is opened from menu Options > Preferences > Document Type
Association .

Oxygen XML Editor | Configuring the Application | 641

Figure 358: Document Type Association preferences panel

The following actions are available in this preferences panel:

• Change framework directory location - Specifies a custom frameworks folder from where Oxygen loads the
document types.

• User roles - Selects between two user roles: Content author and Developer. When the selected role is Content
author, you can modify only the properties of the Document Type Associations stored in the user preferences. The
externally stored associations (that means all the built-in document types) cannot be modified and you must duplicate
them to further customize these associations. The Developer user can change any document type association.

• Document types table - Presents the currently defined document type associations. The columns are:

• Document type - Contains the name of the document type.
• Enabled - When checked, the corresponding document type association is enabled. The association is analyzed

when trying to determine the type of a document opened in Oxygen.
• Storage - Displays the type of location where the framework configuration file is stored.

Note: Please note that if the document type association settings are already stored in a framework file, the
file will be removed and its content will be saved in Oxygen internal options.

When expanding a Document Type Association its defined rules are presented. A rule is described by:

• Namespace - Specifies the namespace of the root element from the association rules set (any by default). If you
want to apply the rule only when the root element is in no namespace, leave this field empty (remove the
ANY_VALUE string).

• Root local name - Specifies the local name of the root element (any by default).
• File name - Specifies the name of the file (any by default).
• Public ID - Represents the Public ID of the matched document.
• Java class - Presents the name of the class which is used to determine if a document matches the rule.

642 | Oxygen XML Editor | Configuring the Application

• New - Opens a dialog that allows you to add a new association. New association is added to top of document type
list.

• Edit - Opens a new dialog allowing you to edit an existing association.
• Delete - Deletes one of the existing association.
• Up - Moves the selected association one level up (the order is important because the first document type association

in the list that matches the document will be used).
• Down - Moves the selected association one level down.
• Enable DTD/XML Schema processing in document type detection - When this option is enabled, the matching

process also examines the DTD/XML Schema associated with the document. For example, the fixed attributes
declared in the DTD for the root element are analyzed also, if this is specified in the association rules.

If you are writing DITA customizations, it is recommended to keep this checkbox enabled. DITA topics and maps
are also matched by looking for the DITAArchVersion attribute in the root element. If the DTD is not processed
on detection, then this attribute specified as default in the DTD will not be detected on the root element and the
DITA customization will not be correctly matched.

This option is enabled by default.

• Only for local DTD's / XML Schemas - When the previous feature is enabled, you can choose with this option to
process only the local DTD's / XML Schemas.

This option is enabled by default.

Perspectives Layout

The Perspectives Layout preferences panel is opened from menu Options > Preferences > Perspectives Layout .

Oxygen has a large number of helper views that can be arranged in different layouts. Use this preferences panel to
configure the layout.

Figure 359:The Perspectives Layout Preferences Panel

The following preferences are available:

• Use default layout - Selected by default. It indicates that the editor must use the default layout for all the perspectives.
Any modification of this layout (for instance closing / showing views or a new view arrangement) is saved when
the program exits and is reloaded at the next start up.

• Use fixed layout - Check this option when you want the editor to always start with a certain layout. Modifications
of the selected layout are lost when the program exits. There are two kinds of fixed layout:

Oxygen XML Editor | Configuring the Application | 643

Predefined - Oxygen has several predefined layouts to choose from, depending on the type of work you intend
to do:

•

• Advanced - All the views are visible.
• Basic - Just the Project view and the Outline view are visible. This is recommended when you edit XML

content and you need screen space.
• Intermediate - The Project, Outline, Attributes and Model views are visible.
• Schema development - The Project, Outline, Attributes, Model views and Schema Components are

visible.
• XQuery development - Only the Project view and the editing area are visible.
• XSLT development - The Project, Outline, Attributes, Model and XSLT Input views are visible.

• Specified - You can choose an existing layout file from disk. In order to create such a file, you can arrange the
views in the desired order and then save it with the action from menu Window > Save layout ...

Encoding

The Encoding preferences panel is opened from menu Options > Preferences > Encoding

Figure 360:The Encoding preferences panel

The encoding preferences are the following:

• Encoding for non XML files - The default encoding to be used when opening non XML documents. This is necessary
because non XML files have a large variety of formats and there is no standard mechanism for declaring the encoding
that should be used for opening and saving the file. In case of XML files the encoding is usually declared at the
beginning of the file in a special declaration or it assumes the default value UTF-8.

• UTF-8 BOM handling - Specifies how to handle the BOM (Byte Order Mark) for UTF-8 XML documents on the
document save action. The UTF-16 BOM is always preserved. In case of UTF-32 documents the BOM is for big
endian.

The available BOM handling policies are:

• Don't Write - Don't write the BOM bytes, the loaded BOM bytes are ignored;
• Write - Write the BOM bytes accordingly with chosen encoding;
• Keep - If the loaded document has BOM then write them accordingly with chosen encoding. This is the default

option.

• Encoding errors handling - This option defines how to handle characters that cannot be represented in the specified
encoding of the document when the document is opened. The available options are:

• REPORT - Shows an error dialog with the character that cannot be represented in the specified encoding and
allows the user to decide how to continue (ignore that character, replace it with a standard replacement character).
This is the default option.

• IGNORE - The character is ignored and it will not be included in the document displayed in the editor panel.
• REPLACE - Replace the character with a standard replacement character. For example if the encoding is UTF-8

the replacement character has the Unicode code FFFD, and if the encoding is ASCII the character code is 63.

644 | Oxygen XML Editor | Configuring the Application

Editor

The Editor preferences panel is opened from menu Options > Preferences > Editor .

Use these options to configure the visual aspect of the text editor.

Figure 361:The Editor Preferences Panel

The following options are available in this panel:

• Selection background color - Background color of selected text.
• Selection foreground color - Text color of selected text.
• Completion proposal background - Background color for the content completion window.
• Completion proposal foreground - Foreground color for the content completion window.
• Documentation window background - Background color for the window containing documentation for the content

completion elements.
• Documentation window foreground - Foreground color for the window containing documentation for the content

completion elements.
• Can edit read only files - Read-only files are marked in Oxygen using a lock icon on the file tab. If this option is

checked, you are able to modify a read-only file, but you cannot overwrite it when trying to save the file. If unchecked,
any modification to the content is prohibited.

• Undo history size - Sets the maximum amount of undo edits which is remembered by the editor in each of the pages
(Text, Author, Design, Grid).

Pages

The Pages preferences panel is opened from menu Options > Preferences > Editor > Pages and allows you to select
the initial page for an editor. The mode in which a file was edited in the previous session is saved and will be used when
the application is restarted and the file reopened.

If the checkbox Allow Document Type specific page setting to override the general page setting is checked the
initial page setting from the Document Type dialog will override the initial page setting from the table that is explained
below.

The initial page of each editor type has one of the following values:

• Text
• Author
• Grid

Oxygen XML Editor | Configuring the Application | 645

• Design (available only for the W3C XML Schema editor)

The Oxygen Pages Preferences Panel

Text

The Author preferences panel is opened from menu Options > Preferences > Editor > Pages > Text .

The Oxygen Text Preferences Panel

The following preferences are available:

• Editor background color - Background color of the editor and also of the Diff Files' editors.
• Editor caret color - Customize the caret color.
• Line number foreground - Foreground color for the line numbers displayed at the left of editor panel.
• Line wrap - Enable soft wrap of long lines, that is automatically wrap lines in edited documents without inserting

newline characters in the file.
• Show fold bar - Enables the display of the document folding bar.

646 | Oxygen XML Editor | Configuring the Application

• Highlight current line - Enables highlight for the current line. Use the button to set the highlight color.
• Highlight matching tag - Enables highlight for the tag matching the one on which the caret is situated. Use the

button to set the color of the highlight.
• Show print margin - If the current content is printed with the File > Print action, this action enables displaying

a vertical line in the editor panel representing the paper margin. Use the button to set the color of the print margin
line.

• Print margin column - The number of characters included on a line which the print format allows.
• Show line numbers in editor - Enables the line numbers column located in the left part of the editing space. When

unchecked, line numbers option is disabled.
• Show line numbers in results - Enables the line numbers column located in the left part of the results panel in the

Debugger perspective.
• Show TAB/NBSP/EOL/EOF marks - Marks the TAB/NBSP/EOL/EOF using small icons, for a better visualization

of the document. Also set the marks color.
• Display quick assist notification icon - Displays the Quick Assist yellow bulb icon in the editor line number stripe.
• Cut / Copy whole line when nothing is selected - Enables the Cut / Copy shortcut keys when nothing is selected

in the editor. The Cut / Copy actions operate on the entire current line.

Text / Diagram

If operation is slow for very large schemas disabling the schema diagram view will improve the speed of navigation
through the edited schema.

The Diagram preferences panel is opened from menu Options > Preferences > Editor > Pages > Text / Diagram .

Figure 362: Schema Diagram Preferences Panel

• Show Full Model XML Schema diagram - If this option is enabled the old synchronized version of the schema
diagram will be available in the Text page for XML Schemas. For editing in the schema diagram, you can use the
new schema diagram editor page.

• Enable Relax NG diagram and related views - If this option is disabled the schema diagram for Relax NG will
not be generated and displayed, also the related views that present the schema components are not populated with
data. In case you need the related views to be active, you can let this option checked and uncheck the following one.

• Show Relax NG diagram - If this option is disabled the schema diagram for Relax NG schemas will not be generated
and displayed.

• Enable NVDL diagram and related views - If this option is disabled the schema diagram for NVDL will not be
generated and displayed, also the related views that present the schema components are not populated with data. In
case you need the related views to be active, you can let this option checked and uncheck the following one.

• Show NVDL diagram - If this option is disabled the schema diagram for NVDL schemas will not be generated and
displayed.

Oxygen XML Editor | Configuring the Application | 647

• Location relative to editor - The location of the diagram panel in the editing area can be: North, East, South, West.
For example North means that the diagram panel takes the North part of the editing area and the text editor panel
takes the rest of the editing area.

Grid

The Grid preferences panel is opened from menu Options > Preferences > Editor > Pages > Grid .

Figure 363:The Grid Editor Preferences Panel

The following preferences are available for Grid mode of the XML editor:

• Compact representation - If checked a child element is displayed at the same height level with the parent element.
If unchecked a child elements is presented nested with one level in the parent container, that is lower than the parent
with one row.

• Format and indent when passing from grid to text or on save - The content of the document is formatted by
applying the Format and Indent action on every switch from the grid editor to the text editor of the same document.

• Default column width (characters) - The default width in characters of a table column of the grid. A column can
hold an element name and its text content, an attribute name and its value. If the total width of the grid structure is
too large you can resize any column with the mouse but the change is not persistent. To make it persistent set the
new column width in this user option.

• Current selection color - Background color used in the focused selected cell of the grid to make it different in the
set of selected cells. For example when an entire row is selected only one cell of the row is the focused selected one.

• Selection color - Background color used in the selected cells of the grid except the focused selected cell which uses
a different background color.

• Border color - The color used for the lines that separate the grid cells.
• Background color - The background color of grid cells that are not selected.
• Foreground color - The color of the text used for the element names, text content of elements, attribute names and

attribute values.
• Row header colors - Background color - The background color of row headers that are not selected.
• Row header colors - Current selection color - The background color of the row header that is currently selected

and has the focus.

648 | Oxygen XML Editor | Configuring the Application

• Row header colors - Selection color - The background color of the row header that is currently selected and does
not have the focus.

• Column header colors - Background color - The background color of column headers that are not selected.
• Column header colors - Current selection color - The background color of the column header that is currently

selected and has the focus.
• Column header colors - Selection color - The background color of the column header that is currently selected and

does not have the focus.

The column headers are painted with two color gradients, one for the upper 1/3 part of the header and the other for the
lower 2/3 part. The start and end colors of the first gradient are set with the first two color buttons. The start and end
colors of the second gradient are set with the last two color buttons.

Author

The Author preferences panel is opened from menu Options > Preferences > Pages > Editor > Author .

The Oxygen Author Preferences Panel

• Show caret position tooltip - If checked, the position information tooltip is displayed. More information about the
position information tooltip can be found in the section Position information tooltip. The documentation tooltip can
be disabled from the Content Completion Annotations preferences panel.

• Show placeholders for empty elements - When checked, placeholders are displayed for empty elements to make
them clearly visible.

• Show Author layout messages - If checked, all errors reported during layout creation is presented in the Errors
view.

• Show block range - If checked, a block range indicator is shown in a stripe located in the left side of the editor.
• Hide comments - When checked, comments from the documents edited in Author mode are hidden.
• Hide processing instructions - When checked, processing instructions from the documents edited in Author mode

are hidden.
• Hide doctype - When checked, doctype sections from the documents edited in Author mode are hidden.

Oxygen XML Editor | Configuring the Application | 649

• Show very large images - If unchecked, images larger than 6 megapixels (24MB uncompressed) are not loaded and
displayed in Author mode. Please be aware that this option is unchecked by default because of the large amounts of
application memory that images of high resolution can occupy. As a result, an OutOfMemory error could occur
which would practically make Oxygen unusable without a restart of the entire application.

• Display referred content (for example entities, XInclude, DITA conref, etc.) - When checked, the references
(entities, XInclude, DITA conref, etc) also display the content of the resources they refer.

• Highlight elements near caret - Background color of the element or elements at cursor position.
• Format and indent - Here you can set the method of format and indent that is applied when a document is saved

in Author mode:

• Only the modified content - The save operation formats only the nodes that were modified in Author mode.
• The entire document - The save operation applies formatting to the entire document regardless of the nodes

that were modified in Author mode. If the checkbox Apply also the 'Text' page 'Format and Indent' action
is selected, the content of the document is formatted by applying the Format and Indent action on every switch
from the Author editor to the Text editor of the same document.

• Quick up / down navigation - Speeds up navigation between blocks when using up / down keys. The cursor stops
on the next / previous line.

• Tags display mode - Default display mode for element tags presented in Author mode. You can choose between:

• Full Tags with Attributes
• Full Tags
• Block Tags
• Inline Tags
• Partial Tags
• No Tags

• Tags background color - Allows you to configure the Author tags background color.
• Tags foreground color - Allows you to configure the Author tags foreground color.

Schema Aware

The Schema Aware preferences panel is opened from menu Options > Preferences > Editor > Pages > Author >
Schema aware .

The Oxygen Schema Aware Preferences Panel

650 | Oxygen XML Editor | Configuring the Application

• Schema aware normalization, format and indent - When opening a document in Author, white spaces can be
normalized or removed in order to obtain a more compact display. The reverse process takes place when saving the
document in the Author. By default this algorithm is controlled by the CSS display property.

If this option is checked then this process will be schema aware so the algorithm will take into account if the element
is declared as element-only or mixed. It will also take into account options Preserve space elements, Default space
elements, Mixed content elements from option page Options > Preferences > Editor > Format > XML

• Indent blocks-only content - If checked, even if an element is declared in the schema as being mixed but it has a
blocks-only content (as specified by the CSS property display of its children), it will be treated as being
element-only.

• Schema Aware Editing - Editing in Author will take into account the schema.

• On - Enables all schema aware editing options.
• Off - Disables all schema aware editing options.
• Custom -

• Delete element tags with backspace and delete - Controls the behaviour for deleting element tags using
delete or backspace keys. Available options:

• Smart delete - If the result of the delete action is invalid, different strategies will be applied in order to
keep the document valid. If backspace / delete is pressed at the beginning / end of an element the action
that should take place is unwrap (the element will be deleted and its content will be put in its place). If its
content is not accepted by the schema in that position, you can keep a valid document by applying different
strategies like:

• Search for a preceding (backspace case)/following (delete case) element in which you can append that
content.

• If the tag markers of the element to unwrap are not visible a caret move action in the delete action
direction will be performed.

Oxygen XML Editor | Configuring the Application | 651

• Reject action when its result is invalid - If checked and the result of the delete action is invalid, the
action will not be performed.

• Paste and Drag and Drop - Controls the behavior for paste and drag and drop actions. Available options:

• Smart paste and drag and drop - If the content inserted by a paste or drop action is not valid at the caret
position, according to the schema, different strategies are applied to find an appropriate insert position:

• If the sibling element can accept the content, then a new element with the same name as the sibling is
created in which the content will be inserted.

• You will iterate to the left or to the right of the insertion position, without leaving the current context,
and try to insert the fragment in one of the encountered elements (that accepts the content to be inserted).

• Reject action when its result is invalid - If checked and the result of the paste or drop action is invalid,
the action will not be performed.

• Typing - Controls the behaviour that takes place when typing. Available options:

• Smart typing - If the typed character cannot be inserted at element from the caret position then a sibling
element that can accept it will be searched for. If the sibling element can accept the content, then a new
element with the same name as the sibling is created in which the content will be inserted.

• Reject action when its result is invalid - If checked and the result of the typing action is invalid, the
action will not be performed.

• Content Completion - Controls the behaviour that takes place when inserting elements using content
completion. Available options:

• Allow only insertion of valid elements and attributes - If checked, only elements or attributes form the
content completion proposals list can be inserted in the document through content completion.

• Warn on invalid content when performing action - A warning message will be displayed when performing
an action that will result in invalid content. Available options:

• Delete Element Tags - If checked, when the Delete Element Tags action will result in an invalid content,
a warning message will be displayed in which the user is asked if the operation should continue.

• Join Elements - If checked, when the Join Elements action will result in an invalid content, a warning
message will be displayed in which the user is asked if the operation should continue.

• Convert external content on paste - when checked, Oxygen preserves the formatting style when you paste content
copied from external applications (like web browsers or Office-like applications). This option is enabled by default
and applies only to the major document type frameworks (DocBook, DITA, TEI, XHTML).

If the Schema Aware Editing is On or Custom all actions that can generate invalid content will be forwarded first toward
AuthorSchemaAwareEditingHandler.

Review

The Author Review preferences panel is opened from menu Options > Preferences > Editor > Pages > Author >
Review .

652 | Oxygen XML Editor | Configuring the Application

Figure 364:The Oxygen Review Preferences Panel

The available preferences are:

• Author - The name of the user who performs the changes when Track Changes is active for a given editor. This
information will be associated with each performed change.

• Initial Track Changes State - Controls the initial Track Changes state.

• Stored in document - Recommended when multiple editors work on the same set of documents because the
state of Track Changes (enabled/disabled) is kept in the edited document. When you open such a document and
the Store in document option is active, a processing instruction saved in the document decides to enable or
disable the Track Changes. When this option is enabled and you open a document in Oxygen Author, the Track
Changes state is restored from the previous use of the document. This means that if another user edited the
document with Track Changes turned on before sending it to you, you will also have Track Changes switched
on when you open it in Oxygen Author.

• Always On - The Track Changes is active every time you open a document.
• Always Off - The Track Changes is inactive every time you open a document.

Note: Initial Track Changes State options do not affect documents already open in Oxygen Author.

• Inserted content color -

• Auto - Automatically assign colors for the insert changes based on the author name.
• Custom - Use a custom color for all insert changes, regardless of the author name.
• Use same color for text foreground - Use the same color to paint the inserted text foreground.
• Use same color for background - Use the same color for the insert text background with a certain transparency.

• Deleted content color -

• Auto - Automatically assign colors for the delete changes based on the author name.
• Custom - Use a custom color for all delete changes, regardless of the author name.
• Use same color for text foreground - Use the same color to paint the deleted text foreground.

Oxygen XML Editor | Configuring the Application | 653

• Use same color for background - Use the same color for the delete text background with a certain transparency.

• Commented content color -

• Auto - Automatically assign colors for the commented content based on the author name.
• Custom - Use a custom color for all commented content, regardless of the author name.

Profiling / Conditional Text

The Author Review preferences panel is opened from menu Options > Preferences > Editor > Pages > Author >
Profiling/Conditional Text .

Figure 365: Profiling / Conditional Text Preferences Panel

Here you can define, edit, delete new profiling attributes and profiling condition sets.

MathML

The MathML editor of Author mode has the following configurable parameters:

654 | Oxygen XML Editor | Configuring the Application

Figure 366: Author MathML editor preferences panel

• Equation minimum font size - The minimum size of the font used for rendering mathematical symbols.
• MathFlow installation directory - The installation folder where Oxygen will find and load MathFlow Components

(the MathFlow SDK).
• MathFlow license file - The license for MathFlow Components (the MathFlow SDK).
• MathFlow preferred editor - A MathML formula can be edited in one of three editors of MathFlow Components

(MathFlow SDK): structure editor, style editor and simple editor. More documentation is available on the website
of MathFlow SDK.

Messages

Figure 367:The Author's Messages preferences panel

The following preferences are applied to the warning or notification messages that Author mode displays for the content
author:

• When opening a map - Specifies the default behavior when trying to open a map. You can choose between:

• Always open in the DITA Map Manager - A DITA map file will be opened always in the DITA Maps Manager
view without asking a confirmation from the user.

• Always open as XML - A DITA map file will be opened always in the XML editor panel without asking a
confirmation from the user.

• Always ask - Author mode will always ask the user where he wants to open a DITA map file.

Schema Design

The Schema Design editor preferences panel is opened from menu Options > Preferences > Editor > Pages > Schema
Design

Oxygen XML Editor | Configuring the Application | 655

http://www.dessci.com/en/products/mathflow/

Figure 368:The Schema Design Preferences panel

The preferences for the XML Schema diagram are the following:

• Show additional attributes in the diagram - If checked the symbols for elements will include also properties like
the name of the referred element (in case of a reference symbol), the base type, etc.

• Show annotation in the diagram - The content of xs:documentation elements is displayed only if this option
is checked.

• When trying to edit components from another schema - Specifies the default behavior when you try to edit a
component from an imported schema. You can choose between:

• Always go to its definition - Edits the component definition in the imported file.
• Never go to its definition - Edits the component definition in the current file.
• Always ask - The user is always asked where he wants to edit the component definition.

• Zoom - A zoom factor for the schema components. The range of possible values is from 25% to 300%. A custom
zoom factor can be typed too.

Properties

You can decide to show additional properties for XML Schema components in the diagram and customize the properties
to be displayed for each schema component.

656 | Oxygen XML Editor | Configuring the Application

Figure 369:The Schema Properties Preferences Panel

For a component's properties you can decide if you want to display them only when having a specified value or all the
time.

Format

The Format preferences panel is opened from menu Options > Preferences > Editor > Format .

Figure 370:The Format Preferences Panel

Oxygen XML Editor | Configuring the Application | 657

The formatting preferences are the following:

• Detect indent on open - The editor tries to detect the indent settings of the opened XML document. In this way you
can correctly format (pretty-print) files that were created with different settings, without changing your options.
More than that you can activate the advanced option for detecting the maximum line width to be used for formatting
and hard wrap. These features were designed to minimize the differences created by the pretty print operation when
working with a versioning system, like CVS for example.

• Indent with tabs - When checked enables Indent with tabs to set the indent to a tab unit. When unchecked, the
indent will measure as many spaces as needed in order to go to the next tab stop position. The maximum number of
space characters is defined by the Indent size option.

• Indent size - Sets the number of spaces or the tab size that will equal a single indent. The indent can be spaces or a
tab, selected by the preference Indent with tabs. For example if set to 4 one tab will equal 4 white spaces or 1 tab
with size of 4 characters depending on the value of the Indent with tabs option.

• Hard line wrap - This feature saves time when writing an XML document with long lines. You can set a limit for
the length of the lines in your document. When this limit is exceeded the editor will insert a new line before the word
that breaks the limit, and indent the next line. This will minimize the need of reformatting the document.

• Indent on Enter - If checked, it indents the new line introduced when pressing Enter.
• Enable Smart Enter - If checked, it inserts a new indented line between start and end tag when Enter is pressed.
• Detect line width on open - If checked, it detects the line width automatically when the document is opened.
• Format and indent the document on open - When checked, an XML document will be formatted and indented

before opening it in the editor panel. This option applies only to documents associated with the XML editor, not to
documents associated with the XSD editor, RNG editor or XSL editor. This option does not apply on read-only
documents when the Can edit read only files option is disabled.

• Line width - Format and Indent - Defines the point at which the Format and Indent (pretty-print) function will
perform hard line wrapping. So if set to 100 pretty-print will wrap lines at the 100th space inclusive of white spaces,
tags and elements.

• Clear undo buffer before Format and Indent - If checked, you cannot undo anymore editing actions that preceded
the Format and Indent operation. Only modifications performed after you have performed the operation can be
undone. Check this option if you encounter out of memory problems (OutOfMemoryError) when performing the
Format and Indent operation.

XML

The XML Format preferences panel is opened from menu Options > Preferences > Editor > Format > XML .

658 | Oxygen XML Editor | Configuring the Application

Figure 371:The XML Format Preferences Panel

The formatting preferences specific for XML files are the following:

• Preserve empty lines - When checked, the Format and Indent operation preserves all empty lines found in the
document on which the pretty-print operation is applied.

• Preserve text as it is - If checked, the Format and Indent operation preserves text nodes as they are without
removing or adding any whitespace.

• Preserve line breaks in attributes - If checked, the Format and Indent operation preserves the line breaks found
in attributes. When this option is checked, Break long lines option is automatically disabled.

• Break long attributes - If checked, the Format and Indent operation breaks long attributes.
• Indent inline elements - If checked, the inline elements are broken and indented on separate lines if there are white

spaces to the left and they follow another element start or end tag. Inline elements are elements which appear in a
mixed-content context (parents with both non-whitespace text and elements). Example:

Original XML:

<root>
 text <parent> <child></child> </parent>
</root>

Indent inline elements enabled:

<root> text <parent>
 <child/>
 </parent>
</root>

Oxygen XML Editor | Configuring the Application | 659

Indent inline elements disabled:

<root> text <parent> <child/> </parent> </root>

• Expand empty elements - When checked, the Format and Indent operation outputs empty elements with a separate
closing tag, ex. <a atr1="v1">. When not checked, the same operation represents an empty element in a more
compact form: <a atr1="v1"/>.

• Sort attributes - When checked, the Format and Indent operation sorts the attributes of an element alphabetically.
When not checked, the same operation leaves them in the same order as before applying the operation.

• Add space before slash in empty elements - Inserts a space character before the trailing / and > of empty elements.

Note: When formatting XHTML files, Oxygen always inserts a space character before the trailing / and > of
empty elements.

• Break line before attribute name - If checked, the Format and Indent operation breaks the line before the attribute
name.

• Preserve space elements (XPath) - This list contains simplified XPath expressions for the names of the elements
for which the contained white spaces like blanks, tabs and newlines are preserved by the Format and Indent
operation. The allowed XPath expressions are of the form:

• elementName

• //elementName

• /elementName1/elementName2/elementName3

• //xs:localName

The namespace prefixes like xs in the previous example are treated as part of the element name without taking into
account its binding to a namespace.

• Default space elements (XPath) - This list contains the names of the elements for which contiguous white spaces
like blanks, tabs, and newlines are merged by the Format and Indent operation into one blank.

• Mixed content elements (XPath) - The elements from this list are treated as mixed when applying the Format and
Indent operation, meaning that the operation breaks the line only when whitespaces are encountered.

• Schema aware format and indent - When checked, the Format and Indent operation takes into account the schema
information regarding the space preserve, mixed, or element only property of an element.

• Indent (when typing) in preserve space elements - If checked, automatic tags indentation while editing takes place
for all elements including the ones that are excluded from Format and Indent (default behavior). When unchecked,
indentation while editing does not take place in elements that have the xml:space attribute set on preserve or
are added to the list of Preserve space elements.

• Indent on paste - Indent paste text corresponding to the indent settings set by the user. This is useful for keeping
the indent style of text copied from other document.

• Locks / Unlocks the XML tags - The default state of the opened editors. For more information see the Locking and
Unlocking XML markup section.

Whitespaces

This panel displays the special whitespace characters of Unicode. Any character that is checked in this panel is considered
whitespace that can be normalized in an XML document. The whitespaces are normalized by the following actions:

• when the action Format and Indent is applied on an XML document
• when you switch from Text mode to Author mode
• when you switch from Author mode to Text mode

The characters with the codes 9, 10, 13 and 32 are always in the group of whitespace characters that must be normalized
so they are always enabled in this panel.

660 | Oxygen XML Editor | Configuring the Application

Figure 372:The Whitespaces Preferences Panel

CSS

The CSS Format preferences panel is opened from menu Options > Preferences > Editor > Format > CSS .

Figure 373:The CSS format preferences panel

The CSS formatting preferences are the following:

• Indent class content - If checked, the class content is indented during a Format and Indent operation. Enabled by
default.

• Class body on new line - If checked, the class body (including the curly brackets) are placed on a new line after a
Format and Indent operation.

• Add new line between classes - If checked, an empty line is added between two classes after a Format and Indent
operation is performed.

• Preserve empty lines - If checked, the empty lines from the CSS content are preserved during the execution of a
Format and Indent operation. Enabled by default.

• Allow formatting embedded CSS - If checked, the CSS content embedded in XML is formatted when the XML
content is formatted by the Format and Indent operation. Enabled by default.

Oxygen XML Editor | Configuring the Application | 661

JavaScript

The JavaScript format preferences panel is opened from menu Options > Preferences > Editor > Format > JavaScript
.

Figure 374:The JavaScript Format Preferences Panel

The JavaScript formatting preferences are the following:

• Start curly brace on new line - If true, opening curly braces will start on a new line. Otherwise they will remain
on the same line as previous content of the JavaScript file.

• Preserve empty lines - If true, empty lines in the JavaScript code will be preserved.
• Allow formatting embedded JavaScript - Applied only to XHTML documents, this option allows the application

to format embedded JavaScript code, taking precedence over the Schema aware format and indent option.

Content Completion

The content completion feature enables inline syntax lookup and auto completion of mark-up elements and attributes
to streamline mark-up and reduce errors while editing. These settings define the operating mode of the content assistant.

The Content Completion preferences panel is opened from menu Options > Preferences > Editor > Content
Completion .

Figure 375:The Content Completion Preferences Panel

The configurable content completion preferences are the following:

662 | Oxygen XML Editor | Configuring the Application

• Auto close the last opened tag - If the Use Content Completion option is not checked but this option is checked,
Oxygen will close the last opened tag when </ is typed.

• Automatically rename matching tag - If checked, Oxygen will automatically rename the matching end tag when
the start tag is modified in the editor.

• Use Content Completion - When unchecked, all content completion features are disabled.
• Close the inserted element - When inserting elements from the content completion assistant, both start and end tags

are inserted.
• If it has no matching tag - When checked, the end tag of the inserted element will be automatically added only if

it is not already present in the document.
• Add element content - When checked, Oxygen will insert automatically the required elements from the DTD or

XML Schema or RELAX NG schema. This option is applied also in the Author mode of the XML editor.
• Add optional content - When checked, Oxygen will insert automatically the optional elements from the DTD or

XML Schema or RELAX NG schema. This option is applied also in the Author mode of the XML editor.
• Add first Choice particle - When checked, Oxygen will insert automatically the first choice particle from the DTD

or XML Schema or RELAX NG schema that is associated with the edited XML document. This option is applied
also in the Author mode of the XML editor.

• Case sensitive search - When checked, the search in the content completion window when you type a character is
case sensitive ('a' and 'A' are different characters). This option is applied also in the Author mode of the XML editor.

• Cursor position between tags - When checked, Oxygen will set the cursor automatically between tags. If the
auto-inserted elements have attributes that are not required, the position of cursor can be forced between tags instead
of inside the start tag.

• Show all entities - When checked, Oxygen will display a list with all the internal and external entities declared in
the current document when the user types the start character of an entity reference (i.e. &).

• Insert the required attributes - When checked, Oxygen will insert automatically the required attributes from the
DTD or XML Schema for an element inserted with the help of the content completion assistant. This option is applied
also in the Author mode of the XML editor.

• Insert the fixed attributes - When checked, Oxygen will insert automatically any FIXED attributes from the DTD
or XML Schema for an element inserted with the help of the content completion assistant. This option is applied
also in the Author mode of the XML editor.

• Show recently used items - When checked, Oxygen will remember the last inserted items from the content completion
window. The number of items to be remembered is limited by the Maximum number of recent items shown combo
box. These most frequently used items are displayed on the top of the content completion window and are separated
from the rest of the suggestions by a thin grey line. This option is applied also in the Author mode of the XML editor.

• Maximum number of recent items shown - Limits the number of recently used items presented at the top of the
content completion window. This option is applied also in the Author mode of the XML editor.

• Learn attributes values - When checked, Oxygen will display a list with all attributes values learned from the
current document. This option is applied also in the Author mode of the XML editor.

• Learn on open document - When checked, Oxygen will automatically learn the document structure when the
document is opened. This option is applied also in the Author mode of the XML editor.

• Learn words (Dynamic Abbreviations, available on CTRL+SPACE) - When checked, Oxygen will automatically
learn the typed words and will make them available in a content completion fashion by pressing (CTRL+SPACE).

Note: In order to be learned, the words need to be separated by space characters.

• Activation delay of the proposals window (ms) - Delay in milliseconds from last key press until the content
completion window is displayed.

Annotations

The Annotations preferences panel is opened from menu Options > Preferences > Editor > Content Completion >
Annotations .

Oxygen XML Editor | Configuring the Application | 663

Figure 376:The Content Completion Annotations Preferences Panel

The following preferences can be configured for the annotations of the elements and attributes displayed by the content
completion assistant:

• Show annotations - When checked, Oxygen will display the schema annotations that are present in the used schema
for the current element, attribute or attribute value from the content completion window. This option is applied also
in the Author mode of the XML editor.

• Show annotations as tooltip - When checked, it shows the annotation of an elements and attributes as a tooltip
when the mouse pointer hovers over that element or attribute in the XML editor panel or in the Elements view (both
the Text editing mode one and the Author editing mode one). This option is applied also in the Author mode of the
XML editor.

• Use DTD comments as annotation - When checked, Oxygen will use all DTD comments as annotation. If it is not
checked the following decision is performed: if among the gathered comments there are special Oxygen doc:
comments, only those will be presented. If not, all encountered comments will be presented.

• Use all Relax NG annotations as documentation - When checked, any element that is not from the Relax NG
namespace, that is http://relaxng.org/ns/structure/1.0 will be considered annotation and will be
displayed in the annotation window next to the content completion window and in the Model view. When unchecked
only elements from the Relax NG annotations namespace, that is
http://relaxng.org/ns/compatibility/annotations/1.0 will be considered annotation.

XSL

The XSL preferences panel defines what elements are suggested by the content assistant of the XSL editor in addition
to the XSL elements. It is opened from menu Options > Preferences > Editor > Content Completion > XSL .

Figure 377:The Content Completion XSL Preferences Panel

You can choose to automatically detect if the XSL should use the XHTML or FO schemas for content completion based
on the namespaces declared on the root element. If the detection fails, the following options will apply:

• None - The content completion will offer only the XSL elements.

664 | Oxygen XML Editor | Configuring the Application

• XHTML transitional - Includes XHTML Transitional elements as substitutes for xsl:element.
• Formating objects - Includes Formating Objects elements as substitutes for xsl:element.
• Other - Includes elements from a DTD, XML Schema, RNG schema or NVDL schema for inserting elements from

the target language of the stylesheet.

You can choose an additional schema which will be used for documenting XSL stylesheets. Either select the built-in
schema or choose a custom one. Supported schemas types are: XSD, RNG, RNC, DTD and NDVL.

XPath

The XPath preferences panel is opened from menu Options > Preferences > Editor > Content Completion > XPath
.

Figure 378:The Content Completion XPath Preferences Panel

The preferences that allow configuring the content completion in the XPath expressions are the following:

• Enable content completion for XPath expressions - Disables and enables content completion in XPath expressions
entered in the XSL attributes match, select and test and also in the XPath toolbar. Options are available to
control if the XPath functions, XSLT functions and XSLT axes are presented in the content completion list when
editing XPath expressions.

• Show signatures of XSLT / XPath functions - If checked, the editor will indicate in a tooltip helper the signature
of the XPath function located at the caret position. See the XPath Tooltip Helper section for more information.

• Function signature window background - The background color of the tooltip window.
• Function signature window foreground - The foreground color of the tooltip window.

XSD

These preferences define what elements are suggested by the content assistant, in addition to the ones from the XML
Schema schema, inside the xs:annotation/xs:appinfo elements of an XML Schema.

The XSD preferences panel is opened from menu Options > Preferences > Editor > Content Completion > XSD .

Figure 379:The Content Completion XSD Preferences Panel

The following preferences are available for the content completion in XML Schema files:

Oxygen XML Editor | Configuring the Application | 665

• None - The content completion will offer only the XML Schema schema information.
• ISO Schematron - Includes ISO Schematron elements in xs:appinfo.
• Schematron 1.5 - Includes Schematron 1.5 elements in xs:appinfo.
• Other - Includes in xs:appinfo elements from an XML Schema specified from a URL.

Colors

Oxygen supports syntax highlight for XML, DTD, Relax NG (XML and Compact Syntax), Java, JavaScript, PHP,CSS,
XQuery, C++, C, Perl, Properties, SQL, Shell and Batch documents. While Oxygen provides a default color configuration
for highlighting the tokens, you may choose to customize it, as required, using the Colors preferences panel.

The Colors preferences panel is opened from menu Options > Preferences > Editor > Colors > Syntax Highlight .

Figure 380:The Colors Preferences Panel

For each document type there is a set of tokens. When a document type node is expanded, the associated tokens are
listed. For each token the color and the font style that is configured here will be used in Text mode of the editor panel.
The tokens for XML documents are used also in XSD, XSL, RNG documents so the Preview area has 4 tabs when an
XML token is selected in the Element area : XML, XSD, XSL, RNG.

When you don't know the name of the token that you want to configure just select a token by clicking directly on that
type of token in the Preview area.

You can edit the following color properties of the selected token:

• Foreground color - The Foreground button opens a color dialog that allow setting the color properties for the
selected token with one of the methods: Swatches, HSB or RGB.

666 | Oxygen XML Editor | Configuring the Application

Swatches - Displays a color palette containing a variety of colors from across the color spectrum and shades
thereof. Select a color.

•

• HSB - Hue, Saturation and Brightness (HSB) enables you to specify a color by describing it using hue, saturation
and brightness.

• RGB - Red, Green and Blue (RGB) enables you to specify a color using triplets of red, green and blue numbers.

• Background color - The Background button opens the same color dialog as the Foreground button.
• Bold style - This checkbox enables the bold variant of the font for the selected token. This property is not applied

to a bidirectional document.
• Italic style - This checkbox enables the italic variant of the font for the selected token. This property is not applied

to a bidirectional document.

The Preview panel displays the appearance of all token colors in a sample document as they will be rendered in the
editor.

Modifications are saved when the OK button is clicked. The Restore Defaults button changes all the token colors to
the default values.

Elements / Attributes by Prefix

The Elements / Attributes by Prefix preferences panel is opened from menu Options > Preferences > Editor > Colors
> Elements / Attributes by Prefix .

Figure 381:The Elements / Attributes by Prefix Preferences Panel

One row of the table contains the association between a namespace prefix and the properties to mark start tags and end
tags or attribute names in that prefix. Note that the marking mechanism does not look at the namespace bound to that
prefix. If the prefix is bound to different namespaces in different XML elements of the same file all the tags and attribute
names with the prefix will be marked with the same color.

You can edit the following color properties of the selected token:

• Foreground color - The Foreground button opens a color dialog that allow setting the color properties for the
selected token with one of the methods: Swatches, HSB or RGB.

• Swatches - Displays a color palette containing a variety of colors from across the color spectrum and shades
thereof. Select a color.

• HSB - Hue, Saturation and Brightness (HSB) enables you to specify a color by describing it using hue, saturation
and brightness.

• RGB - Red, Green and Blue (RGB) enables you to specify a color using triplets of red, green and blue numbers.

• Background color - The Background button opens the same color dialog as the Foreground button.

Oxygen XML Editor | Configuring the Application | 667

You can choose that only the prefix is displayed with the selected color by checking the Draw only the prefix with a
separate color option.

Open / Save

The Open / Save preferences panel is opened from menu Options > Preferences > Editor > Open / Save .

Figure 382:The Open / Save Preferences Panel

The preferences related with opening and saving documents are the following:

• Format document when longest line exceeds - Specifies the default behavior when the longest line of a document
exceeds the specified limit. This option does not apply on read-only documents when the Can edit read only files
option is disabled. You can choose between:

• Always format - Runs the action Format and Indent on a document with very long lines when opening it
without notification for the user.

• Never format - Never modifies a document with very long lines on opening it.
• Always ask - Asks the user if he wants to run the action Format and Indent on every open of a document with

very long lines.

• Characters limit for bidirectional text documents - Specifies the characters limit for bidirectional text documents.
If the total number of characters found in a document exceeds this limit, the bidirectional support is disabled.

668 | Oxygen XML Editor | Configuring the Application

• Make backup copy on save (only for local files) - If checked, a backup copy is made when saving the edited
document. The default extension is .bak, but you can change extension as you prefer. The option of making a
backup copy on save is available only for local files (files that are stored on the local file system).

• Enable automatic save - Automatic save is a useful feature that ensures your work is being saved in the background.
You can specify the time intervals between automatic saves.

• Automatic save interval (minutes) - Selects the interval in minutes between two automatic save actions.
• Save all files before transformation or validation - Saves all opened files before validating or transforming an

XML document. In this way the dependencies are resolved, for example when modifying both the XML document
and its XML Schema.

• Check errors on save - If checked, a checking for errors is done when saving the edited document.
• Save all files before calling external tools - If checked, all files are saved before executing an external tool.
• Optimize loading in the Text page for files over (MB) - File loading is optimized for reduced memory usage for

any file with a size larger than this value. This optimization is useful for being able to load and edit very large files
(hundreds of MB) and it comes with a few restrictions on memory-intensive operations.

• Show warning when loading large documents - A warning dialog is displayed when you try to load a very large
file.

• Optimize loading for documents with lines longer than (Characters) - Line wrap is turned on for a document
containing lines that exceed the length specified with this option. For a list of the restrictions applied to a document
with long lines please see the Editing Documents with Long Lines section.

• Show warning when loading documents with long lines - If checked, a warning dialog is displayed when you try
to open a file that contains at least one line that exceeds the maximum line length specified in the previous option.
The warning dialog informs you that line wrapping is turned on and some of the editing features are disabled. Another
option is to format and indent the document after it is opened in the editor panel. For a list of the restrictions applied
to a document with long lines please see the section about formatting documents with long lines.

• Clear undo buffer on save - If checked, you cannot undo anymore editing actions that preceded the save operation.
Only modifications made after you have saved the document can be undone. Check this option if you encounter
frequent out of memory problems (OutOfMemoryError) when performing modifications on very large documents.

• Consider application bundles to be directories when browsing - This option is available only on the Mac OS X
platform. When checked the file browser dialog allows browsing inside an application bundle as in a regular folder.
When unchecked the file browser dialog does not allow browsing inside an application bundle, as the Finder application
does on Mac OS X. The same effect can be obtained by setting the property apple.awt.use-file-dialog-packages to
true or false in the Info.plist descriptor file of the Oxygen application by adding two lines in this descriptor
file:

<key>apple.awt.use-file-dialog-packages</key>
<string>false</string>

Templates

This panel groups the preferences that are related with code templates and document templates:

• Code Templates
• Document Templates

Code Templates

Code templates are small document fragments that can be inserted quickly at the editing position and can be reused in
other editing sessions. Oxygen comes with a large set of ready-to use templates for XSL, XQuery and XML Schema.
You can even share your code templates with your colleagues using the template export and import functions.

To obtain the template list, you use:

• The shortcut key for content completion on request: (Ctrl+Space) on Windows and Linux, (Cmd+Space) on Mac
OS X. It displays the code templates in the same content completion window with elements from the schema of the
document.

Oxygen XML Editor | Configuring the Application | 669

• The shortcut key for code templates on request: (Ctrl+Shift+Space) on Windows and Linux, (Cmd+Shift+Space)
on Mac OS X. It displays only the code templates in the popup window.

The Code Templates preferences panel is opened from menu Options > Preferences > Editor > Templates > Code
Templates . It contains a list with all available code templates (both built-in and custom created ones) and a code preview
area. You can disable any code template by unchecking its corresponding option box.

Figure 383:The Code Templates Preferences Panel

• New - Defines a new code template. You can define a code template for a specific type of editor or for all editor
types.

• Edit - Edits the selected code template.
• Duplicate - Duplicates the code template that is selected in the list.
• Delete - Deletes the code template that is selected in the list. This action is disabled for the built-in code templates.
• Import - Imports a file with code templates that was created by the Export action.
• Export - Exports a file with code templates.

Document Templates

The list of document templates that are displayed in the New dialog can be extended with custom templates that are
specified in the Document Templates preferences panel. You have to add the template files in a folder that is specified
in this panel or in the templates folder of the Oxygen install directory.

The Document Templates preferences panel is opened from menu Options > Preferences > Editor > Templates >
Document Templates .

670 | Oxygen XML Editor | Configuring the Application

Figure 384: Document Templates Preferences Panel

A new template folder is added with the New button which opens the following dialog:

Figure 385: Document Templates Input Dialog

Spell Check

The Spell Check preferences panel is opened from menu Options > Preferences > Editor > Spell Check .

Oxygen XML Editor | Configuring the Application | 671

Figure 386:The Spell Check Preferences Panel

The spell check preferences are the following:

• Automatic Spell Check - When checked, the spell checker highlights the errors as you modify the document.
• Spell check highlight color - Use this option to set the color for highlighting the spell check errors.
• Spell checking engine - The engines available are Hunspell and AZ Check. Each engine has a specific format of

spelling dictionaries. The languages of the built-in dictionaries of the selected engine are listed in the Default
language combo box.

• Default language - The default language combo allows you to choose the language used by default. If the language
of your documents is not listed in this combo box you can add a spelling dictionary for your language which will
be added to this list.

• Delete learned words - Press this button to open the list of learned words. Here you can select the items you want
to remove.

• Use "lang" and "xml:lang" attributes - If checked, the contents of any element with such an attribute will be
checked using a dictionary for the language specified in the attribute value if this dictionary is available. When these
attributes are missing the language used is controlled by the two radio buttons: Use the default language or Do not
check.

• XML spell checking in - These options allow the user to specify if the spell checker will be enabled inside XML
comments, attribute values, text and CDATA sections.

• Case sensitive - When checked, spell checking reports capitalization errors, for example a word that starts with
lowercase after etc. or i.e..

• Ignore mixed case words - When checked, operations do not check words containing case mixing (e.g. SpellChecker).
• Ignore words with digits - When checked, the spell checker does not check words containing digits (e.g. b2b).
• Ignore Duplicates - When checked, the spell checker does not signal two successive identical words as an error.

672 | Oxygen XML Editor | Configuring the Application

• Ignore URL - When checked, ignores words looking like URL or file names (e.g. www.oxygenxml.com or c:\boot.ini)
.

• Check punctuation - When checked, punctuation checking is enabled: misplaced white space and wrong sequences,
like a dot following a comma, are highlighted as errors.

• Allow compounds words - When checked, all words formed by concatenating two legal words with an hyphen are
accepted. If the language allows it, two words concatenated without hyphen are also accepted.

• Allow general prefixes - When checked, a word formed by concatenating a registered prefix and a legal word is
accepted. For example if mini- is a registered prefix, the checker accepts mini-computer.

• Allow file extensions - When checked, accepts any word ending with registered file extensions (e.g. myfile.txt,
index.html, etc.).

• Ignore acronyms - When checked, the acronyms are not reported as errors.
• Ignore elements - A list of XPath expressions for the elements that will be ignored by spell checking. Only a small

subset of XPath expressions are supported, that is:

• only the '/' and '//' separators
• the '*' wildcard

An example of allowed XPath expression: /a/*/b.

Document Checking

The Document Checking preferences panel is opened from menu Options > Preferences > Editor > Document
Checking . It contains preferences for configuring how a document is checker for errors, that is well-formed errors and
validation errors.

Figure 387: Document Checking Preferences Panel

The error checking preferences are the following:

• Maximum number of validation highlights - If validation generates more errors than the number from this option
only the first errors up to this number are highlighted in editor panel and on stripe that is displayed at right side of
editor panel. This option is applied both for automatic validation and manual validation.

• Validation error highlight color - The color used to highlight validation errors in the document.
• Validation warning highlight color - The color used to highlight validation warnings in the document.
• Validation success color - The color used to highlight in the vertical ruler bar the success of the validation operation.
• Always show validation status - If this option is selected the line at the bottom of the editor panel which presents

the current validation error or warning is always visible. This is useful to avoid scrolling problems when Automatic
validation is enabled and the vertical scroll bar may change position due to displaying an error message while the
document is edited.

• Enable automatic validation - Validation of edited document is executed in background as the document is modified
by editing in Oxygen.

• Delay after the last key event (s) - The period of keyboard inactivity which starts a new validation (in seconds).

Oxygen XML Editor | Configuring the Application | 673

Mark Occurrences

The Mark Occurrences preferences panel is opened from menu Options > Preferences > Editor > Mark Occurrences
:

Figure 388: Mark Occurrences Preferences Page

The following preferences can be set:

• XSLT files - activates the Highlight Component Occurrences in XSLT files;
• XML Schema files - activates the Highlight Component Occurrences in XSD files;
• Declaration highlight color - color used to highlight the component declaration;
• Reference highlight color - color used to highlight component references.

Custom Validation Engines

The Custom Validation Engines preferences panel is opened from menu Options > Preferences > Editor > Custom
Validations .

Figure 389: Custom Validation Preferences Panel

If you want to add a new custom validation tool or edit the properties of an exiting one you can use the Custom Validator
dialog displayed by pressing the New button or the Edit button.

674 | Oxygen XML Editor | Configuring the Application

Figure 390: Edit a Custom Validator

The configurable parameters of a custom validator are the following:

• Name - Name of the custom validation tool displayed in the Custom Validation Engines toolbar.
• Executable path - Path to the executable file of the custom validation tool. You can insert here editor variables like

${home}, ${pd}, ${oxygenInstallDir}, etc.
• Working directory - The working directory of the custom validation tool. The following editor variables can be

used in this field:

• ${home} - The path to the user home directory.
• ${pd} - The current project directory.
• ${oxygenInstallDir} - The Oxygen installation directory.

• Associated editors - The editors which can perform validation with the external tool: the XML editor, the XSL
editor, the XSD editor, etc.

• Command line arguments for detected schemas - Command line arguments used in the commands that validate
the current edited file against different types of schema: W3C XML Schema, Relax NG full syntax, Relax NG
compact syntax, NVDL, Schematron, DTD, etc.. The arguments can include any custom switch (like -rng) and the
following editor variables:

• ${cf} - The path of the current file as a local file path.
• ${cfu} - The path of the current file as a URL.
• ${ds} - The path of the detected schema as a local file path.
• ${dsu} - The path of the detected schema as a URL.

CSS Validator

The CSS Validator preferences panel is opened from menu Options > Preferences > CSS Validator .

Oxygen XML Editor | Configuring the Application | 675

Figure 391:The CSS Validator Preferences Panel

The following options can be configured for Oxygen's built-in CSS validator:

• Profile - Selects one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3, SVG, SVG Basic, SVG
Tiny, Mobile, TV Profile, ATSC TV Profile.

• Media Type - Selects one of the available mediums: all, aural, braille, embossed, hand-held, print, projection, screen.
• Warning Level - Sets the minimum severity level for reported validation warnings. It is one of: all, normal, most

important, no warnings.

XML

This section describes the panels that contain the user preferences related with XML.

XML Catalog

The XML Catalog preferences panel is opened from menu Options > Preferences > XML > XML Catalog .

Figure 392:The XML Catalog Preferences Panel

The Prefer option is used to specify if Oxygen will try to resolve first the PUBLIC or SYSTEM reference from the
DOCTYPE declaration of the XML document. If PUBLIC is preferred and a PUBLIC reference is not mapped in any
of the XML catalogs then a SYSTEM reference is looked up.

676 | Oxygen XML Editor | Configuring the Application

When using catalogs it is sometimes useful to see what catalog files are parsed, if they are valid or not, and what identifiers
are resolved by the catalogs. The Verbosity option selects the detail level of such logging messages of the XML catalog
resolver that will be displayed in the Catalogs view at the bottom of the window:

• None - No message is displayed by the catalog resolver when it tries to resolve a URI reference, a SYSTEM one or
a PUBLIC one with the XML catalogs specified in this panel.

• Unresolved entities - Only the logging messages that track the failed attempts to resolve references are displayed.
• All messages - The messages of both failed attempts and successful ones are displayed.

If the Process namespaces through URI mappings for XML Schema option is not selected only the schema location
of an XML Schema that is declared in an XML document is searched in XML catalogs. If the option is selected the
schema location of an XML Schema is searched and if it is not resolved the namespace of the schema is also searched.

If the Use default catalog option is checked the first XML catalog which Oxygen will use to resolve references at
document validation and transformation will be a default built-in catalog. This catalog maps such references to the
built-in local copies of the schemas of the Oxygen frameworks: DocBook, DITA, TEI, XHTML, SVG, etc.

You can also add or configure catalogs at framework level in the Document Type Association preferences page.

When you add, delete or edit an XML catalog to / from the list you must reopen the current edited files which use the
modified catalog or run the action Reset Cache and Validate so that the XML catalog changes take full effect.

XML Parser

The XML Parser preferences panel is opened from menu Options > Preferences > XML > XML Parser .

Figure 393:The XML Parser preferences panel

The configurable options of the built-in XML parser are the following:

Oxygen XML Editor | Configuring the Application | 677

• http://apache.org/xml/features/validation/schema-full-checking - Sets the schema-full-checking feature to true,
that is a validation of the parsed XML document is performed against a schema (W3C XML Schema or DTD) while
the document is parsed.

• http://apache.org/xml/features/honour-all-schema-location - Sets the honour-all-schema-location feature to true.
This means all the files that declare W3C XML Schema components from the same namespace are used to compose
the validation model. If this option is not selected only the first W3C XML Schema file that is encountered in the
XML Schema import tree is taken into account.

• Ignore the DTD for validation if a schema is specified - Forces validation against a referred schema (W3C XML
Schema, Relax NG schema, Schematron schema) even if the document includes also a DTD DOCTYPE declaration.
This option is useful when the DTD declaration is used only to declare DTD entities and the schema reference is
used for validation against a W3C XML Schema, a Relax NG schema or a Schematron schema.

• Enable XInclude processing - Enables XInclude processing. If checked, the XInclude support in Oxygen is turned
on for validation, rendering in Author mode and transformation of XML documents.

• Base URI fix-up - According to the specification for XInclude, processors must add an xml:base attribute to
elements included from locations with a different base URI. Without these attributes, the resulting infoset information
would be incorrect.

Unfortunately, these attributes make XInclude processing not transparent to Schema validation. One solution to this
is to modify your schema to allow xml:base attributes to appear on elements that might be included from different
base URIs.

If the addition of xml:base and / or xml:lang is undesired by your application, you can disable base URI fix-up.

• Language fix-up - The processor will preserve language information on a top-level included element by adding an
xml:lang attribute if its include parent has a different [language] property. If the addition of xml:lang is undesired
by your application, you can disable the language fix-up.

• Check ID/IDREF - Checks the ID/IDREF matches when the Relax NG document is validated.
• Check feasibly valid - Checks the Relax NG to be feasibly valid when this document is validated.
• Schematron XPath Version - Selects the version of XPath for the expressions that are allowed in Schematron

assertion tests: 1.0 or 2.0. This option is applied both in standalone Schematron schemas and in embedded Schematron
rules, both in Schematron 1.5 and in ISO Schematron.

• Optimize (visit-no-attributes) - If your ISO Schematron assertion tests do not contain the attributes axis you should
check this option for faster ISO Schematron validation.

• Allow foreign elements (allow-foreign) - Enables support for allow-foreign on ISO Schematron. This option
is used to pass non-Schematron elements to the generated stylesheet.

• Use Saxon EE (schema aware) for xslt2 query binding - If checked, Saxon EE will be used for xslt2 query
binding. If not checked, Saxon PE will be used instead.

Saxon EE Validation

The Saxon EE Validation preferences panel is opened from menu Options > Preferences > XML > XML Parser >
Saxon EE Validation .

The following options are available:

• XML Schema version - allows you to select the version of W3C XML Schema for validation against XML Schema
performed by the Saxon EE engine: XML Schema 1.0 or XML Schema 2.0.

• XML Schema validation - you can set Oxygen to use Saxon EE as default XML Schema validator. If enabled it is
used to validate XML Schema and XML documents against an XML Schema. By default this option is turned off.

678 | Oxygen XML Editor | Configuring the Application

Figure 394:The Saxon EE Validation Preferences Panel

XML Instances Generator

The XML Instances Generator preferences panel is opened from menu Options > Preferences > XML > XML
Instances Generator . It sets the default parameters of the Generate Sample XML Files tool that is available on the
Tools menu.

Figure 395:The XML Instances Generator Preferences Panel

The options of the tool that generates XML instance documents based on a W3C XML Schema are the following:

• Generate optional elements - If checked, the elements declared optional in the schema will be generated in the
XML instance.

• Generate optional attributes - If checked, the attributes declared optional in the schema will be generated in the
XML instance.

• Values of elements and attributes - Specifies what values are generated in elements and attributes of the XML
instance. It can have one of the values:

• None - no values for the generated elements and attributes
• Default - the value is the element name or attribute name
• Random - a random value

• Preferred number of repetitions - The number of repetitions for an element that has a big value of the maxOccurs
attribute.

• Maximum recursivity level - For recursive type definitions this parameter specifies the number of levels of recursive
elements inserted in the parent element with the same name.

Oxygen XML Editor | Configuring the Application | 679

• Choice strategy - For choice element models specifies what choice will be generated in the XML instance:

• First - the first choice is selected from the choice definition and an instance of that choice is generated in the
XML instance document.

• Random - a random choice is selected from the choice definition and an instance of that will be generated.

• Generate the other options as comments - If checked, the other options of the choice element model (the options
which are not selected) will be generated inside an XML comment in the XML instance.

• Use incremental attribute / element names as default - If checked, the value of an element or attribute starts with
the name of that element or attribute. For example for an a element the generated values will be: a1, a2, a3, etc.
If not checked, the value is the name of the type of that element / attribute, for example: string, decimal, etc.

• Maximum length - The maximum length of string values generated for elements and attributes.
• Discard optional elements after nested level - The optional elements that exceed the specified nested level are

discarded. This option is useful for limiting deeply nested element definitions that can quickly result in huge XML
documents.

XProc Engines

Oxygen comes with a built-in XProc engine called Calabash. An external XProc engine can be configured in this panel.

Figure 396:The XProc Preferences Panel

When Show XProc messages is selected all messages emitted by the XProc processor during a transformation will be
presented in the results view.

For an external engine the value of the Name field will be displayed in the XProc transformation scenario and in the
command line that will start it.

680 | Oxygen XML Editor | Configuring the Application

Figure 397: Creating an XProc external engine

Other parameters that can be set for an XProc external engine are the following: , and the error stream of the engine,
the working directory of the command that will start the engine. The encodings will be used for reading and displaying
the output of the engine. The working directory and

• a textual description that will appear as tooltip where the XProc engine will be used
• the encoding for the output stream of the XProc engine, used for reading and displaying the output messages
• the encoding for the error stream of the XProc engine, used for reading and displaying the messages from the error

stream
• the working directory for resolving relative paths
• the command line that will run the XProc engine as an external process; the command line can use built-in editor

variables and custom editor variables for parameterizing a file path.

XSLT/FO/XQuery

The XSLT/FO/XQuery preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery
. This panel contains only the most generic options for working with XSLT / XSL-FO / XQuery processors. The more
specific options are grouped in other panels linked as child nodes of this panel in the tree of the Preferences dialog.

Figure 398:The XSLT/FO/XQuery Preferences Panel

There is only one generic option available:

Create transformation temporary files in system temporary directory - It should be selected only when the temporary
files necessary for performing transformations are created in the same folder as the source of the transformation (the
default behavior, when this option is not selected) and this breaks the transformation. An example of breaking the
transformation is when the transformation processes all the files located in the same folder as the source of the

Oxygen XML Editor | Configuring the Application | 681

transformation, which will include the temporary files, and the result is incorrect or the transformation fails due to this
fact.

XSLT

The XSLT preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery > XSLT .

Figure 399:The XSLT Preferences Panel

If you want to use an XSLT transformer implemented in Java different than the ones that ship with Oxygen namely
Apache Xalan and Saxon all you have to do is to specify the name of the transformer's factory class which Oxygen will
set as the value of the Java property javax.xml.transform.TransformerFactory. For instance, to perform
an XSLT transformation with Saxon 9.3.0.5 you have to place the Saxon 9.3.0.5 jar file in the Oxygen libraries folder
(the lib subfolder of the Oxygen installation folder), set net.sf.saxon.TransformerFactoryImpl as the
property value and select JAXP as the XSLT processor in the transformation scenario associated to the transformed
XML document.

The XSLT preferences are the following:

• Value - Allows the user to enter the name of the transformer factory Java class.
• XSLT 1.0 Validate with - Allows the user to set the XSLT engine used for validation of XSLT 1.0 documents.
• XSLT 2.0 Validate with - Allows the user to set the XSLT Engine used for validation of XSLT 2.0 documents.

Saxon6

The Saxon 6 preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery > XSLT
> Saxon > Saxon 6 .

Figure 400:The Saxon 6 XSLT Preferences Panel

The built-in Saxon 6 XSLT processor can be configured with the following options:

• Line numbering - If checked, line numbers are maintained and reported in error messages for the XML source
document.

• Disable calls on extension functions - If checked, external functions called is disallowed. Checking this is
recommended in an environment where untrusted stylesheets may be executed. Also disables user-defined extension
elements, together with the writing of multiple output files, all of which carry similar security risks.

682 | Oxygen XML Editor | Configuring the Application

• Handling of recoverable stylesheet errors - Allows the user to choose how dynamic errors will be handled. Either
one of the following options can be selected:

• recover silently - continue processing without reporting the error,
• recover with warnings - issue a warning but continue processing,
• signal the error and do not attempt recovery - issue an error and stop processing.

Saxon HE/PE/EE

The Saxon HE/PE/EE preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery
> XSLT > Saxon > Saxon HE/PE/EE .

Figure 401:The Saxon HE/PE/EE XSLT preferences panel

The XSLT options which can be configured for the Saxon 9.3.0.5 transformer (all three editions: Home Edition,
Professional Edition, Enterprise Edition) are the following:

• Use a configuration file ("-config") - Sets a Saxon 9 configuration file that will be used for XSLT transformation
and validation.

• Version warnings ("-versmsg") - Warns you when the transformation is applied to an XSLT 1.0 stylesheet.
• Line numbering ("-l") - Error line number is included in the output messages.
• Debugger trace into XPath expressions (applies to debugging sessions) - Instructs the XSLT Debugger to step

into XPath expressions.
• DTD validation of the source ("-dtd") - The following options are available:

• On, requests DTD-based validation of the source file and of any files read using the document() function;
• Off (default setting) suppresses DTD validation.
• Recover, performs DTD validation but treats the error as non-fatal if it fails

Note that any external DTD is likely to be read even if not used for validation, because DTDs can contain definitions
of entities.

• Recoverable errors ("-warnings") - Policy for handling recoverable errors in the stylesheet: Allows you to choose
how dynamic errors are handled. Either one of the following options can be selected:

Oxygen XML Editor | Configuring the Application | 683

Recover silently ("silent") ;•
• Recover with warnings ("recover") . Default setting;
• Signal the error and do not attempt recovery ("fatal").

• Strip whitespaces ("-strip") - Strip whitespaces feature can be one of the following three options:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless
of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the source document.

• Ignorable ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes
in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or
schema as having element-only content.

• None ("none") - Default setting. Strips no whitespace before further processing. However, whitespace will still
be stripped if this is specified in the stylesheet using xsl:strip-space.

• Optimization level ("-opt") - Set optimization level. The value is an integer in the range 0 (no optimization) to 10
(full optimization); currently all values other than 0 result in full optimization but this is likely to change in future.
The default is full optimization; this feature allows optimization to be suppressed in cases where reducing compile
time is important, or where optimization gets in the way of debugging, or causes extension functions with side-effects
to behave unpredictably. (Note however, that even with no optimization, lazy evaluation may still cause the evaluation
order to be not as expected.)

• Allow calls on extension functions ("-ext") - If checked, the stylesheet is allowed to call external Java functions.
This does not affect calls on integrated extension functions, including Saxon and EXSLT extension functions. This
option is useful when loading an untrusted stylesheet, perhaps from a remote site using an http:// URL; it ensures
that the stylesheet cannot call arbitrary Java methods and thereby gain privileged access to resources on your machine.

• Validation of the source file ("-val") - Requests schema-based validation of the source file and of any files read
using the document() or similar functions. Validation is available only with Saxon-EE, and this flag automatically
switches on the -sa option. Available options:

• Schema validation ("strict") - This mode requires an XML Schema and determines whether source documents
should be parsed with schema-validation enabled.

• Lax schema validation ("lax") - This mode determines whether source documents should be parsed with
schema-validation enabled if an XML Schema is provided.

• Disable schema validation - This determines whether source documents should be parsed with schema-validation
disabled.

• Validation errors in the results tree treated as warnings ("-outval") - Normally, if validation of result documents
is requested, a validation error is fatal. Enabling this option causes such validation failures to be treated as warnings.

• Write comments for non-fatal validation errors of the result document - The validation messages are written
(where possible) as a comment in the result document itself.

Saxon HE/PE/EE Advanced

The Saxon HE/PE/EE Advanced preferences panel is opened from menu Options > Preferences > XML >
XSLT/FO/XQuery > XSLT > Saxon > Saxon HE/PE/EE > Advanced .

Figure 402:The Saxon HE/PE/EE XSLT Advanced Preferences Panel

There are some advanced XSLT options which can be configured for the Saxon 9.3.0.5 transformer (all three editions:
Home Edition, Professional Edition, Enterprise Edition):

684 | Oxygen XML Editor | Configuring the Application

• URI Resolver class name ("-r") - Allows the user to specify a custom implementation for the URI resolver used
by the XSLT Saxon 9.3.0.5 transformer (the -r option when run from the command line). The class name must be
fully specified and the corresponding jar or class extension must be configured from the dialog for configuring the
XSLT extension for the particular transformation scenario.

• Collection URI Resolver class name ("-cr") - Allows the user to specify a custom implementation for the Collection
URI resolver used by the XSLT Saxon 9.3.0.5 transformer (the -cr option when run from the command line). The
class name must be fully specified and the corresponding jar or class extension must be configured from the dialog
for configuring the XSLT extension for the particular transformation scenario.

XSLTProc

The XSLTProc preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery > XSLT
> XSLTProc .

Figure 403:The XSLTProc Preferences Panel

The options of the XSLTProc processor are the same as the ones available in the command line:

• Enable XInclude processing - If checked, XInclude references will be resolved when XSLTProc is used as transformer
in XSLT transformation scenarios.

• Skip loading the document's DTD - If checked, the DTD specified in the DOCTYPE declaration will not be loaded.
• Do not apply default attributes from document's DTD - If checked, the default attributes declared in the DTD

and not specified in the document are not included in the transformed document.
• Do not use Internet to fetch DTD's, entities or docs - If checked, the remote references to DTD's and entities are

not followed.
• Maximum depth in templates stack - If this limit of maximum templates depth is reached the transformation ends

with an error.
• Verbosity - If checked, the transformation will output detailed status messages about the transformation process in

the Warnings view.
• Show version of libxml and libxslt used - If checked, Oxygen will display in the Warnings view the version of

the libxml and libxslt libraries invoked by XSLTProc.
• Show time information - If checked, the Warnings view will display the time necessary for running the

transformation.

Oxygen XML Editor | Configuring the Application | 685

• Show debug information - If checked, the Warnings view will display debug information about what templates
are matched, parameter values, etc.

• Show all documents loaded during processing - If checked, Oxygen will display in the Warnings view the URL
of all the files loaded during transformation.

• Show profile information - If checked, Oxygen will display in the Warnings view a table with all the matched
templates, and for each template will display: the match XPath expression, the template name, the number of template
modes, the number of calls, the execution time.

• Show the list of registered extensions - If checked, Oxygen will display in the Warnings view a list with all the
registered extension functions, extension elements and extension modules.

• Refuses to write to any file or resource - If checked, the XSLTProc processor will not write any part of the
transformation result to an external file on disk. If such an operation is requested by the processed XSLT stylesheet
the transformation ends with a runtime error.

• Refuses to create directories - If checked, the XSLTProc processor will not create any directory during the
transformation process. If such an operation is requested by the processed XSLT stylesheet the transformation ends
with a runtime error.

MSXML

The MSXML preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery > XSLT
> MSXML .

Figure 404:The MSXML Preferences Panel

The options of the MSXML 3.0 and 4.0 processors are the same as the ones available in the command line for the
MSXML processors:

• Validate documents during parse phase - If checked and either the source or stylesheet document has a DTD or
schema against which its content can be checked, validation is performed.

• Do not resolve external definitions during parse phase - By default, MSXSL instructs the parser to resolve external
definitions such as document type definition (DTD), external subsets or external entity references when parsing the
source and style sheet documents. If this option is checked the resolution is disabled.

• Strip non-significant whitespaces - If checked, strips non-significant white space from the input XML document
during the load phase. Enabling this option can lower memory usage and improve transformation performance while,
in most cases, creating equivalent output.

• Show time information - If checked, the relative speed of various transformation steps can be measured:

• the time to load, parse, and build the input document
• the time to load, parse, and build the stylesheet document
• the time to compile the stylesheet in preparation for the transformation
• the time to execute the stylesheet

• Start transformation in this mode - Although stylesheet execution usually begins in the empty mode, this default
may be changed by specifying another mode. Changing the start mode allows execution to jump directly to an
alternate group of templates.

686 | Oxygen XML Editor | Configuring the Application

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp

MSXML.NET

The MSXML.NET preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery >
XSLT > MSXML.NET .

Figure 405:The MSXML.NET Preferences Panel

The options of the MSXML.NET processor are the same as the ones available in the command line for the MSXML.NET
processor:

• Enable XInclude processing - If checked, XInclude references will be resolved when MSXML.NET is used as
transformer in the XSLT transformation scenario.

• Validate documents during parse phase - If checked and either the source or stylesheet document has a DTD or
schema against which its content can be checked, validation is performed.

• Do not resolve external definitions during parse phase - By default MSXML.NET resolves external definitions
such as DTD external subsets or external entity references when parsing source XML document and stylesheet
document. Using this option you can disable this behaviour. Note, that it may affect also the validation process for
the XML document.

• Strip non-significant whitespaces - If checked, strips non-significant white space from the input XML document
during the load phase. Enabling this option can lower memory usage and improve transformation performance while,
in most cases, creating equivalent output.

• Show time information - If checked, the relative speed of various transformation steps can be measured:

• the time to load, parse, and build the input document
• the time to load, parse, and build the stylesheet document
• the time to compile the stylesheet in preparation for the transformation
• the time to execute the stylesheet

• Forces ASCII output encoding - There is a known problem with .NET 1.X XSLT processor
(System.Xml.Xsl.XslTransform class): it doesn't support escaping of characters as XML character references
when they cannot be represented in the output encoding. That means that when you output a character that cannot
be represented in output encoding, it will be outputted as '?'. Usually this happens when output encoding is set to
ASCII. With this option checked the output is forced to be ASCII encoded and all non-ASCII characters get escaped
as XML character references (&#nnnn; form).

Oxygen XML Editor | Configuring the Application | 687

http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx

• Allow multiple output documents - This option allows to create multiple result documents using the
exsl:document extension element.

• Use named URI resolver class - This option allows to specify a custom URI resolver class to resolve URI references
in xsl:import and xsl:include instructions (during XSLT stylesheet loading phase) and in document()
function (during XSL transformation phase).

• Assembly file name for URI resolver class - The previous option specifies partially or fully qualified URI resolver
class name, e.g. Acme.Resolvers.CacheResolver. Such name requires additional assembly specification
using this option or the next option, but fully qualified class name (which always includes an assembly specifier) is
all-sufficient. See MSDN for more info about fully qualified class names. This option specifies a file name of the
assembly, where the specified resolver class can be found.

• Assembly GAC name for URI resolver class - This option specifies partially or fully qualified name of the assembly
in the global assembly cache (GAC), where the specified resolver class can be found. See MSDN for more info
about partial assembly names. Also see the previous option.

• List of extension object class names - This option allows to specify extension object classes, whose public methods
then can be used as extension functions in an XSLT stylesheet. It is a comma-separated list of namespace-qualified
extension object class names. Each class name must be bound to a namespace URI using prefixes as when providing
XSLT parameters.

• Use specified EXSLT assembly - MSXML.NET supports a rich library of the EXSLT and EXSLT.NET extension
functions embedded or in a plugged in EXSLT.NET library. EXSLT support is enabled by default and cannot be
disabled in this version. If you want to use an external EXSLT.NET implementation instead of a built-in one use
this option.

• Credential loading source xml - This option allows to specify user credentials to be used when loading XML source
documents. The credentials should be provided in the username:password@domain format (all parts are optional).

• Credential loading stylesheet - This option allows to specify user credentials to be used when loading XSLT
stylesheet documents. The credentials should be provided in the username:password@domain format (all parts are
optional).

XQuery

The XQuery preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery > XQuery
.

Figure 406:The XQuery Preferences Panel

The generic XQuery preferences are the following:

• XQuery validate with - Allows you to select the processor to validate the XQuery. In case you are validating an
XQuery file that has an associated validation scenario, Oxygen uses the processor specified in the scenario. If no
validation scenario is associated, but the file has an associated transformation scenario, the processor specified in
the scenario will be used. If the processor does not support validation or if no scenario is associated, then the value
from this combo box will be used as validation processor

• Size limit of Sequence view (MB) - When the result of an XQuery transformation is set in the transformation
scenario as sequence the size of one chunk of the result that is fetched from the database in lazy mode in one step
is set in this option. If this limit is exceed you can extract more data from the database by a click on the More result
available node from the Sequence view.

• Format transformer output - When checked the transformer's output is formatted and indented (pretty printed).
The option is ignored if in the transformation scenario you choose Sequence (lazy extract data from a database).

688 | Oxygen XML Editor | Configuring the Application

http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.exslt.org/
http://www.xmllab.net/exslt

• Create structure indicating the type nodes - If checked, Oxygen takes the results of a query and creates an XML
document containing copies of all items in the sequence, suitably wrapped. The option is ignored if in the
transformation scenario you choose Sequence (lazy extract data from a database).

Saxon HE/PE/EE

The Saxon HE/PE/EE preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery
> XQuery > Saxon HE/PE/EE .

Figure 407:The Saxon XQuery Preferences panel

The XQuery preferences for the Saxon 9.3.0.5 are the following:

• Use a configuration file ("-config") - Sets a Saxon 9 configuration file that will be used for XQuery transformation
and validation.

• Handling of recoverable stylesheet errors - Allows the user to choose how dynamic errors will be handled. Either
one of the following options can be selected:

• recover silently - continue processing without reporting the error,
• recover with warnings - issue a warning but continue processing,
• signal the error and do not attempt recovery - issue an error and stop processing.

• Strip whitespaces - Can have one of the following three values:

• All - Strips all whitespace text nodes from source documents before any further processing, regardless of any
xml:space attributes in the source document.

• Ignore - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless
of any xml:space attributes in the source document. Whitespace text nodes are ignorable if they appear in
elements defined in the DTD or schema as having element-only content.

• None - Strips no whitespace before further processing.

• Optimization level - This option allows optimization to be suppressed in cases where reducing compile time is
important, or where optimization gets in the way of debugging, or causes extension functions with side-effects to
behave unpredictably.

The Saxon 9.3.0.5 Professional Edition options are the following:

Oxygen XML Editor | Configuring the Application | 689

• Disable calls on extension functions - If unchecked, external functions calls is allowed. Checking this is recommended
in an environment where untrusted stylesheets may be executed. Also disables user-defined extension elements,
together with the writing of multiple output files, all of which carry similar security risks.

The Saxon 9.3.0.5 Enterprise Edition specific options are the following:

• Validation of the source - This determines whether XML source documents should be parsed with schema-validation
enabled.

• Validation errors in the results tree treated as warnings - Available only for Saxon EE. If checked, all validation
errors are treated as warnings, otherwise they are treated as fatal.

• Enable XQuery 1.1 support - If it is checked Saxon EE runs the XQuery transformation with the XQuery 1.1
support.

• Backup files updated by XQuery ("-backup:(on|off)") - If checked, a backup version is generated for any XML
files that is updated with XQuery Update.

Saxon HE/PE/EE Advanced

The Saxon HE/PE/EE Advanced preferences panel is opened from menu Options > Preferences > XML >
XSLT/FO/XQuery > XQuery > Saxon HE/PE/EE > Advanced .

Figure 408:The Saxon HE/PE/EE XQuery Advanced Preferences Panel

The advanced XQuery options which can be configured for the Saxon 9.3.0.5 XQuery transformer (all editions: Home
Edition, Professional Edition, Enterprise Edition) are the following:

• URI Resolver class name - Allows the user to specify a custom implementation for the URI resolver used by the
XQuery Saxon 9.3.0.5 transformer (the -r option when run from the command line). The class name must be fully
specified and the corresponding jar or class extension must be configured from the dialog for configuring the XQuery
extension for the particular transformation scenario.

• Collection URI Resolver class name - Allows the user to specify a custom implementation for the Collection URI
resolver used by the XQuery Saxon 9.3.0.5 transformer (the -cr option when run from the command line). The class
name must be fully specified and the corresponding jar or class extension must be configured from the dialog for
configuring the XQuery extension for the particular transformation scenario.

Debugger

This section explains the settings available for the Debugger perspective. The settings are available from menu Options
> Preferences > XML > XSLT/FO/XQuery > Debugger .

Figure 409:The Debugger Preferences Panel

690 | Oxygen XML Editor | Configuring the Application

The debugger preferences are the following:

• Show xsl:result-document output - If checked, the debugger presents the output of xsl:result-document
instructions into the debugger output view.

• Infinite loop detection - Set this option to receive notifications when an infinite loop occurs during transformation.
• Maximum depth in templates stack - Sets how many xsl:template instructions can appear on the current

stack. This setting is used by the infinite loop detection.
• Debugger layout - A horizontal layout means that the stack of XML editors takes the left half of the editing area

and the stack of XSL editors takes the right one. A vertical layout means that the stack of XML editors takes the
upper half of the editing area and the stack of XSL editors takes the lower one.

• Debugger current instruction pointer - Controls the background color of the current execution node, both in the
document (XML) and XSLT/XQuery views.

Profiler

This section explains the settings available for the XSLT Profiler. To access and modify them please go to menu Options
> Preferences > XML > XSLT/FO/XQuery > Profiler (see Debugger on page 690).

Figure 410:The Profiler Preferences Panel

The following profiles settings are available:

• Show time - Shows the total time that was spent in the node.
• Show inherent time - Shows the inherent time that was spent in the node. The inherent time is defined as the total

time of a node minus the time of its child nodes.
• Show invocation count - Shows how many times the node was called in this particular call sequence.
• Time scale - The time scale options determine the unit of time measurement, which may be milliseconds or

microseconds.
• Hotspot threshold - The threshold below which hot spots are ignored (milliseconds).
• Ignore invocation less than - The threshold below which invocations are ignored (microseconds).
• Percentage calculation - The percentage base determines against what time span percentages are calculated:

• Absolute - Percentage values show the contribution to the total time.
• Relative - Percentage values show the contribution to the calling node.

Oxygen XML Editor | Configuring the Application | 691

FO Processors

Besides the built-in formatting objects processor (Apache FOP) other external processors can be configured and set in
transformation scenarios for processing XSL-FO documents.

Oxygen has implemented an easy way to add two of the most used commercial FO processors: RenderX XEP and
Antenna House XSL Formatter. You can easily add RenderX XEP as external FO processor if the user has the XEP
installed. Also, if you have the Antenna House XSL Formatter v4 or v5, Oxygen uses the environmental variables set
by the XSL Formatter installation to detect and use it for XSL-FO transformations. If the environmental variables are
not set for the XSL Formatter installation, you can browse and choose the executable just as you would for XEP.

The FO Processors preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery >
FO Processors .

Figure 411:The FO Processors Preferences Panel

The options for FO processors are the following:

• Use built-in Apache FOP - Instructs Oxygen to use its built-in Apache FO processor.
• Use other Apache FOP - Instructs Oxygen to use another Apache FO processor installed on your computer.
• Enable the output of the built-in FOP - All Apache FOP output is displayed in a results pane at the bottom of the

Oxygen window including warning messages about FO instructions not supported by Apache FOP.
• Memory available to the built-in FOP - If your Apache FOP transformations fail with an Out of Memory error

(OutOfMemoryError) select from this combo box a larger value for the amount of memory reserved for FOP
transformations.

• Configuration file for the built-in FOP - You should specify here the path to an Apache FOP configuration file,
necessary for example to render to PDF a document containing Unicode content using a special true type font.

• Generates PDF/A-1b output - When selected PDF/A-1b output is generated.

Note: All fonts have to be embedded, even the implicit ones. More information about configuring metrics files
for the embedded fonts can be found in Add a font to the built-in FOP.

Note: You cannot use the <filterList> key in the configuration file because FOP would generate the
following error: The Filter key is prohibited when PDF/A-1 is active.

692 | Oxygen XML Editor | Configuring the Application

The users can configure the external FO processors for use in transformation scenarios in the following dialog:

Figure 412:The External FO Processor Configuration Dialog

• Name - The name displayed in the list of available FOP processors on the FOP tab of the transformation scenario
dialog.

• Description - A textual description of the FO processor displayed in the FO processors table and in tooltips of UI
components where the processor is selected.

• Output Encoding - The encoding of the FO processor output stream displayed in a results panel at the bottom of
the Oxygen window.

• Error Encoding - The encoding of the FO processor error stream displayed in a results panel at the bottom of the
Oxygen window.

• Working directory - The directory where the intermediate and final results of the processing is stored. Here you
can use one of the following editor variables:

• ${homeDir} - The path to user home directory.
• ${cfd} - The path of current file directory. If the current file is not a local file, the target is the user's desktop

directory.
• ${pd} - The project directory.
• ${oxygenInstallDir} - The Oxygen installation directory.

• Command line - The command line that starts the FO processor, specific to each processor. Here you can use one
of the following editor variables:

• ${method} - The FOP transformation method: pdf, ps or txt.
• ${fo} - The input FO file.
• ${out} - The output file.
• ${pd} - The project directory.
• ${frameworksDir} - The path of the frameworks subdirectory of the Oxygen install directory.
• ${oxygenInstallDir} - The Oxygen installation directory.
• ${ps} - The platform-specific path separator. It is used between the library files specified in the class path of the

command line.

XPath

The XPath preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery > XPath .

Oxygen XML Editor | Configuring the Application | 693

Figure 413:The XPath Preferences Panel

The XPath options are the following:

• Unescape XPath expression - When checked, the entities are unescaped in the XPath expressions entered in the
XPath toolbar. For example the expression

//varlistentry[starts-with(@os,'s')]

is equivalent with:

//varlistentry[starts-with(@os,'s')]

• Multiple XPath results - If checked, results of different XPath expressions executed on the same file are displayed
in separate result set tabs.

• No namespace - If checked, Oxygen will consider unprefixed element names in XPath 2.0 expressions evaluated
in the XPath console as belonging to no namespace.

• Use the default namespace from the root element - If checked, Oxygen will consider unprefixed element names
in XPath expressions evaluated in the XPath console as belonging to the default namespace declared on the root
element of the queried XML document.

• Use the namespace of the root - If checked, Oxygen will consider unprefixed element names in XPath expressions
evaluated in the XPath console as belonging to the same namespace as the root element of the document.

• This namespace - The user has the possibility to enter here the namespace of the unprefixed elements used in the
XPath console.

• Default prefix-namespace mappings - Associates prefixes to namespaces. These mappings are useful when applying
an XPath in the XPath console and you don't want to define these mappings in each document separately.

Custom Engines

You can configure and run XSLT and XQuery transformations with processors other than the ones which come with the
Oxygen distribution. Such an external engine can be used in the Editor perspective and is available in the list of engines
in the dialog for editing a transformation scenario. However it cannot be used in the Debugger perspective.

The Custom Engines preferences panel is opened from menu Options > Preferences > XML > XSLT/FO/XQuery
> Custom Engines .

694 | Oxygen XML Editor | Configuring the Application

Figure 414: Custom Transformation Engines

The following parameters can be configured for a custom engine:

Figure 415: Parameters of a Custom Engine

• Engine type - Combo box allowing you to choose the transformer type. There are two options: XSLT engines and
XQuery engines.

• Name - The name of the transformer displayed in the dialog for editing transformation scenarios
• Description - A textual description of the transformer.
• Output Encoding - The encoding of the transformer output stream.
• Error Encoding - The encoding of the transformer error stream.
• Working directory - The start directory of the transformer executable program. The following editor variables are

available for making the path to the working directory independent of the location of the input files:

• ${homeDir} - The user home directory in the operating system.
• ${cfd} - The path to the directory of the current file.
• ${pd} - The path to the directory of the current project.
• ${oxygenInstallDir} - The Oxygen install directory.

• Command line - The command line that must be executed by Oxygen to perform a transformation with the engine.
The following editor variables are available for making the parameters in the command line (the transformer executable,
the input files) independent of the location of the input files:

Oxygen XML Editor | Configuring the Application | 695

${xml} - The XML input document as a file path.•
• ${xmlu} - The XML input document as a URL.
• ${xsl} - The XSL / XQuery input document as a file path.
• ${xslu} - The XSL / XQuery input document as a URL.
• ${out} - The output document as a file path.
• ${outu} - The output document as a URL.
• ${ps} - The platform separator which is used between library file names specified in the class path.

Import

The Import preferences panel is opened from menu Options > Preferences > XML > Import . Here you can configure
how empty values and null values are handled when they are encountered in an imported database tables or Excel sheets.
Also you can configure here the format of date / time values that should be recognized in the imported database tables
or Excel sheets.

Figure 416:The XML Import Preferences Panel

The import preferences are the following:

• Create empty elements for empty values - If checked, an empty value from a database column or from a text file
will be imported as an empty element.

• Create empty elements for null values - If this checked, a null value from a database column will be imported as
an empty element.

• Add annotations for generated XML Schema - If checked, the generated XML Schema will contain an annotation
for each of the imported table's columns. The documentation inside the annotation tag will contain the remarks of
the database columns (if available) and also information about the conversion between the column type and the
generated XML Schema type.

The section Date / Time Format specifies the format used for importing date and time values from Excel spreadsheets
or database tables and in the generated XML schemas. The following format types are available:

• Unformatted - If checked, the date and time formats specific to the database will be used for import. When importing
data from Excel a string representation of date or time values will be used. The type used in the generated XML
Schema will be xs:string.

696 | Oxygen XML Editor | Configuring the Application

• XML Schema date format - If checked, the XML Schema specific format ISO8601 will be used for imported date
/ time data (yyyy-MM-dd'T'HH:mm:ss for datetime, yyyy-MM-dd for date and HH:mm:ss for time).
The types used in the generated XML Schema will be xs:datetime, xs:date and xs:time.

• Custom format - If checked, the user can define a custom format for timestamp, date, and time values or choose
from predefined formats. A preview of the values is presented when a format is used. The type used in the generated
XML Schema is xs:string.

Date / Time Patterns

Table 11: Pattern letters

ExamplesPresentationDate or Time ComponentLetter

ADTextEra designatorG

1996; 96YearYeary

July; Jul; 07MonthMonth in yearM

27NumberWeek in yearw

2NumberWeek in monthW

189NumberDay in yearD

10NumberDay in monthd

2NumberDay of week in monthF

Tuesday; TueTextDay in weekE

PMTextAm / pm markera

0NumberHour in day (0-23)H

24NumberHour in day (1-24)k

0NumberHour in am / pm (0-11)K

12NumberHour in am / pm (1-12)h

30NumberMinute in hourm

55NumberSecond in minutes

978NumberMillisecondS

Pacific Standard Time; PST;
GMT-08:00

General time zoneTime zonez

-0800RFC 822 time zoneTime zoneZ

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text - If the number of pattern letters is 4 or more, the full form is used; otherwise a short or abbreviated form is
used if available.

• Number - The number of pattern letters is the minimum number of digits, and shorter numbers are zero-padded to
this amount.

• Year - If the number of pattern letters is 2, the year is truncated to 2 digits; otherwise it is interpreted as a number.
• Month - If the number of pattern letters is 3 or more, the month is interpreted as text; otherwise, it is interpreted as

a number.
• General time zone - Time zones are interpreted as text if they have names. For time zones representing a GMT offset

value, the following syntax is used:

• GMTOffsetTimeZone - GMT Sign Hours : Minutes
• Sign - one of + or -

Oxygen XML Editor | Configuring the Application | 697

• Hours - one or two digits
• Minutes - two digits
• Digit - one of 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale independent and
digits must be taken from the Basic Latin block of the Unicode standard.

• RFC 822 time zone: The RFC 822 4-digit time zone format is used:

• RFC822TimeZone - Sign TwoDigitHours Minutes
• TwoDigitHours - a number of two digits

TwoDigitHours must be between 00 and 23.

Data Sources

The Data Sources preferences panel is opened from menu Options > Preferences > Data Sources .

Configuration of Data Sources

Here you can configure data sources and connections to relational databases as well as native XML databases. You can
check the list of drivers (http://www.oxygenxml.com/database_drivers.html) available for the major database servers.

Figure 417:The Data Sources Preferences Panel

• New - Opens the Data Sources Drivers dialog that allows you to configure a new database driver.

698 | Oxygen XML Editor | Configuring the Application

http://www.oxygenxml.com/database_drivers.html

Figure 418:The Data Sources Drivers Dialog

The fields of the dialog are the following:

• Name - The name of the new data source driver that will be used for creating connections to the database
• Type - Selects the data source type from the supported driver types.
• Help - Opens the User Manual at the list of the sections where the configuration of supported data sources is

explained and the URLs for downloading the database drivers are specified.
• Driver Class - Specifies the driver class for the data source driver.
• Add - Adds the driver class library.
• Remove - Removes the selected driver class library from the list.
• Detect - Detects driver class candidates.
• Stop - Stops the detection of the driver candidates.

• Edit - Opens the Data Sources Drivers dialog for editing the selected driver. See above the specifications for the
Data Sources Drivers dialog. In order to edit a data source, there must be no connections using that data source
driver.

• Delete - Deletes the selected driver. In order to delete a data source, there must be no connections using that data
source driver.

Oxygen XML Editor | Configuring the Application | 699

Figure 419:The Connections Preferences Panel

For performance issues, you can set the maximum number of cells that will be displayed in the Table Explorer view
for a database table. Leave the field Limit the number of cells empty if you want the entire content of the table to be
displayed. By default this field is set to 2,000. If a table having more cells than the value set here is displayed in the
Table Explorer view, a warning dialog will inform you that the table is only partially shown.

In Oracle XML and Tamino databases a container can hold millions of resources. If the node corresponding to such a
container in the Data Source Explorer view would display all the contained resources at the same time the performance
of the view would be very slow. To prevent such a situation only a limited number of the contained resources is displayed
as child nodes of the container node. Navigation to other contained resources from the same container is enabled by the
Up and Down buttons in the Data Source Explorer view. This limited number is set in the option Maximum number
of children for container nodes. The default value is 200 nodes.

The actions of the buttons from the Connections panel are the following:

• New - Opens the Connection dialog which has the following fields:

Figure 420:The Connection Dialog

• Name - The name of the new connection that will be used in transformation scenarios and validation scenarios.
• Data Source - Allows selecting a data source defined in the Data Source Drivers dialog.

700 | Oxygen XML Editor | Configuring the Application

Depending upon the selected data source, you can set some of the following parameters in the Connection details
area:

• URL - The URL for connecting to the database server.
• User - The user name for connecting to the database server.
• Password - The password of the specified user name.
• Host - The host address of the server.
• Port - The port where the server accepts the connection.
• XML DB URI - The database URI.
• Database - The initial database name.
• Collection - One of the available collections for the specified data source.
• Environment home directory - Specifies the home directory (only for a Berkeley database).
• Verbosity - Sets the verbosity level for output messages (only for a Berkeley database).

• Edit - Opens the Connection dialog, allowing you to edit the selected connection. See above the specifications for
the Connection dialog.

• Duplicate - Creates a duplicate of the currently selected connection.
• Delete - Deletes the selected connection.

Download Links for Database Drivers

You can find below the locations where you have to go to get the drivers necessary for accessing databases in Oxygen.

• Berkeley DB XML database - Copy the jar files from the Berkeley database install directory to the Oxygen install
directory as described in the procedure for configuring a Berkeley DB data source.

• IBM DB2 Pure XML database - Go to the IBM website and in the DB2 Clients and Development Tools category
select the DB2 Driver for JDBC and SQLJ download link. Fill the download form and download the zip file. Unzip
the zip file and use the db2jcc.jar and db2jcc_license_cu.jar files in Oxygen for configuring a DB2
data source.

• eXist database - Copy the jar files from the eXist database install directory to the Oxygen install directory as described
in the procedure for configuring an eXist data source.

• MarkLogic database - Download the Java and .NET XCC distributions (XCC Connectivity Packages) from
MarkLogic. You find the details about configuring a MarkLogic data source in the procedure for creating a MarkLogic
data source.

• Microsoft SQL Server 2005 / 2008 database - Both SQL Server 2005 and SQL Server 2008 are supported. For
connecting to SQL Server 2005 you have to download the SQL Server 2005 JDBC driver file sqljdbc.jar from
the Microsoft website and use it for configuring an SQL Server data source. For connecting to SQL Server 2008 you
have to download the SQL Server 2008 JDBC 1.2 driver file sqljdbc_1.2\enu\sqljdbc.jar from the
Microsoft website and use it for configuring an SQL Server data source. Please note that the SQL Server driver is
compiled with a Java 1.6 compiler so you need to run Oxygen with a Java 1.6 virtual machine in order to use this
driver.

• Oracle 11g database - Download the Oracle 11g JDBC driver called ojdbc5.jar from the Oracle website and
use it for configuring an Oracle data source.

• PostgreSQL 8.3 database - Download the PostgreSQL 8.3 JDBC driver called
postgresql-8.3-603.jdbc3.jar from the PostgreSQL website and use it for configuring a PostgreSQL
data source.

• RainingData TigerLogic XDMS database - Copy the jar files from the TigerLogic JDK lib directory from the
server side to the Oxygen install directory as described in the procedure for configuring a TigerLogic data source.

• SoftwareAG Tamino database - Copy the jar files from the SDK\TaminoAPI4J\lib subdirectory of the Tamino
database install directory to the Oxygen install directory as described in the procedure for configuring a Tamino
data source.

• Documentum xDb (X-Hive/DB) 10 XML database - Copy the jar files from the Documentum xDb (X-Hive/DB)
10 database install directory to the Oxygen install directory as described in the procedure for configuring a
Documentum xDb (X-Hive/DB) 10 data source.

Oxygen XML Editor | Configuring the Application | 701

http://www-306.ibm.com/software/data/db2/express/download.html
http://xqzone.marklogic.com/download/#XCC
http://www.microsoft.com/downloads/details.aspx?familyid=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://jdbc.postgresql.org/download.html

• MySQL database - Download the MySQL JDBC driver from the MySQL website and use it for configuring a
MySQL data source.

Table Filters

The Table Filters preferences panel is opened from menu Options > Preferences > Data Sources > Table Filters .

Here you can choose which of the database table types will be displayed in the Data Source Explorer view.

Figure 421:Table Filters Preferences Panel

SVN

The SVN preferences panel is opened from menu Options > Preferences > SVN and it is the place where the user
preferences for the embedded SVN client tool are configured. Some other preferences for the embedded SVN client
tool can be set in the global files called config and servers, that is the files with parameters that act as defaults
applied to all the SVN client tools that are used by the same user on his login account on the computer. These files can
be opened for editing with the two edit actions available in the SVN client tool on the Global Runtime Configuration
submenu of the Options menu.

Figure 422:The SVN Preferences Panel

The SVN preferences are the following:

702 | Oxygen XML Editor | Configuring the Application

http://www.mysql.com/downloads/connector/j/

• Enable symbolic link support (available only on Mac OS X and Linux) - Subversion has the ability to put a symbolic
link under version control, via the usual SVN add command. The Subversion repository has no internal concept of
a symbolic link, it stores a versioned symbolic link as an ordinary file with a svn:special property attached. The
SVN client (on Unix) sees the property and translates the file into a symbolic link in the working copy.

Note: Windows file systems have no symbolic links, so a Windows client won't do any such translation: the
object appears as a normal file.

If the symbolic link support is disabled then the versioned symbolic links, on Linux and OS X, are supported in the
same way as on Windows, that is a text file instead of symbolic link is created.

Important: It is recommended to disable symbolic links support if you do not have versioned symbolic links
in your repository, because the SVN operations will work faster. However, you should not disable this option
when you do have versioned symbolic links in repository. In that case a workaround would be to refer to working
copy by its real path, not a path that includes a symbolic link.

• Allow unversioned obstructions - This option controls how should be handled working copy resources being ignored
/ unversioned when performing an update operation and from the repository are incoming files with the same name,
in the same location, that intersect with those being ignored / unversioned. If the option is enabled, then the incoming
items will become BASE revisions of the ones already present in the working copy, and those present will be made
versioned resources and will be marked as modified. Exactly as if the user first made the update operation and after
that he / she modified the files. If the option is disabled, the update operation will fail when encountering files in
this situation, possibly leaving other files not updated. By default, this option is enabled.

• Use unsafe copy operations - Sometimes when the working copy is accessed through Samba and SVN client cannot
make a safe copy of the committed file due to a delay in getting write permission the result is that the committed file
will be saved with zero length (the content is removed) and an error will be reported. In this case this option should
be selected so that SVN client does not try to make the safe copy.

• SSH - Here you can specify the command line for an external SSH client which will be used when connecting to a
SVN+SSH repository. Absolute paths are recommended for the SSH client executable and the file paths given as
arguments (if any). Depending on the SSH client used and your SSH server configuration you may need to specify
in the command line the user name and / or private key / passphrase. Here you can also choose if the default user
name (the same user name as the SSH client user) will be used for SVN repository operations or you should be
prompted for a SVN user name whenever SVN authentication is required. For example on Windows the following
command line uses the plink.exe tool as external SSH client for connecting to the SVN repository with SVN+SSH:

C:\plink-install-folder\plink.exe -l username -pw password -ssh -batch
host_name_or_IP_address_of_SVN_server

• Results Console - Here you can specify the maximum number of lines displayed in the Console view.
• Annotations View - Here you can set the color used for highlighting in the editor panel all the changes contributed

to a resource by the revision selected in the Annotations view.
• Revision Graph - Here you can enable caching for the action of computing a revision graph. When a new revision

graph is requested one of the caches from the previous actions may be used which will avoid running the whole
query again on the SVN server. If a cache is used it will finish the action much faster.

Working Copy

The Working Copy panel is open from menu Options > Preferences > SVN > Working Copy and it contains options
that are specific to SVN working copies.

Oxygen XML Editor | Configuring the Application | 703

Figure 423:The Working Copy Panel

These options are the following:

• Working copy administrative directory - Allows you to customize the directory name where the svn entries are
kept for each directory in the working copy.

• When switching to an old format working copy - You can instruct Syncro SVN Client to do one of the following:

• Automatically upgrade - Older format working copies are upgraded to the newest known format.
• Never upgrade - Older format working copies are left untouched. No attempt to upgrade the format is made.
• Always ask - You are notified when such a working copy is used and you are allowed to choose what action to

be taken - to upgrade or not the format of the current working copy.

• Enable working copy caching - If checked, the content of the working copies is cached for refresh operations.
• Automatically refresh the working copy - If checked, the working copy is refreshed from cache. Only the new

changes (modifications with a date/time that follows the last refresh operation) are refreshed from disk. Disabled by
default.

• When synchronizing with repository - The action that will be executed automatically after the Synchronize action.
The possible actions are:

• Always switch to 'Modified' mode - The Synchronize action is followed automatically by a switch to Modified
mode of Working Copy view, if All Files mode is currently selected.

• Never switch to 'Modified' mode - Keeps the currently selected view mode unchanged.
• Always ask - The user is always asked if he wants to switch to Modified mode.

• Application global ignores - Allows setting file patterns that may include the * and ? wildcards for unversioned
files and folders that must be ignored when displaying the working copy resources in the Working Copy view.

Diff

The Diff preferences panel is opened from menu Options > Preferences > SVN > Diff and it allows you to set the
compare options for SVN client.

704 | Oxygen XML Editor | Configuring the Application

Figure 424:The SVN Diff Preferences Panel

The SVN diff preferences are the following:

• Show pseudo conflicts - It allows you to specify if you want to see pseudo-conflicts in the Compare view. A pseudo
conflict occurs when two developers make the same change, for example when both add or remove the same line of
code.

• Compare With External Application - You can specify an external application to be launched for compare operations
in the following cases:

• when two history revisions are compared
• when the working copy file is compared with a history revision
• when a conflict is edited

The parameters ${firstFile} and ${secondFile} specify the positions of the two compared files in the command line
for the external diff application. The parameter ${ancestorFile} specifies the common ancestor (that is, the BASE
revision of a file) in a three-way comparison: the working copy version of a file is compared with the repository
version, with the BASE revision (the latest revision read from the repository by an Update or Synchronize operation)
being the common ancestor of these two compared versions.

• Maximum number of differences - You can change the maximum number of differences allowed in the view.

Messages

The Messages preferences panel is opened from menu Options > Preferences > SVN > Messages and allows disabling
the following warning messages which may appear in the application:

Figure 425:The Messages Preferences Panel

• Show confirmation dialog when using the "Update All" action - Allows you to avoid performing accidental
update operations by requesting you to confirm them before execution.

• Show confirmation dialog for drag and drop actions in Working Copy - This option avoids doing a drag and
drop when you just want to select multiple files in the Working Copy view.

• Show warning dialog when editing conflicts - When the Edit Conflicts action is executed, a warning dialog notifies
you that the action overwrites the conflicted version of the file created by an update operation. The conflicted file is
overwritten with the version of the same file which existed in the working copy before the update operation and then
proceeds with the visual editing of the conflicting file.

• Show warning dialog when "svn:externals" definitions are ignored - A warning dialog is displayed when
"svn:externals" definitions are ignored before performing any operation that updates resources of the working copy
(like Update and Override and Update).

Oxygen XML Editor | Configuring the Application | 705

Files Comparison

Oxygen XML Editor offers six different diff algorithms to choose from for file comparison:

• two XML diff algorithms: XML Fast and XML Accurate,
• a Syntax Aware algorithm that gives very good results on all file types known by Oxygen XML Editor ,
• three all-purpose algorithms: line based, word based and character based.

Any of these six algorithms can be used to perform differences on request, but Oxygen XML Editor offers also an
automatic mode that selects the most appropriate one, based on the file content and size.

The Files Comparison preferences panel is opened from menu Options > Preferences > Diff > Files Comparison
and offers the following configurable preferences:

Figure 426:The Files Comparison Preferences Panel

• Default algorithm - The default algorithm used for comparing files. The following options are available:

• Auto - Automatic selection of the diff algorithm, based on the file content and size.
• Characters - Computes the differences at character level.
• Words - Computes the differences at word level.
• Lines - Computes the differences at line level.
• Syntax aware - For the file types known by Oxygen XML Editor , this algorithm computes the differences taking

into consideration the syntax (the specific types of tokens) of the documents.
• XML Fast - A diff algorithm well-suited for large XML documents (tens of MB). Sacrifices accuracy in favor

of speed.
• XML Accurate - XML-tuned diff algorithm. It favors accuracy over speed.

• Algorithm strength - Controls the amount of resources allocated to the application to perform the comparison. The
algorithm stops searching more differences when reaches the maximum allowed resources. A dialog is shown when
this limit is reached and partial results are displayed. Four settings are available: Low, Medium (default), High and
Very High.

• Ignore Whitespaces - Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before
performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

706 | Oxygen XML Editor | Configuring the Application

• XML Diff Options - This set of options allows you to specify the types of XML nodes for which the differences
will be ignored (will not be reported) by the XML Fast and XML Accurate algorithms.

• Merge adjacent differences - If checked, it considers two adjacent differences as one when the differences are
painted in the side-by-side editors. If unchecked, every difference is represented separately.

• Mark end tags as different for modified elements - If checked, end tags of modified elements are presented as
differences too, otherwise only the start tags are presented as differences.

• Ignore expansion state for empty elements - If checked, empty elements in both expansion states are considered
matched, that is <element/> and <element></element> are considered equal.

Appearance

The Files Comparison / Appearance preferences panel is opened from menu Options > Preferences > Diff > Files
Comparison > Appearance and offers the following options:

Figure 427: Files Comparison Appearance Preferences Panel

• Line wrap - If checked, the lines presented in the two diff panels are wrapped at the right margin of each panel so
that no horizontal scrollbar is necessary.

• Incoming color - The color used for incoming changes on the vertical bar that shows the differences between the
files compared.

• Outgoing color - The color used for outgoing changes on the vertical bar that shows the differences between the
files compared.

• Conflict color - The color used for conflicts on the vertical bar that shows the differences between the files compared.

Directories Comparison

The Directories Comparison preferences panel is opened from menu Options > Preferences > Diff > Directories
Comparison and offers the following configurable preferences:

Figure 428:The Diff Preferences Panel

Oxygen XML Editor | Configuring the Application | 707

For the directories comparison, you can specify:

• Compare files by - Controls the method used for comparing two files:

• Content - The file content is compared using the current diff algorithm. This option is applied for a pair of files
only if that file type is associated with a built-in editor type (either associated by default or associated by the user
when the user is prompted to do that on opening a file of that type for the first time).

• Binary Compare - The files are compared at byte level.
• Timestamp (last modified date / time) - The files are compared only by their last modified timestamp.

• Look in archives - If checked, archives known by Oxygen XML Editor are considered directories and their content
is compared just like regular files.

• Navigation - This options control the behaviour of the differences traversal actions (Go to previous modification,
Go to next modification) when the first or last difference in a file is reached:

• Ask what to do next - A dialog is displayed asking you to confirm that you want the application to display
modifications from the previous or next file.

• Go to the next/previous file - The application opens the next or previous file without waiting for your confirmation.
• Do nothing - No further action is taken.

Appearance

The Directories Comparison / Appearance preferences panel is opened from menu Options > Preferences > Diff >
Directories Comparison > Appearance .

Figure 429:The Diff Appearance Preferences Panel

• Added/Deleted - Color used for marking added or deleted files and folders.
• Modified - Color used for marking modified files.

Archive

The Archive preferences panel is opened from menu Options > Preferences > Archive .

708 | Oxygen XML Editor | Configuring the Application

Figure 430:The Archive Preferences Panel

The following options are available in the Archive preferences panel:

• One of the following options is the default for backup actions in the Archive Backup dialog:

• No backup - No backups are made.
• Single file backup - When you modify an archive, its content is backed up under the name

originalArchiveFileName.bak. You can find the backup file in the same folder as the original archive.

Note: The backup is done only once per application session for each archive open in the Archive Browser
view.

• Incremental backup - When you modify an archive, its content is backed up under the name
originalArchiveFileName.bakNumber. Number is an incremental integer, indicating how many backups
were made so far. You can find the backup file in the same folder as the original archive.

Note: The backup is done only once per application session for each archive open in the Archive Browser
view.

• Archive types - This table contains all known archive extensions mapped to known archive formats. Each row maps
a list of extensions to an archive type supported in Oxygen. You can edit an existing mapping or create a new one
by associating your own list of extensions to an archive format.

Figure 431: Edit Archive Extension Mappings

Oxygen XML Editor | Configuring the Application | 709

Important: You have to restart Oxygen after removing an extension from the table in order for that extension
to not be recognised anymore as an archive extension.

• Store Unicode file names in Zip archives - Use this option when you archive files that contain international (that
is, non-English) characters in file names or file comments. If an archive is modified in any way with this option
turned on, UTF-8 characters are used in the names of all files in the archive.

Plugins

Oxygen provides the ability to add plugins that extend the functionality of the application. The plugins are shipped as
separate packages. Check for new plugins on Oxygen site.

One plugin consists of a separate sub-folder in the Plugins folder of the Oxygen installation folder. This sub-folder
must contain a valid plugin.xml file in accordance with the plugin.dtd file from the Plugins folder.

Oxygen automatically detects and loads plugins correctly installed in the Plugins folder and displays them in this
preferences panel.

The Plugins preferences panel is opened from menu Options > Preferences > Plugins .

Figure 432:The Plugins Preferences Panel

A list of the plugin properties can be obtained with a click on the plugin name.

External Tools

The External Tools preferences panel is opened from menu Preferences > External Tools .

A command-line tool can be started from the External Tools toolbar in the Oxygen user interface as if from the command
line of the operating system shell. Such a tool must be configured first in this preferences panel. The parameters of an
external tool are set in the following dialog:

710 | Oxygen XML Editor | Configuring the Application

http://www.oxygenxml.com/developer.html

Figure 433:The External Tools Configuration Dialog

• Name - The name of the menu entry corresponding to this tool that will be displayed in the Tools > External Tools
menu and in the External Tools toolbar.

• Description - The description of the tool displayed as tooltip where the tool name is used.
• Output Encoding - The encoding of the output stream of the external tool that will be used by Oxygen to read the

output of the tool.
• Output content type - A list of predefined content type formats that instruct Oxygen how to display the generated

output. For example, setting the Output content type to text/xml enables the syntax coloring of XML output.
• Error Encoding - The encoding of the error stream of the external tool that will be used by Oxygen to read this

error stream.
• Shortcut key - The keyboard shortcut that launches the external tool.
• Working directory - The directory the external tool will use to store intermediate and final results. Here you can

use one of the following editor variables:

• ${homeDir} - The path to user home directory.
• ${cfd} - The path of current file directory.
• ${pd} - The project directory.
• ${oxygenInstallDir} - The Oxygen installation directory.

• Command line - The command line that will start the external tool. Here you can use one of the following editor
variables:

• ${dbgXML} - The path to the current Debugger source selection (for tools started from the XSLT/XQuery
Debugger).

• ${dbgXSL} - The path to the current Debugger stylesheet selection (for tools started from the XSLT/XQuery
Debugger).

• ${homeDir} - The path to the user home directory.
• ${cfn} - The current file name without extension.
• ${cfne} - The current file name with extension.
• ${cf} - The path of the currently edited file.
• ${cfd} - The path of the current file directory.
• ${tsf} - The transformation result file.
• ${pd} - The project directory.
• ${oxygenInstallDir} - The installation directory of the application.

Oxygen XML Editor | Configuring the Application | 711

• ${frameworksDir} - The directory where the Oxygen frameworks are located.
• ${ps} - The path separator which can be used on different operating systems between libraries specified in the

class path.
• ${timeStamp} - The current time stamp in Unix format which can be used for example to save transformation

results in different output files on each transform.

Menu Shortcut Keys

The Menu Shortcut Keys preferences panel is opened from menu Options > Preferences > Menu Shortcut Keys .
It allows configuring in one place the keyboard shortcuts available for the menu items on the menus of Oxygen . The
current shortcuts assigned to menu items are displayed in the following table.

You can find an operation in the table using the filter field that can search by the operation's description, category or
shortcut key:

Figure 434:The Menu Shortcut Keys Preferences Panel

• Description - A short description of the menu item operation.
• Category - The shortcuts are classified in categories for easier management. For example the Cut operation for the

source view is distinguished from the tree view one by assigning it to a separate category.
• Shortcut key - The keyboard shortcut that launches the operation. Double-clicking on a table row or pressing the

Edit button allows the user to register a new shortcut for the operation displayed on that row.
• 'Home' and 'End' keys are applied at line level - Option available only on Mac OS X that controls the way the

HOME and END keys are interpreted. If checked, the default behaviour of the Mac OS X HOME and END keys
will be overridden and the caret will move only on the current line. The default on the Mac is to move the caret to
the beginning or end of the document.

712 | Oxygen XML Editor | Configuring the Application

File Types

Oxygen XML Editor offers editing support for a wide variety of file types, but users are free to add new file extensions
and associate them with the editor type which fits better. The associations set here between a file extension and the type
of editor which opens the file for editing have precedence over the default associations available in the File > New
dialog.

The File Types preferences panel is opened from menu Options > Preferences > File Types .

Figure 435:The File Types Preferences Panel

The table columns contain the following data:

• Extension - The extensions of the files that will be associated with an editor type.
• Editor - The type of editor which the extensions will be associated with. Some editors provide easy access to frequent

operations via toolbars (e.g. XML editor, XSL editor, DTD editor) while others provide just a syntax highlight
scheme (e.g. Java editor, SQL editor, Shell editor, etc.).

If the editor set here is not one of the XML editors (XML editor, XSL editor, XSD editor, RNG editor, WSDL editor)
then the encoding set in the preference Encoding for non XML files is used for opening and saving a file of this
type. This is necessary because in case of XML files the encoding is usually declared at the beginning of the XML
file in a special declaration or it assumes the default value UTF-8 but in case of non XML files there is no standard
mechanism for declaring the encoding of the file.

You can also decide the files which will be treated as DITA maps when opened in Oxygen. If the files match the pattern
that is specified in Treat as DITA Maps files matching you will be prompted to open them in the DITA Maps Manager
view.

The files that match the pattern that is specified in will be excluded from the following operations from Project view
that will be applied on a set of files: File/Replace in Files, Check Spelling in Files, Validate.

Oxygen XML Editor | Configuring the Application | 713

SVN File Editors

Each type of file is associated with a type of editor which opens the files of that type for editing. The editor can be the
built-in one specially provided for the file type (for example the internal XML editor, the internal XSLT editor, the
internal XSL-FO editor, etc) or an external application installed on the computer, either the default system application
associated with that file type in the operating system or other particular application specified by the path to its executable
file. The list of all the associations file type - editor is displayed in the preferences panel SVN File Editors which is
opened from menu Options > Preferences > SVN File Editors .

Figure 436:The SVN File Editors Preferences Panel

The Edit button or a double click on a table row opens a dialog for specifying the editor associated with the file type.
The same dialog is displayed on opening a file from one of the Syncro SVN Client views.

714 | Oxygen XML Editor | Configuring the Application

Figure 437:The Open With Dialog

In this dialog are offered three options for opening a file:

• System default application - Opens the selected file using the application that is associated with that file extension
by default in the operating system.

• System application - Opens the selected file using an external application that you have to specify by the path of
its executable file. Also, you can specify some arguments for the command line of that application, if they are needed.
This option also works for directories, if you wish to choose a file browser other than the system default.

• Internal editor - Allows selecting an editor type from the built-in editors that Syncro SVN Client comes with. By
default, this option is disabled when selecting directories.

If a file type is associated with an internal editor other than an XML editor type then the encoding set in the preference
Encoding for non XML files is used for opening and saving a file of that type. This is necessary because in case of
XML files the encoding is usually declared at the beginning of the XML file in a special declaration or it assumes the
default value UTF-8 but in case of non XML files there is no standard mechanism for declaring the encoding of the file.

Custom Editor Variables

An editor variable is useful for making a transformation scenario, a validation scenario or an external tool independent
of the file path on which the scenario / command line is applied. An editor variable is specified as a parameter in a
transformation scenario, validation scenario or command line of an external tool. Such a variable is defined by a name,
a string value and a text description. A custom editor variable is defined by the user and can be used in the same
expressions as the built-in ones.

Oxygen XML Editor | Configuring the Application | 715

Figure 438: Custom Editor Variables

HTTP(S) / (S)FTP / Proxy Configuration

Some networks use proxy servers to provide Internet services to LAN clients. Clients behind the proxy may therefore,
only connect to the Internet via the proxy service. If you are not sure whether your computer is required to use a proxy
server to connect to the Internet or you don't know the proxy parameters, please consult your network administrator.

You can open the HTTP(S) / (S)FTP / Proxy Configuration panel from menu Options > Preferences > HTTP(S) /
(S)FTP / Proxy Configuration .

The HTTP(S) / (S)FTP / Proxy Configuration Preferences Panel

Complete the dialog as follows:

716 | Oxygen XML Editor | Configuring the Application

• Direct connection - If checked, the HTTP(S) connections go directly to the target host without going through a
proxy server.

• Use system settings - If checked, the HTTP(S) connections go through the proxy server set in the operating system.
For example on Windows the proxy settings are the ones used by Internet Explorer.

Attention: The system settings for the proxy cannot be read correctly from the operating system on some Linux
systems. The system settings option should work properly on Gnome based Linux systems but it does not work
on KDE based ones as the Java virtual machine does not offer the necessary support yet.

• Manual proxy configuration - If checked, the HTTP(S) connections go through the proxy server specified in the
fields Address and Port of the section Web Proxy (HTTP / HTTPS). Also this section specifies the hosts to which
the connections must not go through a proxy server in the field No proxy for.

• Web Proxy authentication (HTTP / HTTPS) - In this section you set the user and password necessary for
authentication with the proxy server. The user and password set here will be used both in case of manual proxy
configuration and in case of system settings selected above.

• SOCKS Proxy - In this section you set host and port of a SOCKS proxy through which all the connections must
pass. If the Address field is empty the connections will use no SOCKS proxy.

• Lock WebDAV files on open - If checked, the files opened through WebDAV are locked on the server so that they
cannot be edited by other users while the lock placed by the current user still exists on the server.

• SSL authentication with client certificate - If checked and the SVN server accessed through the HTTPS protocol
requires a digital certificate, the user is asked to specify a file path containing the digital certificate in the PKCS
format for accessing that server.

Advanced HTTP Settings

The Advanced HTTP Settings preferences panel is opened from menu Options > Preferences > HTTP(S) / (S)FTP
/ Proxy Configuration > Advanced HTTP Settings and offers the following preferences:

Figure 439:The Advanced HTTP Settings Preferences Panel

• Automatic retry on recoverable error - If enabled, if an HTTP error occurs when Oxygen communicates with a
server via HTTP, for example sending / receiving a SOAP request / response to / from a Web services server, and
the error is recoverable, Oxygen tries to send again the request to the server.

• Enable HTTP 'Expect: 100-continue ' handshake for HTTP/1.1 protocol - Activates Expect: 100-Continue
handshake. The purpose of the Expect: 100-Continue handshake is to allow a client that is sending a request message
with a request body to determine if the origin server is willing to accept the request (based on the request headers)
before the client sends the request body. The use of the Expect: 100-continue handshake can result in noticeable
performance improvement when working with databases. The Expect: 100-continue handshake should be used with
caution, as it may cause problems with HTTP servers and proxies that do not support the HTTP/1.1 protocol.

• Use the 'Content-Type' header field to determine the content type - When checked, Oxygen tries to determine
a resource type using the Content-Type header field. This header indicates the Internet media type of the message
content, consisting of a type and subtype, for example:

Content-Type: text/xml

When unchecked, the resource type is determined by analyzing its extension. For example, a file ending in .xml is
considered to be an XML file.

Oxygen XML Editor | Configuring the Application | 717

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6385839

• Read Timeout (seconds) - The period in seconds after which the application considers that an HTTP server is
unreachable if it does not receive any response to a request sent to that server.

Tip: If the Automatic retry on recoverable error option is checked, the HTTP client tries to establish the
connection twice so the timeout will be double the timeout specified here.

• Maximum number of simultaneous connections per host - Defines the maximum number of simultaneous
connections established by the application with a distinct host. Servers might consider multiple connections opened
from the same source to be a Denial of Service attack. You can avoid that by lowering the value of this option.

Note: This option accepts a minimum value of 5.

(S)FTP

The (S)FTP preferences panel is opened from menu Options > Preferences > HTTP(S) / (S)FTP / Proxy Configuration
> (S)FTP and offers the following preferences:

Figure 440:The (S)FTP Configuration Preferences Panel

• Public known hosts file - File containing the list of all SSH server host keys that you have determined are accurate.
The default file location is ${homeDir}/.ssh/known_hosts.

• Encoding for FTP control connection - The encoding used to communicate with FTP servers: either ISO-8859-1
or UTF-8. If the server supports the UTF-8 encoding Oxygen will use it for communication. Otherwise it will use
ISO-8859-1.

• Private key file - The path to the file containing the private key used for the private key method of authentication
of the secure FTP (SFTP) protocol. The user / password method of authentication has precedence if it is used in the
Open URL dialog.

• Passphrase - The passphrase used for the private key method of authentication of the secure FTP (SFTP) protocol.
The user / password method of authentication has precedence if it is used in the Open URL dialog.

Certificates

In Oxygen there are provided two types of keystores for certificates used for digital signatures of XL documents: Java
KeyStore (JKS) and Public-Key Cryptography Standards version 12 (PKCS-12). A keystore file is protected by a
password. A certificate keystore is configured in Oxygen in the Certificates preferences panel which is opened from
menu Options > Preferences > Certificates . The parameters of a keystore are the following:

718 | Oxygen XML Editor | Configuring the Application

Figure 441:The Certificates Preferences Panel

• Keystore type - Represents the type of keystore to be used.
• Keystore file - Represents the location of the file to be imported.
• Keystore password - The password which is used to protect the privacy of the stored keys.
• Certificate alias - The alias to be used to store the key entry (the certificate and / or the private key) inside the

keystore.
• Private key password - It is only necessary in case of JKS keystore. It represents the certificate's private key

password.
• Validate - Pressing this button verifies the keystore configured with the above parameters and assures that the

certificate is valid.

XML Structure Outline

The XML Structure Outline preferences panel is opened from menu Options > Preferences > XML Structure
Outline and contains the following preferences:

Figure 442:The XML Structure Outline Preferences Panel

• Preferred attribute names for display - The attribute names which should be preferred when displaying the element's
attributes in the Outline view. If there is no preferred attribute name specified the first attribute of an element is
displayed.

• Enable outline drag and drop - Drag and drop should be disabled for the tree displayed in the Outline view only
of there is a possibility to accidentally change the structure of the document by such drag and drop operations.

View

The View preferences panel is opened from menu Options > Preferences > View and contains the following preferences:

Oxygen XML Editor | Configuring the Application | 719

Figure 443:The View Preferences Panel

• Maximum number of lines - Sets the maximum number of lines of the output console where the output of the
external tools is displayed.

• Enable project drag and drop - Enables the drag and drop support in Project view. It should be disabled only if
there is a possibility to accidentally change the structure of the project by such drag and drop actions.

Messages

The Messages preferences panel is opened from menu Options > Preferences > Messages and allows disabling the
following warning messages which may appear in the application:

Figure 444:The Messages Preferences Panel

• Show the XML Schema namespaces chooser dialog - If checked, a namespace dialog appears when creating a
new W3C XML Schema file.

• Show the stylesheet version chooser dialog - If checked, the XSLT version chooser dialog will be shown when
creating a new XSLT stylesheet file.

• Show the schematron version chooser dialog - If checked, the Schematron version chooser dialog will be shown
when creating a new schematron file.

• Show SFTP Warning dialog - If checked, a warning dialog will be shown each time when the authenticity of the
SFTP server host cannot be established.

720 | Oxygen XML Editor | Configuring the Application

• Show warning when switching to XPath builder - If checked, a warning dialog will be shown when the XPath
toolbar contains a long expression and the user is advised to use the XPath Builder view instead.

• Show BIDI limit warning - If checked, a warning dialog will be shown when the opened file which contains
bidirectional characters is too large and bidirectional support is disabled.

• Show warning if files are already added to project - If checked, a dialog will be shown warning the user if he
wants to add to project an already existing file.

• Show archive backup dialog - If checked, a dialog will be shown allowing the user different backup options before
modifying an archive's content.

• Show warning when switching to Developer Role - If checked, a warning dialog will be displayed when choosing
to switch to developer role in the Document Type Association panel.

• Show MathFlow recommendation - If checked, if the MathFlow component is not configured in Oxygen and you
are trying to edit a MathML equation you will be notified that Oxygen can be easily configured to use the MathFlow
editor.

• Convert DB Structure to XML Schema - when expanding other database schema - When tables from a database
schema are selected in the Select Database Table dialog, after the Convert DB Structure to XML Schema is
invoked, and another database schema is expanded, a confirmation is needed because the previous selection will be
discarded. This option controls whether the user should always be asked about the next action, the other database
schema will always be expanded without asking the user or it will never be expanded.

• Show warning when switching between Project and Global options in Preferences dialog - If checked, a warning
dialog will be shown about uncommitted changes when switching between Project and Global options in a preferences
panel.

• Show warning when switching between Project and Global options in Configure Transformation Scenario
dialog - If checked, a warning dialog will be shown about uncommitted changes when switching between Project
and Global options in the transformation scenarios edit dialog.

• Show warning when switching between Project and Global options in Configure Validation Scenario dialog
- If checked, a warning dialog will be shown about uncommitted changes when switching between Project and Global
options in the validation scenarios edit dialog.

Tree Editor

The Tree Editor preferences panel is opened from menu Options > Preferences > Tree Editor and contains the
following preferences:

Figure 445:The Tree Editor Preferences Panel

• Format and indent on save - If selected, Oxygenwill run the action Format and Indent (pretty-print) on saving a
document edited in the tree editor.

Sharing Preferences

By default all the user preferences are global and are stored in a subfolder of the user home folder. The user preferences
can also be stored in the current project file that is loaded in the Project view. This allows you to share with your team
a set of user preferences through an Oxygen project already configured and distributed to the team members.

Figure 446: Controlling the Storage of the Preferences

Oxygen XML Editor | Configuring the Application | 721

For instance you may decide that the default schema associations and catalogs must be shared. In this case you simply
click the radio button Project Options in the respective panels of the Preferences dialog, edit the preferences values
and then save your Oxygen project in the Project view. If you want to drop later a preferences panel from being stored
into the project, you select the radio button Global Options and press the OK button in the Preferences dialog.

Automatically Importing the Preferences from the Other Distribution

If you want to use the settings from Oxygenstandalone distribution in the Eclipse plugin one just delete the file with the
Eclipse plugin preferences, that is [user-home-folder]/Application
Data/com.oxygenxml/oxyOptionsEc12.2.xml on Windows /
[user-home-folder]/.com.oxygenxml/oxyOptionsEc12.2.xml on Linux, start Eclipse and the Oxygen
standalone preferences will be automatically imported in Eclipse. The same for importing the Eclipse plugin settings in
Oxygen standalone: delete the file [user-home-folder]/com.oxygenxml/oxyOptionsSa12.2.xml on
Windows / [user-home-folder]/.com.oxygenxml/oxyOptionsSa12.2.xml on Linux, start the Oxygen
standalone distribution and the Eclipse settings will be automatically imported in Oxygen standalone.

Reset Global Options

To reset all global preferences to their default values you have to go to menu Options > Reset Global Options > Reset
Global Options . . The project level preferences are not changed by this action. The list of transformation scenarios
will be reset to the default scenarios.

Scenarios Management

You can import, export and reset the global scenarios for transformation and validation with the following actions:

• The action Options > Import Global Transformation Scenarios loads a set of transformation scenarios from a
properties file that was created with the action Export Global Transformation Scenarios.

• The action Options > Export Global Transformation Scenarios stores all the global (not project-level)
transformation scenarios in a properties file that can be used later by the action Import Global Transformation
Scenarios.

• The action Options > Import Global Validation Scenarios loads a set of validation scenarios from a properties
file that was created with the action Export Global Validation Scenarios.

• The action Options > Export Global Validation Scenarios stores all the global (not project-level) validation
scenarios in a separate properties file.

The options of Export Global Transformation Scenarios and Export Global Validation Scenarios is used to store
all the scenarios in a separate file which is a properties file. In this file will also be saved the associations between
document URLs and scenarios. You can load the saved scenarios using the actions Import Global Transformation
Scenarios and Import Global Validation Scenarios. All the imported scenarios will have added to the name the word
import to distinguish the existing scenarios and the imported ones.

Editor Variables

An editor variable is a shorthand notation for a file path or folder path. It is used in the definition of a command (the
input URL of a transformation, the output file path of a transformation, the command line of an external tool, etc.) to

722 | Oxygen XML Editor | Configuring the Application

make a command or a parameter generic and reusable with other input files. When the same command is applied to
different files, the notation is expanded at the execution of the command so that the same command has different effects
depending on the actual file.

The following editor variables can be used in Oxygen commands of external engines or other external tools, in
transformation scenarios and in validation scenarios:

• ${oxygenHome} - Oxygen installation folder as URL.
• ${oxygenInstallDir} - Oxygen installation folder as file path.
• ${frameworks} - The path (as URL) of the frameworks subfolder of the Oxygen install folder.
• ${frameworksDir} - The path (as file path) of the frameworks subfolder of the Oxygen installation folder.
• ${home} - The path (as URL) of the user home folder.
• ${homeDir} - The path (as file path) of the user home folder.
• ${pdu} - Current project folder as URL.
• ${pd} - Current project folder as file path.
• ${pn} - Current project name.
• ${cfdu} - Current file folder as URL, that is the path of the current edited document up to the name of the parent

folder, represented as a URL.
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent

folder.
• ${cfn} - Current file name without extension and without parent folder.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document represented

as URL.
• ${ps} - Path separator, that is the separator which can be used on the current platform (Windows, Mac OS X, Linux)

between library files specified in the class path.
• ${timeStamp} - Time stamp, that is the current time in Unix format. It can be used for example to save transformation

results in different output files on each transform.
• ${caret} - The position where the caret is inserted. This variable can be used in a code template or in a selection

plugin.
• ${selection} - The text content of the current selection in the editor panel. This variable can be used in a code template

or in a selection plugin.

Custom Editor Variables

An editor variable can be created by the user and included in any user defined expression where a built-in editor variable
is also allowed. For example a custom editor variable may be necessary for configuring the command line of an external
tool, the working directory of a custom validator, the command line of a custom XSLT engine, a custom FO processor,
etc. All the custom editor variables are listed together with the built-in editor variables, for example when editing the
working folder or the command line of an external tool or of a custom validator, the working directory, etc.

Creating a custom editor variable is very simple: just specify the name that will be used in user defined expressions, the
value that will replace the variable name at runtime and a textual description for the user of that variable.

An editor variable can be created also from a Java system property. For example the Java system property var.name
can be inserted in any expression where built-in editor variables like ${currentFileURL} are allowed: just type
${system(var.name)} in the field where you need that Java system property.

An editor variable can be created also from an environment variable of the operating system. For example the environment
variable VAR_NAME can be inserted in any expression where built-in editor variables like ${currentFileURL} are
allowed: just type ${env(VAR_NAME)} where you need the environment variable.

The current date can be inserted at cursor location with the custom variable ${date(yyyy-MM-dd)}. The date format
is: the year with 4 digits, the month with 2 letters, the day with 2 letters.

The custom editor variables are configured in Preferences.

Oxygen XML Editor | Configuring the Application | 723

Configure Toolbars

You can configure the toolbars that appear in the current editor page (Author mode, Text mode, Grid mode, Schema
Design mode) using the Configure toolbars dialog that is opened from menu Window > Configure toolbars

Figure 447: Configure Toolbars Dialog

724 | Oxygen XML Editor | Configuring the Application

Chapter

25

Common Problems

This chapter presents common problems that may appear when running the
application and the solutions for these problems.

Topics:

• XML Document Opened After a
Long Time

• Out Of Memory Error When I
Open Large Documents

• Special Characters Are Replaced
With a Square in Editor

• XSLT Debugger Is Very Slow
• The Scroll Function of my

Notebook's Trackpad is Not
Working

• NullPointerException at Startup
on Windows XP

• Crash at Startup on Windows with
an Error Message About a File
nvoglv32.dll

• Oxygen Crashed on My Mac OS
X Computer

• Wrong Highlights of Matched
Words in a Search in User
Manual

• Keyboard Shortcuts Do Not Work
• After Installing Oxygen I Cannot

Open XML Files in Internet
Explorer Anymore

• I Cannot Associate Oxygen With
a File Type on My Windows
Computer

• The Files Are Opened in Split
Panels When I Restart the
Oxygen Application

• Grey Window on Linux With the
Compiz / Beryl Window Manager

• Drag and Drop Without Initial
Selection Does Not Work

• Set Specific JVM Version on Mac
OS X

• Segmentation Fault Error on Mac
OS X

• Damaged File Associations on
Mac OS X

• I Cannot Set XML Files to Open
With Oxygen

• I Cannot Connect to SVN
Repository From Repositories
View

• Problem Report Submitted on the
Technical Support Form

• Cannot cancel a system
shutdown when there is at least
one modified document open in
Oxygen

726 | Oxygen XML Editor | Common Problems

XML Document Opened After a Long Time

Oxygen opens an XML document after a long time. Why does it happen?

Usually the time necessary for opening an XML document is long when the whole content of your document is on a
single line or the document size is very large. If the content is on a single line please enable the Format and indent the
document on open preference from menu Options > Preferences > Editor > Format before opening the document.
If the document is very large (above 30 MB) you should make sure that the minimum limit of document size that enables
the support for editing large documents (the value of the option Optimize loading in the Text page for files over) is less
than the size of your document. If that fails and you get an Out Of Memory error (OutOfMemoryError) you should
increase the memory available to Oxygen.

Out Of Memory Error When I Open Large Documents

I am trying to open a file larger than 100 MB for editing in Oxygen but it keeps telling me it runs out of memory
(OutOfMemoryError). What can I do?

You should make sure that the minimum limit of document size that enables the support for editing large documents
(the value of the option Optimize loading in the Text page for files over) is less than the size of your document. That
will enable the optimized support for large documents. If that fails and you still get an Out Of Memory error you should
increase the memory available to Oxygen.

Special Characters Are Replaced With a Square in Editor

My file was created with other application and it contains special characters like é, ©, ®, etc. Why does Oxygen display
a square for these characters when I open the file in Oxygen ?

You must set a font able to render the special characters in the Font preferences. If it is a text file you must set also the
encoding used for non XML files. If you want to set a font which is installed on your computer but that font is not
accessible in the Font preferences that means the Java virtual machine is not able to load the system fonts, probably
because it is not a True Type font. It is a problem of the Java virtual machine and a possible solution is to copy the font
file in the [JVM-home-folder]/lib/fonts folder. [JVM-home-folder] is the value of the property java.home
which is available in the System properties tab of the About dialog that is opened from menu Help > About .

XSLT Debugger Is Very Slow

When I run a transformation in the XSLT Debugger perspective it is very slow. Can I increase the speed?

If the transformation produces HTML or XHTML output you should disable rendering of output in the XHTML output
view during the transformation process. In order to view the XHTML output result you can run the transformation in
the Editor perspective with the option Open in browser enabled or run it in the XSLT Debugger perspective, save the
text output area to a file and use a browser application for viewing it, for example Firefox or Internet Explorer.

Oxygen XML Editor | Common Problems | 727

The Scroll Function of my Notebook's Trackpad is Not Working

I got a new notebook (Lenovo Thinkpad™ with Windows) and noticed that the scroll function of my trackpad is not
working in Oxygen XML Editor .

It is a problem of the Synaptics™ trackpads which can be fixed by adding the following lines to the C:\Program
Files\Synaptics\SynTP\TP4table.dat file:

,,oxygen.exe,*,*,*,WheelStd,1,9
,,author.exe,*,*,*,WheelStd,1,9
,,syncroSVNClient.exe,*,*,*,WheelStd,1,9
,,diffDirs.exe,*,*,*,WheelStd,1,9
,,diffFiles.exe,*,*,*,WheelStd,1,9

NullPointerException at Startup on Windows XP

When I start Oxygen on Windows XP I get the following error. What can I do?

Cannot start Oxygen.
Due to:java.lang.NullPointerException
java.lang.NullPointerException
at com.sun.java.swing.plaf.windows.XPStyle.getString(Unknown Source)
at com.sun.java.swing.plaf.windows.XPStyle.getString(Unknown Source)
at com.sun.java.swing.plaf.windows.XPStyle.getDimension(Unknown Source)
at com.sun.java.swing.plaf.windows.WindowsProgressBarUI.
getPreferredInnerHorizontal(Unknown Source)

The error is caused by a a bug in the Java runtime from Sun Microsystems. You can avoid it by setting the Java system
property com.oxygenxml.no.xp.theme to the value true in the startup script, that is adding the startup parameter
-Dcom.oxygenxml.no.xp.theme=true. If you start Oxygen with the oxygen.bat script just add the
parameter-Dcom.oxygenxml.no.xp.theme=true to the java command in the script. If you start Oxygen from the Start
menu shortcut add the same parameter on a new line in the file [oXygen-install-folder]\oxygen.vmoptions
.

Crash at Startup on Windows with an Error Message About a File nvoglv32.dll

I try to start Oxygen on Windows but it crashed with an error message about “Fault Module Name: nvoglv32.dll”. What
is the problem?

It is an OpenGL driver issue that can be avoided by creating an empty file called opengl32.dll in the Oxygen install
folder (if you start Oxygen with the shortcut created by the installer on the Start menu or on Desktop) or in the subfolder
bin of the home folder of the Java virtual machine that runs Oxygen (if you start Oxygen with the oxygen.bat
script). The home folder of the Java virtual machine that runs Oxygen is the value of the property java.home which is
available in the System properties tab of the About dialog that is opened from menu Help > About .

728 | Oxygen XML Editor | Common Problems

http://bugs.sun.com/bugdatabase/view_bug.do;jsessionid=1068feedb408f5f279405ff0c75:YfiG?bug_id=6342514

Oxygen Crashed on My Mac OS X Computer

Oxygen crashed the Apple Java virtual machine/Oxygen could not start up on my Mac OS X computer due to a JVM
crash. What can I do?

Usually it is an incompatibility between the Apple JVM and a native library of the host system. More details are available
in the crash log file generated by OS X and reported in the crash error message.

Wrong Highlights of Matched Words in a Search in User Manual

When I do a keyword search in the User Manual that comes with the Oxygen application the search highlights the wrong
word in the text. Sometimes the highlighted word is several words after the matched word. What can I do to get correct
highlights?

This does not happen when Oxygen runs with a built-in Java virtual machine, that is a JVM that was installed by Oxygen
in a subfolder of the installation folder, for example on Windows and Linux when installing Oxygen with the installation
wizard specific for that platform. When Oxygen runs from an All Platforms installation it uses whatever JVM was found
on the host system which may be incompatible with the JavaHelp indexer used for creating the built-in User Manual.
Such a JVM may offset the highlight of the matched word with several characters, usually to the right of the matched
word. In order to see the highlight exactly on the matched word it is recommended to install the application with the
specific installation wizard for your platform (available only for Windows and Linux).

Keyboard Shortcuts Do Not Work

The keyboard shortcuts listed in Options > Preferences > Menu Shortcut Keys do not work. What can I do?

Usually this happens when a special keyboard layout is set in the operating system which generates other characters
than the usual ones for the keys of a standard keyboard. For example if you set the extended Greek layout for your
keyboard you should return to the default Greek layout or to the English one. Otherwise the Java virtual machine that
runs the application will receive other key codes than the usual ones for a standard keyboard.

After Installing Oxygen I Cannot Open XML Files in Internet Explorer Anymore

Before installing Oxygen I had no problems opening XML files in Internet Explorer. Now when I try to open an XML
file in Internet Explorer it opens the file in Oxygen. How can I load XML files in Internet Explorer again?

XML files are opened in Oxygen because Internet Explorer uses the Windows system file associations for opening files
and you associated XML files with Oxygen in the installer panel called File Associations therefore Internet Explorer
opens XML files with the associated Windows application.

By default the association with XML files is disabled in the Oxygen installer panel called File Associations. When you
enabled it the installer displayed a warning message about the effect that you experience right now.

For opening XML files in Internet Explorer again you have to set Internet Explorer as the default system application
for XML files, for example by right-clicking on an XML file in Windows Explorer, selecting Open With > Choose
Program , selecting IE in the list of applications and selecting the checkbox Always use the selected program. Also
you have to run the following command from a command line:

wscript revert.vbs

Oxygen XML Editor | Common Problems | 729

where revert.vbs is a text file with the following content:

 function revert()
 Set objShell = CreateObject("WScript.Shell")
 objShell.RegWrite "HKCR\.xml\", "xmlfile", "REG_SZ"
 objShell.RegWrite "HKCR\.xml\Content Type", "text/xml", "REG_SZ"
 end function

 revert()

I Cannot Associate Oxygen With a File Type on My Windows Computer

I cannot associate the Oxygen application with a file type on my Windows computer by right clicking on a file in
Windows Explorer, selecting Open With > Choose Program and browsing to the file oxygen.exe. When I select
the file oxygen.exe in the Windows file browser dialog the Oxygen application is not added to the list of applications
in the Open With dialog. What can I do?

The problem is due to some garbage Windows registry entries remained from versions of Oxygen older than version
9.0. Please uninstall all your installed versions of Oxygen and run a registry cleaner application for cleaning these older
entries. After that just reinstall your current version of Oxygen and try again to create the file association.

The Files Are Opened in Split Panels When I Restart the Oxygen Application

When I close the Oxygen application with multiple files open and then restart it, every file opens in a split panel of the
editing area instead of a tab sharing with the other opened files the same editing area which organizes the editors in a
tabbed pane. I want to have the files arranged as a tabbed pane as they used to be arranged before closing the Oxygen
application.

This happens sometimes when several files are opened automatically on startup. It is a problem of the JIDE docking
views library used in Oxygen for docking and floating views. The workaround is to run the action Window > Reset
Layout . If you have a specific layout of the Oxygen views which you want to preserve when running this action you
should set your layout with the option Use fixed layout that is available from menu Options > Preferences >
Perspectives Layout .

Grey Window on Linux With the Compiz / Beryl Window Manager

I try to run Oxygen on Linux with the Compiz / Beryl window manager but I get only a grey window which does not
respond to user actions. Sometimes the Oxygen window responds to user actions but after opening and closing an Oxygen
dialog or after resizing the Oxygen window or a view of the Oxygen window the content of this window becomes grey
and it does not respond to user actions. What is wrong?

Sun Microsystems' Java virtual machine does not support the Compiz window manager and the Beryl one very well. It
is expected that better support for Compiz / Beryl will be added in future versions of their Java virtual machine. You
should turn off the special effects of the Compiz / Beryl window manager before starting the Oxygen application or
switch to other window manager.

730 | Oxygen XML Editor | Common Problems

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6429775

Drag and Drop Without Initial Selection Does Not Work

When I try to drag with the mouse an unselected file from the Project view or the DITA Maps Manager view, the drag
never starts, it only selects the resource. I need to drag the resource again after it becomes selected. As a result any drag
and drop without initial selection becomes a two step operation. How can I fix this?

This is a bug present in JVM versions prior to 1.5.0_09. This issue is fixed in 1.5.0_09 and newer versions (including
1.6). See the installation instructions for setting a specific JVM version for running the Oxygen application.

Set Specific JVM Version on Mac OS X

How do I configure Oxygen to run with the version X of the Apple Java virtual machine on my Mac OS X computer?

Oxygen uses the first JVM from the list of preferred JVM versions set on your Mac computer that has a version number
1.5.0 or higher. You can move your desired JVM version up in the preferred list by dragging it with the mouse on a
higher position in the list of JVMs available in the Java Preferences panel that is opened from Applications > Utilities
> Java > Java Preferences .

Segmentation Fault Error on Mac OS X

On my Mac OS X machine the application gives a Segmentation fault error when I double-click on the application icon.
Sometimes it gives no error but it does not start. What is the problem?

Please make sure you have the latest Java update from the Apple website installed on your Mac OS X computer. If
installing the latest Java update doesn't solve the problem please copy the file JavaApplicationStub from the
/System/Frameworks/JavaVM.framework folder to the Oxygen.app/Contents/MacOS folder. For
browsing the .app folder you have to (CMD+click) on the Oxygen icon and select Show Package Contents.

Damaged File Associations on Mac OS X

After upgrading OS X to version 10.4.x / Oxygen to version 6.x Oxygen is not associated anymore to the file types
XML, XSL, XSD, etc. This worked in the previous version of Oxygen. How can I create the file associations again?

The upgrade damaged the file associations in the LaunchService Database on your Mac OS X machine. Please rebuild
the LaunchService Database with the following procedure. This will reset all file associations and will rescan the entire
file system searching for applications that declare file associations and collecting them in a database used by Finder.

1. Find all the Oxygen installations on your hard drive.

2. Delete them by dragging them to the Trash.

3. Clear the Trash.

4. Unpack the Oxygen installation kit on your desktop.

5. Copy the contents of the archive into the folder / Applications / Oxygen.

6. Run the following command in a Terminal:

/System/Library/Frameworks/CoreServices.framework/Frameworks/
LaunchServices.framework/Support/lsregister -kill -r -domain local -domain
system -domain user -dump

Oxygen XML Editor | Common Problems | 731

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4521075

7. Restart Finder with the following command:

killall Finder

8. Create a XML or XSD file on your desktop.
It should take the Oxygen icon.

9. Double click the file.

10. Accepting the confirmation dialog.

Oxygen will start up and the file associations work correctly.

I Cannot Set XML Files to Open With Oxygen

After upgrading OS X to version 10.4.1 Tiger I am not able to set XML files to open with Oxygen when I click Change
All in the Get Info dialog. This worked in OS X 10.3.x.

On Mac OS X Tiger you must add an entry to the Info.plist file of the Oxygen bundle. Tiger was released after
Oxygen version 6.0 so this change could not be included in the Oxygen 6.0 release. Please close Oxygen, press
(Cmd+click) on the Oxygen icon, select Show Package Contents, go to Contents, edit the Info.plist file, add
the entry:

 <key>CFBundleIdentifier</key>
 <string>ro.sync.exml.Oxygen</string>

and restart Oxygen. Now you can select Change All in the Get Info dialog to make the association.

I Cannot Connect to SVN Repository From Repositories View

I cannot connect to a SVN repository from the Repositories view of SVN Client. How can I find more details about the
error?

First check that you entered the correct URL of the repository in the Repositories view. Also check that a SVN server
is running on the server machine specified in the repository URL and is accepting connections from SVN clients. You
can check that the SVN server accepts connections with the command line SVN client from CollabNet.

If you try to access the repository with a svn+ssh URL also check that a SSH server is running on port 22 on the server
machine specified in the URL.

If the above conditions are verified and you cannot connect to the SVN repository please generate a logging file on your
computer and send the logging file to support@oxygenxml.com . For generating a logging file you need to create a text
file called log4j.properties in the install folder with the following content:

log4j.rootCategory= debug, R2

log4j.appender.R2=org.apache.log4j.RollingFileAppender
log4j.appender.R2.File=logging.log
log4j.appender.R2.MaxFileSize=12000KB
log4j.appender.R2.MaxBackupIndex=20
log4j.appender.R2.layout=org.apache.log4j.PatternLayout
log4j.appender.R2.layout.ConversionPattern=%r %p [%t] %c - %m%n

Restart the application, reproduce the error, close the application and send the file logging.log generated in the
install directory to support@oxygenxml.com .

732 | Oxygen XML Editor | Common Problems

Problem Report Submitted on the Technical Support Form

What details should I add to my problem report that I enter on the Technical Support online form of the product website?

For problems like server connection error, unexpected delay while editing a document, a crash of the application, etc
for which the usual details requested on the Technical Support online form are not enough you should generate a log
file and attach it to the problem report. In case of a crash you should also attach the crash report file generated by your
operating system. For generating a logging file you need to create a text file called log4j.properties in the install
folder with the following content:

log4j.rootCategory= debug, R2

log4j.appender.R2=org.apache.log4j.RollingFileAppender
log4j.appender.R2.File=logging.log
log4j.appender.R2.MaxFileSize=12000KB
log4j.appender.R2.MaxBackupIndex=20
log4j.appender.R2.layout=org.apache.log4j.PatternLayout
log4j.appender.R2.layout.ConversionPattern=%r %p [%t] %c - %m%n

Restart the application, reproduce the error and close the application. The log file is called logging.log and is located
in the install folder.

Cannot cancel a system shutdown when there is at least one modified
document open in Oxygen

If I try to shutdown my Win XP when there is at least one modified document open in Oxygen, I am prompted to cancel
the shutdown or force quit the application. If I choose Cancel, the system shuts down anyway. Why is that?

This problem was reported on Windows XP systems only. The known workaround is to start Oxygen using the
oxygen.bat script.

Oxygen XML Editor | Common Problems | 733

	Contents
	Introduction
	Key Features and Benefits of Oxygen XML Editor

	Installation
	Installation Requirements
	Platform Requirements
	Operating System
	Environment Requirements
	Tools
	Java Virtual Machine Prerequisites

	JWS-specific Requirements

	Installation Instructions
	Windows Installation
	Mac OS X Installation
	Linux Installation
	All Platforms Installation
	Unix / Linux Server Configuration
	Windows NT Terminal Server Configuration
	Unattended Installation
	Custom Settings in Unattended Installation
	Privacy Options

	Java Web Start (JWS) Installer
	Setting a Parameter in the Launcher Configuration File / Startup Script
	Starting the Application
	Starting the Application on Windows
	Starting the Application on Mac OS X
	Starting the Application on Linux
	Starting the Application with the All Platforms Kit

	Obtaining and Registering a License Key
	Named User License Registration
	Named User License Registration with Text File
	How Floating (Concurrent) Licenses Work
	Setting up a Floating License Server Running as a Java Servlet
	Report Page

	Setting up a Floating License Server Running as a Standalone Process
	Install the License Server as a Windows Service

	Request a Floating License from a License Server Running as a Standalone Process
	Request a Floating License from a License Server Running as a Java Servlet
	Release a Floating License

	License Registration with an Activation Code

	Unregistering the License Key
	Upgrading the Oxygen Application
	Upgrading the Standalone Application

	Checking for New Versions
	Uninstalling the Application
	Uninstalling the Standalone Application
	Unattended Uninstall

	Performance Problems
	Large Documents
	External Processes
	Display Problems on Linux/Solaris

	Getting Started
	Getting Help
	Supported Types of Documents
	Perspectives
	Editor Perspective
	XSLT Debugger Perspective
	XQuery Debugger Perspective
	Database Perspective
	Tree Editor Perspective

	Dockable Views and Editors

	Editing Documents
	Working with Unicode
	Opening and Saving Unicode Documents
	The Unicode Toolbar

	Opening and Closing Documents
	Creating New Documents
	The New Document Dialog
	Creating Documents Based on Templates
	Document Templates

	Saving Documents
	Opening Existing Documents
	Open/Find Resource

	Opening and Saving Remote Documents via FTP/SFTP/WebDAV
	The Dialog Open Using FTP/SFTP/WebDAV
	Changing File Permissions on a Remote FTP Server
	WebDAV over HTTPS
	How to Add a HTTPS Server Certificate to Oxygen

	Opening the Current Document in a Web Browser
	Closing Documents
	Viewing File Properties

	Editing XML Documents
	Associate a Schema to a Document
	Setting a Schema for Content Completion
	Supported Schema Types for XML Documents
	Setting a Default Schema
	Making the Schema Association Explicit in the XML Instance Document
	Associating a Schema With the Namespace of the Root Element
	The xml-model Processing Instruction

	Learning Document Structure
	Create a DTD from Learned Document Structure

	Streamline with Content Completion
	Set Schema for Content Completion
	Content Completion in Documents with Relax NG Schemas
	Schema Annotations
	Content Completion Helper Panels
	The Model Panel
	The Element Structure Panel
	The Annotation Panel

	The Attributes Panel
	The Elements View
	The Entities View

	Code Templates

	Validating XML Documents
	Checking XML Well-Formedness
	Validating XML Documents Against a Schema
	Marking Validation Errors and Warnings
	Validation Example - A DocBook Validation Error
	Caching the Schema Used for Validation
	Automatic Validation
	Custom Validators
	Linked Output Messages of an External Engine

	Validation Scenario
	How to Create a Validation Scenario

	Sharing Validation Scenarios
	Validation Actions in the User Interface
	References to XML Schema Specification
	Resolving References to Remote Schemas with an XML Catalog

	Document Navigation
	Quick Document Browsing Using Bookmarks
	Folding of the XML Elements
	Outline View
	XML Document Overview
	Outline Specific Actions
	Modification Follow-up
	Document Structure Change
	The Popup Menu of the Outline Tree

	Document Tag Selection

	Navigation Buttons
	Using the Go To Dialog

	Grouping Documents in XML Projects
	Large Documents
	Including Document Parts with DTD Entities
	Including Document Parts with XInclude

	Using the Project View
	Team Collaboration - Subversion
	Project Level Settings

	Working with XML Catalogs
	XML Catalog

	Converting Between Schema Languages
	Editing XML Tree Nodes
	Formatting and Indenting Documents (Pretty Print)
	Viewing Status Information
	Image Preview
	Making a Persistent Copy of Results
	Locking and Unlocking XML Markup
	Adjusting the Transparency of XML Markup
	XML Editor Specific Actions
	Split Actions
	Edit Actions
	Select Actions
	Source Actions
	XML Document Actions
	XML Refactoring Actions
	Smart Editing
	Syntax Highlight Depending on Namespace Prefix

	Editing XML Schemas
	XML Schema Text Editor
	Special Content Completion Features
	References to XML Schema Specification
	XML Schema Actions
	Flatten an XML Schema

	XML Schema Diagram Editor
	Introduction
	XML Schema Components
	xs:schema
	xs:element
	xs:attribute
	xs:complexType
	xs:simpleType
	xs:group
	xs:attributeGroup
	xs:include
	xs:import
	xs:redefine
	xs:notation
	xs:sequence, xs:choice, xs:all
	xs:any
	xs:anyAttribute
	xs:unique
	xs:key
	xs:keyRef
	xs:selector
	xs:field
	Constructs Used to Group Schema Components
	Attributes
	Constraints
	Substitutions

	Navigation in the Schema Diagram
	Schema Validation
	Schema Editing Actions
	Schema Outline View
	The Attributes View
	The Facets View
	Editing Patterns

	The Palette View
	Edit Schema Namespaces

	Contextual Editing
	Create an XML Schema From a Relational Database Table
	Generate Sample XML Files
	Running the XML Instance Generator From Command Line

	XML Schema Regular Expressions Builder
	Generating Documentation for an XML Schema
	Generate Documentation in HTML Format
	Generate Documentation in PDF, DocBook or a Custom Format
	Generating Documentation From the Command-Line Interface

	Searching and Refactoring Actions
	Search and Refactor Operations Scope
	Resource Hierarchy / Dependencies View
	Component Dependencies View
	Highlight Component Occurrences
	XML Schema Quick Assist Support
	Linking Between Development and Authoring

	Editing Relax NG Schemas
	Relax NG Schema Diagram
	Introduction
	Full Model View
	Symbols Used in the Schema Diagram
	Logical Model View
	Actions Available in the Diagram View
	Relax NG Outline View

	Relax NG Editor Specific Actions
	Searching and Refactoring Actions
	Resource Hierarchy/Dependencies View
	Component Dependencies View
	RNG Quick Assist Support
	Configuring a Custom Datatype Library for a RELAX NG Schema
	Linking Between Development and Authoring

	Editing NVDL Schemas
	NVDL Schema Diagram
	Introduction
	Full Model View
	Actions Available in the Diagram View
	NVDL Outline View

	NVDL Editor Specific Actions
	Searching and Refactoring Actions
	Component Dependencies View
	Linking Between Development and Authoring

	Editing XSLT Stylesheets
	Validating XSLT Stylesheets
	Custom Validation of XSLT Stylesheets
	Associate a Validation Scenario

	Contextual Editing
	Content Completion in XSLT Stylesheets
	Content Completion in XPath Expressions
	Tooltip Helper for the XPath Functions Arguments

	Code Templates

	The XSLT/XQuery Input View
	The XSLT Input View

	The XSLT Outline View
	XSLT Stylesheet Documentation Support
	Generating Documentation for an XSLT Stylesheet
	Generate Documentation in HTML Format
	Generate Documentation in a Custom Format
	Generating Documentation From the Command Line

	Finding XSLT References and Declarations
	Highlight Component Occurrences
	XSLT Refactoring Actions
	Resource Hierarchy/Dependencies View
	Component Dependencies View
	XSLT Quick Assist Support
	Linking Between Development and Authoring

	Editing XQuery Documents
	XQuery Outline View
	Folding in XQuery Documents
	Generating HTML Documentation for an XQuery Document

	Editing CSS Stylesheets
	Validating CSS Stylesheets
	Content Completion in CSS Stylesheets
	CSS Outline View
	Folding in CSS Stylesheets
	Formatting and Indenting CSS Stylesheets (Pretty Print)
	Other CSS Editing Actions

	Editing XProc Scripts
	Editing Schematron Schemas
	Combined RELAX NG / W3C XML Schemas and Schematron Schema
	Validate an XML Document

	SVG Documents
	The Standalone SVG Viewer
	The Preview Result Panel

	Integrating External Tools
	Editing Very Large Documents
	Insufficient Memory
	Large File Viewer
	Hex Viewer
	Scratch Buffer
	Changing the User Interface Language
	Handling Read-Only Files
	Editing Documents with Long Lines

	Authoring in the Tagless Editor
	Authoring XML Documents Without the XML Tags
	General Author Presentation
	Author Views
	Outline View
	XML Document Overview
	Modification Follow-up
	Document Structure Change
	Outline Filters
	The Contextual Menu of the Outline Tree

	Elements View
	Attributes View
	Entities View

	The Author Editor
	Navigating the Document Content
	Displaying the Markup
	Bookmarks

	Position Information Tooltip
	Displaying Referred Content
	Finding and Replacing Text
	Contextual Menu
	Editing XML Documents in Author
	Editing the XML Markup
	Code Templates

	Editing the XML Content
	Removing the Text Content of the Current Element
	Duplicating Elements with Existing IDs

	Table Layout and Resizing
	DocBook Table Layout
	XHTML Table Layout
	DITA Table Layout

	Image Rendering
	Installing Java Advanced Imaging Image I/O Tools plug-in

	Adding an Image
	Editing MathML Notations
	Configure the MathFlow Editor

	Refreshing the Content

	Validation and Error Presenting
	Whitespace Handling
	Minimize Differences Between Versions Saved on Different Computers

	Review
	Managing Changes
	Managing Comments

	Profiling / Conditional Text
	Create Profiling Attributes
	Create Profiling Condition Sets
	Apply Profiling Condition Sets

	Apply Profiling Attributes
	Profiling / Conditional Text Menu

	Author for DITA
	Creating DITA Maps and Topics
	Editing DITA Maps
	Editing Actions
	Creating a Map
	Validating DITA Maps
	Create a Topic in a Map
	Organize Topics in a Map
	Create a Bookmap
	Create a Subject Scheme
	Create Relationships Between Topics
	Advanced Operations
	Inserting a Reference, a Key Definition, a Topic Set
	Inserting a Topic Heading
	Inserting a Topic Group
	Edit Properties

	Transforming DITA Maps and Topics
	Available Output Formats
	The TocJS Transformation
	WebHelp Output Format

	Configuring a DITA Transformation
	Running a DITA Map ANT Transformation
	Customizing a DITA Scenario
	The Parameters Tab
	The Filters Tab
	The Advanced Tab
	The Output Tab
	The FO Processor Tab

	Set a Font for PDF Output Generated with Apache FOP

	DITA-OT Customization
	Support for Transformation Customizations
	Using Your Custom Build File
	Customizing the Oxygen Ant Tool
	Upgrading to a New Version of DITA OT
	Increasing the Memory for the Ant Process
	Resolving Topic References Through an XML Catalog

	DITA Specialization Support
	Integration of a DITA Specialization
	Editing DITA Map Specializations
	Editing DITA Topic Specializations

	Use a New DITA Open Toolkit in Oxygen
	Reusing Content
	Working with Content References
	How to Work with Reusable Components
	Insert a Direct Content Reference

	DITA Profiling / Conditional Text
	Profiling / Conditional Text Markers
	Publish Profiled Text

	Working with MathML

	Predefined Document Types
	Document Type
	The DocBook 4 Document Type
	Author Extensions
	Transformation Scenarios
	Templates

	The DocBook 5 Document Type
	Author Extensions
	Transformation Scenarios
	DocBook to EPUB Transformation

	Templates

	The DocBook Targetset Document Type
	Templates

	The DITA Topics Document Type
	Author Extensions
	Transformation Scenarios
	Templates

	The DITA Map Document Type
	Author Extensions
	Transformation Scenarios
	Templates

	The XHTML Document Type
	Author Extensions
	Transformation Scenarios
	Templates

	The TEI P4 Document Type
	Author Extensions
	Transformation Scenarios
	Templates

	The TEI P5 Document Type
	Transformation Scenarios
	Templates

	The MathML Document Type
	Templates

	The Microsoft Office OOXML Document Type
	Templates

	The Open Office ODF Document Type
	Templates

	The OASIS XML Catalog Document Type
	Templates

	The XML Schema Document Type
	The Relax NG Document Type
	The NVDL Document Type
	The Schematron Document Type
	The Schematron 1.5 Document Type
	The XSLT Document Type
	The XMLSpec Document Type
	Transformation Scenarios
	Templates

	The FO Document Type
	Transformation Scenarios

	The EAD Document Type
	Templates

	The EPUB Document Type

	Author Developer Guide
	Simple Customization Tutorial
	XML Schema
	CSS Stylesheet
	The XML Instance Template

	Advanced Customization Tutorial - Document Type Associations
	Author Settings
	Configuring Actions, Menus and Toolbars
	The Insert Section Action
	The Insert Table Action
	Configuring the Toolbars
	Configuring the Main Menu
	Configuring the Contextual Menu
	Customize Content Completion
	Author Default Operations
	The arguments of InsertFragmentOperation operation
	The arguments of SurroundWithFragmentOperation

	How to Add a Custom Action to an Existing Document Type

	Java API - Extending Author Functionality through Java
	Example 1. Step by Step Example. Simple Use of a Dialog from an Author Operation.
	Example 2. Operations with Arguments. Report from Database Operation.

	Configuring New File Templates
	Configuring XML Catalogs
	Configuring Transformation Scenarios
	Configuring Validation Scenarios
	Configuring Extensions
	Configuring an Extensions Bundle
	Preserve Style Markup on Copy and Paste from External Applications
	Implementing an Author Extension State Listener
	Implementing an Author Schema Aware Editing Handler
	Configuring a Content Completion Handler
	Configuring a Link target element finder
	The DefaultElementLocatorProvider implementation
	The XPointerElementLocator implementation
	The IDElementLocator implementation

	Creating a customized link target reference finder

	Configuring a custom Drag and Drop listener
	Configuring a References Resolver
	Configuring CSS Styles Filter
	Configuring a Table Column Width Provider
	Configuring a Table Cell Span Provider
	Configuring an Unique Attributes Recognizer

	Customizing the Default CSS of a Document Type
	Document Type Sharing

	CSS Support in Oxygen Author
	CSS 2.1 Features
	Supported CSS 2.1 Selectors
	Unsupported CSS 2.1 Selectors
	CSS 2.1 Properties

	CSS 3 Features
	CSS 3 Namespace Selectors
	The attr() Function: Properties Values Collected from the Edited Document.

	Additional Custom Selectors
	Oxygen CSS Extensions
	Media Type oxygen
	Folding Elements: foldable and not-foldable-child Properties
	Link Elements
	Display Tag Markers
	Oxygen Custom CSS Functions
	The local-name() Function
	The name() Function
	The url() function
	The base-uri() Function
	The parent-url() Function
	The capitalize() Function
	The uppercase() Function
	The lowercase() Function
	The concat() Function
	The replace() Function
	The unparsed-entity-uri() Function
	The attributes() Function
	The substring() Function
	The indexof() Function
	The lastindexof() Function
	The xpath() Function

	Example Files Listings - The Simple Documentation Framework Files
	XML Schema files
	sdf.xsd
	abs.xsd

	CSS Files
	sdf.css

	XML Files
	sdf_sample.xml

	XSL Files
	sdf.xsl

	Oxygen XML Author Component
	Licensing
	Installation Requirements
	Customization
	Deployment
	Web Deployment
	Troubleshooting

	Grid Editor
	Layouts: Grid and Tree
	Navigating the Grid
	Specific Grid Actions
	Sorting a Table Column
	Inserting a Row in a Table
	Inserting a Column in a Table
	Clearing the Content of a Column
	Adding Nodes
	Duplicating Nodes
	Refresh Layout
	Start Editing a Cell Value
	Stop Editing a Cell Value

	Drag and Drop in the Grid Editor
	Copy and Paste in the Grid Editor
	Bidirectional Text Support in the Grid Editor

	Transforming Documents
	Output Formats
	Transformation Scenario
	Batch Transformation
	Built-in Transformation Scenarios
	Defining a New Transformation Scenario
	XSLT Stylesheet Parameters
	Additional XSLT Stylesheets
	XSLT/XQuery Extensions
	Creating a Transformation Scenario
	ANT Transformations

	Sharing the Transformation Scenarios
	Transformation Scenarios View

	XSLT Processors
	Supported XSLT Processors
	Configuring Custom XSLT Processors
	Configuring the XSLT Processor Extensions Paths

	XSL-FO Processors
	The Built-in XSL-FO Processor
	Add a Font to the Built-in FOP - The Simple Version
	Add a Font to the Built-in FOP

	XProc Transformations
	XProc Transformation Scenario
	Integration of an External XProc Engine

	Querying Documents
	Running XPath Expressions
	What is XPath
	Oxygen's XPath Console
	The XPath Builder View

	Working with XQuery
	What is XQuery
	Syntax Highlight and Content Completion
	XQuery Outline View
	The XQuery Input View
	XQuery Validation
	Other XQuery Editing Actions
	Transforming XML Documents Using XQuery
	XQJ Transformers
	How to Configure an XQJ Data Source
	How to Configure an XQJ Connection

	Display Result in Sequence View
	Advanced Saxon HE/PE/EE Transform Options
	Updating XML Documents using XQuery

	Debugging XSLT Stylesheets and XQuery Documents
	Overview
	Layout
	Control Toolbar
	Information View
	Context Node View
	XPath Watch (XWatch) View
	Breakpoints View
	Messages View
	Stack View
	Output Mapping Stack View
	Trace History View
	Templates View
	Node Set View
	Variables View

	Multiple Output Documents in XSLT 2.0

	Working with the XSLT / XQuery Debugger
	Steps in a Typical Debug Process
	Using Breakpoints
	Inserting Breakpoints
	Removing Breakpoints

	Determining What XSLT / XQuery Expression Generated Particular Output

	Debugging Java Extensions
	Supported Processors for XSLT / XQuery Debugging

	Profiling XSLT Stylesheets and XQuery Documents
	Overview
	Viewing Profiling Information
	Invocation Tree View
	Hotspots View

	Working with XSLT/XQuery Profiler

	Comparing and Merging Documents
	Directories Comparison
	Directories Comparison User Interface
	Compare Menu
	Compare Toolbar
	Directories Selector

	Comparison Result
	Compare Images

	Files Comparison
	Main Menu
	File Menu
	Edit Menu
	Find Menu
	Compare Menu
	Options Menu
	Help Menu

	Compare Toolbar
	Files Selector
	File Contents Panel
	Word Level Comparison
	Character Level Comparison

	XML Diff API

	Working with Archives
	Browsing and Modifying Archive Structure
	Working with EPUB
	Create an EPUB
	Publish to EPUB

	Editing Files From Archives

	Working with Databases
	Relational Database Support
	Configuring Database Data Sources
	How to Configure an IBM DB2 Data Source
	How to Configure a Generic JDBC Data Source
	How to Configure a Microsoft SQL Server Data Source
	How to Configure a MySQL Data Source
	How to Configure an Oracle 11g Data Source
	How to Configure a PostgreSQL 8.3 Data Source

	Configuring Database Connections
	How to Configure an IBM DB2 Connection
	How to Configure a JDBC-ODBC Connection
	How to Configure a Microsoft SQL Server Connection
	How to Configure a MySQL Connection
	How to Configure an Oracle 11g Connection
	How to Configure a PostgreSQL 8.3 Connection

	Resource Management
	Data Source Explorer View
	Actions Available at Connection Level in Data Source Explorer View
	Actions Available at Catalog Level in Data Source Explorer View
	Actions Available at Schema Level in Data Source Explorer View
	Actions Available at Table Level in Data Source Explorer View
	XML Schema Repository Level
	Oracle's XML Schema Repository Level
	IBM DB2's XML Schema Repository Level
	Microsoft SQL Server's XML Schema Repository Level

	Table Explorer View

	SQL Execution Support
	Drag and Drop from Data Source Explorer View
	SQL Validation
	Executing SQL Statements

	Native XML Database (NXD) Support
	Configuring Database Data Sources
	How to Configure a Berkeley DB XML Data Source
	How to Configure an eXist Data Source
	How to Configure a MarkLogic Data Source
	How to Configure a Software AG Tamino Data Source
	How to Configure a Raining Data TigerLogic Data Source
	How to Configure a Documentum xDb (X-Hive/DB) 10 Data Source

	Configuring Database Connections
	How to Configure a Berkeley DB XML Connection
	How to Configure an eXist Connection
	How to Configure a MarkLogic Connection
	How to Configure a Software AG Tamino Connection
	How to Configure a Raining Data TigerLogic Connection
	How to Configure an Documentum xDb (X-Hive/DB) 10 Connection

	Data Source Explorer View
	Oracle XML DB Browser
	PostgreSQL Connection
	Berkeley DB XML Connection
	Actions Available at Connection Level
	Actions Available at Container Level
	Actions Available at Resource Level

	eXist Connection
	Actions Available at Connection Level
	Actions Available at Container Level
	Actions Available at Resource Level

	MarkLogic Connection
	Software AG Tamino Connection
	Actions Available at Connection Level
	Actions Available at Collection Level
	Actions Available at Schema Level
	Actions Available at Resource Level

	Documentum xDb (X-Hive/DB) Connection
	Actions Available at Connection Level
	Actions Available at Catalog Level
	Actions Available at Schema Resource Level
	Actions Available at Library Level
	Actions Available at Resource Level
	Documentum xDb (X-Hive/DB) 10 Parser Configuration for Adding XML Instances

	XQuery and Databases
	Build Queries With Drag and Drop From Data Source Explorer View
	XQuery Transformation
	XQuery Database Debugging
	Debugging with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger
	Debugging Queries Which Import Modules

	Debugging with Berkeley DB XML

	WebDAV Connection
	How to Configure a WebDAV Connection
	WebDAV Connection Actions
	Actions Available at Connection Level
	Actions Available at Folder Level
	Actions Available at File Level

	Importing Data
	Introduction
	Import from Database
	Import Table Content as XML Document
	Convert Table Structure to XML Schema

	Import from MS Excel Files
	Import from HTML Files
	Import from Text Files

	Content Management System (CMS) Integration
	Integration with Documentum (CMS)
	Configure Connection to Documentum Server
	How to Configure a Documentum (CMS) Data Source
	How to Configure a Documentum (CMS) Connection
	Known Issues

	Documentum (CMS) Actions in the Data Source Explorer View
	Actions Available on Connection
	Actions Available on Cabinets / Folders
	Actions Available on Resources

	Transformations on DITA Content from Documentum (CMS)

	Composing Web Service Calls
	Overview
	Composing a SOAP Request
	Testing Remote WSDL Files
	The UDDI Registry Browser
	Generate WSDL Documentation

	Digital Signatures
	Overview
	Canonicalizing Files
	Certificates
	Signing Files
	Verifying the Signature

	Syncro SVN Client
	Main Window
	Views
	Main Menu
	Main Toolbar
	Status Bar

	Getting Started
	SVN Repository Location
	Add / Edit / Remove Repository Locations
	Authentication

	Defining a Working Copy
	Check Out a Working Copy
	The History Dialog

	Use an Existing Working Copy

	Manage Working Copy Resources
	Edit Files
	Add Resources to Version Control
	Ignore Resources Not Under Version Control
	Delete Resources
	Copy Resources
	Move Resources
	Rename Resources
	Lock / Unlock Resources
	Scanning for Locks
	Locking a File
	Unlocking a File

	Synchronize with Repository
	View Differences
	Conflicts
	Real Conflicts vs Mergeable Conflicts
	Content Conflicts vs Property Conflicts
	Edit Real Content Conflicts
	Revert Your Changes
	Merge Conflicted Resources
	Drop Incoming Modifications
	Tree Conflicts

	Update the Working Copy
	Send Your Changes to the Repository
	Integration with Bug Tracking Tools

	Obtain Information for a Resource
	Request Status Information for a Resource
	Request History for a Resource
	History View
	The Contextual Menu of the History View

	Directory Change Set View

	Management of SVN Properties
	Branches and Tags
	Create a Branch / Tag
	Merging
	Merge Revisions
	Reintegrate a Branch
	Merge Two Different Trees
	Merge Options
	Merge Branches Task - First Step
	Resolve Merge Conflicts

	Switch the Repository Location
	Relocate a Working Copy
	Patches
	What Is a Patch
	Create a Patch Between Working Copy and Repository Revision
	Create a Patch Between Two Repository Revisions

	Working with Repositories
	Importing Resources Into a Repository
	Exporting Resources From a Repository
	Copy / Move / Delete Resources From a Repository

	Sparse Checkout

	Syncro SVN Client Views
	Repositories View
	Toolbar
	Contextual Menu Actions
	Assistant Actions

	Working Copy View
	Working Copy Settings
	Working Copy Format
	Refresh a Working Copy
	Contextual Menu Actions
	Drag and Drop Operations
	Assistant Actions
	Icons

	History View
	The History Filter Dialog
	The History Filter Field
	Features

	The Editor Panel of SVN Client
	Annotations View
	Compare View
	Toolbar

	Image Preview
	Compare Images View
	Properties View
	The svn:externals Property
	Toolbar / Contextual Menu

	Console View
	Dynamic Help View

	The Revision Graph of a SVN Resource
	Syncro SVN Client Preferences
	Command Line Reference
	Checkout Command
	Update Command
	Commit Command
	Diff Command
	Show History
	Refresh
	Synchronize
	Import
	Export
	Information
	Add
	Add to svn:ignore
	Delete
	Copy
	Move / Rename
	Mark resolved
	Revert
	Cleanup
	Show / Refresh Properties
	Branch / Tag
	Merge
	Scan for locks
	Lock
	Unlock
	Mark as merged
	Override and update
	Override and Commit
	Add / Edit property
	Remove property
	Revert changes from this revision
	Revert changes from these revisions

	Extending Oxygen with Plugins
	Introduction
	Oxygen Plugins
	General Plugin
	Selection Plugin
	Document Plugin
	Custom Protocol Plugin
	Resource Locking Custom Protocol Plugin
	Components Validation Plugin
	Workspace Access Plugin
	Open Redirect Plugin
	How to Write a CMS Integration Plugin
	Class Loading Issues

	How to Write A Custom Protocol Plugin

	How to Install a Plugin
	Example - A Selection Plugin

	Text Editor Specific Actions
	Undoing and Redoing User Actions
	Copying and Pasting Text
	Finding and Replacing Text in the Current File
	The Find / Replace Dialog
	The Find All Elements / Attributes Dialog
	The Quick Find Toolbar
	Keyboard Shortcuts for Finding the Next and Previous Match

	Finding and Replacing Text in Multiple Files
	Spell Checking
	Spell Checking Dictionaries
	Dictionaries for the Hunspell Checker
	Adding a Dictionary for the Hunspell Checker

	Dictionaries for the Java Checker

	Learned Words
	Ignored Words
	Automatic Spell Check
	Spell Checking in Multiple Files

	Changing the Font Size
	Word/Line Editor Actions
	Dragging and Dropping the Selected Text
	Inserting a File at Caret Position
	Opening the File at Caret in System Application
	Opening the File at Caret Position
	Switching Between Opened Tabs
	Printing a File
	Exiting the Application

	Configuring the Application
	Importing / Exporting Global Options
	Preferences
	Global
	Fonts
	Document Type Association
	Perspectives Layout
	Encoding
	Editor
	Pages
	Text
	Text / Diagram

	Grid
	Author
	Schema Aware
	Review
	Profiling / Conditional Text
	MathML
	Messages

	Schema Design
	Properties

	Format
	XML
	Whitespaces

	CSS
	JavaScript

	Content Completion
	Annotations
	XSL
	XPath
	XSD

	Colors
	Elements / Attributes by Prefix

	Open / Save
	Templates
	Code Templates
	Document Templates

	Spell Check
	Document Checking
	Mark Occurrences
	Custom Validation Engines

	CSS Validator
	XML
	XML Catalog
	XML Parser
	Saxon EE Validation

	XML Instances Generator
	XProc Engines
	XSLT/FO/XQuery
	XSLT
	Saxon6
	Saxon HE/PE/EE
	Saxon HE/PE/EE Advanced
	XSLTProc
	MSXML
	MSXML.NET

	XQuery
	Saxon HE/PE/EE
	Saxon HE/PE/EE Advanced

	Debugger
	Profiler
	FO Processors
	XPath
	Custom Engines

	Import
	Date / Time Patterns

	Data Sources
	Configuration of Data Sources
	Download Links for Database Drivers
	Table Filters

	SVN
	Working Copy
	Diff
	Messages

	Files Comparison
	Appearance

	Directories Comparison
	Appearance

	Archive
	Plugins
	External Tools
	Menu Shortcut Keys
	File Types
	SVN File Editors
	Custom Editor Variables
	HTTP(S) / (S)FTP / Proxy Configuration
	Advanced HTTP Settings
	(S)FTP

	Certificates
	XML Structure Outline
	View
	Messages
	Tree Editor

	Sharing Preferences
	Automatically Importing the Preferences from the Other Distribution
	Reset Global Options
	Scenarios Management
	Editor Variables
	Custom Editor Variables

	Configure Toolbars

	Common Problems
	XML Document Opened After a Long Time
	Out Of Memory Error When I Open Large Documents
	Special Characters Are Replaced With a Square in Editor
	XSLT Debugger Is Very Slow
	The Scroll Function of my Notebook's Trackpad is Not Working
	NullPointerException at Startup on Windows XP
	Crash at Startup on Windows with an Error Message About a File nvoglv32.dll
	Oxygen Crashed on My Mac OS X Computer
	Wrong Highlights of Matched Words in a Search in User Manual
	Keyboard Shortcuts Do Not Work
	After Installing Oxygen I Cannot Open XML Files in Internet Explorer Anymore
	I Cannot Associate Oxygen With a File Type on My Windows Computer
	The Files Are Opened in Split Panels When I Restart the Oxygen Application
	Grey Window on Linux With the Compiz / Beryl Window Manager
	Drag and Drop Without Initial Selection Does Not Work
	Set Specific JVM Version on Mac OS X
	Segmentation Fault Error on Mac OS X
	Damaged File Associations on Mac OS X
	I Cannot Set XML Files to Open With Oxygen
	I Cannot Connect to SVN Repository From Repositories View
	Problem Report Submitted on the Technical Support Form
	Cannot cancel a system shutdown when there is at least one modified document open in Oxygen

