
<oXygen/> XML Editor 11.2 User Manual
for Eclipse

SyncRO Soft Ltd.

<oXygen/> XML Editor 11.2 User Manual for Eclipse
SyncRO Soft Ltd.
Copyright © 2002-2009 SyncRO Soft Ltd. All Rights Reserved.

<oXygen/> XML Editor User Manual

Copyright © 2009 Syncro Soft SRL

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and
the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or
omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may
accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to
have been caused directly or indirectly by this document.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and SyncRO Soft Ltd., was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution
has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Third party software components are distributed in the <oXygen/> installation packages, including the Java Runtime Environment (JRE), DocBook
DTD and stylesheets. This product includes software developed by the Apache Software Foundation (http://www.apache.org [http://www.apache.org]):
the Apache FOP, Xerces XML Parser and Xalan XSLT . This product includes software with copyright (C) 2002-2008 Yutaka Furubayashi (Poka-
poka Dream Factory). These products are not the property of SyncRO Soft Ltd.. To the best knowledge of SyncRO Soft Ltd. owners of the aforesaid
products granted permission to copy, distribute and/or modify the software and its documents under the terms of the Apache Software License,
Version 1.1. Other packages are used under the GNU Lesser General Public License. Users are advised that the JRE is provided as a free software,
but in accordance with the licensing requirements of Sun Microsystems. Users are advised that SyncRO Soft Ltd. assumes no responsibility for errors
or omissions, or for damages resulting from the use of <oXygen/> and the aforesaid third party software. Nor does SyncRO Soft Ltd. assume any
responsibility for licensing of the aforesaid software, should the relevant vendors change their terms. By using <oXygen/> the user accepts respons-
ibility to maintain any licenses required by SyncRO Soft Ltd. or third party vendors, unless SyncRO Soft Ltd. declares in writing that the <oXygen/>
license is inclusive of third party licensing.

Printed: November 2009

Special thanks to: Sean Wheller for his initial contribution to this User Manual.

http://www.apache.org
http://www.apache.org

Table of Contents
1. Introduction .. 1

Key Features and Benefits ... 1
About the <oXygen/> User Manual ... 2

2. Installation .. 4
Installation Requirements .. 4

Platform Requirements ... 4
Operating System, Tools and Environment Requirements .. 4

Operating System .. 4
Tools ... 4
Environment Prerequisites ... 4

Installation Instructions ... 5
Starting <oXygen/> plugin .. 6
Obtaining and registering a license key .. 6

Named User license registration ... 6
How floating (concurrent) licenses work .. 7

How to install the <oXygen/> license server as a Windows service .. 9
How to release a floating license ... 10

License registration with a registration code .. 10
Unregistering the license key .. 10
Upgrading the <oXygen/> application .. 10
Checking for new versions ... 11
Uninstalling the Eclipse plugin ... 11

3. Getting started ... 12
Supported types of documents .. 12
Getting help .. 12
Perspectives .. 12

<oXygen/> XML perspective ... 12
The <oXygen/> custom menu ... 13
The <oXygen/> toolbar buttons .. 13
The editor pane .. 13
The Outline view ... 14
The <oXygen/> Text view ... 14
The <oXygen/> Browser view .. 14
The <oXygen/> XPath Results view .. 15
Supported editor types .. 15

<oXygen/> XSLT Debugger Perspective .. 16
<oXygen/> XQuery Debugger Perspective .. 17
<oXygen/> Database perspective ... 18

4. Editing documents .. 20
Working with Unicode .. 20

Opening and saving Unicode documents ... 20
Opening and closing documents .. 20

Creating new documents ... 21
<oXygen/> plugin wizards ... 21
Creating Documents based on Templates .. 26

Saving documents .. 26
Opening and Saving Remote Documents via FTP/SFTP .. 26

Changing file permissions on a remote FTP server ... 28
WebDAV over HTTPS .. 29

Opening the current document in a Web browser .. 30
Closing documents ... 30

iii

Viewing file properties .. 30
Editing XML documents ... 31

Associate a schema to a document ... 31
Setting a schema for the Content Completion .. 31

Setting a default schema .. 31
Adding a Processing Instruction .. 31
Associating a schema with the namespace of the root element 32

Learning document structure .. 32
Streamline with Content Completion ... 33

Code templates .. 37
Content Completion helper panels ... 37

The Model panel .. 37
The Element Structure panel .. 37
The Annotation panel .. 38

The Attributes panel ... 38
The Elements view ... 39
The Entities View ... 39

Validating XML documents ... 40
Checking XML well-formedness .. 40
Validating XML documents against a schema .. 42

Marking Validation Errors ... 42
Validation Example .. 43
Caching the Schema Used for Validation .. 43
Validate As You Type .. 43
Custom validation of XML documents ... 44

Linked output messages of an external engine ... 45
Validation Scenario .. 46
Sharing the Validation Scenarios. Project Level Scenarios .. 49
Validation Actions in the User Interface .. 49
Resolving references to remote schemas with an XML Catalog 50

Document navigation .. 50
Folding of the XML elements ... 50
Outline View ... 51

XML Document Overview ... 52
Outliner filters ... 52
Modification Follow-up ... 53
Document Structure Change ... 53

The popup menu of the Outline tree ... 53
Document Tag Selection .. 54

Grouping documents in XML projects ... 54
Large Documents ... 54

Creating an included part ... 55
Creating a new project .. 55

Including document parts with XInclude .. 56
Working with XML Catalogs ... 58
Converting between schema languages ... 59
Formatting and indenting documents (pretty print) ... 61
Viewing status information .. 63
XML editor specific actions ... 63

Edit actions ... 63
Select actions .. 64
Source actions ... 64
XML document actions ... 65
XML Refactoring actions .. 65

iv

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Smart editing .. 66
Syntax highlight depending on namespace prefix ... 67

Editing XML Schemas .. 67
XML Schema Text Editor .. 67

Special content completion features ... 67
XML Schema actions ... 68
XML Schema editor specific actions .. 68
Flatten an XML Schema .. 68

XML Schema Diagram Editor .. 75
Introduction .. 75
Navigation in the schema diagram ... 76
Schema validation .. 76
Schema editing actions .. 77
The Schema Outline View ... 84
The Attributes view .. 86
The Facets view ... 87

Editing patterns ... 88
Edit Schema Namespaces .. 88
Schema Components .. 89

xs:schema ... 89
xs:element .. 89
xs:attribute ... 92
xs:complexType ... 93
xs:simpleType .. 95
xs:group ... 98
xs:attributeGroup ... 98
xs:include ... 98
xs:import .. 99
xs:redefine .. 99
xs:notation .. 99
xs:sequence, xs:choice, xs:all .. 100
xs:any .. 101
xs:anyAttribute .. 101
xs:unique .. 102
xs:key ... 102
xs:keyRef .. 103
xs:selector .. 103
xs:field ... 104
Constructs used to group schema components .. 104

Attributes .. 104
Constraints ... 104
Substitutions .. 105

Create an XML Schema from a relational database table .. 105
XML Schema Instance Generator .. 105

Running the XML instance generator from command line .. 111
XML Schema regular expressions builder ... 112
Generating documentation for an XML Schema ... 114

Generate documentation in HTML format ... 116
Generate documentation in PDF, DocBook or a custom format .. 119
Generating documentation from the command line ... 119

Searching and refactoring actions .. 122
Resource Hierarchy/Dependencies View ... 125
Component Dependencies View .. 128
Linking between development and authoring ... 129

v

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Editing Relax NG schemas ... 129
Relax NG schema diagram ... 129

Introduction .. 129
Full model view ... 129
The symbols used in the schema diagram .. 130
Logical model view .. 131
Actions available in the diagram view .. 132
Relax NG Outline view ... 133

Relax NG editor specific actions ... 133
Searching and refactoring actions .. 133
Resource Hierarchy/Dependencies View ... 134
Component Dependencies View .. 136
Configuring a custom datatype library for a RELAX NG Schema .. 137
Linking between development and authoring ... 137

Editing NVDL schemas ... 137
NVDL schema diagram ... 137

Introduction .. 137
Full model view ... 138
Actions available in the diagram view .. 138
NVDL Outline view .. 139

NVDL editor specific actions ... 139
Searching and refactoring actions .. 139
Component Dependencies View .. 140
Linking between development and authoring ... 141

Editing XSLT stylesheets ... 141
Validating XSLT stylesheets ... 141

Custom validation of XSLT stylesheets ... 141
Associate a validation scenario .. 141

Content Completion in XSLT stylesheets .. 141
Content Completion in XPath expressions ... 142

Tooltip Helper for the XPath Functions Arguments ... 145
Code templates .. 146

The XSLT/XQuery Input View .. 146
The XSLT Input View ... 147

The XSLT Outline View .. 148
XSLT Stylesheet documentation support ... 150
Generating documentation for an XSLT Stylesheet ... 151

Generate documentation in HTML format ... 154
Generate documentation in a custom format .. 157
Generating documentation from the command line ... 158

Finding XSLT references and declarations .. 160
XSLT refactoring actions ... 161
Resource Hierarchy/Dependencies View ... 162
Component Dependencies View .. 165
Linking between development and authoring ... 166

Editing XQuery documents .. 166
Folding in XQuery documents .. 166
Generating HTML Documentation for an XQuery Document ... 166

Editing CSS stylesheets ... 167
Validating CSS stylesheets ... 168
Content Completion in CSS stylesheets .. 168
CSS Outline View .. 168
Folding in CSS stylesheets ... 169
Formatting and indenting CSS stylesheets (pretty print) ... 169

vi

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Other CSS editing actions .. 169
Editing XProc Scripts .. 169
Changing the user interface language ... 170
Handling read-only files .. 170

5. Authoring in the tagless editor ... 172
Authoring XML documents without the XML tags ... 172
General Author Presentation ... 173

Author views ... 174
Outline view .. 174

XML Document Overview ... 174
Modification Follow-up ... 175
Document Structure Change ... 175
The popup menu of the Outline tree ... 175

Elements view ... 176
Attributes view .. 176
Entities view ... 178

The Author editor ... 179
Navigating the document content ... 179

Displaying the markup .. 180
Bookmarks ... 180

Position information tooltip .. 180
Displaying referred content .. 182
Finding and replacing text .. 182
Contextual menu .. 182
Editing XML in <oXygen/> Author ... 184

Editing the XML markup ... 184
Editing the XML content ... 186
Table layout and resizing .. 187

DocBook .. 187
XHTML ... 187
DITA ... 188

Refreshing the content ... 188
Validation and error presenting ... 188
Whitespace handling ... 189

Minimize differences between versions saved on different computers 190
Change Tracking .. 190

Managing changes .. 191
6. Author for DITA ... 193

Creating DITA maps and topics ... 193
Editing DITA Maps .. 193

Creating a map .. 194
Create a topic and add it to a map .. 195
Organize topics in a map .. 195
Create a bookmap ... 195
Create relationships between topics .. 196
Create an index entry .. 196
Editing actions ... 196
Advanced operations ... 199

Inserting a Topic Reference .. 199
Inserting a Topic Heading .. 200
Inserting a Topic Group ... 200
Edit properties ... 201

Transforming DITA Maps .. 201
Available Output Formats .. 201

vii

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Configuring a DITA transformation ... 202
Customizing the DITA scenario .. 203

The Parameters tab ... 203
The Filters tab ... 204
The Advanced tab ... 205
The Output tab ... 207
The FO Processor tab ... 208

Set a font for PDF output generated with Apache FOP ... 209
Running a DITA Map ANT transformation .. 209

DITA OT customization support .. 209
Support for transformation customizations .. 209
Using your own DITA OT toolkit from <oXygen/> ... 210
Using your custom build file ... 210
Customizing the <oXygen/> Ant tool ... 210
Upgrading to a new version of DITA OT ... 210
Increasing the memory for the Ant process .. 210
Resolving topic references through an XML catalog ... 211

DITA specializations support .. 211
Integration of a DITA specialization ... 211
Editing DITA Map specializations ... 211
Editing DITA Topic specializations .. 211

Use a new DITA Open Toolkit in <oXygen/> ... 212
Reusing content ... 212

Working with content references ... 213
Reusable component ... 213
Insert a direct content reference ... 214

7. Predefined document types ... 215
The DocBook V4 document type ... 215

Association rules .. 216
Schema .. 216
Author extensions ... 216

Templates ... 219
Catalogs ... 219
Transformation Scenarios .. 219

The DocBook V5 document type ... 220
Association rules .. 220
Schema .. 220
Author extensions ... 220

Templates ... 220
Catalogs ... 220
Transformation Scenarios .. 220

The DocBook Targetset document type ... 220
Association rules .. 221
Schema .. 221
Author extensions ... 221

Templates ... 221
The DITA Topics document type ... 221

Association rules .. 221
Schema .. 221
Author extensions ... 221

Templates ... 228
Catalogs ... 228
Transformation Scenarios .. 228

The DITA MAP document type ... 228

viii

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Association rules .. 229
Schema .. 229
Author extensions ... 229

Templates ... 230
Catalogs ... 230
Transformation Scenarios .. 230

The XHTML document type .. 230
Association rules .. 230
Schema .. 230
CSS ... 230
Author extensions ... 230

Templates ... 232
Catalogs ... 232
Transformation Scenarios .. 233

The TEI P4 document type ... 233
Association rules .. 233
Schema .. 233
Author extensions ... 233

Templates ... 235
Catalogs ... 235
Transformation Scenarios .. 235

The TEI P5 document type ... 235
Association rules .. 236
Schema .. 236
Author extensions ... 236

Templates ... 236
Catalogs ... 236
Transformation Scenarios .. 236

The MathML document type .. 236
Association rules .. 237
Schema .. 237
Templates ... 237

The Microsoft Office OOXML document type ... 237
Association rules .. 237
Schema .. 238

The Open Office ODF document type .. 238
Association rules .. 239
Schema .. 239

The OASIS XML Catalog document type ... 239
Association rules .. 239
Schema .. 239

The XML Schema document type ... 239
Association rules .. 240
Author extensions ... 240

The RelaxNG document type .. 240
Association rules .. 240
Author extensions ... 240

The NVDL document type ... 240
Association rules .. 240
Author extensions ... 241

The Schematron document type .. 241
Association rules .. 241
Author extensions ... 241

The Schematron 1.5 document type ... 241

ix

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Association rules .. 241
Author extensions ... 241

The XSLT document type .. 241
Association rules .. 241
Author extensions ... 242

The XMLSpec document type .. 242
Association rules .. 242
Schema .. 242
Author extensions ... 242

Templates ... 242
Catalogs ... 242
Transformation Scenarios .. 242

The FO document type .. 242
Association rules .. 243
Schema .. 243
Author extensions ... 243

Transformation Scenarios .. 243
The EAD document type ... 243

Association rules .. 243
Schema .. 243
Author extensions ... 243

Templates ... 243
Catalogs ... 243

8. Author Developer Guide ... 244
Introduction .. 244
Simple Customization Tutorial .. 245

XML Schema .. 245
Writing the CSS ... 246
The XML Instance Template .. 249

Advanced Customization Tutorial - Document Type Associations .. 250
Creating the Basic Association .. 250

First step. XML Schema. ... 250
Second step. The CSS. .. 252

Defining the General Layout. .. 253
Styling the section Element. ... 253
Styling the table Element. ... 255
Styling the Inline Elements. .. 257
Styling Elements from other Namespace ... 257
Styling images ... 258
Marking elements as foldable ... 259
Marking elements as links .. 260

Third Step. The Association. ... 260
Organizing the Framework Files .. 261
Association Rules ... 262

Java API: Rules implemented in Java ... 263
Deciding the initial page .. 265
Schema Settings ... 265
Author CSS Settings ... 265
Testing the Document Type Association .. 266
Packaging and Deploying .. 267

Author Settings .. 267
Configuring Actions, Menus and Toolbars ... 268

The Insert Section Action ... 268

x

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

The Insert Table Action ... 271
Configuring the Toolbars ... 272
Configuring the Main Menu ... 273
Configuring the Contextual Menu .. 274
Author Default Operations ... 274

The arguments of InsertFragmentOperation 275
The arguments of SurroundWithFragmentOperation 277

Java API - Extending Author Functionality through Java .. 277
Example 1. Step by Step Example. Simple Use of a Dialog from an Author Opera-
tion. ... 278
Example 2. Operations with Arguments. Report from Database Operation. 281

Configuring New File Templates ... 286
Configuring XML Catalogs .. 288
Configuring Transformation Scenarios ... 289
Configuring Extensions ... 291

Configuring an Extensions Bundle ... 292
Implementing an Author Extension State Listener ... 295
Implementing an Author Schema Aware Editing Handler ... 296
Configuring a Content completion handler .. 297
Configuring a Link target element finder ... 299

The DefaultElementLocatorProvider implementation 299
The XPointerElementLocator implementation 300
The IDElementLocator implementation ... 303

Creating a customized link target reference finder ... 303
Configuring a custom Drag and Drop listener .. 304
Configuring a References Resolver .. 304
Configuring CSS Styles Filter ... 307
Configuring a Table Column Width Provider ... 308
Configuring a Table Cell Span Provider .. 312
Configuring an Unique Attributes Recognizer .. 315

Customizing the default CSS of a document type .. 316
Document type sharing .. 317

CSS support in <oXygen/> Author .. 317
CSS 2.1 features ... 317

Supported selectors ... 317
Unsupported selectors ... 318
Properties Support Table .. 319

<oXygen/> CSS Extensions ... 322
Media Type oxygen .. 322
Supported Features from CSS Level 3 .. 323

Namespace Selectors .. 323
The attr() function: Properties Values Collected from the Edited Document. 324
Additional Custom Selectors .. 326

Additional Properties .. 328
Folding elements: foldable and not-foldable-child properties 328
Link elements .. 329
Display Tag Markers ... 330

<oXygen/> Custom CSS functions .. 331
The local-name() function ... 331
The name() function ... 331
The url() function ... 331
The base-uri() function ... 332
The parent-url() function ... 332

xi

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

The capitalize() function ... 332
The uppercase() function ... 332
The lowercase() function ... 332
The concat() function ... 332
The replace() function ... 333
The unparsed-entity-uri() function ... 333
The attributes() function ... 334

Example Files Listings .. 334
The Simple Documentation Framework Files ... 334

XML Schema files ... 334
sdf.xsd ... 334
abs.xsd ... 336

CSS Files .. 336
sdf.css ... 336

XML Files .. 338
sdf_sample.xml ... 338

XSL Files ... 340
sdf.xsl ... 340

Java Files .. 342
InsertImageOperation.java ... 342
QueryDatabaseOperation.java ... 346
SDFExtensionsBundle.java ... 349
SDFSchemaManagerFilter.java ... 352
SDFSchemaAwareEditingHandler.java ... 353
TableCellSpanProvider.java ... 360
TableColumnWidthProvider.java ... 362
ReferencesResolver.java ... 366
CustomRule.java ... 370
DefaultElementLocatorProvider.java ... 370
XPointerElementLocator.java ... 371
IDElementLocator.java ... 375

9. Grid Editor .. 377
Introduction .. 377
Layouts: Grid and Tree .. 378
Navigating the grid ... 378

Expand All Action .. 379
Collapse All Action ... 379
Expand Children Action .. 379
Collapse Children Action ... 379
Collapse Others ... 379

Specific Grid Actions .. 379
Sorting a Table Column ... 379
Inserting a row in a table .. 380
Inserting a column in a table ... 380
Clearing the content of a column ... 380
Adding nodes .. 380
Duplicating nodes .. 380
Refresh layout ... 380
Start editing a cell value ... 380
Stop editing a cell value ... 380

Drag and Drop(DnD) in the Grid Editor .. 381
Copy and Paste in the Grid Editor .. 381
Bidirectional Text Support in the Grid Editor ... 383

xii

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

10. Transforming documents .. 384
XSLT Transformations .. 384

Output formats ... 384
Transformation scenario .. 385

Batch transformation ... 386
Built-in transformation scenarios ... 386
Defining a new transformation scenario .. 386

XSLT Stylesheet Parameters ... 394
Additional XSLT Stylesheets .. 395
XSLT/XQuery Extensions .. 396
Creating a Transformation Scenario ... 396

Transformation Scenarios view ... 396
XSL-FO processors .. 397

Add a font to the built-in FOP ... 398
Locate font .. 398
Generate font metrics file ... 398
Register font to FOP configuration .. 399
Set FOP configuration file in Oxygen ... 400
Add new font to FO output ... 401

DocBook Stylesheets .. 401
TEI Stylesheets .. 401
DITA-OT Stylesheets .. 401

Common transformations ... 402
PDF Output ... 403
PS Output ... 403
TXT Output .. 404
HTML Output ... 404
HTML Help Output .. 404
Java Help Output .. 405
XHTML Output ... 405

Supported XSLT processors ... 405
Configuring custom XSLT processors .. 408
Configuring the XSLT processor extensions paths .. 408

XProc Transformations .. 409
XProc transformation scenario .. 409
Integration of an external XProc engine - the XProc API .. 410

11. Querying documents .. 411
Running XPath expressions .. 411

What is XPath ... 411
<oXygen/>'s XPath console .. 411

Working with XQuery ... 415
What is XQuery ... 415
Syntax Highlight and Content Completion .. 415
XQuery Outline View .. 416
The Query Input View ... 417
XQuery Validation .. 419
Other XQuery editing actions ... 419
Transforming XML Documents Using XQuery .. 420

XQJ transformer support .. 420
How to configure an XQJ Data source .. 420
How to Configure an XQJ Connection .. 420

Display result in Sequence view .. 421
Advanced Saxon HE/PE/EE transform options ... 421
Updating XML documents using XQuery ... 422

xiii

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

12. Debugging XSLT stylesheets and XQuery documents .. 423
Overview .. 423
Layout ... 423

Control Toolbar .. 425
Information views .. 426
Multiple output documents in XSLT 2.0 ... 427

Working with the XSLT/XQuery Debugger ... 427
Steps in a typical debug process .. 427
Using breakpoints .. 428

Inserting breakpoints ... 428
Removing breakpoints ... 428

Viewing processing information .. 429
Context node view .. 429
XPath watch view ... 429
Breakpoints View ... 430
Break conditions view ... 431
Messages View .. 431
Stack View .. 432
Trace history view .. 433
Templates view .. 434
Node set view .. 435
Variables View ... 435

Determining what XSL/XQuery expression generated particular output 437
13. Profiling XSLT stylesheets and XQuery documents ... 439

Overview .. 439
Viewing profiling information ... 439

Invocation tree view .. 439
Hotspots View ... 440

Working with XSLT/XQuery profiler ... 441
14. Working with Archives ... 443

Using files directly from archives .. 443
Browsing and modifying archives' structure ... 443
Editing files from archives ... 444

15. Working with Databases ... 446
Relational Database Support ... 446

Configuring Database Data Sources ... 446
How to configure an IBM DB2 Data Source .. 446
How to configure a Generic JDBC Data Source .. 447
How to configure a Microsoft SQL Server Data Source ... 447
How to configure a MySQL Data Source .. 447
How to configure an Oracle 11g Data Source ... 448
How to configure a PostgreSQL 8.3 Data Source .. 448

Configuring Database Connections .. 448
How to Configure an IBM DB2 Connection .. 449
How to Configure a JDBC-ODBC Connection ... 449
How to Configure a Microsoft SQL Server Connection .. 450
How to Configure a MySQL Connection .. 450
How to Configure an Oracle 11g Connection ... 450
How to Configure a PostgreSQL 8.3 Connection .. 451

Resource Management .. 451
Data Source Explorer View .. 451

Actions available at connection level .. 453
Actions available at catalog level ... 453
Actions available at schema level .. 453

xiv

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Actions available at table level .. 453
XML Schema Repository level ... 453

Oracle's XML Schema Repository Level ... 453
IBM DB2's XML Schema Repository Level .. 453
Microsoft SQL Server's XML Schema Repository Level 454

Table Explorer View ... 454
SQL Execution Support ... 456

Drag and Drop from Data Source Explorer .. 456
SQL Validation .. 458
Executing SQL Statements ... 458

Importing from Databases .. 458
Creating XML Schema from Databases .. 458

Native XML Database (NXD) Support ... 458
Configuring Database Data Sources ... 458

How to configure a Berkeley DB XML datasource .. 458
How to configure an eXist datasource .. 459
How to configure a MarkLogic datasource .. 459
How to configure a Software AG Tamino datasource ... 460
How to configure a Raining Data TigerLogic datasource .. 460
How to configure a Documentum xDb (X-Hive/DB) datasource .. 461

Configuring Database Connections .. 461
How to configure a Berkeley DB XML Connection .. 461
How to configure an eXist Connection ... 462
How to configure a MarkLogic Connection ... 462
How to configure a Software AG Tamino Connection .. 463
How to configure a Raining Data TigerLogic Connection ... 463
How to configure an Documentum xDb (X-Hive/DB) Connection 463

Resource Management .. 464
Data Source Explorer View .. 464

Oracle XML DB Browser .. 465
Actions available at XML Repository level .. 466
Actions available at container level .. 466
Actions available at resource level ... 466

PostgreSQL connection ... 466
Actions available at container level .. 467
Actions available at resource level ... 467

Berkeley DB XML Connection ... 467
Actions available at connection level .. 467
Actions available at container level .. 468
Actions available at resource level ... 469

eXist Connection .. 469
Actions available at connection level .. 469
Actions available at container level .. 469
Actions available at resource level ... 470

MarkLogic Connection .. 470
Software AG Tamino Connection .. 470

Actions available at connection level .. 470
Actions available at collection level ... 471
Actions available at schema level .. 471
Actions available at resource level ... 471

Raining Data TigerLogic Connection ... 472
Documentum xDb (X-Hive/DB) Connection ... 472

Actions available at connection level .. 472
Actions available at catalog level ... 472

xv

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Actions available at schema resource level .. 472
Actions available at library level .. 473
Actions available at resource level ... 473
Documentum xDb (X-Hive/DB) parser configuration for adding XML in-
stances ... 474

XQuery and Databases .. 474
Drag and Drop from Data Source Explorer .. 475
XQuery validation .. 475
XQuery transformation .. 475
XQuery database debugging ... 476

Debugging with MarkLogic ... 476
Debugging with Berkeley DB XML ... 477

WebDAV Connection .. 477
How to Configure a WebDAV Connection ... 477
WebDAV connection actions .. 478

Actions available at connection level .. 478
Actions available at folder level ... 478
Actions available at file level .. 478

16. Importing data .. 480
Introduction .. 480
Import from database .. 480

Import table content as XML document .. 480
Convert table structure to XML Schema ... 484

Import from MS Excel files .. 485
Import from HTML files .. 485
Import from text files .. 485

17. Content Management System (CMS) Integration ... 487
Documentum (CMS) Support ... 487

How to configure Documentum (CMS) support ... 487
How to configure a Documentum (CMS) data source .. 487
How to configure a Documentum (CMS) connection ... 488

Documentum (CMS) actions .. 488
Actions available on connection .. 489
Actions available on cabinets/folders .. 489
Actions available on resources .. 490

DITA transformations on DITA content from Documentum .. 492
18. Composing Web Service calls .. 493

Overview .. 493
Composing a SOAP request ... 493

Testing remote WSDL files .. 496
The UDDI Registry browser ... 496

Generate WSDL documentation .. 497
19. Digital signature .. 499

Overview .. 499
Canonicalizing files .. 500
Certificates ... 501
Signing files .. 502
Verifying the signature .. 503

20. Text editor specific actions .. 504
Finding and replacing text in the current file .. 504

The Find All Elements/Attributes dialog ... 504
Using Check Spelling .. 505

Adding a spell dictionary ... 506
Adding a Hunspell dictionary ... 506

xvi

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Adding an AZ Check dictionary .. 507
Learning words .. 507
Ignoring words .. 507
Spell checking as you type ... 507
Check Spelling in Files .. 508

21. Configuring the application ... 509
Importing/Exporting Global Options .. 509
Preferences ... 509

<oXygen/> License .. 510
Global .. 510
Fonts ... 511
Document Type Association ... 511
Editor ... 513

Pages ... 514
Text/Diagram .. 515
Grid ... 516
Author ... 517

Schema aware ... 519
Track Changes ... 523
Messages .. 524

Schema Design .. 524
Properties ... 525

Format ... 526
XML ... 527

Whitespaces .. 529
CSS ... 529
JavaScript ... 530

Content Completion .. 530
Annotations ... 532
XSL ... 533
XPath ... 534
XSD .. 534

Syntax Highlight .. 535
Syntax Highlight / Elements/Attributes by Prefix .. 537
Open/Save .. 537
Code Templates ... 538
Document Templates ... 539
Spell Check ... 540
Document Checking ... 542
Custom Validation .. 542

CSS Validator .. 544
XML ... 544

XML Catalog .. 544
XML Parser .. 546

Saxon EE Validation ... 547
XML Instances Generator .. 547
XProc Engines ... 549
XSLT/FO/XQuery .. 550

XSLT ... 550
Saxon6 ... 551
Saxon HE/PE/EE ... 551
Saxon HE/PE/EE Advanced options ... 553
XSLTProc ... 553
MSXML ... 555

xvii

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

MSXML.NET ... 555
XQuery .. 557

Saxon HE/PE/EE ... 558
Saxon HE/PE/EE Advanced options ... 560

Debugger .. 560
Profiler ... 561
FO Processors ... 562
XPath ... 564
Custom Engines ... 565

Import .. 567
Date/Time format ... 568
Date/Time Patterns ... 568

Data Sources ... 569
Configuration of Data Sources .. 569
Download links for database drivers ... 572
Table Filters .. 574

Archive .. 574
Custom Editor Variables .. 575
Network Connections .. 576
Certificates ... 577
XML Structure Outline .. 578
Scenarios Management .. 578
View .. 579

Automatically importing the preferences from the other distribution ... 579
Reset Global Options .. 579
Scenarios Management .. 579
Editor variables .. 580

Custom editor variables ... 581
22. Common problems .. 582
Index ... 584

xviii

<oXygen/> XML Editor 11.2 User
Manual for Eclipse

Chapter 1. Introduction
Welcome to the User Manual of <oXygen/> XML Editor 11.1.0 plugin for Eclipse ! This book explains how to use
the 11.1.0 version of the <oXygen/> plugin for Eclipse effectively to develop complex XML applications quickly and
easily. Please note that this manual assumes that you are familiar with the basic concepts of XML and its related
technologies.

The <oXygen/> XML Editor plugin for Eclipse is a cross-platform application for document development using
structured mark-up languages such as XML , XSD, Relax NG, XSL, DTD.

<oXygen/> offers developers and authors a powerful Integrated Development Environment. Based on proven Java
technology the intuitive Graphical User Interface of the <oXygen/> plugin for Eclipse is easy-to-use and provides robust
functionality for editing, project management and validation of structured mark-up sources. Coupled with XSLT and
FOP transformation technologies, <oXygen/> supports output to multiple target formats, including: PDF, PS, TXT,
HTML and XML.

Key Features and Benefits
The offers the following key features and benefits.

Non blocking operations, you can perform validation and
transformation operations in background

Multiplatform availability: Windows, Mac OS X, Linux,
Solaris

Visual DITA Map editorVisual WYSIWYG XML editing mode based on W3C
CSS stylesheets.

Support for latest versions of document frameworks:
DocBook and TEI.

Closely integration of the DITA Open Toolkit for gener-
ating DITA output

Support for XML, XML Schema, Relax NG , Schematron,
DTD, NRL schemas, NVDL schemas, XSLT, XSL:FO,
WSDL, XQuery, HTML, CSS

Manual and automatic validation of XML documents
against XML Schema schemas, Relax NG schemas, DTDs,
Schematron schemas and NRL, NVDL schemas

Validate XML Schema schemas, Relax NG schemas,
DTDs, Schematron schemas, NRL, NVDL schemas,
WSDL, XQuery, HTML and CSS

Multiple built-in XSLT transformers (Saxon 6.5, Saxon
B, Saxon SA, Saxon.NET, Xalan, libxslt, MSXML 3.0 /

Multiple built-in validation engines (Xerces, libxml,
MSXML 4.0, MSXML.NET) and support for custom
validation engines (Saxon SA, XSV, SQC). 4.0, Microsoft .NET 1.0, Microsoft .NET 2.0), support

for custom JAXP transformers.

Generate HTML documentation from XML SchemasVisual schema editor with full and logical model views

XInclude supportReady to use FOP support to generate PDF or PS docu-
ments

New XML document wizards to easily create documents
specifying a schema or a DTD

Context sensitive content assistant driven by XML
Schema, Relax NG, DTD, NVDL or by the edited docu-
ment structure enhanced with schema annotation presenter

Unicode supportXML Catalog support

Syntax coloring for XML, DTD, Relax NG compact syn-
tax, Java, C++, C, PHP, Perl, etc

Conversions from DTD, Relax NG schema or a set of
documents to XML Schema, DTD or Relax NG schema

Easy configuration for external FO ProcessorsEasy error tracking - locate the error source by clicking
on it

1

XPath search, evaluation and debugging supportApply XSLT and FOP transformations

Support for document templates to easily create and share
documents

Preview transformation results as XHTML or XML or in
your browser

Convert database structure to XML SchemaImport data from a database, Excel, HTML or text file

Canonicalize and sign documentsBatch validate selected files in project

Associate extensions with editors provided by the <oXy-
gen/> plugin.

Configurable actions key bindings

XSLT ProfilerXSLT Debugger with Backmapping support

XQuery ProfilerXQuery Debugger with Backmapping support

Attributes ViewModel View

WSDL analysis and SOAP requests supportXQuery 1.0 support

XPath 2.0 execution and debugging supportXSLT 2.0 full support

Spell checking supporting English, German and French
including locals

Document folding

Generate large sets of sample XML instances from XML
Schema

XSLT refactoring actions

Drag&drop supportPretty-printing of XML files

Outline view in sync with a non well-formed document

About the <oXygen/> User Manual
This User Manual gives a complete overview of the <oXygen/> XML Editor and describes the basic process of authoring,
management, validation of structured mark-up documents and their transformation to multiple target outputs. In this
manual it is assumed that you are familiar with the use of your operating system and the concepts related to structured
mark-up.

The <oXygen/> XML Editor User Manual is comprised of the following parts:

• Chapter 1, Introduction: you are reading it.

• Chapter 2, Installation: defines the platform and environment requirements of <oXygen/> and instructions for ap-
plication installation, license installation, starting <oXygen/>, upgrade and uninstall.

• Chapter 3, Getting started: provides general orientation and an overview of the <oXygen/>'s editing perspectives.

• Chapter 4, Editing documents: explains how to obtain maximum benefit from the editor, project and validation features.

• Chapter 10, Transforming documents: explains the considerations for transformation of structured sources to multiple
target format and how to obtain maximum benefit.

• Chapter 11, Querying documents: explains the support offered by <oXygen/> for querying XML documents.

• Chapter 12, Debugging XSLT stylesheets and XQuery documents: explains how to debug XSLT stylesheets or
XQuery documents.

• Chapter 13, Profiling XSLT stylesheets and XQuery documents: explains how to profile the execution of XSLT
stylesheets or XQuery documents.

• Chapter 16, Importing data: explains how to import data from a database, an Excel sheet or text file.

2

Introduction

• Chapter 18, Composing Web Service calls: explains the facilities offered by <oXygen/> for composing and testing
WSDL SOAP messages.

• Chapter 19, Digital signature: explains how to canonicalize, sign and verify the signature of documents.

• Chapter 21, Configuring the application: explains how to configure preferences of the application.

Feedback and input to the <oXygen/> User Manual is welcomed.

3

Introduction

Chapter 2. Installation
This section explains platform requirements and installation procedures. It also provides instructions on how to obtain
and register a license key, how to perform upgrades and uninstall the application if required.

If you need help at any point during these procedures please send email to <support@oxygenxml.com>

Installation Requirements

Platform Requirements
Minimum run-time requirements are listed below.

• Pentium Class Platform

• 256 MB of RAM

• 300 MB free disk space

Operating System,Tools and Environment Requirements

Operating System

Windows Windows 98 or later.

Mac OS minimum Mac OS X 10.4

UNIX/Linux All versions/flavors

Tools

Installation packages are supplied in compressed archives. Ensure you have installed a suitable archive extraction
utility with which to extract the archive. The MD5 sum is available on the Download page
[http://www.oxygenxml.com/download.html] for every archive. You should check the MD5 sum of the downloaded
archive with a MD5 checking tool available on your platform.

Environment Prerequisites

Prior to installation ensure that your installed Eclipse platform is the following:

• the latest stable Eclipse version available at the release date. The current version works with Eclipse 3.5.

• <oXygen/> XML Editor supports only official and stable Java virtual machine versions 1.5.0 and later from Sun
Microsystems (available at http://java.sun.com) and from Apple Computer (pre-installed on Mac OS X). For Mac
OS X, Java VM updates are available at http://www.apple.com/macosx/features/java/. <oXygen/> XML Editor may
work very well with JVM implementations from other vendors but the eventual incompatibilities will not be solved
in further <oXygen/> XML Editor releases. <oXygen/> XML Editor does not work with the GNU libgcj Java virtual
machine [http://www.oxygenxml.com/forum/ftopic1887.html].

4

http://www.oxygenxml.com/download.html
http://www.oxygenxml.com/download.html
http://java.sun.com
http://www.apple.com/macosx/features/java/
http://www.oxygenxml.com/forum/ftopic1887.html
http://www.oxygenxml.com/forum/ftopic1887.html
http://www.oxygenxml.com/forum/ftopic1887.html

Installation Instructions
Prior to proceeding with the following instructions, please ensure that your system complies with the prerequisites
detailed in the installation requirements.

There are two ways of installing the <oXygen/> Eclipse plugin: the Update Site method and the zip archive method.

Procedure 2.1. Eclipse 3.3 plugin installation - the Update Site method

1. Start Eclipse. Choose the menu option: Help / Software Update / Find and Install. Select the checkbox: "Search
for new features to install" and press the "Next" button..

2. From the dialog "Update sites to visit" press the button "Add update site" or "New Remote Site".

3. Enter the value http://www.oxygenxml.com/InstData/Eclipse/site.xml into the "URL" field
of the "New Update Site" dialog. Press the "OK" button.

4. Select the checkbox "oXygen XML Editor" and press the "Next" button.

5. Select the new feature to install "oXygen XML Editor and XSLT debugger" and press the "Next" button in the
following install pages. You must accept the Eclipse restart.

6. Paste the license information received in the registration email when prompted. This will happen when you use
one of the wizards to create an XML project or document, when you open or create a document associated with
<oXygen/> or when accessing the <oXygen/> Preferences.

7. The oXygen XML Editor plugin is installed correctly if you can create an XML project with the New Project
wizard of the oXygen XML Editor plugin started from menu File -> New -> Other -> oXygen -> XML Project.

Procedure 2.2. Eclipse 3.4 plugin installation - the Update Site method

1. Start Eclipse. Choose the menu option: Help / Software Updates / Available Software.

2. Press the button "Add Site" in the tab "Available Software" of the dialog "Software Updates".

3. Enter the value http://www.oxygenxml.com/InstData/Eclipse/site.xml into the "Location"
field of the "Add Site" dialog. Press the "OK" button.

4. Select the checkbox "oXygen XML Editor for Eclipse" and press the Install button.

5. Press the Next button in the following install pages. You must accept the Eclipse restart at the end of the installation.

6. Paste the license information received in the registration email when prompted. This will happen when you use
one of the wizards to create an XML project or document, when you open or create a document associated with
<oXygen/> or when accessing the <oXygen/> Preferences.

7. The oXygen XML Editor plugin is installed correctly if you can create an XML project with the New Project
wizard of the oXygen XML Editor plugin started from menu File -> New -> Other -> oXygen -> XML Project.

Procedure 2.3. Eclipse 3.3 plugin installation - the zip archive method

1. Download [http://www.oxygenxml.com/download.html] the zip archive with the plugin.

2. Unzip the downloaded zip archive in the plugins subdirectory of the Eclipse install directory.

5

Installation

http://www.oxygenxml.com/download.html
http://www.oxygenxml.com/download.html

3. Restart Eclipse. Eclipse should display an entry com.oxygenxml.editor (11.1.0) in the list available from Window
- Preferences - Plug-in Development - Target Platform.

Procedure 2.4. Eclipse 3.4 plugin installation - the zip archive method

1. Download [http://www.oxygenxml.com/download.html] the zip archive with the plugin.

2. Unzip the downloaded zip archive in the dropins subdirectory of the Eclipse install directory.

3. Restart Eclipse. Eclipse should display an entry com.oxygenxml.editor (11.1.0) in the list available from Window
-> Preferences -> Plug-in Development -> Target Platform.

Starting <oXygen/> plugin
The <oXygen/> plugin will be activated automatically by the Eclipse platform when you use one of the <oXygen/>
wizards to create an XML project or document, when you open or create a document associated with <oXygen/> or
when accessing the <oXygen/> Preferences.

Obtaining and registering a license key
The <oXygen/> XML Editor is not free software and requires a license in order to enable the application.

For demonstration and evaluation purposes a time limited license is available upon request from the <oXygen/>
[http://www.oxygenxml.com/register.html] web site. This license is supplied at no cost for a period of 30 days from
date of issue. During this period the <oXygen/> XML Editor is fully functional enabling you to test all aspects of the
application. Thereafter, the application is disabled and a permanent license must be purchased in order to use the ap-
plication. For special circumstances, if a trial period of greater than 30 days is required, please contact
<support@oxygenxml.com> . All licenses are obtained from the <oXygen/> web site [http://www.oxygenxml.com]
.

For definitions and legal details of the license types available for <oXygen/> you should consult the End User License
Agreement received with the license key and available also on the <oXygen/> website at http://www.oxy-
genxml.com/eula.html

Note

Starting with version 10.0 <oXygen/> accepts a license key for a newer version in the license registration dialog,
e.g. version 10.0 accepts a license key for version 11 or a license key for version 12.

Once you have obtained a license key the installation procedure is described below.

Named User license registration
1. Save a backup copy of the message containing the new license key.

2. Start the application.

3. Copy to the clipboard the license text as explained in the message.

4. If this is a new install of the application then it will display automatically the registration dialog when it is started.
In the case you already used the application and obtained a new license, go to Window - Preferences - oXygen
and press the OK button to make the registration dialog appear.

6

Installation

http://www.oxygenxml.com/download.html
http://www.oxygenxml.com/download.html
http://www.oxygenxml.com/register.html
http://www.oxygenxml.com/register.html
http://www.oxygenxml.com
http://www.oxygenxml.com
http://www.oxygenxml.com/eula.html
http://www.oxygenxml.com/eula.html

Figure 2.1. Registration Dialog

5. Paste the license text in the registration dialog, and press OK.

You have the following alternative for the procedure of license install:

Procedure 2.5. Save the license in a text file

1. Save the license key in a file named licensekey.txt.

2. Copy the file in the 'lib' folder of the installed plugin. In that way the license will not be asked when <oXygen/>
will start.

3. Start Eclipse.

How floating (concurrent) licenses work
If all the floating licenses are used in the same local network the installation procedure of floating licenses is the same
as for the Named User licenses. Within the same network the license management is done by communication between
the instances of <oXygen/> that are connected to the same local network and that run at the same time. Any new instance
of <oXygen/> that is started after the number of running instances is equal with the number of purchased licenses will
display a warning message and will disable the open file action.

7

Installation

If the floating licenses are used on machines connected to different local networks a separate license server must be
started and the licenses deployed on it.

Procedure 2.6. Floating license server setup

1. Download the license server from one of the download URLs included in the registration email message with
your floating license key.

2. Run the downloaded Windows 32 bit installer or Windows 64 bit installer or unzip the all platforms zip archive
kit on your server machine. The Windows installer installs the license server as a Windows service, it provides
the option to start the Windows service automatically at Windows startup and it creates shortcuts in the Start menu
group for starting and stopping the Windows service manually. If you use the zip archive on Windows you have
to run the scripts provided in the archive for installing, starting, stopping and uninstalling the server as a Windows
service.

3. If you start the server with the script licenseServer.bat / licenseServer.sh you can leave the default
values for the parameters for the licenses folder and server port or you can set these two parameters to other values.
The default folder for the floating license file is [license-server-install-dir]/license and the
default TCP/IP server port is 12346.

To change the default values of the license server the following parameters have to be used:

• -licenseDir followed by the path of the directory where the license files will be placed;

• -port followed by the port number used to communicate with <oXygen/> instances.

Important

The license folder must contain a text file called license.txt which must contain a single floating license
key corresponding to the set of purchased floating licenses. If you have more than one floating license key
for the same <oXygen/> version obtained from different purchases please contact us at support@oxy-
genxml.com to merge your license keys into a single one.

After the floating license server is set up the <oXygen/> application can be started and configured to request a license
from it:

Procedure 2.7. Request a floating license from the license server

1. Start Eclipse.

2. Go to Window -> Preferences -> oXygen -> Register... . The license dialog is displayed.

3. Check the Use a license server checkbox.

4. Fill-in the Host text field with the host name or IP address of the license server.

5. Fill-in the Port text field with the port number used for communicating with the license server. Default is 12346.

6. Click the OK button. If the maximum number of available licenses was not exceeded a license key is received
from the floating license server and registered in <oXygen/> . The license details are displayed in the About dialog
opened from menu Help. If the maximum number of licenses was exceeded a warning dialog will pop up letting
the user know about the problem. The message contains information about the users who requested and successfully
received the floating licenses before exceeding the maximum number of licenses.

8

Installation

How to install the <oXygen/> license server as a Windows service

In order to install the <oXygen/> license server as a Windows service you should run the Windows installer downloaded
from the URL provided in the registration email message containing your floating license key.

If you want to install, start and uninstall yourself the server as a Windows service you can run the scripts created in
the install folder from a command line console with the install folder of the license server as the current folder (on
Windows Vista you have to run the console as Administrator). For installing the Windows service:

installWindowsService.bat

After installing the server as a Windows service, use the following two commands to start and stop the license server:

startWindowsService.bat

stopWindowsService.bat

Uninstalling the Windows service requires the following command:

uninstallWindowsService.bat

The installWindowsService.bat script installs the <oXygen/> license server as a Windows service with the
name "oXygenLicenseServer" and accepts two parameters: the path of the folder containing the floating license key
files and the local port number on which the server accepts connections from instances of the <oXygen/> XML Editor
. The parameters are optional. The default values are:

license for the license file folder

12555 for the local port number

The JAVA_HOME variable must point to the home folder of a Java runtime environment installed on your Windows
system.

The startService.bat script starts the Windows service so that the license server can accept connections from <oXygen/>
clients.

The stopService.bat script stops the Windows service. The license server is shut down and it cannot accept connections
from <oXygen/> clients.

The uninstallService.bat script uninstalls the Windows service created by the installService.bat script.

When the license server is used as a Windows service the output messages and the error messages cannot be viewed
as for a command line script so that they are redirected automatically to the following log files created in the directory
where the license server is installed:

outLicenseServer.log the standard output stream of the server

errLicenseServer.log the standard error stream of the server

On Windows Vista if you want to start or stop the Windows service with the Start menu shortcut called Start Windows
service / Stop Windows service you have to run the shortcut as Administrator. This is a standard option for running
Start menu shortcuts on Windows Vista and is necessary for giving the required permission to the command that starts
/ stops the Windows service.

9

Installation

How to release a floating license

To release a floating license key so that it can be registered for other user or for the cases when you do not have Internet
access (and you own also an individual license to which you want to switch from the floating license), you do not have
to disable or to uninstall the <oXygen/> plugin. All you have to do is to go to the main <oXygen/> preferences panel,
press the Register button, uncheck the Use a license server checkbox in the license registration dialog, paste the indi-
vidual license key and press OK in the dialog. If you only want to stop using the <oXygen/> plugin just uncheck the
checkbox and press the OK dialog. This will release the floating license and leave the plugin in the unregistered state.

License registration with a registration code
If you have only a registration code and you want to register the associated license key you must request this license
key by filling the registration code and other details associated with your license in a request form on the <oXygen/>
website. The button Request license for registration code in the registration dialog available from menu Window →
Preferences+oXygen+Register opens this request form in the default Web browser on your computer.

Unregistering the license key
Sometimes you need to unregister your license key, for example to release a floating license to be used by other user
and still use the current <oXygen/> instance with an individual, Named User license, or to transfer your license key
to other computer before other user starts using your current computer. This is done by going to Windows → Prefer-
ences+oXygen+Register to display the license registration dialog, making sure the text area for the license key is empty
and the checkbox Use a license server is unchecked, and pressing the OK button of the dialog. This brings up a con-
firmation dialog in which you select between falling back to the license key entered previously (for the case of releasing
a floating license and reverting to the individual license entered previously in the Register dialog) and removing your
license key from your user account of the computer.

Upgrading the <oXygen/> application
From time to time, upgrade and patch versions of <oXygen/> are released to provide enhancements that rectify problems,
improve functionality and the general efficiency of the application.

This section explains the procedure for upgrading <oXygen/> while preserving any personal configuration settings
and customizations.

Procedure 2.8. Upgrade Procedure

1. Uninstall the <oXygen/> plugin (see Uninstall procedure).

2. Follow the Installation instructions.

3. Restart the Eclipse platform.

4. Start the <oXygen/> plugin to ensure that the application can start and that your license is recognized by the upgrade
installation.

5. If you are upgrading to a major version, for example from 8.2 to 9.0, then you will need to enter the new license
text into the registration dialog that is shown when the application starts.

6. Select Window → Preferences -> Plug-In Development -> Target Platform and next to the com.oxygenxml.edit-
orcom.oxygenxml.author list entry you should see the version number of the newest installed plugin. If the previous
version was 8.2.0, the list entry should now contain 9.0.0.

10

Installation

Checking for new versions
<oXygen/> offers the option of checking for new versions at the http://www.oxygenxml.com site when the application
is started.

You can check for new versions manually at any time by going to menu Help → Check for New Versions

Uninstalling the Eclipse plugin
Warning

The following procedure will remove the <oXygen/> XML Editor plugin from your system. It will not remove
the Eclipse platform. If you wish to uninstall Eclipse please see its uninstall instructions.

Procedure 2.9. Uninstall Procedure

1. Choose the menu option: Help / Software Update / Manage Configuration and from the list of products select
<oXygen/> XML Editor and XSLT Debugger and XSLT Debugger.

2. Select Disable

3. Accept the restart of the Eclipse IDE.

4. Again choose the menu option: Help / Software Update / Manage Configuration and from the list of products select
<oXygen/> XML Editor and XSLT Debugger .

5. Enable Show Disabled Features from the dialog toolbar.

6. From the right section of the displayed window choose Uninstall.

7. After the uninstall procedure is complete accept the Eclipse restart.

8. If you wish to completely remove the application directory and any work saved in it, you will have to delete this
directory manually. To remove the application configuration and any personal customizations delete the %APP-
DATA%\com.oxygenxml directory on Windows (usually %APPDATA% has the value [user-home-dir]\Ap-
plication Data) / .com.oxygenxml on Linux from the user home directory.

11

Installation

http://www.oxygenxml.com

Chapter 3. Getting started
Supported types of documents
The <oXygen/> XML Editor provides a rich set of features for working with:

• XML documents and applications

• XSL stylesheets - transformations and debugging

• Schema languages: XML Schema, Relax NG (full and compact syntax), NRL, NVDL, Schematron, DTD

• Querying documents using XPath and XQuery

• Analyzing, composing and testing WSDL SOAP messages

• CSS documents

Getting help
Online help is available at any time while working in <oXygen/> by going to Help → Help Contents → oXygen User
Manual for Eclipse

Perspectives
The interface uses standard interface conventions and components to provide a familiar and intuitive editing environment
across all operating systems.

In you can work with documents in one of the perspectives:

Editor perspective Editing of documents is supported by specialized and synchronized editors and
views.

XSLT Debugger perspective XSLT stylesheets can be debugged by tracing their execution step by step.

XQuery Debugger perspective XQuery transforms can be debugged by tracing their execution step by step.

<oXygen/> Database perspective Multiple connections to both relational databases and native XML ones can be
managed at the same time in this perspective: database browsing, SQL execution,
XQuery execution and data export to XML.

<oXygen/> XML perspective
The <oXygen/> XML perspective is used for editing the content of your documents.

As majority of the work process centers around the Editor panel, other panels can be hidden from view using the expand
and collapse controls located on the divider bars.

This perspective organizes the workspace in the following panels:

12

Figure 3.1. <oXygen/> XML perspective

The <oXygen/> custom menu

When the current editor window contains a document associated with <oXygen/> a custom menu is added to the Eclipse
menu bar named after the document type: XML, XSL, XSD, RNG, RNC, Schematron, DTD, FO, WSDL, XQuery,
HTML, CSS.

The <oXygen/> toolbar buttons

The toolbar buttons added by the <oXygen/> plugin provide easy access to common and frequently used functions.
Each icon is a button that acts as a shortcut to a related function.

The editor pane

The editor pane is where you edit your documents opened or created by the <oXygen/> Eclipse plugin. You know the
document is associated with <oXygen/> from the special icon displayed in the editor's title bar which has the same
graphic pattern painted with different colors for different types of documents.

This pane has three different modes of displaying and editing the content of a document available as different tabs at
the bottom left margin of the editor panel: text editor, grid editor, CSS-based tagless editor. Navigating between them
is as easy as pressing Ctrl + Page Up for switching to the next tab to the left and Ctrl + Page Down for switching to
the next tab to the right.

13

Getting started

The Outline view

The outline view has the following functions: XML document overview, outliner filters, modification follow-up, doc-
ument structure change, document tag selection.

Figure 3.2. The Outline View

The <oXygen/> Text view

The <oXygen/> Text view is automatically showed in the views pane of the Eclipse window to display text output
from XSLT transformations, FO processor's info, warning and error messages. It contains a tab for each file with text
results displayed in the view.

Figure 3.3. The Text View

The <oXygen/> Browser view

The <oXygen/> Browser view is automatically showed in the views pane of the Eclipse window to display HTML
output from XSLT transformations. It contains a tab for each file with HTML results displayed in the view.

14

Getting started

Figure 3.4. The Browser View

The <oXygen/> XPath Results view

The <oXygen/> XPath Results view is automatically showed in the views pane of the Eclipse window to display XPath
results.

Figure 3.5. The XPath Results View

Supported editor types

The <oXygen/> Eclipse plugin provides special Eclipse editors identified by the following icons:

• - The icon for XML documents

• - The icon for XSL stylesheets

• - The icon for XML Schema

• - The icon for Document Type Definition schemas

• - The icon for RELAX NG full syntax schemas

• - The icon for RELAX NG compact syntax schemas

• - The icon for Namespace Routing Language/ Namespace-based Validation Dispatching Language schemas

• - The icon for XSL:FO documents

• - The icon for XQuery documents

• - The icon for WSDL documents

15

Getting started

• - The icon for Schematron documents

• - The icon for JavaScript documents

• - The icon for Python documents

• - The icon for CSS documents

<oXygen/> XSLT Debugger Perspective
The XSLT Debugger perspective is used for detecting problems in an XSLT transformation process by executing the
process step by step in a controlled environment and inspecting the information provided in different special views.
The workspace is organized as an editing area supported by special helper views. The editing area contains editor
panels and can be split horizontally or vertically in two stacks of editors: XML editor panels and XSLT editor panels.

Figure 3.6. <oXygen/> XSLT Debugger perspective

• Source document view - Displays and allows editing of data or document oriented XML files (documents).

• Stylesheet document view - Displays and allows editing of XSL files(stylesheets).

16

Getting started

• Output document view - Displays the transformed output that results from the input of a selected document (XML)
and selected stylesheet (XSL) to the transformer. The result of transformation is dynamically written as the trans-
formation is processed. There are three types of views for the output: a text view (with XML syntax highlight), an
XHTML view and one text view for each xsl:result-document element used in the stylesheet (if it is a XSLT 2.0
stylesheet).

• Control toolbar - Contains all actions needed in order to configure and control the debug process.

• Information views - Distributed in two panes that are used to display various types of information that can be used
to understand the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This enables the developer to obtain
a clear view of the transformation progress.

<oXygen/> XQuery Debugger Perspective
The XQuery Debugger perspective is similar to the XSLT Debugger perspective. It is used for detecting problems in
an XQuery transformation process by executing the process step by step in a controlled environment and inspecting
the information provided in different special views. The workspace is organized in:

Figure 3.7. <oXygen/> XQuery Debugger perspective

• Source document view - Displays and allows editing of data or document oriented XML files (documents).

• XQuery document view - Displays and allows editing of XQuery files.

17

Getting started

• Output document view - Displays the transformed output that results from the input of a selected document (XML)
and selected XQuery document to the XQuery transformer. The result of transformation is dynamically written as
the transformation is processed. There are two types of views for the output: a text view (with XML syntax highlight)
and an XHTML view.

• Control toolbar - Contains all actions needed in order to configure and control the debug process.

• Information views - Distributed in two panes that are used to display various types of information that can be used
to understand the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This enables the developer to obtain
a clear view of the transformation progress.

<oXygen/> Database perspective
The Database perspective is similar to the Editor perspective. It allows you to manage a database, offering support for
browsing multiple connections at the same time, both relational and native XML databases, SQL execution, XQuery
execution and data export to XML.

This perspective offers database specific support for:

• Sleepycat Berkeley DB XML Database

• eXist XML Database

• IBM DB2 (Enterprise edition only)

• JDBC-ODBC Bridge (Enterprise edition only)

• MarkLogic (Enterprise edition only, XQuery support only)

• Microsoft SQL Server 2005 and Microsoft SQL Server 2008 (Enterprise edition only)

• MySQL (Enterprise edition only)

• Oracle 11g (Enterprise edition only)

• PostgreSQL 8.3 (Enterprise edition only)

• Software AG Tamino (Enterprise edition only)

• TigerLogic (Enterprise edition only, XQuery support only)

• Documentum xDb (X-Hive/DB) XML Database (Enterprise edition only)

• Documentum (CMS) 6.5 (Enterprise edition only)

The XML capabilities of the databases marked in this list with "Enterprise edition only" are available only in the En-
terprise edition of <oXygen/>. The non-XML capabilities of any database listed here are available also in the Academic
and Professional editions of <oXygen/> by registering the database driver as a generic JDBC driver (the Generic JDBC
type in the list of driver types) when defining the data source for accessing the database in <oXygen/>. The non-XML
capabilities are browsing the structure of the database instance, opening a table in the Table Explorer view, handling
the values from columns of type XML Type as String values. The XML capabilities are: displaying an XML Schema
node in the tree of the database structure (for databases with such an XML specific structure) with actions for open-
ing/editing/validating the schemas in an <oXygen/> editor panel, handling the values from columns of type XML Type
as XML instance documents that can be opened and edited in an <oXygen/> editor panel, validating an XML instance
document added to an XML Type column of a table, etc.

18

Getting started

For a detailed feature matrix that compares the Academic, Professional and Enterprise editions of <oXygen/> please
go to the <oXygen/> website [http://www.oxygenxml.com/feature_matrix.html].

Note

Only connections configured on relational data sources can be used to import to XML or to generate XML
schemas.

Figure 3.8. Database perspective

Main menu Provides menu driven access to all the features and functions available within <oXy-
gen/>.

Main toolbar Provides easy access to common and frequently used functions. Each icon is a button
that acts as a shortcut to a related function.

Editor panel The place where you spend most of your time, reading, editing, applying markup and
checking the validity and form of your documents.

Data Source explorer Provides browsing support for the configured connections.

Table explorer Provides table content editing support: insert a new row, delete a table row, cell value
editing, export to XML file.

19

Getting started

http://www.oxygenxml.com/feature_matrix.html
http://www.oxygenxml.com/feature_matrix.html

Chapter 4. Editing documents
Working with Unicode
Unicode provides a unique number for every character, no matter what the platform, no matter what the program, no
matter what the language. Unicode is an internationally recognized standard, adopted by industry leaders. The Unicode
is required by modern standards such as XML, Java, ECMAScript (JavaScript), LDAP, CORBA 3.0, WML, etc., and
is the official way to implement ISO/IEC 10646.

It is supported in many operating systems, all modern browsers, and many other products. The emergence of the Unicode
Standard, and the availability of tools supporting it, are among the most significant recent global software technology
trends. Incorporating Unicode into client-server or multi-tiered applications and websites offers significant cost savings
over the use of legacy character sets.

As a modern XML Editor, <oXygen/> provides support for the Unicode standard enabling your XML application to
be targeted across multiple platforms, languages and countries without re-engineering. Internally, the <oXygen/> XML
Editor uses 16bit characters covering the Unicode Character set.

Opening and saving Unicode documents
On loading documents of the type XML, XSL, XSD and DTD,<oXygen/> receives the encoding of the document from
the Eclipse platform. This is then used to instruct the Java Encoder to load support for and save using the code chart
specified.

While in most cases you will use UTF-8, simply changing the encoding name will cause the file to be saved using the
new encoding.

To edit document written in Japanese or Chinese, you will need to change the font to one that supports the specific
characters (a Unicode font). For the Windows platform, use of Arial Unicode MS or MS Gothic is recommended. Do
not expect Wordpad or Notepad to handle these encodings. Use Internet Explorer or Word to eventually examine XML
documents.

When a document with a UTF-16 encoding is edited and saved in <oXygen/>, the saved document will have a byte
order mark (BOM) which will specify the byte order of the document's content. The default byte order is platform de-
pendent. That means that a UTF-16 document created on a Windows platform (where the default byte order mark is
UnicodeLittle) will have a different BOM than a UTF-16 document created on a Mac OS platform (where the byte
order mark is UnicodeBig). The byte order and the BOM of an existing document will be preserved by <oXygen/>
when the document is edited and saved.

Note

The naming convention used under Java does not always correspond to the common names used by the Unicode
standard. For instance, while in XML you will use encoding="UTF-8", in Java the same encoding has the name
"UTF8".

Opening and closing documents
As with most editing applications, <oXygen/> lets you open existing documents, save your changes and close them
as required.

20

Creating new documents

<oXygen/> plugin wizards

The New wizard only creates a skeleton document containing the document prolog, a root element and possibly other
child elements depending on the options specific for each schema type. If you need to generate full and valid XML
instance documents based on an XML Schema schema you should use the XML instance generation tool instead.

Use the following procedure to create documents.

The <oXygen/> plugin installs a series of Eclipse wizards for easy creation of new documents. Using these wizards
you let <oXygen/> fill in details like the system ID or schema location of a new XML document, the minimal markup
of a DocBook article or the namespace declarations of a Relax NG schema.

Procedure 4.1. Creating new documents

1. Select File → New → -> Other (Ctrl+N) or press the New toolbar button. The New wizard is displayed which
contains the supported Document Types: XML, XSL, XML Schema, Document Type Definition, Relax NG
Schema, XQuery, Web Services Definition Language, Schematron Schema, CSS File.

2. Select a document type, then click Next. For example if XML was selected the "Create an XML Document"
wizard is started.

3. Type a name for the new document and press Next.

4. The Create an XML Document dialog enables definition of a XML Document Prolog using the system identifier
of a XML Schema, DTD, Relax NG (full or compact syntax), NRL (Namespace Routing Language) or NVDL
(Namespace-based Validation Dispatching Language) schema. As not all XML documents are required to have
a Prolog, you may choose to skip this step by clicking OK . If the prolog is required complete the fields as the
following.

21

Editing documents

Figure 4.1. The Create an XML Document Dialog - XML Schema Tab

Complete the dialog as follows:

URL Specifies the location of an XML Schema Document (XSD).

You can also specify an URI if it is solved by the <oXygen/> catalog.

Example 4.1. DITA XSD URI

urn:oasis:names:tc:dita:xsd:topic.xsd:1.1

Document Root Populated from the elements defined in the specified XSD, enables selection
of the element to be used as document root.

Namespace Specifies the document namespace.

Prefix Specifies the prefix for the namespace of the document root.

Description Shows a small definition for the currently selected element.

Add optional content If it is selected the elements and attributes that are defined in the XML
Schema as optional are generated in the skeleton XML document created
in a new editor panel when the OK button is pressed.

Add first Choice particle If it is selected the first element of an xs:choice schema element is generated
in the skeleton XML document created in a new editor panel when the OK
button is pressed.

22

Editing documents

Figure 4.2. The Create an XML Document - DTD Tab

Complete the dialog as follows:

System ID Specifies the location of a Document Type Definition (DTD).

Document Root Populated from the elements defined in the specified DTD, enables selection of the element
to be used as document root.

Public ID Specifies the PUBLIC identifier declared in the Prolog.

23

Editing documents

Figure 4.3. The Create an XML Document - Relax NG Tab

Complete the dialog as follows:

URL Specifies the location of a Relax NG schema in XML or compact syntax (RNG/RNC).

XML syntax When checked the specified URL refers to a Relax NG schema in XML syntax. It will be
checked automatically if the user selects a document with the .rng extension.

Compact syntax When checked the specified URL refers to a Relax NG schema in compact syntax. It will
be checked automatically if the user selects a document with the .rnc extension.

Document Root Populated from the elements defined in the specified RNG or RNC document, enables
selection of the element to be used as document root.

Namespace Specifies the document namespace.

Prefix Specifies the prefix for the namespace of the document root.

Description Shows a small definition for the currently selected element.

24

Editing documents

Figure 4.4. The Create an XML Document - NRL Tab

Complete the dialog as follows:

URL Specifies the location of a NRL schema (NRL).

Figure 4.5. The Create an XML Document - NVDL Tab

Complete the dialog as follows:

URL Specifies the location of a Namespace-based Validation Dispatching Language schema
(NVDL).

Document Root Populated from the elements defined in the specified NVDL document, enables selection
of the element to be used as document root.

25

Editing documents

Namespace Specifies the document namespace.

Prefix Specifies the prefix for the namespace of the document root.

Description Shows a small definition for the currently selected element.

Creating Documents based on Templates

Templates are documents containing a predefined structure. They provide starting points on which one can rapidly
build new documents that repeat the same basic characteristics. <oXygen/> installs a rich set of templates for a number
of XML applications. You may also create your own templates and share them with other users.

You can also use editor variables in the template files' content and they will be expanded when the files are opened.

The New from Templates wizard enables you to select predefined templates or templates that have already been created
in previous sessions or by other users. Open a template using the following options:

The list of templates presented in the dialog includes:

Document Types templates Templates supplied with the defined document types.

User defined templates The user can add template files in the templates folder of the <oXygen/>
install directory. Also in the option page can be specified a custom templates
folder to be scanned.

Procedure 4.2. Creating Documents based on Templates

1. Select File → New → New from Templates The New from templates dialog is displayed.

2. Scroll the Templates list and select the required Template Type.

3. Type a name for the new document and press Next.

4. Click Finish. A new document is opened that already contains structure and content provided in the template
starting point.

Saving documents
The edited document can be saved with one of the actions:

• File → Save (Ctrl+S) to save the current document.

• File → Save As: Displays the Save As dialog, used to name and save an open document to a file; or save an existing
file with a new name.

• File → Save All: Saves all open documents.

Opening and Saving Remote Documents via FTP/SFTP
<oXygen/> supports editing remote files, using the FTP, SFTP protocols. The remote opened files can be edited exactly
as the local ones. They can be added to the project, and can be subject to XSL and FO transformations.

26

Editing documents

Figure 4.6. Open URL dialog

Note

The FTP part is using passive access to the FTP servers. Make sure the server you are trying to connect to is
supporting passive connections. Also the UTF-8 encoding is supported and can be configured for communication
with the FTP server if the server supports it.

Files can be opened through the Secure FTP (SFTP) protocol using the regular user/password mechanism or
using a private key file and a passphrase. The user/password mechanism has precedence so for using the private
key and passphrase you have to remove the password from the dialog used to browse the server repository and
leave only the user name. The private key file and the passphrase must be set in the SFTP user preferences.

Note

WebDAV access is available only if you check the Enable the HTTP/WebDAV protocols option from Window
→ Preferences+oXygen / Network Configuration page. The proxy settings set in Window → Preferences+Gen-
eral / Network Connections are valid also in the <oXygen/> plugin, that is if an HTTP proxy server, a SOCKS
proxy server or a list with excepted host names is set there any HTTP / WebDAV connection made with the
<oXygen/> plugin will take into consideration these settings.

To open the remote files, choose from the main menu File → Open URL ... The displayed dialog is composed of sev-
eral parts:

27

Editing documents

• The editable combo box, in which it can be specified directly the URL to be opened or saved.

URLs that can be directly opened

You can type in here an URL like ftp://anonymous@some.site/home/test.xml if the file is accessible through
anonymous FTP.

This combo box is also displaying the current selection when the user changes selection by browsing the tree of
folders and files on the server.

• The Identification section contains the access credentials. If you want to browse for a file on a server, you have to
specify the user and password. This information is bound to the selected URL displayed in the "File URL" combo
box, and used further in opening/saving the file. If the check box "Save" is selected, then the user and password are
saved between editing sessions. The password is kept encrypted into the options file.

Note

Your password is well protected. In the case the options file is used on other machine by a user with a different
username the password will become unreadable, since the encryption is username dependent. This is also true
if you add URLs having user and password to your project.

• The Browse for remote file section contains the server combo and the "Autoconnect" check box. Into the server
combo it may be specified the protocol , the name or IP of the server .

Server URLs

When accessing a FTP server, you need to specify only the protocol and the host, like: ftp://server.com,
ftp://ftp.apache.org, or if using a nonstandard port: ftp://server.com:7800/ etc.

By pressing the "Browse" button the directory listing will be shown in the component below. When "Autoconnect"
is selected then at every time the dialog is shown, the browse action will be performed.

• The tree view of the documents stored on the server. You can browse the directories, and make multiple selections.
Additionally, you may use the "Rename", "Delete", and "New Folder" to manage the file repository.

The file names are sorted in a case-insensitive way.

GZIP compression is handled correctly for the content received/sent from/to a HTTP server. The built-in client of
<oXygen/> XML Author notifies the server when the connection is established that GZIP compression is supported.

The current WebDAV Connection details can be saved using the button and then used in the Data Source Explorer
view.

Changing file permissions on a remote FTP server

Some FTP servers allow the modification of file permissions on the file system for the files that they serve over the
FTP protocol. This feature of the protocol is accessible directly in the FTP file browser dialog by right-clicking on a
tree node and selecting the Change permissions menu item.

The usual Unix file permissions Read, Write and Execute are granted or denied in this dialog for the owner of the file,
the group of the owner and the rest of the users. The aggregate number of the current state of the permissions is updated
in the Permissions text field when a permission is modified with one of the check boxes.

28

Editing documents

WebDAV over HTTPS

If you want to access a WebDAV repository across an insecure network <oXygen/> allows you to load and save the
documents over the HTTPS protocol (if the server understands this protocol) so that any data exchange with the
WebDAV server is encrypted.

When a WebDAV repository is first accessed over HTTPS the server hosting the repository will present a security
certificate as part of the HTTPS protocol, without any user intervention. <oXygen/> will use this certificate to decrypt
any data stream received from the server. For the authentication to succeed you should make sure the security certificate
of the server hosting the repository can be read by <oXygen/> . This means that <oXygen/> can find the certificate in
the key store of the Java Runtime Environment in which it runs. You know the server certificate is not in the JRE's
key store if you get the error "No trusted certificate found" when trying to access the WebDAV repository:

You can add a certificate to the key store by exporting it to a local file using any HTTPS-capable Web browser (for
example Internet Explorer) and then importing this file into the JRE using the keytool executable bundled with the
JRE. The steps are the following using Internet Explorer (if you use other browser the procedure is similar):

Procedure 4.3. Import a HTTPS server certificate

1. Export the certificate into a local file

a. Point your HTTPS-aware Web browser to the repository URL. If this is your first visit to the repository it
will be displayed a security alert stating that the security certificate presented by the server is not trusted.

Figure 4.7. Security alert - untrusted certificate

b. Press the button "View Certificate".

c. Select the "Details" tab.

d. Press the button "Copy to file ...". This will start the Certificate Export Wizard on Windows

e. Follow the indications of the wizard to save the certificate to a local file, for example server.cer .

2. Import the local file into the JRE running <oXygen/> Eclipse plugin

29

Editing documents

a. Open a text-mode console.

b. Go to the lib/security subdirectory of your JRE directory, that is of the directory where it is installed the JRE
running <oXygen/> Eclipse plugin , for example on Windows C:\Program Files\Java\jre1.5.0_09\lib\security

c. Run the following command:..\..\bin\keytool.exe -import -trustcacerts -file local-file.cer -keystore cacerts
where local-file.cer is the file containing the server certificate, created during the previous step.
keytool requires a password before adding the certificate to the JRE keystore. The default password is
"changeit". If somebody changed the default password then he is the only one who can perform the import.
As a workaround you can delete the cacerts file, re-type the command and enter as password any combination
of at least 6 characters. This will set the password for future operations with the key store.

3. Restart Eclipse

Opening the current document in a Web browser
To open the current document in the default Web browser installed on the computer use the action Open in browser
available on menu XML and also on the Document toolbar. It is useful for seeing the effect of applying an XSLT
stylesheet or a CSS stylesheet on a document which specifies the stylesheet using an xml-stylesheet processing instruction.

Closing documents
To close documents use one of the following methods:

• File → Close (Ctrl+F4) : Closes only the selected tab. All other tab instances remain.

• File → Close All (Ctrl+Shift+F4): Closes all opened documents. If a document is modified or has no file, a prompt
to save, not to save, or cancel the save operation is displayed.

• Close - accessed by right-clicking on an editor tab: Closes the selected editor.

• Close Other Files - accessed by right-clicking on an editor tab: Closes the other files except the selected tab.

• Close All - accessed by right-clicking on an editor tab: Closes all open editors within the panel.

Viewing file properties
In the Properties view you can quickly access information about the current edited document like the character encoding,
full path on the file system, schema used for content completion and document validation, document type name and
path, associated transformation scenario, if the file is read-only, document's total number of characters, line width, if
indent with tabs is enabled and the indent size. The view can be accessed by going to Window+Show View → Other
...+oXygen+Editor properties

To copy a value from the Properties View in the clipboard, for example the full file path, use the Copy action available
on the right-click menu of the view.

30

Editing documents

Editing XML documents

Associate a schema to a document

Setting a schema for the Content Completion

In case you are editing document fragments, for instance the chapters from a book each one in a separate file, you can
activate the Content Completion for these fragments in two ways:

Setting a default schema

The list of document types available at Options → Preferences -> Document Type Association contains a set of rules
for associating a schema with the current document when no schema is specified within the document. The schema is
one of the types: XML Schema, XML Schema with embedded Schematron rules, Relax NG (XML syntax or compact
syntax), Relax NG (XML syntax) with embedded Schematron rules, Schematron, DTD, NRL, NVDL.

The rules are applied in the order they appear in the table and take into account the local name of the root element, the
default namespace and the file name of the document.

Important

The editor is creating the Content Completion lists by analysing the specified schema and the current context
(the position in the editor). If you change the schema you can observe that the list of tags to be inserted is changing.

Figure 4.8. Content completion driven by DocBook DTD

Adding a Processing Instruction

The same effect is obtained by configuring a processing instruction that specifies the schema to be used. The advantage
of this method is that you can configure the Content Completion for each file. The processing instruction must be added
at the beginning of the document, just after the XML prologue:

<?oxygen RNGSchema="file:/C:/work/relaxng/personal.rng" type="xml"?>

31

Editing documents

Select menu Document+Schema → Associate schema... or click the toolbar button Associate schema to open a
dialog for selecting a schema used for Content Completion and document validation. The schema is one of the types:
XML Schema (with or without embedded Schematron rules), DTD, Relax NG - XML syntax (with or without embedded
Schematron rules), Relax NG - compact syntax, NRL, NVDL, Schematron.

This is a dialog helping the user to easily associate a schema file with the edited document . Enables definition of a
XML Document Prolog using the system identifier of a XML Schema, DTD, Relax NG (full or compact syntax)
schema, NRL (Namespace Routing Language) schema, NVDL (Namespace-based Validation Dispatching Language)
schema or Schematron schema. If you associate an XML Schema with embedded Schematron rules or a Relax NG
schema (XML syntax) with embedded Schematron rules you have to check the Embedded Schematron rules checkbox
available for these two types of schemas. Embedded Schematron rules are not supported in Relax NG schema with
compact syntax.

When associating a XML Schema to the edited document if the root element of the document defines a default namespace
URI with a "xmlns" attribute the "Associate schema" action adds a xsi:schemaLocation attribute. Otherwise it adds a
xsi:noNamespaceSchemaLocation attribute.

The URL combo box contains a predefined set of schemas that are used more often and it also keeps a history of the
last used schemas.

<oXygen/> logs the URL of the detected schema in the Status view.

The oxygen processing instruction has the following attributes:

RNGSchema specifies the path to the Relax NG schema associated with the current document

type specifies the type of Relax NG schema, is used together with the RNGSchema attribute and can have
the value "xml" or "compact".

NRLSchema specifies the path to the NRL schema associated with the current document

NVDLSchema specifies the path to the NVDL schema associated with the current document

SCHSchema specifies the path to the SCH schema associated with the current document

Associating a schema with the namespace of the root element

The namespace of the root element of an XML document can be associated with an XML Schema using an XML
catalog. If there is no xsi:schemaLocation attribute on the root element and the XML document is not matched with a
document type the namespace of the root element is searched in the XML catalogs set in Preferences. If there is an
element uri or rewriteUri or delegateUri in the XML catalog that associates the namespace with a schema that schema
will be associated with the XML document.

Learning document structure

When working with documents that do not specify a schema, or for which the schema is not known or does not exist,
<oXygen/> is able to learn and translate it to a DTD, which in turn can be saved to a file in order to provide a DTD
for Content Completion and document validation. In addition to being useful for quick creation of a DTD that will be
capable of providing an initialization source for the Content Completion assistant. This feature can also be used to
produce DTDs for documents containing personal or custom element types.

When it is opened a document that does not specify a schema <oXygen/> automatically learns the document structure
and uses it for Content Completion. To disable this feature uncheck the checkbox Learn on open document from
Preferences.

32

Editing documents

Procedure 4.4. To create a DTD:

1. Open the structured document from which a DTD will be created.

2. Select menu XML → Learn Structure (Ctrl+Shift+L) to read the mark-up structure of the current document so
that it can be saved as a DTD using the Save Structure option. <oXygen/> will learn the document structure, when
finished displaying words Learn Complete in the Message Pane of the Editor Status bar.

3. Select menu Document+XML Document → Save Structure (Ctrl+Shift+S) to display the Save Structure dialog,
used to name and create DTD documents learnt by the Learn Structure function.

Note

The resulting DTD is only valid for documents containing the elements and structures defined by the document
used as the input for creating the DTD. If new element types or structures are defined in a document, they must
be added to the DTD in order for successful validation.

Streamline with Content Completion
<oXygen/>'s intelligent Content Completion feature is a content assistant that enables rapid, in-line identification and
insertion of structured language elements, attributes and in some cases their parameter options.

Figure 4.9. Content Completion Assistant

If the Content Completion assistant is enabled in user preferences (the option Use Content Completion) it is automat-
ically displayed after a configurable delay from the last key press of the < character that is entered into a document or
from CTRL+Space on a partial element or attribute name. Moving the focus to highlight an element and pressing the
Enter key or the Tab key, inserts both the start and end tags of the highlighted element into the document. The delay
is configurable in Preferences as a number of milliseconds from last key press.

The DTD, XML Schema, Relax NG, NRL or NVDL schema used to populate the Content Completion assistant is
specified in the following methods, in order of precedence:

• The schema specified explicitly in the document. In this case <oXygen/> reads the beginning of the document and
resolves the location of the DTD, XML Schema, Relax NG schema, NRL or NVDL schema.

Note

Limitation: In case of XML Schema the content completion takes into account only the schema declarations
from the root element of the document. If a schema declaration is attached to other element of the XML doc-
ument it is ignored.

33

Editing documents

• The default schema rule declared in the Document Type Association preferences panel which matches the edited
document.

• For XSLT stylesheets the schema specified in the <oXygen/> Content Completion options.<oXygen/> will read the
Content Completion settings when the prolog fails to provide or resolve the location of a DTD, XML Schema, Relax
NG or NVDL schema.

• For XML Schemas the schema specified in the <oXygen/> Content Completion options.<oXygen/> will read the
Content Completion settings and the specified schema will enhance the content completion inside the xs:annota-
tion/xs:appinfo elements of the XML Schema.

After inserting, the cursor is positioned directly before the > character of the start tag, if the element has attributes, in
order to enable rapid insertion of any attributed supported by the element, or after the > char of the start tag if the element
has no attributes. Pressing the space bar, directly after element insertion will again display the assistant. In this instance
the attributes supported by that element will be displayed. If an attribute supports a fix set of parameters, the assistant
will display the list of valid parameter. If the parameter setting is user defined and therefore variable, the assistant will
be closed to enable manual insertion. The values of the attributes can be learned from the same elements in the current
document.

If you press CTRL + Enter instead of Enter or Tab after inserting the start and end tags in the document <oXygen/>
will insert an empty line between the start and end tag and the cursor will be positioned between on the empty line on
an indented position with regard to the start tag.

If the feature Add Element Content of Content Completion is enabled all the elements that the new element must
contain, as specified in the DTD or XML Schema or RELAX NG schema, are inserted automatically in the document.
The Content Completion assistant can also add optional content and first choice particle, as specified in the DTD or
XML Schema or RELAX NG schema, for the element if the two options are enabled.

The content assistant can be started at any time by pressing CTRL+Space The effect is that the context-sensitive list
of proposals will be shown in the current position of the caret in the edited document if element, attribute or attribute
value insertion makes sense. Such positions are: anywhere within a tag name or at the beginning of a tag name in an
XML document, XML Schema, DTD or Relax NG (full or compact syntax) schema, anywhere within an attribute
name or at the beginning of an attribute name in any XML document with an associated schema, and within attribute
values or at the beginning of attribute values in XML documents where lists of possible values have been defined for
that element in the schema associated with the document.

The content of the Content Completion assistant is dependent on the element structure specified in the DTD, XML
Schema, Relax NG (full or compact syntax) schema or NRL, NVDL schema associated to the edited document.

The number and type of elements displayed by the assistant is dependent on the current position of the cursor in the
structured document . The child elements displayed within a given element are defined by the structure of the specified
DTD, XML Schema, Relax NG (full or compact syntax) schema or NRL, NVDL schema. All elements that can't be
child elements of the current element according to the specified schema are not displayed.

Inside Relax NG documents the Content Completion assistant is able to present element values if such values are
specified in the Relax NG schema. Also in Relax NG documents the Content Completion assistant presents additional
values of type ID for an anyURI data type. It presents also pattern names defined in the Relax NG schema as possible
values for pattern references. For example if the schema defines an enumValuesElem element

<element name="enumValuesElem">
 <choice>
 <value>value1</value>
 <value>value2</value>
 <value>value3</value>

34

Editing documents

 </choice>
</element>

in documents based on the schema the Content Completion assistant offers the list of values:

Figure 4.10. Content Completion assistant - element values in Relax NG documents

If only one element name must be displayed by the content assistant then the assistant is not displayed any more but
this only option is automatically inserted in the document at the current cursor position.

If the schema for the edited document defines attributes of type ID and IDREF the content assistant will display for
IDREF attributes a list of all the ID values already present in the document for an easy insertion of a valid ID value at
the cursor position in the document. This is available for documents that use DTD, XML Schema and Relax NG
schema.

Also values of all the xml:id attributes are treated as ID attributes and collected and displayed by the content completion
assistant as possible values for anyURI attributes defined in the schema of the edited document. This works only for
XML Schema and Relax NG schemas.

For documents that use an XML Schema or Relax NG schema the content assistant offers proposals for attributes and
elements values that have as type an enumeration of tokens. Also if a default value or a fixed value is defined in the
XML Schema used in validation for an attribute or element then that value is offered in the content completion window.

If the edited document is not associated with a schema explicitly using the usual mechanisms for associating a DTD
or XML Schema with a document or using a processing instruction introduced by the Associate schema action the
content assistant will extract the elements presented in the pop-up window from the default schema.

If the schema for the document is of type XML Schema, Relax NG (full syntax), NVDL or DTD and it contains element,
attributes or attributes values annotations, these will be presented when the content completion window is displayed,
if the option Show annotations is enabled. Also the annotation is presented in a small tooltip window displayed
automatically when the mouse hovers over an element or attribute annotated in the associated schema of the edited
document.

In an XML Schema annotations are put in an <xs:annotation> element:

 <xs:annotation>
 <xs:documentation>
 Description of the element.
 </xs:documentation>
 </xs:annotation>

If the current element / attribute in the edited document does not have an annotation in the schema and that schema is
of the type XML Schema <oXygen/> seeks an annotation in the type definition of the element / attribute or, if no an-
notation is found there, in the parent type definition of that definition, etc.

35

Editing documents

When editing a Schematron schema the content completion assistant displays XSLT 1.0 functions and optionally XSLT
2.0 functions in the attributes path, select, context, subject, test depending on the Schematron options that are set in
Preferences. If the Saxon 6.5 namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9 namespace is declared
in the Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content completion displays also the XSLT Saxon
extension functions as in the following figure:

Figure 4.11. XSLT extension functions in Schematron schemas documents

In a Relax NG schema any element outside the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled
as annotation and the text content is displayed in the annotation window together with the content completion window:

For NVDL schemas annotations for the elements / attributes in the referred schemas (XML Schema, RNG, etc) are
presented

Figure 4.12. Schema annotations displayed at Content Completion

The following HTML tags are recognized inside the text content of an XML Schema annotation: p, br, ul, li. They are
rendered as in an HTML document loaded in a web browser: p begins a new paragraph, br breaks the current line, ul
encloses a list of items, li encloses an item of the list.

For DTD <oXygen/> defines a custom mechanism for annotation using comments enabled from the option Use DTD
comments as annotations . The text of a comment with the following format will be presented on content completion:

 <!--doc:Description of the element. -->

The operation of the Content Completion assistant is configured by the options available in the options group called
Content Completion.

36

Editing documents

Code templates

You can define short names for predefined blocks of code called code templates. The short names are displayed in the
content completion window if the word at cursor position is a prefix of such a short name. <oXygen/> comes with a
lot of predefined code templates but you can define your own code templates for any type of editor. For more details
see the example for XSLT editor code templates.

To obtain the template list you can use the Content Completion on request shortcut key (usually CTRL-SPACE) or
the Code Templates on request shortcut key (CTRL-SHIFT-SPACE). The first shortcut displays the code templates
in the same content completion list with elements from the schema of the document. The second shortcut displays only
the code templates and is the default shortcut of the action Document → Content Completion → Show Code Templates
.

Content Completion helper panels

Information about the current element being edited are also available in the Model panel and Attributes panel, located
on the left-hand side of the main window. The Model panel and the Attributes panel combined with the powerful
Outline view provide spacial and insight information on the edited document.

The Model panel

The Model panel presents the structure of the current edited tag and tag documentation defined as annotation in the
schema of the current document. Open the Model panel from Window → Show View → Other+oXygen+Model view

Figure 4.13. The Model View

The Element Structure panel

The element structure panel shows the structure of the current edited or selected tag in a Tree format.

The information includes the name, model and attributes the currently edited tag may have. The allowed attributes are
shown along with any restrictions they might possess.

37

Editing documents

Figure 4.14. The Element Structure panel

The Annotation panel

The Annotation panel shows the annotations that are present in the used schema for the currently edited or selected
tag.

This information can be very useful to persons learning XML because it has small available definitions for each used
tag.

Figure 4.15. The Annotation panel

The Attributes panel

The Attributes panel presents all the possible attributes of the current element and allows to insert attributes in the
current element or change the value of the attributes already used in the element. The attributes already present in the
document are painted with a bold font. Clicking on the Value column of a table row will start editing the value of the
attribute from the selected row. If the possible values of the attribute are specified as list in the schema associated with
the edited document the Value column works as a combo box where you can select one of the possible values to be
inserted in the document. The attributes table is sortable, 3 sorting orders being available by clicking on the columns'
names. Thus the table's contents can be sorted in ascending order, in descending order or in a custom order, where the
used attributes are placed at the beginning of the table as they appear in the element followed by the rest of the allowed
elements as they are declared in the associated schema.

38

Editing documents

Figure 4.16. The Attributes panel

The Elements view

Figure 4.17. The Elements View

Presents a list of all defined elements that you can insert at the current caret position according to the schema used for
content completion. Double-clicking any of the listed elements will insert that element in the edited document. All
elements from a sequence are presented but the invalid proposals (which cannot be inserted in the current context) are
grayed-out.

The Entities View

This view displays a list with all entities declared in the current document as well as built-in ones. Double clicking
one of the entities will insert it at the current cursor position. You can also sort entities by name and value.

39

Editing documents

Figure 4.18. The Entities View

Validating XML documents
The W3C XML specification states that a program should not continue to process an XML document if it finds a val-
idation error. The reason is that XML software should be easy to write, and that all XML documents should be com-
patible. With HTML it was possible to create documents with lots of errors (like when you forget an end tag). One of
the main reasons that HTML browsers are so big and incompatible, is that they have their own ways to figure out what
a document should look like when they encounter an HTML error. With XML this should not be possible.

However, when creating an XML document, errors are very easily introduced. When working with large projects or
many files, the probability that errors will occur is even greater. Determining that your project is error free can be time
consuming and even frustrating. For this reason <oXygen/> provides functions that enable easy error identification
and rapid error location.

Checking XML well-formedness

A Well-Formed XML document is a document that conforms to the XML syntax rules.

A Namespace Well-Formed XML document is a document that is Well-Formed XML and is also namespace-wellformed
and namespace-valid.

The XML Syntax rules for Well-Formed XML are:

• All XML elements must have a closing tag.

• XML tags are case sensitive.

• All XML elements must be properly nested.

• All XML documents must have a root element.

• Attribute values must always be quoted.

• With XML, white space is preserved.

The namespace-wellformed rules are:

• All element and attribute names contain either zero or one colon

• No entity names, processing instruction targets, or notation names contain any colons.

40

Editing documents

The namespace-valid rules are:

• The prefix xml is by definition bound to the namespace name http://www.w3.org/XML/1998/namespace. It MAY,
but need not, be declared, and MUST NOT be undeclared or bound to any other namespace name. Other prefixes
MUST NOT be bound to this namespace name.

• The prefix xmlns is used only to declare namespace bindings and is by definition bound to the namespace name ht-
tp://www.w3.org/2000/xmlns/. It MUST NOT be declared or undeclared. Other prefixes MUST NOT be bound to
this namespace name.

• All other prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved. This means
that users SHOULD NOT use them except as defined by later specifications and processors MUST NOT treat them
as fatal errors.

• The namespace prefix, unless it is xml or xmlns, MUST have been declared in a namespace declaration attribute in
either the start-tag of the element where the prefix is used or in an ancestor element (i.e. an element in whose content
the prefixed markup occurs). Furthermore, the attribute value in the innermost such declaration MUST NOT be an
empty string.

If you select menu Document+Validate → Check Document Form (Alt+Shift+V WCmd+Alt+V W) or click the

toolbar button Check Document Form <oXygen/> checks if your document is Namespace Well-Formed XML. If
any error is found the result is returned to the Message Panel. Each error is one record in the Result List and is accom-
panied by an error message. Clicking the record will open the document containing the error and highlight the approx-
imate location.

Example 4.2. Document which is not Well-Formed XML

<root><tag></root>

When "Check document form" is performed the following error is raised:

The element type "tag" must be terminated by the matching end-tag "</tag>"

To resolve the error, click in the result list record which will locate and highlight the errors approximate position.
Identify which start tag is missing an end tag and insert </tag>.

Example 4.3. Document which is not namespace-wellformed

<x::y></x::y>

When "Check document form" is performed the following error is raised:

Element or attribute do not match QName production: QName::=(NCName':')?NCName.

Example 4.4. Document which is not namespace-valid

<x:y></x:y>

When "Check document form" is performed the following error is raised:

The prefix "x" for element "x:y" is not bound.

Also the files contained in the current project and selected with the mouse in the Project view can be checked for well-

formedness with one action available on the popup menu of the Project view in the Batch validation submenu:
Check well form

41

Editing documents

Validating XML documents against a schema

A Valid XML document is a Well Formed XML document, which also conforms to the rules of a schema which defines
the legal elements of an XML document. The schema type can be: XML Schema, Relax NG (full or compact syntax),
Schematron, Document Type Definition (DTD), Namespace Routing Language (NRL) or Namespace-based Validation
Dispatching Language (NVDL).

The purpose of the schema is to define the legal building blocks of an XML document. It defines the document structure
with a list of legal elements.

The <oXygen/> Validate document function ensures that your document is compliant with the rules defined by an
associated DTD, XML Schema, Relax NG or Schematron schema. XML Schema or Relax NG Schema can embed
Schematron rules. For Schematron it is possible to select the validation phase.

Note

Validation of an XML document against a W3C XML Schema containing a type definition with a minOccurs
or maxOccurs attribute having a value larger than 256 limits the value to 256 and issues a warning about this
restriction in the Message panel at the bottom of the <oXygen/> window. Otherwise for large values of the
minOccurs and maxOccurs attributes the validator fails with an OutOfMemory error which practically makes
<oXygen/> unusable without a restart of the entire application.

Note

Validation of an XML document against a deeply recursive Relax NG schema may fail with a stack overflow
error. It happens very rarely and the cause is the unusual depth of the Relax NG pattern recursion needed to
match an element of the document against the schema and the depth exceeds the default stack size allocated by
the Java virtual machine. The error can be overcome by simply setting a larger stack size to the JVM at startup
using the -Xss parameter, for example -Xss1m.

Note

Validation of an XML document against a W3C XML Schema or Relax NG Schema (XML syntax) with embedded
ISO Schematron rules allows XPath 2.0 in the expressions of the ISO Schematron rules. This ensures that both
XPath 1.0 and XPath 2.0 expressions are accepted in the embedded ISO Schematron rules and are enforced by
the validation operation. For embedded Schematron 1.5 rules the version of XPath is set with a user preference.

Note

Validation of an XML document against a Relax NG schema that declares a custom datatype library requires
adding the library files to the <oXygen/> classpath.

Marking Validation Errors

A line with a validation error or warning will be marked in the editor panel by underlining the error region with a red
color. Also a red sign will mark the position in the document of that line on the right side ruler of the editor panel. The
same will happen for a validation warning, only the color will be yellow instead of red.

The ruler on the right of the document is designed to display the errors found during the validation process and also
to help the user to locate them more easily. The ruler contains the following areas:

• top area containing a success validation indicator that will turn green in case the validation succeeded or red otherwise.

42

Editing documents

• middle area where the errors markers are depicted in red. The number of markers shown can be limited by modifying
the setting Window → Preferences+oXygen/Editor / Document checking+Maximum number of errors reported per
document

Clicking on a marker will highlight the corresponding text area in the editor. The error message is displayed both
in the tool tip and in the error area on the bottom of the editor panel.

Status messages from every validation action are logged into the Console view.

Validation Example

Example 4.5. Validation error messages

In this example you will use the case where a DocBook listitem element does not match the rules of the docbookx.dtd.
In this case running Validate Document will return the following error:

 E The content of element type "listitem" must
 match"(calloutlist|glosslist|itemizedlist|orderedlist|segmentedlist|
 simplelist|variablelist| caution|important|note|tip|warning|
 literallayout|programlisting|programlistingco|screen|
 screenco|screenshot|synopsis|cmdsynopsis|
 funcsynopsis|classsynopsis|fieldsynopsis| constructorsynopsis|
 destructorsynopsis|methodsynopsis|formalpara|para|simpara|
 address|blockquote|graphic|graphicco|mediaobject|
 mediaobjectco|informalequation| informalexample|
 informalfigure|informaltable|equation|example|
 figure|table|msgset|procedure|sidebar|qandaset|anchor|
 bridgehead|remark|highlights|abstract|authorblurb|epigraph|
 indexterm|beginpage)+".

As you can see, this error message is a little more difficult to understand, so understanding of the syntax or processing
rules for the DocBook XML DTD's "listitem" element is required. However, the error message does give us a clue as
to the source of the problem, but indicating that "The content of element type "listitem" must match".

Luckily most standards based DTD's, XML Schema's and Relax NG schemas are supplied with reference documentation.
This enables us to lookup the element and read about it. In this case you should learn about the child elements of listitem
and their nesting rules. Once you have correctly inserted the required child element and nested it in accordance with
the XML rules, the document will become valid on the next validation test.

Caching the Schema Used for Validation

If you don't change the active editor and you don't switch to other application the schema associated to the current
document is parsed and cached at the first validate action and is reused by the next Validate document actions without
re parsing it. This increases the speed of the validate action starting with the second execution if the schema is large

or is located on a remote server on the Web. To reset the cache and re parse the schema you have to use the Reset
cache and validate action. This action will also re parse the catalogs and reset the schema used for content completion.

Validate As You Type

<oXygen/> can be configured to mark validation errors in the edited document as you modify it using the keyboard.
If you enable the Validate as you type option any validation errors and warnings will be highlighted automatically in
the editor panel after the configured delay from the last key typed, with underline markers in the editor panel and small
rectangles on the right side ruler of the editor panel, in the same way as for manual validation invoked by the user.

43

Editing documents

Figure 4.19. Validate as you type on the edited document

Custom validation of XML documents

If you need to validate the edited document with other validation engine than the built-in one you have the possibility
to configure external validators as custom validation engines in <oXygen/>. After such a custom validator is properly
configured it can be applied on the current document with just one click on the Custom Validation Engines toolbar.
The document is validated against the schema declared in the document.

Some validators are configured by default but they are third party processors which do not support the output message
format for linked messages described above:

LIBXML included in <oXygen/> (Windows edition), associated to XML Editor, able to
validate the edited document against XML Schema, Relax NG schema full
syntax, internal DTD (included in the XML document) or a custom schema type.
XML catalogs support(--catalogs) and XInclude processing(--xinclude) are
enabled by default in the preconfigured LIBXML validator. The --postvalid
flag is set as default allowing LIBXML to validate correctly the main document
even if the XInclude fragments contain IDREFS to ID's located in other frag-
ments.

For validation against an external DTD specified by URI in the XML document
the parameter --dtdvalid ${ds} must be added manually to the DTD validation
command line. ${ds} represents the detected DTD declaration in the XML
document.

Note

Known problem: file paths containing spaces are not handled correctly in
the LIBXML processor. For example the built-in XML catalog files of
the predefined document types (DocBook, TEI, DITA, etc) are not handled
by LIBXML if <oXygen/> is installed in the default location on Windows
(C:\Program Files) because the built-in XML catalog files are stored in

44

Editing documents

the frameworks subdirectory of the installation directory which in this
case contains at least a space character.

Note

On Mac OS X if the full path to the LIBXML executable file is not spe-
cified in the Executable path text field some errors may occur on validation
against a W3C XML Schema like:

Unimplemented block at ... xmlschema.c

These errors can be avoided by specifying the full path to the LIBXML
executable file.

Saxon SA included in <oXygen/>. It is associated to XML Editor and XSD Editor. It is
able to validate XML Schema schemas and XML documents against XML
Schema schemas. The validation is done according to the W3C XML Schema
1.0 specification or according to the W3C XML Schema 1.1 one. This can be
configured in Preferences.

MSXML 4.0 included in <oXygen/> (Windows edition). It is associated to XML Editor, XSD
Editor and XSL Editor. It is able to validate the edited document against XML
Schema, internal DTD (included in the XML document), external DTD or a
custom schema type.

MSXML.NET included in <oXygen/> (Windows edition). It is associated to XML Editor, XSD
Editor and XSL Editor. It is able to validate the edited document against XML
Schema, internal DTD (included in the XML document), external DTD or a
custom schema type.

XSV not included in <oXygen/>. A Windows distribution of XSV can be downloaded
from: ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV31.EXE
[ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV31.EXE] A Linux distribution can be
downloaded from ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-3.1-1.noarch.rpm
[ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-3.1-1.noarch.rpm] The executable path
is configured already in <oXygen/> for the installation directory [oXygen-
install-dir]/xsv. If it is installed in a different directory the predefined
executable path must be corrected in Preferences. It is associated to XML Editor
and XSD Editor. It is able to validate the edited document against XML Schema
or a custom schema type.

SQC (Schema Quality Checker from
IBM)

not included in <oXygen/>. It can be downloaded from here
[http://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=grx,p=shecheck]
(it comes as a .zip file, at the time of this writing SQC2.2.1.zip is about 3
megabytes). The executable path and working directory are configured already
for the SQC installation directory [oXygen-install-dir]/sqc. If it is
installed in a different directory the predefined executable path and working
directory must be corrected in Preferences. It is associated to XSD Editor.

Linked output messages of an external engine

Validation engines display messages in an output view at the bottom of the <oXygen/> window. If such an output
message (warning, error, fatal error, etc) spans between three to five lines of text and has the following format then
the message is linked to a location in the validated document so that a click on the message in the output view highlights

45

Editing documents

ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV31.EXE
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV31.EXE
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-3.1-1.noarch.rpm
ftp://ftp.cogsci.ed.ac.uk/pub/XSV/XSV-3.1-1.noarch.rpm
http://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=grx,p=shecheck
http://www.alphaworks.ibm.com/tech/xmlsqc?open&l=xml-dev,t=grx,p=shecheck

the location of the message in an editor panel containing the file referred in the message. This behavior is similar to
the linked messages generated by the default built-in validator. The format for linked messages is:

• Type:[F|E|W] (the string "Type:" followed by a letter for the type of the message: fatal error, error, warning - this
line is optional in a linked message)

• SystemID: a system ID of a file (the string "SystemID:" followed by the system ID of the file that will be opened
for highlighting when the message is clicked in the output message - usually the validated file, the schema file or
an included file)

• Line: a line number (the string "Line:" followed by the number of the line that will be highlighted)

• Column: a column number (the string "Column:" followed by the number of the column where the highlight will
start on the highlighted line - this line is optional in a linked message)

• Description: message content (the string "Description:" followed by the content of the message that will be displayed
in the output view)

Validation Scenario

A complex XML document is usually split in smaller interrelated modules which do not make much sense individually
and which cannot be validated in isolation due to interdependencies with the other modules. A mechanism is needed
to set the main module of the document which in fact must be validated when an imported module needs to be checked
for errors.

A typical example is the chunking DocBook XSL stylesheet which has chunk.xsl as the main module and which
imports a stylesheet module called param.xsl which only defines XSLT parameters and other modules called
chunk-common.xsl and chunk-code.xsl. The module chunk-common.xsl defines a named XSLT template
with the name "chunk" which is called by chunk-code.xsl. The parameters defined in param.xsl are used in
the other modules without being redefined.

Validation of chunk-code.xsl as an individual XSLT stylesheet issues a lot of misleading errors referring to
parameters and templates used but undefined which are only caused by ignoring the context in which this module is
used in real XSLT transformations and in which it should be validated. To validate such a module properly a validation
scenario must be defined which sets the main module of the stylesheet and also the validation engine used to find the
errors. Usually this is the engine which applies the transformation in order to detect by validation the same errors that
would be issued by transformation.

To define a validation scenario first open the Configure Validation Scenario dialog. You do this with the Configure
Validation Scenario action available on the menu XML and on the toolbar of the <oXygen/> plugin. You can use the
default engine set in Preferences, or use a custom validation scenario. The list of reusable scenarios for documents of
the same type as the current document is displayed.

46

Editing documents

Figure 4.20. Configure Validation Scenarios

A validation scenario is created or edited in a special dialog opened with the New button or with the Edit one.

Figure 4.21. Edit a Validation Scenario

The table columns are:

URL of the file to validate The URL of the main module which includes the current module and which is
the entry module of the validation process when the current module is validated.

Input type The type of the document that is validated in the current validation unit: XML
document, XSLT document, XQuery document, etc.

Validation engine One of the engines available in <oXygen/> for validation of the type of document
to which the current module belongs.

Validate as you type If this option is checked then the validation operation defined by this row of the table
is applied also by the Validate as you type feature. If the Validate as you type feature

47

Editing documents

is disabled in Preferences then this option does not take effect as the Preference setting
has higher priority.

Extensions A list of Java jar files or classes which implement extensions of the language of the
current module. For example when the current module is an XSLT stylesheet an ex-
tension jar contains the implementation of the XSLT extension functions or the XSLT
extension elements used in the stylesheet which includes the current module.

A row of the table is created or edited in the following dialog:

Figure 4.22. Edit a Validation Unit

The components of the dialog are the same as the columns of the table displayed in the scenario edit dialog. The URL

of the main module can be specified with the help of a file browser for the local file system (the button), with the

help of the Open FTP / SFTP / WebDAV dialog opened by the button or by inserting an editor variable or a custom
editor variable from the following pop-up menu:

Figure 4.23. Insert an editor variable

A second benefit of a validation scenario is that the stylesheet can be validated with several engines to make sure that
it can be used in different environments with the same results. For example an XSLT stylesheet needs to be applied
with Saxon 6.5, Xalan and MSXML 4.0 in different production systems.

48

Editing documents

Other examples of documents which can benefit of a validation scenario are a complex XQuery with a main module
which imports modules developed independently but validated in the context of the main module of the query and an
XML document in which the master file includes smaller fragment files using XML entity references. In an XQuery
validation scenario the default validator of <oXygen/> (Saxon 9) or any connection to a database that supports validation
(Berkeley DB XML Database, eXist XML Database, Software AG Tamino, Documentum xDb (X-Hive/DB) XML
Database) can be set as validation engine.

Sharing the Validation Scenarios. Project Level Scenarios

In the upper part of the dialog showing the list of scenarios you will find two radio buttons controlling where the
scenarios are stored.

Validation Actions in the User Interface

Use one of the actions for validating the current document:

• Select menu XML → Validate Document (Alt+Shift+V V (Cmd+Alt+V V on Mac OS)) or click the button
Validate Document available in the Validate toolbar to return an error result-list in the Message panel. Mark-up of
current document is checked to conform with the specified DTD, XML Schema or Relax NG schema rules. It caches
the schema and the next execution of the action uses the cached schema.

• Select menu XML → Reset Cache and Validate or click the button Reset Cache and Validate available in the
Validate toolbar to reset the cache with the schema and validate the document. This action will also re parse the
catalogs and reset the schema used for content completion. It returns an error result-list in the Message panel. Mark-
up of current document is checked to conform with the specified DTD, XML Schema or Relax NG schema rules.

• Select menu XML → Validate with (Alt+Shift+V E (Cmd+Alt+V E on Mac OS)) or click the button Validate
with available in the Validate toolbar. This can be used to validate the current document using a selectable schema
(XML Schema, DTD, Relax NG, NRL, NVDL, Schematron schema). Returns an error result-list in the Message
panel. Mark-up of current document is checked to conform with the specified schema rules.

• Select contextual menu of Navigator or Package Explorer view,Batch Validation → Validate to validate all selected
files with their declared schemas.

• Select contextual menu of Navigator or Package Explorer view,Batch Validation → Validate With ... to select a
schema and validate all selected files with that schema.

• XML → Clear validation markers (Alt+Shift+V X (Cmd+Alt+V X on Mac OS)) or click the toolbar button
Clear validation markers to clear the error markers added to the Problems view at the last validation of the current
edited document.

• Select contextual menu of Navigator or Package Explorer view,Batch Validation → Configure Validation Scenario
... to configure and apply a validation scenario in one action to all the selected files in the Navigator or Package
Explorer view.

Also you can select several files in the views like Package Explorer, Navigator and validate them with one click by
selecting the action Validate selection, the action Validate selection with Schema ... or the action Configure Validation
Scenario ... available from the contextual menu of that view, the submenu Batch Validate.

If there are too many validation errors and the validation process is long you can limit the maximum number of reported
errors.

49

Editing documents

Resolving references to remote schemas with an XML Catalog

When a reference to a remote schema must be used in the validated XML document for interoperability purposes but
a local copy of the schema should be actually used for validation for performance reasons the reference can be resolved
to the local copy of the schema with an XML catalog. For example if the XML document contains a reference to a remote
schema docbook.rng

<?oxygen RNGSchema="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
 type="xml"?>

it can be resolved to a local copy with a catalog entry:

<system systemId="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
 uri="rng/docbook.rng"/>

An XML catalog can be used also to map a W3C XML Schema specified with an URN in the xsi:schemaLocation at-
tribute of an XML document to a local copy of the schema. For example if the XML document specifies the schema
with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

the URN can be resolved to a local schema file with a catalog entry like:

<system systemId="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

Document navigation
Navigating between XML elements located in various parts of the currently edited document is easy due to several
powerful features.

Folding of the XML elements

XML documents are organized as a tree of elements. When working on a large document you can collapse some elements
leaving in the focus only the ones you need to edit. Expanding and collapsing works on individual elements: expanding
an element leaves the child elements unchanged.

50

Editing documents

Figure 4.24. Folding of the XML Elements

To toggle the folded state of an element click on the special mark displayed in the left part of the document editor next

to the start tag of that element or click on the action Toggle fold (Ctrl+Alt+Y) available from the context menu

Other menu actions related to folding of XML elements are available from the context menu of the current editor:

• Document+Folding+ → Close Other Folds (Ctrl+NumPad+/) Fold all the sections except the current element.

• Document+Folding+ → Collapse Child Folds : Fold the sections indented with one level inside the current element.

• Document+Folding+ → Expand Child Folds (Ctrl+NumPad++ (Cmd+NumPad++)): Unfold the sections in-
dented with one level inside the current element.

• Document+Folding+ → Expand All (Ctrl+NumPad+* (Cmd+NumPad+* on Mac OS)): Unfold all the sections
inside the current element.

• Document+Folding+ → Toggle Fold (Alt+Shift+Y (Cmd+Alt+Y on Mac OS)): Toggles the state of the current
fold.

You can use folding by clicking on the special marks displayed in the left part of the document editor.

Outline View

The Outline view has the following available functions:

• the section called “XML Document Overview”

• the section called “Outliner filters”

• the section called “Modification Follow-up”

• the section called “Document Structure Change”

• the section called “Document Tag Selection”

51

Editing documents

Figure 4.25. The Outline View

XML Document Overview

The Outline view displays a general tag overview of the current edited XML Document. It also shows the correct
hierarchical dependencies between the tag elements, making it easier for the user to be aware of the document's structure
and the way tags are nested.

The Expand all and Collapse all items of the popup menu available on the outline tree enlarge or reduce the set of
nodes of the edited document currently visible in the view. The tree expansion action is a faster alternative to mouse
clicks on the plus signs of the tree when one wants to access quickly a node deeply nested in the hierarchy of document
nodes. When a large number of nodes become expanded and the document structure is not clear any more the collapsing
action clears the view quickly by reducing the depth of the expanded nodes to only one child of the currently selected
node.

Outliner filters

Show comments/Processing Instruc-
tions

Show/Hide Comments and Processing instructions in the outliner.

Show text Show/Hide additional text content for the displayed elements.

Show attributes Show/Hide attribute values for the displayed elements.

The displayed attribute values can be changed from the Outline preferences
panel.

The content of the Outline view can also be filtered with patterns typed in the text field of the view. The patterns can
include the wildcard characters * and ?. If more than one pattern is used they must be separated by comma. Any pattern
is a prefix filter, that is a * is appended automatically at the end of every pattern.

52

Editing documents

Modification Follow-up

When editing, the Outline view dynamically follows the modifications introduced by the user, showing in the middle
of the panel the node which is currently being modified .This gives the user better insight on location where in the
document one is positioned and how the structure of the document is affected by one's modifications.

Document Structure Change

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view in
drag-and-drop operations. If you drag an XML element in the Outline view and drop it on another one in the same
panel then the dragged element will be moved after the drop target element. If you hold the mouse pointer over the
drop target for a short time before the drop then the drop target element will be expanded first and the dragged element
will be moved inside the drop target element after its opening tag. You can also drop an element before or after another
element if you hold the mouse pointer towards the upper or lower part of the targeted element. A marker will indicate
whether the drop will be performed before or after the target element. If you hold down the CTRL key the performed
operation will be copy instead of move.

The drag and drop action in the Outline view can be disabled and enabled from the Preferences dialog.

The popup menu of the Outline tree

Figure 4.26. Popup menu of the Outline tree

The Append Child, Insert Before and Insert After submenus of the outline tree popup menu allow to quickly insert new
tags in the document at the place of the element currently selected in the Outline tree. The Append Child submenu lists
the names of all the elements which are allowed by the schema associated with the current document as child of the
current element. The Insert Before and Insert After submenus of the Outline tree popup menu list the elements which
are allowed by the schema associated with the current document as siblings of the current element inserted immediately
before respectively after the current element.

Edit attributes for the selected node. A dialog is presented allowing the user to see and edit the attributes of the selected
node. See here for more details about editing attributes.

53

Editing documents

The Toggle comment item of the outline tree popup menu is the same item as in the editor popup menu with the same
name. It encloses the currently selected element of the outline tree in an XML comment, if the element is not commented,
or un comments it if it is commented.

The Cut, Copy and Delete items of the popup menu execute the same actions as the Edit menu items with the same
name on the elements currently selected in the outline tree (Cut, Copy, Paste).

Document Tag Selection

The Outline view can also be used to search for a specific tag's location and contents in the edited document. Intuitively,
by selecting with the left mouse button the desired tag in the Outline view, the document is scrolled to the position of
the selected tag. Moreover, the tag's contents are selected in the document, making it easy to notice the part of the
document contained by that specific tag and furthermore to easily copy and paste the tag's contents in other parts of
the document or in other documents.

You can also use key search to look for a particular tag name in the Outliner tree.

Grouping documents in XML projects

Large Documents

Let's consider the case of documenting a large project. It is likely to be several people involved. The resulting document
can be few megabytes in size. How to deal with this amount of data in such a way the work parallelism would not be
affected ?

Fortunately, XML provides a solution for this. It can be created a master document, with references to the other document
parts, containing the document sections. The users can edit individually the sections, then apply FOP or XSLT over
the master and obtain the result files, let say PDF or HTML.

Two conditions must be fulfilled:

• The master should declare the DTD to be used and the external entities - the sections. A sample document is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "../xml/docbookx.dtd" [
<!ENTITY testing SYSTEM "testing.xml" >]
>
<book>
<chapter> ...

At a certain point in the master document there can be inserted the section "testing.xml" entity:

... &testing; ...

• The document containing the section must not define again the DTD.

<section> ... here comes the section content ... </section>

Note

The indicated DTD and the element names ("section", "chapter") are used here only for illustrating the inclusion
mechanism. You can use any DTD and element names you need.

54

Editing documents

When splitting a large document and including the separate parts in the master file using external entities, only the
master file will contain the Document Type Definition (the DTD) or other type of schema. The included sections can't
define again the schema because the main document will not be valid. If you want to validate the parts separately you
have to use XInclude for assembling the parts together with the master file.

Creating an included part

Open a new document of type XML, with no associated schema.

You can type in the edited document the root element of your section. For example, if you are using DocBook it can
be "<chapter></chapter>" or "<section></section>". Now if you are moving the cursor between the tags and press
"<", you will see the list of element names that can be inserted.

Figure 4.27. Content Completion list over a document with no schema

Note

The validation will work on an included file that has no DTD set only if you associate the file with a validation
scenario that specifies the master file as the start point of validation. Without a validation scenario you can only
check the included file to be well-formed.

Creating a new project

Procedure 4.5. Create an <oXygen/> XML project

1. Select File → New → -> Other (Ctrl+N) or press the New toolbar button. The New wizard is displayed which
contains the list entry XML Project.

2. Select XML Project in the list of document types and click the Next button.

3. Type a name for the new project and click the Next button.

4. Select other Eclipse projects that you want to reference in the new project and click the Finish button.

The files are organized in a XML project usually as a collection of folders. They are created and deleted with the usual
Eclipse actions.

The currently selected files associated to the <oXygen/> pluginin the Package Explorer view can be validated against
a schema of type Schematron, XML Schema, Relax NG, NRL, NVDL, or a combination of the later with Schematron
with one of the actions Validate and Validate With ... available on the Batch Validation submenu of the right-click
menu of the Package Explorer view. This together with the logical folder support of the project allows you to group
your files and validate them very easily.

55

Editing documents

The currently selected files associated to the <oXygen/> pluginin the Package Explorer view can be transformed in
one action with one of the actions Apply Transformation, Configure Transformation ... and Transform with... available
on the Transformation submenu of the right-click menu of the Package Explorer view. This together with the logical
folder support of the project allows you to group your files and transform them very easily.

If the resources from a linked folder in the project have been changed outside the view you can refresh the content of
the folder by using the Refresh action from the contextual menu. The action is also performed when selecting the linked
resource and pressing F5 key

You can also use drag and drop to arrange the files in logical folders(but not in linked folders). Also, dragging and
dropping files from the project tree to the editor area results in the files being opened.

Including document parts with XInclude
XInclude is a standard for assembling XML instances into another XML document through inclusion. It enables larger
documents to be dynamically created from smaller XML documents without having to physically duplicate the content
of the smaller files in the main file. XInclude is targeted as the replacement for External Entities. The advantage of
using XInclude is that, unlike the entities method, each of the assembled documents is permitted to contain a Document
Type Declaration (DOCTYPE Decl.). This means that each file is a valid XML instance and can be independently
validated. It also means that the main document to which smaller instances are included can be validated without
having to remove or comment the DOCTYPE Decl. as is the case with External Entities. This is makes XInclude a
more convenient and effective method for managing XML instances that need to be stand-alone documents and part
of a much larger work.

The main application for XInclude is in the document orientated content frameworks such as manuals and Web pages.
Employing XInclude enables authors and content managers to manage content in a modular fashion that is akin to
Object Orientated methods used in languages such as Java, C++ or C#.

The advantages of modular documentation include: reusable content units, smaller file units that are easier to edited,
better version control and distributed authoring.

An example: create a chapter file and an article file in the samples folder of the <oXygen/> install folder and include
the chapter file in the article file using XInclude.

Chapter file introduction.xml:

<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/docbookx.dtd">
<chapter>
 <title>Getting started</title>
 <section>
 <title>Section title</title>
 <para>Para text</para>
 </section>
</chapter>

Main article file:

<?xml version="1.0"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.docbook.org/xml/4.3/docbookx.dtd"
[<!ENTITY % xinclude SYSTEM "../frameworks/docbook/dtd/xinclude.mod">

56

Editing documents

%xinclude;
]>
<article>
 <title>Install guide</title>
 <para>This is the install guide.</para>
 <xi:include xmlns:xi="http://www.w3.org/2001/XInclude"
 href="introduction.xml">
 <xi:fallback>
 <para>
 <emphasis>FIXME: MISSING XINCLUDE CONTENT</emphasis>
 </para>
 </xi:fallback>
 </xi:include>
</article>

In this example the following is of note:

• The DOCTYPE Decl. defines an entity that references a file containing the information to add the xi namespace to
certain elements defined by the DocBook DTD.

• The href attribute of the xi:include element specifies that the introduction.xml file will replace the xi:include
element when the document is parsed.

• If the introduction.xml file cannot be found the parse will use the value of the xi:fallback element - a message
to FIXME.

If you want to include only a fragment of other file in the master file the fragment must be contained in a tag having
an xml:id attribute and you must use an XPointer expression pointing to the xml:id value. For example if the master
file is:

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="test.rng" type="xml"?>
<test>
 <xi:include href="a.xml" xpointer="a1"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
</test>

and the a.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<test>
 <a xml:id="a1">test
</test>

after resolving the XPointer reference the document is:

<?xml version="1.0" encoding="UTF-8"?>
<?oxygen RNGSchema="test.rng" type="xml"?>
<test>
 <a xml:id="a1" xml:base="a.xml">test

57

Editing documents

</test>

The XInclude support in <oXygen/> is turned on by default. You can toggle it by going to the entry Enable XInclude
processing in the menu Window → Preferences+oXygen / XML / XML Parser When enabled <oXygen/> will be able
to validate and transform documents comprised of parts added using XInclude.

Working with XML Catalogs
When Internet access is not available or the Internet connection is slow the OASIS XML catalogs
[http://www.oasis-open.org/committees/entity/spec.html] present in the list maintained in the XML Catalog Preferences
panel will be scanned trying to map a remote system ID (at document validation) or a URI reference (at document
transformation) pointing to a resource on a remote Web server to a local copy of the same resource. If a match is found
then <oXygen/> will use the local copy of the resource instead of the remote one. This enables the XML author to
work on his XML project without Internet access or when the connection is slow and waiting until the remote resource
is accessed and fetched becomes unacceptable. Also XML catalogs make documents machine independent so that they
can be shared by many developers by modifying only the XML catalog mappings related to the shared documents.

<oXygen/> supports any XML catalog file that conforms to one of:

• t h e O A S I S X M L C a t a l o g s C o m m i t t e e S p e c i fi c a t i o n v 1 . 1
[http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html]

• the OASIS Technical Resolution 9401:1997 [http://www.oasis-open.org/specs/a401.htm] including the plain-text
flavor described in that resolution

The version 1.1 of the OASIS XML Catalog specification introduces the possibility to map a system ID, a public ID
or a URI to a local copy using only a suffix of the ID or URI used in the actual document. This is done using the new
c a t a l o g e l e m e n t s s y s t e m S u f fi x
[http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.systemsuffix] and uriSuffix
[http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.urisuffix].

An XML catalog can be used also to map a W3C XML Schema specified with an URN in the xsi:schemaLocation at-
tribute of an XML document to a local copy of the schema. For example if the XML document specifies the schema
with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

Inside an XML Schema if an xs:import statement specifies only the namespace attribute, without the schemaLocation
attribute, <oXygen/> will try to resolve the specified namespace URI through one of the XML catalogs configured in
Preferences.

the URN can be resolved to a local schema file with a catalog entry like:

<system systemId="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

An XML Catalog file can be created quickly in <oXygen/> starting from the two XML Catalog document templates
called OASIS XML Catalog 1.0 and OASIS XML Catalog 1.1 and available in the document templates dialog.

User preferences related to XML Catalogs can be configured from Window → Preferences +oXygen / XML / XML
Catalog

58

Editing documents

http://www.oasis-open.org/committees/entity/spec.html
http://www.oasis-open.org/committees/entity/spec.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/specs/a401.htm
http://www.oasis-open.org/specs/a401.htm
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.systemsuffix
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.systemsuffix
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.urisuffix
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.urisuffix

Converting between schema languages
The Generate/Convert Schema allows you to convert a DTD or Relax NG (full or compact syntax) schema or a set of
XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where perfect equivalence
is not possible due to limitations of the target language <oXygen/> will generate an approximation of the source schema.

The conversion functionality is available from XML Tools → Generate/Convert Schema... (Ctrl+Shift+\ (Cmd+Shift+/

on Mac OS)) and from the toolbar button Convert to...

A schema being edited can be converted with just one click on a toolbar button if that schema can be the subject of a
supported conversion.

Figure 4.28. Convert a schema to other schema language

The language of the target schema is specified with one of the four radio buttons of the Output panel. The encoding,
the maximum line width and the number of spaces for one level of indentation can be also specified in this panel.

The conversion can be further fine-tuned by specifying more advanced options available from the Advanced options
button. For example if the input is a DTD and the output is an XML Schema the advanced options are:

59

Editing documents

Figure 4.29. Convert a schema to other schema language - advanced options

For the Input panel:

xmlns field specifies the default namespace, that is the namespace used for unqualified element names.

xmlns table Each row specifies in the prefix used for a namespace in the input schema.

colon-replacement Replaces colons in element names by the specified chars when constructing the names of
definitions used to represent the element declarations and attribute list declarations in the
DTD.

element-define Specifies how to construct the name of the definition representing an element declaration
from the name of the element. The specified value must contain exactly one percent char-
acter. This percent character is replaced by the name of element (after colon replacement)
and the result is used as the name of the definition.

inline-attlist Specifies not to generate definitions for attribute list declarations and instead move attributes
declared in attribute list declarations into the definitions generated for element declarations.
This is the default behavior when the output language is XSD.

attlist-define This specifies how to construct the name of the definition representing an attribute list
declaration from the name of the element. The specified value must contain exactly one
percent character. This percent character is replaced by the name of element (after colon
replacement) and the result is used as the name of the definition.

any-name Specifies the name of the definition generated for the content of elements declared in the
DTD as having a content model of ANY.

60

Editing documents

strict-any Preserves the exact semantics of ANY content models by using an explicit choice of refer-
ences to all declared elements. By default, Trang uses a wildcard that allows any element.

generate-start Specifies whether Trang should generate a start element. DTDs do not indicate what ele-
ments are allowed as document elements. Trang assumes that all elements that are defined
but never referenced are allowed as document elements.

annotation-prefix Default values are represented using an annotation attribute prefix:defaultValue where
prefix is the specified value and is bound to http://relaxng.org/ns/compatibility/annota-
tions/1.0 as defined by the RELAX NG DTD Compatibility Committee Specification. By
default, Trang will use a for prefix unless that conflicts with a prefix used in the DTD.

For the Output panel:

disable-abstract-elements Disables the use of abstract elements and substitution groups in the generated
XML Schema. This can also be controlled using an annotation attribute.

any-process-contents One of the values: strict, lax, skip. Specifies the value for the processContents
attribute of any elements. The default is skip (corresponding to RELAX NG
semantics) unless the input format is dtd, in which case the default is strict
(corresponding to DTD semantics).

any-attribute-process-contents Specifies the value for the processContents attribute of anyAttribute elements.
The default is skip (corresponding to RELAX NG semantics).

Formatting and indenting documents (pretty print)
In structured markup languages, the whitespace between elements that is created by use of the Space bar, Tab or
multiple line breaks insertion from use of the Enter, is not recognized by the parsing tools. Often this means that when
structured markup documents are opened, they are arranged as one long, unbroken line, what seems to be a single
paragraph.

While this is perfectly acceptable practice, it makes editing difficult and increases the likelihood of errors being intro-
duced. It also makes the identification of exact error positions difficult. Formatting and Indenting, also called Pretty
Print, enables such documents to be neatly arranged, in a manner that is consistent and promotes easier reading on
screen and in print output.

Pretty print is in no way associated with the layout or formatting that will be used in the transformed document. This
layout and formatting is supplied by the XSL stylesheet specified at the time of transformation.

Procedure 4.6. To format and indent a document:

1. Open or focus on the document that is to be formatted and indented.

2. Select menu XML → Format and Indent (Ctrl+Shift+F (Cmd+Shift+F on Mac OS)) or click the toolbar button

 Format and indent . While in progress the Status Panel will indicate Pretty print in progress. On completion,
this will change to Pretty print successful and the document will be arranged.

Note

Pretty Print can format empty elements as an auto-closing markup tag (ex. <a/>) or as a regular tag (ex. <a>
). It can preserve the order or attributes or order them alphabetically. Also the user may specify a list of elements
for which white spaces are preserved exactly as before Pretty print and one with elements for which white space
is stripped. These can be configured from Options → Preferences+Editor / Format.

61

Editing documents

Pretty Print requires that the structured document is Well-Formed XML. If the document is not Well-Formed XML an
error message is displayed. The message will usually indicate that a problem has been found in the form and will hint
to the problem type. It will not highlight the general position of the error, to do this run the well formed action by se-
lecting Document → Check document form (Alt+Shift+V W (Cmd+Alt+V W on Mac OS)).

Important

In XHTML files (XML files which either have the XHTML namespace or the <html> root tag) the JavaScript
<script> sections will be formatted according to the JavaScript Format and Indent options and the CSS <style>
sections will be formatted according to the CSS Format and Indent options.

Note

If the document is not well-formed because some XML elements contain code in a specific language, for example
JavaScript:

 <script language="JavaScript" type="text/javascript">
 var javawsInstalled = 0;
 var javaws12Installed = 0;
 var javaws142Installed=0;
 isIE = "false";

 if (navigator.mimeTypes && navigator.mimeTypes.length) {
 x = navigator.mimeTypes['application/x-java-jnlp-file'];
 if (x) {
 javawsInstalled = 1;
 javaws12Installed=1;
 javaws142Installed=1;
 }
 } else {
 isIE = "true";
 }
</script>

this code can be enclosed in an XML comment to make the document well-formed before applying the Format
and Indent action:

 <script language="JavaScript" type="text/javascript">
 <!--
 var javawsInstalled = 0;
 var javaws12Installed = 0;
 var javaws142Installed=0;
 isIE = "false";

 if (navigator.mimeTypes && navigator.mimeTypes.length) {
 x = navigator.mimeTypes['application/x-java-jnlp-file'];
 if (x) {
 javawsInstalled = 1;
 javaws12Installed=1;
 javaws142Installed=1;
 }

62

Editing documents

 } else {
 isIE = "true";
 }
 -->
</script>

To change the indenting of the current selected text see the action Indent selection .

For user preferences related to formatting and indenting like Detect indent on open and Indent on paste see the corres-
ponding Preferences panel.

XML elements can be excepted from the reformatting performed by the pretty-print operation by including them in
the Preserve space elements (XPath) list. That means that when the Format and Indent (pretty-print) action encounters
in the document an element with the name contained in this list the whitespace is preserved inside that element. This
is useful when most of the elements must be reformatted with the exception of a few ones which are listed here.

For the situation when whitespace should be preserved in most elements with the exception of a few elements, the
names of these elements must be added to the Strip space elements (XPath) list.

In addition to simple element names both the Preserve space elements (XPath) list and the Strip space elements (XPath)
one accept a restricted set of XPath expressions for covering a pattern of XML elements with only one expression.
The allowed types of expressions are:

//xs:documentation the XPath descendant axis can be used only at the beginning of the expression;
the namespace prefix can be attached to any namespace, no namespace binding
check is performed when applying the pretty-print operation

/chapter/abstract/title note the use of the XPath child axis

//section/title the descendant axis can be followed by the child axis

The value of an xml:space attribute present in the XML document on which the pretty-print operation is applied always
takes precedence over the Preserve space elements (XPath) and the Strip space elements (XPath) lists.

Viewing status information
Status information generated by the Schema Detection, Validation, Validate as you type and Transformation threads
are fed into the Console view allowing the user to monitor how the operation is being executed.

Messages contain a timestamp, the name of the thread that generated it and the actual status information. The number
of displayed messages in the console view can be controlled from the options panel.

XML editor specific actions
<oXygen/> offers groups of actions for working on single XML elements. They are available from the the context
menu of the main editor panel. On Windows the context menu can be displayed with the mouse on a right click or with
the keyboard by pressing the special context menu key available on Windows keyboards.

Edit actions

• : Turns on line wrapping in the editor panel if it was off and vice versa. It has the same effect as the Line wrap
preference.

63

Editing documents

• contextual menu of current editor → Toggle comment (Ctrl + /): Comment the current selection of the current editor.
If the selection already contains a comment the action removes the comment from around the selection. If there is
no selection in the current editor and the cursor is not positioned inside a comment the current line is commented.
If the cursor is positioned inside a comment then the commented text is uncommented.

Select actions

The Select actions are enabled when the caret is positioned inside a tag name.

• contextual menu of current editor+Select → Element: Selects the entire current element;

• contextual menu of current editor+Select → Content: Selects the content of the current element, excluding the start
tag and end tag. If it is applied repeatedly starts with selecting the XML element from the cursor position and extends
the selection to the ancestor XML elements. Each execution of the action extends the current selection to the sur-
rounding element;

• contextual menu of current editor+Select → Attributes: Selects all the attributes of the current element;

• contextual menu of current editor+Select → Parent: Selects the parent element of the current element;

• Double click on an element or processing instruction - If the double click is done before the start tag of an element
or after the end tag of an element then all the element is selected by the double click action. If it is done after the
start tag or before the end tag then only the element content without the start tag and end tag is selected.

• Double click after the opening quote or before the closing quote of an attribute value - select the whole attribute
value.

Source actions

• contextual menu of current editor+Source+Escape Selection ... : Escapes a range of characters by replacing them
with the corresponding character entities.

• contextual menu of current editor+Source+Unescape Selection ... : Replaces the character entities with the cor-
responding characters;

• contextual menu of current editor+Source+Indent selection (Ctrl + I (Cmd + I on Mac OS)):Corrects the indent-
ation of the selected block of lines.

• contextual menu of current editor+Source+Format and Indent Element (Ctrl + I): Pretty prints the element that
surrounds the caret position;

• contextual menu of current editor+Source+Import entities list : Shows a dialog that allows you to select a list of
files as sources for external entities. The DOCTYPE section of your document will be updated with the chosen en-
tities. For instance, if choosing the file chapter1.xml, and chapter2.xml, the following section is inserted in the
DOCTYPE:

<!ENTITY chapter1 SYSTEM "chapter1.xml">

<!ENTITY chapter2 SYSTEM "chapter2.xml">

64

Editing documents

• contextual menu of current editor → Join and normalize: The action works on the selection. It joins the lines by re-
placing the line separator with a single space character. It also normalizes the whitespaces by replacing a sequence
of such characters with a single space.

XML document actions

• contextual menu of current editor → Show Definition : move the cursor to the definition of the current element in
the schema associated with the edited XML document (DTD, XML Schema, Relax NG schema, NRL schema).

• contextual menu of current editor → Copy XPath (Ctrl+Shift+.): Copy XPath expression of current element or at-
tribute from current editor to clipboard.

• contextual menu of current editor+Go to the matching tag : Moves the cursor to the end tag that matches the start
tag, or vice versa.

• contextual menu of current editor → Go after Next Tag (Ctrl+Close Bracket): Moves the cursor to the end of the
next tag.

• contextual menu of current editor → Go after Previous Tag (Ctrl+Open Bracket): Moves the cursor to the end of
the previous tag.

• XML+Associate XSLT/CSS Stylesheet : Inserts an xml-stylesheet processing instruction at the beginning of the
document referencing either an XSLT or a CSS file depending on the user selection. Either reference is useful for
rendering the document in a Web browser when the action Open in browser is executed. Referencing the XSLT file
is also useful for automatic detection of the transformation stylesheet when there is no scenario associated with the
current document

When associating the CSS, the user can also specify the title and if the stylesheet is an alternate one. Setting a Title
for the CSS makes it the author's preferred stylesheet. Checking the Alternate checkbox makes the CSS an alternate
stylesheet.

oXygen Author fully implements the W3C recommendation regarding "Associating Style Sheets with XML docu-
ments". For more information see: http://www.w3.org/TR/xml-stylesheet/http://www.w3.org/TR/REC-
html40/present/styles.html#h-14.3.2

XML Refactoring actions

• context menu of current editor+XML Refactoring+Surround with tag... (Alt+Shift+E (Cmd+Alt+E on Mac
OS)): Selected Text in the editor is marked with the specified start and end tags.

• context menu of current editor+XML Refactoring+Surround with last <tag> (Alt+Shift+/ (Cmd+Alt+/ on Mac
OS)): Selected Text in the editor is marked with start and end tags of the last 'Surround in' action.

• context menu of current editor+XML Refactoring+Rename element (Alt+Shift+R (Cmd+Alt+R on Mac OS)):
The element from the caret position and the elements that have the same name as the current element can be renamed
according with the options from the Rename dialog.

• context menu of current editor+XML Refactoring+Rename prefix : The prefix of the element from the caret
position and the elements that have the same prefix as the current element can be renamed according with the options
from the Rename dialog.

Selecting the Rename current element prefix option the application will recursively traverse the current element and
all its children.

65

Editing documents

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

For example, to change the xmlns:p1="ns1" association existing in the current element to xmlns:p5="ns1" just select
this option and press OK. If the association xmlns:p1="ns1" is applied on the parent of the current element, then
<oXygen/> will introduce a new declaration xmlns:p5="ns1" in the current element and will change the prefix from
p1 to p5. If p5 is already associated in the current element with another namespace, let's say ns5, then a dialog
showing the conflict will be displayed. Pressing the OK button, the prefix will be modified from p1 to p5 without
inserting a new declaration xmlns:p5="ns1". On Cancel no modification is made.

Selecting the "Rename current prefix in all document" option the application will apply the change on the entire
document.

To apply the action also inside attribute values one must check the Rename also attribute values that start with the
same prefix checkbox.

• context menu of current editor+XML Refactoring+Split element : Split the element from the caret position in
two identical elements. The caret must be inside the element

• context menu of current editor+XML Refactoring+Join elements (Alt+Shift+F (Cmd+Alt+F on Mac OS)):
Joins the left and the right elements relative to the current caret position. The elements must have the same name,
attributes and attributes values.

• context menu of current editor+XML Refactoring+Delete element tags (Alt+Shift+, (Cmd+Alt+, on Mac OS)):
Deletes the start tag and end tag of the current element.

Smart editing

Closing tag auto-expansion If you want to insert content into an auto closing tag like <tag/> deleting the /
character saves some keystrokes by inserting a separate closing tag automatically
and placing the cursor between the start and end tags: <tag></tag>

Auto-rename matching tag When you edit the name of the start tag, <oXygen/> will mirror-edit the name
of the matching end tag. This feature can be controlled from the Content Com-
pletion option page.

Auto-breaking the edited line The Hard line wrap option breaks the edited line automatically when its length
exceeds the maximum line length defined for the pretty-print operation.

Indent on Enter The Indent on Enter option indents the new line inserted when Enter is pressed.

Smart Enter The Smart Enter option inserts an empty line between the start and end tags and
places the cursor in an indented position on the empty line automatically when
the cursor is between the start and end tag and Enter is pressed.

Triple click A triple click with the left mouse button selects a different region of text of the
current document depending on the position of the click in the document:

• if the click position is inside a start tag or an end tag then the entire element
enclosed by that tag is selected

• if the click position is immediately after a start tag or immediately before an
end tag then the entire content of the element enclosed by that tag is selected,
including all the child elements but excluding the start tag and the end tag of
the element

• otherwise the triple click selects the entire current line of text

66

Editing documents

Syntax highlight depending on namespace prefix

The syntax highlight scheme of an XML file type allows the configuration of a color per each type of token which can
appear in an XML file. Distinguishing between the XML tag tokens based on the namespace prefix brings additional
visual help in editing some XML file types. For example in XSLT stylesheets elements from different namespaces
like XSLT, XHTML, XSL:FO or XForms are inserted in the same document and the editor panel can become cluttered.
Marking tags with different colors based on the namespace prefix allows easier identification of the tags.

Figure 4.30. Example of coloring XML tags by prefix

Editing XML Schemas
An XML Schema describes the structure of an XML document and is used to validate XML document instances against
it in order to check that the XML instance conforms to the specified requirements. If the XML instance conforms to
the schema then it is said to be valid, otherwise it is invalid.

<oXygen/> has two pages dedicated to editing XML Schema: the usual Text page and the visual Design editor page.

XML Schema Text Editor
This page presents the usual text view of an XML document synchronized in real time with an outline view. The outline
view has two display modes: the mode and the components mode. To activate a side by side source and diagram
presentation you have to enable the Show XML Schema Diagram checkbox from the Diagram preferences page.

Special content completion features

The editor enhances the content completion of the XML editor inside the xs:annotation/xs:appinfo elements of an
XML Schema with special support for the elements and attributes from a custom schema(by default ISO Schematron).
This content completion enhancement can be configured from the XSD Content Completion preferences page.

If the current XML Schema schema imports or includes other XML Schema schemas then the global types and elements
defined in the imported / included schemas are available in the content completion window together with the ones
defined in the current file.

67

Editing documents

Figure 4.31. Schematron support in XML Schema content completion

XML Schema actions

• contextual menu of current editor+Schema → Show definition (Ctrl + Alt + ENTER): Move the cursor to the
definition of the referenced XML Schema item - element, group, simple or complex type. The same action is executed
on a double click on a component name in the Schema Outline view. You can define a scope for this action in the
same manner you define for Search Declarations

Note

The actions are available when the current editor is of XML Schema type.

XML Schema editor specific actions

The list of actions specific for the XML Schema editor of <oXygen/> is:

• contextual menu of current editor → Show Definition : move the cursor to the definition of the current element in
this XSD schema.

Flatten an XML Schema

If an XML Schema is organized on several levels linked by xs:include statements sometimes it is more convenient to
work on the schema as a single flat file. To flatten schema <oXygen/> recursively adds included files to the master
one. That means <oXygen/> replaces the xs:include elements with the ones coming from the included files.

This action works at file level not at schema document level so it is available only in Text mode of XML Schema ed-
itor. It can be accessed from the XML Schema text editor's contextual menu -> Refactoring -> Flatten Schema. Altern-
atively you can select one or more schemas in the Project view and invoke the action from the view's contextual menu.
In this last case the feedback of the action will be presented in the Information view.

Schema flattening can also be accessed from the command line by running a command line the script, flattenS-
chema.bat on Windows or flattenSchema.sh on Mac OS X, Unix/Linux with the input file as the first argument
and the output file as the second argument.

In the following example master.xsd includes slave.xsd. This, in turn, includes slave1.xsd which includes both slave2.xsd
and slave3.xsd.

Listing of master.xsd

68

Editing documents

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" xmlns:tns="tns"
 xmlns:b="b" >
 <!-- included elements from slave.xsd -->
 <xs:include schemaLocation="slave.xsd"></xs:include>
 <!-- master.xsd -->
 <xs:element name="element1">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:element2" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Listing of slave.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" xmlns:a="a" xmlns:b="b"
 xmlns:c="c">
 <!-- included elements from slave1.xsd -->
 <xs:include schemaLocation="slave1.xsd"></xs:include>
 <!-- slave -->
 <xs:element name="element2" xmlns:c="x"/>
</xs:schema>

Listing of slave1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" xmlns:tns="tns"
 blockDefault=" restriction">
 <!-- included elements from slave2.xsd -->
 <xs:include schemaLocation="slave2.xsd"></xs:include>
 <!-- included elements from slave3.xsd -->
 <xs:include schemaLocation="slave3.xsd"></xs:include>
 <!-- slave1 -->
 <xs:element name="element0"/>
 <xs:element name="element7"/>
 <xs:element name="element7Substitute"
 substitutionGroup="tns:element7"
 block="extension"/>
 <xs:element name="element6">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:element7"/>
 </xs:sequence>

69

Editing documents

 </xs:complexType>
 </xs:element>
 <xs:complexType name="type1">
 <xs:sequence>
 <xs:element ref="tns:element0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Listing of slave2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns"
 xmlns:tns="tns"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">
 <!-- slave2 -->
 <xs:element name="a"></xs:element>
 <a:element name="element9"
 xmlns:a="http://www.w3.org/2001/XMLSchema">
 <xs:complexType>
 <xs:sequence>
 <!-- This element is from the target namespace -->
 <xs:element name="element3"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Element from no namespace -->
 <xs:element name="element4" form="unqualified"/>
 <a:element ref="tns:a"></a:element>
 </xs:sequence>
 <!-- Attribute from the target namespace -->
 <b:attribute name="attr1" type="xs:string"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Attribute from the no namespace -->
 <xs:attribute name="attr2" type="xs:string"
 form="unqualified"/>
 </xs:complexType>
 </a:element>
</xs:schema>

Listing of slave3.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="tns" finalDefault="restriction"
 xmlns:tns="tns">
 <!-- slave3 -->
 <xs:complexType name="ct1"/>
 <xs:complexType name="ct2" final="extension">
 <xs:complexContent>

70

Editing documents

 <xs:extension base="tns:ct1"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType name="st1" final="union">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType name="st2" final="union">
 <xs:restriction base="tns:st1">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="e1" type="tns:c1" final="restriction"/>
 <xs:element name="e2ext" type="tns:c2"
 substitutionGroup="tns:e1"></xs:element>
 <xs:complexType name="c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="c2">
 <xs:complexContent>
 <xs:extension base="tns:c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

Listing of master.xsd after it has been flattened

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="tns" xmlns:a="a"
 xmlns:b="b" xmlns:c="c" xmlns:tns="tns"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!-- included elements from slave.xsd -->
 <!-- included elements from slave1.xsd -->
 <!-- included elements from slave2.xsd -->
 <!-- slave2 -->
 <xs:element block="restriction" name="a"/>
 <a:element block="restriction" name="element9"
 xmlns:a="http://www.w3.org/2001/XMLSchema">
 <xs:complexType>
 <xs:sequence>
 <!-- This element is from the target namespace -->
 <xs:element block="restriction" form="qualified" name="element3"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Element from no namespace -->
 <xs:element block="restriction" form="unqualified"
 name="element4"/>

71

Editing documents

 <a:element ref="tns:a"/>
 </xs:sequence>
 <!-- Attribute from the target namespace -->
 <b:attribute form="qualified" name="attr1" type="xs:string"
 xmlns:b="http://www.w3.org/2001/XMLSchema"/>
 <!-- Attribute from the no namespace -->
 <xs:attribute form="unqualified" name="attr2" type="xs:string"/>
 </xs:complexType>
 </a:element>
 <!-- included elements from slave3.xsd -->
 <!-- slave3 -->
 <xs:complexType block="restriction" final="restriction" name="ct1"/>
 <xs:complexType block="restriction" final="extension" name="ct2">
 <xs:complexContent>
 <xs:extension base="tns:ct1"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType final="union" name="st1">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType final="union" name="st2">
 <xs:restriction base="tns:st1">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element block="restriction" final="restriction" name="e1"
 type="tns:c1"/>
 <xs:element block="restriction" final="restriction" name="e2ext"
 substitutionGroup="tns:e1"
 type="tns:c2"/>
 <xs:complexType block="restriction" final="restriction"
 name="c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType block="restriction" final="restriction"
 name="c2">
 <xs:complexContent>
 <xs:extension base="tns:c1">
 <xs:sequence>
 <xs:element ref="tns:e1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- slave1 -->
 <xs:element block="restriction" name="element0"/>
 <xs:element block="restriction" name="element7"/>
 <xs:element block="extension" name="element7Substitute"
 substitutionGroup="tns:element7"/>
 <xs:element block="restriction" name="element6">
 <xs:complexType>

72

Editing documents

 <xs:sequence>
 <xs:element ref="tns:element7"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType block="restriction" name="type1">
 <xs:sequence>
 <xs:element ref="tns:element0"/>
 </xs:sequence>
 </xs:complexType>
 <!-- slave -->
 <xs:element name="element2" xmlns:c="x"/>
 <!-- master.xsd -->
 <xs:element name="element1">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:element2"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The case of XML Schema redefinitions is also handled as the example below shows.

Listing of master.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:redefine schemaLocation="slave1.xsd">
 <xs:complexType name="tp">
 <xs:complexContent>
 <xs:extension base="tp">
 <xs:choice>
 <xs:element name="el2" type="xs:NCName"/>
 <xs:element name="el3" type="xs:string"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>
 <xs:element name="el" type="tp"/>
</xs:schema>

Listing of slave1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:redefine schemaLocation="slave2.xsd">
 <xs:complexType name="tp">
 <xs:complexContent>

73

Editing documents

 <xs:extension base="tp">
 <xs:attribute name="a"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>
</xs:schema>

Listing of slave2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="tp">
 <xs:sequence>
 <xs:element name="el" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Listing of master.xsd after it has been flattened>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="tp">
 <xs:complexContent>
 <xs:extension base="tp_Redefined1">
 <xs:choice>
 <xs:element name="el2" type="xs:NCName"/>
 <xs:element name="el3" type="xs:string"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="tp_Redefined1">
 <xs:complexContent>
 <xs:extension base="tp_Redefined0">
 <xs:attribute name="a"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="tp_Redefined0">
 <xs:sequence>
 <xs:element name="el" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="el" type="tp"/>
</xs:schema>

The references to the included schema files can be resolved through an XML Catalog.

74

Editing documents

XML Schema Diagram Editor

Introduction

XML Schemas enable document designers to specify the allowed structure and content of an XML document and to
check if an XML document is valid.

<oXygen/> provides a simple and expressive Schema Diagram Page for editing XML Schemas. The schema diagram
helps both the content authors who want to understand a schema and schema designers who develop complex schemas.

Figure 4.32. XML Schema Diagram

75

Editing documents

Navigation in the schema diagram

The following editing and navigation features work for all types of schema components:

• Move/refer components in the diagram using drag-and-drop;

• Select consecutive components on the diagram (components from the same level) using the Shift key to . You can
also make discontinuous selections in the schema diagram using the Ctrl key.

• Use Home/End to navigate to the first/last component from the same level. Use Ctrl-Home to go to the diagram
root and Ctrl-End to go to the last child of the selected component.

• You can easily go back to a previously visited component while moving from left to right. The path will be preserved
only if you use the Left Arrow or Right Arrow. For example, if you are on the second attribute from an attribute
group and navigate to the attribute group using the Left Arrow, when press the Right Arrow the second attribute
will be selected.

• Go back and forward between components viewed or edited in the diagram by selecting them in the Outline view:

 Back (go to previous schema component), Forward (go to next schema component) and Go to Last
Modification (go to last modified schema component); the buttons are available on the Navigation toolbar.

• Copy, refer or move global components, attributes, and identity constraints to a different position and from one
schema to another using the cut/copy and paste/paste as reference actions;

• Go to the definition of an element or attribute with the action Show Definition.

• Search in the diagram using the Find/Replace dialog. You can find/replace components only in the current file scope.

• You can expand and see the contents of the imports/includes/redefines in the diagram but in order to edit components
from other schemas the schema for each component will be opened as a separate file in <oXygen/>.

Tip

If an XML Schema referenced by the current opened schema was modified on disk, the change will be detected
and you will be asked to refresh the current schema contents.

• When a recursive reference is encountered the diagram signals this with a special recurse symbol. Clicking this
symbol you can navigate between the diagram components which recurse.

Schema validation

Validation for the Schema Diagram Page is seamlessly integrated in the <oXygen/> validation framework.

76

Editing documents

Figure 4.33. XML Schema Validation

Errors are presented by highlighting invalid component properties in the Attributes View and also directly in the diagram
if the property is presented. Invalid facets for a component are highlighted in the Facets View.

Components with invalid properties are rendered by default with a red border. You can customize the error colors from
the Document checking user preferences. When hovering an invalid component the tooltip will present the validation
errors for that component.

When editing a value which is supposed to be a qualified or unqualified XML name you also have as you type validation
of the entered value which is very useful to avoid setting not valid XML names for the given property.

If you validate the entire schema using Document → Validate document (Alt+Shift+V V (Cmd+Alt+V V on Mac
OS)) or the action available on the Validate toolbar, all validation errors will be presented. To resolve an error just
click (or double click for errors from other schemas) and the corresponding schema component will be display as the
diagram root so that you can easily correct the error.

Important

If the schema imports using only the namespace and without specifying the schema location and a catalog is set-
up mapping the namespace to a certain location both validation and diagram will correctly identify the imported
schema.

Tip

If there are unresolved references in your schema a hint will be presented suggesting the use of validation scen-
arios if the current edited schema is a module.

Schema editing actions

The schema can be edited using drag and drop operations or contextual menu actions.

Drag and drop provides the easiest way to move the existing components to other locations in the schema. For example
an element reference can be quickly inserted in the diagram with a drag and drop from the Outline view to a compos-
itor in the diagram. Also the components order in an xs:sequence can be easily changed using drag and drop. You can
easily set the an attribute/element type if this property has not been set by dragging a simple or complex type from the

77

Editing documents

diagram over it. Also you can set the type property for a simple or complex type if the property is not already set by
dragging a simple or complex type over it. The type of the mouse pointer will indicate the action which will be performed
after drag and drop. Depending on the drop context, the dragged element will be either moved as a child of the drop
parent or referred from the parent. If Ctrl is pressed, the component will be copied to the destination.

You can edit some schema components directly in the diagram. For these components you can edit the name and the
additional properties presented in the diagram. To do this just double click on the value you want to edit. If you want
to edit the name of a selected component you can also press Enter. The list of properties which can be displayed for
each component can be customized here. When editing references, you can choose from a list of available components.
Components from an imported schema for which the target namespace does not have an associated prefix will be dis-
played as componentName#targetNamespace in the list. If the reference is from a target namespace which was not yet
mapped you will be prompted to add prefix mappings for the inserted component namespace in the current edited
schema.

You can also change the compositor by double-click on it and choose the compositor you want from the proposals list.

There are some components that cannot be edited directly in the diagram: imports, includes, redefines. The editing
action can be performed if you double-click or press Enter on an import/include/redefine component. An edit dialog
will appear allowing you to customize the directives.

The contextual menu of the Design page offers the following edit actions:

 Show Definition (Ctrl-Shift-Enter) Shows the definition for the current selected component. For references this
action is available by clicking on the arrow displayed in its bottom right corner.

 Open Schema (Ctrl-Shift-Enter) Open the selected schema. This action is available for imports, includes and re-
defines. If the file you try to open does not exist, a warning message will be
displayed and you have the possibility to create the file.

Edit Attributes... (Alt+Shift+Enter) Allows you to edit the attributes of the selected component in a dialog that
presents the same attributes as in the Attributes View and in the Facets View.
The actions that can be performed on attributes in this dialog are the same actions
presented in the two views.

Append child Offers a list of valid components to append depending on the context. For ex-
ample to a complex type you can append a compositor, a group, attributes,
identity constraints (unique, key, keyref). After a named component was added
in the diagram you can set a name for it.

Insert before Inserts before the selected component in the schema. The components to be in-
serted depend on the context. For example, before an import you can insert an
import, an include or a redefine. After a named component was added in the
diagram you can set a name for it.

Insert after Inserts a component after the selected component on the schema. The components
to be inserted depend on the context. After a named component was added in
the diagram you can set a name for it.

New global Inserts a global component in the schema diagram. This action does not depend
on the current context.

If you choose to insert an import you have to specify the url of the imported file,
the target namespace and the import id. The same information, excluding the
target namespace, is requested for an include or redefine.See the Edit Import
dialog for more details

78

Editing documents

Note

If the imported file has declared a target namespace, the field Namespace
will be filled automatically.

Edit Namespaces... When performed on the schema root allows you to edit the schema Target
namespace and namespace mappings. You can also invoke the action by double-
clicking the target namespace property from Attributes View for the schema or
by double-clicking the schema component. For details see the Edit Schema
Namespaces dialog .

Edit Annotations... Allows you to edit the annotation for the selected schema component in the Edit
Annotations dialog.

You can perform the following operations in the dialog:

• Edit all appinfo/documentation items for a specific annotation. All ap-
pinfo/documentation items for a specific annotation are presented in a table
and can be easily edited. Information about an annotation item includes:
type(documentation/appinfo), content, source(optional, specify the source of
the documentation/appinfo element) and xml:lang. The content of a document-
ation/appinfo item can be edited in the Content area below the table.

• Insert/Insert before/Remove documentation/appinfo. allows you to insert
a new annotation item (documentation/appinfo). You can add a new item

before the item selected in table by press the button. Also you can delete

the selected item using the button.

• Move items up/down To do this use the and buttons.

• Insert/Insert before/Remove annotation. Available for components that
allow multiple annotations like schemas or redefines.

• Specify an ID for the component annotation. The ID is optional.

Note

For imported/included components which do not belong to the current
edited schema the dialog presents the annotation as read-only and you
will have to open the schema where the component is defined in order to
edit its annotation.

Note

Annotations are by default rendered under the component's graphical
representation. When you have a reference to a component with annota-
tions, these annotations will be presented in the diagram also below the
reference component. The Edit Annotations action invoked from the con-
textual menu will edit the annotations for the reference. If the reference
component does not have annotations you can edit the annotations of the
referred component by double-clicking on the annotations area. Otherwise
you can edit the referred component annotations only if you go to the
definition of the component.

79

Editing documents

Extract Global Element Action available for local elements. A local element is made global and will be
replaced with a reference to the global element.

The local element properties that are also valid for the global element declaration
are kept.

Example 4.6. Extracting a global element

If you execute Extract Global Element on element name, the result will be:

Extract Global Attribute Action available for local attributes. A local attribute is made global and replaced
with a reference to the global attribute.

The properties of local attribute that are also valid in the global attribute declar-
ation are kept.

80

Editing documents

Example 4.7. Extracting a global attribute

If you execute Extract Global Attribute on attribute note, the result will be:

Extract Global Group Action available for compositors (sequence, choice, all). This action extracts a
global group and makes a reference to it. The action is enabled only if the
compositor's parent is not a group.

81

Editing documents

Example 4.8. Extracting a global group

If you execute Extract Global Group on the sequence, the Extract Global
component dialog is shown and you can choose a name for the group.

If you type personGroup, the result will be:

Extract Global Type Action used to extract an anonymous simple type or an anonymous complex
type as global. For anonymous complex types the action is available on the
parent element.

Example 4.9. Extracting a global simple type

If you use the action on the union and choose numericST for the new global
simple type name, the result will be:

82

Editing documents

Example 4.10. Extracting a global complex type

If you execute the action on element person, and choose person_type for the
new complex type name, the result will be:

Rename Component Rename the selected component. Click here for more details.

 Cut (Ctrl-X)
Cut the selected component(s).

 Copy (Ctrl-C)
Copy the selected components(s).

 Paste (Ctrl-V)
Paste the component(s) from the clipboard as children of the selected component.

Paste as Reference Create references to the copied component(s). If not possible a warning message
will be displayed.

Remove (Delete) Remove the selected component(s).

Optional Can be performed on element/attribute/group references, local attributes, ele-
ments, compositors and element wildcards. The minOccurs property is set to 0
and the use property for attributes is set to optional.

Unbounded Can be performed on element/attribute/group references, local attributes, ele-
ments, compositors and element wildcards. The maxOccurs property is set to
unbounded and the use property for attributes is set to required.

83

Editing documents

Search Can be performed on local elements or attributes. This action makes a reference
to a global element or attribute.

 Search References Searches all references of the item found at current cursor position in the defined
scope if any. Click here for more details.

Search References in... Searches all references of the item found at current cursor position in the specified
scope. Click here for more details.

Search Occurrences in File Searches all occurrences of the item found at current cursor position in the current
file. Click here for more details.

 Component Dependencies Allows you to easily see the dependencies for the current selected component.
Click here for more details.

Resource Hierarchy Allows you to easily see the hierarchy for the current selected resource. Click
here for more details.

Resource Dependencies Allows you to easily see the dependencies for the current selected resource.
Click here for more details.

Save as Image... Save the diagram as image.

Generate Sample XML Files Generate XML files using the current opened schema. The selected component
will be the XML document root. See more on Generate Sample XML Files
section.

Options... Show the Schema preferences panel.

The Schema Outline View

The Schema Outline View presents all the global components grouped by their location, namespace or type. If hidden,
you can open it from Window → Show View → Other → oXygen → Outline.

84

Editing documents

Figure 4.34. The Outline View for XML Schema

The Outline View provides the following options:

 Sort Allows you to sort alphabetically the schema components.

 Show imported/included Show also the components from imported/included schemas.

 Grouping Options Allows you to group the components by location, namespace or type. When
grouping by namespace, the main schema target namespace is the first presented
in the Outline view.

 Selection update on caret move Allows a synchronization between Outline View and schema diagram. The se-
lected view from the diagram will be also selected in the Outline View.

The following contextual menu actions are available:

Remove (Delete) Remove the selected item from the diagram.

 Search References () Searches all references of the item found at current cursor position in the defined
scope if any. Click here for more details.

Search References in... Searches all references of the item found at current cursor position in the specified
scope. Click here for more details.

 Component Dependencies Allows you to easily see the dependencies for the current selected component.
Click here for more details.

Rename Component Rename the selected component. Click here for more details.

If you know the component name, you can search for it by typing its name in the filter text field located in the bottom
of the view or directly on the tree structure.

85

Editing documents

Tip

The search filter is case insensitive. The following wildcards are accepted:

• * - any string

• ? - any character

• , -patterns separator

If no wildcards are specified, the string to search will be searched as a partial match (similar to *textToFind*).

Note

In the Text page the Outline has contextual actions like: Edit Attributes, Cut, Copy, Delete.

In the Text page you can switch between the current outline and the standard Outline View by pressing the
button. Your decision will be applied to all new schema editors opened after this operation.

The Attributes view

The Attributes View presents the properties for the selected component in the schema diagram. For details about
available properties for each schema component see the properties of schema components. If hidden, you can open it
from Window → Show View → Other → oXygen → Attributes.

Figure 4.35. The Attributes view

The default value of a property is presented in the Attributes View with blue foreground. The properties that can't be
edited are rendered with gray foreground. A non-editable category which contains at least one child is rendered with
bold. Bold properties are properties with values set explicitly to them.

Properties for components which do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

86

Editing documents

You can edit a property by double-clicking on by pressing Enter. For most properties you can choose valid values from
a list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted in the table
with the corresponding foreground color. By default properties with errors are presented with red and the properties
with warnings with yellow. You can customize the error colors from the Document checking user preferences.

For imports, includes and redefines properties are not edited directly in the Attributes View. A dialog will be shown
allowing you to specify properties for them.

The schema namespace mappings are not presented in Attributes View. You can view/edit these by choosing Edit
Namespaces from the contextual menu on the schema root. See more in the Edit schema namespaces section.

The Attributes View has five actions available on the toolbar and also on the contextual menu:

Add Allows you to add a new member type to an union's member types category.

 Remove Allows you to remove the value of a property.

 Move Up Allows you to move up the current member to an union's member types category.

 Move Down Allows you to move down the current member to an union's member types cat-
egory.

 Copy
Copy the attribute value.

 Show Definition Show the definition for the selected type.

Edit Facets Allows you to edit the facets for a simple type.

Note

If the selected component is a reference to a component defined in another schema, most properties will be read-
only and the actions will be disabled.

The Facets view

The Facets View presents the facets for the selected component if available. If hidden, you can open it from Window
→ Show View → Other → oXygen → Facets.

Figure 4.36. The Facets view

87

Editing documents

The default value of a facet is presented in the Facets View with blue. The facets that can't be edited are rendered with
gray. The grouping categories (eg: Enumerations and Patterns) are not editable. If these categories contain at least one
child they are rendered with bold. Bold facets are facets with values set explicitly to them.

Important

Usually inherited facets are presented as default in the Facets view but if patterns are inherited from a base type
and also specified in the current simple type only the current specified patterns will be presented. You can see
the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip on the
Patterns category.

Facets for components which do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking or by pressing Enter.For some facets you can choose valid values from a list
or you can specify another value. If a facet has an invalid value or a warning, it will be highlighted in the table with
the corresponding foreground color. By default facets with errors are presented with red and the facets with warnings
with yellow. You can customize the error colors from the Document checking user preferences.

The Facets View has four toolbar actions available also on the contextual menu:

Add Allows you to add a new enumeration or a new pattern.

 Remove Allows you to remove the value of a facet.

 Move Up Allows you to move up the current enumeration/pattern in Enumerations/Patterns
category.

 Move Down Allows you to move down the current enumeration/pattern in Enumerations/Pat-
terns category.

 Copy
Copy the attribute value.

Open in XML Schema Regular Ex-
pressions Builder

Allows you to open the pattern in the XML Schema Regular Expressions
Builder

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the pin button.

Note

If the selected component is a reference to a component defined in another schema, the facets will be read-only
and the actions will be disabled.

Editing patterns

You can edit regular expressions either be hand or you can right click, choose Open in XML Schema Regular Expression
Builder and have a full-fledged XML Schema Regular Expression builder to guide you in testing and constructing the
pattern.

Edit Schema Namespaces

You can use the dialog XML Schema Namespaces to easily set a Target namespace and define namespace mappings
for a newly created XML Schema. In the Design page these namespaces can be modified anytime by choosing Edit
Namespaces from the contextual menu. Also you can do that by double-clicking on the schema root in the diagram.

88

Editing documents

The XML Schema Namespaces dialog allows you to edit the following information:

• Target namespace The Target namespace of the schema.

• Prefixes The dialog shows a table with namespaces and the mapped prefixes. You can add a new prefix mapping
or remove an already existing one.

Schema Components

Definitions for all XML Schema components are presented together with the symbols used to represent them in the
diagram and tables with information about the displayed properties.

xs:schema

Defines the root element of a schema. A schema document contains representations for a collection of schema compon-
ents, e.g. type definitions and element declarations, which have a common target namespace. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-schema.

Schema by default displays the targetNamespace property when rendered.

Table 4.1. xs:schema properties

Possible ValuesDescriptionProperty Name

Any URIThe schema target namespace.Target Namespace

qualified, unqualified, [Empty] Default value
is unqualified.

Determining whether local element declara-
tions will be namespace-qualified by default.

Element Form Default

qualified, unqualified, [Empty] Default value
is unqualified.

Determining whether local attribute declara-
tions will be namespace-qualified by default.

Attribute Form Default

#all, extension, restriction, substitution, re-
striction extension, restriction substitution,
extension substitution, restriction extension
substitution, [Empty]

Default value of the 'block' attribute of
xs:element and xs:complexType.

Block Default

#all, restriction, extension, restriction exten-
sion, [Empty]

Default value of the 'final' attribute of xs:ele-
ment and xs:complexType.

Final Default

Any tokenSchema versionVersion

Any IDThe schema idID

Not editable property.The edited component name.Component

Not editable property.The schema system idSystemID

xs:element

Defines an element. An element declaration is an association of a name with a type definition, either simple or complex,
an (optional) default value and a (possibly empty) set of identity-constraint definitions. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-element.

89

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-schema
http://www.w3.org/TR/xmlschema-1/#element-schema
http://www.w3.org/TR/xmlschema-1/#element-element
http://www.w3.org/TR/xmlschema-1/#element-element

An element by default displays the following properties when rendered in the diagram: default, fixed, abstract and
type. When referenced or declared locally, the element graphical representation also contains the value for the
minOccurs and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the
connectors to the element are drawn using dotted lines if the element is optional.

90

Editing documents

Table 4.2. xs:element properties

MentionsPossible ValuesDescriptionP r o p e r t y
Name

If missing, will be displayed
as '[element]' in diagram.

Any NCName for global or
local elements, any QName
for element references.

The element name. Always required.Name

Appears only for local ele-
ments.

true/falseWhen set, the local element is a reference to
a global element.

Is Reference

For all elements. For refer-
ences, the value is set in the
referred element.

All declared or built-in
types. In addition, the fol-
lowing anonymous types

The element type.Type

are available: [ST-restric-
tion], [ST-union], [ST-list],
[CT-anonymous], [CT-ex-
tension SC], [CT-restriction
SC], [CT-restriction CC],
[CT-extension CC].

For elements with complex
type, with simple or complex
content.

All declared or built-in
types

The extended/restricted base type.Base Type

For elements with complex
type.

true/falseDefines if the complex type content model
will be mixed.

Mixed

For elements with complex
type which extends/restricts

simple/complexThe content of the complex type.Content

a base type. It is automatic-
ally detected.

For elements with complex
type which has a complex
content.

true/falseDefines if the complex content model will
be mixed.

C o n t e n t
Mixed

The fixed and default attrib-
utes are mutually exclusive.

Any stringDefault value of the element. A default value
is automatically assigned to the element
when no other value is specified.

Default

The fixed and default attrib-
utes are mutually exclusive.

Any stringA simple content element may be fixed to a
specific value using this attribute. A fixed

Fixed

value is also automatically assigned to the
element and you cannot specify another
value.

Only for references/local
elements

A numeric positive value.
Default value is 1

Minimum number of occurrences of the ele-
ment.

Min Occurs

Only for references/local
elements

A numeric positive value.
Default value is 1

Maximum number of occurrences of the
element.

Max Occurs

For global and reference ele-
ments

All declared elementsQualified name of the head of the substitu-
tion group to which this element belongs.

Substitution
Group

91

Editing documents

MentionsPossible ValuesDescriptionP r o p e r t y
Name

For global elements and ele-
ment references

true/falseControls whether the element may be used
directly in instance XML documents. When
set to true, the element may still be used to
define content models, but it must be substi-
tuted through a substitution group in the in-
stance document.

Abstract

Only for local elementsunqualified/qualifiedDefines if the element is "qualified" (i.e.,
belongs to the target namespace) or "unqual-
ified" (i.e., doesn't belong to any namespace).

Form

For global elements and ele-
ment references

true/falseWhen this attribute is set to true, the element
can be declared as nil using an xsi:nil attrib-
ute in the instance documents.

Nillable

For global elements and ele-
ment references

#all, restriction, exten-
sion,substitution, extension
restriction, extension substi-
tution, restriction substitu-
tion, restriction extension
substitution

Controls whether the element can be subject
to a type or substitution group substitution.
'#all' blocks any substitution, 'substitution'
blocks any substitution through substitution
groups and 'extension'/'restriction' block any
substitution (both through xsi:type and sub-
stitution groups) by elements or types, de-
rived respectively by extension or restriction
from the type of the element. Its default value
is defined by the 'blockDefault' attribute of
the parent xs:schema.

Block

For global elements and ele-
ment references

#all, restriction, extension,
restriction extension,
[Empty]

Controls whether the element can be used as
the head of a substitution group for elements
whose types are derived by extension or re-
striction from the type of the element. Its
default value is defined by the 'finalDefault'
attribute of the parent xs:schema.

Final

For all elements.Any idThe component id.ID

For all elements.Not editable property.The edited component name.Component

For all elements.Not editable property.The component namespace.Namespace

For all elements.Not editable property.The component system id.System ID

xs:attribute

Defines an attribute. See more info at http://www.w3.org/TR/xmlschema-1/#element-attribute.

An attribute by default displays the following properties when rendered in the diagram: default, fixed, use and type.
Connectors to the attribute are drawn using dotted lines if the attribute use is optional. The attribute name is stroked
out if prohibited.

92

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-attribute

Table 4.3. xs:attribute properties

MentionsPossible ValueDescriptionP r o p e r t y
Name

For all local or global attrib-
utes. If missing, will be dis-
played as '[attribute]' in the
diagram.

Any NCName for global/loc-
al attributes, all declared at-
tributes' QName for refer-
ences.

Attribute name. Always required.Name

For local attributes.true/falseWhen set, the local attribute is a reference.Is Reference

For all attributes. For refer-
ences, the type is set to the
referred attribute.

All global simple types and
built-in simple types. In addi-
tion another 3 proposals are
present: [anonymous restric-
tion], [anonymous list], [an-
onymous union] for creating
anonymous simple types
more easily.

Qualified name of a simple type.Type

For all local or global attrib-
utes. For references the value
is from the referred attribute.

Any stringDefault value. When specified, an attribute
is added by the schema processor (if it is
missing from the instance XML document)
and it is given this value. The default and
fixed attributes are mutually exclusive.

Default

For all local or global attrib-
utes. For references the value
is from the referred attribute.

Any stringWhen specified, the value of the attribute
is fixed and must be equal to this value.
The default and fixed attributes are mutu-
ally exclusive.

Fixed

For local attributesoptional, required, prohibitedPossible usage of the attribute. Marking
an attribute "prohibited" is useful to ex-
clude attributes during derivations by re-
striction.

Use

For local attributes.unqualified/qualifiedSpecifies if the attribute is qualified (i.e.,
must have a namespace prefix in the in-
stance XML document) or not. The default
value for this attribute is specified by the
'attributeFormDefault' attribute of the
xs:schema document element.

Form

For all attributes.Any idThe component id.ID

For all attributes.Not editable property.The edited component name.Component

For all attributes.Not editable property.The component namespace.Namespace

For all attributes.Not editable property.The component system id.System ID

xs:complexType

Defines a top level complex type.

Complex Type Definitions provide for:

93

Editing documents

• Constraining element information items by providing Attribute Declarations governing the appearance and content
of attributes.

• Constraining element information item children to be empty, or to conform to a specified element-only or mixed
content model, or else constraining the character information item children to conform to a specified simple type
definition.

• Using the mechanisms of Type Definition Hierarchy to derive a complex type from another simple or complex type.

• Specifying post-schema-validation infoset contributions for elements.

• Limiting the ability to derive additional types from a given complex type.

• Controlling the permission to substitute, in an instance, elements of a derived type for elements declared in a content
model to be of a given complex type.

See more info at http://www.w3.org/TR/xmlschema-1/#element-complexType.

Tip

A complex type which is a base type to another type will be rendered with yellow background.

94

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-complexType

Table 4.4. xs:complexType properties

MentionsPossible ValuesDescriptionProperty Name

Only for global complex types.
If missing, will be displayed as
'[complexType]' in diagram.

Any NCNameThe name of the complex type. Always
required.

Name

For complex types with simple
or complex content.

Any from the declared
simple or complex
types.

The name of the extended/restricted types.Base Type
Definition

Only when base type is set. If
the base type is a simple type,
the derivation method is always
extension.

restriction/ extensionThe derivation method.D e r i v a t i o n
Method

For complex types which ex-
tend/restrict a base type. It is
automatically detected.

simple/ complexThe content of the complex type.Content

For complex contents.true/falseSpecifies if the complex content model will
be mixed.

Content Mixed

For global and anonymous
complex types.

true/falseSpecifies if the complex type content
model will be mixed.

Mixed

For global and anonymous
complex types.

true/falseWhen set to 'true', this complex type cannot
be used directly in the instance documents
and needs to be substituted using an
'xsi:type' attribute.

Abstract

For global complex types.all, extension, restric-
tion, extension restric-
tion, [Empty]

Controls whether a substitution (either
through a 'xsi:type' or substitution groups)
can be performed for a complex type,
which is an extension or a restriction of the
current complex type. This attribute can
only block such substitutions (it cannot
"unblock" them), which can also be
blocked in the element definition. The de-
fault value is defined by the 'blockDefault'
attribute of xs:schema.

Block

For global complex types.all, extension, restric-
tion, extension restric-
tion, [Empty]

Controls whether the complex type can be
further derived by extension or restriction
to create new complex types.

Final

For all complex types.Any idThe component id.ID

For all complex types.Not editable property.The edited component name.Component

For all complex types.Not editable property.The component namespace.Namespace

For all complex types.Not editable property.The component system id.System ID

xs:simpleType

Defines a simple type. A simple type definition is a set of constraints on strings and information about the values they
encode, applicable to the normalized value of an attribute information item or of an element information item with no

95

Editing documents

element children. Informally, it applies to the values of attributes and the text-only content of elements. See more info
at http://www.w3.org/TR/xmlschema-1/#element-simpleType.

Tip

A simple type which is a base type to another type will be rendered with yellow background.

96

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-simpleType

Table 4.5. xs:simpleType properties

ScopePossible ValuesDescriptionName

Only for global simple types. If missing,
will be displayed as '[simpleType]' in
diagram.

Any NCName.Simple type name. Always
required.

Name

For all simple types.restriction,list or unionThe simple type category:
restriction, list or union.

Derivation

For global and anonymous simple types
with the derivation method set to restric-
tion.

All global simple types and built-
in simple types. In addition another
3 proposals are present: [anonym-
ous restriction], [anonymous list],
[anonymous union] for easily cre-
ate anonymous simple types.

A simple type definition
component. Required if
derivation method is set to
restriction.

Base Type

For global and anonymous simple types
with the derivation method set to list.
Derivation by list is the process of
transforming a simple datatype (named
the item type) into a whitespace-separ-
ated list of values from this datatype. The
item type can be defined inline by adding
a simpleType definition as a child ele-
ment of the list element, or by reference,
using the itemType attribute (it is an er-
ror to use both).

All global simple types and built-
in simple types(from schema for
schema). In addition another 3
proposals are present: [anonymous
restriction], [anonymous list], [an-
onymous union] for easily create
anonymous simple types.

A simple type definition
component. Required if
derivation method is set to
list.

Item Type

For global and anonymous simple types
with the derivation method set to union.

Not editable property.Category for grouping uni-
on members.

M e m b e r
Types

For global and anonymous simple types
with the derivation method set to union.
Deriving a simple datatype by union
merges the lexical spaces of several
simple datatypes (called member types)
to create a new simple datatype. The
member types can be defined either by
reference (through the memberTypes at-
tribute) or embedded as simple datatype
local definitions in the xs:union element.
Both styles can be mixed.

All global simple types and built-
in simple types(from schema for
schema). In addition another 3
proposals are present: [anonymous
restriction], [anonymous list], [an-
onymous union] for easily create
anonymous simple types.

A simple type definition
component. Required if
derivation method is set to
union.

Member

Only for global simple types.#all, list, restriction, union, list re-
striction, list union, restriction uni-
on. In addition, [Empty] proposal
is present for set empty string as
value.

Blocks any further deriva-
tions of this datatype (by
list, union, derivation or
all).

Final

For all simple typesAny id.The component id.ID

Only for global and local simple typesNot editable property.The name of the edited
component.

Component

For global simple types.Not editable property.The component namespace.Namespace

Not present for built-in simple types..Not editable property.The component system id.System ID

97

Editing documents

xs:group

Defines a group of elements to be used in complex type definitions. See more info at http://www.w3.org/TR/xmlschema-
1/#element-group.

When referenced the graphical representation also contains the value for the minOccurs and maxOccurs properties
(for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the group are drawn using
dotted lines if the group is optional.

Table 4.6. xs:group properties

MentionsPossible ValuesDescriptionProperty Name

If missing, will be displayed
as '[group]' in diagram.

Any NCName for global groups,
all declared groups for reference.

The group name. Always required.Name

Appears only for reference
groups.

A numeric positive value. Default
value is 1.

Minimum number of occurrences
of the group.

Min Occurs

Appears only for reference
groups.

A numeric positive value. Default
value is 1.

Maximum number of occurrences
of the group.

Max Occurs

For all groups.Any idThe component id.ID

For all groups.Not editable property.The edited component name.Component

For all groups.Not editable propertyThe component namespace.Namespace

For all groups.Not editable property.The component system id.System ID

xs:attributeGroup

Defines an attribute group to be used in complex type definitions. See more info at http://www.w3.org/TR/xmlschema-
1/#element-attributeGroup.

Table 4.7. xs:attributeGroup properties

MentionsPossible ValuesDescriptionProperty Name

For all global or referred attribute
groups. If missing, will be dis-
played as '[attributeGroup]' in dia-
gram.

Any NCName for global attrib-
ute groups, all declared attribute
groups for reference.

Attribute group name. Always
required.

Name

For all attribute groups.Any idThe component id.ID

For all attribute groups.Not editable property.The edited component name.Component

For all attribute groups.Not editable property.The component namespace.Namespace

For all attribute groups.Not editable property.The component system id.System ID

xs:include

98

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-group
http://www.w3.org/TR/xmlschema-1/#element-group
http://www.w3.org/TR/xmlschema-1/#element-attributeGroup
http://www.w3.org/TR/xmlschema-1/#element-attributeGroup

Adds multiple schemas with the same target namespace to a document. See more info at http://www.w3.org/TR/xmls-
chema-1/#element-include.

Table 4.8. xs:include properties

Possible ValuesDescriptionProperty Name

Any URIIncluded schema location.Schema Location

Any IDInclude ID.ID

Not editable property.The component name.Component

xs:import

Adds multiple schemas with different target namespace to a document. See more info at http://www.w3.org/TR/xmls-
chema-1/#element-import.

Table 4.9. xs:import properties

Possible ValuesDescriptionProperty Name

Any URIImported schema locationSchema Location

Any URIImported schema namespaceNamespace

Any IDImport IDID

Not editable property.The component nameComponent

xs:redefine

Redefines simple and complex types, groups, and attribute groups from an external schema. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-redefine.

Table 4.10. xs:redefine properties

Possible ValuesDescriptionProperty Name

Any URIRedefine schema location.Schema Location

Any IDRedefine IDID

Not editable property.The component name.Component

xs:notation

Describes the format of non-XML data within an XML document. See more info at http://www.w3.org/TR/xmlschema-
1/#element-notation.

99

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-include
http://www.w3.org/TR/xmlschema-1/#element-include
http://www.w3.org/TR/xmlschema-1/#element-import
http://www.w3.org/TR/xmlschema-1/#element-import
http://www.w3.org/TR/xmlschema-1/#element-redefine
http://www.w3.org/TR/xmlschema-1/#element-redefine
http://www.w3.org/TR/xmlschema-1/#element-notation
http://www.w3.org/TR/xmlschema-1/#element-notation

Table 4.11. xs:notation properties

MentionsPossible valuesDescriptionProperty Name

If missing, will be displayed as '[nota-
tion]' in diagram.

Any NCName.The notation name. Always re-
quired.

Name

Required if public identifier is absent,
otherwise optional.

Any URIThe notation system identifier.System Identifier

Required if system identifier is absent,
otherwise optional.

A Public ID valueThe notation public identifier.Public Identifier

For all notations.Any IDThe component id.ID

For all notations.Not editable property.The edited component name.Component

For all notations.Not editable property.The component namespace.Namespace

For all notations.Not editable property.The component system id.System ID

xs:sequence, xs:choice, xs:all

Figure 4.37. An xs:sequence in diagram

xs:sequence specifies that the child elements must appear in a sequence. Each child element can occur from 0 to any
number of times. See more info at http://www.w3.org/TR/xmlschema-1/#element-sequence.

Figure 4.38. An xs:choice in diagram

xs:choice allows only one of the elements contained in the declaration to be present within the containing element. See
more info at http://www.w3.org/TR/xmlschema-1/#element-choice.

Figure 4.39. An xs:all in diagram

xs:all specifies that the child elements can appear in any order. Each child element can occur 0 or 1 time. See more
info at http://www.w3.org/TR/xmlschema-1/#element-all.

The compositor graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1
and 1..1 occurs the values are implied by the connector style) and the connectors to the compositor are drawn using
dotted lines if the compositor is optional.

100

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-sequence
http://www.w3.org/TR/xmlschema-1/#element-choice
http://www.w3.org/TR/xmlschema-1/#element-all

Table 4.12. xs:sequence, xs:choice, xs:all properties

MentionsPossible ValuesDescriptionProperty Name

'all' is only available as a child of a
group or complex type.

sequence, choice, all.Compositor type.Compositor

The property is not present if compos-
itor is 'all' and is child of a group.

A numeric positive value.
Default is 1.

Minimum occurrences of
compositor.

Min Occurs

The property is not present if compos-
itor is 'all' and is child of a group.

A numeric positive value.
Default is 1.

Maximum occurrences of
compositor.

Max Occurs

For all compositors.Any IDThe component id.ID

For all compositors.Not editable property.The edited component name.Component

For all compositors.Not editable property.The component system id.System ID

xs:any

Enables the author to extend the XML document with elements not specified by the schema. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-any.

The graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and 1..1
occurs the values are implied by the connector style) and the connectors to the wildcard are drawn using dotted lines
if the wildcard is optional.

Table 4.13. xs:any properties

Possible ValuesDescriptionProperty Name

##any, ##other, ##targetNamespace,
##local or anyURI

The list of allowed namespaces. The namespace attribute
expects a list of namespace URIs. In this list, two values
have a specific meaning: '##targetNamespace' stands for
the target namespace, and '##local' stands for local attrib-
utes (without namespaces).

Namespace

skip, lax, strictType of validation required on the elements allowed for
this wildcard.

Process Contents

A numeric positive value. Default is 1.Minimum occurrences of anyMin Occurs

A numeric positive value. Default is 1.Maximum occurrences of anyMax Occurs

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:anyAttribute

Enables the author to extend the XML document with attributes not specified by the schema. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-anyAttribute.

101

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-any
http://www.w3.org/TR/xmlschema-1/#element-any
http://www.w3.org/TR/xmlschema-1/#element-anyAttribute
http://www.w3.org/TR/xmlschema-1/#element-anyAttribute

Table 4.14. xs:anyAttribute properties

Possible ValueDescriptionProperty Name

##any, ##other, ##target-
Namespace, ##local or anyURI

The list of allowed namespaces. The namespace attribute ex-
pects a list of namespace URIs. In this list, two values have a
specific meaning: '##targetNamespace' stands for the target
namespace, and '##local' stands for local attributes (without
namespaces).

Namespace

skip, lax, strictType of validation required on the elements allowed for this
wildcard.

Process Contents

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:unique

Defines that an element or an attribute value must be unique within the scope. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-unique.

Table 4.15. xs:unique properties

Possible ValuesDescriptionProperty Name

Any NCName.The unique name. Always required.Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:key

Specifies an attribute or element value as a key (unique, non-nullable, and always present) within the containing element
in an instance document. See more info at http://www.w3.org/TR/xmlschema-1/#element-key.

102

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-unique
http://www.w3.org/TR/xmlschema-1/#element-unique
http://www.w3.org/TR/xmlschema-1/#element-key

Table 4.16. xs:key properties

Possible ValueDescriptionProperty Name

Any NCName.The key name. Always required.Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:keyRef

Specifies that an attribute or element value correspond to those of the specified key or unique element. See more info
at http://www.w3.org/TR/xmlschema-1/#element-keyref.

A keyref by default displays the Referenced Key property when rendered.

Table 4.17. xs:keyRef properties

Possible ValuesDescriptionProperty Name

Any NCName.The keyref name. Always required.Name

any declared element constraints.The name of referred keyReferred Key

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:selector

Specifies an XPath expression that selects a set of elements for an identity constraint. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-selector.

Table 4.18. xs:selector properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying the element on which the constraint
applies.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

103

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-keyref
http://www.w3.org/TR/xmlschema-1/#element-selector
http://www.w3.org/TR/xmlschema-1/#element-selector

xs:field

Specifies an XPath expression that specifies the value used to define an identity constraint. See more info at ht-
tp://www.w3.org/TR/xmlschema-1/#element-field.

Table 4.19. xs:field properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying the field(s) composing the key, key
reference, or unique constraint.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

Constructs used to group schema components

Some schema components are grouped in containers so that they can be more easily identified and classified.

Attributes

Groups all attributes and attribute groups belonging to a complex type.

Table 4.20. Attributes properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the attributes are displayed.Component

Not editable property.The component system id.System ID

Constraints

Groups all constraints (xs:key, xs:keyRef or xs:unique) belonging to an element.

104

Editing documents

http://www.w3.org/TR/xmlschema-1/#element-field
http://www.w3.org/TR/xmlschema-1/#element-field

Table 4.21. Attributes properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the constraints are displayed.Component

Not editable property.The component system id.System ID

Substitutions

Groups all elements which can substitute the current element.

Table 4.22. Attributes properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the substitutions are displayed.Component

Not editable property.The component system id.System ID

Create an XML Schema from a relational database table
To create an XML Schema from the structure of a relational database table use the special wizard available in the Tools
menu.

XML Schema Instance Generator
To generate sample XML files from an XML Schema use the Generate Sample XML Files... dialog. It is opened with
the action XML Tools → Generate Sample XML Files.... The action is available also on the contextual menu from the
schema Design page.

105

Editing documents

Figure 4.40. The Generate Sample XML Files dialog

Complete the dialog as follows:

URL Schema's URL. Last used URLs are displayed in the drop-down box.

Namespace Displays the namespace of the selected schema.

Document root After the list is selected, a list of elements is displayed in the combo box. The
user should choose the root of the XML documents to be generated.

Output folder Path to the folder where the generated XML instances will be saved.

Filename prefix and Extension Generated files' names have the following format: prefixN.extension, where
prefix and extension are specified by the user and N represents an incremental
number from 0 up to Number of instances - 1.

Number of instances The number of XML files to be generated.

106

Editing documents

Open first instance in editor When checked, the first generated XML file will be opened in editor.

Namespaces Here the user can specify the default namespace as well as the proxies (prefixes)
for namespaces.

Load settings / Export settings The current settings can be saved for further usage with the Export settings
button, and reloaded when necessary with the Load settings button.

The Options tab becomes active only after the URL field is filled-in and a schema is detected. It allows the user to set
specific options for different namespaces and elements.

Figure 4.41. The Generate Sample XML Files dialog

Namespace / Element table Allows the user to define settings for:

107

Editing documents

All elements from all namespaces. This is the default setting and it can also
be accessed from Options -> Preferences -> XML / XML Instance Generator.

•

• All elements from a specific namespace.

• A specific element from a specific namespace.

Settings When checked, all elements will be gen-
erated, including the optional ones (hav-

Generate optional elements

ing the minOccurs attribute set to 0 in
the schema).

Generate optional attributes When checked, all attributes will be
generated, including the optional ones
(having the use attribute set to optional
in the schema.)

Values of elements and attributes Controls the content of generated attrib-
utes and elements. Several choices are
available:

• None - No content is inserted;

• Default - Inserts a default value de-
pending of data type descriptor of the
respective element/attribute. The de-
fault value can be either the data type
name or an incremental name of the
attribute or element (according to the
global option from the XML instance
generator preferences page). Please
note that type restrictions are ignored
for this option for generating the val-
ues of elements and attributes. For ex-
ample if an element is of a type that
restricts an xs:string with the
xs:maxLength facet in order to allow
strings with a maximum length of 3
the XML instance generator tool may
generate string element values longer
than 3 characters. If you need to gener-
ate valid values please use the Random
option.

• Random - Inserts a random value de-
pending of data type descriptor of the
respective element/attribute.

Preferred number of repetitions Allows the user set the preferred number
of repeating elements related with
minOccurs and maxOccurs defined in
XML Schema.

108

Editing documents

• If the value set here is between
minOccurs and maxOccurs, that value
will be used;

• If the value set here is less than
minOccurs, the minOccurs value will
be used;

• If the value set here is greater than
maxOccurs, that value will be used.

Maximum recursivity level Option to set the maximum allowed
depth of the same element in case of re-
cursivity.

Choice strategy Option to be used in case of xs:choice or
substitutionGroup. The possible
strategies are:

• First - the first branch of xs:choice or
the head element of substitutionGroup
will be always used;

• Random - a random branch of
xs:choice or a substitute element or the
head element of a substitutionGroup
will be used.

Generate the other options as com-
ments

Option to generate the other possible
choices or substitutions (for xs:choice
and substitutionGroup). These alternat-
ives will be generated inside comments
groups so you can uncomment them and
use later. Use this option with care (for
example on a restricted namespace and
element) as it may generate large result
files.

Load settings / Export settings The current settings can be saved for
further usage with the Export settings
button, and reloaded when necessary with
the Load settings button.

Element values The Element values tab allows you to add values that will be used to fill the
content of elements. If there are more than one value, then the values will be
used in a random order.

109

Editing documents

Figure 4.42. The Element values tab

Attribute values The Attribute values tab allows you to add values that will be used to fill the
attributes. If there are more than one value, then the values will be used in a
random order.

Figure 4.43. The Attribute values tab

110

Editing documents

Running the XML instance generator from command line

The XML instance generator tool can be used also from command line by running the script called xmlGenerat-
or.bat (on Windows) / xmlGenerator.sh (on Mac OS X / Unix / Linux) located in the <oXygen/> installation
folder. The parameters can be set once in the dialog, exported to an XML file on disk with the button "Export settings"
and reused from command line. With the exported settings file you can generate the same XML instances from the
command line as from the dialog:

xmlGenerator.sh -cfgFile myConfigurationFile.xml

The script can be integrated in an external batch process launched from the command line. The command line parameter
of the script is the relative path to the exported XML settings file. The files which are specified with relative paths in
the exported XML settings will be made absolute relative to the directory from where the script is run.

111

Editing documents

Example 4.11. Example of an XML configuration file saved with Export settings button

<settings>
 <schemaSystemId>http://www.w3.org/2001/XMLSchema.xsd</schemaSystemId>
 <documentRoot>schema</documentRoot>
 <outputFolder>D:\projects\output</outputFolder>
 <filenamePrefix>instance</filenamePrefix>
 <filenameExtension>xml</filenameExtension>
 <noOfInstances>1</noOfInstances>
 <openFirstInstance>true</openFirstInstance>
 <defaultNamespace><NO_NAMESPACE></defaultNamespace>
 <element namespace="<ANY>" name="<ANY>">
 <generateOptionalElements>false</generateOptionalElements>
 <generateOptionalAttributes>false</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>
 <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="false"/>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>
 </element>
 <element namespace="<NO_NAMESPACE>"
 name="<ANY>">
 <generateOptionalElements>true</generateOptionalElements>
 <generateOptionalAttributes>true</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>
 <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="true"/>
 <elementValue>value1</elementValue>
 <elementValue>value2</elementValue>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>
 </element>
</settings>

XML Schema regular expressions builder
To generate XML Schema regular expressions use the action XML Tools → XML Schema Regular Expressions
Builder It will open a dialog which allows you to build and test regular expressions.

112

Editing documents

Figure 4.44. XML Schema regular expressions builder dialog

The dialog contains the following sections:

• Regular expressions editor - allows you edit the regular expression to be tested and used. Content completion is
available and presents a list with all the predefined expressions. It is accessible by pressing Ctrl + Space.

• If the edited regular expression is not correct, an error message that contain the position where the error was detected,
will be display. If you click on the error message or on the button , the error will be highlight inside the regular
expression for easily correct them.

• Category combo box - here you can choose from several categories of predefined expressions. The selected category
influences the displayed expressions in the Available expressions table.

• Available expressions table - it consists of two columns. The first one presents the regular expressions, the second
displays a short description of the expressions. The set of expressions depend on the category selected in the previous
combo box. You can add an expression in the Regular expressions editor by double-clicking on the expression row
in the table You will notice that in the case of Character categories and Block names the expressions are also listed
in complementary format. For example: \p{Lu} - Uppercase letters; \P{Lu} - Complement of: Uppercase letters.

• Evaluate expression on radio buttons - there are available two options: Evaluate expression on each line and Evaluate
expression on all text . If the first option is selected the edited expression will be applied on each line from the Test
area. If the second option is selected the expression will be applied on the whole text.

113

Editing documents

• Test area - it is a text editor which allows you to enter a text sample on which the regular expression will be applied.
The matches of the expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button will become
active when an editor is opened in the background and there is an expression in the Regular expressions editor.

The regular expression builder cannot be used to insert regular expressions in the grid version or the schema version
of a document editor. Accordingly the Insert button of the dialog will be disabled if the current document is edited in
grid mode.

Generating documentation for an XML Schema
<oXygen/> can generate detailed documentation for the components of an XML Schema in HTML, PDF and DocBook
XML formats similar with the Javadoc documentation for the components of a Java class. You can select the components
and the level of detail. The components are hyperlinked in both HTML and DocBook documents.

To generate documentation for an XML Schema document use the dialog Schema Documentation. It is opened with
the action XML Tools → Generate Documentation → Schema Documentation... . It can be also opened from the
Navigator contextual menu: Generate Schema DocumentationThe dialog enables the user to configure a large set of
parameters for the process of generating the documentation.

Figure 4.45. The Output panel of the Schema Documentation dialog

The Schema URL field of the dialog panel must contain the full path to the XML Schema (XSD) file you want to
generate documentation for. The schema may be a local or a remote one. You can specify the path to the schema using
the editor variables.

You can choose to split the output into multiple files by namespace, location or component.

114

Editing documents

Figure 4.46. The Settings panel of the Schema Documentation dialog

When you generate documentation for a schema you can choose what components to include in the output (global
elements, global attributes, local elements, local attributes, simple types, complex types, group, attribute groups, refer-
enced schemas, redefines) and the details to be included in the documentation:

• Diagram Show the diagram for each component. You can choose the image format to use for the diagram section.

• Diagram annotations The option controls whether or not the annotations of the components presented in the diagram
sections should be included.

• Namespace Show the namespace for each component.

• Location Show the schema location for each component.

• Type Show the type of the component if it is not an anonymous one.

• Type hierarchy Show the types hierarchy

• Model Show the model (sequence, choice, all) presented in BNF form. form. For xs:all the model the children are
separated by space. For xs:sequence the children are separated by comma, for xs:choice by |. You can easily check
if an element is required or optional.

• Children Show the list of all the children of the component

• Instance Show an XML instance generated based on each schema element.

• Used by Show the list of all the components that refer the component sorted by component type and name.

• Properties Show some properties for the component.

115

Editing documents

• Facets Show the facets for each simple type

• Identity constraints Show the identity constraints for each element. For each constraint there are presented the
name, the type (unique, key, keyref), the refer attribute, the selector and field(s).

• Attributes Show the attributes for the component. For each attribute there are presented the name, the type, the
fixed or default value, the use and annotation.

• Annotations Show the annotations for the component. If you choose Escape XML Content, the XML tags are
present in the annotations.

• Source Show the text schema source for each component.

• Generate index Create an index with the components included in the documentation.

• Include local elements and attributes If checked, local elements and attributes are included in the documentation
index.

These options are persistent between sessions.

Generate documentation in HTML format

The HTML documentation contains images corresponding to the schema definitions as the ones displayed by the
schema diagram editor. These images are divided in clickable areas which are linked to the definitions of the clicked
names of types or elements. The documentation of a definition includes a Used By section with links to the other
definitions which refer to it. If the Escape XML Content option is unchecked, the HTML or XHTML tags used inside
the xs:documentation elements of the input XML Schema for formatting the documentation text (for example ,
<i>, <u>, , , etc.) are rendered in the generated HTML documentation.

The generated images format is PNG. The image of an XML Schema component contains the graphical representation
of that component as it is rendered in the Schema Diagram panel of the <oXygen/>'s XSD editor panel.

116

Editing documents

Figure 4.47. Schema documentation example

The generated documentation include a table of contents. The contents can be grouped by namespace, location or
component type. After the table of contents there is presented some information about the main schema, the imported,
included and redefined schemas. This information consists in the schema target namespace, the schema properties
(attribute form default, element form default, version) and the schema location.

Figure 4.48. Information about a schema

If you choose to split the output into multiple files, the table of contents will be displayed in the left frame. The contents
will be grouped in the same mode. If you split the output by location, each file contains a schema description and the
components that you have chosen to include. If you split the output by namespace, each file contains information about
schemas from that namespace and the list with all included components. If you choose to split the output by component,
each file will contain information about a schema component.

After the documentation is generated you can collapse details for some schema components. This can be done using
the Showing view

117

Editing documents

Figure 4.49. The Showing view

For each component included in the documentation the section presents the component type follow by the component
name. For local elements and attributes the name of the component is specified as parent name/component name. You
can easily go to the parent documentation by clicking on the parent name.

Figure 4.50. Documentation for a schema component

118

Editing documents

Generate documentation in PDF, DocBook or a custom format

Schema documentation can be also generated in PDF, DocBook or a custom format. You can choose the format from
the Schema Documentation Dialog. For the PDF and DocBook formats, the option to split the output in multiple files
is disabled.

For PDF the documentation is generated in DocBook format and after that a transformation using the FOP processor
is applied to obtain the PDF file. If there are errors during the transformation using the Apache FOP these are presented.
To configure the FOP processor see the FO Processors preferences page.

If you generate the documentation in DocBook format you can apply a transformation scenario on the output file, for
example one of the scenarios proposed by <oXygen/> (DocBook PDF or DocBook HTML) or configure your own
scenario for it.

For the custom format you can specify your stylesheet to transform the intermediary XML generated in the document-
ation process. You have to write your stylesheet based on the schema xsdDocSchema.xsd from {INSTALA-
TION_DIRECTORY}/frameworks/schema_documentation. You can create a custom format starting from
one of the stylesheets used in the predefined HTML, PDF and DocBook formats. These stylesheets are available in
{INSTALATION_DIRECTORY}/frameworks/schema_documentation/xsl.

When using a custom format you can also copy additional resources into the output folder or choose to keep the inter-
mediate XML files created during the documentation process.

Generating documentation from the command line

You can export the settings of the Schema Documentation dialog to an XML file by pressing the "Export settings"
button. With the exported settings file you can generate the same documentation from the command line by running
the script schemaDocumentation.bat (on Windows) / schemaDocumentation.sh (on Mac OS X / Unix
/ Linux) located in the <oXygen/> installation folder. The script can be integrated in an external batch process launched
from the command line.

The command line parameter of the script is the relative path to the exported XML settings file. The files which are
specified with relative paths in the exported XML settings will be made absolute relative to the directory from where
the script is run.

119

Editing documents

Example 4.12. Example of an XML configuration file

<serialized>
 <map>
 <entry>
 <String xml:space="preserve">xsd.documentation.options</String>
 <xsdDocumentationOptions>
 <field name="outputFile">
 <String xml:space="preserve">${cfn}.html</String>
 </field>
 <field name="splitMethod">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="openOutputInBrowser">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="format">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="customXSL">
 <null/>
 </field>
 <field name="deleteXMLFiles">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeIndex">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeSimpleTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeComplexTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeAttributesGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeRedefines">

120

Editing documents

 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeReferencedSchemas">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDiagram">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsNamespace">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsLocation">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsType">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsTypeHierarchy">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsModel">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsChildren">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsInstance">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsUsedby">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsProperties">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsFacets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsIdentityConstr">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsEscapeAnn">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSource">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAnnotations">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 </xsdDocumentationOptions>

121

Editing documents

 </entry>
 </map>
</serialized>

Searching and refactoring actions
All the following actions can be applied on attribute, attributeGroup, element, group, key, unique, keyref, notation,
simple or complex types:

• XSD+ → References (Alt+Shift+S R (Cmd+Alt+S R on Mac OS)): Searches all references of the item found
at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is not part
of the range of resources determined by this a warning dialog will be shown and you have the possibility to define
another scope, otherwise you have to define a search scope. You can define the search references scope in the fol-
lowing dialog:

Figure 4.51. Search References dialog

A search scope may include the project or a collection of files and directories that you have to specify.

You can decide to automatically use the defined scope for future operations by checking the corresponding checkbox.

• contextual menu of current editor+Search → References in...: Searches all references of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above.

• XSD+ → Declarations (Alt+Shift+S D (Cmd+Alt+S D on Mac OS)): Searches all declarations of the item found
at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is not part
of the range of resources determined by this a warning dialog will be shown and you have the possibility to define
another scope, otherwise you have to define a search scope. You can define the search declarations scope in the
following dialog:

122

Editing documents

Figure 4.52. Search Declarations dialog

A search scope may include the project or a collection of files and directories that you have to specify.

Action is not available in Design page.

• contextual menu of current editor+Search → Declarations in...: Searches all declarations of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above. Action is not available in
Design page.

• XSD → Occurrences in File (Alt+Shift+S O (Cmd+Alt+S O on Mac OS)): Searches all occurrences of the item
at the caret position in the currently edited file.

• contextual menu of current editor+Rename Component...: Rename the selected component. You have to specify the
new name for the component and the file(s) affected by the modification in the following dialog:

123

Editing documents

Figure 4.53. Rename component dialog

You have the possibility to view the files affected by the rename component action if click on preview button. The
changes will be shown in the following preview dialog:

124

Editing documents

Figure 4.54. Preview dialog

Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to easily see the hierarchy/dependencies for a schema. You
can open the view from Window → Show View → Other → oXygen → Resource Hierarchy/Dependencies.

This view is useful for example when you want to start from an XML Schema (XSD) file and build and review the
hierarchy of all the other XSD files that are imported, included or redefined in the given XSD file. Also the same view
is able to build the inverse tree structure, that is the structure of all other XSD files that import, include or redefine the
given XSD file. The scope of the search is configurable: the current Oxygen project, a set of local folders, etc.

The view can build similar tree structures for a RELAX NG schema, a NVDL schema or an XSLT stylesheet.

The build process for the hierarchy view is started with the action Resource Hierarchy available on the contextual
menu.

125

Editing documents

Figure 4.55. Resource Hierarchy/Dependencies view - hierarchy for mainOffice.xsd

The build process for the dependencies view is started with the action Resource Dependencies available on the con-
textual menu.

126

Editing documents

Figure 4.56. Resource Hierarchy/Dependencies view - dependencies for dml-baseTypes.xsd

In the Resource Hierarchy/Dependencies view you have several actions in the toolbar:

Refresh the hierarchy/dependencies structure.

Allows you to stop the hierarchy/dependencies computing.

Allows you to choose a schema to compute the hierarchy structure.

Allows you to choose a schema to compute the dependencies structure.

Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically
using the defined scope for future operations.

Allows you to repeat a previous dependencies computation.

On the contextual menu you have also some actions like:

• Open Open the schema. Also you can open the schema by a double-click on the hierarchy/dependencies structure.

• Copy location Copy the location of the schema.

• Show Resource Hierarchy Show the hierarchy for the selected schema.

• Show Resource Dependencies Show the dependencies for the selected schema.

• Expand All Expand all the children of the selected schema from the hierarchy/dependencies structure.

127

Editing documents

• Collapse All Collapse all the children of the selected schema from the hierarchy/dependencies structure.

Tip

When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon

Component Dependencies View
The Component Dependencies view allows you to easily see the dependencies for a selected schema component. You
can open the view from Window → Show View → Other → oXygen → Component Dependencies.

If you want to see the dependencies of a schema component just select the desired schema component in the editor
and choose the Component Dependencies action from the contextual menu. The action is available for all named
components (element, attribute, etc).

Figure 4.57. Component Dependencies view - hierarchy for xhtml11.xsd

In the Component Dependencies view you have several actions in the toolbar:

Refresh the dependencies structure.

Allows you to stop the dependencies computing.

Allows you to configure a search scope to compute the dependencies structure. There is also an option for automat-
ically using the defined scope for future operations.

Allows you to repeat a previous dependencies computation.

On the contextual menu you have also some actions like:

128

Editing documents

• Go to First Reference selects the first reference of the referred component from the current selected component in
the dependencies tree.

• Go to Component Shows the definition of the current selected component in the dependencies tree.

Tip

If a component contains multiple references to another a small table is shown containing all references.

When a recursive reference is encountered it is marked with a special icon

Linking between development and authoring
The Author page is available on the XML Schema editor allowing to edit the annotations visually and presenting a
really nice and compact view of the XML Schema, with support for links on included/imported schemas. Embedded
Schematron is supported only in Relax NG schemas with XML syntax. See more details here.

Editing Relax NG schemas
<oXygen/> provides a special type of editor for Relax NG schemas. This editor presents the usual text view of an XML
document synchronized in real time with an outline view. The outline view has two display modes: the standard outline
mode and the components mode.

Relax NG schema diagram

Introduction

<oXygen/> provides a simple, expressive and easy to read Schema Diagram View for Relax NG schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG and BMP images. It helps both schema authors in developing the schema and content authors that are using the
schema to understand it.

<oXygen/> is the only XML Editor to provide a side by side source and diagram presentation and have them synchronized
in real-time:

• the changes you make in the Editor will immediately be visible in the Diagram (no background parsing).

• changing the selected element in the diagram will select the underlaying code in the source editor.

Full model view

When you create a new schema document or open an existing one the Editor Panel is divided in two sections: one
containing the Schema Diagram and the second the source code. The Diagram View has two tabbed panes offering a
Full Model View and a Logical Model View.

129

Editing documents

Figure 4.58. Relax NG schema editor - full model view

The following references can be expanded in place: patterns, includes and external references. This coupled with the
synchronization support makes the schema navigation easy.

All the element and attribute names are editable: double-click on any name to start editing it.

The symbols used in the schema diagram

The Full Model View renders all the Relax NG Schema patterns with intuitive symbols:

a define pattern with the name attribute having the value equal to the string from
the rectangle

a define pattern with the combine attribute having the value interleave and the
name attribute having the value equal to the string from the rectangle

a define pattern with the combine attribute having the value choice and the name
attribute having the value equal to the string from the rectangle

an element pattern with the name attribute having the value equal to the string
from the rectangle

130

Editing documents

an attribute pattern with the name attribute having the value equal to the string
from the rectangle

a ref pattern with the name attribute having the value equal to the string from
the rectangle

a oneOrMore pattern

a zeroOrMore pattern

an optional pattern

a choice pattern

a value pattern, used for example inside a choice pattern

a group pattern

a pattern from the Relax NG Annotations namespace (http://relaxng.org/ns/com-
patibility/annotations/1.0) which is treated as a documentation element in a
Relax NG schema

a text pattern

an empty pattern

Logical model view

The Logical Model View presents the compiled schema which is a single pattern. The patterns that form the element
content are defined as a top level pattern with a generated name. The name is generated depending of the name class
of the elements.

131

Editing documents

Figure 4.59. Logical Model View for a Relax NG schema

Actions available in the diagram view

The contextual menu offers some actions:

• Append child Append a child to the selected component.

• Insert Before Insert a component before the selected component.

• Insert After Insert a component after the selected component.

• Edit attributes Edit the attributes of the selected component.

• Remove Remove the selected component

• Show only the selected component Depending on its state(selected/not selected), the selected component is the
single component shown in the diagram or all the diagram components are shown.

• Show Annotations Depending on its state (selected/not selected), the documentation nodes are shown or hidden.

• Auto expand to references This option controls how the schema diagram is automatically expanded. For instance
if you select it and then edit a top level element or you make a refresh, the diagram will be expanded until it reaches
referred components. If this is left unchecked, only the first level of the diagram is expanded, showing the top level
elements.

For large schemas, the editor disables this option automatically.

• Collapse Children Collapse the children of the selected view

132

Editing documents

• Expand Children Expand the children of the selected view.

• Print Selection... Print the selected view.

• Save Selection as Image... Save the current selection as JPEG, BMP or PNG Image.

• Refresh Refreshes the Schema Diagram according to the changes in your code (changes in your imported documents
or those that are not reflected automatically in the compiled schema).

If the schema is not valid you will see an error message in the Logical Model View instead of the diagram.

Relax NG Outline view

The Relax NG Outline View presents a list with the patterns that appear in the diagram in both the Full Model View
and Logical Model View cases. It allows a quick access to a component by knowing its name. It can be opened from

Window → Show View → Other → oXygen → Outline. You can switch to the standard outline by pressing the
button.

Figure 4.60. Outline view for Relax NG

Relax NG editor specific actions
The list of actions specific for the Relax NG (full syntax) editor of <oXygen/> is:

• contextual menu of current editor → Show Definition : move the cursor to the definition of the current element in
this Relax NG (full syntax) schema.

Searching and refactoring actions
All the following actions can be applied on ref and parentRef parameters only.

133

Editing documents

• RNG+ → References (Alt+Shift+S R (Cmd+Alt+S R on Mac OS)): Searches all references of the item found
at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is not part
of the range of resources determined by this a warning dialog will be shown and you have the possibility to define
another scope, otherwise you have to define a search scope. A search scope may include the project or a collection
of files and directories that you specify.

You can decide to automatically use the defined scope for future operations by checking the corresponding checkbox.

• contextual menu of current editor+Search → References in...: Searches all references of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above.

All the following actions can be applied on named define parameters only.

• RNG+ → Declarations (Alt+Shift+S D (Cmd+Alt+S D on Mac OS)): Searches all declarations of the item
found at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is
not part of the range of resources determined by this a warning dialog will be shown and you have the possibility
to define another scope, otherwise you have to define a search scope. A search scope may include the project or a
collection of files and directories that you specify.

• contextual menu of current editor+Search → Declarations in...: Searches all declarations of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above.

• RNG → Occurrences in File: Searches all occurrences of the item at the caret position in the currently edited file.

• contextual menu of current editor+Refactoring+Rename Component...: Rename the selected component. You have
to specify the new name for the component and the file(s) affected by the modification as described for XML Schema

Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to easily see the hierarchy/dependencies for a schema. You
can open the view from Window → Show View → Other → oXygen → Resource Hierarchy/Dependencies.

If you want to see the hierarchy of a schema just select the desired schema in the project view and choose Resource
Hierarchy from the contextual menu.

Figure 4.61. Resource Hierarchy/Dependencies view - hierarchy for company.rng

134

Editing documents

If you want to see the dependencies of a schema just select the desired schema in the project view and choose Resource
Dependencies from the contextual menu.

Figure 4.62. Resource Hierarchy/Dependencies view - dependencies for salesDepartment.rng

In the Resource Hierarchy/Dependencies view you have several actions in the toolbar:

Refresh the hierarchy/dependencies structure.

Allows you to stop the hierarchy/dependencies computing.

Allows you to choose a schema to compute the hierarchy structure.

Allows you to choose a schema to compute the dependencies structure.

Allows you to configure a scope to compute the dependencies structure.

Allows you to repeat a previous dependencies computation.

On the contextual menu you have also some actions like:

• Open Open the schema. Also you can open the schema by a double-click on the hierarchy/dependencies structure.

• Copy location Copy the location of the schema.

• Show Resource Hierarchy Show the hierarchy for the selected schema.

• Show Resource Dependencies Show the dependencies for the selected schema.

• Expand All Expand all the children of the selected schema from the hierarchy/dependencies structure.

• Collapse All Collapse all the children of the selected schema from the hierarchy/dependencies structure.

Tip

When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon

135

Editing documents

Component Dependencies View
The Component Dependencies view allows you to easily see the dependencies for a selected RelaxNG component.
You can open the view from Window → Show View → Other → oXygen → Component Dependencies.

If you want to see the dependencies of a RelaxNG component just select the desired component in the editor and choose
the Component Dependencies action from the contextual menu. The action is available for all named defines.

Figure 4.63. Component Dependencies view - hierarchy for xhtml.rng

In the Component Dependencies view you have several actions in the toolbar:

Refresh the dependencies structure.

Allows you to stop the dependencies computing.

Allows you to configure a search scope to compute the dependencies structure in the following dialog:

You can decide to automatically use the defined scope for future operations by checking the corresponding checkbox.

Allows you to repeat a previous dependencies computation.

On the contextual menu you have also some actions like:

• Go to First Reference selects the first reference of the referred component from the current selected component in
the dependencies tree.

• Go to Component Shows the definition of the current selected component in the dependencies tree.

Tip

If a component contains multiple references to another a small table is shown containing all references.

136

Editing documents

When a recursive reference is encountered it is marked with a special icon

Configuring a custom datatype library for a RELAX NG
Schema
A RELAX NG schema can declare a custom datatype library for the values of elements in the instance XML documents.
The datatype library must be implemented in Java and must implement the interface specified on the www.thaiopen-
source.com website. [http://www.thaiopensource.com/relaxng/pluggable-datatypes.html]

The jar file containing the custom library and any other dependent jar file must be added to the classpath of the applic-
ation, that is the jar files must be added to the folder [Oxygen-plugin-folder]/lib and a line <library
name="lib/custom-library.jar"/> must be added for each jar file to the file [Oxygen-plugin-folder]/plu-
gin.xml in the <runtime> element.

The Eclipse platform must be restarted for loading the custom library.

Linking between development and authoring
The Author page is available on the Relax NG schema presenting the schema very similar with the Relax NG compact
syntax. It links to imported schemas and external references. Embedded Schematron is supported only in Relax NG
schemas with XML syntax. See more details here.

Editing NVDL schemas
When a complex XML document is composed by combining elements and attributes from different namespaces and
the schemas which define these namespaces are not even developed in the same schema language then it is difficult
to specify in the document all the schemas which must be taken into account for validation of the XML document or
for offering content completion when the document is edited. In this case a NVDL (Namespace Validation Definition
Language) schema can be used which allows to combine and interleave multiple schemas of different types (W3C
XML Schema, RELAX NG schema, Schematron schema) in the same XML document.

<oXygen/> provides a special type of editor for NVDL schemas. This editor presents the usual text view of an XML
document synchronized in real time with an outline view. The outline view has two display modes: the standard outline
mode and the components mode.

NVDL schema diagram

Introduction

<oXygen/> provides a simple, expressive and easy to read Schema Diagram View for NVDL schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG and BMP images. It helps both schema authors in developing the schema and content authors that are using the
schema to understand it.

<oXygen/> is the only XML Editor to provide a side by side source and diagram presentation and have them synchronized
in real-time:

• the changes you make in the Editor will immediately be visible in the Diagram (no background parsing).

• changing the selected element in the diagram will select the underlaying code in the source editor.

137

Editing documents

http://www.thaiopensource.com/relaxng/pluggable-datatypes.html
http://www.thaiopensource.com/relaxng/pluggable-datatypes.html
http://www.thaiopensource.com/relaxng/pluggable-datatypes.html

Full model view

When you create a new schema document or open an existing one the Editor Panel is divided in two sections: one
containing the Schema Diagram and the second the source code. The Diagram View has two tabbed panes offering a
Full Model View and a Logical Model View. The Logical Model View is not available for NVDL.

Figure 4.64. NVDL schema editor - full model view

The Full Model View renders all the NVDL elements with intuitive icons. This coupled with the synchronization
support makes the schema navigation easy.

Double click on any diagram component in order to edit its properties.

Actions available in the diagram view

The contextual menu offers some actions:

• Show only the selected component Depending on its state(selected/not selected), the selected component is the
single component shown in the diagram or all the diagram components are shown.

• Show Annotations Depending on its state (selected/not selected), the documentation nodes are shown or hidden.

• Auto expand to references This option controls how the schema diagram is automatically expanded. For instance
if you select it and then edit a top level element or you make a refresh, the diagram will be expanded until it reaches
referred components. If this is left unchecked, only the first level of the diagram is expanded, showing the top level
elements.

For large schemas, the editor disables this option automatically.

138

Editing documents

• Collapse Children Collapse the children of the selected view

• Expand Children Expand the children of the selected view.

• Print Selection... Print the selected view.

• Save Selection as Image... Save the current selection as JPEG Image.

• Refresh Refreshes the Schema Diagram according to the changes in your code (changes in your imported documents
or those that are not reflected automatically in the compiled schema).

If the schema is not valid you will see an error message in the Logical Model View instead of the diagram.

NVDL Outline view

The NVDL Outline View presents a list with the named or anonymous rules that appear in the diagram. It allows a
quick access to a rule by knowing its name. It can be opened from Window → Show View → Other → oXygen →
Outline

NVDL editor specific actions
The list of actions specific for the NVDL editor of <oXygen/> is:

• contextual menu of current editor → Show Definition : move the cursor to its definition in the schema used by
NVDL to validate it.

Searching and refactoring actions
All the following actions can be applied on mode name, useMode and startMode attributes only.

• NVDL+ → References (Alt+Shift+S R (Cmd+Alt+S R on Mac OS)): Searches all references of the item found
at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is not part
of the range of resources determined by this a warning dialog will be shown and you have the possibility to define
another scope, otherwise you have to define a search scope. A search scope may include the project or a collection
of files and directories that you specify.

You can decide to automatically use the defined scope for future operations by checking the corresponding checkbox.

• contextual menu of current editor+Search → References in...: Searches all references of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above.

All the following actions can be applied on named define parameters only.

• NVDL+ → Declarations (Alt+Shift+S D (Cmd+Alt+S D on Mac OS)): Searches all declarations of the item
found at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is
not part of the range of resources determined by this a warning dialog will be shown and you have the possibility
to define another scope, otherwise you have to define a search scope. A search scope may include the project or a
collection of files and directories that you specify.

• contextual menu of current editor+Search → Declarations in...: Searches all declarations of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above.

• NVDL → Occurrences in File (Ctrl+Shift+U): Searches all occurrences of the item at the caret position in the cur-
rently edited file.

139

Editing documents

• contextual menu of current editor+Refactoring+Rename Component...: Rename the selected component. You have
to specify the new name for the component and the file(s) affected by the modification as described for XML Schema

Component Dependencies View
The Component Dependencies view allows you to easily see the dependencies for a selected NVDL named mode. You
can open the view from Window → Show View → Other → oXygen → Component Dependencies.

If you want to see the dependencies of a NVDL mode just select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named modes.

Figure 4.65. Component Dependencies view - hierarchy for test.nvdl

In the Component Dependencies view you have several actions in the toolbar:

Refresh the dependencies structure.

Allows you to stop the dependencies computing.

Allows you to configure a search scope to compute the dependencies structure in the following dialog:

You can decide to automatically use the defined scope for future operations by checking the corresponding checkbox.

Allows you to repeat a previous dependencies computation.

On the contextual menu you have also some actions like:

• Go to First Reference selects the first reference of the referred component from the current selected component in
the dependencies tree.

• Go to Component Shows the definition of the current selected component in the dependencies tree.

Tip

If a component contains multiple references to another a small table is shown containing all references.

When a recursive reference is encountered it is marked with a special icon

140

Editing documents

Linking between development and authoring
The Author page is available on the NVDL scripts editor presenting them in a compact and easy to understand repres-
entation. See more details here.

Editing XSLT stylesheets
<oXygen/> provides special support for developing XSLT 1.0 / 2.0 stylesheets.

Validating XSLT stylesheets
Validation of XSLT stylesheets documents is performed with the help of an XSLT processor configurable from user
preferences according to the XSLT version: 1.0 or 2.0. For XSLT 1.0 the options are: Xalan, Saxon 6.5.5, Saxon 9 B,
Saxon 9 SA, MSXML 4.0, MSXML.NET, a JAXP transformer specified by the main Java class. For XSLT 2.0 the
options are: Saxon 9 B, Saxon 9 SA, a JAXP transformer specified by the main Java class.

Custom validation of XSLT stylesheets

If you need to validate an XSLT stylesheet with other validation engine than the built-in ones you have the possibility
to configure external engines as custom XSLT validation engines in <oXygen/>. After such a custom validator is
properly configured in Preferences it can be applied on the current document with just one click on the Custom Valid-
ation Engines toolbar. The document is validated against the schema declared in the document.

There are two validators configured by default:

MSXML 4.0 included in <oXygen/> (Windows edition). It is associated to the XSL Editor type in Preferences.

MSXML.NET included in <oXygen/> (Windows edition). It is associated to the XSL Editor type in Preferences.

Associate a validation scenario

Content Completion in XSLT stylesheets
The content completion assistant adds special features for editing XSLT stylesheets.

Inside XSLT templates of an XSLT stylesheet the content completion presents also all the elements allowed in any
context by the schema associated to the result of applying the edited stylesheet. That schema is defined by the user in
the Content Completion / XSL preferences and can be of type: XML Schema, DTD, RELAX NG schema, NVDL
schema. There are presented all the elements because in a template there is no context defined for the result document
so the user is allowed to insert any element defined by the schema of the result document.

The content completion window lists the template modes and the names of templates, variables and parameters defined
in imported and included XSLT stylesheets together with the ones defined in the current stylesheet.

The extension functions built in to the Saxon product are presented in the content completion list if the Saxon namespace
(http://saxon.sf.net [] for version 2.0 or http://icl.com/saxon for version 1.0) are mapped to a prefix and one of the
following conditions are true:

• if the edited file has a transformation scenario that uses as transformation engine Saxon 6.5.5 (for version 1.0),
Saxon 9.2.0.6 PE or Saxon 9.2.0.6 EE (for version 2.0)

141

Editing documents

http://icl.com/saxon

• if the edited file has a validation scenario that uses as validation engine Saxon 6.5.5 (for version 1.0), Saxon 9.2.0.6
PE or Saxon 9.2.0.6 EE (for version 2.0)

• if the validation engine specified in Options is Saxon 6.5.5 (for version 1.0), Saxon 9.2.0.6 PE or Saxon 9.2.0.6 EE
(for version 2.0)

Namespace prefixes in scope for the current context are presented at the top of the content completion window to speed
the insertion of prefixed elements into the document.

For the common namespaces like XSL namespace (http://www.w3.org/1999/XSL/Transform), XML Schema namespace
(http://www.w3.org/2001/XMLSchema) or Saxon namespace (http://icl.com/saxon for version 1.0, http://saxon.sf.net/
for version 2.0) , <oXygen/> provides an easily mode to mapped them by propose a prefix for these namespaces.

Figure 4.66. Namespace prefixes in the content completion window

Content Completion in XPath expressions

In XSLT stylesheets the content completion assistant provides all the features available in the editor for XML documents
and also adds some enhancements. In XPath expressions used in attributes of XSLT stylesheets elements like match,
select and test it offers XPath functions, XSLT functions, XSLT axes and user defined functions. If a transformation
scenario was defined and associated to the edited stylesheet the content completion assistant computes and presents
elements and attributes based on the input XML document selected in the scenario and on the current context in the
stylesheet. The associated document is displayed in the XSLT/XQuery input view.

Content Completion for XPath expressions is started:

• on XPath operators detected in one of the match, select and test attributes of XSLT elements: ", ', /, //, (, [, |, :, ::, $

• for attribute value templates of non XSLT elements, that is the '{' character is detected as the first character of the
attribute value

• on request if the combination CTRL + Space is pressed inside an edited XPath expression

The items presented in the content completion window are dependent on the context of the current XSLT element, the
XML document associated with the edited stylesheet in the transformation scenario of the stylesheet and the XSLT
version of the stylesheet (1.0 or 2.0). For example if the document associated with the edited stylesheet is:

<personnel>

142

Editing documents

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema
http://icl.com/saxon
http://saxon.sf.net/

 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and you enter an element xsl:template using the content completion assistant the match attribute is inserted automatically,
the cursor is placed between the quotes and the XPath content completion assistant automatically displays a popup
window with all the XSLT axes, XPath functions and elements and attributes from the XML input document that can
be inserted in the current context. The set of XPath functions depends on the XSLT version declared in the root element
- xsl:stylesheet (1.0 or 2.0).

Figure 4.67. Content Completion in the match attribute

If the cursor is inside the select attribute of an xsl:for-each, xsl:apply-templates, xsl:value-of or xsl:copy-of element
the content completion proposals are dependent of the path obtained by concatenating the XPath expressions of the
parent XSLT elements xsl:template and xsl:for-each like the following figure shows:

143

Editing documents

Figure 4.68. Content Completion in the select attribute

Also XPath expressions typed in the test attribute of an xsl:if or xsl:choose / xsl:when element benefit of the assistance
of the content completion.

Figure 4.69. Content Completion in the test attribute

XSLT variable references are easier to insert in XPath expressions with the help of the content completion popup
triggered by the $ character which signals the start of such a reference in an XPath expression.

144

Editing documents

Figure 4.70. Content Completion in the test attribute

The same content completion assistant is available also in attribute value templates of non XSLT elements if the '{'
character is the first one in the value of the attribute.

Figure 4.71. Content Completion in attribute value templates

The delay that is configured in Preferences for all content completion windows is applied also for the content completion
window of XPath expressions.

Tooltip Helper for the XPath Functions Arguments

When editing the arguments of an XPath/XSLT function, <oXygen/> keeps track of the current entered argument by
displaying a tooltip above the function containing the function signature. The currently edited argument is displayed
in bold.

When moving the caret through the expression, the tooltip is updated to reflect the argument that is found at the caret
position.

Let's consider the following example. We are concatenating the absolute value of two variables: v1 and v2.

<xsl:template match="/">
 <xsl:value-of select="concat(abs($v1), abs($v2))"></xsl:value-of>
</xsl:template>

When moving the caret before the first "abs" function, the editor will identify that it represent the first argument of the
"concat" function, and will show in bold that the first argument is named "$arg1" and is of type "xdt:anyAtomicType"
and it is optional. The function takes also other arguments, having the same type, and returns a "xs:string".

145

Editing documents

Figure 4.72. XPath Tooltip Helper - Identify the concat function first argument

Moving the caret on the first variable "$v1", the editor identifies the "abs" as context function and shows its signature:

Figure 4.73. XPath Tooltip Helper - Identify the abs function argument

Further, clicking on the second "abs" function name, the editor detects that it represents the second argument of the
"concat function". It redisplays the correct tooltip, displaying the second argument in bold.

Figure 4.74. XPath Tooltip Helper - Identify the concat function second argument

The tooltip helper is present also in the XPath Toolbar and the XPath Builder.

Code templates

When the content completion is invoked by pressing CTRL+Space it also presents a list of code templates specific to
the type of the active editor. Such a code template provides a shortcut for inserting a small document fragment at the
current caret position. <oXygen/> comes with a large set of ready-to use templates for XSL and XML Schema documents.

Example 4.13. The XSL code template called Template-Match-Mode

Typing t in an XSL document and selecting tmm in the content assistant pop-up window will insert the following
template at the caret position in the document:

<xsl:template match="" mode="">

</xsl:template>

Other templates can be easily defined by the user. Also the code templates can be shared with other users.

The XSLT/XQuery Input View
The structure of the XML document associated to the edited XSLT stylesheet , or of the source documents of the edited
XQuery is displayed in a tree form in a view called XSLT/XQuery Input. The tree nodes represent the elements of the
documents.

146

Editing documents

The XSLT Input View

If you click on a node, the corresponding template from the stylesheet will be highlighted. A node can be dragged and
dropped in the editor area for quickly inserting xsl:template, xsl:for-each or other XSLT elements with the match /
select / test attribute already filled with the correct XPath expression referring to the dragged tree node and based on
the current editing context of the drop spot.

Figure 4.75. XSLT input view

For example for the following XML document

<personnel>
 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and the following XSLT stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">
 <xsl:template match="personnel">
 <xsl:for-each select="*">

 </xsl:for-each>

147

Editing documents

 </xsl:template>
</xsl:stylesheet>

if you drag the given element and drop it inside the xsl:for-each element a popup menu will be displayed.

Figure 4.76. XSLT Input drag and drop popup menu

Select for example Insert xsl:value-of and the result document will be:

Figure 4.77. XSLT Input drag and drop result

The XSLT Outline View
The XSLT Outline View present the list of all the components (templates, attribute-sets, character-maps, variables,
functions) from both the edited stylesheet and its imports/includes. It can be opened from Window → Show View →
Other → oXygen → Outline.

148

Editing documents

Figure 4.78. The XSLT Outline View

The XSLT Outline View provide some actions to easily navigate inside a stylesheet:

Sort Allows you to alphabetically sort the stylesheet components.

Show imported/included Allows you to show also the components from imported/included stylesheets.

Grouping options The stylesheet components can be grouped by location, type and mode.

Selection update on caret move Allows a synchronization between Outline View and source document. The selection
in the outline view can be synchronized with the caret's moves or the changes in the XSLT editor. Selecting one of
the components from the outline view also selects the corresponding item in the source document.

Components mode Allows you to switch between the current outline and the standard Outline View. Your preference
for specific or standard outline will be applied to all new xslt editors opened after this operation.

The following contextual menu actions are available:

Remove (Delete) Remove the selected item from the stylesheet.

 Search References () Searches all references of the item found at current cursor position in the defined
scope if any. Click here for more details.

Search References in... Searches all references of the item found at current cursor position in the specified
scope. Click here for more details.

 Component Dependencies Allows you to easily see the dependencies for the current selected component.
Click here for more details.

149

Editing documents

Rename Component Rename the selected component. Click here for more details.

The stylesheet components information are presented in two columns: the first column present the name and match
attributes, the second column the mode attribute. If you know the component name, match or mode, you can search it
in the outline view by typing one of these information in the filter text field from the bottom of the view or directly on
the tree structure. When you type de component name, match or mode in the filter text field you can switch to the tree
structure using the arrow keys of the keyboard, Enter, Tab, Shift-Tab. To switch from tree structure to the filter text
field you can use Tab, .

Tip

The search filter is case insensitive. The following wildcards are accepted:

• * - any string

• ? - any character

• , -patterns separator

If no wildcards are specified, the string to search will be searched as a partial match (similar to *textToFind*).

On the XSLT outline view you have some contextual actions like: Edit Attributes, Cut, Copy, Delete.

XSLT Stylesheet documentation support
<oXygen/> offers built in support for documenting XSLT stylesheets. The xsl:stylesheet element may contain any
element not from the XSLT namespace, provided that the expanded QName of the element has a non-null namespace
URI. Such elements are referred to as user-defined data elements. Such elements can contain the documentation for
the stylesheet and its elements (top-level elements whose names are in the XSLT namespace). <oXygen/> offers its
own XML schema that defines such documentation elements. The schema is named stylesheet_documenta-
tion.xsd and can be found in {INSTALATION_DIRECTORY}/frameworks/stylesheet_documentation.
The user can also specify its own schema in XSL Content Completion options.

When content completion is invoked inside an XSLT editor by pressing CTRL+Space, it will also offer elements from
the XSLT documentation schema (either the built-in one or one specified by user). A contextual action for adding
documentation blocks is also available for the Text mode in the editor contextual menuSource → Add component
documentation or for the Author contextual menu Component documentation → Add component documentation.
Other documentation actions available in the Author page from the Component Documentation contextual sub menu
are:

• Paragraph - Insert a new documentation paragraph

• Bold - Make the selected documentation text bold

• Italic - Make the selected documentation text italic

• List - Insert a new list

• List Item - Insert a list item

• Reference - Insert a documentation reference

If you are with the caret inside the xsl:stylesheet element context, documentation blocks will be generated for all XSLT
elements. If you are with the caret inside a specific XSLT element (like a template or a function) a documentation
block will be generated for that element only.

150

Editing documents

Example 4.14. Example of a documentation block using <oXygen/> built-in schema

<xd:doc>
 <xd:desc>
 <xd:p>Search inside parameter <xd:i>string</xd:i> for the last occurrence of parameter
 <xd:i>searched</xd:i>. The substring starting from the 0 position to the identified last
 occurrence will be returned. <xd:ref name="f:substring-after-last" type="function" xmlns:f="http://www.oxygenxml.com/doc/xsl/functions">See also</xd:ref></xd:p>
 </xd:desc>
 <xd:param name="string">
 <xd:p>String to be analyzed</xd:p>
 </xd:param>
 <xd:param name="searched">
 <xd:p>Marker string. Its last occurrence will be identified</xd:p>
 </xd:param>
 <xd:return>
 <xd:p>A substring starting from the beginning of <xd:i>string</xd:i> to the last
 occurrence of <xd:i>searched</xd:i>. If no occurrence is found an empty string will be
 returned.</xd:p>
 </xd:return>
</xd:doc>

The tool for XSLT documentation will recognize the documentation language and will include the documentation in
the generated HTML files. More information about the XSLT documentation tool can be found here.

Generating documentation for an XSLT Stylesheet
<oXygen/> can generate detailed documentation for the elements (top-level elements whose names are in the XSLT
namespace) of an XSLT stylesheet in HTML format similar with the Javadoc documentation for the components of a
Java class. You can select the XSLT elements to be included and the level of detail to be presented for each. Also the
elements are hyperlinked. The user can also use its own stylesheets to obtain a custom format.

To generate documentation for an XSLT stylesheet document use the dialog XSLT Stylesheet Documentation. It is
opened with the action XML Tools → Generate Documentation → XSLT Stylesheet Documentation... . It can be also
opened from the Navigator contextual menu: Generate Stylesheet DocumentationThe dialog enables the user to con-
figure a large set of parameters for the process of generating the documentation.

151

Editing documents

Figure 4.79. The Output panel of the XSLT Stylesheet Documentation dialog

The XSL URL field of the dialog panel must contain the full path to the XSL Stylesheet file you want to generate doc-
umentation for. The stylesheet may be a local or a remote one. You can also specify the path to the stylesheet using
editor variables.

You can choose to split the output into multiple files using different split criteria. For large XSLT stylesheets being
documented, choosing a different split criterion may generate smaller output files providing a faster documentation
browsing.

The available split criteria are:

• by location - each output file contains the XSLT elements from the same stylesheet.

• by namespace - each output file contains information about elements with the same namespace.

• by component - each output file will contain information about one stylesheet XSLT element.

152

Editing documents

Figure 4.80. The Settings panel of the XSLT Stylesheet Documentation dialog

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include in the
output (templates, functions, global parameters, global variables, attribute sets, character maps, keys, decimal formats,
output formats, XSLT elements from referenced stylesheets) and the details to be included in the documentation:

• Documentation Show the documentation for each the XSLT element. For HTML format, the user-defined data
elements that are recognized and transformed in documentation blocks of the XSLT elements they precede, are the
ones from the following schemas:

• <oXygen/> built-in XSLT documentation schema. More detailed informations can be found here.

• A subset of elements from Docbook 5. The recognized elements are: section, sect1 to sect5, emphasis, title, ulink,
programlisting, para, orderedlist, itemizedlist.

• A subset of elements from DITA. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul, ol, pre,
sl, sli, step, steps, li, title, xref.

• Full XHTML 1.0 support.

• XSLStyle documentation environment. XSLStyle uses Docbook or DITA languages inside its own user-defined
data elements. The supported Docbook and DITA elements are the ones mentioned above.

• Doxsl documentation framework. Supported elements are : codefrag, description, para, docContent, documentation,
parameter, function, docSchema, link, list, listitem, module, parameter, template, attribute-set.

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre element.
You can change this behaviour by using a custom format instead of the built-in HTML format and providing your
own XSLT stylesheets.

• Use comments The option controls whether or not the comments that precede a XSLT element will be treated as
documentation for the element they precede. Comments that precede or succeed the xsl:stylesheet element are treated
as documentation for the whole stylesheet. Please note that comments that precede an import or include directive
are not collected as documentation for the included/imported module. Also comments from within the body of the
XSLT elements are not collected at all.

153

Editing documents

• Namespace Show the namespace for named XSLT elements.

• Location Show the stylesheet location for each XSLT element.

• Parameters Show parameters of templates and functions.

• References Show the named XSLT elements that are referred from within the element.

• Used by Show the list of all the XSLT elements that refer the current named element.

• Supersedes Show the list of all the XSLT elements that are superseded the current element.

• Overriding Show the list of all the XSLT elements that override the current element.

• Return type Show the return type for functions.

• Source Show the text stylesheet source for each XSLT element.

• Import precedence Show the computed import precedence as declared in XSL transformation specifications.

• Generate index Create an index with all the XSLT elements included in the documentation.

Generate documentation in HTML format

The generated documentation looks like the one from below:

154

Editing documents

Figure 4.81. XSLT stylesheet documentation example

The generated documentation include a table of contents. The contents can be grouped by namespace, location or
component type. The XSLT elements from each group are sorted alphabetically(for templates the named templates
are presented first and the match ones second). After the table of contents there is presented some information about
the main stylesheet, the imported and included stylesheets. This information consists in the XSLT modules that are
included or imported by the current stylesheet, the XSLT stylesheets where the current stylesheet is imported or included
and the stylesheet location.

155

Editing documents

Figure 4.82. Information about a XSLT stylesheet

If you choose to split the output into multiple files, the table of contents will be displayed in the left frame. The contents
will be grouped using the same criteria as the split.

After the documentation is generated you can collapse details for some stylesheet XSLT elements. This can be done
using the Showing view

Figure 4.83. The Showing view

For each element included in the documentation the section presents the element type follow by the element name (the
value of the name attribute or match attribute for match templates).

156

Editing documents

Figure 4.84. Documentation for an XSLT element

Generate documentation in a custom format

XSLT stylesheet documentation can be also generated in a custom format. You can choose the format from the XSLT
Stylesheet Documentation Dialog. You must specify your own stylesheet to transform the intermediary XML generated

157

Editing documents

in the documentation process. You have to write your stylesheet based on the schema xslDocSchema.xsd from
{INSTALATION_DIRECTORY}/frameworks/stylesheet_documentation. You can create a custom
format starting from one of the stylesheets used in the predefined HTML, PDF and DocBook formats. These stylesheets
are available in {INSTALATION_DIRECTORY}/frameworks/stylesheet_documentation/xsl.

Figure 4.85. The Custom format options dialog

When using a custom format you can also copy additional resources into the output folder or choose to keep the inter-
mediate XML files created during the documentation process.

Generating documentation from the command line

You can export the settings of the XSLT Stylesheet Documentation dialog to an XML file by pressing the "Export
settings" button. With the exported settings file you can generate the same documentation from the command line by
running the script stylesheetDocumentation.bat (on Windows) / stylesheetDocumentation.sh (on
Mac OS X / Unix / Linux) located in the <oXygen/> installation folder. The script can be integrated in an external
batch process launched from the command line.

The command line parameter of the script is the relative path to the exported XML settings file. The files which are
specified with relative paths in the exported XML settings will be made absolute relative to the directory from where
the script is run.

158

Editing documents

Example 4.15. Example of an XML configuration file

<serialized version="11.0">
 <map>
 <entry>
 <String xml:space="preserve">xsl.documentation.options</String>
 <xslDocumentationOptions>
 <field name="includeTemplates">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeFunctions">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeVariables">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalParameters">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeAttributeSets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeCharacterMaps">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeKeys">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeOutputs">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeDecimalFormats">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeImportedIncludedStylesheets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsNamespace">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsLocation">
 <Boolean xml:space="preserve">false</Boolean>
 </field>
 <field name="detailsParameters">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSource">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsReferences">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSupersedes">

159

Editing documents

 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsReturnType">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsOverriding">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsUsedBy">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDocumentation">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDocumentationUseComments">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsImportPrecedence">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="unexpandedOutputFile">
 <String xml:space="preserve">${cfn}.html</String>
 </field>
 <field name="splitMethod">
 <Integer xml:space="preserve">3</Integer>
 </field>
 <field name="openOutputInBrowser">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="format">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="customXSL">
 <null></null>
 </field>
 <field name="deleteXMLFiles">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeIndex">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 </xslDocumentationOptions>
 </entry>
 </map>
</serialized>

Finding XSLT references and declarations

Note

All the following actions can be applied on named templates, attribute sets, functions, decimal formats, keys,
variables or parameters only. In case they are applied on other items, a warning message will pop-up.

160

Editing documents

• XSL+ → References (Alt+Shift+S R (Cmd+Alt+S R on Mac OS)): Searches all references of the item found
at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is not part
of the range of resources determined by this a warning dialog will be shown and you have the possibility to define
another scope, otherwise you have to define a search scope. A search scope may include the project or a collection
of files and directories that you specify.

Note

For faster access, a shortcut to this action is also added in the XSL References toolbar.

You can decide to automatically use the defined scope for future operations by checking the corresponding checkbox.

• contextual menu of current editor+Search → References in...: Searches all references of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above.

• XSL+ → Declarations (Alt+Shift+S D (Cmd+Alt+S D on Mac OS)): Searches all declarations of the item found
at current cursor position in the defined scope if any. If a scope is defined but the current edited resource is not part
of the range of resources determined by this a warning dialog will be shown and you have the possibility to define
another scope, otherwise you have to define a search scope. A search scope may include the project or a collection
of files and directories that you specify.

Note

For faster access, a shortcut to this action is also added in the XSL References toolbar.

• contextual menu of current editor+Search → Declarations in...: Searches all declarations of the item found at current
cursor position in the file(s) that you specify when define a scope in the dialog above.

• XSL → Occurrences in file (Alt+Shift+S O (Cmd+Alt+S + O on Mac OS)): Searches all occurrences of the item
at the caret position in the currently edited file.

• XSL → Show Definition (Ctrl+Alt+Enter (Cmd+Shift+Enter on Mac OS)): Moves the cursor to the location of
the definition of the current item.

XSLT refactoring actions
• XSL+ → Create template from selection...: Opens a dialog that allows the user to specify the name of the new

template to be created. The possible changes to be performed on the document can be previewed prior to altering
the document. After pressing OK, the template is created and the selection is replaced by a

xsl:call-template

instruction referring the just created template.

Note

The selection must contain well-formed elements only.

• XSL+ → Create stylesheet from selection...: Creates a separate stylesheet and replaces the selection with a

xsl:include

161

Editing documents

instruction referring the just created stylesheet.

Note

The selection must contain a well formed top level element.

• XSL → Extract attributes as xsl:attributes...: Extracts the attributes from the selected element and represents each
of them with a

xsl:attribute

instruction.

For example from the following element

<person id="Big{test}Boss"/>

you would obtain

<person>
 <xsl:attribute name="id">
 <xsl:text>Big</xsl:text>
 <xsl:value-of select="test"/>
 <xsl:text>Boss</xsl:text>
 </xsl:attribute>
</person>

• contextual menu of current editor+Refactoring+Rename Component...: Rename the selected component. You have
to specify the new name for the component and the file(s) affected by the modification as described for XML Schema

Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to easily see the hierarchy/dependencies for a stylesheet. You
can open the view from Window → Show View → Other → oXygen → Resource Hierarchy/Dependencies.

If you want to see the hierarchy of a stylesheet just select the desired stylesheet in the project view and choose Resource
Hierarchy from the contextual menu.

162

Editing documents

Figure 4.86. Resource Hierarchy/Dependencies view - hierarchy for docbook.xsl

If you want to see the dependencies of a stylesheet just select the desired stylesheet in the project view and choose
Resource Dependencies from the contextual menu.

163

Editing documents

Figure 4.87. Resource Hierarchy/Dependencies view - dependencies for common.xsl

In the Resource Hierarchy/Dependencies view you have several actions in the toolbar:

Refresh the hierarchy/dependencies structure.

Allows you to stop the hierarchy/dependencies computing.

Allows you to choose a schema to compute the hierarchy structure.

Allows you to choose a schema to compute the dependencies structure.

Allows you to configure a scope to compute the dependencies structure.

Allows you to repeat a previous dependencies computation.

On the contextual menu you have also some actions like:

• Open Open the schema. Also you can open the schema by a double-click on the hierarchy/dependencies structure.

• Copy location Copy the location of the schema.

• Show Resource Hierarchy Show the hierarchy for the selected schema.

• Show Resource Dependencies Show the dependencies for the selected schema.

• Expand All Expand all the children of the selected schema from the hierarchy/dependencies structure.

164

Editing documents

• Collapse All Collapse all the children of the selected schema from the hierarchy/dependencies structure.

Component Dependencies View
The Component Dependencies view allows you to easily see the dependencies for a selected XSLT component. You
can open the view from Window → Show View → Other → oXygen → Component Dependencies.

If you want to see the dependencies of an XSLT component just select the desired component in the editor and choose
the Component Dependencies action from the contextual menu. The action is available for all named components
(templates, variables, parameters, attribute sets, keys, etc).

Figure 4.88. Component Dependencies view - hierarchy for table.xsl

In the Component Dependencies view you have several actions in the toolbar:

Refresh the dependencies structure.

Allows you to stop the dependencies computing.

Allows you to configure a search scope to compute the dependencies structure in the following dialog:

You can decide to automatically use the defined scope for future operations by checking the corresponding checkbox.

Allows you to repeat a previous dependencies computation.

On the contextual menu you have also some actions like:

• Go to First Reference selects the first reference of the referred component from the current selected component in
the dependencies tree.

• Go to Component Shows the definition of the current selected component in the dependencies tree.

165

Editing documents

Tip

If a component contains multiple references to another a small table is shown containing all references.

When a recursive reference is encountered it is marked with a special icon

Linking between development and authoring
The Author page is available for the XSLT editor presenting the stylesheets in a nice visual rendering. See more details
here.

Editing XQuery documents

Folding in XQuery documents
In a large XQuery document the instructions enclosed in the '{' and '}' characters can be collapsed so that only the
needed instructions remain in focus. The same folding features available for XML documents are also available in
XQuery documents.

Figure 4.89. Folding in XQuery documents

Generating HTML Documentation for an XQuery Document
To generate HTML documentation for an XQuery document similar with the Javadoc documentation for Java classes
use the dialog XQuery Documentation. It is opened with the action XML Tools → Generate Documentation → XQuery
Documentation... . . It can be also opened form the Navigator contextual menu:Generate XQuery Documentation. The
dialog enables the user to configure a set of parameters of the process of generating the HTML documentation. The
parameters are:

166

Editing documents

Figure 4.90. The XQuery Documentation dialog

Input The Input panel allows the user to specify either the File or the Folder which
contains the files for which to generate the documentation. One of the two text
fields of the Input panel must contain the full path to the XQuery file. Extensions
for the XQuery files contained in the specified directory can be added as comma
separated values. Default there are offered xquery, xq, xqy.

Default function namespace Optional URI for the default namespace for the submitted XQuery if it exists.

Predefined function namespaces Optional engine dependent, predefined namespaces that the submitted XQuery
refers to. They allow the conversion to generate annotation information to support
the presentation component's hypertext linking if the predefined modules have
been loaded into the local xqDoc XML repository.

Open in browser When checked, the generated documentation will be opened in an external
browser.

Output Allows the user to specify where the generated documentation will be saved on
disk.

Editing CSS stylesheets
<oXygen/> provides special support for developing CSS stylesheet documents.

167

Editing documents

Validating CSS stylesheets
<oXygen/> includes a built-in CSS validator integrated with the general validation support. This brings the usual val-
idation features to CSS stylesheets.

Content Completion in CSS stylesheets
A content completion assistant similar to the one of XML documents offers the CSS properties and the values available
for each property. It is activated on the CTRL + Space shortcut and it is context sensitive when it is invoked for the
value of a property.

Figure 4.91. Content Completion in CSS stylesheets

The properties and the values offered as proposals are dependent on the CSS Profile selected in the Options → Pref-
erences+CSS Validator page, Profile combo box. The CSS 2.1 set of properties and property values is used for most
of the profiles, excepting CSS 1 and CSS 3 for which specific proposal sets are used.

CSS Outline View
The CSS Outline View presents the import declarations of other stylesheet files and all the selectors defined in the
current CSS document. The selector entries can be presented in the order they appear in the document or sorted by
element name used in the selector or the entire selector string representation. The selection in the outline view can be
synchronized with the caret moves or the changes made in the stylesheet document. When selecting an entry from the
outline view the corresponding import or selector will be highlighted in the CSS editor.

168

Editing documents

Figure 4.92. CSS Outline View

The selectors presented in the CSS Outline View can be quickly found using key search. When you press a sequence
of character keys while the focus is in the outline view the first selector that starts with that sequence will be selected.

Folding in CSS stylesheets
In a large CSS stylesheet document some styles may be collapsed so that only the needed styles remain in focus. The
same folding features available for XML documents are also available in CSS stylesheets.

Formatting and indenting CSS stylesheets (pretty print)
If the edited CSS stylesheet becomes unreadable because of the bad alignment of the text lines the pretty-print operation
available for XML documents is also available for CSS stylesheets. It works in the same way as for XML documents
and is available as the same menu and toolbar action.

Other CSS editing actions
The CSS editor type offers a reduced version of the popup menu available in the XML editor type, that means only
the folding actions,the edit actions and a part of the source actions (only the actions To lower case, To upper case,
Capitalize lines).

Editing XProc Scripts
An XProc script is edited as an XML document that is validated against a RELAX NG schema. If the script has an
associated transformation scenario then the XProc engine from the scenario is invoked as validating engine. The default
engine for XProc scenarios is the Calabash engine which comes with <oXygen/> version 11.2.

The content completion inside the element input/inline from the XProc namespace "http://www.w3.org/ns/xproc" offers
elements from the following schemas depending on the port attribute of input and the parent of input:

When invoking the content completion inside the XProc element inline, depending on the attribute port of its
parent input element and the parent of element input, elements from different schemas are offered inside the pro-
posals list:

169

Editing documents

• If the value of the port attribute is 'stylesheet' and element 'xslt' is the parent of element input, the content completion
offers XSLT elements.

• If the value of the port attribute is 'schema' and element 'validate-with-relax-ng' is the parent of element input,
the content completion offers RELAX NG schema elements.

• If the value of the port attribute is 'schema' and element 'validate-with-xml-schema' is the parent of element input,
the content completion offers XML Schema schema elements.

• If the value of the port attribute is 'schema' and element 'validate-with-schematron' is the parent of element input,
the content completion offers either ISO Schematron elements or Schematron 1.5 schema elements.

• If the above cases do not apply then the content completion window offers elements from all the schemas from the
above cases.

Figure 4.93. XProc Content Completion

Changing the user interface language
<oXygen/> comes with the user interface translated in English, French, German, Italian, Japanese and Dutch. If you
want to use <oXygen/> in other language you have to translate all the messages and labels available in the user interface
(menu action names, button names, checkbox texts, view titles, error messages, status bar messages, etc.) and provide
a text file with all the translated messages to <oXygen/> in the form of a Java properties file. Such a file contains pairs
of the form message key - translated message displayed in the user interface. In order to install the new set of translated
messages you must copy this file to the [oXygen-install-folder]/lib folder, restart <oXygen/> and set the new language
in the <oXygen/> preferences. You can get the keys of all the messages that must be translated from the properties file
containing the English translation used in <oXygen/>. To get this file contact us at support@oxygenxml.com.

Handling read-only files
If a file marked as read-only by the operating system is opened in <oXygen/> you will not be able to make modifications
to it regardless of the page the file was opened in. You can check out the read-only state of the file by looking in the

170

Editing documents

Properties view. If you modify the file's properties from the operating system and the file becomes writable you will
be able to make modifications to it on the spot without having to reopen it.

171

Editing documents

Chapter 5. Authoring in the tagless editor
Authoring XML documents without the XML tags
Once the structure of the XML document and the required restrictions on the elements and attributes are fixed with an
XML schema the editing of the document is easier in a WYSIWYG (what-you-see-is-what-you-get) editor in which
the XML markup is not visible.

This tagless editor is available as the Author mode of the XML editor. The Author mode is activated by pressing the
Author button at the bottom of the editing area where the mode switches of the XML editor are available: Text, Grid
and Author (see the following screenshot). The Author mode renders the content of the XML document visually based
on a CSS stylesheet associated with the document. Many of the actions and features available in Text mode are also
available in Author mode.

Figure 5.1. oXygen Author Editor

The tagless rendering of the XML document in the Author mode is driven by a CSS stylesheet which conforms to the
version 2.1 of the CSS specification [http://www.w3.org/TR/CSS21/] from the W3C consortium. Also some CSS 3
features like namespaces and custom extensions of the CSS specification are supported.

The CSS specification is convenient for driving the tagless rendering of XML documents as it is an open standard
maintained by the W3C consortium. A stylesheet conforming to this specification is very easy to develop and edit in
<oXygen/> as it is a plain text file with a simple syntax.

172

http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/

The association of such a stylesheet with an XML document is also straightforward: an xml-stylesheet XML processing
instruction with the attribute type="text/css" must be inserted at the beginning of the XML document. If it is an XHTML
document, that is the root element is a html element, there is a second method for the association of a CSS stylesheet:
an element link with the href and type attributes in the head child element of the html element as specified in the
CSS specification [http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2].

There are two main types of users of the Author mode: developers and content authors. A developer is a technical
person with advanced XML knowledge who defines the framework for authoring XML documents in the tagless editor.
Once the framework is created or edited by the developer it is distributed as a deliverable component ready to plug
into the application to the content authors. A content author does not need to have advanced knowledge about XML
tags or operations like validation of XML documents or applying an XPath expression to an XML document. He just
plugs the framework set up by the developer into the application and starts editing the content of XML documents
without editing the XML tags directly.

The framework set up by the developer is called document type and defines a type of XML documents by specifying
all the details needed for editing the content of XML documents in tagless mode: the CSS stylesheet which drives the
tagless visual rendering of the document, the rules for associating an XML schema with the document which is needed
for content completion and validation of the document, transformation scenarios for the document, XML catalogs,
custom actions available as buttons on the toolbar of the tagless editor.

The tagless editor comes with some ready to use predefined document types for XML frameworks largely used today
like DocBook, DITA, TEI, XHTML.

General Author Presentation
A content author edits the content of XML documents in tagless mode disregarding the XML tags as they are not visible
in the editor. If he edits documents conforming to one of the predefined types he does not need to configure anything
as the predefined document types are already configured when the application is installed. Otherwise he must plug the
configuration of the document type into the application. This is as easy as unzipping an archive directly in the frameworks
subfolder of the application's install folder.

In case the edited XML document does not belong to one of the document types set up in Preferences you can specify
the CSSs to be used by inserting an xml-stylesheet processing instructions. You can insert the processing instruction

by editing the document or by using the Associate XSLT/CSS stylesheet action.

The syntax of such a processing instruction is:

<?xml-stylesheet type="text/css" media="media type" title="title"
href="URL" alternate="yes|no"?>

You can read more about associating a CSS to a document, the syntax and the use of the xml-stylesheet processing in-
struction in the section Author CSS Settings.

When the document has no CSS association or the referred stylesheet files cannot be loaded a default one will be used.
A warning message will also be displayed at the beginning of the document presenting the reason why the CSS cannot
be loaded.

Note

In general it is recommended to associate a CSS while in Text mode so that the whitespace normalization rules
specified in the stylesheets will be properly applied when switching to Author mode.

173

Authoring in the tagless editor

http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

Figure 5.2. Document with no CSS association default rendering

Author views
The content author is supported by special views which are automatically synchronized with the current editing context
of the editor panel and which present additional information about this context thus helping the author to see quickly
the current location in the overall document structure and the available editing options.

Outline view

The Outline view has the following available functions:

• the section called “XML Document Overview”

• the section called “Modification Follow-up”

• the section called “Document Structure Change”

Figure 5.3. The Outline View

XML Document Overview

The Outline view displays a general tag overview of the current edited XML Document. It also shows the correct
hierarchical dependencies between the tag elements, making it easier for the user to be aware of the document's structure
and the way tags are nested. It allows fast navigation of the document by displaying the start of the content of the child

174

Authoring in the tagless editor

elements in the node of the parent element thus allowing to see quickly the content of an element without expanding
it in the Outline tree. It also allows the user to insert or delete nodes using pop-up menu actions.

Modification Follow-up

When editing, the Outline view dynamically follows the modifications introduced by the user, showing in the middle
of the panel the node which is currently being modified. This gives the user a better insight on location inside the
document and how the structure of the document is affected by one's modifications.

Document Structure Change

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view in
drag-and-drop operations. If you drag an XML element in the Outline view and drop it on another one in the same
panel then the dragged element will be moved after the drop target element. If you hold the mouse pointer over the
drop target for a short time before the drop then the drop target element will be expanded first and the dragged element
will be moved inside the drop target element after its opening tag. You can also drop an element before or after another
element if you hold the mouse pointer towards the upper or lower part of the targeted element. A marker will indicate
whether the drop will be performed before or after the target element. If you hold down the CTRL key after dragging,
there will be performed a copy operation instead of a move one.

The drag and drop action in the Outline view can be disabled and enabled from the Preferences dialog.

Tip

You can select and drag multiple nodes in the Author Outliner tree.

The popup menu of the Outline tree

Edit attributes for the selected node. A dialog is presented allowing the user to see and edit the attributes of the selected
node. See here for more details about editing attributes.

The Append child, Insert before and Insert after submenus of the outline tree popup menu allow to quickly insert new
tags in the document at the place of the element correctly selected in the Outline tree. The Append child submenu lists
the names of all the elements which are allowed by the schema associated with the current document as child of the
current element. The effect is the same as typing the '<' character and selecting an element name from the popup menu
offered by the content completion assistant. The Insert before and Insert after submenus of the Outline tree popup
menu list the elements which are allowed by the schema associated with the current document as siblings of the current
element inserted immediately before respectively after the current element.

The Cut, Copy and Delete items of the popup menu execute the same actions as the Edit menu items with the same
name on the elements currently selected in the outline tree (Cut, Copy, Paste). You can insert a well-formed element
before, after or as a child of the currently selected element by accessing the Paste before, Paste after or Paste as Child
actions.

The Toggle Comment item of the outline tree popup menu encloses the currently selected element of the outline tree
in an XML comment, if the element is not commented, or removes the comment if it is commented.

Using the Rename Element action the element from the caret position and the elements that have the same name as the
current element can be renamed according with the options from the Rename dialog.

The Expand All/Collapse All actions expand/collapse the selection and all its children.

175

Authoring in the tagless editor

Tip

You can Copy/Cut or Delete multiple nodes in the Outliner by using the contextual menu after selecting all the
nodes in the tree.

Elements view

Figure 5.4. The Elements View

Presents a list of all defined elements that you can insert in your document. All elements from a sequence are presented
but the invalid proposals (which cannot be inserted in the current context) are grayed-out. The upper part of the view
features a combo box that contains the current element's ordered ancestors. Selecting a new element in this combo box
will update the list of the allowed elements in Before and After tabs.

Three tabs present information relative to the caret location:

• Caret shows a list of all the elements allowed at the current caret location. Double-clicking any of the listed elements
will insert that element at the caret position.

• Before shows a list of all elements that can be inserted before the element selected in the combo box. Double-
clicking any of the listed elements will insert that element before the element at the caret position.

• After shows a list of all elements that can be inserted after the element selected in the combo box. Double-clicking
any of the listed elements will insert that element after the element at the caret position.

Double clicking an element name in the list surrounds the current selection in the editor panel with the start tags and
end tags of the element. If there is no selection just an empty element is inserted in the editor panel at the cursor position.

Attributes view

The Attributes panel presents all the possible attributes of the current element allowed by the schema of the document
and allows to insert attributes in the current element or change the value of the attributes already used in the element.
The attributes already present in the document are painted with a bold font. Default values are painted with grey color.
Clicking on the Value column of a table row will start editing the value of the attribute from the selected row. If the
possible values of the attribute are specified as list in the schema associated with the edited document the Value column
works as a combo box where you can select one of the possible values to be inserted in the document. The attributes
table is sortable by clicking on the column names. Thus the table's contents can be sorted in ascending order, in des-

176

Authoring in the tagless editor

cending order or in a custom order, where the used attributes are placed at the beginning of the table as they appear in
the element followed by the rest of the allowed elements as they are declared in the associated schema.

Figure 5.5. The Attributes View

A combo box located in the upper part of the view allows you to edit the attributes of the ancestors of the current element.

The contextual menu of the view allows you to insert a new element (Add action) or delete an existing one (Delete
action). Delete action can be invoked on a selected table entry by pressing DEL or BACKSPACE.

The attributes of an element can be edited also in place in the editor panel by pressing the shortcut Alt + Enter which
pops up a small window with the same content of the Attributes view. In the initial form of the popup only the two
text fields Name and Value are displayed, the list of all the possible attributes is collapsed.

Figure 5.6. Edit attributes in place

The small arrow button next to the Cancel button expands the list of possible attributes allowed by the schema of the
document as in the Attributes panel.

177

Authoring in the tagless editor

Figure 5.7. Edit attributes in place - full version

The Name field auto-completes the name of the attribute: the complete name of the attribute is suggested based on the
prefix already typed in the field as the user types in the field.

Adding an attribute that is not in the list of all defined attributes that you can insert at the current caret position according
to the associated schema is not possible when the Allow only insertion of valid elements and attributes schema aware
option is enabled.

Entities view

This view displays a list with all entities declared in the current document as well as built-in ones. Double clicking
one of the entities will insert it at the current cursor position.

Figure 5.8. The Entities View

178

Authoring in the tagless editor

The Author editor
In order to view the XML file in Author view, the XML document must be associated with a CSS file that defines the
way the XML file is rendered. The document can be edited as text, the XML markup being hidden by default.

Navigating the document content

Fast navigating the document content can be done using the Tab/Shift + Tab for advancing forward / backwards. The
caret will be moved to the next/previous editable position. Entities and hidden elements will be skipped.

A left-hand side stripe paints a vertical thin light blue bar indicating the vertical span of the element found at caret
position. Also a top stripe called breadcrumb indicates the path from document root to the current element.

Figure 5.9. Top stripe in Editor view

The last element is also highlighted by a thin light blue bar for easier identification. Clicking one element from the top
stripe selects the entire element in the Editor view.

The tag names displayed in the breadcrumb can be customized with an Author extension class that implements Au-
thorBreadCrumbCustomizer. See the Author SDK [http://www.oxygenxml.com/developer.html] for details
about using it.

The locations of selected text are stored in an internal list which allows navigating between them with the buttons

Ctrl+Alt+[Back and Ctrl+Alt+] Forward that are available on the toolbar Navigation.

The Append child, Insert before and Insert after submenus of the top stripe pop-up menu allow to quickly insert new
tags in the document at the place of the selected element. The Append child submenu lists the names of all the elements
which are allowed by the schema associated with the current document as child of the current element. The effect is
the same as typing the '<' character and selecting an element name from the popup menu offered by the content com-
pletion assistant. The Insert before and Insert after submenus list the elements which are allowed by the schema asso-
ciated with the current document as siblings of the current element inserted immediately before respectively after the
current element.

The Cut, Copy, Paste and Delete items of the popup menu execute the same actions as the Edit menu items with the
same name on the elements currently selected in the stripe (Cut, Copy, Paste, Delete). The styles of the copied content
is preserved by the Cut and Copy operations, for example the display:block property or the tabular format of the data
from a set of table cells. The Paste before, Paste after and Paste as Child actions allow the user to insert an well-formed
element before, after or as a child of the currently selected element.

The Toggle Comment item of the outline tree popup menu encloses the currently selected element of the top stripe in
an XML comment, if the element is not commented, or removes the comment if it is commented.

Using the Rename Element action the selected element and the elements that have the same name as the current element
can be renamed according with the options from the Rename dialog.

When working on a large document the folding support can be used to collapse some elements content leaving in focus
only the ones you need to edit. Foldable elements are marked with a small triangle painted in the upper left corner.
Hovering with the mouse pointer over that marker, the entire content of the element is highlighted by a dotted border
for quick identification of the foldable area.

When working on a suite of documents that refer to one another(references, external entities, XInclude, DITA conref,
etc), the linking support is useful for navigating between the documents. In the predefined customizations that are

179

Authoring in the tagless editor

http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/developer.html

bundled with <oXygen/> links are marked with an icon representing a chain link: . When hovering with the mouse
pointer over the marker, the mouse pointer will change to indicate that the link can be followed and a tooltip will
present the destination location. Clicking on a followable link will result in the referred resource being opened in an
editor. The same effect can be obtained by using the action Open file at caret when the caret is in a followable link
element.

To position the cursor at the beginning or at the end of the document you can use Ctrl+Home and Ctrl+End, respectively.

Displaying the markup

In Author view, the amount of displayed markup can be controlled using the following dedicated actions:

• Full Tags with Attributes - displays full name tags with attributes for both block level as well as in-line level
elements.

• Full Tags - displays full name tags without attributes for both block level as well as in-line level elements.

• Block Tags - displays full name tags for block level elements and simple tags without names for in-line level
elements.

• Inline Tags - displays full name tags for in-line level elements, while block level elements are not displayed.

• Partial Tags - displays simple tags without names for in-line level elements, while block level elements are not
displayed.

• No Tags - none of the tags is displayed. This is the most compact mode.

The default tags display mode can be configured in the Author options page. However, if the document opened in
Author editor does not have an associated CSS stylesheet, then the Full Tags mode will be used.

Block-level elements are those elements of the source document that are formatted visually as blocks (e.g., paragraphs),
while the inline level elements are distributed in lines (e.g., emphasizing pieces of text within a paragraph, in-line images,
etc). The graphical format of the elements is controlled from the CSS sources via the display property.

Bookmarks

A position in a document can be marked with a bookmark. Later the cursor can go quickly to the marked position with
a keyboard shortcut or with a menu item. This is useful for easy navigation in a large document or for working on more
than one document at a moment when the cursor must move between several marked positions.

A bookmark can be placed with one of the menu items available on the menu Edit → Bookmarks → Create or with
the menu item Edit → Bookmarks → Bookmarks Quick Creation (F9) or with the keyboard shortcuts associated with
these menu items and visible on the menu Edit → Bookmarks. A bookmark can be removed when a new bookmark is
placed in the same position as an old one or with the action Edit → Bookmarks → Remove All. The cursor can go to
a bookmark with one of the actions available on the menu Edit → Bookmarks → Go to.

Position information tooltip

When the caret is positioned inside a new context, a tooltip will be shown for a couple of seconds displaying the position
of the caret relative to the current element context.

Here are the common situations that can be encountered:

180

Authoring in the tagless editor

• The caret is positioned before the first block child of the current node.

Figure 5.10. Before first block

• The caret is positioned between two block elements.

Figure 5.11. Between two block elements

• The caret is positioned after the last block element child of the current node.

Figure 5.12. After last block

• The caret is positioned inside a node.

Figure 5.13. Inside a node

• The caret is positioned inside an element, before an inline child element.

Figure 5.14. Before an inline element

• The caret is positioned between two inline elements.

Figure 5.15. Between two inline elements

181

Authoring in the tagless editor

• The caret is positioned inside an element, after an inline child element.

Figure 5.16. After an inline element

The nodes in the previous cases are displayed in the tooltip window using their names.

You can deactivate this feature by unchecking Options → Preferences+Editor / Author+Show caret position tooltip
checkbox. Even if this option is disabled, you can trigger the display of the position tooltip by pressing Shift+F2.

Note

The position information tooltip is not displayed if one of the modes Full Tags with Attributes or Full Tags is
selected.

Displaying referred content

The referred content (entities, XInclude, DITA conref, etc) will be resolved and displayed by default. You can control
this behavior from the Author options page.

The referred resources are loaded and displayed inside the element or entity that refers them, however the displayed
content cannot be modified directly.

When the referred resource cannot be resolved, an error will be presented inside the element that refers them instead
of the content.

If you want to make modifications to the referred content, you must open the referred resource in an editor. The referred
resource can be opened quickly by clicking on the link (marked with the icon) which is displayed before the referred
content. The referred resource is resolved through the XML Catalog set in Preferences.

To update the displayed referred content so that it reflects the latest modifications of the referred resource, you can
use the Refresh references action. Please note that the content of the expanded external entities can only be refreshed
by using the Reload action.

Finding and replacing text

The Find/Replace dialog can be used in the Author page in the same way as in the Text page.

These limitations can be compensated by using the Find All Elements dialog.

Contextual menu

More powerful support for editing the XML markup is offered via actions included in the contextual menu. Two types
of actions are available: generic actions(actions that not depends on a specific document type) and document type
actions(actions that are configured for a specific document type).

182

Authoring in the tagless editor

Figure 5.17. Contextual menu

The generic actions are:

• Rename - the element from the caret position can be renamed quickly using the content completion window. If the
Allow only insertion of valid elements and attributes schema aware option is enabled only the proposals from the
content completion list are allowed, otherwise a custom element name can also be provided.

• Cut, Copy, Paste - common edit actions with the same functionality as those found in the text editor.

• Paste As XML - similar to Paste operation, except that the clipboard's content is considered to be XML.

• Select - contains the following actions:

• Select -> Select Element - selects the entire element at the current caret position.

• Select -> Select Content - selects the entire content of the element at the current caret position, excluding the
start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of
the currently selected element content.

• Select -> Select Parent - selects the parent of the element at the current caret position.

Note

You can select an element by triple clicking inside its content. If the element is empty you can select it by
double clicking it.

• Refactoring - contains a series of actions designed to alter the document's structure:

• Toggle Comment - encloses the currently selected text in an XML comment, or removes the comment if it is
commented;

183

Authoring in the tagless editor

• Split Element - splits the content of the closest element that contains the caret's position. Thus, if the caret is
positioned at the beginning or at the end of the element, the newly created sibling will be empty;

• Join Elements - joins two adjacent elements that have the same name. The action is available only when the caret
position is between the two adjacent elements. Also, joining two elements can be done by pressing the Delete or
Backspace keys and the caret is positioned between the boundaries of these two elements.

• Surround with Tag... - selected text in the editor is marked with the specified tag.

• Surround with '<Tag name>' - selected text in the editor is marked with start and end tags of the last 'Surround
with Tag...' action.

• Rename Element - the element from the caret position and the elements that have the same name as the current
element can be renamed according with the options from the Rename dialog.

• Delete Element Tags - deletes the tags of the closest element that contains the caret's position. This operation is
also executed if the start or end tags of an element are deleted by pressing the Delete or Backspace keys.

• Insert Entity - allows the user to insert a predefined entity or a character entity. Surrogate character entities (range
#x10000 to #x10FFFF) are also accepted.

Character entities can be entered in one of the following forms:

• #<decimal value> - e.g. #65

• &#<decimal value>; - e.g. A

• #x<hexadecimal value> - e.g. #x41

• &#x<hexadecimal value>; - e.g. A

• Open File at Cursor - opens in a new editor panel the file with the name under the current position of the caret in
the current document. If the file does not exist at the specified location the error dialog that is displayed contains a
Create new file action which displays the New file dialog. This allows you to choose the type or the template for
the file. If the action succeeds, the file is created with the referred location and name and is opened in a new editor
panel. This is useful when you decide first on the file name and after that you want to create it in the exact location
specified at the current cursor position.

Document type actions are specific to some document type. Examples of such actions can be found in section Predefined
document types.

Editing XML in <oXygen/> Author

Editing the XML markup

One of the most useful feature in Author editor is the content completion support. The fastest way to invoke it is to
press Ctrl + Space (on Mac OS X the shortcut is Meta + Space).

Content completion window offers the following types of actions:

• inserting allowed elements for the current context according to the associated schema, if any;

• inserting element values if such values are specified in the schema for the current context;

• inserting new undeclared elements by entering their name in the text field;

184

Authoring in the tagless editor

• inserting CDATA sections, comments, processing instructions.

Figure 5.18. Content completion window

If you press Enter the displayed content completion window will contain as first entries the Split <Element name>
items. Usually you can only split the closest block element to the caret position but if it is inside a list item, the list
item will also be proposed for split. Selecting Split <Element name> splits the content of the specified element around
the caret position. Thus, if the caret is positioned at the beginning or at the end of the element, the newly created sibling
will be empty.

If the caret is positioned inside a space preserve element the first choice in the content completion window is Enter
which inserts a new line in the content of the element. If there is a selection in the editor and you invoke content
completion, a Surround with operation can be performed. The tag used will be the selected item from the content
completion window.

By default you are not allowed to insert element names which are not considered by the associated schema as valid
proposals in the current context. This can be changed by unchecking the Allow only insertion of valid elements and
attributes checkbox from the Schema aware preferences page.

Joining two elements. You can choose to join the content of two sibling elements with the same name by using the
Join elements action from the editor contextual menu.

The same action can be triggered also in the next situations:

• The caret is located before the end position of the first element and Delete key is pressed.

• The caret is located after the end position of the first element and Backspace key is pressed.

• The caret is located before the start position of the second element and Delete key is pressed.

• The caret is located after the start position of the second element and Backspace key is pressed.

In either of the described cases, if the element has no sibling or the sibling element has a different name, Unwrap op-
eration will be performed automatically.

Unwrapping the content of an elementYou can unwrap the content of an element by deleting its tags using the Delete
element tags action from the editor contextual menu.

The same action can be triggered in the next situations:

• The caret is located before the start position of the element and Delete key is pressed.

• The caret is located after the start position of the element and Backspace key is pressed.

• The caret is located before the end position of the element and Delete key is pressed.

• The caret is located after the end position of the element and Backspace key is pressed.

185

Authoring in the tagless editor

Removing all the markup of an element You can remove the markup of the current element and keep only the text

content with the action Remove All Markup available on the submenu Refactoring of the contextual menu and on
the toolbar XML Refactoring.

When you press Delete or Backspace in the presented cases the element is unwrapped or it is joined with its sibling.
If the current element is empty, the element tags will be deleted.

When you click on a marker representing the start or end tag of an element, the entire element will be selected. The
contextual menu displayed when you right-click on the marker representing the start or end tag of an element contains
Append child, Insert Before and Insert After submenus as first entries.

Editing the XML content

By default you can type only in elements which accept text content. So if the element is declared as empty or element
only in the associated schema you will not be allowed to insert text in it. This is also available if you ty to insert CDATA
inside an element. Instead a warning message will be shown:

Figure 5.19. Editing in empty element warning

You can disable this behavior by checking the Allow Text in empty or element only content checkbox in the Author
preferences page.

Entire sections or chunks of data can be moved or copied by using the Drag and Drop support. The following situations
can be encountered:

• when both the drag and drop sources are Author pages, an well-formed XML fragment is transferred. The section
will be balanced before dropping it by adding matching tags when needed.

• when the drag source is the Author page but the drop target is a text based editor only the text inside the selection
will be transferred as it is.

• the text dropped from another text editor or another application into the Author page will be inserted without changes.

The font size of the current WYSIWYG-like editor can be increased and decreased on the fly with the same actions
as in the Text editor:

Ctrl-NumPad+ or Ctrl-+ or Ctrl-
mouse wheel

increase font size

Ctrl-NumPad- or Ctrl-- or Ctrl-mouse
wheel

decrease font size

Ctrl-NumPad0 or Ctrl-0 restore font size to the size specified in Preferences

Removing the text content of the current element You can remove the text content of the current element and keep

only the markup with the action Remove Text available on the submenu Refactoring of the contextual menu and
on the toolbar XML Refactoring. This is useful when the markup of an element must be preserved, for example a
table structure but the text content must be replaced.

186

Authoring in the tagless editor

Table layout and resizing

The support for editing data in tabular form can manage table width and column width specifications from the source
document. The specified widths will be considered when rendering the tables and when visually resizing them using
mouse drag gestures. These specifications are supported both in fixed and proportional dimensions. The predefined
frameworks (DITA, DocBook and XHTML) already implement support for this feature. The layout of the tables from
these types of documents takes into account the table width and the column width specifications particular to them.
The tables and columns widths can be visually adjusted by dragging with the mouse their edges and the modifications
will be committed back into the source document.

Figure 5.20. Resizing a column in <oXygen/> Author editor

DocBook

The DocBook table layout supports two models: CALS and HTML.

In the CALS model column widths can be specified by using the colwidth attribute of the associated colspec
element. The values can be fixed or proportional.

Figure 5.21. CALS table

XHTML

The HTML table model accepts both table and column widths by using the width attribute of the table element and
the col element associated with each column. The values can be represented in fixed units, proportional units or per-
centages.

187

Authoring in the tagless editor

Figure 5.22. HTML table

DITA

The DITA table layout accepts CALS tables and simple tables.

The simple tables accept only relative column width specifications by using the relcolwidth attribute of the sim-
pletable element.

Figure 5.23. DITA simple table

Refreshing the content

On occasion you may need to reload the content of the document from the disk or reapply the CSS. This can be performed

by using the Reload action.

For refreshing the content of the referred resources you can use the action Refresh references. This action affects
the displayed referred content, such as: references, XInclude, DITA conref, etc. However, this action will not refresh
the expanded external entities, to refresh those you will need to use the Reload action.

Validation and error presenting

You can validate or check the XML form of the documents while editing them in Author Editor. Validate as you type
as well as validate on request operations are available. Author editor offers validation features and configuring possib-
ilities similar to text editor. You can read more about checking the XML form of documents in section Checking XML
form. A detailed description of the document validation process and its configuration is described in section Validating
Documents.

188

Authoring in the tagless editor

Figure 5.24. Error presenting in <oXygen/> Author editor

A fragment with a validation error or warning will be marked in the editor panel by underlining the error region with
a red color. The same will happen for a validation warning, only the color will be yellow instead of red.

Status messages from every validation action are logged into the Console view.

Whitespace handling

There are several major aspects of white-space handling in the <oXygen/> Author editor when opening documents or
switching to Author mode, saving documents or switching from Author mode to another one and editing documents.

Open documents When deciding if the white-spaces from a text node are to be preserved, normalized or
stripped, the following rules apply:

• If the text node is inside an element context where the xml:space="preserve" is set then
the white-spaces are preserved.

• If the CSS property white-space is set to "pre" for the node style then the white-spaces
are preserved.

• If the text node contains other non-white-space characters then the white-spaces are
normalized.

• If the text node contains only white-spaces:

• If the node has a parent element with the CSS display property set to inline then the
white-spaces are normalized.

• If the left or right sibling is an element with the CSS display property set to inline
then the white-spaces are normalized.

• If one of its ancestors is an element with the CSS display property set to table then
the white-spaces are striped.

• Otherwise the white-spaces are ignored.

Save documents The Author editor will try to format and indent the document while following the white-
space handling rules:

• If text nodes are inside an element context where the xml:space="preserve" is set then
the white-spaces are written without modifications.

• If the CSS property white-space is set to "pre" for the node style then the white-spaces
are written without any changes.

189

Authoring in the tagless editor

• In other cases the text nodes are wrapped.
Also, when formatting and indenting an element that is not in a space-preserve context,
additional Line Separators and white-spaces are added as follows:

• Before a text node that starts with a white-space.

• After a text node that ends with a white-space.

• Before and after CSS block nodes.

• If the current node has an ancestor that is a CSS table element.

Editing documents You can insert space characters in any text nodes. Line breaks are permitted only in space-
preserve elements. Tabs are marked in the space-preserve elements with a little marker.

Note

CDATA sections, comments, processing instructions have by default the white-space CSS property set to "pre"
unless overridden in the CSS file you are using. Also they are considered to be block nodes.

Minimize differences between versions saved on different computers

The number of differences between versions of the same file saved by different content authors on different computers
can be minimized by imposing the same set of formatting options when saving the file, for all the content authors. An
example for a procedure that minimizes the differences is:

1. Create an <oXygen/> project file that will be shared by all content authors.

2. Set your own preferences in the following panels of the Preferences dialog: Editor / Format and Editor / Format
/ XML.

3. Save the preferences of these two panels in the <oXygen/> project by selecting the button Project Options in
these two panels.

4. Save the project and commit the project file to your versioning system so all the content authors can use it.

5. Make sure the project is opened in the Project view and open your XML files in the Author mode and save them.

6. Commit the saved XML files to your versioning system.

When other content authors will change the files only the changed lines will be displayed in your diff tool instead of
one big change that does not allow to see the changes between two versions of the file.

Change Tracking
Track Changes is a way to keep track of the changes you make to a document. You can activate change tracking for
the current document by choosing Edit+Track Changes or by clicking the Track Changes button located on the Author
toolbar. When Track Changes is enabled your modifications will be highlighted using a distinctive color. The name
of the author who is currently making changes and the colors can be customized from the Track Changes preferences
page.

190

Authoring in the tagless editor

Figure 5.25. Change Tracking in <oXygen/> Author

When hovering a change the tooltip will display information about the author and modification time.

If the selection in the Author contains track changes and you Copy it the clipboard will contain the selection with all
the changes accepted. This filtering will happen only if the selection is not entirely inside a tracked change.

Tip

For each change the author name and the modification time are preserved. The changes are stored in the document
as processing instructions and they do not interfere with validating and transforming it.

Managing changes

You can review the changes made by you or other authors and then accept or reject them using the Track Changes

toolbar buttons or the similar actions from the Edit menu.

Track Changes Enable or disable track changes for the current document.

Accept Change(s) Accept the change located at the caret position or if a selection is available accept
changes in the entire selected range. For an insert change this means keeping the
inserted text and for a delete change this means removing the content from the
document. The action is also available in the Author page contextual menu.

Reject Change(s) Reject the change located at the caret position or if a selection is available reject
changes in the entire selected range. For an insert change this means removing the
inserted text and for a delete change this preserving the original content from the
document. The action is also available in the Author page contextual menu.

Comment Change You can decide to add additional comments to an already existing change. The
additional description will appear on the tooltip when hovering the change and in
the Manage Tracked Changes dialog when navigating changes. The action is also
available in the Author page contextual menu.

191

Authoring in the tagless editor

Manage Tracked Changes This is a way to find and manage all changes in the current document.

Figure 5.26. Manage Tracked Changes

The dialog offers the following actions:

Next Find the next change in the document.

Previous Find the previous change in the document.

Accept Accept the current change.

Reject Reject the current change.

Accept All Accept all changes in the document.

Reject All Reject all changes in the document.

The dialog is not modal and it is reconfigured after switching between the dialog
and one of the opened editors.

192

Authoring in the tagless editor

Chapter 6. Author for DITA
Creating DITA maps and topics
The basic building block for DITA information is the DITA topic. DITA provides the following topic types:

• Concept. For general, conceptual information such as a description of a product or feature.

• Task. For procedural information such as how to use a dialog.

• Reference. For reference information.

You can organize topics into a DITA map or bookmap. A map is a hierarchy of topics. A bookmap supports also book
divisions such as chapters and book lists such as indexes. Maps do not contain the content of topics, but only references
to them. These are known as topic references. Usually the maps and bookmaps are saved on disk or in a CMS with the
extension '.ditamap'.

Maps can also contain relationship tables that establish relationships between the topics contained within the map.
Relationship tables are also used to generate links in your published document.

You can use your map or bookmap to generate a deliverable using an output type such as XHTML, PDF, HTML Help
or Eclipse Help.

Editing DITA Maps
<oXygen/> provides a special view for editing DITA maps. The DITA Maps Manager view presents a map in a sim-
plified table-of-contents manner allowing the user to easily navigate the referred topics and maps, make changes and
perform transformations to various output formats using the DITA-OT framework bundled with <oXygen/>.

193

Figure 6.1. The DITA Maps Manager view

You can open a map file from Project in the DITA Maps Manager view by right clicking it and choosing Open in DITA
Maps Manager. The titles of the referenced resources will be resolved dynamically when navigating the tree. After
the map is opened in the Manager you can open it in the main editor for further customization using the Open map in
editor toolbar action.

Tip

If your map references other DITA Maps they will be shown expanded in the DITA Maps Tree and you will
also be able to navigate their content. For editing you will have to open each referenced map in a separate editor.
You can choose not to expand referenced maps in the DITA Maps Manager or referenced content in the opened
editors by unchecking the Display referred content checkbox available in the Author preferences
page.

Note

A map opened from WebDAV can be locked when it is opened in DITA Maps Manager by checking the option
Lock WebDAV files on open to protect it from concurrent modifications on the server by other users. If other
user tries to edit the same map he will receive an error message and the name of the lock owner. The lock is re-
leased automatically when the map is closed from <oXygen/> DITA Maps Manager.

Creating a map
The steps for creating a new DITA map are very simple:

1. Go to menu File → New or click on the New toolbar button.

194

Author for DITA

2. On the tab From templates of the New dialog select one of the DITA Map templates and click OK. A new tab is
added in the DITA Maps Manager view.

3.
Press the Save button on the toolbar of the DITA Maps Manager view.

4. In the Save As dialog select a location and a file name for the map.

Create a topic and add it to a map
You add a new topic to a map with the following steps:

1. In the view DITA Maps Manager click on the action Insert Topic Reference that is available on the toolbar and
on the contextual menu. The action is available both on the submenu Append Child when you want to insert a
topic reference in a map as a child of the current topic reference and on the submenu Insert After when you want
to insert it as a sibling of the current topic reference. The toolbar action is the same as the action from the submenu
Insert After.

2. Select a topic file in the file system dialog called Insert Topic Reference.

3. Press the Insert button or the Insert and close button in the dialog. A reference to the selected topic is added to
the current map in the DITA Maps Manager view. The button Insert and Close closes the dialog.

4. If you clicked the Insert button you can continue inserting new topic references using the Insert button repeatedly
in same file system dialog or you can close the dialog using the Close button.

Organize topics in a map
You can understand better how to organize topics in a DITA map by working with a populated map. You should open
the sample map called flowers.ditamap and located in the samples/dita folder.

1. Open the file flowers.ditamap.

2. Select the topic reference Summer Flowers and click the toolbar button with the Down arrow () to change the
order of the topic references Summer Flowers and Autumn Flowers.

3. Make sure Summer Flowers is selected and press the Demote toolbar button. This topic reference and all the
nested ones are moved as a unit inside the Autumn Flowers topic reference.

4. Close the map without saving.

Create a bookmap
The procedure for creating a bookmap is similar with that for creating a map.

1. Go to menu File → New or click on the New toolbar button.

2. On the tab From templates of the New dialog select the DITA Map - Bookmap template and click OK. A new tab
with the new bookmap is added in the DITA Maps Manager view.

3.
Press the Save button on the toolbar of the DITA Maps Manager view.

4. In the Save As dialog select a location and a file name for the map.

195

Author for DITA

Create relationships between topics
The DITA map offers the possibility of grouping different types of links between topics in a relationship table instead
of specifying the links of each topic in that topic.

1.
Open the DITA map file where you want to create the relationship table. Use the action Open that is available
on the toolbar of the DITA Maps Manager view.

2. Place the cursor at the location of the relationship table.

3. Run the action Insert a DITA reltable that is available on the Author toolbar, on the menu DITA → Table and
on the Table submenu of the contextual menu of the DITA map editor.

4. In the Insert Relationship Table dialog that is displayed by this action you set some parameters of the relationship
table that will be created: the number of rows, the number of columns, a table title (optional), a table header (op-
tional).

5. After setting the table parameters press OK in the Insert Table dialog for inserting a table in the edited DITA
map.

6. Set the type of the topics in the header of each column. The header of the table (the relheader element) already
contains a relcolspec element for each table column. You should set the value of the attribute type of each relcolspec
element to a value like concept, task, reference. When you click in the header cell of a column (that is a relcolspec
element) you can see all the attributes of that relcolspec element including the type attribute in the Attributes view.
You can edit the attribute type in this view.

7. To insert a topic reference in a table cell just place the cursor in that cell and run the action Insert Topic Reference
that is available on the Author toolbar, on the menu DITA → Insert and on the Insert submenu of the contextual
menu.

8. Optionally for adding a new row to the table/removing an existing row you should run the action Insert Row/

Delete Row that is available on the Author toolbar, on the menu DITA → Table and on the Table submenu of
the contextual menu.

9. Optionally for adding a new column to the table/removing an existing column you should run the action Insert

Column/ Delete Column that is available on the Author toolbar, on the menu DITA → Table and on the Table
submenu of the contextual menu.

Create an index entry
The index entries of are used for

Editing actions

Important

References can be made either by using the href attribute or by using the new keyref attribute to point to a
key defined in the map. Oxygen tries to resolve both cases. keyrefs are solved relative to the current map.

The following general actions can be performed on an opened DITA Map:

196

Author for DITA

Open
Allows opening the DITA Map in the DITA Maps Manager view. You can also
open a DITA Map by dragging it in the DITA Maps Manager from the file
system explorer.

Open URL
Allows opening remote DITA Maps in the DITA Maps Manager view. See Open
URL for details.

Save
Allows saving the currently opened DITA Map.

Apply Transformation Scenario Allows the user to start the DITA ANT Transformation scenario associated with
the opened map. For more transformation details see here.

Configure Transformation Scen-
ario

Allows the user to configure a DITA ANT Transformation scenario for the
opened map. For more transformation details see here.

Refresh References Sometimes after a topic was edited and its title changed the topic's title needs
to be also updated in the DITA Maps manager view. You can use this action to
refresh and update titles for all referred topics.

Open map in editor For complex operations which cannot be performed in the simplified DITA
Maps view (like editing a relationship table) you can open the map in the main
editing area. See more about editing a map in the main edit area here.

Open map in editor with resolved
topics

Open the map in the main editing area with all the topic references expanded in
the map content.

Tip

The additional edit toolbar can be shown by clicking the "Show/Hide additional toolbar" expand button located
on the general toolbar.

The following edit actions can be performed on an opened DITA Map:

Insert Topic Reference Inserts a reference to a topic file. See more about this action here.

Insert Topic Heading Inserts a topic heading. See more about this action here

Insert Topic Group Inserts a topic group. See more about this action here.

Edit properties Edit the properties of a selected node. See more about this action here.

Edit other attributes Edits all the attributes of a selected node. A dialog is presented allowing the
user to see and edit the attributes of the selected node. See here for more details
about editing attributes.

Delete Deletes the selected nodes.

Move Up Moves the selected nodes in front of their respective previous siblings.

Move Down Moves the selected nodes after their next respective siblings.

Promote Moves the selected nodes after their respective parents as a siblings.

197

Author for DITA

Demote Moves the selected nodes as children to their respective previous siblings.

The contextual menu contains, in addition to the edit actions described above, the following actions:

Check Spelling in Files Check spelling for the files in the scope of the current edited DITA Map. See
more details here.

Open in editor Open in the editor the resources referred by the selected nodes

Open Map in Editor with resolved
topics

Open the map in the main editing area with all the topic references expanded in
the map content.

Cut, Copy, Paste, Undo, Redo Common edit actions with the same functionality as those found in the text ed-
itor

Paste before, Paste after Will paste the content of the clipboard before respectively after the selected
node.

Append Child/Insert After Append/Insert a topic reference as a
child/sibling of the selected node

Topic reference

Topic reference to the current edited
file

Append/Insert a topic reference to the
current edited file as a child/sibling of
the selected node

Topic heading Append/Insert a topic heading as a
child/sibling of the selected node

Topic group Append/Insert a topic group as a
child/sibling of the selected node

You can also arrange the nodes by dragging and dropping one or more nodes at a time. Drop operations can be performed
before, after or as child of the targeted node. The relative location of the drop is indicated while hovering the mouse
over a node before releasing the mouse button for the drop.

Drag and drop operations allow you to:

Copy Select the nodes you want to copy and start dragging them. Before dropping them in the
appropriate place, press and hold the CTRL key(META key on Mac). The mouse pointer
should change to indicate that a copy operation will be performed.

Move Select the nodes you want to move and drag and drop them in the appropriate place.

Promote / Demote You can move nodes between child and parent nodes which ensures both Promote and Demote
operations.

Tip

You can open and edit linked topics easily by double clicking the references or by right-clicking and choosing
"Open in editor". If the referenced file does not exist you will be allowed to create it.

By right clicking the map root element you can open and edit it in the main editor area for more complex opera-
tions.

You can decide to open the reference directly in the Author page and keep this setting as a default.

198

Author for DITA

Note

Some of the common actions from the main application menu/toolbar also apply to the DITA Maps Manager
when it has focus. These actions are:

File actions Save, Save As, Save to URL, Save All, Print, Print preview, Close, Close others, Close all

Edit actions Undo, Redo, Cut, Copy, Paste, Delete

The Save all action applies to all editors opened in either <oXygen/> work area or the DITA Maps Manager.

Advanced operations

Inserting a Topic Reference

The topicref element identifies a topic (such as a concept, task, or reference) or other resource. A topicref can contain
other topicref elements, allowing you to express navigation or table-of-contents hierarchies, as well as implying rela-
tionships between the containing topicref and its children. You can set the collection-type of a container topicref to
determine how its children are related to each other. You can also express relationships among topicref's using group
and table structures (using topicgroup and reltable). Relationships end up expressed as links in the output (with each
participant in a relationship having links to the other participants by default).

A reference to a topic file may be inserted both from the toolbar action and the contextual node actions. The same
dialog can be used to insert references to maps or links to non-dita files like pdf's.

Figure 6.2. Insert Topic Reference Dialog

By using the Insert Topic Reference Dialog you can easily browse for and select the source topic file. The Target
combo box shows all available topics that can be targeted in the file. Selecting a target modifies the Href value to point

199

Author for DITA

to it. The Format and Scope combos are automatically filled based on the selected file. You can specify and enforce
a custom navigation title by checking the Navigation title checkbox and entering the desired title.

The file chooser located in the dialog allows you to easily select the desired topic. The selected topic file will be added
as a child/sibling of the current selected topic reference. You can easily insert multiple topic references by keeping the
dialog opened and changing the selection in the DITA Maps Manager tree. You can also select multiple resources in
the file explorer and then insert them all as topic references.

Another easy way to insert a topic reference is to directly drag and drop topic files from the Oxygen Project or the
Explorer right in the DITA Maps tree.

You can also define keys using the Keys text field on the inserted topicref or keydef element or instead of using
the Href to point to a location you can reference a key definition using the Keyref text field.

Inserting a Topic Heading

The topichead element provides a title-only entry in a navigation map, as an alternative to the fully-linked title provided
by the topicref element.

A topic heading can be inserted both from the toolbar action and the contextual node actions.

Figure 6.3. Insert Topic Heading Dialog

By using the Insert Topic Heading Dialog you can easily insert a topichead element. The Navigation title is required
but other attributes can be specified as well from the dialog.

Inserting a Topic Group

The topicgroup element identifies a group of topics (such as a concepts, tasks, or references) or other resources. A
topicgroup can contain other topicgroup elements, allowing you to express navigation or table-of-contents hierarchies,
as well as implying relationships between the containing topicgroup and its children. You can set the collection-type
of a container topicgroup to determine how its children are related to each other. Relationships end up expressed as
links in the output (with each participant in a relationship having links to the other participants by default).

A topic group may be inserted both from the toolbar action and the contextual node actions.

200

Author for DITA

Figure 6.4. Insert Topic Group Dialog

By using the Insert Topic Group Dialog you can easily insert a topicgroup element. The Type, Format, Scope and
Collection type attributes can be specified from the dialog.

Edit properties

The Edit properties action, available both on the toolbar and on the contextual menu, is used to edit the properties of
the selected node. Depending on the selected node, the action will perform the following tasks:

• If a topicref element is selected, the action will show a dialog similar with the Insert Topic Reference dialog allowing
the editing of some important attributes.

• If a topichead element is selected, the action will show a dialog similar with the Insert Topic Heading dialog allowing
the editing of some important attributes.

• If a topicgroup element is selected, the action will show a dialog similar with the Insert Topic Group dialog allowing
the editing of some important attributes.

• If the map's root element is selected then the user will be able to easily edit the map's title using the Edit Map title
dialog:

By using this dialog you can also specify whether the title will be specified as the title attribute to the map or as a title
element (for DITA-OT 1.1 and 1.2) or specified in both locations.

Transforming DITA Maps
<oXygen/> uses the DITA Open Toolkit (DITA-OT) to transform XML content into an output format. For this purpose
both the DITA Open Toolkit 1.5 M24 and ANT 1.7 come bundled in <oXygen/>.

More informations about the DITA Open Toolkit are available at http://dita-ot.sourceforge.net/.

Available Output Formats

You can publish DITA-based documents in any of the following formats:

XHTML DITA Map to XHTML

PDF - DITA OT DITA Map to PDF using the DITA OT default PDF target

PDF2 - IDIOM FO Plugin DITA Map to PDF using the DITA OT IDIOM PDF plugin

201

Author for DITA

http://dita-ot.sourceforge.net/

HTML Help (CHM) DITA Map to HTML Help. If HTML Help Workshop is installed on your computer
then oXygen will detect it and use it to perform the transformation. When the
transformation fails, the hhp (HTML Help Project) file is already generated and it
needs to be compiled to obtain the chm file. Note that HTML Help Workshop fails
when the files used for transformation contain diacritics in their names, due to
different encodings used when writing the hhp and hhc files.

JavaHelp DITA Map to JavaHelp

Eclipse Help DITA Map to Eclipse Help

Eclipse Content DITA Map to Eclipse Content

TocJS A JavaScript file that can be included in an HTML file to display in a tree-like
manner the table of contents of the transformed DITA map.

RTF DITA Map to Rich Text Format

TROFF DITA Map to Text Processor for Typesetters

Docbook DITA Map to Docbook

Because the TocJS transformation does not generate all the files needed to display the tree-like table of contents, you
need to follow this procedure:

1. Run the XHTML transformation on the same DITA map. Make sure the output gets generated in the same output
folder;

2. Copy the content of ${frameworks}/dita/DITA-OT/demo/tocjs/basefiles folder in the transform-
ation's output folder;

3. Copy the ${frameworks}/dita/DITA-OT/demo/tocjs/sample/basefiles/frameset.html
file in the transformation's output folder;

4. Edit frameset.html and locate element <frame name="contentwin" src="concepts/about.html">. Replace
"concepts/about.html" with "index.html".

Configuring a DITA transformation

Creating DITA Map transformation scenarios is similar to creating scenarios in the main editing area. See here for
more details about creating scenarios in the main editing area.

The Configure transformation scenario dialog is opened from the toolbar action Configure Transformation Scenario
of the DITA Map Manager. Select as Scenario typeDITA OT transformation then press the New button. Next step involves
choosing the type of output the DITA-OT ANT scenario will generate:

202

Author for DITA

Figure 6.5. Select DITA Transformation type

Depending on the chosen type of output <oXygen/> will generate values for the default ANT parameters so that you
can execute the scenario right away without further customization.

Tip

If you want to transform your DITA topics to various formats using the DITA Open Toolkit you can open them
in the DITA Maps Manager view using the "Open" button located on the internal toolbar and transform them
from here.

Customizing the DITA scenario

The Parameters tab

In the Scenario Edit Parameters Tab you can customize all the parameters which will be sent to the DITA-OT build
file.

203

Author for DITA

Figure 6.6. Edit DITA Ant transformation parameters

All the parameters that can be set to the DITA-OT build files for the chosen type of transformation (eg: XHTML) are
listed along with their description. The values for some important parameters are already filled in. You can find more
i n f o r m a t i o n a b o u t e a c h p a r a m e t e r i n t h e D I TA OT D o c u m e n t a t i o n
[http://dita-ot.sourceforge.net/doc/DITA-antscript.html]

Using the toolbar buttons you can Add, Edit or Remove a parameter.

Depending on the parameter type the parameter value will be a simple text field for simple parameter values, a combo
box with some predefined values or will have a file chooser and an editor variables selector to simplify setting a file
path as value to a parameter.

The Filters tab

In the Scenario Filters Tab you can add filters to remove certain content elements from the generated output.

204

Author for DITA

http://dita-ot.sourceforge.net/doc/DITA-antscript.html
http://dita-ot.sourceforge.net/doc/DITA-antscript.html

Figure 6.7. Edit Filters tab

You have two ways in which to define filters:

Use DITAVAL file If you already have a DITAVAL file associated with the transformed map you
can specify the path to it and it will be used when filtering content. You can find
out more about constructing a DITAVAL file in the DITA OT Documentation
[http://docs.oasis-open.org/dita/v1.1/CD01/langspec/common/about-ditaval.html].

Exclude from output all elements
with any of the following attributes

You can configure a simple list of attribute (name, value) pairs which when
present on an element in the input will remove it from output.

The Advanced tab

In the Advanced Tab you can specify advanced options for the transformation.

205

Author for DITA

http://docs.oasis-open.org/dita/v1.1/CD01/langspec/common/about-ditaval.html
http://docs.oasis-open.org/dita/v1.1/CD01/langspec/common/about-ditaval.html

Figure 6.8. Advanced settings tab

You have several parameters that you can specify here:

Custom build file If you use a custom DITA-OT build file you can specify the path to the customized
build file. If empty, the build.xml file from the dita.dir directory configured
in the Parameters tab will be used.

Build target You can specify a build target to the build file. By default no target is necessary and
the default "init" target is used.

Additional arguments You can specify additional command line arguments to be passed to the ANT trans-
formation like -verbose.

Ant Home You can specify a custom ANT installation to run the DITA Map transformation. By
default it is the ANT installation bundled with <oXygen/>.

Java Home You can specify a custom Java Virtual Machine to run the ANT transformation. By
default it is the Java Virtual Machine used by <oXygen/>.

JVM Arguments This parameter allows you to set specific parameters to the Java Virtual Machine used
by ANT. By default it is set to -Xmx256m which means the transformation process
is allowed to use 256 megabytes of memory.

206

Author for DITA

Example 6.1. Increasing the memory for the ANT process

Sometimes, when performing a large DITA map transformation you may want to in-
crease the memory allocated to the Java Virtual Machine from the default value (64
MB) to a higher value (256MB). You can do this easily by setting the value '-Xmx256m'
without quotes to the "JVM Arguments" text field. In this way you can avoid the Out
of Memory (OutOfMemoryError) messages received from the ANT process.

Libraries Oxygen adds by default as high priority libraries which are not transformation-depend-
ent and also patches for certain DITA Open Toolkit bugs. You can specify all the ad-
ditional libraries (jar files or additional class paths) which will be used by the ANT
transformer. You can also decide to control all libraries added to the classpath.

Example 6.2. Additional jars specified for XHTML

For example the additional jars specified for XHTML are the DITA-OT dost and re-
solver jars, xerces and saxon 6 jars.

The Output tab

In the Output Tab you can configure options related to the place where the output will be generated.

Figure 6.9. Output settings tab

You have several parameters that you can specify here:

207

Author for DITA

Base directory All the relative paths which appear as values in parameters are considered relative
to the base directory. The default value is the directory where the transformed
map is located.

Temporary files directory This directory will be used to store pre-processed temporary files until the final
output is obtained.

Output folder The folder where the final output content will be copied.

Output file options The transformation output can then be opened in a browser or even in the editor
if specified.

The FO Processor tab

This tab appears only when selecting to generate PDF output using the IDIOM FO Plugin and allows you to choose
the FO Processor.

Figure 6.10. FO Processor configuration tab

You can choose between three processors:

Apache FOP This processor comes bundled with <oXygen/>. You can find more information about it here.

XEP The RenderX [http://www.renderx.com/] XEP processor. You can add it very easy from here.

If you select XEP in the combo and XEP was already installed in <oXygen/> you can see the
detected installation path appear under the combo.

XEP is considered as installed if it was detected from one of the following sources:

XEP was added as an external FO Processor in the <oXygen/> preferences. See here.

208

Author for DITA

http://www.renderx.com/
http://www.renderx.com/

The system property "com.oxygenxml.xep.location" was set to point to the XEP executable file
for the platform (eg: xep.bat on Windows).
XEP was installed in the frameworks/dita/DITA-OT/demo/fo/lib directory of the
<oXygen/> installation directory.

Antenna House The Antenna House [http://www.antennahouse.com/] AH (v5) or XSL (v4) Formatter processor.
You can add it very easy from here.

If you select Antenna House in the combo and Antenna House was already installed in <oXygen/>
you can see the detected installation path appear under the combo.

Antenna House is considered as installed if it was detected from one of the following sources:

Environment variable set by Antenna House installation (the newest installation version will be
used, v5 being preferred over v4).
Antenna House was added as an external FO Processor in the <oXygen/> preferences. See here.

Tip

The DITA-OT contributors recommend the use of the IDIOM FO Plugin to transform DITA Maps to PDF as
opposed to using the standard PDF target in the DITA-OT framework.

As IDIOM is also bundled with <oXygen/> the PDF2 - IDIOM FO Plugin output format should be your first
choice in transforming your map to PDF. If you do not have a commercial license for XEP or Antenna House
you can transform using the Apache FO Processor.

Set a font for PDF output generated with Apache FOP

When a DITA map is transformed to PDF using the Apache FOP processor and it contains some Unicode characters
that cannot be rendered by the default PDF fonts then a font that is capable to render these characters must be configured
and embedded in the PDF result.

The settings that must be modified for configuring a font for the Apache FOP processor are detailed in this section.

Running a DITA Map ANT transformation

The transformation is run as an external ANT process so you can continue using the application as the transformation
unfolds. All output from the process appears in the DITA Transformation tab.

Tip

The HTTP proxy settings from <oXygen/> are also used for the ANT transformation so if the transformation
fails because it cannot connect to an external location you can check the HTTP/Proxy Configuration.

DITA OT customization support

Support for transformation customizations

You can change all DITA transformation parameters to customize your needs. See here for more details.In addition,
you can specify a custom build file, parameters to the JVM and many more for the transformation.

209

Author for DITA

http://www.antennahouse.com/
http://www.antennahouse.com/

Using your own DITA OT toolkit from <oXygen/>

The DITA-OT toolkit which comes with <oXygen/> is located in the {INSTALLATION_DIRECTORY}/frame-
works/dita/DITA-OT directory.

You can configure another DITA-OT toolkit directory for use in <oXygen/> To do this you must edit the transformation
scenario that you are using and in the Parameters tab change the "dita.dir" parameter to your custom DITA-OT install-
ation directory. Also in the Advanced tab (the Libraries button) you have to add:

• the dost.jar and resolver.jar libraries as file paths that point to the libraries from your custom DITA-OT
installation directory

• the installation directory of your custom DITA-OT and the lib subdirectory of that installation directory as directory
paths

Using your custom build file

You can specify a custom build file to be used in DITA-OT ANT transformations by editing the transformation scenario
that you are using and in the Advanced tab change the Custom build file path to point to the custom build file.

Customizing the <oXygen/> Ant tool

The ANT 1.7 tool which comes with <oXygen/> is located in the {INSTALLATION_DIRECTORY}/tools/ant
directory. Any additional libraries for ANT must be copied to the <oXygen/> ANT lib directory.

Example 6.3. Enabling JavaScript in ANT build files

If you are using Java 1.6 to run <oXygen/> the ANT tool should need to additional libraries to process JavaScript in
build files.

If you are using Java 1.5 you have to copy the bsf.jar [http://jakarta.apache.org/bsf/] and js.jar
[http://www.mozilla.org/rhino/download.html] libraries in the <oXygen/> ANT lib directory.

Upgrading to a new version of DITA OT

The DITA OT framework bundled in <oXygen/> is located in the {INSTALLATION_DIRECTORY}/frame-
works/dita/DITA-OT directory.

Important

There are a couple of modifications made to the DITA OT framework which will be overwritten if you choose
to copy the new DITA-OT version over the bundled one:

The DTD's in the framework have been enriched with documentation for each element. If you overwrite you
will lose the documentation which is usually shown when hovering an element or in the Model View
The IDIOM FO Plugin comes pre-installed in the bundled DITA-OT framework
Several build files from the IDIOM plugin have been modified to allow transformation using the <oXygen/>
Apache Built-in FOP libraries and usage of the <oXygen/> classpath while transforming.

Increasing the memory for the Ant process

You can give custom JVM Arguments to the ANT process. See here for more details.

210

Author for DITA

http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://www.mozilla.org/rhino/download.html
http://www.mozilla.org/rhino/download.html

Resolving topic references through an XML catalog

If you customized your map to refer topics using URI's instead of local paths or you have URI content references in
your DITA topic files and you want to resolve the URIs with an XML catalog when the DITA map is transformed then
you have to add the catalog to <oXygen/>. The DITA Maps Manager view will solve the displayed topic refs through
the added XML catalog and also the DITA map transformations (for PDF output, for XHTML output, etc) will solve
the URI references through the added XML catalog.

DITA specializations support

Integration of a DITA specialization

A DITA specialization includes DTD definitions for new elements as extensions of existing DITA elements and op-
tionally specialized processing, that is new XSLT template rules that match the extension part of the class attribute
values of the new elements and thus extend the default processing available in DITA Open Toolkit. A specialization
can be integrated in <oXygen/> XML Author with minimum effort.

If the DTDs that define the extension elements are located in a folder outside the DITA Open Toolkit folder you should
add new rules to the DITA OT catalog file for resolving the DTD references from the DITA files that use the specialized
elements to that folder. This allows correct resolution of DTD references to your local DTD files and is needed for
both validation and transformation of the DITA maps or topics. The DITA OT catalog file is called catalog-
dita.xml and is located in the root folder of the DITA Open Toolkit.

If there is specialized processing provided by XSLT stylesheets that override the default stylesheets from DITA OT
these new stylesheets must be called from the Ant build scripts of DITA OT.

Important

If you are using DITA specialization elements in your DITA files it is recommended that you activate the Enable
DTD processing in document type detection checkbox in the Document Type Association page.

Editing DITA Map specializations

In addition to recognizing the default DITA map formats: map and bookmap the DITA Maps Manager can also be
used to open and edit specializations of DITA Maps.

All advanced edit actions available for the map like insertion of topic refs, heads, properties editing, allow the user to
specify the element to insert in an editable combo. Moreover the elements which appear initially in the combo are all
the elements which are allowed to appear at the insert position for the given specialization.

The topic titles rendered in the DITA Maps Manager are collected from the target files by matching the class attribute
and not a specific element name.

When editing DITA specializations of maps in the main editor the insertions of topic reference, topic heading, topic
group and conref actions should work without modification. For the table actions you have to modify each action by
hand to insert the correct element name at caret position. You can go to the DITA Map document type from the Document
Type Association page and edit the table actions to insert the element names as specified in your specialization. See
this section for more details.

Editing DITA Topic specializations

In addition to recognizing the default DITA topic formats: topic, task, concept, reference and composite, topic special-
izations can also be edited in the Author page.

211

Author for DITA

The Content Completion should work without additional modifications and you can choose the tags which are allowed
at the caret position.

The CSS styles in which the elements are rendered should also work on the specialized topics without additional
modifications.

The toolbar/menu actions should be customized to insert the correct element names if this is the case. You can go to
the DITA document type from the Document Type Association page and edit the actions to insert the element names
as specified in your specialization. See this section for more details.

Use a new DITA Open Toolkit in <oXygen/>
Apply the following steps for using a new DITA Open Toolkit:

• Edit your transformation scenarios and in the "Parameters" tab change the value for the "dita.dir" directory to point
to the new directory.

• If you want to use exclusively the libraries that come with the new DITA Open Toolkit you have to go to the "Ad-
vanced" tab, click the "Libraries" button, uncheck the checkbox "Allow <oXygen/> to add high priority libraries to
classpath" and configure all libraries that will be used by the ANT process.

• If there are also changes in the DTD's and you want to use the new versions for content completion and validation,
go to the <oXygen/> preferences in the Document Type Association page, edit the "DITA" and "DITA Map" document
types and modify the catalog entry in the "Catalogs" tab to point to the custom "catalog-dita.xml".

Reusing content
The DITA framework allows reusing content from other DITA files with a content reference in the following ways:

• You can select content in a topic, create a reusable component from it and reference the component in other locations
using the actions Create Reusable Component and Insert Reusable Component. A reusable component is a file,
usually shorter than a topic. You also have the option of replacing the selection with the component that you are in
the process of creating.

• You can add, edit and remove a content reference (conref) attribute to/from an existing element. The actions Add/Edit
Content Reference and Remove Content Reference are available on the contextual menu of the Author editor and on
the DITA menu. When a content reference is added or an existing content reference is edited you can select any
topic ID or interval of topic IDs (set also the conrefend field in the dialog for adding/editing the content reference)
from a target DITA topic file.

• You can insert an element with a content reference (conref or conkeyref) attribute using one of the actions Insert
Content Reference and Insert Content Key Reference that are available on the DITA menu, the Author custom actions
toolbar and the contextual menu of the Author editor.

DITA makes the distinction between local content, that is the text and graphics that are actually present in the element,
and referenced content that is referred by the element but is located in a different file. You have the option of displaying
referenced content by setting the option Display referred content that is available from menu Options → Preferences+Ed-
itor+Pages+Author.

212

Author for DITA

Working with content references
The DITA feature called conref (short for "content reference") enables a piece of content to be included by reference
in multiple contexts. When you need to update that content, you need to update it in only one place. Typical uses of
content references are for product names, warnings, definitions or process steps.

You can use either or both of the following strategies for managing content references:

• Reusable components: With this strategy, you create a new file for each piece of content that you want to reuse.

• Arbitrary content references: You may prefer to keep many pieces of reusable content in one file. For example, you
might want one file to consist of a list of product names, with each product name in a "phrase" (<ph> element)
within the file. Then, wherever you need to display a product name, you can insert a content reference that points
to the appropriate <ph> element in this file.

This strategy requires more setup than Reusable Components, but makes easier centrally managing the reused content.

<oXygen/> XML Author creates a reference to the external content by adding a conref attribute to an element in the
local document. The conref attribute defines a link to the referenced content, made up of a path to the file and the
topic ID within the file. The path may also reference a specific element ID within the topic. Referenced content is not
physically copied to the referencing file, but <oXygen/> XML Author displays it as if it is there in the referencing file.
You can also choose to view local content instead of referenced content, to edit the attributes or contents of the refer-
encing element.

Reusable component

When you need to reuse a part of a DITA topic in different places (in the same topic or in different topics) it is recom-
mended to create a separate component and insert only a reference to the new component in all places. Below are the
steps for extracting a reusable component, inserting a reference to the component and quickly editing the content inside
the component.

1. Select with the mouse the content that you want to reuse in the DITA file opened in Author mode.

2. Start the action Create Reusable Component that is available on the DITA menu, the Author framework actions
toolbar and the contextual menu of the Author editor.

3. In the combo box Reuse Content select the DITA element with the content that you want to extract in a separate
component. The combo box contains the current DITA element where the cursor is located (for example a p element
- a paragraph - or a step or a taskbody or a conbody etc.) and also all the ancestor elements of the current element.

4. In the Description area you should enter a textual description for quick identification by other users of the com-
ponent.

5. If you want to replace the extracted content with a reference to the new component you should leave the checkbox
Replace selection with content reference with the default value (selected).

6. Press the Save button which will open a file system dialog where you have to select the folder and enter the name
of the file that will store the reusable component.

7. Press the Save button in the file system dialog to save the the reusable component in a file. If the checkbox was
selected in the Create Reusable Component dialog the conref attribute will be added to the element that was ex-
tracted as a separate component. In Author mode the content that is referenced by the conref attribute is displayed
with grey background and is read-only because it is stored in other file.

213

Author for DITA

8. Optionally, to insert a reference to the same component in other location just place the cursor at the insert location
and run the action Insert Reusable Component that is available on the DITA menu, the Author framework actions
toolbar and the contextual menu of the Author editor. Just select in the file system dialog the file that stores the
component and press the OK button. The action will add a conref attribute to the DITA element at the insert loc-
ation. The referenced content will be displayed in Author mode with grey background to indicate that it is not
editable.

9. Optionally, to edit the content inside the component just click on the open icon at the start of the grey background
area which will open the component in a separate editor.

Insert a direct content reference

You should follow these steps for inserting an element with a content reference (conref) attribute that points to an
element that is not in a reusable component file.

1. Start one of the actions Insert a DITA Content Reference and Insert a DITA Content Key Reference.

2. In the dialog Insert Content Reference select the file with the referenced content in the URL field.

3. In the tree that presents the DITA elements of the specified file that have an id attribute you have to select the
element or the interval of elements that you want to reference. The conref field will be filled automatically with
the id value of the selected element. If you select an interval of elements the conrefend field will be filled with
the id value of the element that ends the selected interval.

4. Press the OK button to insert in the current DITA file an element with the same name and with the same conref
attribute value (and optionally with the same conrefend attribute value) as the element(s) selected in the dialog.

214

Author for DITA

Chapter 7. Predefined document types
A document type is associated to an XML file according to its defined rules and it specifies many settings used to improve
editing the category of XML files it applies for. These settings include specifying a default grammar used for validation
and content completion, default scenarios used for transformation, specifying directories with file templates, specifying
catalogs and a lot of settings which can be used to improve editing in the Tagless editor.

The tagless editor comes with some predefined document types already configured when the application is installed
on the computer. These document types describe well-known XML frameworks largely used today for authoring XML
documents. Editing a document which conforms to one of these types is as easy as opening it or creating it from one
of the predefined document templates which also come with the application.

Figure 7.1. Document Type preferences page

The DocBook V4 document type
DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly technical
documentation.

215

Association rules
A file is considered to be a DocBook document when either of the following occurs:

• root element name is a book or article;

• public id of the document contains -//OASIS//DTD DocBook XML.

Schema
The schema used for DocBook documents is in ${frameworks}/docbook/dtd/docbookx.dtd, where ${frameworks} is a
subdirectory of the <oXygen/> install directory.

Author extensions
The CSS file used for rendering DocBook content is located in ${frameworks}/docbook/css/docbook.css.

Specific actions for DocBook documents are:

• Bold emphasized text - emphasizes the selected text by surrounding it with <emphasis role="bold"/> tag.

• Italic emphasized text - emphasizes the selected text by surrounding it with <emphasis role="italic"/> tag.

• Underline emphasized text - emphasizes the selected text by surrounding it with <emphasis role="italic"/> tag.

Note

For all of the above actions if there is no selection then a new 'emphasis' tag with specific role will be inserted.
These actions are available in any document context.

These actions are grouped under the Emphasize toolbar actions group.

• link - inserts a hypertext link.

• ulink - inserts a link that address its target by means of an URL (Universal Resource Locator).

• olink - inserts a link that address its target indirectly, using the targetdoc and targetptr values which are
present in a Targetset file.

216

Predefined document types

Figure 7.2. Insert OLink Dialog

After you choose the Targetset URL the structure of the target documents is presented. For each target document
(targetdoc) the content is displayed allowing for easy identification of the targetptr for the olink element
which will be inserted. You can use the Search fields to quickly identify a target. If you already know the values for
the targetdoc and targetptr you can insert them directly in the corresponding fields. You have also the
possibility to edit an olink using the action Edit OLink available on the contextual menu. The action make sense
only if the dialog was already displayed with a proper Targetset.

• uri - inserts an URI element. The URI identifies a Uniform Resource Identifier (URI) in content.

• xref - inserts a cross reference to another part of the document. The initial content of the xref is automatically detected
from the target.

Note

These actions are grouped under the Link toolbar actions group.

• Insert Section - inserts a new section/subsection in the document, depending on the current context. For example
if the current context is sect1 then a sect2 will be inserted and so on.

• Insert Paragraph - inserts a new paragraph depending on the current context. If current context is a paragraph
context(one of the ancestors of the element at caret position is 'para') then a new paragraph will be inserted after the
paragraph at caret. Otherwise a new paragraph is inserted at caret position.

• Insert Graphic - inserts a graphic object at the caret position. This is done by inserting either <figure> or <in-
linegraphic> element depending on the current context. The following graphical formats are supported: GIF, JPG,
JPEG, BMP, PNG, SVG.

217

Predefined document types

• Insert Ordered List - inserts an ordered list with one list item.

• Insert Itemized List - inserts an itemized list with one list item.

• Insert Variable List - inserts a DocBook variable list with one list item.

• Insert List Item - inserts a new list item for in any of the above three list types.

• Insert Table - opens a dialog that allows you to configure the table to be inserted.The dialog allows the user to
configure the number of rows and columns of the table, if the header and footer will be generated and how the table
will be framed. Also, CALS or HTML table model can be selected.

Note

Unchecking the Title checkbox an 'informaltable' element will be inserted.

• Insert Row - inserts a new table row with empty cells. The action is available when the caret position is inside a
table.

• Insert Column - inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Insert Cell - inserts a new empty cell depending on the current context. If the caret is positioned between two
cells, a new one will be inserted at caret's position. If the caret is inside a cell, then the new one will be created after
the current cell.

• Delete Column - deletes the table column where the caret is located.

• Delete Row - deletes the table row where the caret is located.

• Join Row Cells - joins the content of the selected cells. The operation is available if the selected cells are from
the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - joins the content of cell from current caret position with that of the cell above it. Note that this
action works only if both cells have the same column span.

• Join Cell Below - joins the content of cell from current caret position with that of the cell below it. Note that this
action works only if both cells have the same column span.

• Split Cell To The Left - splits the cell from current caret position in two, inserting a new empty table cell to the
left. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

• Split Cell To The Right - splits the cell from current caret position in two, inserting a new empty table cell to the
right. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

218

Predefined document types

• Split Cell Above - splits the cell from current caret position in two, inserting a new empty table cell above. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

• Split Cell Below - splits the cell from current caret position in two, inserting a new empty table cell below. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

Note

DocBook v4 supports only CALS table model. HTML table model is supported in DocBook v5.

Caution

Column specifications are required for table actions to work properly.

• Generate IDs -allows you to generate ID for the current selection or for the element at caret position if the element
appears in ID Generation dialog.

In this dialog you can specify the elements for which <oXygen/> should generate an ID. You can choose to automat-
ically generate an ID for these elements by selecting Auto generate ID's for elements. You can choose a pattern for
the generated ID using the field ID Pattern. If the element already has an ID, this ID is preserved.

All actions described above are available in the contextual menu, main menu (Docbook4 submenu) and in the Author
custom actions toolbar.

Templates

Default templates are available for DocBook 4. They are stored in ${frameworksDir}/docbook/templates/Docbook
4 folder and they can be used for easily creating a book or article with or without XInclude.

These templates are available when creating new documents from templates.

Docbook 4 - Article New Docbook 4 Article

Docbook 4 - Article with XInclude New Docbook 4 XInclude-aware Article

Docbook 4 -Book New Docbook 4 Book

Docbook 4 -Book with XInclude New Docbook 4 XInclude-aware Book

Catalogs

The default catalog is stored in ${frameworksDir}/docbook/catalog.xml.

Transformation Scenarios

The following default transformation scenarios are available:

• DocBook4 -> DocBook5 Conversion - converts a DocBook4-compliant document to DocBook5;

• DocBook HTML - transforms a DocBook document into a HTML document;

• DocBook PDF - transforms a DocBook document into a PDF document using the Apache FOP engine.

219

Predefined document types

• DocBook HTML - chunk - transforms a DocBook document in multiple HTML documents.

The DocBook V5 document type
Customization for DocBook V.5 is similar with that for DocBook V.4 with the following exceptions:

Association rules
A file is considered to be a DocBook V.5 document when the namespace is 'http://docbook.org/ns/docbook'.

Schema
DocBook v5 documents use a RelaxNG and Schematron schema located in ${frameworks}/docbook/5.0/rng/doc-
bookxi.rng, where ${frameworks} is a subdirectory of the <oXygen/> install directory.

Author extensions
DocBook 5 extensions contain all DocBook 4 extensions plus support for HTML table.

Templates

Default templates are available for DocBook 5. They are stored in ${frameworksDir}/docbook/templates/Docbook
5 folder and they can be used for easily creating a book or article with or without XInclude.

These templates are available when creating new documents from templates.

Docbook 5 - Article New Docbook 5 Article

Docbook 5 - Article with XInclude New Docbook 5 XInclude-aware Article

Docbook 5 -Book New Docbook 5 Book

Docbook 5 -Book with XInclude New Docbook 5 XInclude-aware Book

Catalogs

The default catalog is stored in ${frameworksDir}/docbook/5.0/catalog.xml.

Transformation Scenarios

The following default transformation scenarios are available:

• DocBook HTML - transforms a DocBook document into HTML document;

• DocBook PDF - transforms a DocBook document into a PDF document using the Apache FOP engine.

• DocBook HTML - chunk - transforms a DocBook document in multiple HTML documents.

The DocBook Targetset document type
This document type is provided to edit or create a targetset file which is used to resolve cross references with olinks.

220

Predefined document types

Association rules
A file is considered to be a DocBook Targetset document when the root name is 'targetset'.

Schema
DocBook Targetset documents use a DTD and schema located in ${frameworks}/docbook/xsl/common/targetdatabase.dtd,
where ${frameworks} is a subdirectory of the <oXygen/> install directory.

Author extensions

Templates

A default template is available for DocBook Targetset. It is stored in ${frameworksDir}/docbook/templates/Targetset
folder and can be used for easily creating a targetset.

This template is available when creating new documents from templates.

Docbook Targetset - Map New Targetset Map

The DITA Topics document type
The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering technical information. It divides content into small, self-contained topics that can be reused in different de-
liverables. The extensibility of DITA permits organizations to define specific information structures and still use
standard tools to work with them.

Association rules
A file is considered to be a dita topic document when either of the following occurs:

• root element name is one of the following: concept, task, reference, dita, topic;

• public id of the document is one of the public id's for the elements above.

• the root element of the file has an attribute named "DITAArchVersion" attribute from the "http://dita.oasis-
open.org/architecture/2005/" namespace. This enhanced case of matching is only applied when the Enable DTD
processing option from the Document Type Detection option page is enabled.

Schema
The default schema used for DITA topic documents is located in ${frameworks}/dita/dtd/ditabase.dtd, where
${frameworks} is a subdirectory of the <oXygen/> install directory.

Author extensions
The CSS file used for rendering DITA content is located in ${frameworks}/dita/css/dita.css.

Specific actions for DITA topic documents are:

• Bold - surrounds the selected text with b tag.

221

Predefined document types

• Italic - surrounds the selected text with i tag.

• Underline - surrounds the selected text with u tag.

Note

For all of the above actions if there is no selection then a new specific tag will be inserted. These actions are
available in any document context.

• Cross Reference - inserts an xref element with the value of attribute format set to "dita". The target of the xref is
selected in a dialog which lists all the IDs available in a file selected by the user.

Figure 7.3. Insert a cross reference in a DITA document

• Key Reference - inserts a user specified element with the value of attribute keyref attribute set to a specific key name.
As stated in the DITA 1.2 specification keys can be defined at map level which can be then referenced. The target
of the keyref is selected in a dialog which lists all the keys available in the current opened map from the DITA Maps
Manager.

You can also reference elements at sub-topic level by pressing the Sub-topic button and choosing the target.

Important

All keys which are presented in the dialog are gathered from the current opened DITA Map. Elements which
have the keyref attribute set are displayed as links. The current opened DITA Map is also used to resolve
references when navigating keyref links in the Author page. Image elements which use key references are
rendered as images.

222

Predefined document types

• File Reference - inserts an xref element with the value of attribute format set to "xml".

• Web Link - inserts an xref element with the value of attribute format set to "html", and scope set to "external".

• Related Link to Topic - inserts a link element inside a related-links parent.

• Related Link to File - inserts a link element with the format attribute set to "xml" inside a related-links parent.

• Related Link to Web Page - inserts a link element with the attribute format set to "html" and scope set to "external"
inside a related-links parent.

Note

The actions for inserting references described above are grouped inside link toolbar actions group.

• Insert Section/Step - inserts a new section/step in the document, depending on the current context. A new section
will be inserted in either one of the following contexts:

• section context, when the value of 'class' attribute of the current element or one of its ancestors contains 'topic' or
'section'.

• topic's body context, when the value of 'class' attribute of the current element contains 'topic/body'.

A new step will be inserted in either one of the following contexts:

• task step context, when the value of 'class' attribute of the current element or one of its ancestors contains 'task/step'.

• task steps context, when the value of 'class' attribute of the current element contains 'task/steps'.

• Insert Paragraph - inserts a new paragraph depending on the current context. If current context is a paragraph
context (the value of 'class' attribute of the current element or one of its ancestors contains 'topic/p') then a new
paragraph will be inserted after this paragraph. Otherwise a new paragraph is inserted at caret position.

• Insert Concept - inserts a new concept. Concepts provide background information that users must know before
they can successfully work with a product or interface. This action is available in one of the following contexts:

• concept context, one of the current element ancestors is a concept. In this case an empty concept will be inserted
after the current concept.

• concept or dita context, current element is a concept or dita. In this case an empty concept will be inserted at
current caret position.

• dita topic context, current element is a topic child of a dita element. In this case an empty concept will be inserted
at current caret position.

• dita topic context, one of the current element ancestors is a dita's topic. In this case an empty concept will be in-
serted after the first topic ancestor.

• Insert Task - inserts a new task. Tasks are the main building blocks for task-oriented user assistance. They generally
provide step-by-step instructions that will enable a user to perform a task. This action is available in one of the fol-
lowing contexts:

• task context, one of the current element ancestors is a task. In this case an empty task will be inserted after the
last child of the first concept's ancestor.

223

Predefined document types

• task context, the current element is a task. In this case an empty task will be inserted at current caret position.

• topic context, the current element is a dita's topic. An empty task will be inserted at current caret position.

• topic context, one of the current element ancestors is a dita's topic. An empty task will be inserted after the last
child of the first ancestor that is a topic.

• Insert Reference - inserts a new reference in the document. A reference is a top-level container for a reference
topic. This action is available in one of the following contexts:

• reference context, one of the current element ancestors is a reference. In this case an empty reference will be in-
serted after the last child of the first ancestor that is a reference.

• reference or dita context, the current element is either a dita or a reference. An empty reference will be inserted
at caret position.

• topic context, the current element is topic descendant of dita element. An empty reference will be inserted at caret
position.

• topic context, the current element is descendant of dita element and descendant of topic element. An empty reference
will be inserted after the last child of the first ancestor that is a topic.

• Insert Graphic - inserts a graphic object at the caret position. This is done by inserting either <figure> or
<inlinemediaobject> element depending on the current context.. The following graphical formats are supported:
GIF, JPG, JPEG, BMP, PNG, SVG.

• Insert Content Reference - inserts a content reference at the caret position.

The DITA conref attribute provides a mechanism for reuse of content fragments. The conref attribute stores a reference
to another element and is processed to replace the referencing element with the referenced element. The element
containing the content reference acts as a placeholder for the referenced element. The identifier for the referenced
element must be either absolute or resolvable in the context of the referencing element. See here
[http://docs.oasis-open.org/dita/v1.0/archspec/conref.html] for more details.

<oXygen/> will display the referred content of a DITA conref if it can resolve it to a valid resource. If you use URI's
instead of local paths and you have a catalog used in the DITA OT transformation you can add the catalog to
<oXygen/> and if the URI's can be resolved the referred content will be displayed.

A content reference is inserted with the action Insert a DITA Content Reference available on the toolbar Author
custom actions and on the menu DITA → Insert.

224

Predefined document types

http://docs.oasis-open.org/dita/v1.0/archspec/conref.html
http://docs.oasis-open.org/dita/v1.0/archspec/conref.html

Figure 7.4. Insert Content Reference Dialog

In the URL chooser you can choose the file from which you want to reuse content. Depending on the Target type
filter you will see a tree of elements which can be referred (which have id's). For each element the XML content is
shown in the preview area. The Conref value is computed automatically for the selected tree element. After pressing
OK an element with the same name as the target element and having the attribute conref with the value specified in
the Conref value field will be inserted at caret position.

According to the DITA 1.2 specification the conrefend attribute can be used to specify content reference ranges.
This is a very useful feature when referencing multiple consecutive steps or list items. If you use multiple contiguous
sibling selection the conrefend value will also be set to the value of the last selected ID path. Oxygen will present
the entire referenced range as read-only content.

• Insert Content Key Reference - inserts a content key reference at the caret position.

As stated in the DITA 1.2 specification the conkeyref attribute provides a mechanism for reuse of content fragments
similar with the conref mechanism. Keys are defined at map level which can be referenced using conkeyref.
The conkeyref attribute contains a key reference to another element and is processed to replace the referencing
element with the referenced element. The element containing the content key reference acts as a placeholder for the
referenced element. The identifier for the referenced element must be either absolute or resolvable in the context of
the referencing element.

<oXygen/> will display the key referred content of a DITA conkeyref if it can resolve it to a valid resource in
the context of the current opened DITA Map.

A content key reference is inserted with the action Insert a DITA Content Key Reference available on the toolbar
Author custom actions and on the menu DITA → Insert.

225

Predefined document types

Figure 7.5. Insert Content Key Reference Dialog

To reference target elements at sub-topic level just press the Sub-topic button and choose the target.

According to the DITA 1.2 specification the conrefend attribute can be used to specify content reference ranges.
This is a very useful feature when referencing multiple consecutive steps or list items. If you use multiple contiguous
sibling selection for IDs at sub-topic level the conrefend value will also be set to the value of the last selected
ID path. Oxygen will present the entire referenced range as read-only content.

Important

All keys which are presented in the dialog are gathered from the current opened DITA Map. Elements which
have the conkeyref attribute set are displayed by default with the target content expanded. The current
opened DITA Map is also used to resolve references when navigating conkeyref links in the Author page.

• Replace conref/conkeyref reference with content - Replace the content reference fragment or the conkeyref at caret
position with the referenced content. This action is useful when you want to make changes to the content but decide
to keep the referenced fragment unchanged.

• Insert Ordered List - inserts an ordered list with one list item.

• Insert Unordered List - inserts an unordered list with one list item.

• Insert List Item - inserts a new list item for in any of the above two list types.

• Insert Table - opens a dialog that allows you to configure the table to be inserted.The dialog allows the user to
configure the number of rows and columns of the table, if the header will be generated, if the title will be added and
how the table will be framed.

• Insert Row - inserts a new table row with empty cells. The action is available when the caret position is inside a
table.

• Insert Column - inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

226

Predefined document types

• Insert Cell - inserts a new empty cell depending on the current context. If the caret is positioned between two
cells, a new one will be inserted at caret's position. If the caret is inside a cell, then the new one will be created after
the current cell.

• Delete Column - deletes the table column where the caret is located.

• Delete Row - deletes the table row where the caret is located.

• Join Row Cells - joins the content of the selected cells. The operation is available if the selected cells are from
the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - joins the content of cell from current caret position with that of the cell above it. Note that this
action works only if both cells have the same column span.

• Join Cell Below - joins the content of cell from current caret position with that of the cell below it. Note that this
action works only if both cells have the same column span.

• Split Cell To The Left - splits the cell from current caret position in two, inserting a new empty table cell to the
left. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

• Split Cell To The Right - splits the cell from current caret position in two, inserting a new empty table cell to the
right. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

• Split Cell Above - splits the cell from current caret position in two, inserting a new empty table cell above. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

• Split Cell Below - splits the cell from current caret position in two, inserting a new empty table cell below. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

Note

DITA supports CALS table model similar with DocBook document type in addition to the simpletable element
specific for DITA.

Caution

Column specifications are required for table actions to work properly.

• Generate IDs - allows you to generate ID for the current selection or for the element at caret position if the element
appears in ID Generation dialog.

In this dialog you can specify the elements for which <oXygen/> should generate an ID. You can choose to automat-
ically generate an ID for these elements by selecting Auto generate ID's for elements. You can choose a pattern for
the generated ID using the field ID Pattern. If the element already has an ID, this ID is preserved.

227

Predefined document types

All actions described above are available in the contextual menu, main menu (DITA submenu) and in the Author
custom actions toolbar.

Templates

Default templates available for DITA topics are stored in ${frameworksDir}/dita/templates/topic folder. They can
be used for easily creating a DITA's concept, reference, task or topic.

These templates are available when creating new documents from templates.

DITA - Composite New DITA Composite

DITA - Concept New DITA Concept

DITA - Glossentry New DITA Glossentry

DITA - Reference New DITA Reference

DITA - Task New DITA Task

DITA - Topic New DITA Topic

DITA - Learning Assessment New DITA Learning Assessment (learning specialization in DITA 1.2).

DITA - Learning Content New DITA Learning Content (learning specialization in DITA 1.2).

DITA - Learning Summary New DITA Learning Summary (learning specialization in DITA 1.2).

DITA - Learning Overview New DITA Learning Overview (learning specialization in DITA 1.2).

Catalogs

The default catalog is stored in ${frameworks}/dita/catalog.xml.

Transformation Scenarios

The following default transformation scenarios are available for DITA Topics:

• DITA XHTML - transforms a DITA topic to XHTML using DITA Open Toolkit 1.5 M24;

• DITA PDF (Idiom FO Plugin) - transforms a DITA topic to PDF using the DITA Open Toolkit 1.5 M24 and the
Apache FOP engine.

The DITA MAP document type
DITA maps are documents that collect and organize references to DITA topics to indicate the relationships among the
topics. They can also serve as outlines or tables of contents for DITA deliverables and as build manifests for DITA
projects.

Maps allow scalable reuse of content across multiple contexts. They can be used by information architects, writers,
and publishers to plan, develop, and deliver content.

228

Predefined document types

Association rules
A file is considered to be a dita map document when either of the following occurs:

• root element name is one of the following: map, bookmap;

• public id of the document is -//OASIS//DTD DITA Map or -//OASIS//DTD DITA BookMap.

• the root element of the file has an attribute named "class" which contains the value "map/map" and a "DITAArchVer-
sion" attribute from the "http://dita.oasis-open.org/architecture/2005/" namespace. This enhanced case of matching
is only applied when the Enable DTD processing option from the Document Type Detection option page is enabled.

Schema
The default schema used for DITA Map documents is located in ${frameworks}/dita/DITA-OT/dtd/map.dtd, where
${frameworks} is a subdirectory of the <oXygen/> install directory.

Author extensions
The CSS file used for rendering DocBook content is located in ${frameworks}/dita/css/dita.css.

Specific actions for DITA Map documents are:

• Insert Topic Reference - inserts a reference to a topic. You can find more information about this action here.

• Insert Content Reference - inserts a content reference at the caret position. See more about this action here [224].

• Insert Content Key Reference - inserts a content reference at the caret position. See more about this action
here [225].

• Insert Topic Heading - inserts a topic heading. You can find more information about this action here.

• Insert Topic Group - inserts a topic group. You can find more information about this action here.

• Insert Table - opens a dialog that allows you to configure the relationship table to be inserted.The dialog allows
the user to configure the number of rows and columns of the relationship table, if the header will be generated and
if the title will be added.

• Insert Row - inserts a new table row with empty cells. The action is available when the caret position is inside a
table.

• Insert Column - inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Delete Column - deletes the table column where the caret is located.

• Delete Row - deletes the table row where the caret is located.

All actions described above are available in the contextual menu, main menu (DITA submenu) and in the Author
custom actions toolbar.

229

Predefined document types

Templates

Default templates available for DITA Maps are stored in ${frameworksDir}/dita/templates/map folder. They can
be used for easily creating a DITA map and bookmap files.

These templates are available when creating new documents from templates.

DITA Map - Bookmap New DITA Bookmap

DITA Map - Map New DITA Map

DITA Map - Learning Map New DITA learning and training content specialization map

DITA Map - Learning Bookmap New DITA learning and training content specialization bookmap

DITA Map - Eclipse Map New DITA learning and training content specialization bookmap

Catalogs

The default catalog is stored in ${frameworks}/dita/catalog.xml.

Transformation Scenarios

The following predefined transformation scenarios are available for DITA Maps:

• DITA Map XHTML - transforms a DITA Map to XHTML using DITA Open Toolkit 1.5 M24;

• DITA Map PDF (Idiom FO Plugin) - transforms a DITA Map to PDF using the DITA Open Toolkit 1.5 M24 and
the Apache FOP engine.

The XHTML document type
The Extensible HyperText Markup Language, or XHTML, is a markup language that has the same depth of expression
as HTML, but also conforms to XML syntax.

Association rules
A file is considered to be a XHTML document when the root element name is a html.

Schema
The schema used for these documents is located in ${frameworks}/xhtml/dtd/xhtml1-strict.dtd, where ${frameworks}
is a subdirectory of the <oXygen/> install directory.

CSS
The default CSS options for the XHTML document type are set to merge the CSSs specified in the document with the
CSSs defined in the XHTML document type.

Author extensions
The CSS file used for rendering XHTML content is located in ${frameworks}/xhtml/css/xhtml.css.

230

Predefined document types

Specific actions are:

• Bold - changes the style of the selected text to bold by surrounding it with b tag.

• Italic - changes the style of the selected text to italic by surrounding it with i tag.

• Underline - changes the style of the selected text to underline by surrounding it with u tag.

Note

For all of the above actions if there is no selection then a new specific tag will be inserted. These actions are
available in any document context.

• Headings - groups actions for inserting h1, h2, h3, h4, h5, h6 elements.

• Insert Paragraph - inserts a new paragraph depending on the current context. If current context is a paragraph
context (one of the ancestors of the element at caret position is p) then a new paragraph will be inserted after the
paragraph at caret. Otherwise a new paragraph is inserted at caret position.

• Insert Graphic - inserts a graphic object at the caret position. This is done by inserting an img element regardless
of the current context. The following graphical formats are supported: GIF, JPG, JPEG, BMP, PNG, SVG.

• Insert Ordered List - inserts an ordered list (ol element) with one list item (li child element).

• Insert Unordered List - inserts an unordered list (ul element) with one list item (li child element).

• Insert Definition List - inserts a definition list (dl element) with one list item (a dt child element and a dd child
element).

• Insert List Item - inserts a new list item for in any of the above two list types.

• Insert Table - opens a dialog that allows you to configure the table to be inserted.The dialog allows the user to
configure the number of rows and columns of the table, if the header and footer will be generated and how the table
will be framed.

• Insert Row - inserts a new table row with empty cells. The action is available when the caret position is inside a
table.

• Insert Column - inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Insert Cell - inserts a new empty cell depending on the current context. If the caret is positioned between two
cells, a new one will be inserted at caret's position. If the caret is inside a cell, then the new one will be created after
the current cell.

• Delete Column - deletes the table column where the caret is located.

• Delete Row - deletes the table row where the caret is located.

231

Predefined document types

• Join Row Cells - joins the content of the selected cells. The operation is available if the selected cells are from
the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - joins the content of cell from current caret position with that of the cell above it. Note that this
action works only if both cells have the same column span.

• Join Cell Below - joins the content of cell from current caret position with that of the cell below it. Note that this
action works only if both cells have the same column span.

• Split Cell To The Left - splits the cell from current caret position in two, inserting a new empty table cell to the
left. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

• Split Cell To The Right - splits the cell from current caret position in two, inserting a new empty table cell to the
right. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

• Split Cell Above - splits the cell from current caret position in two, inserting a new empty table cell above. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

• Split Cell Below - splits the cell from current caret position in two, inserting a new empty table cell below. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

All actions described above are available in the contextual menu, main menu (XHTML submenu) and in the Author
custom actions toolbar.

Templates

Default templates are available for XHTML. They are stored in ${frameworksDir}/xhtml/templates folder and they
can be used for easily creating basic XHTML documents.

These templates are available when creating new documents from templates.

XHTML - 1.0 Strict New Strict XHTML 1.0

XHTML - 1.0 Transitional New Transitional XHTML 1.0

XHTML - 1.1 DTD Based New DTD-based XHTML 1.1

XHTML - 1.1 DTD Based + Math-
ML 2.0 + SVG 1.1

New XHTML 1.1 with MathML and SVG insertions.

XHTML - 1.1 Schema based New XHTML 1.1 XML Schema based.

Catalogs

There are three default catalogs for XHTML document type: ${frameworks}/xhtml/dtd/xhtmlcatalog.xml, ${frame-
works}/xhtml11/dtd/xhtmlcatalog.xml and ${frameworks}/xhtml11/schema/xhtmlcatalog.xml.

232

Predefined document types

Transformation Scenarios

The following default transformation scenarios are available for XHTML:

• XHTML to DITA concept - converts an XHTML document to a DITA concept document;

• XHTML to DITA reference - converts an XHTML document to a DITA reference document;

• XHTML to DITA task - converts an XHTML document to a DITA task document;

• XHTML to DITA topic - converts an XHTML document to a DITA topic document;

The TEI P4 document type
The Text Encoding Initiative (TEI) Guidelines is an international and interdisciplinary standard that enables libraries,
museums, publishers, and individual scholars to represent a variety of literary and linguistic texts for online research,
teaching, and preservation.

Association rules
A file is considered to be a TEI P4 document when either of the following occurs:

• the root's local name is TEI.2

• the document's public id is -//TEI P4

Schema
The DTD schema used for these documents is located in ${frameworks}/tei/tei2xml.dtd, where ${frameworks} is a
subdirectory of the <oXygen/> install directory.

Author extensions
The CSS file used for rendering TEI P4 content is located in ${frameworks}/tei/xml/tei/css/tei_oxygen.css.

Specific actions are:

• Bold - changes the style of the selected text to bold by surrounding it with hi tag and setting the rend attribute to
bold.

• Italic - changes the style of the selected text to italic by surrounding it with hi tag and setting the rend attribute
to italic.

• Underline - changes the style of the selected text to underline by surrounding it with hi tag and setting the rend
attribute to ul.

Note

For all of the above actions if there is no selection then a new specific tag will be inserted. These actions are
available in any document context.

233

Predefined document types

• Insert Section - inserts a new section/subsection, depending on the current context. For example if the current
context is div1 then a div2 will be inserted and so on.

• Insert Paragraph - inserts a new paragraph depending on the current context. If current context is a paragraph
context (one of the ancestors of the element at caret position is p) then a new paragraph will be inserted after the
paragraph at caret. Otherwise a new paragraph is inserted at caret position.

• Insert Image - inserts a graphic object at the caret position. The following dialog is displayed allowing the user
to specify the entity that refers the image itself:

• Insert Ordered List - inserts an ordered list (list element with type attribute set to ordered) with one list item (item
element).

• Insert Itemized List - inserts an unordered list (list element with type attribute set to bulleted) with one list item
(item element).

• Insert List Item - inserts a new list item for in any of the above two list types.

• Insert Table - opens a dialog that allows you to configure the table to be inserted.The dialog allows the user to
configure the number of rows and columns of the table and if the header will be generated.

• Insert Row - inserts a new table row with empty cells. The action is available when the caret position is inside a
table.

• Insert Column - inserts a new table column with empty cells after the current column. The action is available
when the caret position is inside a table.

• Insert Cell - inserts a new empty cell depending on the current context. If the caret is positioned between two
cells, a new one will be inserted at caret's position. If the caret is inside a cell, then the new one will be created after
the current cell.

• Delete Column - deletes the table column where the caret is located.

• Delete Row - deletes the table row where the caret is located.

• Join Row Cells - joins the content of the selected cells. The operation is available if the selected cells are from
the same row and they have the same row span. The action is also available when the selection is missing, but the
caret is positioned between two cells.

• Join Cell Above - joins the content of cell from current caret position with that of the cell above it. Note that this
action works only if both cells have the same column span.

• Join Cell Below - joins the content of cell from current caret position with that of the cell below it. Note that this
action works only if both cells have the same column span.

• Split Cell To The Left - splits the cell from current caret position in two, inserting a new empty table cell to the
left. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

234

Predefined document types

• Split Cell To The Right - splits the cell from current caret position in two, inserting a new empty table cell to the
right. Note that this action works only if the current cell spans over more than one column. The column span of the
source cell will be decreased with one.

• Split Cell Above - splits the cell from current caret position in two, inserting a new empty table cell above. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

• Split Cell Below - splits the cell from current caret position in two, inserting a new empty table cell below. Note
that this action works only if the current cell spans over more than one row. The row span of the source cell will be
decreased with one.

• Generate IDs - allows you to generate ID for the current selection or for the element at caret position if the element
appears in ID Generation dialog.

In this dialog you can specify the elements for which <oXygen/> should generate an ID. You can choose to automat-
ically generate an ID for these elements by selecting Auto generate ID's for elements. You can choose a pattern for
the generated ID using the field ID Pattern. If the element already has an ID, this ID is preserved.

All actions described above are available in the contextual menu, main menu (TEI P4 submenu) and in the Author
custom actions toolbar.

Templates

Default templates are available for XHTML. They are stored in ${frameworksDir}/tei/templates/TEI P4 folder and
they can be used for easily creating basic TEI P4 documents.

These templates are available when creating new documents from templates.

TEI P4 - Lite New TEI P4 Lite.

TEI P4 - New Document New TEI P4 standard document.

Catalogs

There are two default catalogs for TEI P4 document type: ${frameworks}/tei/xml/teip4/schema/dtd/catalog.xml and
${frameworks}/tei/xml/teip4/custom/schema/dtd/catalog.xml.

Transformation Scenarios

The following default transformations are available:

• TEI HTML - transforms a TEI document into a HTML document;

• TEI P4 -> TEI P5 Conversion - convert a TEI P4 document into a TEI P5 document;

• TEI PDF - transforms a TEI document into a PDF document using the Apache FOP engine.

The TEI P5 document type
Customization for TEI P5 is similar with that for TEI P4 with the following exceptions:

235

Predefined document types

Association rules
A file is considered to be a TEI P5 document when the namespace is http://www.tei-c.org/ns/1.0.

Schema
The RNG schema used for these documents is located in ${frameworks}/tei/xml/tei/custom/schema/relaxng/tei_all-
Plus.rng, where ${frameworks} is a subdirectory of the <oXygen/> install directory.

Author extensions
The CSS file used for rendering TEI P5 content and custom actions are the same with those configured for TEI P4.

Templates

Default templates are available for TEI P5. They are stored in ${frameworksDir}/tei/templates/TEI P5 folder and
they can be used for easily creating basic TEI P5 documents.

These templates are available when creating new documents from templates.

TEI P5 - All New TEI P5 All.

TEI P5 - Bare New TEI P5 Bare.

TEI P5 - Lite New TEI P5 Lite.

TEI P5 - Math New TEI P5 Math.

TEI P5 - Speech New TEI P5 Speech.

TEI P5 - SVG New TEI P5 with SVG extensions.

TEI P5 - XInclude New TEI P5 XInclude aware.

Catalogs

XML catalogs used for TEI P4 are used also for TEI P5.

Transformation Scenarios

The following default transformations are available:

• TEI P5 XHTML - transforms a TEI document into a XHTML document;

• TEI P5 PDF - transforms a TEI document into a PDF document using the Apache FOP engine.

The MathML document type
Mathematical Markup Language (MathML) is an application of XML for describing mathematical notations and cap-
turing both its structure and content. It aims at integrating mathematical formulae into World Wide Web documents.

<oXygen/> offers support for editing and validating MathML 2.0 documents.

236

Predefined document types

Association rules
A file is considered to be a MathML document when the root element name is a math or it's namespace is ht-
tp://www.w3.org/1998/Math/MathML.

Schema
The schema used for these documents is located in ${frameworks}/mathml2/dtd/mathml2.dtd, where ${frameworks}
is a subdirectory of the <oXygen/> install directory.

Templates
Default templates are available for MathML. They are stored in the ${frameworksDir}/mathml2/templates folder.

These templates are available when creating new documents from templates.

MathML - Equation Simple MathML template file.

The Microsoft Office OOXML document type
Office Open XML (also referred to as OOXML or OpenXML) is a free and open Ecma
[http://www.ecma-international.org/publications/standards/Ecma-376.htm] international standard document format,
and a proposed ISO/IEC standard for representing spreadsheets, charts, presentations and word processing documents.

OOXML uses a file package conforming to the Open Packaging Convention. This format uses the ZIP file format and
contains the individual files that form the basis of the document. In addition to Office markup, the package can also
include embedded files such as images, videos, or other documents.

<oXygen/> offers support for editing, transforming and validating documents composing the OOXML package directly
through the archive support.

Figure 7.6. Editing OOXML packages in <oXygen/>

Association rules
A file is considered to be an OOXML document when it has one of the following namespaces:

• http://schemas.openxmlformats.org/wordprocessingml/2006/main

• http://schemas.openxmlformats.org/package/2006/content-types

237

Predefined document types

http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm

• http://schemas.openxmlformats.org/drawingml/2006/main

• http://schemas.openxmlformats.org/package/2006/metadata/core-properties

• http://schemas.openxmlformats.org/package/2006/relationships

• http://schemas.openxmlformats.org/presentationml/2006/main

• http://schemas.openxmlformats.org/officeDocument/2006/custom-properties

• http://schemas.openxmlformats.org/officeDocument/2006/extended-properties

• http://schemas.openxmlformats.org/spreadsheetml/2006/main

• http://schemas.openxmlformats.org/drawingml/2006/chart

Schema
The NVDL schema used for these documents is located in ${frameworks}/ooxml/schemas/main.nvdl, where ${frame-
works} is a subdirectory of the <oXygen/> install directory. The schema can be easily customized to allow user defined
extension schemas for use in the OOXML files. See the Markup Compatibility and Extensibility
[http://www.ecma-international.org/news/TC45_current_work/Office%20Open%20XML%20Part%205%20-%20Markup%20Compatibility%20and%20Extensibility.pdf]
Ecma PDF document for more details.

The Open Office ODF document type
The OpenDocument format (ODF) is a free and open file format for electronic office documents, such as spreadsheets,
charts, presentations and word processing documents. The standard [http://www.oasis-open.org/committees/office/]
was developed by the Open Office XML technical committee of the Organization for the Advancement of Structured
Information Standards (OASIS) consortium and based on the XML format originally created and implemented by the
OpenOffice.org office suite.

A basic OpenDocument file consists of an XML document that has <document> as its root element. OpenDocument
files can also take the format of a ZIP compressed archive containing a number of files and directories; these can
contain binary content and benefit from ZIP's lossless compression to reduce file size. OpenDocument benefits from
separation of concerns by separating the content, styles, metadata and application settings into four separate XML
files.

<oXygen/> offers support for editing, manipulating and validating documents composing the ODF package directly
through the archive support.

238

Predefined document types

http://www.ecma-international.org/news/TC45_current_work/Office%20Open%20XML%20Part%205%20-%20Markup%20Compatibility%20and%20Extensibility.pdf
http://www.ecma-international.org/news/TC45_current_work/Office%20Open%20XML%20Part%205%20-%20Markup%20Compatibility%20and%20Extensibility.pdf
http://www.oasis-open.org/committees/office/
http://www.oasis-open.org/committees/office/

Figure 7.7. Editing ODF packages in <oXygen/>

Association rules
A file is considered to be an ODF document when it has the following namespace: urn:oasis:names:tc:open-
document:xmlns:office:1.0

Schema
The RelaxNG schema used for these documents is located in ${frameworks}/odf/schemas/OpenDocument-schema-
v1.1.rng, where ${frameworks} is a subdirectory of the <oXygen/> install directory.

The OASIS XML Catalog document type
The OASIS [http://www.oasis-open.org/committees/entity/spec-2001-08-06.html] XML catalog is a document describing
a mapping between external entity references or URI's and locally-cached equivalents. You can read more about using
catalogs in <oXygen/> here.

Association rules
A file is considered to be an XML Catalog document when it has the following namespace: urn:oas-
is:names:tc:entity:xmlns:xml:catalog or when its root element name is catalog.

Schema
The OASIS 1.1 XSD schema used for these documents is located in ${frameworks}/xml/catalog1.1.xsd, where
${frameworks} is a subdirectory of the <oXygen/> install directory.

The XML Schema document type
This document type is used to associated CSS stylesheets to an XML Schema so it can be visualized in the Author
page.

239

Predefined document types

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html
http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

Association rules
A file is considered to be an XML Schema document when the root name is 'schema' and namespace is 'ht-
tp://www.w3.org/2001/XMLSchema'.

Author extensions
The following CSS alternatives are proposed for visualizing XML Schemas in the Author page.

${frameworks}/xmlschema/schema-
main.css

Documentation - representation of XML Schema optimized for editing and
viewing documentation.

${frameworks}/xmlschema/sche-
maISOSchematron.css

XMLSchema+ISOSchematron - representation of XML Schema with embedded
ISO Schematron rules.

${frameworks}/xmlschema/schemaS-
chematron.css

XMLSchema+Schematron - representation of XML Schema with embedded
Schematron rules.

${frameworks}/xmlschema/de-
fault.css

XMLSchema+Schematron - representation of XML Schema for general editing.

The RelaxNG document type
This document type is used to associated CSS stylesheets to an RelaxNG file so it can be visualized in the Author page.

Association rules
A file is considered to be an RelaxNG document when the namespace is 'http://relaxng.org/ns/structure/1.0'.

Author extensions
The following CSS alternatives are proposed for visualizing RelaxNG schemas in the Author page.

${frameworks}/relaxng/relaxng-
main.css

Relax NG - representation of Relax NG optimized for editing in the Author
mode.

${frameworks}/relaxng/re-
laxngISOSchematron.css

RelaxNG (XML Syntax)+ISOSchematron - representation of RelaxNG (XML
syntax) with embedded ISO Schematron rules. Embedded Schematron rules are
not supported in Relax NG schemas with compact syntax.

${frameworks}/relaxng/relaxng-
Schematron.css

RelaxNG (XML Syntax)+Schematron - representation of RelaxNG (XML syntax)
with embedded Schematron rules. Embedded Schematron rules are not supported
in Relax NG schemas with compact syntax.

The NVDL document type
This document type is used to associated CSS stylesheets to a NVDL file so it can be visualized in the Author page.

Association rules
A file is considered to be a NVDL document when the namespace is 'http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0'.

240

Predefined document types

Author extensions
The following CSS is proposed for visualizing NVDL schemas in the Author page.

${frameworks}/nvdl/nvdl.css Representation of Relax NG optimized for editing in the Author mode.

The Schematron document type
This document type is used to associated CSS stylesheets to a Schematron file so it can be visualized in the Author
page.

Association rules
A file is considered to be a Schematron document when the namespace is 'http://purl.oclc.org/dsdl/schematron'.

Author extensions
The following CSS is proposed for visualizing Schematron schemas in the Author page.

${frameworks}/schematron/iso-
schematron.css

Representation of Schematron optimized for editing in the Author mode.

The Schematron 1.5 document type
This document type is used to associated CSS stylesheets to a Schematron 1.5 file so it can be visualized in the Author
page.

Association rules
A file is considered to be a Schematron 1.5 document when the namespace is 'http://www.ascc.net/xml/schematron'.

Author extensions
The following CSS is proposed for visualizing Schematron 1.5 schemas in the Author page.

${frameworks}/schematron/schemat-
ron15.css

Representation of Schematron 1.5 optimized for editing in the Author mode.

The XSLT document type
This document type is used to associated CSS stylesheets to an XSLT stylesheet file so it can be visualized in the Author
page.

Association rules
A file is considered to be a XSLT document when the namespace is 'http://www.w3.org/1999/XSL/Transform'.

241

Predefined document types

Author extensions
The following CSS is proposed for visualizing XSLT stylesheets in the Author page.

${frameworks}/xslt/xslt.css Representation of XSLT optimized for editing in the Author mode.

The XMLSpec document type
XMLSpec is a markup language for W3C specifications and other technical reports.

Association rules
A file is considered to be an XMLSpec document when the root name is 'spec'.

Schema
XMLSpec documents use a RelaxNG schema located in ${frameworks}/xmlspec/schema/xmlspec.rng, where
${frameworks} is a subdirectory of the <oXygen/> install directory.

Author extensions

Templates

Default templates are available for XMLSpec. They are stored in ${frameworksDir}/xmlspec/templates folder and
they can be used for easily creating an XMLSpec.

These templates are available when creating new documents from templates.

XMLSpec - New Document New XMLSpec document

Catalogs

The default catalog is stored in ${frameworks}/xmlspec/catalog.xml.

Transformation Scenarios

The following default transformation scenarios are available:

• XMLSpec PDF - transforms an XMLSpec document into PDF document using the Apache FOP engine;

• XMLSpec HTML - transforms an XMLSpec document into HTML document;

• XMLSpec HTML Diff - produces "color-coded" HTML from diff markup;

• XMLSpec HTML Slices - produces "chunked" HTML specifications;

The FO document type
FO describes the formatting of XML data for output to screen, paper or other media.

242

Predefined document types

Association rules
A file is considered to be an FO document when the it's namespace is http://www.w3.org/1999/XSL/Format.

Schema
FO documents use a XML Schema located in ${frameworks}/fo/xsd/fo.xsd, where ${frameworks} is a subdirectory of
the <oXygen/> install directory.

Author extensions

Transformation Scenarios

The following default transformation scenarios are available:

• FO PDF - transforms an FO document into PDF document using the Apache FOP engine;

The EAD document type
EAD Document Type Definition (DTD) is a standard for encoding archival finding aids using Extensible Markup
Language (XML). The standard is maintained in the Network Development and MARC Standards Office of the Library
of Congress (LC) in partnership with the Society of American Archivists.

Association rules
A file is considered to be a FO document when the it's namespace is urn:isbn:1-931666-22-9 or it's public ID
is //DTD ead.dtd (Encoded Archival Description (EAD) Version 2002)//EN.

Schema
EAD documents use a Relax NG Schema located in ${frameworks}/ead/rng/ead.rng, where ${frameworks} is a sub-
directory of the <oXygen/> install directory.

Author extensions

Templates

Default templates are available for EAD. They are stored in ${frameworksDir}/ead/templates folder and they can
be used for easily creating an EAD document.

These templates are available when creating new documents from templates.

EAD - NWDA Template 2008-04-
08

New EAD document

Catalogs

The default catalog is stored in ${frameworks}/ead/catalog.xml.

243

Predefined document types

Chapter 8. Author Developer Guide
Introduction
Starting with version 9, <oXygen/> adds extensive support for customization.

The Author mode from <oXygen/> was designed for bridging the gap between the XML source editing and a friendly
user interface. The main achievement is the fact that the Author combines the power of the source editing and the intu-
itive interface of a text editor.

Figure 8.1. oXygen Author Editor

Although <oXygen/> comes with already configured frameworks for DocBook, DITA, TEI, XHTML, you might need
to create a customization of the editor to handle other types of documents. For instance in the case you have a collection
of XML document types used to define the structure of the documents that are used in your organisation and you want
them visually edited by people who are not experienced in using XML.

There are several ways to customize the editor:

1. Create a CSS file defining styles for the XML elements the user will work with, and create XML files that refer the
CSS through an xml-stylesheet processing instruction.

2. Fully configure a document type association. This involves putting together the CSSs, the XML schemes, actions,
menus, etc, bundling them and distributing an archive. The CSS and the GUI elements are settings of the <oXygen/>

244

Author. The other settings like the templates, catalogs, transformation scenarios are general settings and are enabled
whenever the association is active, no matter the editing mode (Text, Grid or Author).

Both approaches will be discussed in the following sections.

Simple Customization Tutorial

XML Schema
Let's consider the following XML Schema, test_report.xsd defining a report with results of a testing session.
The report consists of a title, few lines describing the test suite that was run and a list of test results, each with a name
and a boolean value indicating if the test passed or failed.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="report">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title"/>
 <xs:element ref="description"/>
 <xs:element ref="results"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="description">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="line">
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0"
 maxOccurs="unbounded">
 <xs:element name="important"
 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="results">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="entry">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="test_name"
 type="xs:string"/>
 <xs:element name="passed"
 type="xs:boolean"/>
 </xs:sequence>

245

Author Developer Guide

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The use-case is that several users are testing a system and must send report results to a content management system.
The Author customization should provide a visual editor for this kind of documents.

Writing the CSS
A set of rules must be defined for describing how the XML document is to be rendered into the <oXygen/> Author.
This is done using Cascading Style Sheets or CSS on short. CSS is a language used to describe how an HTML or XML
document should be formatted by a browser. CSS is widely used in the majority of websites.

Note

For more information regarding CSS, please read the specification http://www.w3.org/Style/CSS/. A tutorial is
available here : http://www.w3schools.com/css/css_intro.asp

The elements from an XML document are displayed in the layout as a series of boxes. Some of the boxes contain text
and may flow one after the other, from left to right. These are called in-line boxes. There are also other type of boxes
that flow one below the other, like paragraphs. These are called block boxes.

For example consider the way a traditional text editor arranges the text. A paragraph is a block, because it contains a
vertical list of lines. The lines are also blocks. But any block that contains inline boxes is arranging its children in a
horizontal flow. That is why the paragraph lines are also blocks, but the traditional "bold" and "italic" sections are
represented as inline boxes.

The CSS allows us to specify that some elements are displayed as tables. In CSS a table is a complex structure and
consists of rows and cells. The "table" element must have children that have "table-row" style. Similarly, the "row"
elements must contain elements with "table-cell" style.

To make it easy to understand, the following section describes the way each element from the above schema is
formatted using a CSS file. Please note that this is just one from an infinite number of possibilities of formatting the
content.

report This element is the root element of the report document. It should be rendered as a box
that contains all other elements. To achieve this the display type is set to block. Additionally
some margins are set for it. The CSS rule that matches this element is:

report{
 display:block;
 margin:1em;
}

title The title of the report. Usually titles have a larger font. The block display should also be
used - the next elements will be placed below it, and change its font to double the size of
the normal text.

title {
 display:block;

246

Author Developer Guide

http://www.w3.org/Style/CSS/
http://www.w3schools.com/css/css_intro.asp

 font-size:2em;
}

description This element contains several lines of text describing the report. The lines of text are dis-
played one below the other, so the description will have the same block display. To make
it standout the background color is changed.

description {
 display:block;
 background-color:#EEEEFF;
 color:black;
}

line A line of text in the description. A specific aspect is not defined for it, just indicate that
the display should be block.

line {
 display:block;
}

important The important element defines important text from the description. Because it can be
mixed with text, its display property must be set to inline. To make it easier to spot, the
text will be emphasized.

important {
 display:inline;
 font-weight:bold;
}

results The results element shows the list of test_names and the result for each one. To make
it easier to read, it is displayed as a table with a green border and margins.

results{
 display:table;
 margin:2em;
 border:1px solid green;
}

entry An item in the results element. The results are displayed as a table so the entry is a row in
the table. Thus, the display is table-row.

entry {
 display:table-row;
}

test_name, passed The name of the individual test, and its result. They are cells in the results table with display
set to table-cell. Padding and a border are added to emphasize the table grid.

test_name, passed{

247

Author Developer Guide

 display:table-cell;
 border:1px solid green;
 padding:20px;
}

passed{
 font-weight:bold;
}

The full content of the CSS file test_report.css is:

report {
 display:block;
 margin:1em;
}

description {
 display:block;
 background-color:#EEEEFF;
 color:black;
}

line {
 display:block;
}

important {
 display:inline;
 font-weight:bold;
}

title {
 display:block;
 font-size:2em;
}

results{
 display:table;
 margin:2em;
 border:1px solid green;
}

entry {
 display:table-row;
}

test_name, passed{
 display:table-cell;
 border:1px solid green;
 padding:20px;
}

248

Author Developer Guide

passed{
 font-weight:bold;
}

Figure 8.2. A report opened in the Author

The XML Instance Template
Based on the XML Schema and the CSS file the <oXygen/> Author can help the content author in loading, editing
and validating the test reports. An XML file template must be created, a kind of skeleton, that the users can use as a
starting point for creating new test reports.

The template must be generic enough and refer the XML Schema file and the CSS stylesheet. This is an example:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="test_report.css"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="test_report.xsd">
 <title>Test report title</title>
 <description>
 <line>This is the report
 <important>description</important>.</line>
 </description>
 <results>
 <entry>
 <test_name>Sample test1</test_name>
 <passed>true</passed>
 </entry>
 <entry>
 <test_name>Sample test2</test_name>
 <passed>true</passed>
 </entry>
 </results>
</report>

249

Author Developer Guide

The processing instruction xml-stylesheet associates the CSS stylesheet to the XML file. The href pseudo attribute
contains the URI reference to the stylesheet file. In our case the CSS is in the same directory as the XML file.

The next step is to place the XSD file and the CSS file on a web server and modify the template to use the HTTP URLs,
like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css"
 href="http://www.mysite.com/reports/test_report.css"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.mysite.com/reports/test_report.xsd">
 <title>Test report title</title>
 <description>
.......

The alternative is to create an archive containing the test_report.xml, test_report.css and test_re-
port.xsd and send it to the content authors.

Advanced Customization Tutorial - Document
Type Associations
<oXygen/> Author is highly customizable. Practically you can associate an entire class of documents (grouped logically
by some common features like namespace, root element name or filename) to a bundle consisting of a CSS stylesheets,
validation schemas, catalog files, templates for new files, transformation scenarios and even custom actions. This is
called a Document Type Association.

Creating the Basic Association
In this section a Document Type Association will be created for a set of documents. As an example a light document-
ation framework will be created, similar to DocBook and create a complete customization of the Author editor.

You can find the complete files that were used in this tutorial in the Example Files Listings.

First step. XML Schema.

Our documentation framework will be very simple. The documents will be either articles or books, both composed
of sections. The sections may contain titles, paragraphs, figures, tables and other sections.
To complete the picture, each section will include a def element from another namespace.

The first schema file:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oxygenxml.com/sample/documentation"
 xmlns:doc="http://www.oxygenxml.com/sample/documentation"
 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
 elementFormDefault="qualified">

 <xs:import namespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts"
 schemaLocation=

250

Author Developer Guide

 "abs.xsd"/>

The namespace of the documents will be http://www.oxygenxml.com/sample/documentation. The
namespace of the def element is http://www.oxygenxml.com/sample/documentation/abstracts.

Now let's define the structure of the sections. They all start with a title, then have the optional def element then either
a sequence of other sections, or a mixture of paragraphs, images and tables.

<xs:element name="book" type="doc:sectionType"/>
<xs:element name="article" type="doc:sectionType"/>
<xs:element name="section" type="doc:sectionType"/>

<xs:complexType name="sectionType">
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element ref="abs:def" minOccurs="0"/>
 <xs:choice>
 <xs:sequence>
 <xs:element ref="doc:section" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="doc:para"/>
 <xs:element ref="doc:image"/>
 <xs:element ref="doc:table"/>
 </xs:choice>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

The paragraph contains text and other styling markup, such as bold (b) and italic (i) elements.

<xs:element name="para" type="doc:paragraphType"/>

<xs:complexType name="paragraphType" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="b"/>
 <xs:element name="i"/>
 </xs:choice>
</xs:complexType>

The image element has an attribute with a reference to the file containing image data.

<xs:element name="image">
 <xs:complexType>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>
</xs:element>

The table contains a header row and then a sequence of rows (tr elements) each of them containing the cells. Each
cell has the same content as the paragraphs.

 <xs:element name="table">
 <xs:complexType>
 <xs:sequence>

251

Author Developer Guide

 <xs:element name="header">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="td" maxOccurs="unbounded"
 type="doc:paragraphType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="tr" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="td" type="doc:tdType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="tdType">
 <xs:complexContent>
 <xs:extension base="doc:paragraphType">
 <xs:attribute name="row_span" type="xs:integer"/>
 <xs:attribute name="column_span" type="xs:integer"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The def element is defined as a text only element in the imported schema abs.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts">
 <xs:element name="def" type="xs:string"/>
</xs:schema>

Now the XML data structure will be styled.

Second step.The CSS.

If you read the Simple Customization Tutorial then you already have some basic notions about creating simple styles.
The example document contains elements from different namespaces, so you will use CSS Level 3 extensions supported
by the <oXygen/> layout engine to associate specific properties with that element.

Note

Please note that the CSS Level 3 is a standard under development, and has not been released yet by the W3C.
However, it addresses several important issues like selectors that are namespace aware and values for the CSS
properties extracted from the attributes of the XML documents. Although not (yet) conforming with the current
CSS standard these are supported by the <oXygen/> Author.

252

Author Developer Guide

Defining the General Layout.

Now the basic layout of the rendered documents is created.

Elements that are stacked one on top of the other are: book, article, section, title, figure, table, image.
These elements are marked as having block style for display. Elements that are placed one after the other in a flowing
sequence are: b, i. These will have inline display.

/* Vertical flow */
book,
section,
para,
title,
image,
ref {
 display:block;
}

/* Horizontal flow */
b,i {
 display:inline;
}

Important

Having block display children in an inline display parent, makes <oXygen/> Author change the style of
the parent to block display.

Styling the section Element.

The title of any section must be bold and smaller than the title of the parent section. To create this effect a sequence
of CSS rules must be created. The * operator matches any element, it can be used to match titles having progressive
depths in the document.

title{
 font-size: 2.4em;
 font-weight:bold;
}
* * title{
 font-size: 2.0em;
}
* * * title{
 font-size: 1.6em;
}
* * * * title{
 font-size: 1.2em;
}

Note

CSS rules are combined as follows:

• All the rules that match an element are kept as a list. The more specific the rule is, the further it will be placed
to the end of the list.

253

Author Developer Guide

• If there is no difference in the specificity of the rules, they are placed in the list in the same order as they appear
in the CSS document.

• The list is then iterated, and all the properties from the rules are collected, overwriting the already collected
values from the previous rules. That is why the font-size is changed depending on the depth of the element,
while the font-weight property remains unchanged - no other rule is overwriting it.

It's useful to have before the title a constant text, indicating that it refers to a section. This text can include also the
current section number. The :before and :after pseudo elements will be used, plus the CSS counters.

First declare a counter named sect for each book or article. The counter is set to zero at the beginning of each
such element:

book,
article{
 counter-reset:sect;
}

The sect counter is incremented with each section, that is the a direct child of a book or an article element.

book > section,
article > section{
 counter-increment:sect;
}

The "static" text that will prefix the section title is composed of the constant "Section ", followed by the decimal value
of the sect counter and a dot.

book > section > title:before,
article > section > title:before{
 content: "Section " counter(sect) ". ";
}

To make the documents easy to read, you add a margin to the sections. In this way the higher nesting level, the larger
the left side indent. The margin is expressed relatively to the parent bounds:

section{
 margin-left:1em;
 margin-top:1em;
}

254

Author Developer Guide

Figure 8.3. A sample of nested sections and their titles.

In the above screenshot you can see a sample XML document rendered by the CSS stylesheet. The selection "avoids"
the text that is generated by the CSS "content" property. This happens because the CSS generated text is not present
in the XML document and is just a visual aid.

Styling the table Element.

There are standard CSS properties used to indicate what elements are tables, table rows and table cells. What CSS is
missing is the possibility to indicate the cell spanning. <oXygen/> Author offers support for adding an extension to
solve this problem. This will be presented in the next chapters.

The table in this example is a simple one. The header must be formatted in a different way than the ordinary rows, so
it will have a background color.

table{
 display:table;
 border:1px solid navy;
 margin:1em;
 max-width:1000px;
 min-width:150px;
}

table[width]{
 width:attr(width, length);
}

tr, header{
 display:table-row;
}

header{
 background-color: silver;
 color:inherit
}

td{
 display:table-cell;
 border:1px solid navy;

255

Author Developer Guide

 padding:1em;
}

Note

Children elements with block or table-caption display placed at the beginning or the end of an element
displayed as a table, will be grouped and presented as blocks at the top or the bottom of the table.

Note

Mixing elements having table-cell, table-group, table-row, etc.. display type with others that have
block or inline display or with text content breaks the layout of the table. In such cases the table is shown
as a block.

Note

Having child elements that do not have table-cell or table display in a parent with table-row display
breaks the table layout. In this case the table display is supported for the children of the table-row element
in order to allow sub-tables in the parent table.

Note

<oXygen/> Author can automatically detect the spanning of a cell, without the need to write a Java extension
for this.

This happens if the span of the cell element is specified using the colspan and rowspan attributes, just like in
HTML, or cols and rows attributes.

For instance, the following XML code:

 <table>
 <tr>
 <td>Cell 1.1</td>
 <td>Cell 1.2</td>
 <td>Cell 1.3</td>
 </tr>
 <tr>
 <td>Cell 2.1</td>
 <td colspan="2" rowspan="2">
 Cell spanning 2 rows and 2 columns.
 </td>
 </tr>
 <tr><td>Cell 3.1</td></tr>
 </table>

using the CSS:

table{
 display: table;
}
tr{
 display: table-row;
}
td{

256

Author Developer Guide

 display: table-cell;
}

is rendered correctly:

Table 8.1. Built-in Cell Spanning

Cell 1.3Cell 1.2Cell 1.1

Cell spanning 2 rows and 2 columnsCell 2.1

Cell 3.1

Because in the schema the td tag has the attributes row_span and column_span that are not automatically recognized
by <oXygen/> Author, a Java extension will be implemented which will provide information about the cell spanning.
See the section Configuring a Table Cell Span Provider.

Because the column widths are specified by the attributes width of the elements customcol that are not automatically
recognized by <oXygen/> Author, it is necessary to implement a Java extension which will provide information about
the column widths. See the section Configuring a Table Column Width Provider.

Styling the Inline Elements.

The "bold" style is obtained by using the font-weight CSS property with the value bold, while the "italic" style
is specified by the font-style property:

b {
 font-weight:bold;
}

i {
 font-style:italic;
}

Styling Elements from other Namespace

In the CSS Level 1, 2, and 2.1 there is no way to specify if an element X from the namespace Y should be presented
differently from the element X from the namespace Z. In the upcoming CSS Level 3, it is possible to differentiate
elements by their namespaces. <oXygen/> Author supports this CSS Level 3 functionality. For more information see
the Namespace Selectors section.

To match the def element its namespace will be declared, bind it to the abs prefix, and then write a CSS rule:

@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";

abs|def{
 font-family:monospace;
 font-size:smaller;
}
abs|def:before{
 content:"Definition:";
 color:gray;
}

257

Author Developer Guide

Styling images

The CSS 2.1 does not specify how an element can be rendered as an image. To overpass this limitation, <oXygen/>
Author supports a CSS Level 3 extension allowing to load image data from an URL. The URL of the image must be
specified by one of the element attributes and it is resolved through the catalogs specified in <oXygen/>.

Note

<oXygen/> Author recognizes the following image file formats: JPEG, GIF, PNG and SVG. The oXygen Author
for Eclipse does not render the SVG files.

image{
 display:block;
 content: attr(href, url);
 margin-left:2em;
}

Our image element has the required attribute href of type xs:anyURI. The href attribute contains an image
location so the rendered content is obtained by using the function:

attr(href, url)

Important

The first argument is the name of the attribute pointing to the image file. The second argument of the attr
function specifies the type of the content. If the type has the url value, then <oXygen/> identifies the content
as being an image. If the type is missing, then the content will be the text representing the attribute value.

Important

<oXygen/> Author handles both absolute and relative specified URLs. If the image has an absolute URL location
(e.g: "http://www.oasis-open.org/images/standards/oasis_standard.jpg") then it is loaded directly from this location.
If the image URL is relative specified to the XML document (e.g: "images/my_screenshot.jpg") then the location
is obtained by adding this value to the location of the edited XML document.

An image can also be referenced by the name of a DTD entity which specifies the location of the image file. For example
if the document declares an entity graphic which points to a JPEG image file:

<!ENTITY graphic SYSTEM "depo/keyboard_shortcut.jpg" NDATA JPEG>

and the image is referenced in the XML document by specifying the name of the entity as the value of an attribute:

<mediaobject>
 <imageobject>
 <imagedata entityref="graphic" scale="50"/>
 </imageobject>
</mediaobject>

The CSS should use the functions url, attr and unparsed-entity-uri for displaying the image in the Author mode:

Note

Note that the scale attribute of the imagedata element will be considered without the need of a CSS customization
and the image will be scaled accordingly.

258

Author Developer Guide

imagedata[entityref]{
 content: url(unparsed-entity-uri(attr(entityref)));
}

To take into account the value of the width attribute of the imagedata and use it for resizing the image, the CSS
can define the following rule:

imagedata[width]{
 width:attr(width, length);
}

Figure 8.4. Samples of images in Author

Marking elements as foldable

You can specify what elements are collapsible. The collapsible elements are rendered having a small triangle icon in
the top left corner. Clicking on this icon hides or shows the children of the element. The section elements will be
marked as foldable. You will leave only the title child elements visible.

section{
 foldable:true;
 not-foldable-child: title;
}

259

Author Developer Guide

Figure 8.5. Folded Sections

Marking elements as links

You can specify what elements are links. The text content specified in the :before pseudo element will be underlined.
When hovering the mouse over that content the mouse pointer will change to indicate that it can follow the link.
Clicking on a link will result in the referred resource being opened in an editor. The link elements will be marked
as links with the href attribute indicating the referred location.

link[href]:before{
 display:inline;
 link:attr(href);
 content: "Click to open: " attr(href);
}

Note

If you plan to use IDs as references for links, the value of the link property should start with a sharp sign(#). This
will ensure that the default link target reference finder implementation will work and clicking on the link will
send you to the indicated location in the document. For more details about the link target reference finder read
the section Configuring a Link target reference finder.

Example 8.1. IDs as references for links

link[linkend]:before{
 display:inline;
 link: "#" attr(linkend);
 content: "Click to open: " attr(linkend);
}

Third Step.The Association.

After creating the XML Schema and the CSS stylesheet for the documents that will be edited a distributable framework
package can be created for content authors.

260

Author Developer Guide

Figure 8.6. The Document Type Dialog

Organizing the Framework Files

First create a new folder called sdf (from "Simple Documentation Framework") in {oXygen_installation_dir-
ectory}/frameworks. This folder will be used to store all files related to the documentation framework. The
following folder structure will be created:

oxygen
 frameworks
 sdf
 schema
 css

Important

The frameworks directory is the container where all the oXygen framework customizations are located.

Each subdirectory contains files related to a specific type of XML documents: schemas, catalogs, stylesheets,
CSSs, etc.

Distributing a framework means delivering a framework directory.

Important

It is assumed that you have the right to create files and folder inside the oXygen installation directory. If you do
not have this right, you will have to install another copy of the program in a folder you have access to, the home

261

Author Developer Guide

directory for instance, or your desktop. You can download the "all platforms" distribution from the oXygen
website and extract it in the chosen folder.

To test your framework distribution you will need to copy it in the frameworks directory of the newly installed
application and start oXygen by running the provided start-up script files.

You should copy the created schema files abs.xsd and sdf.xsd, sdf.xsd being the master schema, to the
schema directory and the CSS file sdf.css to the css directory.

Association Rules

You must specify when <oXygen/> should use the files created in the previous section by creating a document type
association. Open the Document Type dialog by following the procedure:

1. Open the Options Dialog, and select the Document Types Association option pane.

2. Select the Developer user role from the User role combo box at the top of the dialog. This is important, because
it will allow us to save the document type association in a file on disk, instead of <oXygen/> options.

3. Click on the New button.

In the displayed dialog, fill in the following data:

Name Enter SDF - This is the name of the document type.

Description Enter Simple Documentation Framework - This is a short description helping the other users
understand the purpose of the Document Type.

Storage The storage refers to the place where the Document Type settings are stored. Internal means the
Document Types are stored in the default <oXygen/> preferences file. Since you want to share the
Document Type to other users, you must select External, and choose a file.

The file must be in the {oXygen_installation_directory}/frameworks/sdf directory.
A possible location is /Users/{user_name}/Desktop/oxygen/frameworks/sdf/sdf.framework.
The framework directory structure will be:

oxygen
 frameworks
 sdf
 sdf.framework
 schema
 sdf.xsd
 css
 sdf.css

Rules If a document opened in <oXygen/> matches one of the rules defined for the Document Type, then
it is activated.

Press the Add button from the Rules section. Using the newly displayed dialog, you add a new
rule that matches documents with the root from the namespace: http://www.oxy-
genxml.com/sample/documentation. The root name, file name or PublicID are not relevant.

A document matches a rule when it fulfills the conditions imposed by each field of the rule:

262

Author Developer Guide

Namespace the namespace of the root element declared in the XML documents of the
current document type. A value of ANY_VALUE matches any namespace
in an XML document. Value may contain wildcards(*, ?) and editor vari-
ables. Multiple values separated by comma(,) are accepted.

Root local name The local name of the root element of the XML documents of the current
document type. A value of ANY_VALUE matches any local name of the
root element. Value may contain wildcards(*, ?) and editor variables.
Multiple values separated by comma(,) are accepted.

File name The file name of the XML documents of the current document type. A
value of ANY_VALUE matches any file name. Value may contain wild-
cards(*, ?) and editor variables. Multiple values separated by comma(,)
are accepted.

Public ID The public ID of the XML documents of the current document type (for
a document validated against a DTD). A value of ANY_VALUE matches
any public ID. Value may contain wildcards(*, ?) and editor variables.
Multiple values separated by comma(,) are accepted.

Java class The full name of a Java class that has access to all root element attributes
and the above 4 values in order to decide if the document matches the rule.

Java API: Rules implemented in Java

An alternative to the rule you defined for the association is to write the entire logic in Java.

1. Create a new Java project, in your IDE.

Create the lib directory in the Java project directory and copy there the oxygen.jar file from the {oXy-
gen_installation_directory}/lib. The oxygen.jar contains the Java interfaces you have to im-
plement and the available Author API needed to access its features.

2. Create the class simple.documentation.framework.CustomRule. This class must implement the
ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher interface.

The interface defines two methods: matches, and getDescription.

1. The matches method is the one that is invoked when the edited document must be checked against the doc-
ument type association. It takes as arguments the root local name, its namespace, the document location URI,
the PublicID and the root element attributes. It must return true when the document matches the association.

2. The getDescription method returns a description of the rule.

Here is the implementation of these two methods. The implementation of matches is just a Java equivalent of
the rule we defined earlier.

 public boolean matches(
 String systemID,
 String rootNamespace,
 String rootLocalName,
 String doctypePublicID,
 Attributes rootAttributes) {

 return "http://www.oxygenxml.com/sample/documentation"
 .equals(rootNamespace);

263

Author Developer Guide

 }

 public String getDescription() {
 return "Checks if the current Document Type Association"
 + " is matching the document.";
 }

The complete source code is found in the Example Files Listings, the Java Files section.

3. Package the compiled class into a jar file. Here is an example of an ANT script that packages the classes dir-
ectory content into a jar archive named sdf.jar:

<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="dist">
 <target name="dist">
 <jar destfile="sdf.jar" basedir="classes">
 <fileset dir="classes">
 <include name="**/*"/>
 </fileset>
 </jar>
 </target>
</project>

4. Copy the sdf.jar file into the frameworks/sdf directory.

5. Add the sdf.jar to the Author classpath. To do this select SDF Document Type from the Document Type
Association options page and press the Edit button.

Select the Classpath tab in the lower part of the dialog.

Press the Add button . In the displayed dialog enter the location of the jar file, relative to the <oXygen/>
frameworks directory. If you are in the process of developing the extension actions you can also specify a path
to a directory which holds compiled Java classes.

6. Clear the rules you defined before by using the Remove button.

Press the Add button from the Rules section.

Press the Choose button that follows the Java class value. The following dialog is displayed:

264

Author Developer Guide

Figure 8.7. Selecting a Java association rule.

To test the association, open the sdf.xml sample and validate it.

Deciding the initial page

You can decide to impose an initial page for opening files which match the association rules. For example if the files
are usually edited in the Author page you can set it as the initial page for files matching your rules.

Schema Settings

In the dialog for editing the Document Type properties, in the bottom section there are a series of tabs. The first one
refers to the schema that is used for validation of the documents that match the defined association Rules.

Important

If the document refers a schema, using for instance a DOCTYPE declaration or a xsi:schemaLocation at-
tribute, the schema from the document type association will not be used when validating.

Schema Type Select from the combo box the value XML Schema.

Schema URI Enter the value ${frameworks}/sdf/schema/sdf.xsd. We should use the ${frame-
works} editor variable in the schema URI path instead of a full path in order to be valid for different
<oXygen/> installations.

Important

The ${frameworks} variable is expanded at the validation time into the absolute location
of the directory containing the frameworks.

Author CSS Settings

Select the Author tab from the Document Type edit dialog. By clicking on the CSS label in the right part of the tab the
list of associated CSSs is shown.

265

Author Developer Guide

Here you can also specify how should the CSSs defined in the document type be treated when there are CSSs specified
in the document(with xml-stylesheet processing instructions). The CSSs from the document can either replace
the CSSs defined in the document type association or merge with them.

Add the URI of the CSS file sdf.css you already defined. You should use the ${frameworks}editor variable in
the file path.

Figure 8.8. CSS settings dialog

The Title text field refers to a symbolic name for the stylesheet. When adding several stylesheets with different titles
to a Document Type association, the content author can select what CSS will be used for editing from the Author CSS
Alternatives toolbar.

This combo-box from the toolbar is also populated in case your XML document refers CSSs directly using xml-
stylesheet processing instructions, and the processing instructions define titles for the CSSs.

Note

The CSS settings dialog allows to create a virtualxml-stylesheet processing instructions. The CSSs defined
in the Document Type Association dialog and the xml-stylesheet processing instructions from the XML
document are processed together, as being all a list of processing instructions.

<oXygen/> Author fully implements the W3C recommendation regarding "Associating Style Sheets with XML docu-
ments". For more information see: http://www.w3.org/TR/xml-stylesheet/http://www.w3.org/TR/REC-
html40/present/styles.html#h-14.3.2

Testing the Document Type Association

To test the new Document Type create an XML instance that is conforming with the Simple Document Format. You
will not specify an XML Schema location directly in the document, using an xsi:schemaLocation attribute;
<oXygen/> will detect instead its associated document type and use the specified schema.

<book xmlns="http://www.oxygenxml.com/sample/documentation"
 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">

 <title>My Technical Book</title>
 <section>
 <title>XML</title>
 <abs:def>Extensible Markup Language</abs:def>
 <para>In this section of the book I will
 explain different XML applications.</para>
 </section>
</book>

266

Author Developer Guide

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

When trying to validate the document there should be no errors. Now modify the title to title2. Validate again.
This time there should be one error:

 cvc-complex-type.2.4.a: Invalid content was found starting with element
 'title2'. One of '{"http://www.oxygenxml.com/sample/documentation":title}'
 is expected.

Undo the tag name change. Press on the Author button at the bottom of the editing area. <oXygen/> should load the
CSS from the document type association and create a layout similar to this:

Packaging and Deploying

Using a file explorer, go to the <oXygen/> frameworks directory. Select the sdf directory and make an archive
from it. Move it to another <oXygen/> installation (eventually on another computer). Extract it in the frameworks
directory. Start <oXygen/> and test the association as explained above.

If you create multiple document type associations and you have a complex directory structure it might be easy from
the deployment point of view to use an <oXygen/> all platforms distribution. Add your framework files to it, repackage
it and send it to the content authors.

Warning

When deploying your customized sdf directory please make sure that your sdf directory contains the sdf.framework
file (that is the file defined as External Storage in Document Type Association dialog shall always be stored inside
the sdf directory). If your external storage points somewhere else <oXygen/> will not be able to update the
Document Type Association options automatically on the deployed computers.

Author Settings
You can add a new Document Type Association or edit the properties of an existing one from the Options+Prefer-
ences+Document Type Association option pane. All the changes can be made into the Document type edit dialog.

267

Author Developer Guide

Figure 8.9. The Document Type Dialog

Configuring Actions, Menus and Toolbars

The <oXygen/> Author toolbars and menus can be changed to provide a productive editing experience for the content
authors. You can create a set of actions that are specific to a document type.

In the example with the sdf framework, you created the stylesheet and the validation schema. Now let's add some
actions for inserting a section and a table. To add a new action, follow the procedure:

1. Open the Options Dialog, and select the Document Types Association option pane.

2. In the lower part of the Document Type Association dialog, click on the Author tab, then select the Actions label.

3. To add a new action click on the Add button.

The Insert Section Action

This paragraph describes how you can define the action for adding a section. We assume the icon files Sec-

tion16.gif for the menu item and Section20.gif for the toolbar, are already available. Although we could
use the same icon size for both menu and toolbar, usually the icons from the toolbars are larger than the ones placed
in the menus. These files should be placed in the frameworks/sdf directory.

268

Author Developer Guide

Figure 8.10. The Action Edit Dialog

ID An unique identifier for the action. You can use insert_section.

Name The name of the action. It is displayed as a tooltip when the action is placed in the toolbar,
or as the menu item name. Use Insert section.

Menu access key On Windows, the menu items can be accessed using (ALT + letter) combination, when
the menu is visible. The letter is visually represented by underlining the first letter from
the menu item name having the same value. Since the name is Insert section, you can
use as a menu access key the letter s.

Description You can add a short description for the action. In our case Adds a section element will
suffice.

Large icon (20x20) The path to the file that contains the toolbar image for the action. A good practice is to
store the image files inside the framework directory. This way we can use the editor
variable${frameworks} to make the image file relative to the framework location.
Insert ${frameworks}/sdf/Section20.gif

Note

If the images are bundled in a jar archive together with some Java operations im-
plementation for instance, it might be convenient for you to refer the images not
by the file name, but by their relative path location in the class-path.

If the image file Section20.gif is located in the directory images inside the
jar archive, you can refer to it by using /images/Section20.gif. The jar file must
be added into the Classpath list.

269

Author Developer Guide

Small icon (16x16) The path to the file that contains the menu image. Insert ${frameworks}/sdf/Section16.gif

Shortcut key A shortcut key combination for triggering the action. To define it, click in the text field
and press the desired key combination. You can choose Ctrl+Shift+s.

Note

The shortcut is enabled only by adding the action to the main menu of the Author
mode which contains all the actions that the author will have in a menu for the
current document type.

At this time the action has no functionality added to it. Next you must define how this action operates. An action can
have multiple operation modes, each of them activated by the evaluation of an XPath version 2.0 expression.

Note

The XPath expression of an operation mode is evaluated relative to the current element. The current element
is the one where the caret is positioned. In fact there is hierarchy of elements containing the caret position, but
you are considering only the closest one. A simple expression like:

title

is a relative one and checks if the current element has a "title" child element. To check that the current element
is a section you can use the expression:

local-name()='section'

Note

<oXygen/> Author determines the operation to be executed by iterating through the defined operation modes.
The first operation whose XPath expression "matched" the current document context gets executed, while the
others are being ignored. Make sure you order correctly your operations by placing the ones with more specific
XPath selectors before the ones having more generic selectors.

For instance the expression

person[@name='Cris' and @age='24']

is more specific than

person[@name='Cris']

The action mode using the first expression must be placed before the one using the second expression in the action
modes list.

You decide that you can add sections only if the current element is either a book, article, or another section.

XPath expression Set the value to:

local-name()='section' or local-name()='book' or
 local-name()='article'

270

Author Developer Guide

Invoke operation A set of built-in operations is available. A complete list is found in the Author Default Op-
erations section. To this set you can add your own Java operation implementations. In our
case, you will use the InsertFragmentOperation built-in operation, that inserts an XML
fragment at the caret position.

Configure the arguments by setting the following values:

fragment <section xmlns=
"http://www.oxygenxml.com/sample/documentation">
 <title/>
</section>

insertLocation Leave it empty. This means the location will be the element at the
caret position.

insertPosition Select "Inside".

The Insert Table Action

You will create an action that inserts into the document a table with three rows and three columns. The first row is the
table header. Similarly to the insert section action, you will use the InsertFragmentOperation.

The icon files are Table16.gif for the menu item and Table20.gif for the toolbar and are already available.
These files must be placed in the frameworks/sdf directory.

The action properties:

ID You can use insert_table.

Name Insert Insert table.

Menu access key Enter the t letter.

Description You can use Adds a section element.

Toolbar icon Use ${frameworks}/sdf/Table20.gif

Menu icon Insert ${frameworks}/sdf/Table16.gif

Shortcut key You can choose Ctrl+Shift+t.

Now let's set up the operation the action uses.

XPath expression Set it to the value

true()

Note

true() is equivalent with leaving this field empty.

Invoke operation You will use InsertFragmentOperation built-in operations that inserts an XML fragment
at the caret position.

271

Author Developer Guide

Configure its arguments by setting the values:

fragment <table xmlns=
"http://www.oxygenxml.com/sample/documentation">
 <header><td/><td/><td/></header>
 <tr><td/><td/><td/></tr>
 <tr><td/><td/><td/></tr>
</table>

insertLocation In our example we will always add tables at the end of the section
that contains the caret position. Use:

ancestor::section/*[last()]

insertPosition Select "After".

Configuring the Toolbars

Now that you have defined the two actions you can add them to the toolbar. You can configure additional toolbars on
which to add your custom actions.

The first thing to check is that the toolbar Author custom actions should be displayed when switching to the Author
mode: Right click in the application window upper part, in the area that contains the toolbar buttons and check Author
custom actions in the displayed menu if it is unchecked.

Open the Document Type edit dialog for the SDF framework and select on the Author tab. Next click on the Toolbar
label.

Figure 8.11. Configuring the Toolbar

The panel is divided in two sections: the left side contains a list of actions, while the right one contains an action tree,
displaying the list of actions added in the toolbar. The special entry called Separator allows you to visually separate
the actions in the toolbar.

Select the Insert section action in the left and the Toolbar label in the right, then press the Add as child button.

Now select the Insert table action in the left and the Insert section in the right. Press the Add as sibling button.

272

Author Developer Guide

When opening a Simple Documentation Framework test document in Author mode, the toolbar below will be displayed
at the top of the editor.

Figure 8.12. Author Custom Actions Toolbar

Tip

If you have many custom toolbar actions or want to group actions according to their category you can add addi-
tional toolbars with custom names and split the actions to better suit your purpose.

Configuring the Main Menu

Defined actions can be grouped into customized menus in the <oXygen/> menu bar. For this open the Document Type
dialog for the SDF framework and click on the Author tab. Next click on the Menu label.

In the left side you have the list of actions and some special entries:

Submenu Creates a submenu. You can nest an unlimited number of menus.

Separator Creates a separator into a menu. In this way you can logically separate the menu entries.

In the right side you have the menu tree, having the Menu entry as root. To change its name click on this label to select

it, then press the Edit button. Enter SD Framework as name, and D as menu access key.

Select the Submenu label in the left an the SD Framework label in the right, then press the Add as child button.

Change the submenu name to Table, using the Edit button.

Select the Insert section action in the left and the Table label in the right, then press the Add as sibling button.

Now select the Insert table action in the left and the Table in the right. Press the Add as child button.

Figure 8.13. Configuring the Menu

273

Author Developer Guide

When opening a Simple Documentation Framework test document in Author mode, the menu you created is displayed
in the editor menu bar, between the Debugger and the Document menus. In the menu you find the Table submenu and
the two actions:

Figure 8.14. Author Menu

Note

The shortcut of an action defined for the current document type is enabled only if the action is added to the main
menu. Otherwise the author can run the action only from the toolbar.

Configuring the Contextual Menu

The contextual menu is shown when you right click (on Mac OS X it is used the combination ctrl and mouse click)
in the Author editing area. In fact you are configuring the bottom part of the menu, since the top part is reserved for a
list of generic actions like Copy, Paste, Undo, etc..

Open the Document Type dialog for the SDF framework and click on the Author tab. Next click on the Contextual
Menu label.

Follow the same steps as explained above in the Configuring the Main Menu, except changing the menu name - the
contextual menu has no name.

Figure 8.15. Configuring the Contextual Menu

To test it, open the test file, and click to open the contextual menu. In the lower part there is shown the Table sub-menu
and the Insert section action:

Author Default Operations

Below are listed all the operations and their arguments.

InsertFragmentOperation Inserts an XML fragment at the current cursor position. The selection - if there
is one, remains unchanged. The fragment will be inserted in the current context
of the cursor position. That means that if the current XML document uses some

274

Author Developer Guide

namespace declarations then the inserted fragment must use the same declara-
tions. The inserted fragment will not be copied and pasted to the cursor position,
but the namespace declarations of the fragment will be adapted if needed to the
existing namespace declarations of the XML document. Examples of namespace
adjusting when the fragment is inserted and the descriptions of the arguments
are described here.

InsertOrReplaceFragmentOperation Similar to InsertFragmentOperation, except it removes the selected content
before inserting the fragment.

InsertOrReplaceTextOperation Inserts a text. It removes the selected content before inserting the text section.

text The text section to insert.

SurroundWithFragmentOperation Surrounds the selected content by a fragment. Since the fragment can have
multiple nodes, the surrounded content will be always placed in the first leaf
element. If there is no selection, the operation will simply insert the fragment
at the caret position. The arguments are described here.

SurroundWithTextOperation The surround with text operation takes two arguments, two text values that will
be inserted before and after the selected content. If there is no selected content,
the two sections will be inserted at the caret position. The arguments of the op-
eration are:

header The text that will be placed before the selection.

footer The test that will be placed after the selection.

The arguments of InsertFragmentOperation

fragment The value for this argument is a text. This is parsed by the <oXygen/> Author as it was already
in the document at the caret position. You can use entities references declared in the document
and it is namespace aware. The fragment may have multiple roots.

Note

You can use even namespace prefixes that are not declared in the inserted fragment, if
they are declared in the document where the insertion is done. For clarity, you should
always to prefix and declare namespaces in the inserted fragment!

Note

If there are namespace declarations in the fragment that are identical to the in the document
insertion context, the namespace declaration attributes are removed from the fragment
elements.

275

Author Developer Guide

Example 8.2. Prefixes that are not bound explicitly

For instance, the fragment:

<x:item id="dty2"/>
&ent;
<x:item id="dty3"/>

Can be correctly inserted in the document: ('|' marks the insertion point):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE x:root [
 <!ENTITY ent "entity">
]>

<x:root xmlns:x="nsp">
 |
</x:root>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE x:root [
 <!ENTITY ent "entity">
]>
<x:root xmlns:x="nsp">
 <x:item id="dty2"/>
 &ent;
 <x:item id="dty3"/>
</x:root>

Example 8.3. Default namespaces

If there is a default namespace declared in the document and the document fragment does not
declare a namespace, the elements from the fragment are considered to be in no namespace.

For instance the fragment:

<item id="dty2"/>
<item id="dty3"/>

Inserted in the document:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">
|
</root>

Gives the result document:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">
 <item xmlns="" id="dty2"/>
 <item xmlns="" id="dty3"/>
</root>

276

Author Developer Guide

insertLocation An XPath expression that is relative to the current node. It selects the reference node for the
fragment insertion.

insertPosition One of the three constants: "Inside", "After", or "Before" , showing where the insertion is made
relative to the reference node selected by the insertLocation. "Inside" has the meaning of the
first child of the reference node.

The arguments of SurroundWithFragmentOperation

fragment The XML fragment that will surround the selection.

Example 8.4. Surrounding with a fragment

Let's consider the fragment:

<F>
 <A>

 <C></C>

</F>

And the document:

<doc>
 <X></X>
 <Y></Y>
 <Z></Z>
<doc>

Considering the selected content that is to be surrounded is the sequence of elements X and Y, then the
result is:

<doc>
 <F>
 <A>
 <X></X>
 <Y></Y>

 <C></C>

 </F>
 <Z></Z>
<doc>

Because the element A was the first leaf in the fragment, it received the selected content. The fragment
was then inserted in the place of the selection.

Java API - Extending Author Functionality through Java

<oXygen/> Author has a built-in set of operations covering the insertion of text and XML fragments (see the Author
Default Operations) and the execution of XPath expressions on the current document edited in Author mode. However,
there are situations in which you need to extend this set. For instance if you need to enter an element whose attributes

277

Author Developer Guide

should be edited by the user through a graphical user interface. Or the users must send the selected element content or
even the whole document to a server, for some kind of processing or the content authors must extract pieces of inform-
ation from a server and insert it directly into the edited XML document. Or you need to apply an XPath expression on
the current Author document and process the nodes of the result nodeset.

In the following sections you are presenting the Java programming interface (API) available to the developers. You
will need the Oxygen Author SDK [http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip]
available on the <oXygen/> website [http://www.oxygenxml.com/developer.html] which includes the source code of
the Author operations in the predefined document types and the full documentation in Javadoc format of the public
API available for the developer of Author custom actions.

The next Java examples are making use of AWT classes. If you are developing extensions for the <oXygen/> XML
Editor plugin for Eclipse you will have to use their SWT counterparts.

It is assumed you already read the Configuring Actions, Menus, Toolbar section and you are familiar with the <oXygen/>
Author customization. You may find the XML schema, CSS and XML sample in the Example Files Listings.

Warning

Make sure the Java classes of your custom Author operations are compiled with the same Java version that is
used by . Otherwise the classes may not be loaded by the Java virtual machine. For example if you run with a
Java 1.5 virtual machine but the Java classes of your custom Author operations are compiled with a Java 1.6
virtual machine then the custom operations cannot be loaded and used by the Java 1.5 virtual machine.

Example 1. Step by Step Example. Simple Use of a Dialog from an Author Operation.

Let's start adding functionality for inserting images in the Simple Documentation Framework (shortly SDF). The
images are represented by the image element. The location of the image file is represented by the value of the href
attribute. In the Java implementation you will show a dialog with a text field, in which the user can enter a full URL,
or he can browse for a local file.

1. Create a new Java project, in your IDE.

Create the directory lib in the Java project directory and copy in it the oxygen.jar file from the {oXygen_in-
stallation_directory}/lib directory. The oxygen.jar contains the Java interfaces you have to im-
plement and the API needed to access the Author features.

2. Create the class simple.documentation.framework.InsertImageOperation. This class must
implement the ro.sync.ecss.extensions.api.AuthorOperation interface.

The interface defines three methods: doOperation, getArguments and getDescription.

1. The doOperation method is invoked when the action is performed either by pressing the toolbar button,
selecting the menu item or through the shortcut. It takes as arguments an object of type AuthorAccess and
a map or argument names and values.

2. The getArguments method is used by <oXygen/> when the action is configured, it returns the list of argu-
ments (name and type) that are accepted by the operation.

3. The getDescription method is also used by <oXygen/> when the operation is configured and its return
value describes what the operation does.

Here is the implementation of these three methods.

 /**
 * Performs the operation.

278

Author Developer Guide

http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/InstData/Editor/Developer/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/developer.html

 */
public void doOperation(
 AuthorAccess authorAccess,
 ArgumentsMap arguments)
 throws IllegalArgumentException,
 AuthorOperationException {

 JFrame oxygenFrame = (JFrame) authorAccess.getParentFrame();
 String href = displayURLDialog(oxygenFrame);
 if (href.length() != 0) {
 // Creates the image XML fragment.
 String imageFragment =
 "<image xmlns='http://www.oxygenxml.com/sample/documentation' href='"
 + href + "'/>";

 // Inserts this fragment at the caret position.
 int caretPosition = authorAccess.getCaretOffset();
 authorAccess.insertXMLFragment(imageFragment, caretPosition);
 }
}

/**
 * Has no arguments.
 *
 * @return null.
 */
public ArgumentDescriptor[] getArguments() {
 return null;
}

/**
 * @return A description of the operation.
 */
public String getDescription() {
 return "Inserts an image element. Asks the user for a URL reference.";
}

The complete source code of this operation is found in the Example Files Listings, the Java Files section.

Important

Make sure you always specify the namespace of the inserted fragments.

3. Package the compiled class into a jar file. An example of an ANT script that packages the classes directory
content into a jar archive named sdf.jar is listed below:

<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="dist">
 <target name="dist">
 <jar destfile="sdf.jar" basedir="classes">
 <fileset dir="classes">

279

Author Developer Guide

 <include name="**/*"/>
 </fileset>
 </jar>
 </target>
</project>

4. Copy the sdf.jar file into the frameworks/sdf directory.

5. Add the sdf.jar to the Author class path. To do this, Open the options Document Type Dialog, select SDF
and press the Edit button.

Select the Classpath tab in the lower part of the dialog.

Press the Add button . In the displayed dialog enter the location of the jar file, relative to the <oXygen/>
frameworks directory:

6. Let's create now the action which will use the defined operation. Click on the Actions label.

The icon files are Image16.gif for the menu item and Image20.gif for the toolbar and are already
available. Place these files in the frameworks/sdf directory.

Define the action properties:

ID An unique identifier for the action. Use insert_image.

Name The name of the action. Use Insert image.

Menu access key Use the i letter.

Description Enter the text Inserts an image.

Toolbar icon Enter here: ${frameworks}/sdf/Image20.gif

Menu icon Enter here: ${frameworks}/sdf/Image16.gif

Shortcut key You will use: Ctrl+Shift+i.

Now let's set up the operation.

You are adding images only if the current element is a section, book or article.

XPath expression Set the value to:

local-name()='section' or local-name='book'
 or local-name='article'

Invoke operation In this case, you will use the Java operation you defined earlier. Press the Choose button,
then select simple.documentation.framework.InsertImageOperation.

280

Author Developer Guide

Figure 8.16. Selecting the Operation

This operation has no arguments.

7. Add the action to the toolbar, using the Toolbar panel.

To test the action, you can open the sdf.xml sample, then place the caret inside a section between two para
elements for instance. Press the button associated with the action from the toolbar. In the dialog select an image URL
and press Ok. The image is inserted into the document.

Example 2. Operations with Arguments. Report from Database Operation.

In this example you will create an operation that connects to a relational database and executes an SQL statement. The
result should be inserted in the edited XML document as a table. To make the operation fully configurable, it will
have arguments for the database connection string, the user name, the password and the SQL expression.

1. Create a new Java project, in your IDE.

Create the directory lib in the Java project directory and copy in it the oxygen.jar file from the {oXygen_in-
stallation_directory}/lib directory.

2. Create the class simple.documentation.framework.QueryDatabaseOperation. This class must
implements the ro.sync.ecss.extensions.api.AuthorOperation interface.

import ro.sync.ecss.extensions.api.ArgumentDescriptor;
import ro.sync.ecss.extensions.api.ArgumentsMap;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperation;
import ro.sync.ecss.extensions.api.AuthorOperationException;

public class QueryDatabaseOperation implements AuthorOperation{

Let's define the arguments of the operation. For each of them you will use a String constant representing the
argument name:

281

Author Developer Guide

private static final String ARG_JDBC_DRIVER ="jdbc_driver";
private static final String ARG_USER ="user";
private static final String ARG_PASSWORD ="password";
private static final String ARG_SQL ="sql";
private static final String ARG_CONNECTION ="connection";

You must describe each of the argument name and type. To do this implement the getArguments method
which will return an array of argument descriptors:

public ArgumentDescriptor[] getArguments() {
 ArgumentDescriptor args[] = new ArgumentDescriptor[] {
 new ArgumentDescriptor(
 ARG_JDBC_DRIVER,
 ArgumentDescriptor.TYPE_STRING,
 "The name of the Java class that is the JDBC driver."),
 new ArgumentDescriptor(
 ARG_CONNECTION,
 ArgumentDescriptor.TYPE_STRING,
 "The database URL connection string."),
 new ArgumentDescriptor(
 ARG_USER,
 ArgumentDescriptor.TYPE_STRING,
 "The name of the database user."),
 new ArgumentDescriptor(
 ARG_PASSWORD,
 ArgumentDescriptor.TYPE_STRING,
 "The database password."),
 new ArgumentDescriptor(
 ARG_SQL,
 ArgumentDescriptor.TYPE_STRING,
 "The SQL statement to be executed.")
 };
 return args;
 }

These names, types and descriptions will be listed in the Arguments table when the operation is configured.

When the operation is invoked, the implementation of the doOperation method extracts the arguments, forwards
them to the method that connects to the database and generates the XML fragment. The XML fragment is then
inserted at the caret position.

public void doOperation(AuthorAccess authorAccess, ArgumentsMap map)
 throws IllegalArgumentException, AuthorOperationException {

 // Collects the arguments.
 String jdbcDriver =
 (String)map.getArgumentValue(ARG_JDBC_DRIVER);
 String connection =
 (String)map.getArgumentValue(ARG_CONNECTION);
 String user =
 (String)map.getArgumentValue(ARG_USER);
 String password =
 (String)map.getArgumentValue(ARG_PASSWORD);
 String sql =

282

Author Developer Guide

 (String)map.getArgumentValue(ARG_SQL);

 int caretPosition = authorAccess.getCaretOffset();
 try {
 authorAccess.insertXMLFragment(
 getFragment(jdbcDriver, connection, user, password, sql),
 caretPosition);
 } catch (SQLException e) {
 throw new AuthorOperationException(
 "The operation failed due to the following database error: "
 + e.getMessage(), e);
 } catch (ClassNotFoundException e) {
 throw new AuthorOperationException(
 "The JDBC database driver was not found. Tried to load ' "
 + jdbcDriver + "'", e);
 }
 }

The getFragment method loads the JDBC driver, connects to the database and extracts the data. The result is
a table element from the http://www.oxygenxml.com/sample/documentation namespace. The
header element contains the names of the SQL columns. All the text from the XML fragment is escaped. This
means that the '<' and '&' characters are replaced with the '<' and '&' character entities to ensure the fragment
is well-formed.

private String getFragment(
 String jdbcDriver,
 String connectionURL,
 String user,
 String password,
 String sql) throws
 SQLException,
 ClassNotFoundException {

 Properties pr = new Properties();
 pr.put("characterEncoding", "UTF8");
 pr.put("useUnicode", "TRUE");
 pr.put("user", user);
 pr.put("password", password);

 // Loads the database driver.
 Class.forName(jdbcDriver);
 // Opens the connection
 Connection connection =
 DriverManager.getConnection(connectionURL, pr);
 java.sql.Statement statement =
 connection.createStatement();
 ResultSet resultSet =
 statement.executeQuery(sql);

 StringBuffer fragmentBuffer = new StringBuffer();
 fragmentBuffer.append(
 "<table xmlns=" +
 "'http://www.oxygenxml.com/sample/documentation'>");

283

Author Developer Guide

 //
 // Creates the table header.
 //
 fragmentBuffer.append("<header>");
 ResultSetMetaData metaData = resultSet.getMetaData();
 int columnCount = metaData.getColumnCount();
 for (int i = 1; i <= columnCount; i++) {
 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(metaData.getColumnName(i)));
 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</header>");

 //
 // Creates the table content.
 //
 while (resultSet.next()) {
 fragmentBuffer.append("<tr>");
 for (int i = 1; i <= columnCount; i++) {
 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(resultSet.getObject(i)));
 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</tr>");
 }

 fragmentBuffer.append("</table>");

 // Cleanup
 resultSet.close();
 statement.close();
 connection.close();
 return fragmentBuffer.toString();
}

The complete source code of this operation is found in the Example Files Listings, the Java Files section.

3. Package the compiled class into a jar file.

4. Copy the jar file and the JDBC driver files into the frameworks/sdf directory.

5. Add the jars to the Author class path. For this, Open the options Document Type Dialog, select SDF and press
the Edit button.

Select the Classpath tab in the lower part of the dialog.

6. Click on the Actions label.

The action properties are:

ID An unique identifier for the action. Use clients_report.

Name The name of the action. Use Clients Report.

284

Author Developer Guide

Menu access key Use the letter r.

Description Enter the text Connects to the database and collects the list of clients.

Toolbar icon Enter here: ${frameworks}/sdf/TableDB20.gif

The image TableDB20.gif for the toolbar action is already present in the
frameworks/sdf directory.

Menu icon Leave empty.

Shortcut key You will use: Ctrl+Shift+c.

Let's set up the operation. The action will work only if the current element is a section.

XPath expression Set the value to:

local-name()='section'

Invoke operation In this case, you will use the Java operation you defined earlier. Press the Choose button,
then select simple.documentation.framework.QueryDatabaseOpera-
tion.

Once selected, the list of arguments is displayed.

In the figure below the first argument, jdbc_driver, represents the class name of the
MySQL JDBC driver.

The connection string has the URL syntax : jdbc://<database_host>:<data-
base_port>/<database_name>.

The SQL expression used in the example is:

SELECT userID, email FROM users

but it can be any valid SELECT expression which can be applied to the database.

7. Add the action to the toolbar, using the Toolbar panel.

285

Author Developer Guide

Figure 8.17. Java Operation Arguments Setup

To test the action you can open the sdf.xml sample place the caret inside a section between two para elements

for instance. Press the Create Report button from the toolbar. You can see below the toolbar with the action button
and sample table inserted by the Clients Report action.

Figure 8.18. Table Content Extracted from the Database

Configuring New File Templates
You will create a set of document templates that the content authors will use as starting points for creating new Simple
Document Framework books and articles.

Each of the Document Type Associations can point to a directory usually named templates containing the file
templates. All the files that are found here are considered templates for the respective document type. The template
name is taken from the name of the file, and the template kind is detected from the file extension.

Create the templates directory into the frameworks/SDF directory. The directory tree for the documentation
framework is now:

286

Author Developer Guide

oxygen
 frameworks
 sdf
 schema
 css
 templates

Now let's create in this templates directory two files, one for the book template and another for the article template.

The Book.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
 <title>Book Template Title</title>
 <section>
 <title>Section Title</title>
 <abs:def/>
 <para>This content is copyrighted:</para>
 <table>
 <header>
 <td>Company</td>
 <td>Date</td>
 </header>
 <tr>
 <td/>
 <td/>
 </tr>
 </table>
 </section>
</book>

The Article.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<article
 xmlns="http://www.oxygenxml.com/sample/documentation"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <title></title>
 <section>
 <title></title>
 <para></para>
 <para></para>
 </section>
</article>

You can also use editor variables in the template files' content and they will be expanded when the files are opened.

Open the Document Type dialog for the SDF framework and click on the Templates tab. Enter in the Templates directory
text field the value ${frameworksDir}/sdf/templates. As you already seen before, it is recommended that
all the file references made from a Document Type Association to be relative to the ${frameworksDir} directory.
Binding a Document Type Association to an absolute file (e.g: "C:\some_dir\templates") makes the association difficult
to share between users.

287

Author Developer Guide

To test the templates settings, press the File/New menu item to display the New dialog. The names of the two templates
are prefixed with the name of the Document Type Association, in our case SDF. Selecting one of them should create
a new XML file with the content specified in the template file.

Configuring XML Catalogs
You can add catalog files to your Document Type Association using the Catalogs tab from the Document Type dialog.

Important

<oXygen/> XML Editor collects all the catalog files listed in the installed frameworks. No matter what the
Document Type Association matches the edited file, all the catalog mappings are considered when resolving
external references.

Important

The catalog files settings are available for all editing modes, not only for the Author mode.

In the XML sample file for SDF you did not used a xsi:schemaLocation attribute, but instead you let the editor
use the schema from the association. However there are cases in which you must refer for instance the location of a
schema file from a remote web location. In such cases the catalog may be used to map the web location to a local file
system entry.

In the following section it will be presented an use-case for the XML catalogs, by modifying our sdf.xsd XML
Schema file from the Example Files Listings.

The sdf.xml file refers the other file abs.xsd through an import element:

<xs:import namespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts"
 schemaLocation="abs.xsd"/>

The schemaLocation attribute references the abs.xsd file located in the same directory. What if the file was on
the web, at the http://www.oxygenxml.com/SDF/abs.xsd location for instance? In this case the attribute
value will be:

<xs:import namespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts"
 schemaLocation="http://www.oxygenxml.com/SDF/abs.xsd"/>

There is a problem with this approach. What happens if an Internet connection is not available? How will you check
the document for errors if a part of the schema is not available? The answer is to create a catalog file that will help the
parser locate the missing piece containing the mapping:

http://www.oxygenxml.com/SDF/abs.xsd -> ../local_path/abs.xsd

To do this create a new XML file called catalog.xml and save it into the {oXygen_installation_direct-
ory}/frameworks/sdf directory. The content of the file should be:

<?xml version="1.0"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <system
 systemId="http://www.oxygenxml.com/SDF/abs.xsd"
 uri="schema/abs.xsd"/>

288

Author Developer Guide

 <uri name="http://www.oxygenxml.com/SDF/abs.xsd" uri="schema/abs.xsd"/>
</catalog>

This means that all the references to http://www.oxygenxml.com/SDF/abs.xsd must be resolved to the
abs.xsd file located in the schema directory. The uri element is used by URI resolvers, for example for resolving
a URI reference used in an XSLT stylesheet.

Note

The references in the XML catalog files are relative to the directory that contains the catalog.

Save the catalog file and modify the sdf.xsd file by changing its import element, then add the catalog to the
Document Type association. You can do this in the Catalogs tab by pressing the New button. Enter ${frame-
works}/sdf/catalog.xml in the displayed dialog.

To test the catalog settings, restart <oXygen/> and try to validate a new sample Simple Documentation Framework
document. There should be no errors.

Configuring Transformation Scenarios
When distributing a framework to the users, it is a good idea to have the transformation scenarios already configured.
This would help the content authors publish their work in different formats. Being contained in the Document Type
Association the scenarios can be distributed along with the actions, menus, toolbars, catalogs, etc.

In the following section you will create a transformation scenario for your framework.

Create the directory xsl in the directory frameworks/sdf. The directory structure for the documentation framework
should be:

oxygen
 frameworks
 sdf
 schema
 css
 templates
 xsl

Create the sdf.xsl file in the xsl directory. The complete content of the sdf.xsl file is found in the Example
Files Listings.

Open the Options/Preferences/Document Type Associations. Open the Document Type dialog for the SDF framework
then choose the Transformation tab. Click on the New. In the Edit Scenario dialog, fill the following fields:

Name The name of the transformation scenario. Enter SDF to HTML.

XSL URL ${frameworks}/sdf/xsl/sdf.xsl

Transformer Saxon 9B.

Change to the Output tab. Change the fields:

Save as ${cfd}/${cfn}.html This means the transformation output file will have the name of
the XML file and the html extension and will be placed in the same directory.

Open in browser Enable this option.

289

Author Developer Guide

Saved file Enable this checkbox.

Figure 8.19. Configuring a transformation scenario

Now the scenario is listed in the Transformation tab:

Figure 8.20. The transformation tab

To test the transformation scenario you created, open the SDF XML sample from the Example Files Listings. Click

on the Apply Transformation Scenario button. The Configure Transformation Dialog is displayed. Its scenario list
contains the scenario you defined earlier SDF to HTML. Click on it then choose Transform now. The HTML file should
be saved in the same directory as the XML file and opened in the browser.

290

Author Developer Guide

Figure 8.21. Selecting the predefined scenario

Note

The key symbol indicates that the scenario is read-only. It has this state because the scenario was loaded from
a Document Type Association. The content authors can still change parameters and other settings if they are
duplicating the scenario and edit the duplicate. In this case the copy of the scenario is created in the user local
settings.

Configuring Extensions
You can add extensions to your Document Type Association using the Extensions tab from the Document Type dialog.

Figure 8.22. Configure extensions for a document type

291

Author Developer Guide

Configuring an Extensions Bundle

Starting with <oXygen/> 10.3 version a single bundle was introduced acting as a provider for all other extensions. The
individual extensions can still be set and if present they take precedence over the single provider, but this practice is
being discouraged and the single provider should be used instead.

The extensions bundle is represented by the ro.sync.ecss.extensions.api.ExtensionsBundle class.
The provided implementation of the ExtensionsBundle is instantiated when the rules of the Document Type As-
sociation defined for the custom framework match a document opened in the editor. Therefor references to objects
which need to be persistent throughout the application running session must not be kept in the bundle because the next
detection event can result in creating another ExtensionsBundle instance.

1. Create a new Java project, in your IDE.

Create the lib directory in the Java project directory and copy in it the oxygen.jar file from the {oXygen_in-
stallation_directory}/lib directory.

2. Create the class simple.documentation.framework.SDFExtensionsBundle which must extend
the abstract class ro.sync.ecss.extensions.api.ExtensionsBundle.

public class SDFExtensionsBundle extends ExtensionsBundle {

A Document Type ID and a short description should be defined first by implementing the methods getDocu-
mentTypeID and getDescription. The Document Type ID is used to uniquely identify the current framework.
Such an ID must be provided especially if options related to the framework need to be persistently stored and re-
trieved between sessions.

 public String getDocumentTypeID() {
 return "Simple.Document.Framework.document.type";
 }

 public String getDescription() {
 return "A custom extensions bundle used for the Simple Document" +
 "Framework document type";
 }

In order to be notified about the activation of the custom Author extension in relation with an opened document
an ro.sync.ecss.extensions.api.AuthorExtensionStateListener should be implemented.
The activation and deactivation events received by this listener should be used to perform custom initializations
and to register/remove listeners like ro.sync.ecss.extensions.api.AuthorListener,
ro.sync.ecss.extensions.api.AuthorMouseListener or ro.sync.ecss.exten-
sions.api.AuthorCaretListener. The custom author extension state listener should be provided by
implementing the method createAuthorExtensionStateListener.

 public AuthorExtensionStateListener createAuthorExtensionStateListener() {
 return new SDFAuthorExtensionStateListener();
 }

The AuthorExtensionStateListener is instantiated and notified about the activation of the framework
when the rules of the Document Type Association match a document opened in the Author editor page. The
listener is notified about the deactivation when another framework is activated for the same document, the user
switches to another page or the editor is closed. A complete description and implementation of an
ro.sync.ecss.extensions.api.AuthorExtensionStateListener can be found in the Imple-
menting an Author Extension State Listener.

292

Author Developer Guide

If Schema Aware mode is active in Oxygen, all actions that can generate invalid content will be redirected toward
the AuthorSchemaAwareEditingHandler. The handler can either resolve a specific case, let the default
implementation take place or reject the edit entirely by throwing an InvalidEditException. The actions
that are forwarded to this handler include typing, delete or paste.

See the Implementing an Author Schema Aware Editing Handler section for more details about this handler.

Customizations of the content completion proposals are permitted by creating a schema manager filter extension.
The interface that declares the methods used for content completion proposals filtering is ro.sync.content-
completion.xml.SchemaManagerFilter. The filter can be applied on elements, attributes or on their
values. Responsible for creating the content completion filter is the method createSchemaManagerFilter.
A new SchemaManagerFilter will be created each time a document matches the rules defined by the Document
Type Association which contains the filter declaration.

 public SchemaManagerFilter createSchemaManagerFilter() {
 return new SDFSchemaManagerFilter();
 }

A detailed presentation of the schema manager filter can be found in Configuring a Content completion handler
section.

The <oXygen/> Author supports link based navigation between documents and document sections. Therefor, if
the document contains elements defined as links to other elements, for example links based on the id attributes,
the extension should provide the means to find the referred content. To do this an implementation of the
ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface should be returned
by the createElementLocatorProvider method. Each time an element pointed by a link needs to be
located the method is invoked.

 public ElementLocatorProvider createElementLocatorProvider() {
 return new DefaultElementLocatorProvider();
 }

The section that explains how to implement an element locator provider is Configuring a Link target element
finder.

The drag and drop functionality can be extended by implementing the ro.sync.exml.editor.xmledit-
or.pageauthor.AuthorDnDListener interface. Relevant methods from the listener are invoked when
the mouse is dragged, moved over, or exits the author editor page, when the drop action changes, and when the
drop occurs. Each method receives the DropTargetEvent containing information about the drag and drop
operation. The drag and drop extensions are available on Author page for both <oXygen/> Eclipse plugin and
standalone application. The Text page corresponding listener is available only for <oXygen/> Eclipse plugin. The
methods corresponding to each implementation are: createAuthorAWTDndListener, createTextSWTDnd-
Listener and createAuthorSWTDndListener.

 public AuthorDnDListener createAuthorAWTDndListener() {
 return new SDFAuthorDndListener();
 }

For more details about the Author drag and drop listeners see the Configuring a custom Drag and Drop listener
section.

Another extension which can be included in the bundle is the reference resolver. In our case the references re
represented by the ref element and the attribute indicating the referred resource is location. To be able to obtain
the content of the referred resources you will have to implement a Java extension class which implements the
ro.sync.ecss.extensions.api.AuthorReferenceResolver. The method responsible for creating

293

Author Developer Guide

the custom references resolver is createAuthorReferenceResolver. The method is called each time a
document opened in an Author editor page matches the Document Type Association where the extensions bundle
is defined. The instantiated references resolver object is kept and used until another extensions bundle corresponding
to another Document Type is activated as result of the detection process.

 public AuthorReferenceResolver createAuthorReferenceResolver() {
 return new ReferencesResolver();
 }

A more detailed description of the references resolver can be found in the Configuring a References Resolver
section.

To be able to dynamically customize the default CSS styles for a certain AuthorNode an implementation of
the ro.sync.ecss.extensions.api.StylesFilter can be provided. The extensions bundle method
responsible for creating the StylesFilter is createAuthorStylesFilter. The method is called each
time a document opened in an Author editor page matches the document type association where the extensions
bundle is defined. The instantiated filter object is kept and used until another extensions bundle corresponding to
another Document Type is activated as result of the detection process.

 public StylesFilter createAuthorStylesFilter() {
 return new SDFStylesFilter();
 }

See the Configuring CSS styles filter section for more details about the styles filter extension.

In order to edit data in custom tabular format implementations of the ro.sync.ecss.extensions.api.Au-
thorTableCellSpanProvider and the ro.sync.ecss.extensions.api.AuthorTableColum-
nWidthProvider interfaces should be provided. The two methods from the ExtensionsBundle specifying
these two extension points are createAuthorTableCellSpanProvider and createAuthorTable-
ColumnWidthProvider.

 public AuthorTableCellSpanProvider createAuthorTableCellSpanProvider() {
 return new TableCellSpanProvider();
 }

 public AuthorTableColumnWidthProvider
 createAuthorTableColumnWidthProvider() {
 return new TableColumnWidthProvider();
 }

The two table information providers are not reused for different tables. The methods are called for each table in
the document so new instances should be provided every time. Read more about the cell span and column width
information providers in Configuring a Table Cell Span Provider and Configuring a Table Column Width Provider
sections.

If the functionality related to one of the previous extension point does not need to be modified then the developed
ExtensionsBundle should not override the corresponding method and leave the default base implementation
to return null.

3. Package the compiled class into a jar file.

4. Copy the jar file into the frameworks/sdf directory.

5. Add the jar file to the Author class path.

294

Author Developer Guide

6. Register the Java class by clicking on the Extensions tab. Press the Choose button and select from the displayed
dialog the name of the class: SDFExtensionsBundle.

The complete source code of the SDFExtensionsBundle implementation is found in the Example Files Listings,
the Java Files section.

Implementing an Author Extension State Listener

The ro.sync.ecss.extensions.api.AuthorExtensionStateListener implementation is notified
when the Author extension where the listener is defined is activated or deactivated in the Document Type detection
process.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorExtensionStateListener;

public class SDFAuthorExtensionStateListener implements
 AuthorExtensionStateListener {
 private AuthorListener sdfAuthorDocumentListener;
 private AuthorMouseListener sdfMouseListener;
 private AuthorCaretListener sdfCaretListener;
 private OptionListener sdfOptionListener;

The activation event received by this listener when the rules of the Document Type Association match a document
opened in the Author editor page, should be used to perform custom initializations and to register listeners like
ro.sync.ecss.extensions.api.AuthorListener, ro.sync.ecss.extensions.api.Au-
thorMouseListener or ro.sync.ecss.extensions.api.AuthorCaretListener.

 public void activated(AuthorAccess authorAccess) {
 // Get the value of the option.
 String option = authorAccess.getOptionsStorage().getOption(
 "sdf.custom.option.key", "");
 // Use the option for some initializations...

 // Add an option listener.
 authorAccess.getOptionsStorage().addOptionListener(sdfOptionListener);

 // Add author document listeners.
 sdfAuthorDocumentListener = new SDFAuthorListener();
 authorAccess.getDocumentController().addAuthorListener(
 sdfAuthorDocumentListener);

 // Add mouse listener.
 sdfMouseListener = new SDFAuthorMouseListener();
 authorAccess.getEditorAccess().addAuthorMouseListener(sdfMouseListener);

 // Add caret listener.
 sdfCaretListener = new SDFAuthorCaretListener();
 authorAccess.getEditorAccess().addAuthorCaretListener(sdfCaretListener);

 // Other custom initializations...

 }

295

Author Developer Guide

The authorAccess parameter received by the activated method can be used to gain access to Author specific
actions and informations related to components like the editor, document, workspace, tables, change tracking a.s.o.

If options specific to the custom developed Author extension need to be stored or retrieved, a reference to the Op-
tionsStorage can be obtained by calling the getOptionsStorage method from the author access. The same
object can be used to register OptionListener listeners. An option listener is registered in relation with an option
key and will be notified about the value changes of that option.

An AuthorListener can be used if events related to the Author document modifications are of interest. The
listener can be added to the AuthorDocumentController. A reference to the document controller is returned
by the getDocumentController method from the author access. The document controller can also be used to
perform operations involving document modifications.

To provide access to Author editor component related functionality and informations, the author access has a reference
to the AuthorEditorAccess that can be obtained when calling the getEditorAccess method. At this level
AuthorMouseListener and AuthorCaretListener can be added which will be notified about mouse and
caret events occurring in the Author editor page.

The deactivation event is received when another framework is activated for the same document, the user switches to
another editor page or the editor is closed. The deactivate method is typically used to unregister the listeners pre-
viously added on the activate method and to perform other actions. For example options related to the deactivated
author extension can be saved at this point.

 public void deactivated(AuthorAccess authorAccess) {
 // Store the option.
 authorAccess.getOptionsStorage().setOption(
 "sdf.custom.option.key", optionValue);

 // Remove the option listener.
 authorAccess.getOptionsStorage().removeOptionListener(sdfOptionListener);

 // Remove document listeners.
 authorAccess.getDocumentController().removeAuthorListener(
 sdfAuthorDocumentListener);

 // Remove mouse listener.
 authorAccess.getEditorAccess().removeAuthorMouseListener(sdfMouseListener);

 // Remove caret listener.
 authorAccess.getEditorAccess().removeAuthorCaretListener(sdfCaretListener);

 // Other actions...

 }

Implementing an Author Schema Aware Editing Handler

You can implement your own handler for actions like typing, delete or paste by providing an implementation of
ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler. The Schema Aware Editing
must be On or Custom in order for this handler to be called. The handler can either resolve a specific case, let the default
implementation take place or reject the edit entirely by throwing an InvalidEditException.

package simple.documentation.framework.extensions;

296

Author Developer Guide

/**
 * Specific editing support for SDF documents.
 * Handles typing and paste events inside section and tables.
 */
public class SDFSchemaAwareEditingHandler implements AuthorSchemaAwareEditingHandler {

Typing events can be handled using the handleTyping method. For example, the SDFSchemaAwareEditing-
Handler checks if the schema is not a learned one, was loaded successfully and Smart Paste is active. If these conditions
are met, the event will be handled.

/**
 * @see ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleTyping(int, char, ro.sync.ecss.extensions.api.AuthorAccess)
 */
public boolean handleTyping(int offset, char ch, AuthorAccess authorAccess)
throws InvalidEditException {
 boolean handleTyping = false;
 AuthorSchemaManager authorSchemaManager = authorAccess.getDocumentController().getAuthorSchemaManager();
 if (!authorSchemaManager.isLearnSchema() &&
 !authorSchemaManager.hasLoadingErrors() &&
 authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartTyping()) {
 try {
 AuthorDocumentFragment characterFragment =
 authorAccess.getDocumentController().createNewDocumentTextFragment(String.valueOf(ch));
 handleTyping = handleInsertionEvent(offset, new AuthorDocumentFragment[] {characterFragment}, authorAccess);
 } catch (AuthorOperationException e) {
 throw new InvalidEditException(e.getMessage(), "Invalid typing event: " + e.getMessage(), e, false);
 }
 }
 return handleTyping;
}

Implementing the AuthorSchemaAwareEditingHandler gives the possibility to handle other events like: the
keyboard delete event at the given offset (using Delete or Backspace keys), delete element tags, delete selection, join
elements or paste fragment.

The complete source code of the implementation is found in the Example Files Listings, the Java Files section.

Configuring a Content completion handler

You can filter or contribute to items offered for content completion by implementing the ro.sync.contentcom-
pletion.xml.SchemaManagerFilter interface.

import java.util.List;

import ro.sync.contentcompletion.xml.CIAttribute;
import ro.sync.contentcompletion.xml.CIElement;
import ro.sync.contentcompletion.xml.CIValue;
import ro.sync.contentcompletion.xml.Context;
import ro.sync.contentcompletion.xml.SchemaManagerFilter;
import ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatPossibleValuesHasAttributeContext;

public class SDFSchemaManagerFilter implements SchemaManagerFilter {

297

Author Developer Guide

You can implement the various callbacks of the interface either by returning the default values given by <oXygen/>
or by contributing to the list of proposals. The filter can be applied on elements, attributes or on their values. Attributes
filtering can be implemented using the filterAttributes method and changing the default content completion
list of ro.sync.contentcompletion.xml.CIAttribute for the element provided by the current
ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext context. For example, the
SDFSchemaManagerFilter checks if the element from the current context is the table element and add the
frame attribute to the table list of attributes.

/**
 * Filter attributes of the "table" element.
 */
public List<CIAttribute> filterAttributes(List<CIAttribute> attributes,
 WhatAttributesCanGoHereContext context) {
 // If the element from the current context is the 'table' element add the
 // attribute named 'frame' to the list of default content completion proposals
 if (context != null) {
 ContextElement contextElement = context.getParentElement();
 if ("table".equals(contextElement.getQName())) {
 CIAttribute frameAttribute = new CIAttribute();
 frameAttribute.setName("frame");
 frameAttribute.setRequired(false);
 frameAttribute.setFixed(false);
 frameAttribute.setDefaultValue("void");
 if (attributes == null) {
 attributes = new ArrayList<CIAttribute>();
 }
 attributes.add(frameAttribute);
 }
 }
 return attributes;
}

The elements that can be inserted in a specific context can be filtered using the filterElements method. The
SDFSchemaManagerFilter uses this method to replace the td child element with the th element when header
is the current context element.

public List<CIElement> filterElements(List<CIElement> elements,
 WhatElementsCanGoHereContext context) {
 // If the element from the current context is the 'header' element remove the
 // 'td' element from the list of content completion proposals and add the
 // 'th' element.
 if (context != null) {
 Stack<ContextElement> elementStack = context.getElementStack();
 if (elementStack != null) {
 ContextElement contextElement = context.getElementStack().peek();
 if ("header".equals(contextElement.getQName())) {
 if (elements != null) {
 for (Iterator<CIElement> iterator = elements.iterator(); iterator.hasNext();) {
 CIElement element = iterator.next();
 // Remove the 'td' element
 if ("td".equals(element.getQName())) {
 elements.remove(element);
 break;
 }

298

Author Developer Guide

 }
 } else {
 elements = new ArrayList<CIElement>();
 }
 // Insert the 'th' element in the list of content completion proposals
 CIElement thElement = new SDFElement();
 thElement.setName("th");
 elements.add(thElement);
 }
 }
 } else {
 // If the given context is null then the given list of content completion elements contains
 // global elements.
 }
 return elements;
}

The elements or attributes values can be filtered using the filterElementValues or filterAttributeValues
methods.

The complete source code of the SDFSchemaManagerFilter implementation is found in the Example Files
Listings, the Java Files section.

Configuring a Link target element finder

The link target reference finder represents the support for finding references from links which indicate specific elements
inside an XML document. This support will only be available if a schema is associated with the document type.

If you do not define a custom link target reference finder, the DefaultElementLocatorProvider implement-
ation will be used by default. The interface which should be implemented for a custom link target reference finder is
ro.sync.ecss.extensions.api.link.ElementLocatorProvider. As an alternative, the
ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider implementation can also
be extended.

The used ElementLocatorProvider will be queried for an ElementLocator when a link location must be
determined (when user clicks on a link). Then, to find the corresponding (linked) element, the obtained ElementLoc-
ator will be queried for each element from the document.

The DefaultElementLocatorProvider implementation

The DefaultElementLocatorProvider implementation offers support for the most common types of links:

• links based on ID attribute values

• XPointer element() scheme

The method getElementLocator determines what ElementLocator should be used. In the default implement-
ation it checks if the link is an XPointer element() scheme otherwise it assumes it is an ID. A non-null IDTypeVeri-
fier will always be provided if a schema is associated with the document type.

The link string argument is the "anchor" part of the of the URL which is composed from the value of the link property
specified for the link element in the CSS.

public ElementLocator getElementLocator(IDTypeVerifier idVerifier,
 String link) {

299

Author Developer Guide

 ElementLocator elementLocator = null;
 try {
 if(link.startsWith("element(")){
 // xpointer element() scheme
 elementLocator = new XPointerElementLocator(idVerifier, link);
 } else {
 // Locate link element by ID
 elementLocator = new IDElementLocator(idVerifier, link);
 }
 } catch (ElementLocatorException e) {
 logger.warn("Exception when create element locator for link: "
 + link + ". Cause: " + e, e);
 }
 return elementLocator;
}

The XPointerElementLocator implementation

The XPointerElementLocator is an implementation of the abstract class ro.sync.ecss.exten-
sions.api.link.ElementLocator for links that have one of the following XPointer element() scheme patterns:

element(elementID) locate the element with the specified id

element(/1/2/3) A child sequence appearing alone identifies an element by means of stepwise nav-
igation, which is directed by a sequence of integers separated by slashes (/); each
integer n locates the nth child element of the previously located element.

element(elementID/3/4) A child sequence appearing after a NCName identifies an element by means of
stepwise navigation, starting from the element located by the given name.

The constructor separates the id/integers which are delimited by slashes(/) into a sequence of identifiers (an XPointer
path). It will also check that the link has one of the supported patterns of the XPointer element() scheme.

public XPointerElementLocator(IDTypeVerifier idVerifier, String link)
 throws ElementLocatorException {
 super(link);
 this.idVerifier = idVerifier;

 link = link.substring("element(".length(), link.length() - 1);

 StringTokenizer stringTokenizer = new StringTokenizer(link, "/", false);
 xpointerPath = new String[stringTokenizer.countTokens()];
 int i = 0;
 while (stringTokenizer.hasMoreTokens()) {
 xpointerPath[i] = stringTokenizer.nextToken();
 boolean invalidFormat = false;

 // Empty xpointer component is not supported
 if(xpointerPath[i].length() == 0){
 invalidFormat = true;
 }

 if(i > 0){
 try {
 Integer.parseInt(xpointerPath[i]);

300

Author Developer Guide

 } catch (NumberFormatException e) {
 invalidFormat = true;
 }
 }

 if(invalidFormat){
 throw new ElementLocatorException(
 "Only the element() scheme is supported when locating XPointer links."
 + "Supported formats: element(elementID), element(/1/2/3),
 element(elemID/2/3/4).");
 }
 i++;
 }

 if(Character.isDigit(xpointerPath[0].charAt(0))){
 // This is the case when xpointer have the following pattern /1/5/7
 xpointerPathDepth = xpointerPath.length;
 } else {
 // This is the case when xpointer starts with an element ID
 xpointerPathDepth = -1;
 startWithElementID = true;
 }
}

The method startElement will be invoked at the beginning of every element in the XML document(even when
the element is empty). The arguments it takes are

uri the namespace URI, or the empty string if the element has no namespace URI
or if namespace processing is disabled

localName the local name of the element

qName the qualified name of the element

atts the attributes attached to the element. If there are no attributes, it will be empty.

The method returns true if the processed element is found to be the one indicated by the link.

The XPointerElementLocator implementation of the startElement will update the depth of the current
element and keep the index of the element in its parent. If the xpointerPath starts with an element ID then the
current element ID is verified to match the specified ID. If this is the case the depth of the XPointer is updated taking
account of the depth of the current element.

If the XPointer path depth is the same as the current element depth then the kept indices of the current element path
are compared to the indices in the XPointer path. If all of them match then the element has been found.

public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {
 boolean linkLocated = false;
 // Increase current element document depth
 startElementDepth ++;

 if (endElementDepth != startElementDepth) {
 // The current element is the first child of the parent
 currentElementIndexStack.push(new Integer(1));

301

Author Developer Guide

 } else {
 // Another element in the parent element
 currentElementIndexStack.push(new Integer(lastIndexInParent + 1));
 }

 if (startWithElementID) {
 // This the case when xpointer path starts with an element ID.
 String xpointerElement = xpointerPath[0];
 for (int i = 0; i < atts.length; i++) {
 if(xpointerElement.equals(atts[i].getValue())){
 if(idVerifier.hasIDType(
 localName, uri, atts[i].getQName(), atts[i].getNamespace())){
 xpointerPathDepth = startElementDepth + xpointerPath.length - 1;
 break;
 }
 }
 }
 }

 if (xpointerPathDepth == startElementDepth){
 // check if xpointer path matches with the current element path
 linkLocated = true;
 try {
 int xpointerIdx = xpointerPath.length - 1;
 int stackIdx = currentElementIndexStack.size() - 1;
 int stopIdx = startWithElementID ? 1 : 0;
 while (xpointerIdx >= stopIdx && stackIdx >= 0) {
 int xpointerIndex = Integer.parseInt(xpointerPath[xpointerIdx]);
 int currentElementIndex =
 ((Integer)currentElementIndexStack.get(stackIdx)).intValue();
 if(xpointerIndex != currentElementIndex) {
 linkLocated = false;
 break;
 }

 xpointerIdx--;
 stackIdx--;
 }

 } catch (NumberFormatException e) {
 logger.warn(e,e);
 }
 }
 return linkLocated;
}

The method endElement will be invoked at the end of every element in the XML document (even when the element
is empty).

The XPointerElementLocator implementation of the endElement updates the depth of the current element
path and the index of the element in its parent.

public void endElement(String uri, String localName, String name) {
 endElementDepth = startElementDepth;

302

Author Developer Guide

 startElementDepth --;
 lastIndexInParent = ((Integer)currentElementIndexStack.pop()).intValue();
}

The IDElementLocator implementation

The IDElementLocator is an implementation of the abstract class ro.sync.ecss.exten-
sions.api.link.ElementLocator for links that use an id.

The constructor only assigns field values and the method endElement is empty for this implementation.

The method startElement checks each of the element's attribute values and when one matches the link, it considers
the element found if one of the following conditions is satisfied:

• the qualified name of the attribute is xml:id

• the attribute is of type ID

The type of the attribute is checked with the help of the method IDTypeVerifier.hasIDType.

public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {
 boolean elementFound = false;
 for (int i = 0; i < atts.length; i++) {
 if (link.equals(atts[i].getValue())) {
 if("xml:id".equals(atts[i].getQName())) {
 // xml:id attribute
 elementFound = true;
 } else {
 // check if attribute has ID type
 String attrLocalName =
 ExtensionUtil.getLocalName(atts[i].getQName());
 String attrUri = atts[i].getNamespace();
 if (idVerifier.hasIDType(localName, uri, attrLocalName, attrUri)) {
 elementFound = true;
 }
 }
 }
 }

 return elementFound;
}

Creating a customized link target reference finder

If you need to create a custom link target reference finder you can do so by following these steps.

Create the class which will implement the ro.sync.ecss.extensions.api.link.ElementLocatorPro-
vider interface. As an alternative, your class could extend ro.sync.ecss.extensions.commons.De-
faultElementLocatorProvider, the default implementation.

As a start point you can use the source code of the DefaultElementLocatorProvider implementation which
is found in the Example Files Listings, the Java Files section. There you will also find the implementations for
XPointerElementLocator and IDElementLocator .

303

Author Developer Guide

Configuring a custom Drag and Drop listener

You can add your own drag and drop listener implementation of ro.sync.ecss.extensions.api.DnDHandler.
You can choose from three interfaces to implement depending on whether you are using the framework with the
<oXygen/> Eclipse plugin or the standalone version or if you want to add the handler for the Text or Author pages.

Table 8.2. Interfaces for the DnD listener

DescriptionInterface

Receives callbacks from the <oXygen/> standalone application
for Drag And Drop in Author

ro.sync.exml.editor.xmleditor.pageau-
thor.AuthorCustomDnDHandler

Receives callbacks from the <oXygen/> Eclipse plugin for
Drag And Drop in Author

com.oxygenxml.editor.editors.au-
thor.AuthorDnDListener

Receives callbacks from the <oXygen/> Eclipse plugin for
Drag And Drop in Text

com.oxygenxml.editor.editors.TextDnD-
Listener

Configuring a References Resolver

You need to provide a handler for resolving references and obtain the content they refer. In our case the element which
has references is ref and the attribute indicating the referred resource is location. You will have to implement a Java
extension class for obtaining the referred resources.

Create the class simple.documentation.framework.ReferencesResolver. This class must implement
the ro.sync.ecss.extensions.api.AuthorReferenceResolver interface.

import ro.sync.ecss.extensions.api.AuthorReferenceResolver;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;
import ro.sync.ecss.extensions.api.node.AuthorNode;

public class ReferencesResolver
 implements AuthorReferenceResolver {

The method hasReferences verifies if the handler considers the node to have references. It takes as argument an
AuthorNode that represents the node which will be verified. The method will return true if the node is considered
to have references. In our case, to be a reference the node must be an element with the name ref and it must have an
attribute named location.

public boolean hasReferences(AuthorNode node) {
 boolean hasReferences = false;
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 hasReferences = attrValue != null;
 }
 }
 return hasReferences;
}

The method getDisplayName returns the display name of the node that contains the expanded referred content. It
takes as argument an AuthorNode that represents the node for which the display name is needed. The referred content

304

Author Developer Guide

engine will ask this AuthorReferenceResolver implementation what is the display name for each node which
is considered a reference. In our case the display name is the value of the location attribute from the ref element.

public String getDisplayName(AuthorNode node) {
 String displayName = "ref-fragment";
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 displayName = attrValue.getValue();
 }
 }
 }
 return displayName;
}

The method resolveReference resolves the reference of the node and returns a SAXSource with the parser and
the parser's input source. It takes as arguments an AuthorNode that represents the node for which the reference needs
resolving, the systemID of the node, the AuthorAccess with access methods to the Author data model and a SAX
EntityResolver which resolves resources that are already opened in another editor or resolve resources through
the XML catalog. In the implementation you need to resolve the reference relative to the systemID, and create a
parser and an input source over the resolved reference.

public SAXSource resolveReference(
 AuthorNode node,
 String systemID,
 AuthorAccess authorAccess,
 EntityResolver entityResolver) {
 SAXSource saxSource = null;

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 String attrStringVal = attrValue.getValue();
 try {
 URL absoluteUrl = new URL(new URL(systemID),
 authorAccess.correctURL(attrStringVal));

 InputSource inputSource = entityResolver.resolveEntity(null,
 absoluteUrl.toString());
 if(inputSource == null) {
 inputSource = new InputSource(absoluteUrl.toString());
 }

 XMLReader xmlReader = authorAccess.newNonValidatingXMLReader();
 xmlReader.setEntityResolver(entityResolver);

 saxSource = new SAXSource(xmlReader, inputSource);
 } catch (MalformedURLException e) {
 logger.error(e, e);
 } catch (SAXException e) {

305

Author Developer Guide

 logger.error(e, e);
 } catch (IOException e) {
 logger.error(e, e);
 }
 }
 }
 }

 return saxSource;
}

The method getReferenceUniqueIDshould return an unique identifier for the node reference. The unique identi-
fier is used to avoid resolving the references recursively. It takes as argument an AuthorNode that represents the
node with the reference. In the implementation the unique identifier is the value of the location attribute from the ref
element.

public String getDisplayName(AuthorNode node) {
 String displayName = "ref-fragment";
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 displayName = attrValue.getValue();
 }
 }
 }
 return displayName;
}

The method getReferenceSystemIDshould return the systemID of the referred content. It takes as arguments
an AuthorNode that represents the node with the reference and the AuthorAccess with access methods to the
Author data model. In the implementation you use the value of the location attribute from the ref element and resolve
it relatively to the XML base URL of the node.

public String getReferenceSystemID(AuthorNode node,
 AuthorAccess authorAccess) {
 String systemID = null;
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 String attrStringVal = attrValue.getValue();
 try {
 URL absoluteUrl = new URL(node.getXMLBaseURL(),
 authorAccess.correctURL(attrStringVal));
 systemID = absoluteUrl.toString();
 } catch (MalformedURLException e) {
 logger.error(e, e);
 }
 }
 }
 }

306

Author Developer Guide

 return systemID;
}

The complete source code of the implementation is found in the Example Files Listings, the Java Files section.

In the listing below, the XML document contains the ref element:

<ref location="referred.xml">Reference</ref>

When no reference resolver is specified, the reference has the following layout:

Figure 8.23. Reference with no specified reference resolver

When the above implementation is configured, the reference has the expected layout:

Figure 8.24. Reference with reference resolver

Configuring CSS Styles Filter

You can modify the CSS styles for each ro.sync.ecss.extensions.api.node.AuthorNode rendered in
the Author page using an implementation of ro.sync.ecss.extensions.api.StylesFilter You can
implement the various callbacks of the interface either by returning the default value given by <oXygen/> or by con-
tributing to the value. The received styles ro.sync.ecss.css.Styles can be processed and values can be
overwritten with your own. For example you can override the KEY_BACKGROUND_COLOR style to return your own
implementation of ro.sync.exml.view.graphics.Color or override the KEY_FONT style to return your
own implementation of ro.sync.exml.view.graphics.Font.

For instance in our simple document example the filter can change the value of the KEY_FONT property for the table
element:

package simple.documentation.framework;

import ro.sync.ecss.css.Styles;
import ro.sync.ecss.extensions.api.StylesFilter;
import ro.sync.ecss.extensions.api.node.AuthorNode;
import ro.sync.exml.view.graphics.Font;

public class SDFStylesFilter implements StylesFilter {

 public Styles filter(Styles styles, AuthorNode authorNode) {
 if (AuthorNode.NODE_TYPE_ELEMENT == authorNode.getType()
 && "table".equals(authorNode.getName())) {
 styles.setProperty(Styles.KEY_FONT, new Font(null, Font.BOLD, 12));
 }

307

Author Developer Guide

 return styles;
 }
}

Configuring a Table Column Width Provider

In the documentation framework the table element and the table columns can have specified widths. In order for
these widths to be considered by <oXygen/> Author we need to provide the means to determine them. As explained
in the Styling the Table Element section which describes the CSS properties needed for defining a table, if you use the
table element attribute width <oXygen/> can determine the table width automatically. In this example the table has
col elements with width attributes that are not recognized by default. You will need to implement a Java extension
class for determining the column widths.

Create the class simple.documentation.framework.TableColumnWidthProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interface.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperationException;
import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;
import ro.sync.ecss.extensions.api.WidthRepresentation;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableColumnWidthProvider
 implements AuthorTableColumnWidthProvider {

The method init is taking as argument the AuthorElement that represents the XML table element. In our case
the column widths are specified in col elements from the table element. In such cases you must collect the span
information by analyzing the table element.

 public void init(AuthorElement tableElement) {
 this.tableElement = tableElement;
 AuthorElement[] colChildren = tableElement.getElementsByLocalName("customcol");
 if (colChildren != null && colChildren.length > 0) {
 for (int i = 0; i < colChildren.length; i++) {
 AuthorElement colChild = colChildren[i];
 if (i == 0) {
 colsStartOffset = colChild.getStartOffset();
 }
 if (i == colChildren.length - 1) {
 colsEndOffset = colChild.getEndOffset();
 }
 // Determine the 'width' for this col.
 AttrValue colWidthAttribute = colChild.getAttribute("width");
 String colWidth = null;
 if (colWidthAttribute != null) {
 colWidth = colWidthAttribute.getValue();
 // Add WidthRepresentation objects for the columns this 'customcol' specification
 // spans over.
 colWidthSpecs.add(new WidthRepresentation(colWidth, true));
 }
 }
 }
 }

308

Author Developer Guide

The method isTableAcceptingWidth should check if the table cells are td.

public boolean isTableAcceptingWidth(String tableCellsTagName) {
 return "td".equals(tableCellsTagName);
}

The method isTableAndColumnsResizable should check if the table cells are td. This method determines if
the table and columns can be resized by dragging with the mouse the edge of a column.

public boolean isTableAndColumnsResizable(String tableCellsTagName) {
 return "td".equals(tableCellsTagName);
}

The methods getTableWidth and getCellWidth are used for determining the table width and the column width.
The table layout engine will ask this AuthorTableColumnWidthProvider implementation what is the table
width for each table element and the cell width for each cell element from the table that was marked as cell in the CSS
using the property display:table-cell. The implementation is simple and just parses the value of the width
attribute. The methods must return null for the tables/cells that do not have a specified width.

 public WidthRepresentation getTableWidth(String tableCellsTagName) {
 WidthRepresentation toReturn = null;
 if (tableElement != null && "td".equals(tableCellsTagName)) {
 AttrValue widthAttr = tableElement.getAttribute("width");
 if (widthAttr != null) {
 String width = widthAttr.getValue();
 if (width != null) {
 toReturn = new WidthRepresentation(width, true);
 }
 }
 }
 return toReturn;
 }

 public List<WidthRepresentation> getCellWidth(AuthorElement cellElement, int colNumberStart,
 int colSpan) {
 List<WidthRepresentation> toReturn = null;
 int size = colWidthSpecs.size();
 if (size >= colNumberStart && size >= colNumberStart + colSpan) {
 toReturn = new ArrayList<WidthRepresentation>(colSpan);
 for (int i = colNumberStart; i < colNumberStart + colSpan; i ++) {
 // Add the column widths
 toReturn.add(colWidthSpecs.get(i));
 }
 }
 return toReturn;
 }

The methods commitTableWidthModification and commitColumnWidthModifications are used for
committing changes made to the width of the table or its columns when using the mouse drag gestures.

 public void commitTableWidthModification(AuthorDocumentController authorDocumentController,
 int newTableWidth, String tableCellsTagName) throws AuthorOperationException {
 if ("td".equals(tableCellsTagName)) {
 if (newTableWidth > 0) {
 if (tableElement != null) {

309

Author Developer Guide

 String newWidth = String.valueOf(newTableWidth);

 authorDocumentController.setAttribute(
 "width",
 new AttrValue(newWidth),
 tableElement);
 } else {
 throw new AuthorOperationException("Cannot find the element representing the table.");
 }
 }
 }
 }

public void commitColumnWidthModifications(AuthorDocumentController authorDocumentController,
 WidthRepresentation[] colWidths, String tableCellsTagName) throws AuthorOperationException {
 if ("td".equals(tableCellsTagName)) {
 if (colWidths != null && tableElement != null) {
 if (colsStartOffset >= 0 && colsEndOffset >= 0 && colsStartOffset < colsEndOffset) {
 authorDocumentController.delete(colsStartOffset,
 colsEndOffset);
 }
 String xmlFragment = createXMLFragment(colWidths);
 int offset = -1;
 AuthorElement[] header = tableElement.getElementsByLocalName("header");
 if (header != null && header.length > 0) {
 // Insert the cols elements before the 'header' element
 offset = header[0].getStartOffset();
 }
 if (offset == -1) {
 throw new AuthorOperationException("No valid offset to insert the columns width specification.");
 }
 authorDocumentController.insertXMLFragment(xmlFragment, offset);
 }
 }
 }

 private String createXMLFragment(WidthRepresentation[] widthRepresentations) {
 StringBuffer fragment = new StringBuffer();
 String ns = tableElement.getNamespace();
 for (int i = 0; i < widthRepresentations.length; i++) {
 WidthRepresentation width = widthRepresentations[i];
 fragment.append("<customcol");
 String strRepresentation = width.getWidthRepresentation();
 if (strRepresentation != null) {
 fragment.append(" width=\"" + width.getWidthRepresentation() + "\"");
 }
 if (ns != null && ns.length() > 0) {
 fragment.append(" xmlns=\"" + ns + "\"");
 }
 fragment.append("/>");
 }
 return fragment.toString();
 }

310

Author Developer Guide

The following three methods are used to determine what type of column width specifications the table column width
provider support. In our case all types of specifications are allowed:

 public boolean isAcceptingFixedColumnWidths(String tableCellsTagName) {
 return true;
 }

 public boolean isAcceptingPercentageColumnWidths(String tableCellsTagName) {
 return true;
 }

 public boolean isAcceptingProportionalColumnWidths(String tableCellsTagName) {
 return true;
 }

The complete source code of the implementation is found in the Example Files Listings, the Java Files section.

In the listing below, the XML document contains the table element:

<table width="300">
 <customcol width="50.0px"/>
 <customcol width="1*"/>
 <customcol width="2*"/>
 <customcol width="20%"/>
 <header>
 <td>C1</td>
 <td>C2</td>
 <td>C3</td>
 <td>C4</td>
 </header>
 <tr>
 <td>cs=1, rs=1</td>
 <td>cs=1, rs=1</td>
 <td row_span="2">cs=1, rs=2</td>
 <td row_span="3">cs=1, rs=3</td>
 </tr>
 <tr>
 <td>cs=1, rs=1</td>
 <td>cs=1, rs=1</td>
 </tr>
 <tr>
 <td column_span="3">cs=3, rs=1</td>
 </tr>
</table>

When no table column width provider is specified, the table has the following layout:

311

Author Developer Guide

Figure 8.25. Table layout when no column width provider is specified

When the above implementation is configured, the table has the correct layout:

Figure 8.26. Columns with custom widths

Configuring a Table Cell Span Provider

In the documentation framework the table element can have cells that span over multiple columns and rows. As
explained in the Styling the Table Element section which describes the CSS properties needed for defining a table,
you need to indicate <oXygen/> Author a method to determine the cell spanning. If you use the cell element attributes
rowspan and colspan or rows and cols, <oXygen/> can determine the cell spanning automatically. In our example
the td element uses the attributes row_span and column_span that are not recognized by default. You will need to
implement a Java extension class for defining the cell spanning.

Create the class simple.documentation.framework.TableCellSpanProvider. This class must implement
the ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSpanProvider
 implements AuthorTableCellSpanProvider {

312

Author Developer Guide

The method init is taking as argument the AuthorElement that represents the XML table element. In our case
the cell span is specified for each of the cells so you leave this method empty. However there are cases like the table
CALS model when the cell spanning is specified in the table element. In such cases you must collect the span in-
formation by analyzing the table element.

public void init(AuthorElement table) {
}

The method getColSpan is taking as argument the table cell. The table layout engine will ask this AuthorTa-
bleSpanSupport implementation what is the column span and the row span for each XML element from the table
that was marked as cell in the CSS using the property display:table-cell. The implementation is simple and
just parses the value of column_span attribute. The method must return null for all the cells that do not change the
span specification.

public Integer getColSpan(AuthorElement cell) {
 Integer colSpan = null;

 AttrValue attrValue = cell.getAttribute("column_span");
 if(attrValue != null) {
 // The attribute was found.
 String cs = attrValue.getValue();
 if(cs != null) {
 try {
 colSpan = new Integer(cs);
 } catch (NumberFormatException ex) {
 // The attribute value was not a number.
 }
 }
 }
 return colSpan;
}

The row span is determined in a similar manner:

public Integer getRowSpan(AuthorElement cell) {
 Integer rowSpan = null;

 AttrValue attrValue = cell.getAttribute("row_span");
 if(attrValue != null) {
 // The attribute was found.
 String rs = attrValue.getValue();
 if(rs != null) {
 try {
 rowSpan = new Integer(rs);
 } catch (NumberFormatException ex) {
 // The attribute value was not a number.
 }
 }
 }
 return rowSpan;
}

The method hasColumnSpecifications always returns true considering column specifications always available.

313

Author Developer Guide

public boolean hasColumnSpecifications(AuthorElement tableElement) {
 return true;
}

The complete source code of the implementation is found in the Example Files Listings, the Java Files section.

In the listing below, the XML document contains the table element:

<table>
 <header>
 <td>C1</td>
 <td>C2</td>
 <td>C3</td>
 <td>C4</td>
 </header>
 <tr>
 <td>cs=1, rs=1</td>
 <td column_span="2" row_span="2">cs=2, rs=2</td>
 <td row_span="3">cs=1, rs=3</td>
 </tr>
 <tr>
 <td>cs=1, rs=1</td>
 </tr>
 <tr>
 <td column_span="3">cs=3, rs=1</td>
 </tr>
</table>

When no table cell span provider is specified, the table has the following layout:

Figure 8.27. Table layout when no cell span provider is specified

When the above implementation is configured, the table has the correct layout:

314

Author Developer Guide

Figure 8.28. Cells spanning multiple rows and columns.

Configuring an Unique Attributes Recognizer

The ro.sync.ecss.extensions.api.UniqueAttributesRecognizer interface can be implemented
if you want to provide for your framework the following features:

Automatic ID generation You can automatically generate unique IDs for newly inserted elements. Imple-
mentations are already available for the DITA and Docbook frameworks. The
following methods can be implemented to accomplish this:

/**
 * Assign unique IDs between a start
 * and an end offset in the document
 * @param startOffset Start offset
 * @param endOffset End offset
 */
void assignUniqueIDs(int startOffset, int endOffset);

/**
 * @return true if auto
 */
boolean isAutoIDGenerationActive();

Avoiding copying unique attributes
when "Split" is called inside an ele-
ment

You can split the current block element by pressing the "Enter" key and then
choosing "Split". This is a very useful way to create new paragraphs. All attrib-
utes are by default copied on the new element but if those attributes are IDs you
sometimes want to avoid creating validation errors in the editor. Implementing
the following method, you can decide whether an attribute should be copied or
not during the split:

 /**
 * Check if the attribute specified by QName can
 * be considered as a valid attribute to copy
 * when the element is split.
 *
 * @param attrQName The attribute qualified name

315

Author Developer Guide

 * @param element The element
 * @return true if the attribute should be copied
 * when Split is performed.
 */
 boolean copyAttributeOnSplit(String attrQName,
 AuthorElement element);

Tip

The ro.sync.ecss.extensions.commons.id.DefaultU-
niqueAttributesRecognizer class is an implementation of the
interface which can be extended by your customization to provide easy
assignation of IDs in your framework. You can also check out the DITA
and Docbook implementations of ro.sync.ecss.exten-
sions.api.UniqueAttributesRecognizer to see how they
were implemented and connected to the extensions bundle.

Customizing the default CSS of a document type
The easiest way of customizing the default CSS stylesheet of a document type is to create a new CSS stylesheet in the
same folder as the customized one, import the customized CSS stylesheet and set the new stylesheet as the default CSS
of the document type. For example let us customize the default CSS for DITA documents by changing the background
color of the task and topic elements to red. First you create a new CSS stylesheet called my_dita.css in the folder
${frameworks}/dita/css_classed where the default stylesheet called dita.css is located. ${frameworks} is the subfolder
frameworks of the Oxygen XML Editor. The new stylesheet my_dita.css contains:

@import "dita.css";

task, topic{
 background-color:red;
}

To set the new stylesheet as the default CSS stylesheet for DITA documents first open the Document Type Association
preferences panel from menu Options → Preferences+Document Type Association Select the DITA document type
and start editing it by pressing the Edit button. The user role must be set to Developer otherwise a warning is displayed
and a duplicate copy of the DITA document type is created and edited. This check makes sure that regular content
authors who just edit the content of XML documents do not accidentally modify the document type. In the Author tab
of the document type edit dialog change the URI of the default CSS stylesheet from ${frame-
works}/dita/css_classed/dita.css to ${frameworks}/dita/css_classed/my_dita.css.

Figure 8.29. Set the location of the default CSS stylesheet

316

Author Developer Guide

Press OK in all the dialogs to validate the changes. Now you can start editing DITA documents based on the new CSS
stylesheet. You can edit the new CSS stylesheet itself at any time and see the effects on rendering DITA XML documents
in the Author mode by running the Refresh action available on the Author toolbar and on the DITA menu.

Document type sharing
A document type can be shared between authors in two ways:

• save the document type at global level in the Document Type Association panel and distribute a zip file that includes
all the files of the document type (CSS stylesheets, jar files with custom actions, etc). Each user will unzip the zip
file in a subdirectory of the ${frameworks} directory and will restart the application for adding the new document
type to the list of the Document Type Association panel

• save the document type at project level in the Document Type Association panel and distribute both the Oxygen
project file and the files of the document type (CSS stylesheets, jar files with custom actions, etc). Each user will
copy the files of the document type in the subdirectory of the ${frameworks} directory that corresponds to the doc-
ument type and will load the Oxygen project file in the Project view.

CSS support in <oXygen/> Author

CSS 2.1 features

Supported selectors

The following CSS level 2.1 selectors are supported by the <oXygen/> Author:

317

Author Developer Guide

Table 8.3. Supported CSS 2.1 selectors

Description/ExampleNameExpression

Matches any elementUniversal selector*

Matches any E element (i.e an element with the local name E)Type selectorE

Matches any F element that is a descendant of an E element.Descendant selectorE F

Matches any F element that is a child of an element E.Child selectorsE > F

Matches element E when E is the first child of its parent.The :first-child pseudo-classE:first-child

Matches element of type E if it is in (human) language c (the
document language specifies how language is determined).

The :lang() pseudo-classE:lang(c)

Matches any F element immediately preceded by a sibling element
E.

Adjacent selectorE + F

Matches any E element with the "foo" attribute set (whatever the
value).

Attribute selectorE[foo]

Matches any E element whose "foo" attribute value is exactly
equal to "warning".

Attribute selectorE[foo="warning"]

Matches any E element whose "foo" attribute value is a list of
space-separated values, one of which is exactly equal to "warning".

Attribute selectorE[foo~="warning"]

Matches any E element whose "lang" attribute has a hyphen-sep-
arated list of values beginning (from the left) with "en".

Attribute selectorE[lang|="en"]

The ':before' and ':after' pseudo-elements can be used to insert
generated content before or after an element's content.

Pseudo elementsE:before and E:after

Unsupported selectors

The following CSS level 2.1 selectors are not supported by the <oXygen/> Author:

Table 8.4. Unsupported CSS 2.1 selectors

Description/ExampleNameExpression

Matches any E element with ID equal to "myid".ID selectorsE#myid

Matches element E if E is the source anchor of a hyperlink of
which the target is not yet visited (:link) or already visited (:vis-
ited).

The link pseudo-classE:link, E:visited

Matches E during certain user actions.The dynamic pseudo-classesE:active, E:hover,
E:focus

The :first-line pseudo-element applies special styles to the con-
tents of the first formatted line of a paragraph.

The :first-line pseudo-classE:first-line

The :first-letter pseudo-element must select the first letter of the
first line of a block, if it is not preceded by any other content
(such as images or inline tables) on its line. The :first-letter
pseudo-element may be used for "initial caps" and "drop caps",
which are common typographical effects.

The :first-letter pseudo-classE:first-letter

318

Author Developer Guide

Properties Support Table

All the properties belonging to the aural and paged categories are not supported in <oXygen/> Author. The properties
from the table below belong to the visual category.

319

Author Developer Guide

Table 8.5. CSS Level 2.1 Properties and their support in <oXygen/> Author

Not Supported ValuesSupported ValuesName

ALL'background-attachment'

transparent<color> | inherit'background-color'

ALL'background-image'

ALL'background-position'

ALL'background-repeat'

ALL'background'

ALL'border-collapse'

transparent<color> | inherit'border-color'

ALL'border-spacing'

<border-style> | inherit'border-style'

[<border-width> || <border-style> || 'border-top-
color'] | inherit

'border-top' 'border-right' 'border-bot-
tom' 'border-left'

transparent<color> | inherit'border-top-color' 'border-right-color'
'border-bottom-color' 'border-left-color'

<border-style> | inherit'border-top-style' 'border-right-style'
'border-bottom-style' 'border-left-style'

<border-width> | inherit'border-top-width' 'border-right-width'
'border-bottom-width' 'border-left-width'

<border-width> | inherit'border-width'

[<border-width> || <border-style> || 'border-top-
color'] | inherit

'border'

ALL'bottom'

ALL'caption-side'

ALL'clear'

ALL'clip'

<color> | inherit'color'

no-open-quote | no-close-
quote

normal | none | [<string> | <uri> | <counter> | attr(
<identifier>) | open-quote | close-quote]+ | inherit

'content'

[<identifier> <integer> ?]+ | none | inherit'counter-increment'

[<identifier> <integer> ?]+ | none | inherit'counter-reset'

ALL'cursor'

rtl | inheritltr'direction'

run-in | inline-block | in-
line-table - considered
block

inline | block | list-item | table | table-row-group |
table-header-group | table-footer-group | table-row
| table-column-group | table-column | table-cell |
table-caption | none | inherit

'display'

show | hide | inherit'empty-cells'

ALL'float'

[[<family-name> | <generic-family>] [, <family-
name> | <generic-family>]*] | inherit

'font-family'

320

Author Developer Guide

Not Supported ValuesSupported ValuesName

<absolute-size> | <relative-size> | <length> |
<percentage> | inherit

'font-size'

normal | italic | oblique | inherit'font-style'

ALL'font-variant'

normal | bold | bolder | lighter | 100 | 200 | 300 |
400 | 500 | 600 | 700 | 800 | 900 | inherit

'font-weight'

'font-variant' 'line-height'
caption | icon | menu |
message-box | small-cap-
tion | status-bar

[['font-style' || 'font-weight']? 'font-size' [/ 'line-
height']? 'font-family'] | inherit

'font'

ALL'height'

ALL'left'

ALL'letter-spacing'

normal | <number> | <length> | <percentage> | in-
herit

'line-height'

ALL'list-style-image'

ALL'list-style-position'

lower-greek | armenian |
georgian

disc | circle | square | decimal | lower-roman | up-
per-roman | lower-latin | upper-latin | lower-alpha
| upper-alpha | none | inherit

'list-style-type'

'list-style-position' || 'list-
style-image'

['list-style-type'] | inherit'list-style'

<margin-width> | inherit'margin-right' 'margin-left'

<margin-width> | inherit'margin-top' 'margin-bottom'

<margin-width> | inherit'margin'

ALL'max-height'

<length> | <percentage> | none | inherit - supported
for block-level and replaced elements, e.g. images,
tables, table cells.

'max-width'

ALL'min-height'

<length> | <percentage> | inherit - supported for
block-level and replaced elements, e.g. images,
tables, table cells.

'min-width'

ALL'outline-color'

ALL'outline-style'

ALL'outline-width'

ALL'outline'

ALL'overflow'

<padding-width> | inherit'padding-top' 'padding-right' 'padding-
bottom' 'padding-left'

<padding-width> | inherit'padding'

ALL'position'

321

Author Developer Guide

Not Supported ValuesSupported ValuesName

ALL'quotes'

ALL'right'

fixed | inheritauto'table-layout'

justifyleft | right | center | inherit'text-align'

blinknone | [underline || overline || line-through] | inher-
it

'text-decoration'

ALL'text-indent'

ALL'text-transform'

ALL'top'

ALL'unicode-bidi'

<percentage> | <length>baseline | sub | super | top | text-top | middle | bot-
tom | text-bottom | inherit

'vertical-align'

collapsevisible | hidden | inherit'visibility'

normal | pre | nowrap | pre-wrap | pre-line'white-space'

<length> | <percentage> | auto | inherit - supported
for block-level and replaced elements, e.g. images,
tables, table cells.

'width'

ALL'word-spacing'

ALL'z-index'

<oXygen/> CSS Extensions

Media Type oxygen

The style sheets can specify how a document is to be presented on different media: on the screen, on paper, speech
synthesiser, etc. You can specify that some of the features of your CSS stylesheet should be taken into account only
in the <oXygen/> Author and ignored in the rest. This can be accomplished by using the media type oxygen.

For instance using the following CSS:

b{
 font-weight:bold;
 display:inline;
}

@media oxygen{
 b{
 text-decoration:underline;
 }
}

would make a text bold if the document was opened in a web browser who does not recognize @media oxygen and
bold and underlined in <oXygen/> Author.

You can use this media type to group specific <oXygen/> CSS features and also to hide them when opening the docu-
ments with other viewers.

322

Author Developer Guide

Supported Features from CSS Level 3

Namespace Selectors

In the current CSS 2.1 standard the element selectors are ignoring the namespaces of the elements they are matching.
Only the local name of the elements are considered in the selector matching process.

<oXygen/> Author uses a different approach similar to the CSS Level 3 specification. If the element name from the
CSS selector is not preceded by a namespace prefix it is considered to match an element with the same local name as
the selector value and ANY namespace, otherwise the element must match both the local name and the namespace.

In CSS up to version 2.1 the name tokens from the selectors are matching all elements from ANY namespace that have
the same local name. Example:

<x:b xmlns:x="ns_x"/>
<y:b xmlns:y="ns_y"/>

Are both matched by the rule:

b {font-weight:bold}

Starting with CSS Level 3 you can create selectors that are namespace aware.

Example 8.5. Defining both prefixed namespaces and the default namespace

Given the namespace declarations:

@namespace sync "http://sync.example.org";
@namespace "http://example.com/foo";

In a context where the default namespace applies:

sync|A represents the name A in the http://sync.example.org namespace.

|B represents the name B that belongs to NO NAMESPACE.

*|C represents the name C in ANY namespace, including NO NAMESPACE.

D represents the name D in the http://example.com/foo namespace.

Example 8.6. Defining only prefixed namespaces

Given the namespace declaration:

@namespace sync "http://sync.example.org";

Then:

sync|A represents the name A in the http://sync.example.org namespace.

|B represents the name B that belongs to NO NAMESPACE.

*|C represents the name C in ANY namespace, including NO NAMESPACE.

D represents the name D in ANY namespace, including NO NAMESPACE.

323

Author Developer Guide

The attr() function: Properties Values Collected from the Edited Document.

In CSS Level 2.1 you may collect attribute values and use them as content only for the pseudo elements. For instance
the :before pseudo-element can be used to insert some content before an element. This is valid in CSS 2.1:

title:before{
 content: "Title id=(" attr(id) ")";
}

If the title element from the XML document is:

<title id="title12">My title.</title>

Then the title will be displayed as:

Title id=(title12) My title.

In <oXygen/> Author the use of attr() function is available not only for the content property, but also for any
other property. This is similar to the CSS Level 3 working draft: http://www.w3.org/TR/2006/WD-css3-values-
20060919/#functional. The arguments of the function are:

attr(attribute_name, attribute_type, default_value);

attribute_name ;
attribute_type ;
default_value ;

attribute_name The name of the attribute. This argument is required.

attribute_type The type of the attribute. This argument is optional. If it is missing the type of the argument is
considered string. This argument indicates what is the meaning of the attribute value and
helps to perform conversions of this value. <oXygen/> Author accepts one of the following
types:

color The value represents a color. The attribute may specify a color in different
formats. <oXygen/> Author supports colors specified either by name: red,
blue, green, etc. or as an RGB hexadecimal value #FFEEFF.

url The value is an URL pointing to a media object. <oXygen/> Author supports
only images. The attribute value can be a complete URL, or a relative one to
the XML document. Please note that this URL is also resolved through the
catalog resolver.

integer The value must be interpreted as an integer.

number The value must be interpreted as a float number.

length The value must be interpreted as an integer.

percentage The value must be interpreted relative to another value (length, size) expressed
in percents.

em The value must be interpreted as a size. 1 em is equal to the font-size of the
relevant font.

324

Author Developer Guide

http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional
http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional

ex The value must be interpreted as a size. 1 ex is equal to the height of the x
character of the relevant font.

px The value must be interpreted as a size expressed in pixels relative to the
viewing device.

mm The value must be interpreted as a size expressed in millimeters.

cm The value must be interpreted as a size expressed in centimeters.

in The value must be interpreted as a size expressed in inches. 1 inch is equal
to 2.54 centimeters.

pt The value must be interpreted as a size expressed in points. The points used
by CSS2 are equal to 1/72th of an inch.

pc The value must be interpreted as a size expressed in picas. 1 pica is equal to
12 points.

default_value This argument specifies a value that is used by default if the attribute value is missing. This
argument is optional.

325

Author Developer Guide

Example 8.7. Usage samples for the attr() function

Consider the following XML instance:

<sample>
 <para bg_color="#AAAAFF">Blue paragraph.</para>
 <para bg_color="red">Red paragraph.</para>
 <para bg_color="red" font_size="2">Red paragraph with large font.</para>
 <para bg_color="#00AA00" font_size="0.8" space="4">
 Green paragraph with small font and margin.</para>
</sample>

The para elements have bg_color attributes with RGB color values like #AAAAFF. You can use the attr()
function to change the elements appearance in the editor based on the value of this attribute:

background-color:attr(bg_color, color);

The attribute font_size represents the font size in em units. You can use this value to change the style of the element:

font-size:attr(font_size, em);

The complete CSS rule is:

para{
 display:block;
 background-color:attr(bg_color, color);
 font-size:attr(font_size, em);
 margin:attr(space, em);
}

The document is rendered as:

Additional Custom Selectors

Oxygen Author provides support for selecting additional types of nodes. These custom selectors apply to: document,
doctype sections, processing-instructions, comments, CDATA sections, and entities. In order for the custom selectors

326

Author Developer Guide

to work in your CSSs you will have to declare the Author extensions namespace at the beginning of the stylesheet
documents:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');

Example rules:

• document

oxy|document {
 display:block;
}

• doctype sections

oxy|doctype {
 display:block;
 color:blue;
 background-color:transparent;
}

• processing-instructions

oxy|processing-instruction {
 display:block;
 color:purple;
 background-color:transparent;
}

• comments

oxy|comment {
 display:block;
 color:green;
 background-color:transparent;
}

• CDATA sections

oxy|cdata{
 display:block;
 color:gray;
 background-color:transparent;
}

• entities

oxy|entity {
 display:morph;
 editable:false;
 color:orange;

327

Author Developer Guide

 background-color:transparent;
}

A sample document rendered using these rules:

Additional Properties

Folding elements: foldable and not-foldable-child properties

<oXygen/> Author allows you to declare some elements to be foldable (collapsible). This is especially useful when
working with large documents organized in logical blocks, editing a large DocBook article or book for instance.

To define the element whose content can be folded by the user, you must use the property: foldable:true;.

When collapsing an element, it is useful to keep some of its content visible, like a short description of the collapsed
region. The property not-foldable-child is used to identify the child elements that are kept visible. It accepts
as value an element name or a list of comma separated element names. If the element is marked as foldable (fold-
able:true;) but it doesn't have the property not-foldable-child or none of the specified non-foldable
children exists then the element will still be foldable. In this case the element that will be kept visible when folded will
be the before pseudo element.

Note

Both foldable and not-foldable-child are non standard properties and are recognized only by
<oXygen/> Author.

328

Author Developer Guide

Example 8.8. Folding DocBook Elements

All the elements below can have a title child element and are considered to be logical sections. You mark them as
being foldable leaving the title element visible.

set,
book,
part,
reference,
chapter,
preface,
article,
sect1,
sect2,
sect3,
sect4,
section,
appendix,
figure,
example,
table {
 foldable:true;
 not-foldable-child: title;
}

Link elements

<oXygen/> Author allows you to declare some elements to be links. This is especially useful when working with many
documents which refer each other. The links allow for an easy way to get from one document to another. Clicking on
the link marker will open the referred resource in an editor.

To define the element which should be considered a link, you must use the property link on the before or after pseudo
element. The value of the property indicates the location of the linked resource. Since links are usually indicated by
the value of an attribute in most cases it will have the a value similar to attr(href)

Note

link is a non standard property and is recognized only by <oXygen/> Author.

329

Author Developer Guide

Example 8.9. Docbook Link Elements

All the elements below are defined to be links on the before pseudo element and their value is defined by the value of
an attribute.

*[href]:before{
 link:attr(href);
 content: "Click " attr(href) " for opening" ;
}

ulink[url]:before{
 link:attr(url);
 content: "Click to open: " attr(url);
}

olink[targetdoc]:before{
 link: attr(targetdoc);
 content: "Click to open: " attr(targetdoc);
}

Display Tag Markers

<oXygen/> Author allows you to choose whether tag markers of an element should never be presented or the current
Display mode should be respected. This is especially useful when working with :before and :after pseudo elements
in which case the element range is already visually defined so the tag markers are redundant.

The property is named display-tags. Its possible values are :

• none Tags markers must not be presented regardless of the current Display mode.

• default The tag markers will be created depending on the current Display mode.

• inherit The value of the property is inherited from an ancestor element.

display-tags
 Value: none | default | inherit
 Initial: default
 Applies to: all nodes(comments, elements, CDATA, etc)
 Inherited: false
 Media: all

Note

display-tags is a non standard property and is recognized only by <oXygen/> Author.

330

Author Developer Guide

Example 8.10. Docbook Para elements

In this example the para element from Docbook is using an :before and :after element so you don't want its tag
markers to be visible.

para:before{
 content: "{";
}

para:after{
 content: "}";
}

para{
 display-tags: none;
 display:block;
 margin: 0.5em 0;
}

<oXygen/> Custom CSS functions

In <oXygen/> Author there are implemented a few <oXygen/> specific custom CSS functions. Imbricated custom
functions are also supported.

Example 8.11. Imbricated functions

The result of the functions below will be the local name of the current node with the first letter capitalized.

capitalize(local-name())

The local-name() function

This function evaluates the local name of the current node. It does not have any arguments

The name() function

This function evaluates the qualified name of the current node. It does not have any arguments

The url() function

This function evaluates the URL of a location relative to the CSS file location and appends each of the relative path
components to the final location.

url(location, loc_1, loc_2);(...);

location ;
loc_1 ;
loc_2 ;

location The location as string. If not absolute, will be solved relative to the CSS file URL.

loc_1 ... loc_n Relative location path components as string. (optional)

331

Author Developer Guide

The base-uri() function

This function evaluates the base URL in the context of the current node. It does not have any arguments and takes into
account the xml:base context of the current node. See the XML Base specification [http://www.w3.org/TR/xmlbase/]
for more details.

The parent-url() function

This function evaluates the parent URL of an URL received as string.

parent-url(url);

url ;

url The url as string.

The capitalize() function

This function capitalizes the first letter of the text received as argument.

capitalize(text);

text ;

text The text for which the first letter will be capitalized.

The uppercase() function

This function transforms to upper case the text received as argument.

uppercase(text);

text ;

text The text to be capitalized.

The lowercase() function

This function transforms to lower case the text received as argument.

lowercase(text);

text ;

text The text to be lower cased.

The concat() function

This function concatenates the received string arguments.

concat(str_1, str_2);(...);

str_1 ;
str_2 ;

str_1 ... str_n The string arguments to be concatenated.

332

Author Developer Guide

http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlbase/

The replace() function

This function has two signatures:

• replace(text, target, replacement);

text ;
target ;
replacement ;

This function replaces each substring of the text that matches the literal target string with the specified literal replace-
ment string.

text The text in which the replace will occur.

target The target string to be replaced.

replacement The string replacement.

• replace(text, target, replacement, isRegExp);

text ;
target ;
replacement ;
isRegExp ;

This function replaces each substring of the text that matches the target string with the specified replacement string.

text The text in which the replace will occur.

target The target string to be replaced.

replacement The string replacement.

isRegExp If true the target and replacement arguments are considered regular expressions
in PERL syntax, if false they are considered literal strings.

The unparsed-entity-uri() function

This function returns the uri value of an unparsed entity name.

unparsed-entity-uri(unparsedEntityName);

unparsedEntityName ;

unparsedEntityName The name of an unparsed entity defined in the DTD.

This function can be useful to display images which are referred with unparsed entity names.

Example 8.12. CSS for displaying the image in Author for an imagedata with entityref
to an unparsed entity

imagedata[entityref]{
content: url(unparsed-entity-uri(attr(entityref)));
}

333

Author Developer Guide

The attributes() function

This function concatenates the attributes for an element and returns the serialization.

attributes();

Example 8.13. attributes()

For the following XML fragment:<element att1="x" xmlns:a="2" x="""/> the attributes()
function will return att1="x" xmlns:a="2" x=""".

Example Files Listings

The Simple Documentation Framework Files

XML Schema files

sdf.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oxygenxml.com/sample/documentation"
 xmlns:doc="http://www.oxygenxml.com/sample/documentation"
 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
 elementFormDefault="qualified">

 <xs:import
 namespace="http://www.oxygenxml.com/sample/documentation/abstracts"
 schemaLocation="abs.xsd"/>

 <xs:element name="book" type="doc:sectionType"/>
 <xs:element name="article" type="doc:sectionType"/>
 <xs:element name="section" type="doc:sectionType"/>

 <xs:complexType name="sectionType">
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element ref="abs:def" minOccurs="0"/>
 <xs:choice>
 <xs:sequence>
 <xs:element ref="doc:section"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="doc:para"/>
 <xs:element ref="doc:ref"/>
 <xs:element ref="doc:image"/>
 <xs:element ref="doc:table"/>
 </xs:choice>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

334

Author Developer Guide

 <xs:element name="para" type="doc:paragraphType"/>

 <xs:complexType name="paragraphType" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="b"/>
 <xs:element name="i"/>
 <xs:element name="link"/>
 </xs:choice>
 </xs:complexType>

 <xs:element name="ref">
 <xs:complexType>
 <xs:attribute name="location" type="xs:anyURI"
 use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="image">
 <xs:complexType>
 <xs:attribute name="href" type="xs:anyURI"
 use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="table">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="customcol" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="width" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="header">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="td"
 maxOccurs="unbounded"
 type="doc:paragraphType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="tr" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="td"
 type="doc:tdType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="width" type="xs:string"/>
 </xs:complexType>

335

Author Developer Guide

 </xs:element>

 <xs:complexType name="tdType">
 <xs:complexContent>
 <xs:extension base="doc:paragraphType">
 <xs:attribute name="row_span"
 type="xs:integer"/>
 <xs:attribute name="column_span"
 type="xs:integer"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

abs.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts">
 <xs:element name="def" type="xs:string"/>
</xs:schema>

CSS Files

sdf.css

/* Element from another namespace */
@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";

abs|def{
 font-family:monospace;
 font-size:smaller;
}
abs|def:before{
 content:"Definition:";
 color:gray;
}

/* Vertical flow */
book,
section,
para,
title,
image,
ref {
 display:block;
}

/* Horizontal flow */
b,i {
 display:inline;

336

Author Developer Guide

}

section{
 margin-left:1em;
 margin-top:1em;
}

section{
 foldable:true;
 not-foldable-child: title;
}

link[href]:before{
 display:inline;
 link:attr(href);
 content: "Click to open: " attr(href);
}

/* Title rendering*/
title{
 font-size: 2.4em;
 font-weight:bold;
}

* * title{
 font-size: 2.0em;
}
* * * title{
 font-size: 1.6em;
}
* * * * title{
 font-size: 1.2em;
}

book,
article{
 counter-reset:sect;
}
book > section,
article > section{
 counter-increment:sect;
}
book > section > title:before,
article > section > title:before{
 content: "Section: " counter(sect) " ";
}

/* Inlines rendering*/
b {
 font-weight:bold;
}

i {
 font-style:italic;

337

Author Developer Guide

}

/*Table rendering */
table{
 display:table;
 border:1px solid navy;
 margin:1em;
 max-width:1000px;
 min-width:150px;
}

table[width]{
 width:attr(width, length);
}

tr, header{
 display:table-row;
}

header{
 background-color: silver;
 color:inherit
}

td{
 display:table-cell;
 border:1px solid navy;
 padding:1em;
}

image{
 display:block;
 content: attr(href, url);
 margin-left:2em;
}

XML Files

sdf_sample.xml

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
 <title>My Technical Book</title>
 <section>
 <title>XML</title>
 <abs:def>Extensible Markup Language</abs:def>
 <para>In this section of the book I will explain
 different XML applications.</para>
 </section>
 <section>
 <title>Accessing XML data.</title>

338

Author Developer Guide

 <section>
 <title>XSLT</title>
 <abs:def>Extensible stylesheet language
 transformation (XSLT) is a language for
 transforming XML documents into other XML
 documents.</abs:def>
 <para>A list of XSL elements and what they do..</para>
 <table>
 <header>
 <td>XSLT Elements</td>
 <td>Description</td>
 </header>
 <tr>
 <td>
 xsl:stylesheet
 </td>
 <td>The <i>xsl:stylesheet</i> element is
 always the top-level element of an
 XSL stylesheet. The name
 <i>xsl:transform</i> may be used
 as a synonym.</td>
 </tr>
 <tr>
 <td>
 xsl:template
 </td>
 <td>The <i>xsl:template</i> element has
 an optional mode attribute. If this
 is present, the template will only
 be matched when the same mode is
 used in the invoking
 <i>xsl:apply-templates</i>
 element.</td>
 </tr>
 <tr>
 <td>
 for-each
 </td>
 <td>The xsl:for-each element causes
 iteration over the nodes selected by
 a node-set expression.</td>
 </tr>
 <tr>
 <td column_span="2">End of the list</td>
 </tr>
 </table>
 </section>
 <section>
 <title>XPath</title>
 <abs:def>XPath (XML Path Language) is a terse
 (non-XML) syntax for addressing portions of
 an XML document. </abs:def>
 <para>Some of the XPath functions.</para>
 <table>

339

Author Developer Guide

 <header>
 <td>Function</td>
 <td>Description</td>
 </header>
 <tr>
 <td>format-number</td>
 <td>The <i>format-number</i> function
 converts its first argument to a
 string using the format pattern
 string specified by the second
 argument and the decimal-format
 named by the third argument, or the
 default decimal-format, if there is
 no third argument</td>
 </tr>
 <tr>
 <td>current</td>
 <td>The <i>current</i> function returns
 a node-set that has the current node
 as its only member.</td>
 </tr>
 <tr>
 <td>generate-id</td>
 <td>The <i>generate-id</i> function
 returns a string that uniquely
 identifies the node in the argument
 node-set that is first in document
 order.</td>
 </tr>
 </table>
 </section>
 </section>
 <section>
 <title>Documentation frameworks</title>
 <para>One of the most important documentation
 frameworks is Docbook.</para>
 <image
 href="http://www.xmlhack.com/images/docbook.gif"/>
 <para>The other is the topic oriented DITA, promoted
 by OASIS.</para>
 <image
href="http://www.oasis-open.org/images/standards/oasis_standard.jpg"
 />
 </section>
</book>

XSL Files

sdf.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"

340

Author Developer Guide

 xpath-default-namespace=
 "http://www.oxygenxml.com/sample/documentation">

 <xsl:template match="/">
 <html><xsl:apply-templates/></html>
 </xsl:template>

 <xsl:template match="section">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="image">

 </xsl:template>

 <xsl:template match="para">
 <p>
 <xsl:apply-templates/>
 </p>
 </xsl:template>

 <xsl:template match="abs:def"
 xmlns:abs=
 "http://www.oxygenxml.com/sample/documentation/abstracts">
 <p>
 <u><xsl:apply-templates/></u>
 </p>
 </xsl:template>

 <xsl:template match="title">
 <h1><xsl:apply-templates/></h1>
 </xsl:template>

 <xsl:template match="b">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="i">
 <i><xsl:apply-templates/></i>
 </xsl:template>

 <xsl:template match="table">
 <table frame="box" border="1px">
 <xsl:apply-templates/>
 </table>
 </xsl:template>

 <xsl:template match="header">
 <tr>
 <xsl:apply-templates/>
 </tr>
 </xsl:template>

 <xsl:template match="tr">

341

Author Developer Guide

 <tr>
 <xsl:apply-templates/>
 </tr>
 </xsl:template>

 <xsl:template match="td">
 <td>
 <xsl:apply-templates/>
 </td>
 </xsl:template>

 <xsl:template match="header/header/td">
 <th>
 <xsl:apply-templates/>
 </th>
 </xsl:template>

</xsl:stylesheet>

Java Files

InsertImageOperation.java

package simple.documentation.framework;

import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.io.File;
import java.net.MalformedURLException;

import javax.swing.BorderFactory;
import javax.swing.JButton;
import javax.swing.JDialog;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.filechooser.FileFilter;

import ro.sync.ecss.extensions.api.ArgumentDescriptor;
import ro.sync.ecss.extensions.api.ArgumentsMap;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperation;
import ro.sync.ecss.extensions.api.AuthorOperationException;

public class InsertImageOperation implements AuthorOperation {

 //

342

Author Developer Guide

// Implementing the Author Operation Interface.
//

/**
 * Performs the operation.
 */
public void doOperation(AuthorAccess authorAccess,
 ArgumentsMap arguments)
 throws IllegalArgumentException,
 AuthorOperationException {

 JFrame oxygenFrame = (JFrame) authorAccess.getParentFrame();
 String href = displayURLDialog(oxygenFrame);
 if (href.length() != 0) {
 // Creates the image XML fragment.
 String imageFragment =
 "<image xmlns='http://www.oxygenxml.com/sample/documentation'" +
 " href='" + href + "'/>";

 // Inserts this fragment at the caret position.
 int caretPosition = authorAccess.getCaretOffset();
 authorAccess.insertXMLFragment(imageFragment, caretPosition);
 }
}

/**
 * Has no arguments.
 *
 * @return null.
 */
public ArgumentDescriptor[] getArguments() {
 return null;
}

/**
 * @return A description of the operation.
 */
public String getDescription() {
 return "Inserts an image element. Asks the" +
" user for a URL reference.";
}

//
// End of interface implementation.
//

//
// Auxiliary methods.
//

/**
 * Displays the URL dialog.
 *
 * @param parentFrame The parent frame for

343

Author Developer Guide

* the dialog.
 * @return The selected URL string value,
* or the empty string if the user canceled
* the URL selection.
 */
private String displayURLDialog(JFrame parentFrame) {

 final JDialog dlg = new JDialog(parentFrame,
"Enter the value for the href attribute", true);
 JPanel mainContent = new JPanel(new GridBagLayout());

 // The text field.
 GridBagConstraints cstr = new GridBagConstraints();
 cstr.gridx = 0;
 cstr.gridy = 0;
 cstr.weightx = 0;
 cstr.gridwidth = 1;
 cstr.fill = GridBagConstraints.HORIZONTAL;
 mainContent.add(new JLabel("Image URI:"), cstr);

 cstr.gridx = 1;
 cstr.weightx = 1;
 final JTextField urlField = new JTextField();
 urlField.setColumns(15);
 mainContent.add(urlField, cstr);

 // Add the "Browse button."
 cstr.gridx = 2;
 cstr.weightx = 0;
 JButton browseButton = new JButton("Browse");
 browseButton.addActionListener(new ActionListener() {

 /**
 * Shows a file chooser dialog.
 */
 public void actionPerformed(ActionEvent e) {
 JFileChooser fileChooser = new JFileChooser();

 fileChooser.setMultiSelectionEnabled(false);
 // Accepts only the image files.
 fileChooser.setFileFilter(new FileFilter() {
 public String getDescription() {
 return "Image files";
 }

 public boolean accept(File f) {
 String fileName = f.getName();
 return f.isFile() &&
 (fileName.endsWith(".jpeg")
 || fileName.endsWith(".jpg")
 || fileName.endsWith(".gif")
 || fileName.endsWith(".png")
 || fileName.endsWith(".svg"));
 }

344

Author Developer Guide

 });
 if (fileChooser.showOpenDialog(dlg)
 == JFileChooser.APPROVE_OPTION) {
 File file = fileChooser.getSelectedFile();
 try {
 // Set the file into the text field.
 urlField.setText(file.toURL().toString());
 } catch (MalformedURLException ex) {
 // This should not happen.
 ex.printStackTrace();
 }
 }
 }
 });
 mainContent.add(browseButton, cstr);

 // Add the "Ok" button to the layout.
 cstr.gridx = 0;
 cstr.gridy = 1;
 cstr.weightx = 0;
 JButton okButton = new JButton("Ok");
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 dlg.setVisible(false);
 }
 });
 mainContent.add(okButton, cstr);
 mainContent.setBorder(
 BorderFactory.createEmptyBorder(10, 5, 10, 5));

 // Add the "Cancel" button to the layout.
 cstr.gridx = 2;
 JButton cancelButton = new JButton("Cancel");
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 urlField.setText("");
 dlg.setVisible(false);
 }
 });
 mainContent.add(cancelButton, cstr);

 // When the user closes the dialog
// from the window decoration,
 // assume "Cancel" action.
 dlg.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 urlField.setText("");
 }
 });

 dlg.getContentPane().add(mainContent);
 dlg.pack();
 dlg.setLocationRelativeTo(parentFrame);
 dlg.setVisible(true);

345

Author Developer Guide

 return urlField.getText();
}

/**
 * Test method.
 *
 * @param args The arguments are ignored.
 */
public static void main(String[] args) {
 InsertImageOperation operation =
 new InsertImageOperation();
 System.out.println("Choosen URL: " +
 operation.displayURLDialog(new JFrame()));
}
}

QueryDatabaseOperation.java

package simple.documentation.framework;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.util.Properties;

import ro.sync.ecss.extensions.api.ArgumentDescriptor;
import ro.sync.ecss.extensions.api.ArgumentsMap;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperation;
import ro.sync.ecss.extensions.api.AuthorOperationException;

public class QueryDatabaseOperation implements AuthorOperation{

 private static String ARG_JDBC_DRIVER ="jdbc_driver";
 private static String ARG_USER ="user";
 private static String ARG_PASSWORD ="password";
 private static String ARG_SQL ="sql";
 private static String ARG_CONNECTION ="connection";

 /**
 * @return The array of arguments the developer must specify when
 * configuring the action.
 */
 public ArgumentDescriptor[] getArguments() {
 ArgumentDescriptor args[] = new ArgumentDescriptor[] {
 new ArgumentDescriptor(
 ARG_JDBC_DRIVER,
 ArgumentDescriptor.TYPE_STRING,
 "The name of the Java class that is the JDBC driver."),
 new ArgumentDescriptor(
 ARG_CONNECTION,
 ArgumentDescriptor.TYPE_STRING,

346

Author Developer Guide

 "The database URL connection string."),
 new ArgumentDescriptor(
 ARG_USER,
 ArgumentDescriptor.TYPE_STRING,
 "The name of the database user."),
 new ArgumentDescriptor(
 ARG_PASSWORD,
 ArgumentDescriptor.TYPE_STRING,
 "The database password."),
 new ArgumentDescriptor(
 ARG_SQL,
 ArgumentDescriptor.TYPE_STRING,
 "The SQL statement to be executed.")
 };
 return args;
 }

 /**
 * @return The operation description.
 */
 public String getDescription() {
 return "Executes a database query and puts the result in a table.";
 }

 public void doOperation(AuthorAccess authorAccess, ArgumentsMap map)
 throws IllegalArgumentException, AuthorOperationException {

 // Collects the arguments.
 String jdbcDriver =
 (String)map.getArgumentValue(ARG_JDBC_DRIVER);
 String connection =
 (String)map.getArgumentValue(ARG_CONNECTION);
 String user =
 (String)map.getArgumentValue(ARG_USER);
 String password =
 (String)map.getArgumentValue(ARG_PASSWORD);
 String sql =
 (String)map.getArgumentValue(ARG_SQL);

 int caretPosition = authorAccess.getCaretOffset();
 try {
 authorAccess.insertXMLFragment(
 getFragment(jdbcDriver, connection, user, password, sql),
 caretPosition);
 } catch (SQLException e) {
 throw new AuthorOperationException(
 "The operation failed due to the following database error: " +
 e.getMessage(), e);
 } catch (ClassNotFoundException e) {
 throw new AuthorOperationException(
 "The JDBC database driver was not found. Tried to load ' " +
 jdbcDriver + "'", e);
 }
 }

347

Author Developer Guide

 /**
 * Creates a connection to the database, executes
 * the SQL statement and creates an XML fragment
 * containing a table element that wraps the data
 * from the result set.
 *
 *
 * @param jdbcDriver The class name of the JDBC driver.
 * @param connectionURL The connection URL.
 * @param user The database user.
 * @param password The password.
 * @param sql The SQL statement.
 * @return The string containing the XML fragment.
 *
 * @throws SQLException thrown when there is a
 * problem accessing the database or there are
 * erors in the SQL expression.
 * @throws ClassNotFoundException when the JDBC
 * driver class could not be loaded.
 */
 private String getFragment(
 String jdbcDriver,
 String connectionURL,
 String user,
 String password,
 String sql) throws
 SQLException,
 ClassNotFoundException {

 Properties pr = new Properties();
 pr.put("characterEncoding", "UTF8");
 pr.put("useUnicode", "TRUE");
 pr.put("user", user);
 pr.put("password", password);

 // Loads the database driver.
 Class.forName(jdbcDriver);

 // Opens the connection
 Connection connection =
 DriverManager.getConnection(connectionURL, pr);
 java.sql.Statement statement =
 connection.createStatement();
 ResultSet resultSet =
 statement.executeQuery(sql);

 StringBuffer fragmentBuffer = new StringBuffer();
 fragmentBuffer.append(
 "<table xmlns='http://www.oxygenxml.com/sample/documentation'>");

 //
 // Creates the table header.
 //

348

Author Developer Guide

 fragmentBuffer.append("<header>");
 ResultSetMetaData metaData = resultSet.getMetaData();
 int columnCount = metaData.getColumnCount();
 for (int i = 1; i <= columnCount; i++) {
 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(metaData.getColumnName(i)));
 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</header>");

 //
 // Creates the table content.
 //
 while (resultSet.next()) {
 fragmentBuffer.append("<tr>");
 for (int i = 1; i <= columnCount; i++) {
 fragmentBuffer.append("<td>");
 fragmentBuffer.append(
 xmlEscape(resultSet.getObject(i)));
 fragmentBuffer.append("</td>");
 }
 fragmentBuffer.append("</tr>");
 }

 fragmentBuffer.append("</table>");

 // Cleanup
 resultSet.close();
 statement.close();
 connection.close();
 return fragmentBuffer.toString();
 }

 /**
 * Some of the values from the database table
 * may contain characters that must be escaped
 * in XML, to ensure the fragment is well formed.
 *
 * @param object The object from the database.
 * @return The escaped string representation.
 */
 private String xmlEscape(Object object) {
 String str = String.valueOf(object);
 return str.
 replaceAll("&", "&").
 replaceAll("<", "<");
 }
}

SDFExtensionsBundle.java

package simple.documentation.framework;

349

Author Developer Guide

import ro.sync.contentcompletion.xml.SchemaManagerFilter;
import ro.sync.ecss.extensions.api.AttributesValueEditor;
import ro.sync.ecss.extensions.api.AuthorExtensionStateListener;
import ro.sync.ecss.extensions.api.AuthorReferenceResolver;
import ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler;
import ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider;
import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;
import ro.sync.ecss.extensions.api.ExtensionsBundle;
import ro.sync.ecss.extensions.api.StylesFilter;
import ro.sync.ecss.extensions.api.link.ElementLocatorProvider;
import ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider;
import simple.documentation.framework.extensions.SDFAttributesValueEditor;
import simple.documentation.framework.extensions.SDFAuthorExtensionStateListener;
import simple.documentation.framework.extensions.SDFReferencesResolver;
import simple.documentation.framework.extensions.SDFSchemaAwareEditingHandler;
import simple.documentation.framework.extensions.SDFSchemaManagerFilter;
import simple.documentation.framework.extensions.SDFStylesFilter;
import simple.documentation.framework.extensions.TableCellSpanProvider;
import simple.documentation.framework.extensions.TableColumnWidthProvider;

/**
 * Simple Document Framework extension bundle.
 *
 */
public class SDFExtensionsBundle extends ExtensionsBundle {
 /**
 * Editor for attributes values.
 */
 public AttributesValueEditor createAttributesValueEditor(boolean arg0) {
 return new SDFAttributesValueEditor();
 }

 /**
 * Simple documentation framework state listener.
 */
 public AuthorExtensionStateListener createAuthorExtensionStateListener() {
 return new SDFAuthorExtensionStateListener();
 }

 /**
 * Filter for content completion proposals from the schema manager.
 */
 public SchemaManagerFilter createSchemaManagerFilter() {
 return new SDFSchemaManagerFilter();
 }

 /**
 * Default element locator.
 */
 public ElementLocatorProvider createElementLocatorProvider() {
 return new DefaultElementLocatorProvider();
 }

 /**

350

Author Developer Guide

 * Expand content references.
 */
 public AuthorReferenceResolver createAuthorReferenceResolver() {
 return new SDFReferencesResolver();
 }

 /**
 * CSS styles filtering.
 */
 public StylesFilter createAuthorStylesFilter() {
 return new SDFStylesFilter();
 }

 /**
 * Provider for table cell span informations.
 */
 public AuthorTableCellSpanProvider createAuthorTableCellSpanProvider() {
 return new TableCellSpanProvider();
 }

 /**
 * Table column width provider responsible of handling modifications regarding
 * table width and column widths.
 */
 public AuthorTableColumnWidthProvider createAuthorTableColumnWidthProvider() {
 return new TableColumnWidthProvider();
 }

 /**
 * Editing support for SDF documents responsible of handling typing and
 * paste events inside section and tables.
 */
 public AuthorSchemaAwareEditingHandler getAuthorSchemaAwareEditingHandler() {
 return new SDFSchemaAwareEditingHandler();
 }

 /**
 * The unique identifier of the Document Type.
 * This identifier will be used to store custom SDF options.
 */
 public String getDocumentTypeID() {
 return "Simple.Document.Framework.document.type";
 }

 /**
 * Bundle description.
 */
 public String getDescription() {
 return "A custom extensions bundle used for the Simple Document Framework";
 }
}

351

Author Developer Guide

SDFSchemaManagerFilter.java

package simple.documentation.framework;

import java.util.Iterator;
import java.util.List;

import ro.sync.contentcompletion.xml.CIAttribute;
import ro.sync.contentcompletion.xml.CIElement;
import ro.sync.contentcompletion.xml.CIValue;
import ro.sync.contentcompletion.xml.Context;
import ro.sync.contentcompletion.xml.ContextElement;
import ro.sync.contentcompletion.xml.SchemaManagerFilter;
import ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatPossibleValuesHasAttributeContext;

public class SDFSchemaManagerFilter implements SchemaManagerFilter {

 @Override
 public List<CIValue> filterAttributeValues(List<CIValue> attributeValues,
 WhatPossibleValuesHasAttributeContext context) {
 return attributeValues;
 }

 @Override
 public List<CIAttribute> filterAttributes(List<CIAttribute> attributes,
 WhatAttributesCanGoHereContext context) {
 // If the element from the current context is the 'table' element add the
 // attribute named 'frame' to the list of default content
 // completion proposals
 ContextElement contextElement = context.getParentElement();
 if ("table".equals(contextElement.getQName())) {
 CIAttribute frameAttribute = new CIAttribute();
 frameAttribute.setName("frame");
 frameAttribute.setRequired(false);
 frameAttribute.setFixed(false);
 frameAttribute.setDefaultValue("void");
 attributes.add(frameAttribute);
 }
 return attributes;
 }

 @Override
 public List<CIValue> filterElementValues(List<CIValue> elementValues,
 Context context) {
 return elementValues;
 }

 @Override
 public List<CIElement> filterElements(List<CIElement> elements,
 WhatElementsCanGoHereContext context) {

352

Author Developer Guide

 // If the element from the current context is the 'header'
 // element remove the 'td' element from the list of content
 // completion proposals and add the 'th' element.
 ContextElement contextElement = context.getElementStack().peek();
 if ("header".equals(contextElement.getQName())) {
 for (Iterator<CIElement> iterator = elements.iterator();
 iterator.hasNext();) {
 CIElement element = iterator.next();
 // Remove the 'td' element
 if ("td".equals(element.getQName())) {
 elements.remove(element);
 break;
 }
 }
 // Insert the 'th' element in the list of content completion proposals
 CIElement thElement = new SDFElement();
 thElement.setName("th");
 elements.add(thElement);
 }
 return elements;
 }

 @Override
 public String getDescription() {
 return null;
 }
}

SDFSchemaAwareEditingHandler.java

package simple.documentation.framework.extensions;

import java.util.List;

import javax.swing.text.BadLocationException;

import ro.sync.contentcompletion.xml.ContextElement;
import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperationException;
import ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler;
import ro.sync.ecss.extensions.api.AuthorSchemaManager;
import ro.sync.ecss.extensions.api.InvalidEditException;
import ro.sync.ecss.extensions.api.node.AuthorDocumentFragment;
import ro.sync.ecss.extensions.api.node.AuthorElement;
import ro.sync.ecss.extensions.api.node.AuthorNode;

/**
 * Specific editing support for SDF documents. Handles typing and
 * paste events inside section and tables.
 */
public class SDFSchemaAwareEditingHandler implements AuthorSchemaAwareEditingHandler {

 private static final String SDF_NAMESPACE = "http://www.oxygenxml.com/sample/documentation";

353

Author Developer Guide

 /**
 * SDF table element name.
 */
 private static final String SDF_TABLE = "table";
 /**
 * SDF table row name.
 */
 private static final String SDF_TABLE_ROW = "tr";
 /**
 * SDF table cell name.
 */
 private static final String SDF_TABLE_CELL = "td";
 /**
 * SDF section element name.
 */
 private static final String SECTION = "section";
 /**
 * SDF para element name.
 */
 protected static final String PARA = "para";
 /**
 * SDF title element name.
 */
 protected static final String TITLE = "title";

 /**
 * @see ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleDelete(int,
 * int, ro.sync.ecss.extensions.api.AuthorAccess, boolean)
 */
 public boolean handleDelete(int offset, int deleteType, AuthorAccess authorAccess,
 boolean wordLevel)
 throws InvalidEditException {
 // Not handled.
 return false;
 }

 /**
 * @see
 * ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleDeleteElementTags(
 * ro.sync.ecss.extensions.api.node.AuthorNode, ro.sync.ecss.extensions.api.AuthorAccess)
 */
 public boolean handleDeleteElementTags(AuthorNode nodeToUnwrap, AuthorAccess authorAccess)
 throws InvalidEditException {
 // Not handled.
 return false;
 }

 /**
 * @see
 * ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleDeleteSelection(int,
 * int, int, ro.sync.ecss.extensions.api.AuthorAccess)
 */
 public boolean handleDeleteSelection(int selectionStart, int selectionEnd,
 int generatedByActionId, AuthorAccess authorAccess) throws InvalidEditException {

354

Author Developer Guide

 // Not handled.
 return false;
 }

 /**
 * @see ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleJoinElements(
 * ro.sync.ecss.extensions.api.node.AuthorNode, java.util.List,
 * ro.sync.ecss.extensions.api.AuthorAccess)
 */
 public boolean handleJoinElements(AuthorNode targetNode, List<AuthorNode> nodesToJoin,
 AuthorAccess authorAccess)
 throws InvalidEditException {
 // Not handled.
 return false;
 }

 /**
 * @see ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handlePasteFragment(
 * int, ro.sync.ecss.extensions.api.node.AuthorDocumentFragment[], int,
 * ro.sync.ecss.extensions.api.AuthorAccess)
 */
 public boolean handlePasteFragment(int offset, AuthorDocumentFragment[] fragmentsToInsert,
 int actionId, AuthorAccess authorAccess) throws InvalidEditException {
 boolean handleInsertionEvent = false;
 AuthorSchemaManager authorSchemaManager =
 authorAccess.getDocumentController().getAuthorSchemaManager();
 if (!authorSchemaManager.isLearnSchema() &&
 !authorSchemaManager.hasLoadingErrors() &&
 authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartPaste()) {
 handleInsertionEvent = handleInsertionEvent(offset, fragmentsToInsert, authorAccess);
 }
 return handleInsertionEvent;
 }

 /**
 * @see ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleTyping(int,
 * char, ro.sync.ecss.extensions.api.AuthorAccess)
 */
 public boolean handleTyping(int offset, char ch, AuthorAccess authorAccess)
 throws InvalidEditException {
 boolean handleTyping = false;
 AuthorSchemaManager authorSchemaManager =
 authorAccess.getDocumentController().getAuthorSchemaManager();
 if (!authorSchemaManager.isLearnSchema() &&
 !authorSchemaManager.hasLoadingErrors() &&
 authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartTyping()) {
 try {
 AuthorDocumentFragment characterFragment =
 authorAccess.getDocumentController().createNewDocumentTextFragment(String.valueOf(ch));
 handleTyping = handleInsertionEvent(offset,
 new AuthorDocumentFragment[] {characterFragment}, authorAccess);
 } catch (AuthorOperationException e) {
 throw new InvalidEditException(e.getMessage(),
 "Invalid typing event: " + e.getMessage(), e, false);

355

Author Developer Guide

 }
 }
 return handleTyping;
 }

 /**
 * Handle an insertion event (either typing or paste).
 *
 * @param offset Offset where the insertion event occurred.
 * @param fragmentsToInsert Fragments that must be inserted at the given offset.
 * @param authorAccess Author access.
 * @return <code>true</code> if the event was handled, <code>false</code> otherwise.
 *
 * @throws InvalidEditException The event was rejected because it is invalid.
 */
 private boolean handleInsertionEvent(
 int offset,
 AuthorDocumentFragment[] fragmentsToInsert,
 AuthorAccess authorAccess) throws InvalidEditException {
 AuthorSchemaManager authorSchemaManager =
 authorAccess.getDocumentController().getAuthorSchemaManager();
 boolean handleEvent = false;
 try {
 AuthorNode nodeAtInsertionOffset =
 authorAccess.getDocumentController().getNodeAtOffset(offset);
 if (isElementWithNameAndNamespace(nodeAtInsertionOffset, SDF_TABLE)) {
 // Check if the fragment is allowed as it is.
 boolean canInsertFragments = authorSchemaManager.canInsertDocumentFragments(
 fragmentsToInsert,
 offset,
 AuthorSchemaManager.VALIDATION_MODE_STRICT_FIRST_CHILD_LAX_OTHERS);
 if (!canInsertFragments) {
 handleEvent = handleInvalidInsertionEventInTable(
 offset,
 fragmentsToInsert,
 authorAccess,
 authorSchemaManager);
 }
 } else if(isElementWithNameAndNamespace(nodeAtInsertionOffset, SECTION)) {
 // Check if the fragment is allowed as it is.
 boolean canInsertFragments = authorSchemaManager.canInsertDocumentFragments(
 fragmentsToInsert,
 offset,
 AuthorSchemaManager.VALIDATION_MODE_STRICT_FIRST_CHILD_LAX_OTHERS);
 if (!canInsertFragments) {
 // Insertion in 'section' element
 handleEvent = handleInvalidInsertionEventInSect(
 offset,
 fragmentsToInsert,
 authorAccess,
 authorSchemaManager);
 }
 }
 } catch (BadLocationException e) {

356

Author Developer Guide

 throw new InvalidEditException(e.getMessage(),
 "Invalid typing event: " + e.getMessage(), e, false);
 } catch (AuthorOperationException e) {
 throw new InvalidEditException(e.getMessage(),
 "Invalid typing event: " + e.getMessage(), e, false);
 }
 return handleEvent;
 }

 /**
 * @return <code>true</code> if the given node is an element with the given local name
 * and from the SDF namespace.
 */
 protected boolean isElementWithNameAndNamespace(AuthorNode node, String elementLocalName) {
 boolean result = false;
 if(node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 result = elementLocalName.equals(
 element.getLocalName()) && element.getNamespace().equals(SDF_NAMESPACE);
 }
 return result;
 }

 /**
 * Try to handle invalid insertion events in a SDF 'table'.
 * A row element will be inserted with a new cell in which the fragments will be inserted.
 *
 * @param offset Offset where the insertion event occurred.
 * @param fragmentsToInsert Fragments that must be inserted at the given offset.
 * @param authorAccess Author access.
 * @return <code>true</code> if the event was handled, <code>false</code> otherwise.
 */
 private boolean handleInvalidInsertionEventInTable(
 int offset,
 AuthorDocumentFragment[] fragmentsToInsert,
 AuthorAccess authorAccess,
 AuthorSchemaManager authorSchemaManager)
 throws BadLocationException, AuthorOperationException {
 boolean handleEvent = false;
 // Typing/paste inside a SDF table. We will try to wrap the fragment into a new cell
 // and insert it inside a new row.
 WhatElementsCanGoHereContext context =
 authorSchemaManager.createWhatElementsCanGoHereContext(offset);
 StringBuilder xmlFragment = new StringBuilder("<");
 xmlFragment.append(SDF_TABLE_ROW);
 if (SDF_NAMESPACE != null && SDF_NAMESPACE.length() != 0) {
 xmlFragment.append(" xmlns=\"").append(SDF_NAMESPACE).append("\"");
 }
 xmlFragment.append("/>");

 // Check if a row can be inserted at the current offset.
 boolean canInsertRow = authorSchemaManager.canInsertDocumentFragments(
 new AuthorDocumentFragment[] {
 authorAccess.getDocumentController().createNewDocumentFragmentInContext(

357

Author Developer Guide

 xmlFragment.toString(), offset)},
 context,
 AuthorSchemaManager.VALIDATION_MODE_STRICT_FIRST_CHILD_LAX_OTHERS);

 // Derive the context by adding a new row element with a cell.
 if (canInsertRow) {
 pushContextElement(context, SDF_TABLE_ROW);
 pushContextElement(context, SDF_TABLE_CELL);

 // Test if fragments can be inserted in the new context.
 if (authorSchemaManager.canInsertDocumentFragments(
 fragmentsToInsert,
 context,
 AuthorSchemaManager.VALIDATION_MODE_STRICT_FIRST_CHILD_LAX_OTHERS)) {

 // Insert a new row with a cell.
 xmlFragment = new StringBuilder("<");
 xmlFragment.append(SDF_TABLE_ROW);

 if (SDF_NAMESPACE != null && SDF_NAMESPACE.length() != 0) {
 xmlFragment.append(" xmlns=\"").append(SDF_NAMESPACE).append("\"");
 }
 xmlFragment.append("><");
 xmlFragment.append(SDF_TABLE_CELL);
 xmlFragment.append("/></");
 xmlFragment.append(SDF_TABLE_ROW);
 xmlFragment.append(">");
 authorAccess.getDocumentController().insertXMLFragment(xmlFragment.toString(), offset);

 // Get the newly inserted cell.
 AuthorNode newCell = authorAccess.getDocumentController().getNodeAtOffset(offset + 2);
 for (int i = 0; i < fragmentsToInsert.length; i++) {
 authorAccess.getDocumentController().insertFragment(newCell.getEndOffset(),
 fragmentsToInsert[i]);
 }

 handleEvent = true;
 }
 }
 return handleEvent;
 }

 /**
 * Derive the given context by adding the specified element.
 */
 protected void pushContextElement(WhatElementsCanGoHereContext context,
 String elementName) {
 ContextElement contextElement = new ContextElement();
 contextElement.setQName(elementName);
 contextElement.setNamespace(SDF_NAMESPACE);
 context.pushContextElement(contextElement, null);
 }

 /**

358

Author Developer Guide

 * Try to handle invalid insertion events in 'section'.
 * The solution is to insert the <code>fragmentsToInsert</code> into a 'title' element
 * if the sect element is empty or into a 'para' element if the sect already contains
 * a 'title'.
 *
 * @param offset Offset where the insertion event occurred.
 * @param fragmentsToInsert Fragments that must be inserted at the given offset.
 * @param authorAccess Author access.
 * @return <code>true</code> if the event was handled, <code>false</code> otherwise.
 */
 private boolean handleInvalidInsertionEventInSect(int offset,
 AuthorDocumentFragment[] fragmentsToInsert, AuthorAccess authorAccess,
 AuthorSchemaManager authorSchemaManager) throws BadLocationException,
 AuthorOperationException {
 boolean handleEvent = false;
 // Typing/paste inside an section.
 AuthorElement sectionElement =
 (AuthorElement) authorAccess.getDocumentController().getNodeAtOffset(offset);

 if (sectionElement.getStartOffset() + 1 == sectionElement.getEndOffset()) {
 // Empty section element
 WhatElementsCanGoHereContext context =
 authorSchemaManager.createWhatElementsCanGoHereContext(offset);
 // Derive the context by adding a title.
 pushContextElement(context, TITLE);

 // Test if fragments can be inserted in 'title' element
 if (authorSchemaManager.canInsertDocumentFragments(
 fragmentsToInsert,
 context,
 AuthorSchemaManager.VALIDATION_MODE_STRICT_FIRST_CHILD_LAX_OTHERS)) {
 // Create a title structure and insert fragments inside
 StringBuilder xmlFragment = new StringBuilder("<").append(TITLE);
 if (SDF_NAMESPACE != null && SDF_NAMESPACE.length() != 0) {
 xmlFragment.append(" xmlns=\"").append(SDF_NAMESPACE).append("\"");
 }
 xmlFragment.append(">").append("</").append(TITLE).append(">");
 // Insert title
 authorAccess.getDocumentController().insertXMLFragment(xmlFragment.toString(),
 offset);

 // Insert fragments
 AuthorNode newParaNode =
 authorAccess.getDocumentController().getNodeAtOffset(offset + 1);
 for (int i = 0; i < fragmentsToInsert.length; i++) {
 authorAccess.getDocumentController().insertFragment(newParaNode.getEndOffset(),
 fragmentsToInsert[i]);
 }
 handleEvent = true;
 }
 } else {
 // Check if there is just a title.
 List<AuthorNode> contentNodes = sectionElement.getContentNodes();
 if (contentNodes.size() == 1) {

359

Author Developer Guide

 AuthorNode child = contentNodes.get(0);
 boolean isTitleChild = isElementWithNameAndNamespace(child, TITLE);
 if (isTitleChild && child.getEndOffset() < offset) {
 // We are after the title.

 // Empty sect element
 WhatElementsCanGoHereContext context =
 authorSchemaManager.createWhatElementsCanGoHereContext(offset);
 // Derive the context by adding a para
 pushContextElement(context, PARA);

 // Test if fragments can be inserted in 'para' element
 if (authorSchemaManager.canInsertDocumentFragments(
 fragmentsToInsert,
 context,
 AuthorSchemaManager.VALIDATION_MODE_STRICT_FIRST_CHILD_LAX_OTHERS)) {
 // Create a para structure and insert fragments inside
 StringBuilder xmlFragment = new StringBuilder("<").append(PARA);
 if (SDF_NAMESPACE != null && SDF_NAMESPACE.length() != 0) {
 xmlFragment.append(" xmlns=\"").append(SDF_NAMESPACE).append("\"");
 }
 xmlFragment.append(">").append("</").append(PARA).append(">");
 // Insert para
 authorAccess.getDocumentController().insertXMLFragment(xmlFragment.toString(),
 offset);
 // Insert fragments
 AuthorNode newParaNode =
 authorAccess.getDocumentController().getNodeAtOffset(offset + 1);
 for (int i = 0; i < fragmentsToInsert.length; i++) {
 authorAccess.getDocumentController().insertFragment(newParaNode.getEndOffset(),
 fragmentsToInsert[i]);
 }
 handleEvent = true;
 }
 }
 }
 }
 return handleEvent;
 }
}

TableCellSpanProvider.java

package simple.documentation.framework;

public class TableCellSpanProvider
 implements AuthorTableCellSpanProvider {

 /**
 * Extracts the integer specifing what is the width
 * (in columns) of the cell
 * representing in the table layout the cell element.
 */

360

Author Developer Guide

 public Integer getColSpan(AuthorElement cell) {
 Integer colSpan = null;

 AttrValue attrValue = cell.getAttribute("column_span");
 if(attrValue != null) {
 // The attribute was found.
 String cs = attrValue.getValue();
 if(cs != null) {
 try {
 colSpan = new Integer(cs);
 } catch (NumberFormatException ex) {
 // The attribute value was not a number.
 }
 }
 }
 return colSpan;
 }

 /**
 * Extracts the integer specifing what is the
 * height (in rows) of the cell
 * representing in the table layout the cell element.
 */
 public Integer getRowSpan(AuthorElement cell) {
 Integer rowSpan = null;

 AttrValue attrValue = cell.getAttribute("row_span");
 if(attrValue != null) {
 // The attribute was found.
 String rs = attrValue.getValue();
 if(rs != null) {
 try {
 rowSpan = new Integer(rs);
 } catch (NumberFormatException ex) {
 // The attribute value was not a number.
 }
 }
 }
 return rowSpan;
 }

 /**
 * @return true considering the column specifications always available.
 */
 public boolean hasColumnSpecifications(AuthorElement tableElement) {
 return true;
 }

 /**
 * Ignored. We do not extract data from the
 * <code>table</code> element.
 */
 public void init(AuthorElement table) {
 }

361

Author Developer Guide

 public String getDescription() {
 return
 "Implementation for the Simple Documentation Framework table layout.";
 }
}

TableColumnWidthProvider.java

package simple.documentation.framework.extensions;
import java.util.ArrayList;
import java.util.List;

import ro.sync.ecss.extensions.api.AuthorDocumentController;
import ro.sync.ecss.extensions.api.AuthorOperationException;
import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;
import ro.sync.ecss.extensions.api.WidthRepresentation;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;

/**
 *
 * Simple Documentation Framework table column width provider.
 *
 */
public class TableColumnWidthProvider implements AuthorTableColumnWidthProvider {

/**
 * Cols start offset
 */
private int colsStartOffset;

/**
 * Cols end offset
 */
private int colsEndOffset;

/**
 * Column widths specifications
 */
private List<WidthRepresentation> colWidthSpecs = new ArrayList<WidthRepresentation>();

/**
 * The table element
 */
private AuthorElement tableElement;

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#commitColumnWidthModifications(
 * ro.sync.ecss.extensions.api.AuthorDocumentController,
 * ro.sync.ecss.extensions.api.WidthRepresentation[],
 * java.lang.String)
 */

362

Author Developer Guide

public void commitColumnWidthModifications(AuthorDocumentController authorDocumentController,
 WidthRepresentation[] colWidths, String tableCellsTagName)
 throws AuthorOperationException {
 if ("td".equals(tableCellsTagName)) {
 if (colWidths != null && tableElement != null) {
 if (colsStartOffset >= 0 && colsEndOffset >= 0 &&
 colsStartOffset < colsEndOffset) {
 authorDocumentController.delete(colsStartOffset, colsEndOffset);
 }
 String xmlFragment = createXMLFragment(colWidths);
 int offset = -1;
 AuthorElement[] header = tableElement.getElementsByLocalName("header");
 if (header != null && header.length > 0) {
 // Insert the cols elements before the 'header' element
 offset = header[0].getStartOffset();
 }
 if (offset == -1) {
 throw new AuthorOperationException(
 "No valid offset to insert the columns width specification.");
 }
 authorDocumentController.insertXMLFragment(xmlFragment, offset);
 }
 }
}

/**
 * Creates the XML fragment representing the column specifications.
 *
 * @param widthRepresentations
 * @return The XML fragment as a string.
 */
private String createXMLFragment(WidthRepresentation[] widthRepresentations) {
 StringBuffer fragment = new StringBuffer();
 String ns = tableElement.getNamespace();
 for (int i = 0; i < widthRepresentations.length; i++) {
 WidthRepresentation width = widthRepresentations[i];
 fragment.append("<customcol");
 String strRepresentation = width.getWidthRepresentation();
 if (strRepresentation != null) {
 fragment.append(" width=\"" + width.getWidthRepresentation() + "\"");
 }
 if (ns != null && ns.length() > 0) {
 fragment.append(" xmlns=\"" + ns + "\"");
 }
 fragment.append("/>");
 }
 return fragment.toString();
}

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#commitTableWidthModification(
 * ro.sync.ecss.extensions.api.AuthorDocumentController, int, java.lang.String)
 */

363

Author Developer Guide

public void commitTableWidthModification(AuthorDocumentController authorDocumentController,
 int newTableWidth, String tableCellsTagName) throws AuthorOperationException {
 if ("td".equals(tableCellsTagName)) {
 if (newTableWidth > 0) {
 if (tableElement != null) {
 String newWidth = String.valueOf(newTableWidth);
 authorDocumentController.setAttribute(
 "width",
 new AttrValue(newWidth),
 tableElement);
 } else {
 throw new
 AuthorOperationException("Cannot find the element representing the table.");
 }
 }
 }
}

/**
 * @see ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#getCellWidth(
 * ro.sync.ecss.extensions.api.node.AuthorElement, int, int)
 */
public List<WidthRepresentation> getCellWidth(AuthorElement cellElement, int colNumberStart,
 int colSpan) {
 List<WidthRepresentation> toReturn = null;
 int size = colWidthSpecs.size();
 if (size >= colNumberStart && size >= colNumberStart + colSpan) {
 toReturn = new ArrayList<WidthRepresentation>(colSpan);
 for (int i = colNumberStart; i < colNumberStart + colSpan; i ++) {
 // Add the column widths
 toReturn.add(colWidthSpecs.get(i));
 }
 }
 return toReturn;
}

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#getTableWidth(java.lang.String)
 */
public WidthRepresentation getTableWidth(String tableCellsTagName) {
 WidthRepresentation toReturn = null;
 if (tableElement != null && "td".equals(tableCellsTagName)) {
 AttrValue widthAttr = tableElement.getAttribute("width");
 if (widthAttr != null) {
 String width = widthAttr.getValue();
 if (width != null) {
 toReturn = new WidthRepresentation(width, true);
 }
 }
 }
 return toReturn;
}

364

Author Developer Guide

/**
 * @see ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#init(
 * ro.sync.ecss.extensions.api.node.AuthorElement)
 */
public void init(AuthorElement tableElement) {
 this.tableElement = tableElement;
 AuthorElement[] colChildren = tableElement.getElementsByLocalName("customcol");
 if (colChildren != null && colChildren.length > 0) {
 for (int i = 0; i < colChildren.length; i++) {
 AuthorElement colChild = colChildren[i];
 if (i == 0) {
 colsStartOffset = colChild.getStartOffset();
 }
 if (i == colChildren.length - 1) {
 colsEndOffset = colChild.getEndOffset();
 }
 // Determine the 'width' for this col.
 AttrValue colWidthAttribute = colChild.getAttribute("width");
 String colWidth = null;
 if (colWidthAttribute != null) {
 colWidth = colWidthAttribute.getValue();
 // Add WidthRepresentation objects for the columns this 'customcol'
 // specification spans over.
 colWidthSpecs.add(new WidthRepresentation(colWidth, true));
 }
 }
 }
}

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#isAcceptingFixedColumnWidths(
 * java.lang.String)
 */
public boolean isAcceptingFixedColumnWidths(String tableCellsTagName) {
 return true;
}

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#isAcceptingPercentageColumnWidths(
 * java.lang.String)
 */
public boolean isAcceptingPercentageColumnWidths(String tableCellsTagName) {
 return true;
}

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#isAcceptingProportionalColumnWidths(
 * java.lang.String)
 */
public boolean isAcceptingProportionalColumnWidths(String tableCellsTagName) {
 return true;

365

Author Developer Guide

}

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#isTableAcceptingWidth(
 * java.lang.String)
 */
public boolean isTableAcceptingWidth(String tableCellsTagName) {
 return "td".equals(tableCellsTagName);
}

/**
 * @see
 * ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider#isTableAndColumnsResizable(
 * java.lang.String)
 */
public boolean isTableAndColumnsResizable(String tableCellsTagName) {
 return "td".equals(tableCellsTagName);
}

/**
 * @see ro.sync.ecss.extensions.api.Extension#getDescription()
 */
public String getDescription() {
 return "Implementation for the Simple Documentation Framework table layout.";
}
}

ReferencesResolver.java

package simple.documentation.framework;

import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.transform.sax.SAXSource;

import org.apache.log4j.Logger;
import org.xml.sax.EntityResolver;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorReferenceResolver;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;
import ro.sync.ecss.extensions.api.node.AuthorNode;

/**
 * Resolver for content referred by elements named 'ref' with a
 * 'location' attribute.
 */

366

Author Developer Guide

public class ReferencesResolver implements AuthorReferenceResolver {

 /**
 * Logger for logging.
 */
 private static Logger logger = Logger.getLogger(
 ReferencesResolver.class.getName());

 /**
 * Verifies if the handler considers the node to have references.
 *
 * @param node The node to be analyzed.
 * @return <code>true</code> if it is has references.
 */
 public boolean hasReferences(AuthorNode node) {
 boolean hasReferences = false;
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 hasReferences = attrValue != null;
 }
 }
 return hasReferences;
 }

 /**
 * Returns the name of the node that contains the expanded referred content.
 *
 * @param node The node that contains references.
 * @return The display name of the node.
 */
 public String getDisplayName(AuthorNode node) {
 String displayName = "ref-fragment";
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 displayName = attrValue.getValue();
 }
 }
 }
 return displayName;
 }

 /**
 * Resolve the references of the node.
 *
 * The returning SAXSource will be used for creating the referred content
 * using the parser and source inside it.
 *
 * @param node The clone of the node.
 * @param systemID The system ID of the node with references.

367

Author Developer Guide

 * @param authorAccess The author access implementation.
 * @param entityResolver The entity resolver that can be used to resolve:
 *
 *
 * Resources that are already opened in editor.
 * For this case the InputSource will contains the editor content.
 * Resources resolved through XML catalog.
 *
 *
 * @return The SAX source including the parser and the parser's input source.
 */
 public SAXSource resolveReference(
 AuthorNode node,
 String systemID,
 AuthorAccess authorAccess,
 EntityResolver entityResolver) {
 SAXSource saxSource = null;

 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 String attrStringVal = attrValue.getValue();
 try {
 URL absoluteUrl = new URL(new URL(systemID),
 authorAccess.correctURL(attrStringVal));

 InputSource inputSource = entityResolver.resolveEntity(null,
 absoluteUrl.toString());
 if(inputSource == null) {
 inputSource = new InputSource(absoluteUrl.toString());
 }

 XMLReader xmlReader = authorAccess.newNonValidatingXMLReader();
 xmlReader.setEntityResolver(entityResolver);

 saxSource = new SAXSource(xmlReader, inputSource);
 } catch (MalformedURLException e) {
 logger.error(e, e);
 } catch (SAXException e) {
 logger.error(e, e);
 } catch (IOException e) {
 logger.error(e, e);
 }
 }
 }
 }

 return saxSource;
 }

 /**
 * Get an unique identifier for the node reference.

368

Author Developer Guide

 *
 * The unique identifier is used to avoid resolving the references
 * recursively.
 *
 * @param node The node that has reference.
 * @return An unique identifier for the reference node.
 */
 public String getReferenceUniqueID(AuthorNode node) {
 String id = null;
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 id = attrValue.getValue();
 }
 }
 }
 return id;
 }

 /**
 * Return the systemID of the referred content.
 *
 * @param node The reference node.
 * @param authorAccess The author access.
 *
 * @return The systemID of the referred content.
 */
 public String getReferenceSystemID(AuthorNode node,
 AuthorAccess authorAccess) {
 String systemID = null;
 if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
 AuthorElement element = (AuthorElement) node;
 if ("ref".equals(element.getLocalName())) {
 AttrValue attrValue = element.getAttribute("location");
 if (attrValue != null) {
 String attrStringVal = attrValue.getValue();
 try {
 URL absoluteUrl = new URL(node.getXMLBaseURL(),
 authorAccess.correctURL(attrStringVal));
 systemID = absoluteUrl.toString();
 } catch (MalformedURLException e) {
 logger.error(e, e);
 }
 }
 }
 }
 return systemID;
 }

 /**
 * Verifies if the references of the given node must be refreshed
 * when the attribute with the specified name has changed.

369

Author Developer Guide

 *
 * @param node The node with the references.
 * @param attributeName The name of the changed attribute.
 * @return <code>true</code> if the references must be refreshed.
 */
 public boolean isReferenceChanged(AuthorNode node, String attributeName) {
 return "location".equals(attributeName);
 }

 /**
 * @return The description of the author extension.
 */
 public String getDescription() {
 return "Resolves the 'ref' references";
 }
}

CustomRule.java

package simple.documentation.framework;

import org.xml.sax.Attributes;

import ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher;

public class CustomRule implements
 DocumentTypeCustomRuleMatcher {
 /**
 * Checks if the root namespace is the one
 * of our documentation framework.
 */
 public boolean matches(
 String systemID,
 String rootNamespace,
 String rootLocalName,
 String doctypePublicID,
 Attributes rootAttributes) {

 return
 "http://www.oxygenxml.com/sample/documentation".equals(rootNamespace);
 }

 public String getDescription() {
 return
 "Checks if the current Document Type Association is matching the document.";
 }
}

DefaultElementLocatorProvider.java

package ro.sync.ecss.extensions.commons;

import org.apache.log4j.Logger;

370

Author Developer Guide

import ro.sync.ecss.extensions.api.link.ElementLocator;
import ro.sync.ecss.extensions.api.link.ElementLocatorException;
import ro.sync.ecss.extensions.api.link.ElementLocatorProvider;
import ro.sync.ecss.extensions.api.link.IDTypeVerifier;

/**
 * Default implementation for locating elements based on a given link.
 * Depending on the link structure the following cases are covered:
 * - xinclude element scheme : element(/1/2) see
 * http://www.w3.org/TR/2003/REC-xptr-element-20030325/
 * - ID based links : the link represents the value of an attribute of type ID
 */
public class DefaultElementLocatorProvider implements ElementLocatorProvider {
 /** * Logger for logging. */
 private static Logger logger = Logger.getLogger(
 DefaultElementLocatorProvider.class.getName());
 /**
 * @see ro.sync.ecss.extensions.api.link.ElementLocatorProvider#
 * getElementLocator(ro.sync.ecss.extensions.api.link.IDTypeVerifier,
 * java.lang.String)
 */
 public ElementLocator getElementLocator(IDTypeVerifier idVerifier,
 String link) {
 ElementLocator elementLocator = null;
 try {
 if(link.startsWith("element(")){
 // xpointer element() scheme
 elementLocator = new XPointerElementLocator(idVerifier, link);
 } else {
 // Locate link element by ID
 elementLocator = new IDElementLocator(idVerifier, link);
 }
 } catch (ElementLocatorException e) {
 logger.warn("Exception when create element locator for link: "
 + link + ". Cause: " + e, e);
 }
 return elementLocator;
 }

 /**
 * @see ro.sync.ecss.extensions.api.Extension#getDescription()
 */
 public String getDescription() {
 return
 "Default implementation for locating elements based on a given link. \n" +
 "The following cases are covered: xinclude element scheme "
 + "and ID based links.";
 }
}

XPointerElementLocator.java

package ro.sync.ecss.extensions.commons;

371

Author Developer Guide

import java.util.Stack;
import java.util.StringTokenizer;

import org.apache.log4j.Logger;

import ro.sync.ecss.extensions.api.link.Attr;
import ro.sync.ecss.extensions.api.link.ElementLocator;
import ro.sync.ecss.extensions.api.link.ElementLocatorException;
import ro.sync.ecss.extensions.api.link.IDTypeVerifier;

/**
 * Element locator for links that have the one of the following pattern:
 *
 * element(elementID) - locate the element with the same id
 * element(/1/2/5) - A child sequence appearing alone identifies an
 * element by means of stepwise navigation, which is directed by a
 * sequence of integers separated by slashes (/); each integer n locates
 * the nth child element of the previously located element.
 * element(elementID/3/4) - A child sequence appearing after an
 * NCName identifies an element by means of stepwise navigation,
 * starting from the element located by the given name.
 *
 *
 */
public class XPointerElementLocator extends ElementLocator {

 /**
 * Logger for logging.
 */
 private static Logger logger = Logger.getLogger(
 XPointerElementLocator.class.getName());

 /**
 * Verifies if a given attribute is of a type ID.
 */
 private IDTypeVerifier idVerifier;

 /**
 * XPointer path, the path to locate the linked element.
 */
 private String[] xpointerPath;

 /**
 * The stack with indexes in parent of the current iterated elements.
 */
 private Stack currentElementIndexStack = new Stack();

 /**
 * The number of elements in xpointer path.
 */
 private int xpointerPathDepth;

 /**
 * If true then the XPointer path starts with an element ID.

372

Author Developer Guide

 */
 private boolean startWithElementID = false;

 /**
 * The depth of the current element in document, incremented in startElement.
 */
 private int startElementDepth = 0;

 /**
 * Depth in document in the last endElement event.
 */
 private int endElementDepth = 0;

 /**
 * The index in parent of the previous iterated element. Set in endElement().
 */
 private int lastIndexInParent;

 /**
 * Constructor.
 *
 * @param idVerifier Verifies if an given attribute is of type ID.
 * @param link The link that gives the element position.
 * @throws ElementLocatorException When the link format is not supported.
 **/
 public XPointerElementLocator(IDTypeVerifier idVerifier, String link)
 throws ElementLocatorException {
 super(link);
 this.idVerifier = idVerifier;

 link = link.substring("element(".length(), link.length() - 1);

 StringTokenizer stringTokenizer = new StringTokenizer(link, "/", false);
 xpointerPath = new String[stringTokenizer.countTokens()];
 int i = 0;
 while (stringTokenizer.hasMoreTokens()) {
 xpointerPath[i] = stringTokenizer.nextToken();
 boolean invalidFormat = false;

 // Empty xpointer component is not supported
 if(xpointerPath[i].length() == 0){
 invalidFormat = true;
 }

 if(i > 0){
 try {
 Integer.parseInt(xpointerPath[i]);
 } catch (NumberFormatException e) {
 invalidFormat = true;
 }
 }

 if(invalidFormat){
 throw new ElementLocatorException(

373

Author Developer Guide

 "Only the element() scheme is supported when locating XPointer links."
 + "Supported formats: element(elementID), element(/1/2/3),
 element(elemID/2/3/4).");
 }
 i++;
 }

 if(Character.isDigit(xpointerPath[0].charAt(0))){
 // This is the case when xpointer have the following pattern /1/5/7
 xpointerPathDepth = xpointerPath.length;
 } else {
 // This is the case when xpointer starts with an element ID
 xpointerPathDepth = -1;
 startWithElementID = true;
 }
 }

 /**
 * @see ro.sync.ecss.extensions.api.link.ElementLocator#endElement(
 * java.lang.String, java.lang.String, java.lang.String)
 */
 public void endElement(String uri, String localName, String name) {
 endElementDepth = startElementDepth;
 startElementDepth --;
 lastIndexInParent = ((Integer)currentElementIndexStack.pop()).intValue();
 }

 /**
 * @see ro.sync.ecss.extensions.api.link.ElementLocator#startElement(
 * java.lang.String, java.lang.String, java.lang.String,
 * ro.sync.ecss.extensions.api.link.Attr[])
 */
 public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {
 boolean linkLocated = false;
 // Increase current element document depth
 startElementDepth ++;

 if (endElementDepth != startElementDepth) {
 // The current element is the first child of the parent
 currentElementIndexStack.push(new Integer(1));
 } else {
 // Another element in the parent element
 currentElementIndexStack.push(new Integer(lastIndexInParent + 1));
 }

 if (startWithElementID) {
 // This the case when xpointer path starts with an element ID.
 String xpointerElement = xpointerPath[0];
 for (int i = 0; i < atts.length; i++) {
 if(xpointerElement.equals(atts[i].getValue())){
 if(idVerifier.hasIDType(
 localName, uri, atts[i].getQName(), atts[i].getNamespace())){
 xpointerPathDepth = startElementDepth + xpointerPath.length - 1;

374

Author Developer Guide

 break;
 }
 }
 }
 }

 if(xpointerPathDepth == startElementDepth){
 // check if xpointer path matches with the current element path
 linkLocated = true;
 try {
 int xpointerIdx = xpointerPath.length - 1;
 int stackIdx = currentElementIndexStack.size() - 1;
 int stopIdx = startWithElementID ? 1 : 0;
 while (xpointerIdx >= stopIdx && stackIdx >= 0) {
 int xpointerIndex = Integer.parseInt(xpointerPath[xpointerIdx]);
 int currentElementIndex = ((Integer)currentElementIndexStack.
 get(stackIdx)).intValue();
 if(xpointerIndex != currentElementIndex) {
 linkLocated = false;
 break;
 }

 xpointerIdx--;
 stackIdx--;
 }

 } catch (NumberFormatException e) {
 logger.warn(e,e);
 }
 }
 return linkLocated;
 }
}

IDElementLocator.java

package ro.sync.ecss.extensions.commons;

import ro.sync.ecss.extensions.api.link.Attr;
import ro.sync.ecss.extensions.api.link.ElementLocator;
import ro.sync.ecss.extensions.api.link.ExtensionUtil;
import ro.sync.ecss.extensions.api.link.IDTypeVerifier;

/**
 * Implementation of an ElementLocator that treats the link as the value of an
 * attribute with the type ID.
 */
public class IDElementLocator extends ElementLocator {

 /**
 * Class able to tell if a given attribute is of type ID.
 */
 private IDTypeVerifier idVerifier;

375

Author Developer Guide

 /**
 * Constructor.
 *
 * @param idVerifier It tells us if an attribute is of type ID.
 * @param link The link used to identify an element.
 */
 public IDElementLocator(IDTypeVerifier idVerifier, String link) {
 super(link);
 this.idVerifier = idVerifier;
 }

 /**
 * @see ro.sync.ecss.extensions.api.link.ElementLocator#endElement(
 * java.lang.String, java.lang.String, java.lang.String)
 */
 public void endElement(String uri, String localName, String name) {
 // Nothing to do.
 }

 /**
 * @see ro.sync.ecss.extensions.api.link.ElementLocator#startElement(
 * java.lang.String, java.lang.String, java.lang.String,
 * ro.sync.ecss.extensions.api.link.Attr[])
 */
 public boolean startElement(String uri, String localName,
 String name, Attr[] atts) {
 boolean elementFound = false;
 for (int i = 0; i < atts.length; i++) {
 if (link.equals(atts[i].getValue())) {
 if("xml:id".equals(atts[i].getQName())) {
 // xml:id attribute
 elementFound = true;
 } else {
 // check if attribute has ID type
 String attrLocalName =
 ExtensionUtil.getLocalName(atts[i].getQName());
 String attrUri = atts[i].getNamespace();
 if (idVerifier.hasIDType(localName, uri, attrLocalName, attrUri)) {
 elementFound = true;
 }
 }
 }
 }

 return elementFound;
 }
}

376

Author Developer Guide

Chapter 9. Grid Editor
Introduction
In the grid editor the XML document is displayed as a structured grid of nested tables in which the text content can be
modified by non technical users without editing directly the XML tags. The tables can be expanded and collapsed with
a mouse click to show or hide the elements of the document as needed. Also the document structure can be changed
easily with drag and drop operations on the grid components. The tables can be zoomed using Ctrl-+ , Ctrl-- , Ctrl-0
or Ctrl-mouse wheel.

Figure 9.1. The Grid Editor

You can switch between the text tab and the grid tab of the editor panel with the two buttons Text and Grid available
at the bottom of the editor panel.

If the edited document is associated with a schema (DTD, XML Schema, Relax NG, etc.), the editor offers content
completion for the element and attributes names and values. If you choose to insert an element that has required content,
it will be inserted automatically including the subtree of needed elements and attributes.

To display the content completion popup you have to start editing, for example by double clicking the cell. When
editing, pressing CTRL SPACE redisplays the popup.

Figure 9.2. Content Completion in Grid Editor

377

Layouts: Grid and Tree
The grid editor has two modes for the layout. The default one is the "grid" layout. This smart layout of the grid editor
detects the recurring elements in the XML document and creates tables having as columns the children (including the
attributes) of these elements. In this way it is possible to have tables nested in other tables, reflecting the structure of
your document.

Figure 9.3. Grid Layout

The other layout mode is "tree"-like. This layout does not create any table, it presents the structure of the document
directly.

Figure 9.4. Tree Layout

You can switch between the two modes using the contextual menu: Grid mode/Tree mode

Navigating the grid
When you open a document first in the grid tab, the document is collapsed so that it shows just the root element and
its attributes.

The grid disposition of the node names and values are very similar to a web form or a dialog. The same set of key
shortcuts used to select dialog components are used in the grid. For instance moving to the next editable value in a
table row is done using the TAB key. Moving to the previous cell employs the SHIFT+TAB key. Changing a value
assumes pressing the ENTER key or start typing directly the new value, and, when the editing is finished, pressing
ENTER again to commit the data into the document.

The arrows and the PAGE UP/DOWN keys can be used for navigation. By pressing SHIFT while using these keys
you can create a selection zone. To add other nodes that are not close to this zone, you can use the mouse and the
CTRL (COMMAND on Mac OS X) key.

The following key combination may be used to scroll the grid:

• CTRL + UP Scrolls the grid upwards

378

Grid Editor

• CTRL + DOWN Scrolls the grid downwards

• CTRL + LEFT Scrolls the grid to the left

• CTRL + RIGHT Scrolls the grid to the right

A left arrow sign displayed to the left of the node name indicates that this node has child nodes. You can click this
sign to display the children. The expand/collapse actions can be also invoked by pressing the NumPad + PLUS and
NumPad + MINUS keys.

A set of expand/collapse actions can be accessed from the submenu Expand/Collapse of the contextual menu.

Expand All Action

Expands the selection and all its children.

Collapse All Action

Collapses the selection and all its children.

Expand Children Action
Expands all the children of the selection but not the selection.

Collapse Children Action
Collapses all the children of the selection but not the selection.

Collapse Others
Collapses all the siblings of the current selection but not the selection.

Specific Grid Actions
In order to access these actions you can click the column header and choose from the contextual menu the item: Table

Sorting a Table Column
You can sort the table by a specific column. The sorting can be either ascending or descending.

The icons for this pair of actions are:

The sorting result depends on the data type of the column content and it can be different in case of number (numerical
sorting) or text information (alphabetical sorting). The editor analyses automatically the content and decides what type
of sorting to apply. If there is present a mixed set of values in the column, a dialog will be displayed allowing to choose
the desired type between numerical and alphabetical.

379

Grid Editor

Inserting a row in a table
You can add a row by either a copy/paste operation over a row, or directly, by invoking the action from the contextual
menu: Table → Insert row

The icon is:

A shorter way of inserting a new row is to move the selection over the row header, and then to press ENTER. The row
header is the zone in the left of the row that holds the row number. The inserted row will be below the selection.

Inserting a column in a table
You can insert a column after the selected one, using the action from the contextual menu: Table → Insert column

The icon is:

Clearing the content of a column
You can clear all the cells from a column, using the action from the contextual menu: Table → Clear content

Adding nodes
Using the contextual menu you can add nodes before, after, or as last child of the currently selected node.

The sub-menus containing detailed actions are: Insert beforeInsert afterAppend child

Duplicating nodes
A quicker way of creating new nodes is to duplicate the existing ones.

The action is available in the contextual menu: Duplicate

Refresh layout
When using drag and drop to reorganize the document, the resulted layout may be different from the expected one.
For instance, the layout may contain a set of sibling tables that could be joined together. To force the layout to be re-

computed you can use the Refresh action .

The action is available in the contextual menu: Refresh selected

Start editing a cell value
You can simply press ENTER after you have selected the grid cell.

Stop editing a cell value
You can either press ENTER when already in cell editing.

To cancel the editing without saving in the document the current changes, you have to press the ESC key.

380

Grid Editor

Drag and Drop(DnD) in the Grid Editor
The DnD features of the grid editor make easy the arrangement of the different sections in your XML document.

Using DnD you can:

• Copy or move a set of nodes.

• Change the order of columns in the tables.

• Move the rows from the tables.

These operations are available for single selection and multiple selection.

Note that when dragging the editor paints guide-lines showing accepted locations where the nodes can be dropped.

Nodes can be dragged outside the grid editor and text from other applications can be dropped inside the grid. See Copy
and Paste in the Grid Editor for details.

Copy and Paste in the Grid Editor
The selection in the grid is a bit complex relative to the selection in a text component. It consists of a current selected
cell and additional selected cells. These additional cells are either "hand picked" by the user using the mouse, or are
implied by the current selected cell. To be more specific, let's consider you click the name of the column - this becomes
the current selected cell; the editor automatically extends the selection so it contains also all the cells from that column.
The current selected cell is painted with a color that is different from the rest of the selection.

You can select discontinuous regions of nodes and place them in the clipboard using the copy action. Pasting these
nodes may be done in two ways, relative to the current selected cell: by default as brother, just below (after) , or as last
child of the selected cell.

The paste as child action is available in the contextual menu: Paste as Child

The copied nodes from the grid can be pasted also into the text editor or other applications. When copying from grid
into the text editor or other text based applications the inserted string represents the nodes serialization. The nodes
from tables can be copied using HTML or RTF in table format. The resulting cells contain only the concatenated values
of the text nodes.

381

Grid Editor

Figure 9.5. Copying from grid to other editors

In the grid editor you can paste wellformed xml content or tab separated values from other editors. If you paste xml
content the result will be the insertion of the nodes obtained by parsing this content.

Figure 9.6. Copying XML data into grid

If the pasted text contains multiple lines of tab separated values it can be considered as a matrix of values. By pasting
this matrix of values into the grid editor the result will be a matrix of cells. If the operation is performed inside existing
cells the values from these cells will be overwritten and new ones will be created if needed. This is useful for example
when trying to transfer data from Excel like editors into grid editor.

382

Grid Editor

Figure 9.7. Copying tab separated values into grid

Bidirectional Text Support in the Grid Editor
If you are editing documents employing a different text orientation you can change the way text is rendered and edited
in the grid cells.

For this, you can use the shortcut CTRL+SHIFT+O to toggle from the default left to right text orientation to the right
to left orientation.

Note that this change applies only to the text from the cells, not to the layout of the grid editor.

Figure 9.8. Default left to right text orientation

Figure 9.9. Right to left text orientation

383

Grid Editor

Chapter 10.Transforming documents
XML is designed to store, carry, and exchange data, not to display data. When you want to view the data you must
either have an XML compliant user agent or transform it to a format that can be read by other user agents. This process
is known as transformation.

Status messages generated during transformation are displayed in the Console view.

XSLT Transformations

Output formats
Within the current version of <oXygen/> you can transform your XML documents to the following formats without
having to exit from the application. For transformation to formats not listed simply install the tool chain required to
perform the transformation and process the xml files created with <oXygen/> in accordance with the processor instruc-
tions.

PDF Adobe Portable Document Format (PDF) is a compact binary file format that can be viewed and
printed by anyone, anywhere across a broad range of hardware and software using the free PDF
Viewer from Adobe [http://www.adobe.com/products/acrobat/readstep.html].

PS PostScr ipt i s the leading pr int ing technology from Adobe
[http://www.adobe.com:80/products/postscript/main.html] for high-quality, best-in-class printing
solutions ranging from desktop devices to the most advanced digital presses, platemakers, and
large format image setters in the world. Postscript files can be viewed using viewers such as
GhostScript, but are more commonly created as a prepress format.

TXT Text files are Plain ASCII Text and can be opened in any text editor or word processor.

XML XML stands for eXtensible Markup Language and is a W3C [http://www.w3c.org/XML/] standard
markup language, much like HTML, which was designed to describe data. XML tags are not
predefined in XML. You must define your own tags. XML uses a Document Type Definition
(DTD), an XML Schema or a Relax NG schema to describe the data. XML with a DTD, XML
Schema or Relax NG schema is designed to be self-descriptive. XML is not a replacement for
HTML. XML and HTML were designed with different goals:

• XML was designed to describe data and to focus on what data is.

• HTML was designed to display data and to focus on how data looks.

• HTML is about displaying information, XML is about describing information.

XHTML XHTML stands for eXtensible HyperText Markup Language, a W3C
[http://www.w3c.org/MarkUp/] standard. XHTML is aimed to replace HTML. While almost
identical to HTML 4.01, XHTML is a stricter and cleaner version of HTML. XHTML is HTML
defined as an XML application.

All formatting during a transformation is provided under the control of an Extensible Stylesheet (XSLT). Specifying
the appropriate XSLT enables transformation to the above formats and preparation of output files for specific user
agent viewing applications, including:

HTML HTML stands for Hyper Text Markup Language and is a W3C Standard
[http://www.w3c.org/MarkUp/] for the World Wide Web. HTML is a text file containing small

384

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com:80/products/postscript/main.html
http://www.adobe.com:80/products/postscript/main.html
http://www.w3c.org/XML/
http://www.w3c.org/XML/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/

markup tags. The markup tags tell the Web browser how to display the page. An HTML file must
have an htm or html file extension. An HTML file can be created using a simple text editor.

HTML Help M i c r o s o f t H T M L H e l p
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true]
is the standard help system for the Windows platform. Authors can use HTML Help to create online
help for a software application or to create content for a multimedia title or Web site. Developers
can use the HTML Help API to program a host application or hook up context-sensitive help to
an application.

JavaHelp JavaHelp software is a full-featured, platform-independent, extensible help system from Sun Mi-
crosystems [http://java.sun.com/products/javahelp/index.html] that enables developers and authors
to incorporate online help in applets, components, applications, operating systems, and devices.
JavaHelp is a free product and the binaries for JavaHelp can be redistributed.

Eclipse Help Eclipse Help is the help system incorporated in the Eclipse platform [http://www.eclipse.org/] that
enables Eclipse plugin developers to incorporate online help in their plugins.

Many other target formats are possible, these are the most popular. The basic condition for transformation to any format
is that your source document is well-formed. Always, make sure that the XSL used for the transformation is the right
one according to the desired output format and with the input source definition. For example, if you want to transform
to HTML format using a DocBook html stylesheet, your source xml document should respect the DocBook DTD.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an instance of the class
is transformed into an output document by using special formatting vocabulary.

XSL consists of three parts:

XSL Transformations (XSLT) XSLT is a language for transforming XML documents.

XML Path (XPath) Language XPath is an expression language used by XSLT to access or refer parts of an
XML document. (XPath is also used by the XML Linking specification).

XSL Formatting Objects (XSL:FO) XSL:FO is an XML vocabulary for specifying formatting semantics.

<oXygen/> supports XSLT/XPath version 1.0 using Saxon 6.5.5, Xalan, Xsltproc, MSXML (3.0, 4.0, .NET) and
XSLT/XPath 2.0 by using Saxon 9.2.0.6 B, Saxon 9.2.0.6 EE and Saxon.NET. Also the validation is done in function
of the stylesheet version.

Transformation scenario
Before transforming the current edited XML document in <oXygen/> you must define a transformation scenario to
apply to that document. A scenario is a set of values for various parameters defining a transformation. It is not related
to any particular document but to a document type:

Scenarios that apply to XML files Such a scenario contains the location of an XSLT stylesheet that is applied on
the edited XML document and other transform parameters.

Scenarios that apply to XSLT files Such a scenario contains the location of an XML document that the edited XSLT
stylesheet is applied on and other transform parameters.

Scenarios that apply to XQuery files Such a scenario contains the location of an XML source that the edited XQuery
file is applied on and other transform parameters. When the XML source is a
native XML database the XML source field of the scenario is empty because
the XML data is read with XQuery functions like document(). When the XML

385

Transforming documents

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://java.sun.com/products/javahelp/index.html
http://java.sun.com/products/javahelp/index.html
http://java.sun.com/products/javahelp/index.html
http://www.eclipse.org/
http://www.eclipse.org/

source is a local XML file the URL of the file is specified in the XML input
field of the scenario.

A scenario can be created at document type level or at global level. The scenarios defined at document type level are
available only for the documents that match that document type. The global scenarios are available for any document.

In order to apply a transformation scenario one has to press the Apply Transformation Scenario button from the
Transformation toolbar.

Batch transformation

Alternatively, a transform action can be applied on a batch of files from the Project view's contextual menu [56] without
having to open the files:

• Apply Transformation Scenario - applies to each selected file the transformation scenario associated to that file.
If the currently processed file does not have an associated transformation scenario then a warning is displayed in
the Warnings view to let the user know about it.

• Transform with... - allows the user to select one transformation scenario to be applied to each one of the currently
selected files.

Built-in transformation scenarios

If the Apply Transformation Scenario button from the Transformation toolbar is pressed, currently there is no scenario
associated with the edited document and the edited document contains a "xml-stylesheet" processing instruction referring
to a XSLT stylesheet (commonly used for display in Internet browsers), then <oXygen/> will prompt the user and offer
the option to associate the document with a default scenario containing in the XSL URL field the URL from the href
attribute of the processing instruction. This scenario will have the "Use xml-stylesheet declaration" checkbox set by
default, will use Saxon as transformation engine, will perform no FO processing and will store the result in a file with
the same URL as the edited document except the extension which will be changed to html. The name and path will be
preserved because the output file name is specified with the help of two editor variables: ${cfd} and ${cfn}.

<oXygen/> comes with preconfigured built-in scenarios for usual transformations that enable the user to obtain quickly
the desired output: associate one of the built-in scenarios with the current edited document and then apply the scenario
with just one click.

Defining a new transformation scenario

The Configure Transformation Scenario dialog is used to associate a scenario from the list of all scenarios with the

edited document by selecting an entry from the list. The dialog is opened by pressing the Configure Transformation
Scenario button on the Transformation toolbar of the document view. Once selected the scenario will be applied with

only one click on the Apply Transformation Scenario on the same toolbar. Pressing the Apply Transformation button
before associating a scenario with the edited document will invoke first the Configure Transformation Scenario dialog
and then apply the selected scenario.

Open the Configure Transformation Scenario dialog using one of the methods previously presented or by selecting
XML → Configure transformation scenario. (Alt+Shift+T C (Cmd+Alt+T C on Mac OS)).

386

Transforming documents

Figure 10.1. Configure Transformation Scenario Dialog

The Scenario type controls which scenarios are presented to the user. The available scenario types are:

XML transformation with XSLT Represents a transformation that consists in applying an XSLT stylesheet over
an XML.

XML transformation with XQuery Represents a transformation that consists in applying an XQuery over an XML.
More about executing XQuery statements can be found here.

DITA OT transformation Scenarios that use the DITA Open Toolkit (DITA-OT) to transform XML content
into an output format. More information about configuring an DITA OT trans-
formation scenario can be found here.

XSLT transformation Represents a transformation that consists in applying an XSLT stylesheet over
an XML file.

XQuery transformation Represents a transformation that consists in applying an XQuery over an XML.
More about executing XQuery statements can be found here.

SQL transformation Executes an SQL over a database. More about executing SQL statements can
be found here.

If you want an XSLT scenario select as Scenario type either XML transformation with XSLT or XSLT transformation
then complete the dialog as follows:

387

Transforming documents

Figure 10.2. The Configure Transformation Dialog - XSLT Tab

XML URL Specifies an input XML file to be used for the transformation. Please note that
this URL is resolved through the catalog resolver. If the catalog does not have
a mapping for the URL, then the editor will try to use the file directly.

Note

If the transformation engine is Saxon 9 and a custom URI resolver is
configured for Saxon 9 in Preferences then the XML input of the trans-
formation is passed to that URI resolver.

The following buttons are shown immediately after the input field:

Insert Editor Variables Opens a pop-up menu allowing to intro-
duce special <oXygen/> editor variables
or custom editor variables in the XML
URL field.

Browse for local file Opens a local file browser dialog allow-
ing to select a local file name for the text
field.

Browse for remote file Opens a URL browser dialog allowing
to select a remote file name for the text
field.

Browse for archived file Opens a zip archive browser dialog allow-
ing to select a file name from a zip
archive that will be inserted in the text
field.

388

Transforming documents

Open in editor Opens the file with the path specified in
the text field in an editor panel.

XSL URL Specifies an input XSL file to be used for the transformation. Please note that
this URL is resolved through the catalog resolver. If the catalog does not have
a mapping for the URL, then the editor will try to use the file directly.

The above set of browsing buttons are available also for this input.

Use "xml-stylesheet" declaration Use the stylesheet declared with an "xml-stylesheet" declaration instead of the
stylesheet specified in the XSL URL field. By default this checkbox is not selec-
ted and the transformation applies the XSLT stylesheet specified in the XSL
URL field. If it is checked the scenario applies the stylesheet specified explicitly
in the XML document with the xml-stylesheet processing instruction.

Transformer This combo box contains all the transformer engines available for applying the
stylesheet. These are the built-in engines and the external engines defined in the
user preferences. If you want to change the default selected engine just select
other engine from the drop down list of the combo box. For XQuery/XSLT files
only, if no validation scenario is associated, the transformer engine will be used
in validation process, if has validation support.

Parameters Opens the dialog for configuring the XSLT parameters. In this dialog you set
any global XSLT parameters of the main stylesheet set in the XSL URL field or
of the additional stylesheets set with the button Additional XSLT stylesheets.

Append header and footer Opens a dialog for specifying a URL for a header HTML file added at the begin-
ning of the result of an HTML transformation and a URL for a footer HTML
file added at the end of the HTML result of the transformation.

Additional XSLT stylesheets Opens the dialog for adding XSLT stylesheets which are applied on the result
of the main stylesheet specified in the XSL URL field. This is useful when a
chain of XSLT stylesheets must be applied to the input XML document.

Extensions Opens the dialog for configuring the XSLT/XQuery extension jars or classes
which define extension Java functions or extension XSLT elements used in the
XSLT/XQuery transformation.

Advanced options Configure advanced options specific for the Saxon HE / PE / EE engine. They
are the same options as the ones set in the user preferences but they are con-
figured as a specific set of transformation options for each transformation
scenario. By default if you do not set a specific value in the transformation
scenario each advanced option has the same value as the global option with the
same name set in the user preferences.

The advanced options include two options that are not available globally in the
user preferences: the initial XSLT template and the initial XSLT mode of the
transformation. They are Saxon specific options that allow imposing the name
of the first XSLT template that starts the XSLT transformation or the initial
mode of transformation.

389

Transforming documents

Figure 10.3. The advanced options of Saxon HE / PE / EE

The advanced options specific for Saxon PE / EE are:

Initial mode Specifies to the transformer the initial template mode

Initial template Specifies the name of the initial template to the transformer. When specified,
the XML input URL for the transformation scenario is optional.

Use a configuration file If checked, the specified Saxon configuration file will be used to specify the
Saxon advanced options.

Disable calls on extension functions If checked the stylesheet is disallowed to call external Java functions.

Version warnings If checked display a warning when it is applied to an XSLT 1.0 stylesheet.

DTD based validation of the source
file

If checked the source XML file is validated against the declared DTD

Line numbering Include the line number in errors for the

Handling of recoverable stylesheet
errors

Policy for handling recoverable errors in the stylesheet: Allows the user to choose
how dynamic errors will be handled. Either one of the following options can be
selected: recover silently, recover with warnings or signal the error and do not
attempt recovery.

Strip whitespaces Strip whitespaces feature can be one of the three options: All, Ignorable, None.

390

Transforming documents

strips all whitespace text nodes from source documents before
any further processing, regardless of any xsl:strip-space declar-

All

ations in the stylesheet, or any xml:space attributes in the source
document.

Ignorable strips all ignorable whitespace text nodes from source documents
before any further processing, regardless of any xsl:strip-space
declarations in the stylesheet, or any xml:space attributes in the
source document. Whitespace text nodes are ignorable if they
appear in elements defined in the DTD or schema as having
element-only content.

None strips no whitespace before further processing. (However,
whitespace will still be stripped if this is specified in the
stylesheet using xsl:strip-space).

Validation of the source file Available only for Saxon SA.

Schema validation This mode requires an XML Schema and
determines whether source documents
should be parsed with schema-validation
enabled.

Lax schema validation This mode determines whether source
documents should be parsed with
schema-validation enabled if an XML
Schema is provided.

Disable schema validation This determines whether source docu-
ments should be parsed with schema-
validation disabled.

Validation errors in the results tree
treated as warnings

Available only for Saxon SA. If checked, all validation errors are treated as
warnings, otherwise they are treated as fatal.

When creating a scenario that applies to an XML file, <oXygen/> fills the XML URL with the default variable
"${currentFile}". This means the input for the transformation is taken from the currently edited file. You can modify
this value to other file path. This is the case of currently editing a section from a large document, and you want the
transformation to be performed on the main document, not the section. You can specify in this case either a full absolute
path: file:/c:/project/docbook/test.xml or a path relative to one of the editor variables, like the current file directory:
${cfdu}/test.xml .

When the scenario applies to XSL files, the field XSL URL is containing ${currentFile}. Just like in the XML case,
you can specify here the path to a master stylesheet. The path can be configured using the editor variables or the custom
editor variable .

391

Transforming documents

Figure 10.4. The Configure Transformation Dialog - FO Processor Tab

Checkbox Perform FO Processing Enable or disable applying an FO processor (either the built-in Apache FOP
engine or an external engine defined in Preferences) during the transformation.

Radio button XSLT result as input The FO processor is applied to the result of the XSLT transformation defined
on the XSLT tab of the dialog.

Radio button Edited document as in-
put

The FO processor is applied directly to the current edited document.

Combo box Method The output format of the FO processing: PDF, PostScript or plain text.

Combo box Processor The FO processor, which can be the built-in Apache FOP processor or an external
processor.

392

Transforming documents

Figure 10.5. The Configure Transformation Dialog - Output Tab

Radio button Prompt for file At the end of the transformation a file browser dialog will be displayed for
specifying the path and name of the file which will store the transformation
result.

Text field Save As The path of the file where it will be stored the transformation result. The path
can include special <oXygen/> editor variables or custom editor variables.

Check box Open in browser If this is checked <oXygen/> will open automatically the transformation result
in a browser application specific for the type of that result (HTML/XHTML,
PDF, text).

Radio button Saved file When Open in browser is selected this button can be selected to specify that
<oXygen/> should open automatically at the end of the transformation the file
specified in the Save As text field.

Radio button Other location When Open in browser is selected this button can be used to specify that
<oXygen/> should not open the file specified in the Save As text field, it should
open the file specified in the text field of the Other location radio button. The
file path can include special <oXygen/> editor variables or custom editor variable.

Check box Open in editor When this is checked the transformation result set in the Save As field is opened
in a new editor panel in <oXygen/> with the appropriate built-in editor type: if
the result is an XML file it is opened with the built-in XML editor, if it is an
XSL-FO file it is opened with the built-in FO editor, etc.

Check box Show As XHTML It is enabled only when Open in browser is disabled. If this is checked <oXygen/>
will display the transformation result in a built-in XHTML browser panel at the
bottom of the <oXygen/> window.

393

Transforming documents

Important

When transforming very large documents you should be aware that en-
abling this feature will result in a very long time necessary for rendering
the transformation result in the XHTML result viewer panel. This drawback
appears due to the built-in Java XHTML browser implementation. In this
situations if you wish to see the XHTML result of the transformation you
should use an external browser by checking the Open in browser checkbox.

Check box Show As XML If this is checked <oXygen/> will display the transformation result in an XML
viewer panel at the bottom of the <oXygen/> window with syntax highlight
specific for XML documents.

Text field Image URLs are relative
to

If Show As XHTML is checked this text field specifies the path for resolving
image paths contained in the transformation result.

XSLT Stylesheet Parameters

The global parameters of the XSLT stylesheet used in the transformation scenario are configured from the dialog
available from the Parameters button:

Figure 10.6. Configure parameters dialog

394

Transforming documents

The table presents all the parameters of the XSLT stylesheet and all imported and included stylesheets with their current
values. If a parameter value was not edited then the table presents its default value. The bottom panel presents the default
value of the parameter selected in the table, a description of the parameter if it is available and the system ID of the
stylesheet that declares it.

For setting the value of a parameter declared in the stylesheet in a namespace, for example:

<xsl:param name="p:param" xmlns:p="namespace">default</xsl:param>

use the following expression in the Name column of the Parameters dialog:

{namespace}param

The buttons of the dialog have the following functions:

Add Add a new parameter to the list.

The editor variables displayed at the bottom of the dialog (${frameworks}, ${home}, ${cfd}, etc) can be used in the
values of the parameters to make the value independent of the location of the XSLT stylesheet or the XML document.

The value of a parameter can be entered at runtime if a value ask('user-message', param-type, 'default-value' ?) is used
as value of parameter in the Configure parameters dialog:

• ${ask('message')} - only the message displayed for the user is specified

• ${ask('message', generic, 'default')} - 'message' will be displayed for the user, the type is not specified (the default
is string), the default value will be 'default'

• ${ask('message', password)} - 'message' will be displayed for the user, the characters typed will be replaced with a
circle character

• ${ask('message', password, 'default')} - same as above, default value will be 'default'

• ${ask('message', url)} - 'message' will be displayed for the user, the type of parameter will be URL

• ${ask('message', url, 'default')} - same as above, default value will be 'default'

Additional XSLT Stylesheets

The list of additional XSLT stylesheets can be edited in the dialog opened by the button Additional XSLT Stylesheets.

Add Adds a stylesheet in the "Additional XSLT stylesheets" list using a file browser dialog , also you can type
an editor variable in the file name field of the browser dialog. The name of the stylesheet will be added in
the list after the current selection.

New Opens a dialog in which you can type the name of a stylesheet. The name is considered relative to the URL
of the current edited XML document. You can use editor variables in the name of the stylesheet. The name
of the stylesheet will be added in the list after the current selection.

Remove Deletes the selected stylesheet from the "Additional XSLT stylesheets" list.

Up Move the selected stylesheet up in the list.

Down Move the selected stylesheet down in the list.

The path specified in the URL text field can include special <oXygen/> editor variables.

395

Transforming documents

XSLT/XQuery Extensions

The Edit Extensions dialog is used to specify the jars and classes containing extension functions called from the
XSLT/XQuery file of the current transformation scenario.

An extension function called from the XSLT or XQuery file of the current transformation scenario will be searched
in the specified extensions in the order of the list displayed in the dialog. For changing the order of the items the user

must select the item that must be moved to other position in the list and press the up and down buttons.

Creating a Transformation Scenario

Use the following procedure to create a scenario.

1. Select XML → Configure transformation scenario (Alt+Shift+T C (Cmd+Alt+T C on Mac OS)) to open the
Configure Transformation dialog.

2. Click the Duplicate Scenario button of the dialog to create a copy of the current scenario.

3. Click in the Name field and type a new name.

4. Click OK or Transform Now to save the scenario.

Transformation Scenarios view
The list of transformation scenarios may be easier to manage for some users as a list presented in a dockable and
floating view called Transformation Scenarios.

396

Transforming documents

Figure 10.7. The Scenarios view

The actions available on the right click menu allow the same operations as in the dialog Configure Transformation
Scenario: creating, editing, executing, duplicating and removing a transformation scenario.

XSL-FO processors
The <oXygen/> installation package is distributed with the Apache FOP [http://xml.apache.org/fop/index.html]
(Formatting Objects Processor) for rendering your XML documents to PDF. FOP is a print and output independent
formatter driven by XSL Formatting Objects. FOP is implemented as a Java application that reads a formatting object
tree and renders the resulting pages to a specified output.

Tip

To include PNG images in the final PDF document you need the JIMI [http://java.sun.com/products/jimi/] or
JAI [http://java.sun.com/products/java-media/jai/] libraries. For TIFF images you need the JAI
[http://java.sun.com/products/java-media/jai/] library. For PDF images you need the fop-pdf-images library
[http://www.jeremias-maerki.ch/download/fop/pdf-images/]. These libraries are not bundled with <oXygen/>
(JIMI and JAI due to Sun's licensing). Using them is as easy as downloading them and creating a external FO
processor based on the built-in FOP libraries and the extension library. The external FO processor created in
Preferences will have a command line like:

java -cp "${oxygenInstallDir}/lib/xercesImpl.jar:
${oxygenInstallDir}/lib/fop.jar:${oxygenInstallDir}/lib/

397

Transforming documents

http://xml.apache.org/fop/index.html
http://xml.apache.org/fop/index.html
http://java.sun.com/products/jimi/
http://java.sun.com/products/jimi/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://www.jeremias-maerki.ch/download/fop/pdf-images/
http://www.jeremias-maerki.ch/download/fop/pdf-images/

avalon-framework-4.2.0.jar:
${oxygenInstallDir}/lib/batik-all-1.7.jar:${oxygenInstallDir}/lib/
commons-io-1.3.1.jar:
${oxygenInstallDir}/lib/xmlgraphics-commons-1.3.1.jar:
${oxygenInstallDir}/lib/commons-logging-1.0.4.jar:
${oxygenInstallDir}/lib/saxon9ee.jar:${oxygenInstallDir}/lib/
saxon9-dom.jar:
${oxygenInstallDir}/lib/xalan.jar:${oxygenInstallDir}/lib/
serializer.jar:
${oxygenInstallDir}/lib/resolver.jar:${oxygenInstallDir}/lib/
fop-pdf-images-1.3.jar:
${oxygenInstallDir}/lib/PDFBox-0.7.3.jar"
org.apache.fop.cli.Main -fo ${fo} -${method} ${out}

You need to add to the classpath JimiProClasses.zip for JIMI and jai_core.jar, jai_codec.jar and mlibwrapper_jai.jar
for JAI. For the JAI package you also need to include the directory containing the native libraries (mlib_jai.dll
and mlib_jai_mmx.dll on Windows) in the PATH system variable.

The MacOS X version of the JAI library can be downloaded from http://www.apple.com/downloads/ma-
cosx/apple/java3dandjavaadvancedimagingupdate.html. In order to use it, install the downloaded package.

Other FO processors can be configured in the Preferences -> FO Processors panel.

Add a font to the built-in FOP

If an XML document is transformed to PDF using the built-in Apache FOP processor but it contains some Unicode
characters that cannot be rendered by the default PDF fonts then a font that is capable to render these characters must
be configured and embedded in the PDF result.

Locate font

First, you have to find out the name of a font that has the glyphs for the special characters you used. One font that
covers the majority of characters, including Japanese, Cyrillic and Greek, is Arial Unicode MS. In the following is
described how to embed the true type fonts in the output PDF. Embedding the fonts is necessary to ensure your document
is portable.

On Windows the fonts are located into the C:\Windows\Fonts directory. On Mac they are placed in /Lib-
rary/Fonts. To install a new font on your system is enough to copy it in the Fonts directory.

Generate font metrics file

Generate a FOP font metrics file from the TrueType font file. This example reads the Windows Arial Unicode MS file
and generates an arialuni.xml font metrics file in the current directory. FOP includes an utility application for
this task.

I assume you have opened a terminal or command line console and changed the working directory to the oxygen install
directory. The FOP files are stored in the lib subdirectory of the Oxygen install directory.

Create the following script file in the Oxygen installation directory. The relative paths specified in the following script
file are relative to the Oxygen installation directory so if you decide to create it in other directory you have to adapt
the file paths.

For the Mac OS X: ttfConvert.sh

398

Transforming documents

http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html
http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html

#!/bin/sh
export LIB=lib
export CMD=java -cp "$LIB/fop.jar:$LIB/avalon-framework-4.2.0.jar:$LIB/xercesImpl.jar"
export CMD=$CMD org.apache.fop.fonts.apps.TTFReader
export FONT_DIR='/Library/Fonts'
$CMD $FONT_DIR/Arialuni.ttf Arialuni.xml

For Linux: ttfConvert.sh

#!/bin/sh
export LIB=lib
export CMD=java -cp "$LIB/fop.jar:$LIB/avalon-framework-4.2.0.jar:$LIB/xercesImpl.jar"
export CMD=$CMD org.apache.fop.fonts.apps.TTFReader
export FONT_DIR='/Library/Fonts'
$CMD $FONT_DIR/Arialuni.ttf Arialuni.xml

For Windows: ttfConvert.bat

set LIB=lib
set CMD=java -cp "%LIB%\fop.jar;%LIB%\avalon-framework-4.2.0.jar;%LIB%\xercesImpl.jar"
set CMD=%CMD% org.apache.fop.fonts.apps.TTFReader
set FONT_DIR=C:\Windows\Fonts
%CMD% %FONT_DIR%\Arialuni.ttf Arialuni.xml

The FONT_DIR can be different on your system. Make sure it points to the correct font directory. If java executable
is not in the PATH you will have to specify the full path for java.

Execute the script. On Linux and Mac OS X you have to use sh ttfConvert.sh from the command line.

Note

If Oxygen was installed by an administrator user and now it is used by a standard user who does not have write
permission in the Oxygen installation folder (for example on Windows Vista or Linux) then the output location
of the font metrics file should be a directory where the user has write permission, for example:

%CMD% %FONT_DIR%\Arialuni.ttf C:\temp_dir\Arialuni.xml

If the font has bold and italic variants, you will have to convert those also. For this you can modify the script, by adding
two more lines:

$CMD $FONT_DIR/Arialuni-Bold.ttf Arialuni-Bold.xml
 $CMD $FONT_DIR/Arialuni-Italic.ttf Arialuni-Italic.xml

In our case the font Arial Unicode MS is not having a Bold and Italic variant, so you will leave the script unchanged.

Register font to FOP configuration

Create a file and name it for example fopConfiguration.xml.

<fop version="1.0">
 <base>file:/C:/path/to/FOP/font/metrics/files/</base>
 <source-resolution>72</source-resolution>
 <target-resolution>72</target-resolution>
 <default-page-settings height="11in" width="8.26in"/>
 <renderers>

399

Transforming documents

 <renderer mime="application/pdf">
 <filterList>
 <value>flate</value>
 </filterList>
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 </renderer>
 </renderers>
</fop>

The embed-url attribute points to the TTF file to be embedded. You have to specify it using the URL convention. The
metrics-url attribute points to the font metrics file with a path relative to the base element. The triplet refers to the
unique combination of name, weight, and style (italic) for each variation of the font. In our case is just one triplet, but
if the font had variants, you would have to specify one for each variant. Here is an hypothetic example for the Arial
Unicode if it had italic and bold variants:

<fop version="1.0">
 ...
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 <font metrics-url="Arialuni-Bold.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Bold.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="bold"/>

 <font metrics-url="Arialuni-Italic.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Italic.ttf">
 <font-triplet name="Arialuni" style="italic"
 weight="normal"/>

 </fonts>
 ...
</fop>

More details about the FOP configuration file are available on http://xmlgraphics.apache.org/fop/0.93/configura-
tion.htmlthe FOP website.

Set FOP configuration file in Oxygen

Go to menu Options → Preferences → XML → XSLT / FO / XQuery → FO Processors

Click the browse button near Configuration file for the built-in FOP text field and locate the fopConfigura-
tion.xml file.

400

Transforming documents

http://xmlgraphics.apache.org/fop/0.93/configuration.html
http://xmlgraphics.apache.org/fop/0.93/configuration.html

Click on the OK button to accept the changes.

Add new font to FO output

You can do this by changing the stylesheet parameters.

DocBook Stylesheets

Create a transformation scenario that makes use of the docbook.xsl file from the [oXygen-install-
dir]/frameworks/docbook/xsl/fo directory. You must do this in the Configure Transformation Scenario
dialog.

Also you can use the predefined Docbook PDF scenario which is based on this Docbook stylesheet. Run a test trans-
formation to make sure the PDF is generated. The Unicode characters are not yet displayed correctly. You have to
specify to the stylesheet to generate FO output that uses the font Arialuni.

Click on the Parameters button in the transformation scenario edit dialog and enter the following parameters indicating
the font for the body text and for the titles:

Table 10.1. XSL FO Parameters

ValueName

Arialunibody.font.family

Arialunititle.font.family

TEI Stylesheets

Create a transformation scenario that makes use of the tei.xsl file from the [oXygen-install-
dir]/frameworks/tei/xsl/fo directory. Also you can use the predefined TEI PDF scenario which is based
on this XSLT stylesheet. Run a test transformation to make sure the PDF is generated. Just like for the Docbook, you
have to specify to the stylesheet to generate FO output that uses the font Arialuni.

Click on the Parameters button of the transformation scenario edit dialog and enter the following parameters indicating
the font for the body text and for other sections:

Table 10.2. XSL FO Parameters

ValueName

ArialunibodyFont

ArialunisansFont

Run the transformation again. The characters are now displayed correctly.

DITA-OT Stylesheets

For setting a font to the Apache FOP processor in the transformation of a DITA map with an IDIOM FOP transformation
there are two files that must be modified :

• font-mappings.xml - available in folder ${frameworks}/dita/DITA-OT/demo/fo/cfg/fo: the
font-face element included in each element physical-font having the attribute char-set="default" must contain the
name of the font (Arialuni in our example) instead of the default value

401

Transforming documents

• fop.xconf - available in folder ${frameworks}/dita/DITA-OT/demo/fo/fop/conf: an element font must
be inserted in the element fonts which is inside the element renderer having the attribute mime="application/pdf"
as in the above fopConfiguration.xml file, for example:

<renderer mime="application/pdf">
 . . .
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 . . .
</renderer>

Common transformations
The following examples use the DocBook XSL Stylesheets to illustrate how to configure <oXygen/> for transformation
to the various target formats.

Note

<oXygen/> comes with the latest versions of the DocBook and TEI frameworks including special XSLT stylesheets
for DocBook and TEI documents. DocBook XSL extensions for the Saxon and Xalan processors are included
in the frameworks/docbook/xsl/extensions directory.

The following steps are common to all the example procedures below.

1. Set the editor focus to the document to be transformed.

2. Select XML → Configure transformation scenario (Alt+Shift+T C (Cmd+Alt+T C on Mac OS)) to open the
Configure Transformation dialog.

3. If you want to edit an existing scenario select that scenario in the list and press the Edit button. If you want to
create a new scenario press the New button. If you want to create a new scenario based on an existing scenario
select the scenario in the list and press the Duplicate button.

4. Select the XSLT tab.

5. Click the Browse for an input XSL file button. The Open dialog is displayed.

Note

During transformations the Editor Status Bar will show "Transformation - in progress". The transformation is
successfully complete when the message "XSL transformation successful" displays. If the transform fails the
message "XSL transformation failed" is displayed as an error message in the Messages Panel. The user can stop
the transformation process, if the transformer offers such support, by pressing the "Stop transformation" button.
In this case the message displayed in the status bar will be "Transformation stopped by user". For the specific
case of an XQuery transformation, if you chose an NXD transformer, pressing the "Stop transformation" button
will have no effect, as NXD transformers offer no such support.

402

Transforming documents

PDF Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/fo/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Check the Perform FOP option. The remaining options are enabled.

5. Select the following options:

a. XSLT result as input.

b. PDF as method.

c. Built-in(Apache FOP) as processor.

6. Select the Output tab.

7. In the Save As field enter the output file name relative to the current directory (YourFileName.pdf) or the
path and output file name (C:\FileDirectory\YourFileName.pdf).

8. Optionally, uncheck the XHTML and XML check boxes in the Show As group.

9. Click Transform Now. The transformation is started.

PS Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/fo/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Check the Perform FOP option. The remaining options are enabled.

5. Select the following options:

a. XSLT result as input.

b. PS as method.

c. Built-in(Apache FOP) as processor.

6. Select the Output tab.

7. In the Save As field enter the output file name relative to the current directory (YourFileName.ps) or the
path and output file name (C:\FileDirectory\YourFileName.ps).

8. Optionally, uncheck the XHTML and XML check boxes in the Show As group.

9. Click Transform Now. The transformation is started.

403

Transforming documents

TXT Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/fo/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Check the Perform FOP option. The remaining options are enabled.

5. Select the following options:

a. XSLT result as input.

b. TXT as method.

c. Built-in(Apache FOP) as processor.

6. Select the Output tab.

7. In the Save As field enter the output file name relative to the current directory (YourFileName.txt) or the
path and output file name (C:\FileDirectory\YourFileName.txt).

8. Optionally, uncheck the XHTML and XML check boxes in the Show As group.

9. Click Transform Now. The transformation is started.

HTML Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/html/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Uncheck the Perform FOP option. The FOP options are disabled.

5. Select the Output tab.

6. In the Save As field enter the output file name relative to the current directory (YourFileName.html) or
the path and output file name (C:\FileDirectory\YourFileName.html).

a. If your pictures are not located relative to the out location, check the XHTML check box in the Show As
group.

b. Specify the path to the folder or URL where the pictures are located

7. Click Transform Now. The transformation is started.

HTML Help Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/htmlhelp/.

2. Select htmlhelp.xsl, click Open. The dialog closes.

404

Transforming documents

3. Set the XSLT parameter base.dir, it identifies the output directory. (If not specified, the output directory is system
dependent.) Also set the manifest.in.base.dir to 1 in order to have the project files copied in output as well.

4. Select the FOP tab.

5. Uncheck the Perform FOP option. The FOP options are disabled.

6. Click Transform Now. The transformation is started.

7. At the end of the transformation you should find the html, hhp and hhc files in the base.dir directory.

8. Download Microsoft's HTML Help Workshop and install it.

9. Apply the HTML Help compiler called hhc.exe on the html, hhp and hhc files in the base.dir directory.

Java Help Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/javahelp/.

2. Select javahelp.xsl, click Open. The dialog closes.

3. Set the XSLT parameter base.dir, it identifies the output directory. (If not specified, the output directory is system
dependent.)

4. Select the FOP tab.

5. Uncheck the Perform FOP option. The FOP options are disabled.

6. Click Transform Now. The transformation is started.

XHTML Output

1. Change directory to [oxygen]/frameworks/docbook/xsl/xhtml/.

2. Select docbook.xsl, click Open. The dialog closes.

3. Select the FOP tab.

4. Uncheck the Perform FOP option. The FOP options are disabled.

5. Select the Output tab.

6. In the Save As field enter the output file name relative to the current directory (YourFileName.html) or
the path and output file name (C:\FileDirectory\YourFileName.html).

a. If your pictures are not located relative to the out location, check the XHTML check box in the Show As
group.

b. Specify the path to the folder or URL where the pictures are located

7. Click Transform Now. The transformation is started.

Supported XSLT processors
The <oXygen/> distribution comes with the following XSLT processors:

405

Transforming documents

Xalan 2.7.1 Xalan-Java http://xml.apache.org/xalan-j/ is an XSLT processor for transforming
XML documents into HTML, text, or other XML document types. It implements
XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath)
Version 1.0.

Saxon 6.5.5 Saxon 6.5.5 [http://saxon.sourceforge.net/saxon6.5.5/] is an XSLT processor,
which implements the Version 1.0 XSLT and XPath with a number of powerful
extensions. This version of Saxon also includes many of the new features that
were first defined in the XSLT 1.1 working draft, but for conformance and
portability reasons these are not available if the stylesheet header specifies ver-
sion="1.0".

Saxon 9.2.0.6 Home Edition (HE),
Professional Edition (PE)

Saxon-HE/PE http://saxon.sf.net/ implements the "basic" conformance level for
XSLT 2.0 and XQuery. The term basic XSLT 2.0 processor is defined in the
draft XSLT 2.0 specifications: it is a conformance level that requires support
for all features of the language other than those that involve schema processing.
The HE product remains open source, but removes some of the more advanced
features that were present in Saxon-PE.

Saxon 9.2.0.6 Enterprise Edition
(EE)

Saxon EE http://www.saxonica.com/ is the schema-aware edition of Saxon 9
and it is one of the built-in processors of <oXygen/>. Saxon EE includes an
XML Schema processor, and schema-aware XSLT, XQuery, and XPath pro-
cessors.

The validation in schema aware transformations is done according to the W3C
XML Schema 1.0 specification or according to the W3C XML Schema 1.1 one.
This can be configured in Preferences.

Besides the above list <oXygen/> supports the following processors:

Xsltproc (libxslt) Libxslt http://xmlsoft.org/XSLT/ is the XSLT C library developed for the Gnome project.
Libxslt is based on libxml2 the XML C library developed for the Gnome project. It also
implements most of the EXSLT set of processor-portable extensions functions and some
of Saxon's evaluate and expressions extensions. The libxml2 version included in <oXy-
gen/> is 2.7.6 and the libxslt version is 1.1.26

<oXygen/> uses Libxslt through its command line tool (Xsltproc). The XSLT processor
is included into the distribution kit of the stand-alone version for Windows and Mac OS
X. Because there are differences between different Linux distributions, on Linux you
must install Libxslt on your machine as a separate application and set the PATH variable
to contain the Xsltproc executable.

If you do not have the Libxslt library already installed, you should copy the following
files from <oXygen/> stand-alone installation directory to root of the com.oxygenxml.ed-
itor_11.1.0 plugin

• Windows: xsltproc.exe; zlib1.dll,libxslt.dll,libxml2.dll,
libexslt.dll,iconv.dll

• Linux: xsltproc,libexslt.so.0, libxslt.so.1,libxsml2.so.2

• Mac OSX: xsltproc.mac, libexslt, libxslt, libxml

The Xsltproc processor can be configured from the XSLTPROC options page.

406

Transforming documents

http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sf.net/
http://www.saxonica.com/
http://xmlsoft.org/XSLT/

Note

Known problem: file paths containing spaces are not handled correctly in the
LIBXML processor. For example the built-in XML catalog files of the predefined
document types (DocBook, TEI, DITA, etc) are not handled by LIBXML if
<oXygen/> is installed in the default location on Windows (C:\Program Files) be-
cause the built-in XML catalog files are stored in the frameworks subdirectory of
the installation directory which in this case contains at least a space character.

MSXML 3.0/4.0 MSXML 3.0/4.0 http://msdn.microsoft.com/xml/ is available only on Windows 2000,
Windows NT and Windows XP platforms. It can be used for transformationand validation
of XSLT stylesheets .

<oXygen/> use the Microsoft XML parser through its command line tool msxsl.exe
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp]

Because msxsl.exe is only a wrapper, Microsoft Core XML Services (MSXML) must be
installed on the computer otherwise you get an corresponding warning. You can get the
latest Microsoft XML parser from Microsoft web-site http://www.microsoft.com/down-
loads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&display-
lang=en [http://www.microsoft.com/downloads/details.aspx?
FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en]

MSXML .NET MSXML .NET http://msdn.microsoft.com/xml/ is available only on Windows NT4,
Windows 2000 and Windows XP platforms. It can be used for transformationand validation
of XSLT stylesheets .

<oXygen/> performs XSLT transformations and validations using .NET Framework's
XSLT implementation (System.Xml.Xsl.XslTransform class) through the nxslt
[http://www.tkachenko.com/dotnet/nxslt.html] command line utility. The nxslt version
included in <oXygen/> is 1.6.

You should have the .NET Framework version 1.0 already installed on your system oth-
erwise you get this warning: MSXML.NET requires .NET Framework version 1.0 to be
installed. Exit code: 128

You can get the .NET Framework version 1.0 from Microsoft web-site http://www.mi-
crosoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-
009d06457787&displaylang=en [http://www.microsoft.com/downloads/details.aspx?
FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en]

.NET 1.0 A transformer based on the System.Xml 1.0 library available in the .NET 1.0 and .NET
1.1 frameworks from Microsoft (http://msdn.microsoft.com/xml/). It is available only on
Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed on your system
otherwise you get this warning: MSXML.NET requires .NET Framework version 1.0 to
be installed. Exit code: 128

You can get the .NET Framework version 1.0 from Microsoft web-site http://www.mi-
crosoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-
009d06457787&displaylang=en [http://www.microsoft.com/downloads/details.aspx?
FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en]

407

Transforming documents

http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://www.microsoft.com/downloads/details.aspx? FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://msdn.microsoft.com/xml/
http://www.tkachenko.com/dotnet/nxslt.html
http://www.tkachenko.com/dotnet/nxslt.html
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en

.NET 2.0 A transformer based on the System.Xml 2.0 library available in the .NET 2.0 framework
from Microsoft (http://msdn.microsoft.com/xml/). It is available only on Windows.

You should have the .NET Framework version 2.0 already installed on your system oth-
erwise you get this warning: MSXML.NET requires .NET Framework version 2.0 to be
installed. Exit code: 128

You can get the .NET Framework version 2.0 from Microsoft web-site http://www.mi-
crosoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-
e62f50ae9a55&DisplayLang=en [http://www.microsoft.com/downloads/details.aspx?
FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en]

Saxon.NET Saxon.NET http://weblog.saxondotnet.org/ is the port of Saxon 9B XSLT processor to
the .NET platform and it is available on a Mozilla Public License 1.0 (MPL) from the
Mozilla [http://www.mozilla.org/MPL/MPL-1.0.html] site.

In order to use it you have to unzip in the <oXygen/> install folder the Saxon.NET distri-
bution which you can download from http://saxon.sourceforge.net/
[http://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip].

You should have the .NET Framework version 1.1 already installed on your system oth-
erwise you get this warning: Saxon.NET requires .NET Framework 1.1 to be installed.

You can get the .NET Framework version 1.1 from Microsoft web-site http://www.mi-
crosoft.com/downloads/ThankYou.aspx?familyId=262d25e3-f589-4842-8157-
034d1e7cf3a3&displayLang=en [http://www.microsoft.com/downloads/ThankYou.aspx?
familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en]

Note

There is no integrated XML Catalog support for MSXML 3.0/4.0 and .NET processors.

Configuring custom XSLT processors
One can configure other XSLT transformation engines than the ones which come with the <oXygen/> distribution.
Such an external engine can be used for XSLT transformations within <oXygen/>, in the Editor perspective, and is
available in the list of engines in the dialog for editing transformation scenarios.However it cannot be used in the XSLT
Debugger perspective.

The output messages of a custom processor are displayed in an output view at the bottom of the <oXygen/> window.
If an output message follows the format of an <oXygen/> linked message then a click on the message in the output
view highlights the location of the message in an editor panel containing the file referred in the message.

Configuring the XSLT processor extensions paths
The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike a literal result
element, which the stylesheet simply transfers to the result tree, an extension element performs an action. The extension
is usually used because the xslt stylesheet fails in providing adequate functions to the user for accomplishing a more
complex task.

Samples on how to use extensions can be found at:

• for Xalan - http://xml.apache.org/xalan-j/extensions.html

408

Transforming documents

http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx? FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx? FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://weblog.saxondotnet.org/
http://www.mozilla.org/MPL/MPL-1.0.html
http://www.mozilla.org/MPL/MPL-1.0.html
http://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip
http://www.saxondotnet.org/saxon.net/downloads/Saxon.NET-1.0-RC1.zip
http://www.microsoft.com/downloads/ThankYou.aspx? familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx? familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx? familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx? familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://www.microsoft.com/downloads/ThankYou.aspx? familyId=262d25e3-f589-4842-8157-034d1e7cf3a3&displayLang=en
http://xml.apache.org/xalan-j/extensions.html

• for Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html

• for Saxon 9.2.0.6 - http://www.saxonica.com/documentation/extensions/intro.html

In order to set an XSLT processor extension (a directory or a jar file), you have to use the Extensions button of the
scenario edit dialog. The old way of setting an extension (using the parameter -Dcom.oxygenxml.additional.classpath)
was deprecated and you should use the extension mechanism of the XSLT transformation scenario.

XProc Transformations

XProc transformation scenario
A sequence of transformations described by an XProc script can be executed with an XProc transformation scenario.
In the scenario the parameters of the transformation are specified: the URL of the XProc script, the XProc engine, the
input ports and the output ports.

On the XProc tab of the scenario edit dialog it is selected the URL of the XProc script and the XProc engine. The engine
can be the built-in engine called Calabash XProc or other engine configured in Preferences.

On the Inputs tab of the dialog is configured each port that is used in the XProc script for reading input data. Each input
port has a name that is assigned in the XProc script and that is used for identifying the port in the list from the Port
combo box. The XProc engine will read data from the URLs specified in the URLs list. The built-in editor variables
and the custom editor variables can be used for specifying a URL.

On the Parameters tab you can specify the parameters available on each port.

Each port where is sent the output of the XProc transformation is associated with a URL on the Outputs tab of the
dialog. The built-in editor variables and the custom editor variables can be used for specifying a URL.

The result of the XProc transformation can be displayed as a sequence in an output view with two sides: a list with the
output ports on the left side and the content of the document(s) that correspond to the output port selected on the left
side. If the checkbox Open in editor is selected the XProc transformation result will be opened automatically in an
editor panel.

Figure 10.8. XProc Transformation results view

409

Transforming documents

http://saxon.sourceforge.net/saxon6.5.5/extensions.html
http://www.saxonica.com/documentation/extensions/intro.html

Integration of an external XProc engine - the XProc API
In order to create an XProc integration project the following requirements must be fulfilled:

• Take the "oxygen.jar" from oXygenInstallDir/lib and put it in the lib directory of your project.

• Implement the ro.sync.xml.transformer.xproc.api.XProcTransformerInterface according
with the API that you can find in the xprocAPI.zip

• Create a new java archive (jar) from the classes you created.

• Create a new engine.xml file according with the engine.dtd file. The attributes of the engine tag have the following
meanings:

1. name - The name of the XProc engine.

2. description - A short description of the XProc engine.

3. class - The complete name of the class that implements ro.sync.xml.transformer.xproc.api.XProc-
TransformerInterface

4. version - The version of this integration.

5. engineVersion - The version of the integrated engine.

6. vendor - The name of the vendor/implementor.

7. supportsValidation - true if the engine supports validation, false otherwise.

The engine tag has only one child, runtime. The runtime tag contains several library elements who's at-
tribute name contains the relative or absolute location of the libraries necessary to run this integration.

• Create a new folder with the name of the integration in the oXygenInstallDir/lib/xproc and put there the
engine.xml, and all the libraries necessary to run properly the new integration.

The Javadoc documentation of the XProc API is available for download in the following zip file: xprocAPI.zip
[http://www.oxygenxml.com/InstData/Editor/Developer/xprocAPI.zip].

410

Transforming documents

http://www.oxygenxml.com/InstData/Editor/Developer/xprocAPI.zip
http://www.oxygenxml.com/InstData/Editor/Developer/xprocAPI.zip

Chapter 11. Querying documents
Running XPath expressions

What is XPath
XPath is a language for addressing specific parts of an XML document. XPath, like the Document Object Model
(DOM), models an XML document as a tree of nodes. An XPath expression is a mechanism for navigating through
and selecting nodes from the XML document. An XPath expression is in a way analogous to a Structured Query Language
(SQL) query used to select records from a database.

XPath models an XML document as a tree of nodes. There are different types of nodes, including element nodes, at-
tribute nodes and text nodes. XPath defines a way to compute a string-value for each type of node.

XPath defines a library of standard functions for working with strings, numbers and Boolean expressions.

Examples:

child: : * Select all children of the root node.

.//name Select all elements having the name "name", descendants of the current node.

/catalog/cd[price>10.80]Selects all the cd elements that have a price element with a value larger than 10.80

To find out more about XPath, the following URL is recommended: http://www.w3.org/TR/xpath

<oXygen/>'s XPath console
To use XPath effectively requires at least an understanding of the XPath Core Function Library
[http://www.w3.org/TR/xpath#corelib]. If you have this knowledge the <oXygen/> XPath expression field part of the
current editor toolbar can be used to aid you in XML document development.

In <oXygen/> a XPath 1.0 or XPath 2.0 expression is typed and executed on the current document from the menu

XML → XPath (Ctrl+Shift+X (Cmd+Shift+X on Mac OS)) or from the toolbar button . Both XPath 2.0 basic
and XPath 2.0 schema aware expressions can be executed in the XPath console. XPath 2.0 schema aware also takes
into account the Saxon EE XML Schema version option.

The content completion assistant that helps in entering XPath expressions in attributes of XSLT stylesheets elements
is also available in the XPath console and offers always proposals dependent of the current context of the cursor inside
the edited document. The set of XPath functions proposed by the assistant depends on the XPath version selected from
the drop-down menu of the XPath button (1.0 or 2.0).

In the following example the cursor is on a person element and the content completion assistant offers all the child
elements of the person element and all XPath 2.0 functions:

411

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath#corelib
http://www.w3.org/TR/xpath#corelib

Figure 11.1. Content Completion in the XPath console

The evaluation of the XPath expression tries to resolve the locations of documents referred in the expression through
the XML catalogs which are configured in Preferences and the current XInclude preferences, for example when eval-
uating the collection(URIofCollection) function (XPath 2.0). If you need to resolve the references from the files
returned by the collection() function with an XML catalog set up in the <oXygen/> preferences you have to specify
in the query which is the parameter of the collection() function the name of the class of the XML catalog enabled
parser for parsing these collection files. The class name is ro.sync.xml.parser.CatalogEnabledXMLReader
and you specify it like this:

let $docs := collection(iri-to-uri(
 "file:///D:/temp/test/XQuery-catalog/mydocsdir?recurse=yes;select=*.xml;
 parser=ro.sync.xml.parser.CatalogEnabledXMLReader"))

The results of an XPath query are returned in the Message Panel. Clicking a record in the result list highlights the nodes
within the text editor panel with a character level precision. Results are returned in a format that is a valid XPath ex-
pression:

- [FileName.xml] /node[value]/node[value]/node[value] -

412

Querying documents

Figure 11.2. XPath results highlighted in editor panel with character precision

When using the grid editor, clicking a result record will highlight the entire node.

Figure 11.3. XPath results highlighted in the Grid Editor

Note

XPath 2.0 basic queries are executed using Saxon 9 PE engine. XPath 2.0 schema aware queries are executed
using Saxon EE engine.

413

Querying documents

The popup menu of the history list of the XPath dialog contains the action Remove for removing the selected expression
from the history list.

Example 11.1. XPath Utilization with DocBook DTD

The example is taken from a DocBook book based on the DocBook XML DTD. The book contains a number of
chapters. DocBook defines that chapters as have a <chapter> start tag and matching </chapter> end tag to close the
element. To return all the chapter nodes of the book enter //chapter into the XPath expression field, then Enter. This
will return all the chapter nodes of the DocBook book, in the Message Panel. If your book has six chapters, their will
be six records in the result list. Each record when clicked will locate and highlight the chapter and all sibling nodes
contained between the start and end tags of the chapter.

If you used XPath to query for all example nodes contained in the section 2 node of a DocBook XML document you
would use the following XPath expression //chapter/sect1/sect2/example. If an example node is found in any section
2 node, a result will be returned to the message panel. For each occurrence of the element node a record will be created
in the result list.

In the example an XPath query on the file oxygen.xml determined that:

- [oxygen.xml] /chapter[1]/sect1[3]/sect2[7]/example[1]

Which means:

In the file oxygen.xml, first chapter, third section level 1, seventh section level 2, the example node found is the
first in the section.

Note

If your project is comprised of a main file with ENTITY references to other files, you can use XPath to return
all the name elements of a certain type by querying the main file. The result list will query all referenced files.

Important

If the document defines a default namespace then <oXygen/> will bind this namespace to the first free prefix
from the list: default, default1, default2, etc. For example if the document defines the default namespace xm-
lns="something" and the prefix default is not associated with a namespace then you can match tags without
prefix in a XPath expression typed in the XPath console by using the prefix default. For example to find all the
level elements when the root element defines a default namespace you should execute in the XPath console the
expression:

//default:level

To define default mappings between prefixes that can be used in the XPath console and namespace URIs go to the
XPath Options user preferences panel and enter the mappings in the Default prefix-namespace mappings table. The
same preferences panel allows also the configuration of the default namespace used in XPath 2.0 expressions entered
into the XPath toolbar and the creation of different results panels for XPath queries executed on different XML docu-
ments.

To apply a XPath expression relative to the element on which the caret is positioned use the action XML editor contex-
tual menu → XML Document → Copy XPath (Ctrl+Shift+.) (also available on the context menu of the main editor
panel) to copy the XPath expression of the current element or attribute to the clipboard and the Paste action of the
contextual menu of the XPath console to paste this expression in the console. Then add your relative expression and
execute the resulting complete expression.

414

Querying documents

The popup menu available on right click in the Expression panel of the XPath expressions dialog offers the usual edit
actions (Cut, Copy, Paste, Select All)

On Windows the context menu can be displayed with the mouse on a right click or with the keyboard by pressing the
special context menu key available on Windows keyboards.

Working with XQuery

What is XQuery
XQuery is the query language for XML and is officially defined by a W3C Recommendation document
[http://www.w3.org/TR/xquery/]. The many benefits of XQuery include:

• XQuery allows you to work in one common model no matter what type of data you're working with: relational,
XML, or object data.

• XQuery is ideal for queries that must represent results as XML, to query XML stored inside or outside the database,
and to span relational and XML sources.

• XQuery allows you to create many different types of XML representations of the same data.

• XQuery allows you to query both relational sources and XML sources, and create one XML result.

Syntax Highlight and Content Completion
To create a new XQuery document select File → New (Ctrl+N) and when the New Document dialog appears select
XQuery entry.

Once you created the new document <oXygen/> provides syntax highlight for keywords and all known XQuery functions
and operators. Also for these there is available a content completion component that can be activated by pressing
Ctrl+Space keys. The functions and operators are presented together with a comment about parameters and function-
ality. For some supported database engines like eXist and Berkeley DB, the content completion lists contain the XQuery
functions implemented by that engine if the XQuery file has an associated transformation scenario which use one of
the specified engine or the XQuery file has no associated scenario but the validation is make with one of these engines
(a validation engine is specified in XML / XSLT - FO / XQuery Preferences page). This helps you to insert in your
queries only calls to the functions implemented by the target database engine.

The extension functions built in the Saxon product are available on Content Completion if one of the following conditions
are true:

• if the edited file has a transformation scenario associated that use as transformation engine Saxon 9.2.0.6 PE or
Saxon 9.2.0.6 SA

• if the edited file has a validation scenario associated that use as validation engine Saxon 9.2.0.6 PE or Saxon 9.2.0.6
SA

• if the validation engine specified in Options is Saxon 9.2.0.6 PE or Saxon 9.2.0.6 SA.

If the Saxon namespace (http://saxon.sf.net [http://saxon.sf.net/]) is mapped to a prefix this prefix is used when the
functions are presented, otherwise the default prefix for the saxon namespace (saxon) is used.

If you want to use a function from a namespace mapped to a prefix, just type that prefix and the Content Completion
will display all the XQuery functions from that namespace. The XQuery functions from default namespace offered by

415

Querying documents

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://saxon.sf.net/
http://saxon.sf.net/

content completion are prefixed if the default namespace is mapped to a prefix, otherwise is displayed just the name
of this.

The content completion popup window presents all the variables and functions from both the edited XQuery file and
its imports.

Figure 11.4. XQuery Content Completion

XQuery Outline View
The XQuery document structure is presented in the XQuery Outline view. The outliner presents the list of all the
components (namespaces, imports, variables and functions) from both the edited XQuery file and its imports. It allows
a quick access to a component by knowing its name. It is opened from Window → Show View → Other → oXygen
→ Outline.

Figure 11.5. XQuery Outline View

To easily navigate in the document, the XQuery Outline View provide four options:

Sort Allows you to sort alphabetically the xquery components.

Show imported/included Show also the imported/included components.

416

Querying documents

Grouping Options Allows you to group the components by location, namespace and type. When grouping by
namespace, the main XQuery module namespace is the first presented in the outline view.

Selection update on caret move Allows a synchronization between Outline View and source document. The selection
in the outline view can be synchronized with the caret's moves or the changes in the XQuery editor. Selecting one
of the components from the outline view also selects the corresponding item in the source document.

If you know the component name, you can search it in the outline view by typing his name in the filter text field from
the bottom of the view or directly on the tree structure. When you type the component name in the filter text field you
can switch to the tree structure using the arrow keys of the keyboard, Enter, Tab, Shift-Tab. To switch from tree
structure to the filter text field you can use Tab, .

Tip

The search filter is case insensitive. The following wildcards are accepted:

• * - any string

• ? - any character

• , -patterns separator

If no wildcards are specified, the string to search will be searched as a partial match (similar to *textToFind*).

The Query Input View
A node can be dragged and dropped in the editor area for quickly inserting doc() or other XQuery expressions.

Figure 11.6. XQuery input view

For example for the following XML documents

 <movies>
 <movie id="1">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 <movie id="2">
 <title>Taxi Driver</title>
 <year>1976</year>

417

Querying documents

 </movie>
 </movies>

and

 <reviews>
 <review id="100" movie-id="1">
 <rating>5</rating>
 <comment>It is made after a great Stephen King book.
 </comment>
 <author>Paul</author>
 </review>
 <review id="101" movie-id="1">
 <rating>3</rating>
 <comment>Tom Hanks does a really nice acting.</comment>
 <author>Beatrice</author>
 </review>
 <review id="104" movie-id="2">
 <rating>4</rating>
 <comment>Robert De Niro is my favorite actor.</comment>
 <author>Maria</author>
 </review>
 </reviews>

and the following XQuery

 let $review := doc("reviews.xml")
 for $movie in doc("movies.xml")/movies/movie
 let $movie-id := $movie/@id
 return
 <movie id="{$movie/@id}">
 {$movie/title}
 {$movie/year}
 <maxRating>
 {

 }
 </maxRating>
 </movie>

if you drag the rating element and drop between the braces a popup menu will be displayed.

Figure 11.7. XQuery Input drag and drop popup menu

418

Querying documents

Select for example FLWOR rating and the result document will be:

Figure 11.8. XQuery Input drag and drop result

XQuery Validation
With <oXygen/> you can validate your documents before using them in your transformation scenarios. The validation
uses the Saxon 9.2.0.6 PE processor or the 9.2.0.6 SA, IBM DB2, eXist, Software AG Tamino, Berkeley DB XML or
Documentum xDb (X-Hive/DB) if you installed them. Also any XQuery processor that offers an XQJ API implement-
ation can be used. This is in conformance with the XQuery Working Draft http://www.w3.org/TR/xquery/. The processor
is used in two cases: validation of the expression and execution. Although the execution implies a validation, it is faster
to syntactically check the expression without executing it. The errors that occurred in the document are presented in
the messages view at the bottom of editor window, with a full description message. As with all error messages, if you
click on one entry, the line where the error appeared is highlighted.

Figure 11.9. XQuery Validation

Please note that if you choose a processor that doesn't support XQuery validation you will receive a warning when
trying to validate.

Note

If there is no transformation scenario associated with the current document, the validation will be performed
using the processor or connection specified in the XML / XSLT - FO / XQuery Preferences page. Otherwise, the
XQuery document will be validated using the Transformer from the associated scenario.

Other XQuery editing actions
The XQuery editor type offers a reduced version of the popup menu available in the XML editor type, that means only
the folding actions,the edit actions a part of the source actions (only the actions To lower case, To upper case, Capit-
alize lines) and the open actions: Open file at Caret, Open file at Caret in System Application.

419

Querying documents

Transforming XML Documents Using XQuery
XQueries are very similar to the XSL stylesheets in the sense they both are capable of transforming an XML input into
another format. You can define transformation scenarios that specify the input URL, the preview mode, XML or
XHTML. The result can be saved and opened in the associated application. You can even run a FO processor on the
output of an XQuery. The transformation scenarios may be shared between many XQuery files, are exported at the
same time with the XSLT scenarios and can be managed in the dialog Configure Transformation Scenario or in the
Scenarios view. The transformation performed can be based on the XML document specified in the Input field, or, if
this field is empty, the documents referred from the query expression are used instead. The parameters of XQuery
transforms must be set in the Parameters dialog. Parameters that are in a namespace must be specified using the
qualified name, for example a param parameter in the http://www.oxygenxml.com/ns namespace must be set with the
name {http://www.oxygenxml.com/ns}param.

The transformation uses the processor Saxon 9.2.0.6 HE, Saxon 9.2.0.6 PE and Saxon 9.2.0.6 EE or a database connec-
tion(details can be found in the Working with Databases chapter - in the XQuery transformation section) or any XQuery
processor that provides an XQJ API implementation.

The Saxon 9.2.0.6 EE processor supports also XQuery 1.1 transformations. If the option Enable XQuery 1.1 support
is enabled Saxon EE runs an XQuery transformation as an XQuery 1.1 one.

XQJ transformer support

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming XML
documents.

How to configure an XQJ Data source

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select XQuery API for Java(XQJ) from the driver type combo box.

3. Press the Add button to add XQJ API specific files. Oxygen will detect any implementation of
javax.xml.xquery.XQDataSource and present them in Driver class field.

You can manage the Driver Files using Add, Remove, Detect and Stop(detection) buttons.

4. Select the most suited Driver class.

5. Click OK to finish the data source configuration.

How to Configure an XQJ Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured XQJ data sources from the
Data Source combo box.

3. Fill-in the Connection Details. The properties presented in the Connection Details table are automatically detected
depending on the selected Data Source.

4. Click OK.

420

Querying documents

Display result in Sequence view

The result of an XQuery executed on a database can be very large and sometimes only a part of the full result is needed.
For avoiding the long time necessary for fetching the full result the <Sequence> option of the XQuery transformation
scenario should be used. This option fetches only the first chunk of the result and the user decides if he wants to fetch
the next chunk after looking at the first chunk in the <Sequence> result view. The size of a chunk can be set with a
user option.

The Sequence option of the XQuery scenario must be selected in the Output tab of the dialog for editing the transform-
ation scenario.

A chunk of the XQuery transformation result is displayed in the <Sequence> view.

Figure 11.10. The XQuery transformation result displayed in "Sequence" view

Advanced Saxon HE/PE/EE transform options

The XQuery transformation scenario allows configuring advanced options specific for the Saxon HE (Home Edition)
/ PE (Professional Edition) / EE (Enterprise Edition) engine. They are the same options as the ones set in the user
preferences but they are configured as a specific set of transformation options for each transformation scenario. The
default values of the options in the transformation scenario are the values set in the user preferences. The advanced
options specific for Saxon HE / PE / EE are:

Use a configuration file If checked, the specified Saxon configuration file will be used to specify the
Saxon advanced options.

Recoverable errors Policy for handling recoverable errors in the stylesheet: Allows the user to choose
how dynamic errors will be handled. Either one of the following options can be
selected: recover silently, recover with warnings or signal the error and do not
attempt recovery.

Strip whitespaces Strip whitespaces feature can be one of the three options: All, Ignorable, None.

All strips all whitespace text nodes from source documents before
any further processing, regardless of any xsl:strip-space declar-
ations in the stylesheet, or any xml:space attributes in the source
document.

Ignorable strips all ignorable whitespace text nodes from source documents
before any further processing, regardless of any xsl:strip-space

421

Querying documents

declarations in the stylesheet, or any xml:space attributes in the
source document. Whitespace text nodes are ignorable if they
appear in elements defined in the DTD or schema as having
element-only content.

None strips no whitespace before further processing. (However,
whitespace will still be stripped if this is specified in the
stylesheet using xsl:strip-space).

Optimization level This option allows optimization to be suppressed in cases where reducing
compile time is important, or where optimization gets in the way of debugging,
or causes extension functions with side-effects to behave unpredictably.

Disable calls on extension functions If checked, calling external Java functions is disallowed.

Validation of the source file Available only for Saxon EE.

Schema validation This mode requires an XML Schema and
determines whether source documents
should be parsed with schema-validation
enabled.

Lax schema validation This mode determines whether source
documents should be parsed with
schema-validation enabled if an XML
Schema is provided.

Disable schema validation This determines whether source docu-
ments should be parsed with schema-
validation disabled.

Validation errors in the results tree
treated as warnings

Available only for Saxon EE. If checked, all validation errors are treated as
warnings, otherwise they are treated as fatal.

Enable XQuery 1.1 support If it is checked Saxon EE runs the XQuery transformation with the XQuery 1.1
support.

Updating XML documents using XQuery

Using the bundled Saxon 9.2.0.6 EE XSLT processor <oXygen/> now offers support for XQuery Update 1.0. The
XQuery Update Facility provides expressions that can be used to make persistent changes to instances of the XQuery
1.0 and XPath 2.0 Data Model. Thus, besides querying XML documents, you can modify them using the various in-
ser t /dele te /modify/create methods avai lable in the XQuery Update 1 .0
[http://www.w3.org/TR/xquery-update-10/#introduction] standard.

Just choose Saxon 9.2.0.6 EE as a transformer in the scenario associated with XQuery files containing update statements
and <oXygen/> will notify you if the update was successful.

Example 11.2. Using XQuery Update to modify a tag name in an XML file

rename node doc("books.xml")//publisher[1]//book[1] as "firstBook"

422

Querying documents

http://www.w3.org/TR/xquery-update-10/#introduction
http://www.w3.org/TR/xquery-update-10/#introduction

Chapter 12. Debugging XSLT stylesheets
and XQuery documents
Overview
The Debugger perspectives enables you to test and debug XSLT 1.0 /2.0 stylesheets and XQuery 1.0 documents including
complex XPath 2.0 expressions. The interface presents simultaneous views of the source XML document, the
XSLT/XQuery document and the result document. As you go step by step through the XSLT/XQuery document the
corresponding output is generated step by step, and the corresponding position in the XML file is highlighted for each
step. At the same time, special views in the interface provide various types of debugging information and events useful
for understanding the transformation process.

The user benefits of a rich set of features for testing and solving XSLT/XQuery problems:

• Support for XSLT 1.0 stylesheets (through the Saxon 6.5.5 and Xalan XSLT engines) , XSLT 2.0 stylesheets and
XPath 2.0 expressions that are included in the stylesheets (through the Saxon 9.2.0.6 PE XSLT engine and the
Saxon 9.2.0.6 EE one) and XQuery 1.0 (through the Saxon 9.2.0.6 PE XQuery engine and the Saxon 9.2.0.6 EE
one).

• Stepping capabilities: step in, step over, step out, run, run to cursor, run to end, pause, stop.

• Back mapping between every piece of output and instruction element /source context who generate it .

• Breakpoints on both source and XSLT/XQuery documents.

• Call stack view on both source and XSLT/XQuery documents.

• Trace history on both source and XSLT/XQuery documents.

• Support for XPath expression evaluation during debugging.

• Step into imported/included stylesheets as well as included source entities.

• Available templates and hits count.

• Variables view.

• Dynamic output generation.

Layout
The Debugger perspective interface looks like below. This interface is comprised of 4 panes as follows:

423

Figure 12.1. Debugger Mode Interface

Source document view (XML) Displays and allows editing of data or document oriented XML files (documents).

XSL/XQuery document view
(XSL/XQuery)

Displays and allows editing of XSL files(stylesheets) or XQuery documents.

Output document view Displays the transformed output that results from the input of a selected document
(XML) and selected stylesheet (XSL) or XQuery document to the transformer.
The result of transformation is dynamically written as the transformation is
processed.

Control view The control view provides functionality for configuration and control of debug-
ging operations. It also provides a series of Information views types. This pane
is comprised of two parts:

• Control Toolbar

• Information views

XML documents and XSL stylesheets or XQuery documents that were opened in Editor perspective are automatically
sorted into the first two panes. When multiple files of each type are opened, the individual documents and stylesheets
are separated using the familiar tab management system of the Editor perspective. Selecting a tab brings the document
or stylesheet into focus and enables editing without toggling back to the Editor perspective.

During debugging the current execution node is highlighted on both document (XML) and XSL/XQuery views.

424

Debugging XSLT stylesheets and
XQuery documents

Control Toolbar
The toolbar contains all actions needed in order to configure and control the debug process. Items are described below
from left to right as they appear in the toolbar.

Figure 12.2. Control Toolbar

XML source selector The selection represents the source document to be used as input by the trans-
formation engine. The selection list is filled-in with all opened files (the XML
ones being emphasized). This gives you the possibility to use other file types
as source. In case of XQuery debugging session this selection field can be set
to default value NONE, as usually XQuery documents do not require an input
source.

XSL/XQuery selector The selection represents the stylesheet or XQuery document to be used by the
transformation engine. The selection list is filled-in with all opened files (the
XSL/XQuery ones being emphasized).

Link with editor When this toggle button is pressed the XML source selector and the XSL/XQuery
selector are synchronized with the two panels containing opened files. When a
different editor is selected in the panel with XML files/XSL (XQuery) files the
name of the file opened in that editor is selected in the XML source selector
combo box / XSL/XQuery selector combo box.

Output selector The selection represents the output file specified in the associated transformation
scenario.

 XSLT/XQuery parameters XSLT/XQuery parameters to be used by the transformation.

 Edit extensions Add and remove the Java classes and jars used as XSLT extensions.

 Enable profiling Enable/Disable current transformation profiling.

 Enable XHTML output Enable or disable rendering of output to the XHTML Output document View
during the transformation process. For performance issues, it is advisable to
disable XHTML output for large jobs. Also, the XHTML area is only able to
render XHTML documents. In order to view the output result of other formats,
such as HTML, save the Text output area to a file and use the required external
browser for viewing.

When starting a debug session from the editor perspective using the Debug
Scenario action, the state of this toolbar button reflects the state of the "Show
as XHTML" output option from the scenario.

XSLT/XQuery engine selector Lists the available XSLT/XQuery processors

(Saxon and Xalan Java - see specifications for XSLT or Saxon 9 for XQuery).

425

Debugging XSLT stylesheets and
XQuery documents

XSLT/XQuery engine advanced op-
tions

Advanced options available for Saxon 9. See here for more details.

 Step into (F7) Starts the debugging process and runs until the next stylesheet node or the next
XPath 2.0 expression step (next step in transformation).

 Step over (F8 (Alt+F7 on Mac
OS))

Executes the current stylesheet node (including its sub-elements) and goes to
next node in document order (usually the next sibling of the current node) or to
next step of an XPath 2.0 expression.

 Step out (Shift + F7) Steps out to the parent node (equivalent to the Step over (F8 (Alt+F7 on Mac
OS)) on the parent).

 Run Starts the debugging process and runs until the first breakpoint is encountered
or until the end of transformation occurs, if no breakpoints are encountered (see
the section called “Breakpoints View”).

 Run to cursor (Ctrl + F5) Starts the debugging process and runs until one of the following conditions occur:
the line of cursor is reached, a valid breakpoint is reached or end of execution.

 Run to end (Alt + F5) Runs the transformation until the end, without taking into account any enabled
breakpoints that might be set.

 Pause (Shift + F6) Interrupts the current transformation. This is useful for long transformations
(DocBook for instance) when you want to find out what point the transformation
has reached. The transformation can be resumed after.

 Stop (F6) Ends the transformation process.

Information views
The information view is comprised of two panes that are used to display various types of information used to understand
the transformation process. For each information type there is a corresponding tab. While running a transformation,
relevant events are displayed in the various information views. This enables the developer to obtain a clear view of
the transformation progress. Using the Debug controls developers can easily isolate parts of stylesheet therefore they
may be understood and modified. The information types include (for a more detailed discussion on each information
type see Viewing processing information):

Left side information views

• Context Node View

• XWatch View

• Breakpoints View

• Break Conditions View

• Messages View (XSLT only)

• Variables View

Right side information views

• Stack View

426

Debugging XSLT stylesheets and
XQuery documents

• Trace View

• Templates View (XSLT only)

• Nodeset View

Multiple output documents in XSLT 2.0
For XSLT 2.0 stylesheets that store the output in more than one file by using the xsl:result-document instruction the
content of the file created in this way is displayed dynamically while the transformation is running in an output view.
There is one view for each xsl:result-document instruction so that the output of different instructions is not mixed but
is presented in different views.

Working with the XSLT/XQuery Debugger
The following topics are present about how to follow XSLT/XQuery processing and detect errors in your stylesheets
or XQuery documents:

• Steps in a typical debug process

• Using breakpoints

• Viewing processing information

• Determining what XSL/XQuery expression generated particular output

Steps in a typical debug process
To debug a stylesheet or XQuery document follow the procedure:

1. Open the source XML document and the XSLT/XQuery document.

2. If you are in the <oXygen/> XML perspective switch to the <oXygen/> XSLT Debugger perspective in case of
XSLT debugging or to the <oXygen/> XQuery Debugger in case of XQuery debugging with one of the actions
(here explained for XSLT):

• Window → Open Perspective → Other ...+<oXygen/> XSLT Debugger

• The toolbar button Debug scenario . This action initializes the Debugger perspective with the parameters of
the transformation scenario. Any modification applied to the scenario parameters (the transformer engine, the
XSLT parameters, the transformer extensions, etc) will be saved back in the scenario when exiting from the
Debugger perspective.

3. Select the source XML document in the XML source selector of the Control toolbar In case of XQuery debugging
if your XQuery document has no implicit source set the source selector value to NONE.

4. Select the XSL/XQuery document in the XSL/XQuery selector of the Control toolbar.

5. Set XSLT/XQuery parameters from the button available on the Control toolbar.

6. Set one or more breakpoints.

427

Debugging XSLT stylesheets and
XQuery documents

7. Step through the stylesheet using the buttons available on the Control toolbar: Step into, Step over, Step

out, Run, Run to cursor, Run to end, Pause, Stop

8. Examine the information in the Information Views to find the bug in the transformation process.

Note

Initially only the two available Saxon XSLT/XQuery Processors are active in the Debugger perspective. If you
select Xalan XSLT Processor an warning message is shown requiring Xalan version 2.7.1. To set Xalan 2.7.1
you need to copy xalan.jar and serializerOxygen.jar from [oxygen]/lib and put it to the endorsed
folder from your JRE/JDK used for running Eclipse (you can find it in Help → About Eclipse Platform+Config-
uration Detailsjava.endorsed.dirs entry) and restart Eclipse.

Using breakpoints
The <oXygen/> XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to gather information
about variables and processor execution at particular points.

Inserting breakpoints

To insert a breakpoint:

1. In the XML source document or the XSLT/XQuery document that you want to set a breakpoint, place your cursor
on the line where you want the breakpoint to be. You can set breakpoints on XML source only for XSLT debugging
sessions.

2. Click with the mouse the left side stripe of the editor window on the line where you want the breakpoint to be.

Note

If the start tag of the element you want to set a breakpoint is spanning on multiple rows, then you have to place
the breakpoint on the line containing the end of the start tag. In the following example if you try to place a
breakpoint on the call-template line, the editor will show an error dialog, explaining that you must place the
breakpoint at the end of the start tag. This means you have to place the breakpoint on the line containing the text:
">" , just after the "name" attribute.

 <xsl:template match="chapter">
 <xsl:call-template
 name="title"
 >
 </xsl:call-template>
 </xsl:template>

Removing breakpoints

To remove a breakpoint:

• Click with the mouse the left side stripe of the editor window on the line with the breakpoint or select Edit →
Breakpoints → Remove all

428

Debugging XSLT stylesheets and
XQuery documents

Viewing processing information
Detailed information about the debugger status are provided using the information views.

Context node view

The context node is valid only for XSLT debugging session and is a source node corresponding to the XSL expression
being evaluated. It is also called the context of execution. The context node implicitly changes as the processor hits
various steps (at the point where XPath expressions are evaluated). This node has the same value as evaluating '.' (dot)
XPath expression on XWatch View. The value of the context node is presented as a tree in the view.

Figure 12.3. The Context node view

The context node is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed
using the qualified name. If the namespace is not bound to a prefix the namespace URI will be presented before the
node name. The value of the selected attribute or node is shown in the right side panel.

XPath watch view

Shows XPath expressions to be evaluated during debugging. Expressions are evaluated dynamically as the processor
changes its source context.

Figure 12.4. The XPath watch view

429

Debugging XSLT stylesheets and
XQuery documents

Table 12.1. XWatch details

DescriptionColumn

XPath expression to be evaluated (should be XPath 1.0 or 2.0 compliant).Expression

Result of XPath expression evaluation. Value has a type (see Possible Values in the section the section
called “Variables View”). For Node Set results the number of nodes in the set is shown in parenthesis.

Value

Remarks

• Expressions referring to variables names are not evaluated. In case of an XPath error, you get an Error line.

• The expression list is not deleted at the end of transformation (it is preserved during sessions).

• To insert a new expression click the last line on the expression column and enter it or right click and select
the Add action. Press enter on cell to add and evaluate.

• To delete an expression click on its Expression column and delete its content or right click and select the Remove
action. Press enter on cell to commit changes.

• If the expression result type is a Node Set you can click on it (Value column) and you will see on the right
side its value. (see Nodeset View).

• Copy, Add, Remove and Remove All actions are offered in every row's contextual menu.

Breakpoints View

Lists all breakpoints set on opened documents. Once you set a breakpoint it is automatically added in this list. Breakpoints
can be set on XSL/XQuery documents and in XML documents for XSLT debugging sessions.

Figure 12.5. The Breakpoints View

Table 12.2. Breakpoints details

DescriptionColumn

If checked, the current condition is evaluated and taken into account.Enabled

Resource file where the breakpoint is set.Resource

Line number inside resource where the breakpoint is set.Line

430

Debugging XSLT stylesheets and
XQuery documents

Valid Breakpoint

• Not all set breakpoints are valid. For example if the breakpoint is set on one empty or commented line or the
line is not reached by the processor (no template to match it, line containing only an end tag), that breakpoint
is invalid.

• Clicking a record highlights the breakpoint line into the document.

Break conditions view

Lists all defined break conditions. Unlike breakpoints, break conditions are not associated with a document, but they
represent XPath expressions evaluated in the current debugger context. In order to be processed their evaluation result
should be a boolean value.

Figure 12.6. The Break conditions view

Table 12.3. Break conditions details

DescriptionColumn

If checked, the current condition is evaluated and taken into account.Enabled

XSLT/XQuery expression to be evaluated during debugging. The expression will be evaluated at every
debug step.

Condition

Boolean result of the evaluated condition or error message if the condition expression cannot be evaluated.Value

When the Debugger hits an active break condition it pauses the execution of the transformation and places a small
marker on the left side of the line where the break condition occurred. The tooltip of the marker explains the cause of
the pause. To disable further pauses when the same condition occurs you have to uncheck the Enabled column of the
corresponding line in the Break conditions view.

Important

• The contextual menu on table has the Add, Remove, Remove All, Enable All, Disable All options.

Messages View

<xsl:message> instructions are one way to signal special situations encountered during transformation as well as
a raw way of doing the debugging. This view is available only for XSLT debugging sessions and shows all
<xsl:message> calls executed by the XSLT processor during transformation.

431

Debugging XSLT stylesheets and
XQuery documents

Figure 12.7. The Messages View

Table 12.4. Messages details

DescriptionColumn

Message content.Message

Signals if processor will terminate the transformation or not once it encounters the message (true/false
respectively)

Terminate

Resource file where <xsl:message> instruction is defined.Resource

Remarks

• Clicking a record from the table highlights the <xsl:message> declaration line.

• Message table values can be sorted by clicking the corresponding column header (ascending, descending, no
sort)

Stack View

Shows the current execution stack of both source and XSL/XQuery nodes. During transformation two stacks are
managed: one of source nodes being processed and the other for XSL/XQuery nodes being processed. <oXygen/>
shows both node types into one common stack. The source (XML) nodes are preceded by a red color icon while
XSL/XQuery nodes are preceded by a green color icon. The advantage of this approach is that you can always see the
source scope on which a XSL/XQuery instruction is executed (the last red color node on the stack). The stack is oriented
upside down.

Figure 12.8. The Stack View

432

Debugging XSLT stylesheets and
XQuery documents

Table 12.5. Stack details

DescriptionColumn

Order number, represents the depth of the node (0 is the stack base).#

Node from source or stylesheet document currently being processed. One particular stack
node is the document root, noted as #document.

XML/XSL/XQuery Node

Attributes of the node (list of id="value " pairs).Attributes

Resource file where the node is located.Resource

Remarks

• Clicking a record from the stack highlights that node's location inside resource.

• Using Saxon, the stylesheet elements are qualified with XSL proxy, while on Xalan you only see their names.
(example <xsl:template> on Saxon and template on Xalan).

• Only Saxon processor shows element attributes.

• Xalan processor shows the "built-in" rules.

Trace history view

Usually the XSLT/XQuery processors signal the following events during transformation:

• entering a source (XML) node.

• leaving a source (XML) node.

• entering a XSL/XQuery node.

• leaving a XSL/XQuery node.

The trace history catches all these events, so you can see how the process evolved. The red icon lines denote source
nodes while the green icon lines denote XSL/XQuery nodes.

It is possible to save the element trace in a structured XML document. It is available on the context menu of the view.
In this way you have the possibility to compare the trace results from different debug sessions.

Figure 12.9. The Trace History View

433

Debugging XSLT stylesheets and
XQuery documents

Table 12.6. Trace History details

DescriptionColumn

Starts from 0 and represents the level of overlapping for that node. This is similar with the
order number from stack at the moment the node was processed.

Depth

Represents the node from the processed source or stylesheet document. One particular
node is the document root, noted as #document. Every node has an arrow in front of it
representing what action was performed on it (entering or leaving).

XML/XSL/XQuery Node

Attributes of the node (list of id="value " pairs).Attributes

Resource file where the node is located.Resource

Remarks

• Clicking a record highlights that node's location inside the resource.

• Only Saxon processor shows element attributes.

• Xalan processor shows the "built-in" rules.

Templates view

The <xsl:template> is the basic element for stylesheets transformation. This view is only available during XSLT
debugging sessions and shows all <xsl:template> instructions used by the transformation. By seeing the number
of hits for each of the templates you get an idea of the stylesheet coverage by template rules with respect to the input
source.

Figure 12.10. The Templates view

Table 12.7. Templates details

DescriptionColumn

Match attribute of the <xsl:template>.Match

Number of hits for the <xsl:template>. Shows how many times the XSLT processor used this partic-
ular template.

Hits

Template priority as established by XSLT processor.Priority

Mode attribute of the <xsl:template>.Mode

Name attribute of the <xsl:template>.Name

Resource file where template is located.Resource

434

Debugging XSLT stylesheets and
XQuery documents

Remarks

• Clicking a record highlights that template definition inside resource.

• Saxon only shows the applied templates having at least one hit from the processor. Xalan shows all defined
templates, with or without hits.

• Template table values can be sorted by clicking the corresponding column header (ascending, descending, no
sort)

• Xalan shows the "built-in" rules.

Node set view

This view is always used in relation with Variables View and XWatch View and shows a nodeset value in a tree form.
Once you click a variable having as value a nodeset or tree fragment or an XPath expression evaluated to a nodeset in
the above views the node set view gets updated with the respective value.

Figure 12.11. The Node Set view

The nodes/values set is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed
using the qualified name. If the namespace is not bound to a prefix the namespace URI will be presented before the
node name. The value of the selected attribute or node are shown in the right side panel.

Remarks

• In case of longer values for Value/Attributes column content, the interface shows three suspension points (...)
at the end. A more detailed value is available as tooltip.

• Clicking a record highlights the location of that node into the source or stylesheet view.

Variables View

During transformation variables and parameters play an important role.

<oXygen/> uses the following icons to differentiate variables/parameters:

• Global variable.

• Local variable.

435

Debugging XSLT stylesheets and
XQuery documents

• Global parameter.

• Local parameter.

The values types of a variable are marked by icons explained below:

Possible Values

• Boolean.

• String.

• Numeric.

• Node set.

• Tree fragment.

• Date. (XSLT 2.0 only)

• Object.

• Any.

Figure 12.12. The Variables View

Table 12.8. Variables details

DescriptionColumn

Name of the variable/parameter.Name

Current value for the variable/parameter.Value

Remarks

• Clicking a record highlights the variable definition line.

• Variable values could differ depending on the transformation engine used or stylesheet version set.

• If the value of the variable is a node-set or a tree-fragment, clicking on it causes the Node set view to be shown
with corresponding set of values.

• Variable table values can be sorted by clicking the corresponding column header (ascending, descending, no
sort)

436

Debugging XSLT stylesheets and
XQuery documents

Determining what XSL/XQuery expression generated par-
ticular output
In order to quickly spot the XSL templates or XQuery expressions with problems it is important to know what XSL
template in the XSL stylesheet or XQuery expression in the XQuery document and what element in the source XML
document generated a specified area in the output. Some of the debugging capabilities, for example "Step in" can be
used for this purpose. Using "Step in" you can see how output is generated and link it with the XSL/XQuery element
being executed in the current source context. However, this can become difficult on complex stylesheets or XQuery
documents that generates a large output.

Output to source mapping is a powerful feature that makes this output to source mapping persistent that is you can
click on the text from the Output document view and the editor will select the XML source context and the XSL/XQuery
element that generated the text.

Figure 12.13. Output to Source Mapping

1. If you are in the <oXygen/> XML perspective switch to the <oXygen/> XSLT Debugger or <oXygen/> XQuery
Debugger perspective with one of the actions (here explained for XSLT):

• Window → Open Perspective → Other ...+<oXygen/> XSLT Debugger

• The toolbar button Debug scenario . This action initializes the Debugger perspective with the parameters of
the transformation scenario. Any modification applied to the scenario parameters (the transformer engine, the
XSLT parameters, the transformer extensions, etc) will be saved back in the scenario when exiting from the
Debugger perspective.

2. Select the source XML document in the XML source selector of the Control toolbar. In case of XQuery debugging
without an implicit source choose the NONE value.

3. Select the XSL/XQuery document in the XSL/XQuery selector of the Control toolbar

4. Select the XSLT/XQuery engine in the XSLT/XQuery engine selector of the Control toolbar

5. Set XSLT/XQuery parameters from the button available on the Control toolbar

6. Apply the stylesheet or XQuery transformation using the button Run to end available on the Control toolbar:

437

Debugging XSLT stylesheets and
XQuery documents

7. Inspect the mapping by clicking a section of the output from the Output view of the <oXygen/> XSLT Debugger
or <oXygen/> XQuery Debugger perspectives to have the XSL/XQuery element and the source context highlighted.

438

Debugging XSLT stylesheets and
XQuery documents

Chapter 13. Profiling XSLT stylesheets
and XQuery documents
Overview
Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery transformation
to not meet customer expectations or you are trying to proactively identify issues prior to deploying your XSLT/XQuery
transformation, using the XSLT/XQuery profiler feature is essential to helping you save time and ultimately ensure a
better performing, more scalable XSLT/XQuery transformation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processors that could be used for debugging
and it is available from the editor debugging perspective.

Enabling/disabling the profiler is controlled by the Profiler button from the debugger control toolbar. The XSLT/XQuery
profiler is off by default. This option is not available during a debugger session so you should set it before starting the
transformation.

Viewing profiling information
Detailed profiling information for the current transformation is provided using the information views:

Invocation tree view
The invocation tree view shows a top-down call tree representing how XSLT instructions or XQuery expressions are
processed.

Figure 13.1. Invocation tree view

The entries in the invocation tree have different meanings which are indicated by the displayed icons:

• This points to a call whose inherent time is insignificant compared to its call tree time.

• This points to a call whose inherent time is significant compared to its call tree time. (greater than 1/3rd of its
call tree time).

Every entry in the invocation tree has textual information attached which depends on the XSLT/XQuery profiler settings

• a percentage number of total time which is calculated with respect to either the root of the tree or the calling instruction;

• a total time measurement in ms or µs. This is the total execution time that includes calls into other instructions;

439

• a percentage number of inherent time which is calculated with respect to either the root of the tree or the calling in-
struction;

• an inherent time measurement in ms or µs. This is the inherent execution time of the instruction;

• an invocation count which shows how often the instruction has been invoked on this path;

• an instruction name which contains also the attributes description.

Note

All nodes having their call tree time less than the one specified in the XSLT/XQuery profiler settings are cumu-
lated and shown as Others node.

Hotspots View
The hotspots view shows a list of all instruction calls which lie above the threshold defined in the XSLT/XQuery
profiler settings .

Figure 13.2. Hotspots View

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calculated and shown.

Every hotspot is described in several columns:

• the instruction name;

• the inherent time in ms or µs of how much time has been spent in the hotspot together with a bar whose length is
proportional to this value. All calls into this instruction are summed up regardless of the particular call sequence;

• the invocation count of the hotspot.

If you click on the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it which depends on the XSLT/XQuery profiler
settings .

• a percentage number which is calculated with respect either to the total time or the called instruction;

• a time measured in ms or µs of how much time has been contributed to the parent hotspot on this path;

• an invocation count which shows how often the hotspot has been invoked on this path;

440

Profiling XSLT stylesheets and XQuery
documents

Note

This is not the number of invocations of this instruction.

• an instruction name which contains also its attributes.

Working with XSLT/XQuery profiler
Profiling activity is linked with Debugging activity, so the first step in order to profile is to switch to debugging per-
spective and follow the corresponding procedure (see Working with XSLT Debugger).

Immediately after turning the profiler on two new information views are added to the current debugger information
views (Invocation tree view on left side, Hotspots view on right side). Profiling data is available only when the trans-
formation ends successfully.

Note

Breakpoints/step capabilities may influence the result of profiling so their usage should be restricted to minimum.

Looking to right side (Hotspots view), you can immediately spot the time the processor spent in each instruction. As
instruction usually calls other instructions the used time of the called instruction is extracted from the duration time
of the caller (the hotspot only presents the inherent time of the instruction).

Looking at left side (Invocation tree view), you can examine how style instructions are processed. This result view is
also named call-tree, as it represents the order of style processing. The profiling result shows the duration time for each
of the style-instruction including the time needed for its called children.

Figure 13.3. Source backmapping

In any of the above views you can use the backmapping feature in order to find the XSLT stylesheet or XQuery expres-
sion definition. Clicking on the selected item cause <oXygen/> to highlight the XSLT stylesheet or XQuery expression
source line where the instruction is defined.

When navigating through the trees by opening instruction calls, <oXygen/> automatically expands instructions which
are only called by one other instruction themselves.

The profiling data can be saved into XML and HTML format. On any view you should right click , use the pop-up
menu and select the corresponding choice. Basically saving HTML means saving XML and applying an XSLT stylesheet
to render the report as XML. These stylesheets are also available on distribution (see the subdirectory frame-

441

Profiling XSLT stylesheets and XQuery
documents

works/profiler/ of the <oXygen/> installation directory) so you can make your own report based on the profiling
raw data.

If you like to change the XSLT/XQuery profiler settings you should right click on view, use the pop-up menu and
choose the corresponding "View settings" entry.

Caution

Profiling exhaustive transformation may run into an OutOfMemoryException due to the large amount of inform-
ation being collected. If this is the case you can close unused projects when running the profiling or use high
values for Java VM options -Xms and -Xmx. If this does not help you can shorten your source xml file and try
again.

442

Profiling XSLT stylesheets and XQuery
documents

Chapter 14. Working with Archives
<oXygen/> offers the means to manipulate files directly from ZIP type archives. By manipulation one should understand
opening and saving files directly in archives, browsing and modifying archive structures. The archive support is
available for all ZIP-type archives, for JAR and ODF formats and for IDML files which are also based on the ZIP
archive format. This means that you can modify, transform, validate files directly from OOXML or ODF packages.

Using files directly from archives
Now you can transform, validate and perform many other operations on files directly from an archive. When selecting

an URL for a specific operation like transformation or validation you can click the Browse for archived file button
to navigate and choose the file from a certain archive.

Browsing and modifying archives' structure
You can navigate archives directly in the Archives Browser either by opening them from the Navigator or by using
the integration with the Eclipse File System.

For the EFS (Eclipse File System) integration you must right click the archive in the Navigator and choose Expand
Zip Archive. All the standard Eclipse Navigator actions are available on the mounted archive. If you decide to close
the archive you can use the Collapse ZIP Archive action located in the contextual menu for the expanded archive. Any
file opened from the archive expanded in the EFS will be closed when the archive in unmounted.

Warning

The ZIP support needs the IBM437 character set to be properly installed in the Java Runtime Environment in
order to be able to navigate/open ZIP archives. If you encounter an error message when expanding a ZIP archive
about the JVM that is missing a charset then the JVM used to run Eclipse does not have the character set library
properly installed.

If you open an archive as an Eclipse editor, the archive will be unmounted when the editor is closed.

Important

If a file extension is not known by <oXygen/> as a supported archive type you can add it from the Archive
preferences page .

443

Figure 14.1. Browsing an archive

The following operations are available on the Archive Browser's toolbar:

New folder... Create a new folder as child of the selected folder in the browsed archive.

New file... Create a new file as child of the selected folder in the browsed archive.

Add files... Add some already existing files as children of the selected folder in the browsed archive.

Delete Delete the selected resource in the browsed archive.

Archive Options... Open the Archive preferences page.

The following additional operations are available from the Archive Browser's contextual menu:

Open Open a resource from the archive in the editor.

Copy location Copy the URL location of the selected resource.

Refresh Refresh the selected resource.

Properties... View properties for the selected resource.

Editing files from archives
You can open in <oXygen/> and edit files directly from an archive.

When saving the archived file you will be prompted with some backup operations which can be performed to ensure
that your archive data will not be corrupted. You have the following backup before save options :

No backup Perform no backup of the archive before save. This means that the file will be saved
directly in the archive without any additional precautions.

444

Working with Archives

Single file backup Before any operation which modifies the archive is performed, the archive contents will
be duplicated. The duplicate file name will be originalArchiveFileName.bak
and will be saved in the same directory.

Incremental backup Before each operation which modifies the archive is performed, the archive contents will
be duplicated. The duplicate file names will be originalArchiveFile-
Name.bak#dupNo and the files will be saved in the same directory.

Never ask me again Check this if you do not want to be notified again to backup. The last backup option you
chose will always be used as the default one.

You can re-enable the dialog pop-up from the Archive preferences page.

445

Working with Archives

Chapter 15. Working with Databases
XML is a storage and interchange format for structured data and it is supported by all major database systems. <oXygen/>
offers the means of managing the interaction with some of the widely used databases, both relational ones and Native
XML Databases. By interaction, one should understand browsing, querying, SQL execution support, content editing,
importing from databases, generating XML Schema from database structure.

Relational Database Support
Relational databases use a relational model and are based on tables linked by a common key. <oXygen/> offers support
for the following relational databases: IBM DB2, JDBC-ODBC Bridge, MySQL, Microsoft SQL Server, Oracle 11g
like browsing the tables of these types of database in the Data Source Explorer view, executing SQL queries against
them, calling stored procedures with input and output parameters.

In the following sections one can find the tools that <oXygen/> offers for working with relational databases and a de-
scription on how to configure a relational data source, a connection to a data source and also the views where connections
can be browsed and results are displayed.

Configuring Database Data Sources

How to configure an IBM DB2 Data Source

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select DB2 from the driver type combo box.

Figure 15.1. Data Source Drivers Configuration Dialog

446

Press the Add button to add the following IBM DB2 specific files:

• db2jcc.jar

• db2jcc_license_cisuz.jar

• db2jcc_license_cu.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing IBM DB2 databases in <oXygen/>.

You can manually manage the Driver Files using Add, Remove, Detect and Stop(detection) buttons.

3. Select the most suited Driver class.

4. Click OK to finish the data source configuration.

How to configure a Generic JDBC Data Source

<oXygen/>'s default configuration already contains a generic JDBC data source called JDBC-ODBC Bridge.

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select Generic JDBC from the driver type combo box.

Click the Add button and find the driver file on your file system.

You can manage the Driver Files using Add, Remove, Detect and Stop(detection) buttons.

3. Select the most suited Driver class.

4. Click OK to finish the data source configuration.

How to configure a Microsoft SQL Server Data Source

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select SQLServer from the driver type combo box.

3. Press the Add button to add the following Microsoft SQL Server specific files:

• sqljdbc.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing Microsoft SQL Server databases in <oXygen/>.

You can manage the Driver Files using Add, Remove, Detect and Stop(detection) buttons.

4. Select the most suited Driver class.

5. Click OK to finish the data source configuration.

How to configure a MySQL Data Source

<oXygen/>'s default configuration already contains a generic JDBC data source called MySQL.

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

447

Working with Databases

2. Enter a unique name for this data source and select Generic JDBC from the driver type combo box.

Press the Add button to add the following MySQL specific files:

• mysql-com.jar

You can manage the Driver Files using Add, Remove, Detect and Stop(detection) buttons.

3. Select the most suited Driver class.

4. Click OK to finish the data source configuration.

How to configure an Oracle 11g Data Source

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select Oracle from the driver type combo box.

Press the Add button to add the following Oracle 11g specific files:

• ojdbc5.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing Oracle 11g databases in <oXygen/>.

You can manage the Driver Files using Add, Remove, Detect and Stop(detection) buttons.

3. Select the most suited Driver class.

4. Click OK to finish the data source configuration.

How to configure a PostgreSQL 8.3 Data Source

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select Postgres from the driver type combo box.

Press the Add button to add the following Postgres 8.3 specific files:

• postgresql-8.3-603.jdbc3.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing PostgreSQL databases in <oXygen/>.

You can manage the Driver Files using Add, Remove, Detect and Stop(detection) buttons.

3. Select the org.postgresql.Driver class in the Driver class combo box.

4. Click OK to finish the data source configuration.

Configuring Database Connections
This section presents a set of procedures describing how to configure connections that use relational data sources.

448

Working with Databases

How to Configure an IBM DB2 Connection

Figure 15.2. The Connection Configuration Dialog

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured DB2 data sources from the
Data Source combo box.

3. Fill-in the Connection Details:

URL URL to the installed IBM DB2 engine.

User User name to access the IBM DB2 database engine.

Password Password to access the IBM DB2 engine.

4. Click OK.

How to Configure a JDBC-ODBC Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured Generic JDBC data sources
from the Data Source combo box.

3. Fill-in the Connection Details:

URL URL to the configured ODBC source.

User User name to access the configured ODBC source.

Password Password to access the configured ODBC source.

4. Click OK.

449

Working with Databases

How to Configure a Microsoft SQL Server Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured SQLServer data sources from
the Data Source combo box.

3. Fill-in the Connection Details:

URL URL to the installed SQLServer engine.

User User name to access the SQLServer database engine.

Password Password to access the SQLServer engine.

4. Click OK.

How to Configure a MySQL Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured MySQL data sources from
the Data Source combo box.

3. Fill-in the Connection Details:

URL URL to the installed MySQL engine.

User User name to access the MySQL database engine.

Password Password to access the MySQL engine.

4. Click OK.

How to Configure an Oracle 11g Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured Oracle data sources from the
Data Source combo box.

3. Fill-in the Connection Details:

URL URL to the installed Oracle engine.

User User name to access the Oracle database engine.

Password Password to access the Oracle engine.

4. Click OK.

450

Working with Databases

Note

Registering,unregistering or updating a schema might involve dropping/creating types. For schema-based XML-
Type tables or columns in schemas, you need privileges like

• CREATE ANY TABLE

• CREATE ANY INDEX

• SELECT ANY TABLE

• UPDATE ANY TABLE

• INSERT ANY TABLE

• DELETE ANY TABLE

• DROP ANY TABLE

• ALTER ANY TABLE

• DROP ANY INDEX

To avoid granting these privileges to the schema owner, Oracle recommends that the operations requiring these
privileges be performed by a DBA if there are XML schema-based XMLType table or columns in other users'
database schemas.

How to Configure a PostgreSQL 8.3 Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured PostgreSQL data sources
from the Data Source combo box.

3. Fill-in the Connection Details:

URL URL to the installed PostgreSQL engine.

User User name to access the PostgreSQL database engine.

Password Password to access the PostgreSQL engine.

4. Click OK.

Resource Management

Data Source Explorer View

This view presents in a tree-like fashion the database connections configured in Preferences -> Data Sources. You
can connect to a database simply by expanding the connection node. The database structure can be expanded up to
column level. <oXygen/> supports multiple simultaneous database connections and the connections tree provides an
easy way to browse them.

451

Working with Databases

Figure 15.3. Data Source Explorer View

The following objects are displayed by the Data Source Explorer view:

• Connection

• Catalog

• XML Schema Repository

• XML Schema Component

• Schema

• Table

• System Table

• Table Column

The following actions are available in the view's toolbar:

• The Filters button opens the Data Sources / Table FiltersPreferences page, allowing you to decide which table
types will be displayed in the Data Source Explorer view.

• The Configure Database Sources button opens the Data Sources preferences page where you can configure both
data sources and connections.

Below you can find a description of the contextual menu actions available on the Data Source Explorer levels. Please
note that you can also open an XML schema component in the editor by double-clicking it. To view the content of a
table in the Table Explorer view double-click one of its fields.

452

Working with Databases

Actions available at connection level

• Refresh - performs a refresh of the selected node's subtree.

• Configure Database Sources - opens the Data Sourcespreferences page where you can configure both data sources
and connections.

Actions available at catalog level

• Refresh - performs a refresh of the selected node's subtree.

Actions available at schema level

• Refresh - performs a refresh of the selected node's subtree.

Actions available at table level

• Refresh - performs a refresh of the selected node's subtree.

• Edit - opens the selected table in the Table Explorer View.

• Export to XML - opens the Export Criteria dialog (a thorough description of this dialog can be found in the Import
from database chapter) .

XML Schema Repository level

For relational databases that support XML schema repository (XSR) in their database catalogs, the actions available
at this level are presented in the following sections.

Oracle's XML Schema Repository Level

• Refresh - performs a refresh of the selected node's subtree.

• Register - Opens a dialog for adding a new schema file in the DB XML repository. To add an XML Schema, enter
the schema URI and location on your file system. Local scope means that the schema will be visible only to the user
who registers it. Global scope means that the schema is public.

IBM DB2's XML Schema Repository Level

• Refresh - performs a refresh of the selected node's subtree.

• Register - opens a dialog for adding a new schema file in the XML Schema repository. In this dialog the following
fields can be set:

• XML schema file - location on your file system.

• XSR name - schema name.

• Comment - short comment (optional).

• Schema location - primary schema name (optional).

Decomposition means that parts of the XML documents are stored into relational tables. Which parts map to which
tables and columns is specified into the schema annotations.

453

Working with Databases

Schema dependencies management is done by using the Add and Remove buttons.

Actions available at schema level:

• Refresh - performs a refresh of the selected node (and it's subtree).

• Unregister - removes the selected schema from the XML Schema Repository.

• View - opens the selected schema in <oXygen/>.

Microsoft SQL Server's XML Schema Repository Level

• Refresh - performs a refresh of the selected node's subtree.

• Register - Opens a dialog for adding a new schema file in the DB XML repository. In this dialog you enter a collection
name and the necessary schema files. XML Schema files management is done by using the Add and Remove buttons.

Actions available at schema level:

• Refresh - performs a refresh of the selected node (and it's subtree).

• Add - adds a new schema to the XML Schema files.

• Unregister - removes the selected schema from the XML Schema Repository.

• View - opens the selected schema in <oXygen/>.

Table Explorer View

Every table from the Data Source Explorer can be displayed and edited by pressing the Edit button from the contextual
menu or by double-clicking one of its fields. To modify a cell's content, double click it and start typing. When editing
is finished, <oXygen/> will try to update the database with the new cell content.

Figure 15.4. The Table Explorer View

You can sort the content of a table by one of its columns by clicking on its (column) header.

Note the following:

• The first column is an index (does not belong to the table structure).

• Every column header contains the field name and its data type.

• The primary key columns are marked with this symbol: .

454

Working with Databases

• Multiple tables are presented in a tabbed manner

For performance issues, you can set the maximum number of cells that will be displayed in the Table Explorer view (
the "Limit the number of cells" field from the Data Sources Preferences page). If a table having more cells than the
value set in <oXygen/>'s options is displayed in the Table Explorer view, a warning dialog will inform you that the
table is only partially shown.

Note

A custom validator cannot be applied on files loaded through an <oXygen/> custom protocol plugin developed
independently and added to <oXygen/> after installation. This applies also on columns of type XML.

You will be notified if the value you have entered in a cell is not valid (and thus it cannot be updated).

• If the content of the edited cell does not belong to the data type of the column, an Information dialog will appear,
notifying you that the value you have inserted cannot be converted to the SQL type of that field. For example, in
the above figure DEPARTMENT_ID contains NUMBER values. If a character or string was inserted, you would get
the error message that a String value cannot be converted to the requested SQL type (NUMBER).

• If the constraints of the database are not met (like primary key constraints for example), an Information dialog will
appear, notifying you of the reason the database has not been updated.

For example, if you'd try to set the primary key DEPARTMENT_ID for the second record in the table to 10 also,
you would get the following message:

Figure 15.5. Duplicate entry for primary key

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the popup menu of the edited cell

The contextual menu available on every cell has the following actions:

• Set NULL - sets the content of the cell to (null). This action is disabled for columns that cannot be null.

• Insert row - inserts an empty row in the table.

• Duplicate row - makes a copy of the selected row and adds it in the Table Explorer view. You should note that
the new row will not be inserted in the database table until all conflicts are solved.

• Commit row - commits the selected row.

455

Working with Databases

• Delete row - deletes the selected row.

• Copy - copies the content of the cell.

• Paste - performs paste in the selected cell

Some of the above actions are also available on the Table Explorer toolbar:

• Export to XML - opens the Export Criteria dialog (a thorough description of this dialog can be found in the Import
from database chapter) .

• Refresh - performs a refresh of the selected node's subtree.

• Insert row - inserts an empty row in the table.

• Duplicate row - makes a copy of the selected row and adds it in the Table Explorer view. You should note that
the new row will not be inserted in the database table until all conflicts are solved.

• Commit row - commits the selected row.

• Delete row - deletes the selected row.

SQL Execution Support
<oXygen/>'s support for writing SQL statements includes syntax highlight, folding and drag&drop(DND) from the
Data Source Explorer View. It also includes transformation scenarios for executing the statements and the results are
displayed in the Table Explorer View.

Drag and Drop from Data Source Explorer

Configure a database connection as it was shown previously in this chapter and browse to the table you will use in
your statement and drag it into the editor (where a sql file is open).

456

Working with Databases

Figure 15.6. SQL statement editing with DND

Next, select the type of statement from the popup menu that appears in the sql editor. Depending on your choice, one
of the following statements will be inserted into the document:

• SELECT ̀ field1`,`field2`, FROM ̀ catalog`. ̀ table` (for this example: SELECT `DEPT`,`DEPTNAME`,`LOC-
ATION` FROM `test`.`department`)

• UPDATE `catalog`. `table` SET `field1`=, `field2`=,.... (for this example: UPDATE `test`.`department`
SET `DEPT`=, `DEPTNAME`=, `LOCATION`=)

• INSERT INTO`catalog`. `table` (`field1`,`field2`,) VALUES (, ,) (for this example: INSERT INTO
`test`.`department` (`DEPT`,`DEPTNAME`,`LOCATION`) VALUES (, ,))

• DELETE FROM `catalog`. `table` (for this example: DELETE FROM `test`.`department`)

DND is available both on the table and on its fields. Click on the column and drag it into the editor. The same popup
menu as above will appear. Depending on your choice, one of the following statements will be inserted into the document:

• SELECT ̀ field` FROM ̀ catalog`. ̀ table` (for this example: SELECT `DEPT` FROM `test`.`department`
)

• UPDATE ̀ catalog`. ̀ table` SET ̀ field`= (for this example: UPDATE `test`.`department` SET `DEPT`=)

• INSERT INTO`catalog`. ̀ table` (̀ field1) VALUES () (for this example: INSERT INTO `test`.`department`
(`DEPT`) VALUES ())

• DELETE FROM `catalog`. `table` (for this example: DELETE FROM `test`.`department` WHERE
`DEPT`=)

457

Working with Databases

SQL Validation

Currently, SQL validation support is offered for IBM DB2. Please note that if you choose a connection that doesn't
support SQL validation you will receive a warning when trying to validate. The SQL document will be validated using
the connection from the associated transformation scenario.

Executing SQL Statements

First configure a transformation scenario. Click on the Configure Transformation Scenario button from the Trans-
formation toolbar. The dialog that appears contains the list of existing scenarios that apply to SQL documents. To
configure a new scenario, click the New button. Enter a name for the scenario and choose one of the available database
connections.

To configure a new connection click on Configure Database Sources .

Place holders(?) for parameters are supported by <oXygen/>. For the following example SELECT * FROM
`test`.`department` where DEPT = ? or DEPTNAME = ? two parameters can be configured for the
transformation scenario. To do this, in the previous dialog click the Parameters button and add a new parameter for
each placeholder. When the sql statement will be executed, the first placeholder will be replaced with the value set for
the first parameter in the scenario, the second placeholder will be replaced by the second parameter value and so on.

The result of a SQL transformation will be displayed in the Table Explorer view.

To view a more complex value returned by the SQL query that cannot be displayed entirely in the query result table
at the bottom of the Eclipse window, for example an XMLTYPE value or a CLOB value, you have to right click on
that cell, select the action Copy cell from the popup menu for copying the value in the clipboard and paste the value
where you need it, for example an opened XQuery editor panel of Eclipse .

Importing from Databases
This feature is explained in detail in the Import from database section of Importing Data chapter.

Creating XML Schema from Databases
This feature is explained in detail in the Convert table structure to XML section of Importing Data chapter.

Native XML Database (NXD) Support
Native XML databases have an XML-based internal model and their fundamental unit of storage is XML. <oXygen/>
offers support for: Berkeley DB XML, eXist, MarkLogic, Software AG Tamino, Raining Data TigerLogic, Documentum
xDb (X-Hive/DB) and Oracle XML DB.

Configuring Database Data Sources
This section presents a set of procedures describing how to configure NXD data sources.

How to configure a Berkeley DB XML datasource

The latest instructions on how to configure Berkeley DB XML support in <oXygen/> can be found on our website
[http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-berkeley-datasource].

458

Working with Databases

http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-berkeley-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-berkeley-datasource

<oXygen/> supports Berkeley DB XML versions 2.3.10, 2.4.13 & 2.4.16. The following directory definitions shall
apply:

• OXY_DIR - <oXygen/> installation root directory. (for example on Windows C:\Program Files\Oxygen 11.2)

• DBXML_DIR - Berkeley DB XML database root directory. (for example on Windows C:\Program Files\Sleepycat
Software\Berkeley DB XML <version>)

• DBXML_LIBRARY_DIR (usually on Mac and Unix is DBXML_DIR/lib and on Windows is DBXML_DIR/bin)

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select Berkeley DBXML from the driver type combo box.

3. Press the Add button to add the following Berkeley DB specific files:

• db.jar (check for it into DBXML_DIR/lib or DBXML_DIR/jar)

• dbxml.jar (check for it into DBXML_DIR/lib or DBXML_DIR/jar)

4. Click OK to finish the data source configuration.

How to configure an eXist datasource

The latest instructions on how to configure eXist support in <oXygen/> can be found on our website
[http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-exist-datasource].

The eXist database server versions supported by <oXygen/> are 1.0, 1.1, 1.2.2, 1.2.4, 1.2.5, 1.3 and 1.4.

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select eXist from the driver type combo box.

3. Press the Add button to add the following eXist specific files which are located in the eXist installation root dir-
ectory:

• exist.jar

• lib/core/xmldb.jar

• lib/core/xmlrpc-client-3.1.1.jar

• lib/core/xmlrpc-common-3.1.1.jar

• lib/core/ws-commons-util-1.0.2.jar

4. Click OK to finish the data source configuration.

How to configure a MarkLogic datasource

The latest instructions on how to configure MarkLogic support in <oXygen/> can be found on our website
[http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-marklogic-datasource].

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

459

Working with Databases

http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-exist-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-exist-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-marklogic-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-marklogic-datasource

2. Enter a unique name for this data source and select MarkLogic from the driver type combo box.

3. Add the following MarkLogic specific file:

• xcc.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing MarkLogic databases in <oXygen/>.

4. Click OK to finish the data source configuration.

How to configure a Software AG Tamino datasource

The latest instructions on how to configure Software AG Tamino support in <oXygen/> can be found on our website
[http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-tamino-datasource].

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select Tamino from the driver type combo box.

3. Using the Add button add the following jar files available in the SDK\TaminoAPI4J\lib subdirectory of the
Tamino 4.4.1 database install directory:

• TaminoAPI4J.jar

• TaminoAPI4J-l10n.jar

• TaminoJCA.jar

Note

You must use the jar files from the version 4.4.1 of the Tamino database.

4. Click OK to finish the data source configuration.

How to configure a Raining Data TigerLogic datasource

The latest instructions on how to configure TigerLogic support in <oXygen/> can be found on our website
[http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-tigerlogic-datasource].

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select TigerLogic from the driver type combo box.

3. Add the following TigerLogic specific files (found in the TigerLogic JDK lib directory from the server side):

• connector.jar

• jca-connector.jar

• tlapi.jar

• tlerror.jar

• utility.jar

460

Working with Databases

http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-tamino-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-tamino-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-tigerlogic-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-tigerlogic-datasource

• xmlparser.jar

• xmltypes.jar

4. Click OK to finish the data source configuration.

How to configure a Documentum xDb (X-Hive/DB) datasource

The latest instructions on how to configure support for Documentum xDb (X-Hive/DB) versions 8 and 9 in <oXygen/>
c a n b e f o u n d o n o u r w e b s i t e
[http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-xhive-datasource].

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select Documentum xDb (X-Hive/DB) from the driver type combo
box.

3. Add the following Documentum xDb (X-Hive/DB) specific files (found in the Documentum xDb (X-Hive/DB)
lib directory from the server side):

• antlr-runtime-3.0.1.jar

• icu4j.jar

• xhive.jar

• google-collect.jar (only for X-Hive 9)

4. Click OK to finish the data source configuration.

Configuring Database Connections
This section presents a set of procedures describing how to configure connections that use Native XML Database data
sources.

How to configure a Berkeley DB XML Connection

<oXygen/> supports Berkeley DB XML versions 2.3.10, 2.4.13 & 2.4.16.

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured Berkeley data sources from
the Data Source combo box.

3. Fill-in the Connection Details:

Environment home directory Path to the Berkeley DB XML's home directory.

Verbosity The user can choose between four levels of verbosity: DEBUG, INFO,
WARNING, ERROR.

Join existing environment If checked, an attempt will be made to join an existing environment in the
specified home directory and all the original environment settings will be

461

Working with Databases

http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-xhive-datasource
http://www.oxygenxml.com/doc/ug-oxygenEclipse/native-xml-database-support.html#configure-xhive-datasource

preserved. If that fails, you should consider reconfiguring the connection
with this option unchecked.

4. Click OK.

How to configure an eXist Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured eXist data sources from the
Data Source combo box.

3. Fill-in the Connection Details

XML DB URI URI to the installed eXist engine.

User User name to access the eXist database engine.

Password Password to access the eXist database engine.

Collection eXist organizes all documents in hierarchical collections. Collections are like directories. They
are used to group related documents together. This text field allows the user to set the default
collection name.

4. Click OK.

How to configure a MarkLogic Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured MarkLogic data sources from
the Data Source combo box.

3. Fill-in the Connection Details:

XDBC Host The host name or ip address of the installed MarkLogic engine.

Oxygen uses XCC connector to interact with MarkLogic XDBC server and requires the basic
authentication schema to be set. Starting with version MarkLogic 4.0 the default authentication
method when you create a HTTP or WebDAV Server is digest, so make sure to change it to
basic.

Port The port number of the MarkLogic engine.

User User name to access the MarkLogic engine.

Password Password to access the MarkLogic engine.

WebDAV
URL

The url used for browsing the MarkLogic database in the Data Source Explorer view. (optional)

4. Click OK.

462

Working with Databases

How to configure a Software AG Tamino Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured Tamino data sources from
the Data Source combo box.

3. Fill-in the Connection Details:

XML DB URI URI to the installed Tamino engine

User User name to access the Tamino database engine

Password Password to access the Tamino database engine

Database The name of the database to access from the Tamino database engine. Choose
the Select button to display all databases on the specified server in an addi-
tional dialog box. You can then choose the desired database. This feature
works only with databases that have been created starting with version 4.2.1.
In all other cases, a message appears saying that a list of databases is not
available.

Show system collections Check this if you want to see the Tamino system collections in the Data
Source Explorer.

4. Click OK.

How to configure a Raining Data TigerLogic Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured TigerLogic data sources from
the Data Source combo box.

3. Fill-in the Connection Details:

Host The host name or ip address of the installed TigerLogic engine.

Port The port number of the TigerLogic engine.

User User name to access the TigerLogic engine.

Password Password to access the TigerLogic engine.

Database The name of the database to access from the TigerLogic engine.

4. Click OK.

How to configure an Documentum xDb (X-Hive/DB) Connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured Documentum xDb (X-Hive/DB)
data sources from the Data Source combo box.

463

Working with Databases

3. Fill-in the Connection Details:

URL The URL property for Documentum xDb (X-Hive/DB) connection.

If the property is a URL of the form xhive://host:port, the Documentum
xDb (X-Hive/DB) connection will attempt to connect to an Documentum
xDb (X-Hive/DB) server running behind the specified TCP/IP port.

User User name to access the Documentum xDb (X-Hive/DB) database engine.

Password Password to access the Documentum xDb (X-Hive/DB) database engine.

Database The name of the database to access from the Documentum xDb (X-
Hive/DB) database engine.

Run XQuery in read/write session
(with committing)

If checked the Documentum xDb (X-Hive/DB) session ends with a commit,
otherwise it ends with a rollback.

4. Click OK.

Resource Management

Data Source Explorer View

This view presents in a tree-like fashion the database connections configured in Preferences -> Data Sources. You
can connect to a database simply by expanding the connection node. The database structure can be expanded up to
column level. <oXygen/> supports multiple simultaneous database connections and the connections tree provides an
easy way to browse them.

Some of the basic components employed by the XML:DB API are collections and resources, and they appear in the
tree sorted in alphabetical order.

A collection is a hierarchical container for resources and further sub-collections.

There are two types of resources: XML resource and non XML resource . An XML resource represents an xml
document or a document fragment, selected by a previously executed XPath query.

464

Working with Databases

Figure 15.7. The Data Source Explorer View

Below you can find a description of the contextual menu actions available on the Data Source Explorer levels (explained
for each connection). Please note that you can open in the editor a resource or a schema component by double-clicking
it.

Oracle XML DB Browser

Oracle XML DB is a feature of the Oracle Database. It provides a high-performance, native XML storage and retrieval
technology.

<oXygen/> allows the user to browse the native Oracle XML Repository and perform various operations on the resources
in the repository.

Figure 15.8. Browsing the Oracle XML DB Repository

465

Working with Databases

Actions available at XML Repository level

• Refresh - performs a refresh of the XML Repository.

• Add container - add a new child container to the XML Repository

• Add resource - adds a new resource to the XML Repository.

Actions available at container level

• Refresh - performs a refresh of the selected container.

• Add container - add a new child container to the current one

• Add resource - adds a new resource to the folder.

• Delete - delete the current container.

• Properties - shows various properties of the current container.

Actions available at resource level

• Refresh - performs a refresh of the selected resource.

• Open - opens the selected resource in the editor.

• Rename - rename the current resource.

• Move - move the current resource to a new container (also available through drag and drop).

• Delete - delete the current resource.

• Copy location - allows you to copy to clipboard an application specific URL for the resource which can then be used
for various actions like opening or transforming the resources.

• Properties - shows various properties of the current resource.

PostgreSQL connection

<oXygen/> allows the user to browse the structure of the PostgreSQL database in the Data Source Explorer view and
open the tables in the Table Explorer view.

466

Working with Databases

Figure 15.9. Browsing a PostgreSQL repository

Actions available at container level

• Refresh - performs a refresh of the selected container.

Actions available at resource level

• Refresh - performs a refresh of the selected database table.

• Edit - opens the selected database table in the Table Explorer view.

• Export to XML ... - export the content of the selected database table as an XML file using the dialog from importing
data from a database.

Berkeley DB XML Connection

Actions available at connection level

• Refresh - performs a refresh of the selected node's subtree.

• Configure Database Sources - opens the Data Sources preferences page where you can configure both data
sources and connections.

• Add container - allows adding a new container.

467

Working with Databases

The name of the new container.Name

Container type At creation time, every container must have a type defined for it. This container type
identifies how XML documents are stored in the container. As such, the container type
can only be determined at container creation time; you cannot change it on subsequent
container opens.

Containers can have one of the following types specified for them:

Node container Xml documents are stored as individual nodes in
the container. That is, each record in the underlying
database contains a single leaf node, its attributes
and attribute values if any, and its text nodes, if
any. BDB XML also keeps the information it needs
to reassemble the document from the individual
nodes stored in the underlying databases. This is
the default, and preferred, container type.

Whole document container The container contains entire documents; the doc-
uments are stored without any manipulation of line
breaks or whitespace.

Allow validation If checked it causes documents to be validated when they are loaded into the container.
The default behavior is to not validate documents.

Index nodes If checked it causes indices for the container to return nodes rather than documents. The
default is to index at the document level. This property has no meaning if the container
type is whole document container.

Actions available at container level

• Refresh - performs a refresh of the selected node's subtree.

• Add Resource - adds a new XML resource to the selected container.

• Rename - allows you to specify a new name for the selected container.

• Delete - removes the selected container from the database tree.

• Edit indices - allows you to edit the indices for the selected container.

• Specifying the granularity:

• Document granularity is good for retrieving large documents

• Node granularity is good for retrieving nodes from within documents

• Adding/editing indices:

• Node - the node name

• Namespace - the index namespace

• Index strategy:

• Index type:

468

Working with Databases

Uniqueness - indicates whether the indexed value must be unique within the container•

• Path type:

• node - indicates that you want to index a single node in the path

• edge - indicates that you want to index the portion of the path where two nodes meet

• Node type:

• element - an element node in the document content

• attribute - an attribute node in the document content

• metadata - a node found only in a document's metadata content.

• Key type:

• equality - improves the performances of tests that look for nodes with a specific value

• presence - improves the performances of tests that look for the existence of a node regardless of its
value

• substring - improves the performance of tests that look for a node whose value contains a given substring

• Syntax types - the syntax describes what sort of data the index will contain and is mostly used to determine
how indexed values are compared

Actions available at resource level

• Refresh - performs a refresh of the selected resource.

• Open - opens the selected resource in the editor.

• Rename - allows you to change the name of the selected resource.

• Move - allows you to move the selected resource in a different container in the database tree (also available through
drag and drop).

• Delete - removes the selected resource from the container.

• Copy location - allows you to copy to clipboard an application specific URL for the resource which can then be used
for various actions like opening or transforming the resources.

eXist Connection

Actions available at connection level

• Refresh - performs a refresh of the selected node's subtree.

• Configure Database Sources - opens the Data Sources preferences page where you can configure both data
sources and connections.

Actions available at container level

• Refresh - performs a refresh of the selected node's subtree.

469

Working with Databases

• Add Resource - adds a new XML resource to the selected container.

• Add Container - creates a new collection in the selected one.

• Delete - removes the selected collection.

• Rename - allows you to change the name of the selected collection.

• Move - allows you to move the selected collection in a different location in the database tree (also available through
drag and drop).

Actions available at resource level

• Refresh - performs a refresh of the selected resource.

• Open - opens the selected resource in the editor.

• Rename - allows you to change the name of the selected resource.

• Move - allows you to move the selected resource in a different collection in the database tree (also available through
drag and drop).

• Delete - removes the selected resource from the collection.

• Copy location - allows you to copy to clipboard an application specific URL for the resource which can then be used
for various actions like opening or transforming the resources.

• Properties - allows the user to view various useful properties associated with the resource.

• Save As - allows you to save the name of the selected binary resource as a file on disk.

MarkLogic Connection

Resource management for MarkLogic database ca be done through WebDAV. For this the WebDAV url must be
configured in the MarkLogic connection. The actions that can be performed on MarkLogic resources through WebDAV
are the same used for a WebDAV connection (see more about this in WebDAV Connection section).

Note

The interaction with the database is also made using XQuery (more on this topic can be found in the XQuery
section) .

Software AG Tamino Connection

Actions available at connection level

• Refresh - performs a refresh of the selected node's subtree.

• Configure Database Sources - opens the Data Sources preferences page where you can configure both data
sources and connections.

• Add container - allows you to create a new collection in the database.

470

Working with Databases

Actions available at collection level

For every new Tamino collection, you can specify if a schema is required, optional or prohibited. The following actions
are available:

• Refresh - performs a refresh of the selected node's subtree.

• Filter ... - An XQuery expression can be specified for filtering the nodes displayed in the selected Tamino container.
It is only possible to specify one predicate. In the XQuery syntax a predicate is enclosed in square brackets. The
square brackets, however, must not be specified in the dialog box displayed by this action. Only the predicate must
be specified and it will be applied on the selected doctype. For example:

name/surname between 'B', 'C'

• Insert XML instance - allows you to load a new XML document.

• Insert non XML instance - allows you to load a non XML document.

• Modify Collection Properties - allows you to change the schema usage for the selected collection to optional. This
action is available on collections with required and prohibited schema usage.

• Define schema - allows you to add a new schema in the Schema Repository. This action is available on collections
with optional and required schema usage.

• Delete - removes the selected collection. If it is a Tamino doctype then the action removes all the XML instances
contained in the doctype.

• Set default - Sets this collection as the default collection for running queries with the input() function.

Actions available at schema level

• Refresh - performs a refresh of the selected schema.

• Open - opens the selected schema in the editor. There are supported schema changes that preserve the validity
relative to the existent instances.

• Delete - removes the selected schema from the Schema Repository.

Actions available at resource level

• Refresh - performs a refresh of the selected resource.

• Open - opens the selected resource in the editor.

• Rename - allows you to change the name of the selected resource.

• Delete - removes the selected resource.

• Copy location - allows you to copy to clipboard an application specific URL for the resource which can then be used
for various actions like opening or transforming the resources.

• Properties - allows the user to view various useful properties associated with the resource.

• Save As - allows you to save the name of the selected binary resource as a file on disk.

471

Working with Databases

Validation of an XML resource stored in a Tamino database is done against the schema associated with the resource
in the database.

Note

<oXygen/> also displays the contents of the WebDAV enabled collection ino:dav. The actions that can be
performed on Tamino resources through WebDAV are the same used for a WebDAV connection (see more about
this in WebDAV Connection section).

Raining Data TigerLogic Connection

Note

Resource management is unavailable (no browsing support is offered). The interaction with the database is made
using XQuery (more on this topic can be found in the XQuery section) .

Documentum xDb (X-Hive/DB) Connection

Actions available at connection level

• Refresh - performs a refresh of the selected node's subtree.

• Configure Database Sources - opens the Data Sources preferences page where you can configure both data
sources and connections.

• Add library - allows you to add a new library.

• Insert XML Instance - allows you to add a new xml resource directly into the database root. See Documentum
xDb (X-Hive/DB) Parser Configuration for more details.

• Insert non XML Instance - allows you to add a new non xml resource directly into the database root.

• Properties - displays the connection properties.

Actions available at catalog level

• Refresh - performs a refresh of the selected catalog.

• Add AS models - allows you to add a new abstract schema model to the selected catalog.

• Set default schema - allows you to set a default DTD to be used for parsing. It is not possible to set a default XML
Schema.

• Clear default schema - allows you to clear the default DTD. The action is available only if there is a DTD set as
default.

• Properties - displays the catalog properties.

Actions available at schema resource level

• Refresh - performs a refresh of the selected schema resource.

• Open - opens the selected schema resource in the editor.

472

Working with Databases

• Rename - allows you to change the name of the selected schema resource.

• Save As - allows you to save the selected schema resource as a file on disk.

• Delete - removes the selected schema resource from the catalog

• Copy location - allows you to copy to clipboard the URL of the selected schema resource.

• Set default schema - allows you to set the selected DTD to be used as default for parsing. The action is available
only for DTD.

• Clear default schema - allows you to unset the selected DTD. The action is available only if the selected DTD is the
current default to be used for parsing.

Actions available at library level

• Refresh - performs a refresh of the selected library.

• Add library - adds a new library as child of the selected library.

• Add local catalog - adds a catalog to the selected library. By default, only the root-library has a catalog, and all
models would be stored there.

• Insert XML Instance - allows you to add a new xml resource to the selected library. See Documentum xDb (X-
Hive/DB) Parser Configuration for more details.

• Insert non XML Instance - allows you to add a new non xml resource to the selected library.

• Rename - allows you to specify a new name for the selected library.

• Move - allows you to move the selected library to a different one (also available through drag and drop).

• Delete - removes the selected library.

• Properties - displays the library properties.

Actions available at resource level

• Refresh - performs a refresh of the selected resource.

• Open - opens the selected resource in the editor.

• Rename - allows you to change the name of the selected resource.

• Move - allows you to move the selected resource in a different library in the database tree (also available through
drag and drop).

• Save As - allows you to save the selected binary resource as a file on disk.

• Delete - removes the selected resource from the library.

• Copy location - allows you to copy to clipboard the URL of the selected resource.

• Add AS model - allows you to add an XML schema to the selected XML resource.

• Set AS model - allows you to set an active AS model for the selected XML resource.

473

Working with Databases

• Clear AS model - allows you to clear the active AS model of the selected XML resource.

• Properties - displays the resource properties. Available only for XML resources.

Validation of an XML resource stored in an Documentum xDb (X-Hive/DB) database is done against the schema as-
sociated with the resource in the database.

Documentum xDb (X-Hive/DB) parser configuration for adding XML instances

• DOM Level 3 parser configuration parameters. More about each parameter can be found here: DOM Level 3 Con-
figuration [http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration]

• Documentum xDb (X-Hive/DB) specific parser parameters (for more information please consult the Documentum
xDb (X-Hive/DB) manual):

• xhive-store-schema - During validated parsing, the corresponding DTD's or XML schemas are or are not stored
in the catalog.

• xhive-store-schema-only-internal-subset - Store only the internal subset of the document (not any external subset).
Modifier for xhive-store-schema (only has a function when that parameter is set to true, and when DTDs are in-
volved). Use this option if you only want to store the internal subset of the document (not the external subset).

• xhive-ignore-catalog - During validated parsing, the corresponding DTD's and XML schemas in the catalog are
ignored.

• xhive-psvi - Store psvi information on elements and attributes. Documents parsed with this feature turned
on, give access to psvi information and enable support of data types by XQuery queries.

• xhive-sync-features - Convenience setting. With this setting turned on, parameter settings of XhiveDocumentIf
are synchronized with the parameter settings of LSParser. Note that parameter settings "xhive-psvi" and "schema-
location" are always synchronized.

XQuery and Databases
XQuery is a native XML query language and it can be used to query XML views of relational data to create XML
results. It provides the mechanism to efficiently and easily extract information from Native XML Databases (NXD)
and relational data as well. The following database systems offer XQuery support:

• Native XML Databases:

• Berkeley DB XML

• eXist

• MarkLogic (validation support not available)

• Software AG Tamino

• Raining Data TigerLogic (validation support not available)

• Documentum xDb (X-Hive/DB)

• Relational Databases:

• IBM DB2

474

Working with Databases

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration

• Microsoft SQL Server (validation support not available)

• Oracle (validation support not available)

Drag and Drop from Data Source Explorer
You can use <oXygen/>'s DND support when you are querying relational databases. Configure the relational data
source and the database connection (as it was previously shown in this chapter), browse the connection up to table or
column level and drag it in the editor (where an xquery file is open). An XPath expression of the selection will be in-
serted in the xquery document (at caret position).

XQuery validation
Please note that if you choose a processor that doesn't support XQuery validation you will receive a warning when
trying to validate.

Note

If there is no transformation scenario associated with the current document, the validation will be performed
using the processor or connection specified in the XML / XSLT - FO / XQuery Preferences page. Otherwise, the
xquery document will be validated using the Transformer from the associated scenario.

XQuery transformation
XQuery is designed to retrieve and interpret XML data from any source, whether it is a database or a document. Data
is stored in relational databases but often it is required that data is extracted and transformed as XML when interfacing
to other components and services Also, it is an XPath-based querying language supported by most NXD vendors.

To perform a query you will first need to configure a data source and a connection (details can be found in the Rela-
tional Database Support and Native XML Database Support sections).

Next, configure a transformation scenario and associate it with your XQuery document:

1. Open the Configure Transformation Scenario dialog.

2. Click the New button.

3. In the Edit Scenario dialog insert the scenario's name. Then, from the list of available Transformers choose the
database connection you need. Configure any other parameters if necessary.

4. Click OK to finish editing the scenario.

For an XQuery transformation the output tab has an option called Sequence which allows you to execute an XQuery
in lazy mode. The amount of data extract from the database is control from option Size limit on Sequence view. If you
choose Perform FO Processing in the FO Processor tab, Sequence option is ignored.

Once the scenario is associated with the XQuery file, depending on the target database engine the query can include
calls to specific XQuery functions implemented by that engine. For example for the eXist and Berkeley DB engine the
content completion assistant lists the functions supported by that database engine. This is useful for inserting in the
query only calls to the supported functions (standard XQuery functions or extension ones).

To query the database, apply the transformation scenario associated with your XQuery document. To view a more
complex value returned by the query that cannot be displayed entirely in the XQuery query result table at the bottom
of the Eclipse window, for example an XMLTYPE value or a CLOB value, you have to right click on that cell, select

475

Working with Databases

the action Copy cell from the popup menu for copying the value in the clipboard and paste the value where you need
it, for example an opened XQuery editor panel of Eclipse .

XQuery database debugging
XQuery debugging is currently supported for the MarkLogic and Berkeley DB XML database engines.

Debugging with MarkLogic

To start a debug session against the MarkLogic engine you will first need to configure a MarkLogic datasource and a
MarkLogic connection. Also you have to make sure that the debugging support is enabled in the MarkLogic server
that will be accessed from <oXygen/>. On the server side debugging must be activated both in the XDBC server and
in the section Task Server of the server control console (the switch debug allow) otherwise the error DBG-TASKDE-
BUGALLOW is reported by the MarkLogic server.

The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective. If you already have
a MarkLogic scenario configured for the XQuery file you can choose directly to debug the scenario. If not, you just
have to switch to the XQuery Debugger perspective, open the XQuery file in the editor and select the MarkLogic
connection in the XQuery engine selector from the debug control toolbar. For general information about how a debugging
session is started and controlled see the working with the debugger section.

When debugging queries which import modules the recommended steps are as follows:

• After starting the debugging session 'Step in' repeatedly until reaching the desired modules

• Add each of the modules to the project for easy access

• Set breakpoints in the modules as needed

• Debug the query as you see fit

• When starting a new debugging session make sure that the modules which you will debug are already opened in the
editor. This is necessary so that the breakpoints in modules will be considered. Also make sure there are no other
opened modules which are not involved in the current debugging session

Peculiarities and limitations of the MarkLogic debugger integration:

• Debugging support is available only for MarkLogic server versions 3.2 or newer.

• For MarkLogic server versions 4.0 or newer there are three XQuery syntaxes which are supported: '0.9-ml'
(inherited from MarkLogic 3.2), '1.0-ml' and '1.0'

• All the debugging steps are executed by the MarkLogic server and the results or possible errors of each step
are presented by the local debugger user interface.

• All declared variables are presented as strings.

• No support for Output to Source Mapping.

• No support for evaluating break conditions.

• No support for showing the trace.

• Breakpoints can be set in the imported modules but they are only active if the modules are opened in the editor
at the time of debugging.

476

Working with Databases

• Break conditions are not supported hence the Break Conditions view is disabled in the XQuery Debugger
perspective.

• The modules can only be opened in the editor during the debugging session by stepping in repeatedly until
reaching the module.

• There should not be any breakpoints set in modules from the same server which are not involved in the current
debugging session.

• No support for profiling when an XQuery transformation is executed in the debugger.

Debugging with Berkeley DB XML

The Berkeley DB XML database added debugging interface starting with version 2.5. The current version is 2.5.13
and it is supported in <oXygen/>. The same restrictions and peculiarities apply for the Berkeley debugger as for the
MarkLogic one.

WebDAV Connection
This section presents the procedure used to configure a WebDAV connection in the Data Source Explorer.

Figure 15.10. The Data Source Explorer view

<oXygen/>'s default configuration already contains a WebDAV data source called WebDAV.

How to Configure a WebDAV Connection
1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the WebDAV data source from the Data Source combo
box.

3. Fill-in the Connection Details:

477

Working with Databases

URL to the WebDAV repository.WebDAV
URL

User User name to access the WebDAV repository.

Password Password to access the WebDAV repository.

4. Click OK.

WebDAV connection actions

Actions available at connection level

• Configure Database Sources - opens the Data Sources preferences page where you can configure both data
sources and connections.

• Add container - allows you to create a new folder.

• Add Resource ... - allows you to add a new file on the server.

• Add Container ... - allows you to create a new folder on the server.

• Refresh - performs a refresh of the connection.

Actions available at folder level

• Add container - allows you to create a new folder.

• Add Resource - allows you to add a new file on the server in the current folder.

• Rename - allows you to change the name of the selected folder.

• Move - allows you to move the selected folder in a different location in the tree (also available through drag and
drop).

• Delete - removes the selected folder.

• Refresh - performs a refresh of the selected node's subtree.

Actions available at file level

• Open - allows you to open the selected file in the editor.

• Unlock - remove the lock from the current file in the database.

• Rename - allows you to change the name of the selected file.

• Move - allows you to move the selected file in a different location in the tree (also available through drag and drop).

• Delete - removes the selected file.

• Copy location - allows you to copy to clipboard an application specific URL for the resource which can then be used
for various actions like opening or transforming the resources.

478

Working with Databases

• Refresh - performs a refresh of the selected node.

• Properties - displays the properties of the current file in a dialog like the following:

479

Working with Databases

Chapter 16. Importing data
Introduction
XML was designed to describe data. Computer systems and databases contain data in incompatible formats and one
of the most time-consuming activities has been to exchange data between these systems. Converting the data to XML
can greatly reduce complexity and create data that can be read by many different types of applications.

This is why <oXygen/> now offers you support for importing text files, MS Excel files, Database Data and HTML
files into XML documents, that can be further converted into other formats using the Transform features.

Figure 16.1. The Import wizards of <oXygen/> plugin

Import from database

Import table content as XML document
To import from a database, select File → Import → Database data Next, in the "Import from Database data" wizard
choose the connection you want to use. You can edit, delete or add a new data source and connection: click on the
"Configure Database Sources" button and the "Preferences" dialog will open at Data Sources section. Click Connect.

480

Figure 16.2. Import from Database data Wizard

From the catalogs list click on a schema and choose the required table. Click Ok.

The "Import criteria" Dialog will open next, showing a default Query string like "select * from table" in SQL Query.
You can click the "SQL Preview" button to see the input data displayed in a tabular form and the XML Import Preview
containing an example of what the generated XML will look like. The SQL Query message is editable. You can specify
which fields should be taken into consideration.

481

Importing data

Figure 16.3. Import from Database Criteria Dialog

If you edit the query string so that the query does a join of two or more tables and selects columns with the same name
from different tables you should use an alias for the columns like in the following example. That will avoid a confusion
of two columns mapped to the same name in the result document of the importing operation.

 select s.subcat_id,
 s.nr as s_nr,
 s.name,
 q.q_id,
 q.nr as q_nr,
 q.q_text
 from faq.subcategory s,
 faq.question q
 where ...

SQL Preview Displays the labels that will be used in the XML document and its preview. Import
setting: If the "SQL Preview" button is pressed, it shows the labels that will be used in
the XML document and the first 5 lines from the database. All data items in the input
will be converted by default to element content, but this can be over-ridden by clicking
on the individual column headers. Clicking once on a column header (ex Heading0)

482

Importing data

will cause the data from this column to be used as attribute values on the row elements.
Clicking a second time - the column's data will be ignored when generating the XML
file. You can cycle through these three options by continuing to click on the column
header. If the data column will be converted to element content, the header will contain
the "<>" symbol. If the data column will be converted to attribute content, the header
will contain the "=" symbol, and if it will be skipped, the header will contain "x".

Change labels This button opens a new dialog, allowing you to edit the names of the root and row
elements, change the XML name and the conversion criterion.

The XML names can be edited by double-clicking on the desired item and entering the
required label. The conversion criterion can also be modified by selecting from the
drop-down list ELEMENT, ATTRIBUTE or SKIPPED.

Save in file If checked, the new XML document will be saved at the specified path.

Note

If only Open in editor is checked, the newly created document will be opened in
the editor, but as an unsaved file.

Generate XML Schema Allows you to specify the path of the generated XML Schema file.

483

Importing data

Convert table structure to XML Schema

Figure 16.4. Select database table Dialog

Next, in the "Select database table" choose the connection you want to use.

Note

Only connections configured on relational data sources can be used to import to XML or to generate schemas.

You can edit, delete or add a new data source and connection: click on the "Configure Database Sources" button and
the "Preferences" dialog will open at the Data Sources section. Click Connect.

Format Enables you to choose a format for the structure.

• Flat - Generates an XML Schema according to the ISO-ANSI Working draft (Part 14:
XML Related Specifications SQL/XML).

• Hierarchical - Represents the database structure as a tree hierarchy taking into account
the relationship between tables.

Enable attachments If checked, the database table is selected for conversion.

484

Importing data

Criterion The Criterion options allow the user to specify the name of the selected database column
and also how it should be converted into XML. The following options are available:

• Element: When checked the selected column will be converted into an XML element.

• Attribute: If checked the selected column will be converted into an XML attribute.

• Skipped: Is to be selected if the intention is to skip that column from being imported.

• Name: Allows you to specify the name of the column to be imported. Implicitly
<oXygen/> suggests an import name that is according to SQL/XML Specification.

• Type: Displays the data type of the imported column.

Import from MS Excel files
<oXygen/> can also import MS (Microsoft) Excel files into XML format documents. To do this, select File → Import...
→ MS Excel files... In the Select Excel Sheet dialog provide the URL of the Excel document, choose one of the available
sheets and click Ok.

The input data is displayed next in the Import Criteria dialog in a tabular form and the XML Import Preview contains
an example of what the generated XML will look like.

The Import Criteria dialog has a similar behaviour with the one shown in case of Import from text files.

Note

Please note that Excel sheets saved with versions later that Excel 2002 may not be handled correctly by the Import
operation.

Import from HTML files
Another format that can be imported in an XML document is HTML.

Procedure 16.1. Import from HTML

1. Select File → Import

2. Select HTML file in the list and click the Next button.

3. Type a name for the new document and click the Next button.

4. Complete the HTML document name and click the OK button.

The resulted document will be an XHTML file containing a DOCTYPE declaration referring to the XHTML DTD
definition on the Web and the parsed content of the imported file as XHTML Transitional or Strict depending on what
radio button the user chose when performing the import operation.

Import from text files
To import from a text file you'll have to select File → Import... → Text File In the Select text file dialog choose the
URL and the encoding to be used and click OK.

485

Importing data

• URL: Specifies the location of the text file to be imported.

• Encoding: Specifies the encoding

Next, in the Import Criteria dialog select the field delimiter for the import settings. The input data is displayed here
in a tabular form and the XML Import Preview contains an example of what the generated XML will look like.

The above table shows the labels that will be used in the XML document and the first 5 lines from the text file in a
tabular form. All data items in the input will be converted by default to element content, but this can be over-ridden
by clicking on the individual column headers. Clicking once on a column header will cause the data from this column
to be used as attribute values on the row elements. Clicking a second time - the column's data will be ignored when
generating the XML file. You can cycle through these three options by continuing to click on the column header. If
the data column will be converted to element content, the header will contain the "<>" symbol. If the data column will
be converted to attribute content, the header will contain the "=" symbol, and if it will be skipped, the header will
contain "x".

First row contains field names If the option is checked, you'll notice that the table has moved up; the default
column headers are replaced (where there is information) by the content of the
first row. In other words, the first row is interpreted as containing the field names.
The changes are also visible in the preview of the XML document. To return to
default (where the first row is interpreted as not containing field names), simply
uncheck the option.

Change labels If the above option is set, the first row of the input file contains presentation
names and these will be used as tokens in the created XML files, otherwise some
generic heading names will be used. This button opens a new dialog, allowing
you to edit the names of the root and row elements, change the XML name and
the conversion criterion.

The XML names can be edited by double-clicking on the desired item and en-
tering the required label. The conversion criterion can also be modified by se-
lecting from the drop-down list ELEMENT, ATTRIBUTE or SKIPPED.

Output file Allows you to select the output XML file.

486

Importing data

Chapter 17. Content Management System
(CMS) Integration
Documentum (CMS) Support
<oXygen/> provides support for browsing and managing Documentum repositories in the Data Source Explorer. You
can easily create new resources on the repository, copy or move them using the actions or the drag and drop support,
edit and transform the documents in the editor. The operations that can be performed on repository resources are described
in the Documentum (CMS) actions section.

<oXygen/> supports Documentum (CMS) version 6.5 and above with Documentum Foundation Services 6.5 or later
installed.

Note

The Documentum (CMS) support is available only in the Enterprise version.

Warning

It is recommended to use the latest 1.5.x or 1.6.x java version. It si possible that the Documentum (CMS) support
will not work properly if you use other java versions.

Warning

Please note that at the time of this implementation there is a problem in the UCF Client implementation for MAC
OS X which prevents you from viewing or editing XML documents from the repository. The UCF Client is the
component responsible for file transfer between the repository and the local machine. This component is deployed
automatically from the server.

How to configure Documentum (CMS) support
This section presents the procedure used to configure a Documentum (CMS) data source and connection in the Data
Source Explorer.

To connect to a Documentum Content Server repository you need to configure a data source and a connection.

How to configure a Documentum (CMS) data source

To configure a Documentum (CMS) data source you need the Documentum Foundation Services Software Development
Kit (DFS SDK). The DFS SDK can be found in the Documentum (CMS) server installation kit or it can be downloaded
from EMC Community Network [https://developer-content.emc.com/downloads/documentum_ucf_dfs.htm]. The DFS
SDK comes as an archive named emc-dfs-sdk-6.5.zip.

1. Go to Preferences -> Data Sources. In the Data Sources panel click the New button.

2. Enter a unique name for this data source and select Documentum CMS from the driver type combo box.

3. Press the Choose DFS SDK Folder button and select the folder where you have unpacked the DFS SDK archive
file, emc-dfs-sdk-6.5.zip. If you have indicated the correct folder the following jar files will be added o the list:

487

https://developer-content.emc.com/downloads/documentum_ucf_dfs.htm
https://developer-content.emc.com/downloads/documentum_ucf_dfs.htm

lib/java/emc-bpm-services-remote.jar•

• lib/java/emc-ci-services-remote.jar

• lib/java/emc-collaboration-services-remote.jar

• lib/java/emc-dfs-rt-remote.jar

• lib/java/emc-dfs-services-remote.jar

• lib/java/emc-dfs-tools.jar

• lib/java/emc-search-services-remote.jar

• lib/java/ucf/client/ucf-installer.jar

• lib/java/commons/*.jar (multiple jar files)

• lib/java/jaxws/*.jar (multiple jar files)

• lib/java/utils/*.jar (multiple jar files)

Note

If for some reason the jar files are not found you can add them manually by using the Add Files and Add
Recursively buttons and navigating to the 'lib/java' folder from the DFS SDK.

4. Click OK to finish the data source configuration.

How to configure a Documentum (CMS) connection

1. Go to Preferences -> Data Sources. In the Connections panel click the New button.

2. Enter a unique name for this connection and select one of the previously configured Documentum (CMS) data
sources from the Data Source combo box.

3. Fill-in the Connection Details

URL URL to the Documentum (CMS): http://<hostname>:<port>

User User name to access the Documentum (CMS) repository.

Password Password to access the Documentum (CMS) repository.

Repository The name of the repository to log into.

4. Click OK.

Documentum (CMS) actions
<oXygen/> allows the user to browse the structure of a Documentum repository in the Data Source Explorer view and
perform various operations on the repository resources.

488

Content Management System (CMS)
Integration

You can drag and drop folders/resources to other folders to perform Move/Copy operations with ease. If the drag and
drop is between resources you can create a relationship between the respective resources (Drag the child item to the
parent item).

Figure 17.1. Browsing a Documentum repository

Actions available on connection

• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data
sources and connections.

• New Cabinet - Creates a new cabinet in the repository.

Type The type of the new cabinet (default is dm_cabinet).

Name The name of the new cabinet.

Title The title property of the cabinet.

Subject The subject property of the cabinet.

• Refresh - Performs a refresh of the connection.

Actions available on cabinets/folders

• New Folder - Creates a new folder in the current cabinet/folder.

Path Shows the path where the new folder will be created.

Type The type of the new folder (default is dm_folder).

Name The name of the new folder.

Title The title property of the folder.

489

Content Management System (CMS)
Integration

Subject The subject property of the folder.

• New Document - Creates a new document in the current cabinet/folder.

Path Shows the path where the new document will be created.

Name The name of the new document.

Type The type of the new document (default is dm_document).

Format The document content type format.

• Import - Imports local files/folders in the selected cabinet/folder from the repository.

Add Files Shows a file browse dialog and allows you to select files to add to the list.

Add Folders Shows a folder browse dialog that allows you to select folders to add to the list. The subfolders
will be added recursively.

Edit Shows a dialog where you can change the properties of the selected file/folder from the list.

Remove Removes the selected files/folders from the list.

• Rename - Changes the name of the selected cabinet/folder.

• Copy - Copies the selected folder to a different location in the tree (available only upon folders). This action can
also be performed with drag and drop while holding the Ctrl key pressed.

• Move - Moves the selected folder to a different location in the tree (available only upon folders). This action can
also be performed with drag and drop.

• Delete - Deletes the selected cabinet/folder from the repository.

The following options are available:

Folder(s) Allows you to delete only the selected folder or to delete recursively the folder and
all subfolders and objects.

Version(s) Allows you to specify what versions of the resources will be deleted.

Virtual document(s) Here you can specify what happens when virtual documents are encountered. They
can be either deleted either by themselves or together with their descendants.

• Refresh - Performs a refresh of the selected node's subtree.

• Properties - Displays the list of properties of the selected cabinet/folder.

Actions available on resources

• Edit - Checks out (if not already checked out) and opens the selected object in the editor.

• Edit with - Checks out (if not already checked out) and opens the selected object in the specified editor/tool.

• Open (Read-only) - Opens the selected object in the editor for viewing.

• Open with - Opens the selected object in the specified editor/tool for viewing.

490

Content Management System (CMS)
Integration

• Check Out - Checks out the selected object from the repository. The action is not available if the object is already
checked out.

• Check In - Checks in the selected object(commits changes) into the repository. The action is only available if the
object is checked out.

Figure 17.2. Check In Dialog

Name The name the file will have on the repository.

Version Allows you to choose what version the object will have after being checked
in.

Version label The label of the updated version.

Description An optional description of the file.

Keep Locks If checked the updated file is checked into the repository but it is also kept
checked out in your name.

Make this the current version Makes the updated file the current version(will have the CURRENT version
label).

• Cancel Checkout - Cancels the check out and loses all modifications since the check out. Action is only available
if the object is checked out.

• Export - Allows you to export the object and save it locally.

• Rename - Changes the name of the selected object.

• Copy - Copies the selected object to a different location in the tree. Action is not available on virtual document
descendants. This action can also be performed with drag and drop while holding the Ctrl key pressed.

• Move - Moves the selected object to a different location in the tree. Action is not available on virtual document
descendants and on checked out objects. This action can also be performed with drag and drop.

491

Content Management System (CMS)
Integration

• Delete - Deletes the selected object from the repository. Action is not available on virtual document descendants
and on checked out objects.

• Add Relationship - Adds a new relationship for the selected object. This action can also be performed with drag and
drop between objects.

• Convert to Virtual Document - Allows you to convert a simple document to a virtual document. Action is available
only if the object is a simple document.

• Convert to Simple Document - Allows you to convert a virtual document to a simple document. Action is available
only if the object is a virtual document with no descendants.

• Copy location - Allows you to copy to clipboard an application specific URL for the object which can then be used
for various actions like opening or transforming the resources.

• Refresh - Performs a refresh of the selected object.

• Properties - Displays the list of properties of the selected object.

DITA transformations on DITA content from Documentum
<oXygen/> comes with the DITA Open Toolkit which is able to transform a DITA map to various output formats.
However DITA Open Toolkit requires local DITA files so first you need to check out a local version of your DITA
content. Once you have a local version of a DITA map just load it in the DITA Maps Manager view and run one of
the DITA transformations that are predefined in <oXygen/> or a customization of such a predefined DITA transform-
ation.

Note

The DITA files checked out from the Documentum CMS add the dctm namespace which is not supported by the
DITA DTDs. You need to set the validate parameter to false in your DITA transformation in order to avoid the
validation error that would be reported at the beginning of the DITA transformation if the validate parameter
keeps the default value true.

492

Content Management System (CMS)
Integration

Chapter 18. Composing Web Service
calls
Overview
Web Services Description Language (WSDL) is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented information.

The WSDL files contain information about the published services, like the name, the message types and the bindings.
The editor is offering a way to edit the WSDL files that is similar to editing XML, the content completion and validation
being driven by a mix of the WSDL and SOAP schemas. <oXygen/> supports WSDL version 1.1 and 2.0 and SOAP
versions 1.1 and 1.2. That means that in the location where a SOAP extension can be inserted the content completion
assistant offers elements from both SOAP 1.1 and SOAP 1.2. Validation of SOAP requests is executed first against a
SOAP 1.1 schema and after that against a SOAP 1.2 schema. In addition to validation against the XSD schemas the
WSDL file is also analysed during validation so that more element reference specific problems can be detected.

Note

For WSDL 2.0 only content completion and validation are supported. That means if the namespace of the WSDL
file is http://www.w3.org/ns/wsdl the content completion and validation work with a WSDL 2.0 schema but a
SOAP request cannot be obtained and edited correctly yet in the WSDL SOAP Analyser view starting from a
WSDL 2.0 file.

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP it
is very easy to check if the defined SOAP messages are accepted by the remote Web Services server using <oXygen/>'s
WSDL SOAP Analyser integrated tool.

Composing a SOAP request
To design, compose, and test Web service calls in <oXygen/> follow the procedure:

1. Create a new document or open an existing document of type WSDL.

2. Design the Web Service descriptor in the WSDL editor pane where the content completion is driven by a mix of
the WSDL and SOAP schemas. You do not need to specify the schema location for the WSDL standard namespaces
because <oXygen/> comes with these schemas and uses them by default to assist the user in editing Web Service
descriptors.

493

Figure 18.1. Content completion for WSDL documents

3. While editing the Web-Services descriptors check their conformance to the WSDL and SOAP schemas. In the
following example you can see how the errors are reported.

Figure 18.2. Validating a WSDL file

4. Check if the defined messages are accepted by the Web Services server. <oXygen/> is providing two ways of
testing, one for the currently edited WSDL file and other for the remote WSDL files that are published on a web
server.For the currently edited WSDL file open the WSDL SOAP Analyser tool by pressing the toolbar button

 WSDL SOAP Analyser or use the menu item WSDL → WSDL SOAP Analyser or from the Project view
contextual menu select

494

Composing Web Service calls

Figure 18.3. WSDL SOAP Analyser

It contains a SOAP analyser and sender for Web Services Description Language file types.The analyser fields
are:

• Services. The list of services defined by the WSDL file.

• Ports. The ports for the selected service.

• Operations. The list of available operations for the selected service.

• Action URL. Shows the script that serves the operation.

• SOAP Action. Identifies the action performed by the script.

• Version: 1.1 or 1.2. The SOAP version is selected automatically depending on the selected port.

• Request Editor. It allows you to compose the web service request. When an action is selected, <oXygen/> tries
to generate as much content as possible for the SOAP request. The envelope of the SOAP request has the correct
namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/envelope/ for SOAP 1.1 or
http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to change few values in order
for the request to be valid. The content completion is available for this editor and is driven by the schema that
defines the type of the current message. While selecting different operations <oXygen/> will remember the
modified request for each one. You can press the "Regenerate" button in order to overwrite your modifications
for the current request with the initial generated content. The editor has visual line wrap so that all content is
visible without scrolling.

• Attachments List. You can define a list of file's URLs to be attached to the request.

• Response Area. Initially it displays an auto generated server sample response so you can have an idea about
how the response will look like. After pressing the Send button it will present the message received from the
server in response to the Web Service request. It may show also error messages. In case the response message
contains attachments, <oXygen/> will prompt you to save them, then will try to open them with the associated
system application. The response area has visual line wrap so that all content is visible without scrolling.

• Errors List. There may be situations in which the WSDL file is respecting the WSDL XML Schema, but it fails
to be valid for example in the case of a message that is defined by means of an element that is not found in the

495

Composing Web Service calls

types section of the WSDL. In such a case, the errors will be listed here. This list is presented only when there
are errors.

• Send Button. Executes the request. A status dialog is shown when <oXygen/> is connecting to the server.

The testing of a WSDL file is straight-forward, you just have to click on the WSDL analysis button, then select
the service, the port and the operation. The editor will generate the skeleton for the SOAP request. You can edit
the request, eventually attach files to it and send it to the server. Watch the server response in the response area.
For testing remote WSDL files see the next section.

5. Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web Service
SOAP Call(WSSC) file for later reuse. In this way you will save time in configuring the URLs and parameters.

6. You can open the result of a Web Service call in an editing view. In this way you can save it or process it further.

Testing remote WSDL files
To open and test a remote WSDL file use the menu item Window → Show View → Other+oXygen+WSDL SOAP
Analyser ...

press the Choose WSDL button and enter the URL of the remote WSDL file by typing or by browsing the local file
system, a remote file system or even a UDDI Registry. Pressing OK will open the WSDL SOAP Analyser tool.

In the Saved SOAP Request tab you can open directly a previously saved Web Service SOAP Call(WSSC) file thus
skipping the analysis phase.

The UDDI Registry browser

Pressing the button opens the UDDI Registry Browser dialog.

496

Composing Web Service calls

Figure 18.4. UDDI Registry Browser dialog

• In the URL combo box type the URL of an UDDI registry or choose one list.

• In the Keywords field enter the string you want to be used when searching the selected UDDI registry for available
Web services.

• Optionally, you may change:

• Rows to fetch - The maximum number of rows to be displayed in the result list.

• Search by - you can choose to search whether by company or by provided service.

• Case sensitive - When checked, the search will take into account the Keywords' case.

• Click the Search button. WSDL's that matched the search criteria are added in the result list.

• Select a WSDL from the list and click OK. The UDDI Registry Browser dialog is closed and you are returned to
the WSDL File Opener dialog.

Generate WSDL documentation
To generate documentation for a WSDL document use the action XML Tools → Generate Documentation → WSDL
Documentation.

The WSDL documentation dialog can be also opened from the Navigator contextual menu: Generate WSDL Docu-
mentation

497

Composing Web Service calls

• In the Input URL field type the URL of the file or click on the browse button and select it from the file system.

• In the Output file(HTML) field you will have to enter the path and the filename where the documentation will be
generated.

• If you want the result to be opened in a browser, select the corresponding checkbox.

• Click the Generate button and the documentation for the WSDL file will be generated.

498

Composing Web Service calls

Chapter 19. Digital signature
Overview
Digital signatures are widely used as security tokens, not just in XML.

A digital signature provides a mechanism for assuring integrity of data, the authentication of its signer, and the nonre-
pudiation of the entire signature to an external party.

• a digital signature must provide a way to verify that the data has not been modified or replaced to ensure integrity.

• the signature must provide a way to establish the identity of the data's signer for authentication.

• the signature must provide the ability for the data's integrity and authentication to be provable to a third party for
nonrepudiation.

A public key system is used to create the digital signature and it's also used for verification. The signature binds the
signer to the document because digitally signing a document requires the originator to create a hash of the message
and then encrypt that hash value with his own private key. Only the originator has that private key and he is the only
one can encrypt the hash so that it can be unencrypted using his public key. The recipient, upon receiving both the
message and the encrypted hash value, can decrypt the hash value, knowing the originator's public key. The recipient
must also try to generate the hash value of the message and compare the newly generated hash value with the unencrypted
hash value received from the originator. If the hash values are identical, it proves that the originator created the message,
because only the actual originator could encrypt the hash value correctly.

XML Signatures can be applied to any digital content (data object), including XML (see W3C Recommendation, XML-
Signature Syntax and Processing [http://www.w3.org/TR/xmldsig-core/]). An XML Signature may be applied to the
content of one or more resources.

• Enveloped or enveloping signatures are over data within the same XML document as the signature.

• Detached signatures are over data external to the signature element; the signature is "detached" from the content it
signs. This definition typically applies to separate data objects, but it also includes the instance where the Signature
and data object reside within the same XML document but are sibling elements.

The XML Signature is a method of associating a key with referenced data; it does not normatively specify how keys
are associated with persons or institutions, nor the meaning of the data being referenced and signed.

The original data is not actually signed; instead, the signature is applied to the output of a chain of canonicalization
and transformation algorithms, which are applied to the data in a designated sequence. This system provides the flex-
ibility to accommodate whatever "normalization" or desired preprocessing of the data that might be required or desired
before subjecting it to being signed.

To canonicalize something means to put it in a standard format that everyone generally uses. Because the signature is
dependent on the content it is signing, a signature produced from a not canonicalized document could possibly be dif-
ferent from one produced from a canonicalized document. The canonical form of an XML document is physical rep-
resentation of the document produced by the method described in this specification. The term canonical XML refers
to XML that is in canonical form. The XML canonicalization method is the algorithm defined by this specification
that generates the canonical form of a given XML document or document subset. The term XML canonicalization
refers to the process of applying the XML canonicalization method to an XML document or document subset. XML
canonicalization is designed to be useful to applications that require the ability to test whether the information content
of a document or document subset has been changed. This is done by comparing the canonical form of the original
document before application processing with the canonical form of the document result of the application processing.

499

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

A digital signature over the canonical form of an XML document or document subset would allows the signature digest
calculations to be oblivious to changes in the original document's physical representation. During signature generation,
the digest is computed over the canonical form of the document. The document is then transferred to the relying party,
which validates the signature by reading the document and computing a digest of the canonical form of the received
document. The equivalence of the digests computed by the signing and relying parties (and hence the equivalence of
the canonical forms over which they were computed) ensures that the information content of the document has not
been altered since it was signed.

The following canonicalization algorithms are used in <oXygen/>: Canonical XML (or Inclusive XML Canonicaliza-
tion)(XMLC14N [http://www.w3.org/TR/2001/REC-xml-c14n-20010315]) and Exclusive XML Canonicalization(EX-
CC14N [http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/]). The first is used for XML where the context
doesn't change while the second was designed for canonicalization where the context might change.

Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of the signature.
In this way all the declarations you might use will be unambiguously specified. A problem appears when the signed
XML is moved into another XML document which has other declarations because the Inclusive Canonicalization will
copy then and the signature will be invalid.

Exclusive Canonicalization finds out what namespaces you are actually using (the ones that are a part of the XML
syntax) and just copies those. It does not look into attribute values or element content, so the namespace declarations
required to process these are not copied.

This type of canonicalization is useful when you have a signed XML document that you wish to insert into other XML
documents and it will insure the signature verifies correctly every time, so it is required when you need self-signed
structures that support placement within different XML contexts.

Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it's the safer method from the security perspective because it requires no knowledge of the data that are to be secured
in order to safely sign them.

The canonicalization method can specify whether or not comments should be included in the canonical form output
by the XML canonicalization method. If a canonical form contains comments corresponding to the comment nodes in
the input node-set, the result is called canonical XML with comments. In an uncommented canonical form comments
are removed, including delimiter for comments outside document element.

These three operations: Digital Signing, Canonicalization and Verification of the signature are available from the Tools
menu or from the Editor contextual menu->Source.

Canonicalizing files
The user can select the canonicalization algorithm to be used for his document from the following dialog displayed by
the action Canonicalize available from editor panel context menu+Source

500

Digital signature

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Figure 19.1. Canonicalization settings dialog

URL Specifies the location of the input URL

Exclusive If selected, the exclusive (uncommented) canonicalization method is used.

Exclusive with comments If selected, the exclusive with comments canonicalization method is used.

Inclusive If selected, the inclusive (uncommented) canonicalization method is used.

Inclusive with comments If selected, the inclusive with comments canonicalization method is used.

XPath The XPath expression provides the fragments of the XML document to be signed.

Output Specifies the output file path where the signed XML document will be saved.

Open in editor If checked, the output file will be opened in the editor.

Certificates
A certificate is a digitally signed statement from the issuer (an individual, an organization, a website or a firm), saying
that the public key (and some other information) of some other entity has a particular value. When data is digitally
signed, the signature can be verified to check the data integrity and authenticity. Integrity means that the data has not
been modified. Authenticity means the data comes indeed from the entity that claims to have created and signed it.
Certificates are kept in special repositories called Keystores.

A Keystore is an encrypted file that contains private keys and certificates. All keystore entries (key and trusted certi-
ficate entries) are accessed via unique aliases. An alias must be assigned for every new entry of either a key or certificate
as a reference for that entity. No Keystore can store an entity if it's "alias" already exists in that Keystore and no KeyStore
can store trusted certificates generated with keys in it's KeyStore.

In <oXygen/> there are provided two types of keystores: Java Key Store (JKS) and Public-Key Cryptography Standards
version 12 (PKCS-12). A keystore file is protected by a password. In a PKCS 12 keystore you should not store a certi-
ficate without alias together with other certificates, with or without alias, as in such a case the certificate without alias
cannot be extracted from the keystore.

501

Digital signature

To set the options for a certificate or to validate it, go to Options → Preferences → Certificates .

Note

A certificate without alias stored in a PKCS 12 keystore together with other certificates, with or without alias,
cannot be always extracted correctly from the keystore due to the missing alias. Such a certificate should be the
only certificate of a PKCS 12 keystore.

Signing files
The user can select the type of signature to be used for his document from the following dialog displayed by the action
Sign available from editor panel context menu+Source

Figure 19.2. Signature settings dialog

URL Specifies the location of the input URL

None If selected, no canonicalization algorithm is used.

Exclusive If selected, the exclusive (uncommented) canonicalization method is used.

Exclusive with comments If selected, the exclusive with comments canonicalization method is used.

Inclusive If selected, the inclusive (uncommented) canonicalization method is used.

Inclusive with comments If selected, the inclusive with comments canonicalization method is used.

XPath The XPath expression provides the fragments of the XML document to be signed.

ID Provides ID of the XML element to be signed.

502

Digital signature

Envelope If selected, the enveloping signature is used.

Detached If selected, the detached signature is used.

Append KeyInfo The element ds:KeyInfo will be added in the signed document only if this option
is checked.

Output Specifies the output file path where the signed XML document will be saved.

Open in editor If checked, the output file will be opened in the editor.

Verifying the signature
The user can select a file to verify its signature in the following dialog displayed by the action Verify Signature available
from editor panel context menu+Source

URL Specifies the location of the document for which to verify the signature.

If the signature is valid, a dialog displaying the name of the signer will be opened. If not, an error message will show
details about the problem.

503

Digital signature

Chapter 20.Text editor specific actions
<oXygen/> provides user actions common in any text editor:

Finding and replacing text in the current file

The Find All Elements/Attributes dialog
This dialog is dialog opened with the menu entry Edit → Find All Elements... and assists you in defining "search for
XML elements and/or attributes" operations on the current document.

Figure 20.1. Find All Elements/Attributes dialog

As a result, the dialog can perform the following:

• Find all the elements with a specified name

• Find all the elements which contain or not a specified string in their text

• Find all the elements which have a specified attribute

• Find all the elements which have an attribute with or without a specified value

All these search criteria can be combined to fine filter your results.

The results of all the operations in the Find All Elements/Attributes dialog will be presented as a list in the Message
Panel.

The dialog fields are described as follows:

Element name The target element name to search for. Only the elements with this exact name are returned.
For any element name just leave the field empty.

Element text The target element text to search for. The combo box beside this field allows you to specify
that you are looking for an exact or partial match of the element text. For any element text,
select contains in the combo box and leave the field empty.

504

If you leave the field empty but select equals in the combo box, only elements with no text
will be found. Select not contains to select all elements which do not have the specified text
inside.

Attribute name The name of the attribute which needs to be present in the elements. Only the elements which
have an attribute with this name will be returned. For any/no attribute name just leave the
field empty.

Attribute value The attribute value The combo box beside this field allows you to specify that you are looking
for an exact or partial match of the attribute value. For any/no attribute value select contains
in the combo box and leave the field empty.

If you leave the field empty but select equals in the combo box, only elements that have at
least an attribute with an empty value will be found.

Select not contains to select all elements which have attributes without a specified value.

Case sensitive When this option is checked, operations are case sensitive.

Using Check Spelling

The Check Spelling option (XML → Check Spelling (Ctrl+Shift+Q) or the toolbar button Check spelling) enables
you to perform the check spelling on the current document:

Figure 20.2. Check Spelling Dialog

Complete the dialog as follows:

Unrecognized Word Contains the word that cannot be found in the selected dictionary. The word is
also highlighted in the XML document.

505

Text editor specific actions

Replace with The character string which is suggested to replace the unrecognized word.

Guess Displays a list of words suggested to replace the unknown word. Double clicking
a word in this list automatically inserts it in the document and continues the
spell checking process.

Dictionary Displays a list with the available dictionaries.

Replace Replaces the currently highlighted word in the XML document, with the selected
word in the "Replace with" field.

Replace All Replaces all occurrences of the currently highlighted word in the XML document,
with the selected word in the "Replace with" field.

Ignore Allows you to continue checking the document while ignoring the first occurrence
of the unknown word. The same word will be flagged again if it appears in the
document.

Ignore all Ignores all instances of the unknown word in the whole document.

Learn Includes the unrecognized word in the list of valid words so that the spell
checker will not consider it for correction.

Options Sets the configuration options of the Spell Checker.

Begin at caret position When checked, the spell checker begins checking from the current cursor posi-
tion.

OK Closes the Spell Checker dialog.

Adding a spell dictionary
There are two spell checking engines available in <oXygen/>: Hunspell and AZ Check. For the Hunspell checker
<oXygen/>comes with the following built-in dictionaries: English (US), English (UK), French, German (both old and
new orthography), Spanish. For the AZ Checker the following language dictionaries are available: English (US),
English (UK), English (Canada), French (France), French (Belgium), French (Canada), French (Switzerland), German
(old orthography), German (new orthography), Spanish.

The format of the spell dictionary files is different for the two engines. If you want to add a dictionary for a language
that is not supported by the built-in dictionaries you have to add the dictionary file as specified below and restart
<oXygen/> for using the new dictionary.

Adding a Hunspell dictionary

The Hunspell spell checker is open source and has LGPL license. The format of the Hunspell spell dictionary is sup-
ported by the applications Mozilla, OpenOffice and Chrome browser. If your language is not included in the list of
built-in dictionaries you can probably have a dictionary for your language you can add it with the following steps.

You add a Hunspell dictionary with the following steps:

Procedure 20.1. Add Hunspell dictionary

1. Download the archive [http://www.oxygenxml.com/spell_checking.html] with the files of your language dictionary.
A dictionary has two files with the same name and different extensions: a file with .dic extension and a file with
.aff extension.

506

Text editor specific actions

http://www.oxygenxml.com/spell_checking.html
http://www.oxygenxml.com/spell_checking.html

2. If it is a new dictionary (not available as built-in dictionary in <oXygen/>) you copy the .aff and .dic files to the
spell subfolder of the <oXygen/> preferences folder, that is the folder [APPLICATION-DATA-
FOLDER]/com.oxygenxml/spell. For example on Windows XP APPLICATION-DATA-FOLDER is C:\Documents
and Settings\[LOGIN-USER-NAME]\Application Data, on Windows Vista APPLICATION-DATA-FOLDER
is C:\Users\[LOGIN-USER-NAME]\AppData\Roaming, on Mac OS X APPLICATION-DATA-FOLDER is
[USER-HOME-FOLDER]/Library/Preferences.

3. If it is an existing dictionary you copy the .aff and .dic files into the folder [OXYGEN-INSTALL-FOLDER]/dicts.

4. Restart the application after copy the dictionary files.

Adding an AZ Check dictionary

AZ Check dictionaries are in the form of .dar files located in the directory [oXygen-install-dir]/dicts. A
pre-built dictionary can be added by copying the corresponding .dar archive to the same directory and restarting
<oXygen/>. A dictionary can be built with the tool available at http://www.xmlmind.com/spellchecker/dictbuilder.shtml.

Learned words are stored into an persistent learned-words dictionary with the .tdi extensions located in:

• directory on Windows XP

Note

If you cannot find the com.oxygenxml folders, please check the Roaming folder from the Application Data.

• directory on Windows Vista

• directory on Mac OS X

Learning words
There is one dictionary for each language-country variant combination. If the Learn button is pressed by mistake the
only possibility to delete the learned word from the learned-words dictionary is to use the button Delete learned words
that is available in Preferences.

Ignoring words
You can set a list of XPath expressions that match the elements that will be ignored by spell checking in XML documents.
Only a small subset of XPath expressions is supported, that is only the '/' and '//' separators and the '*' wildcard, which
means expressions like /a/*/b. The XPath expressions are specified in Preferences.

Spell checking as you type
Spell checking feature can be also used as you type by enabling it from the Preferences panel. When you edit a document
the spell checker underlines the words with errors in real time and you can correct them when they appear. Also for
words with wrong spelling the suggestions of the Spelling dialog are available on the context menu of the editor panel
in the Spell check suggestions submenu:

Note

Words with lengths in excess of 100 characters are ignored by the spell checker.

507

Text editor specific actions

Check Spelling in Files
The Check Spelling in Files option available from the Project contextual menu enables you to check spelling on multiple
documents:

Figure 20.3. Check Spelling in Files Dialog

You can choose the following scopes:

All opened files Spell check in all opened files.

Directory of the current file Directory of the current edited file.

Scope of the current DITA Map Scope of the current edited DITA Map.

Project files All files from the current project.

Selected project files Selected files from the current project.

Specified path Specify a custom path.

You can also choose a file filter, decide whether to recurse subdirectories or process hidden files.

The spell checker processor uses the options available in the Spell Check Preferences panel.

508

Text editor specific actions

Chapter 21. Configuring the application
Importing/Exporting Global Options
In the <oXygen/> preferences page (Window -> Preferences -> oXygen) you can find the Import/Export preferences
buttons which allow you to move your global preferences in XML format from one computer to another.

Preferences
Once the application is installed you can use the Preferences dialog accessed from Options → Preferences to customize
the application for your requirements and network environment.

You can always revert modifications to their default values by using the Restore Defaults button, available in each
preference page.

If you don't know how to use a specific preference that is available in any Preferences panel or what effect it will have
you can open a help page about the current panel at any time using the help button located in the left bottom corner of
the dialog.

Figure 21.1. The Help button of the Preferences dialog

A restricted version of the Preferences dialog is available at any time in editors of the <oXygen/> plugin by right-
clicking in the editor panel and selecting Preferences:

509

Figure 21.2. Eclipse Preferences dialog - restricted version

<oXygen/> License
The License information panel is opened from menu Window → Preferences → oXygen

This panel presents the data of the license key which enables the <oXygen/> plugin: registration name, category and
number of purchased licenses, encrypted signature of the license key. Clicking on the Register button opens the
<oXygen/> XML Editor License dialog that allows you to insert a new license key:

Global
The Global preferences panel is opened from menu Window → Preferences → oXygen+Global

Figure 21.3. The Global preferences panel

Use custom frameworks directory For editing different types of XML documents (for content completion, valida-
tion, authoring) <oXygen/> can use information from the external document
types which are stored in the frameworks directory. If a custom frameworks
directory is specified then the <oXygen/> will load the document types from
this location.

Show hidden files and directories Show system hidden files and folders in the file and directory browsers. This
setting is not available on Mac OS X.

510

Configuring the application

Fonts
The Fonts preferences panel is opened from menu Window → Preferences → oXygen+Fonts

Figure 21.4. The Fonts preferences panel

Text Use this section to customize the font used in text based editors. There are two options:

• Map to text font - the font used is the same as the one set in General / Appearance / Colors and Fonts for
the basic text editor.

• Customize - allows you to choose a specific font.

Author Allows you to specify a font to be used in the Author mode.

Document Type Association
The Document Type Association preferences panel is opened from menu Window → Preferences → oXygen+Document
Type Association

511

Configuring the application

Figure 21.5. Document Type Association preferences panel

Change framework directory location You can specify a custom frameworks directory from where <oXygen/> will
load the document types.

User roles You can select between two user roles Content author and Developer. When
the selected role is Content author you can modify only the properties of the
Document Type Associations stored in the user preferences. The externally
stored associations cannot be modified and you will have to duplicate them in
order to further customize these associations. The Developer user can change
any document type association.

Document types table The table presents the currently defined document type associations. The columns
are:

Document type Contains the name of the document type.

Enabled When checked the corresponding document type associ-
ation is enabled, it is analyzed when trying to determine
the type of a document opened in <oXygen/>.

Storage Presents the location where the document type association
is stored.

When expanding a Document Type Association its defined rules are presented.
A rule is described by:

Namespace Specifies the namespace of the root element from the
association rules set (any by default). If you want to
apply the rule only when the root element is in no

512

Configuring the application

namespace you must leave this field empty (remove
the ANY_VALUE string).

Root local name Specifies the local name of the root element (any by
default).

File name Specifies the name of the file (any by default).

Public ID Represents the Public ID of the matched document.

Java class Presents the name of the class which will be used to
determine if a document matches the rule.

New Opens a new dialog allowing you to add a new association.

Edit Opens a new dialog allowing you to edit an existing association.

Delete Deletes one of the existing association.

Up Moves the selected association one level up (the order is important because the
first document type association in the list that can be associated with the docu-
ment will be used).

Down Moves the selected association one level down.

Enable DTD/XML Schema pro-
cessing in document type detection

When this is enabled the matching process will also examine the DTD/XML
Schema associated with the document. For example the fixed attributes declared
in the DTD for the root element will be analyzed also if this is specified in the
association rules.

Example 21.1. Enabling DTD Processing for DITA
customizations

If you are writing DITA customizations you should enable this checkbox. DITA
Topics and Maps are also matched by looking for the DITAArchVersion attribute
in the root element. If the DTD is not processed on detection then this attribute
specified as default in the DTD will not be detected on the root element and the
DITA customization will not be correctly matched.

Only for local DTDs/XML Schemas When the previous feature is enabled you can choose to process only the local
DTDs/XML Schemas.

Note

The Reset Defaults button that is available in all Preferences panels has no effect for document types with external
storage.

Editor
The Editor preferences panel is opened from menu Window → Preferences → oXygen+Editor

Use these options to configure the visual aspect of the text editor. The same options panel is available in the restricted
version of the Preferences dialog.

513

Configuring the application

Figure 21.6. The Editor preferences panel

Editor background color Use this option to set the background color of the editor and also of the Diff
Files editors.

Completion proposal background Use this option to set the background color for the content completion window.

Completion proposal foreground Use this option to set the foreground color for the content completion window.

Documentation window background Use this option to set the background color for the window containing document-
ation for the content completion elements.

Documentation window foreground Use this option to set the foreground color for the window containing document-
ation for the content completion elements.

Line Wrap (disables folding) This option will do a soft wrap of long lines, that is automatically wrap lines in
edited documents. When this option is checked line folding will be disabled.

Highlight matching tag This option enables highlight for the tag matching the one on which the caret is
situated.

Enable folding when opening a new
editor

If checked, it enables folding when a new editor is opened.

Minimum fold range (only for XML) If "Enable folding when opening a new editor" is checked, you can specify the
minimum number of lines for folding. If you modify this value, you'll notice
the changes when you open/reopen the editor.

Pages

The Pages preferences panel is opened from menu Window → Preferences → oXygen → Editor → Pages and allows
you to select the initial page for an editor. The mode in which a file was edited in the previous session is saved and
will be used when the application is restarted and the file reopened.

514

Configuring the application

Figure 21.7. The <oXygen/> Pages preferences panel

Allow Document Type specific page
setting to override the general page
setting

If checked, the initial page setting from the Document type dialog will override
the general page setting.

Text/Diagram

If operation is slow for very large schemas disabling the schema diagram view will improve the speed of navigation
through the edited schema.

The Diagram preferences panel is opened from menu Window → Preferences → oXygen+Editor+Diagram

Figure 21.8. Schema diagram preferences panel

Show Full Model XML Schema dia-
gram

If this option is enabled the old synchronized version of the schema diagram
will be available in the Text page for XML Schemas. For editing in the schema
diagram, you can use the new schema diagram editor page.

Enable Relax NG diagram and re-
lated views

If this option is disabled the schema diagram for Relax NG will not be generated
and displayed, also the related views that present the schema components are

515

Configuring the application

not populated with data. In case you need the related views to be active, you
can let this option checked and un check the following one.

Show Relax NG diagram If this option is disabled the schema diagram for Relax NG schemas will not be
generated and displayed.

Enable NVDL diagram and related
views

If this option is disabled the schema diagram for NVDL will not be generated
and displayed, also the related views that present the schema components are
not populated with data. In case you need the related views to be active, you
can let this option checked and un check the following one.

Show NVDL diagram If this option is disabled the schema diagram for NVDL schemas will not be
generated and displayed.

Location relative to editor The location of the diagram panel in the editing area can be: North, East, South,
West. For example North means that the diagram panel takes the North part of
the editing area and the text editor panel takes the rest of the editing area.

Grid

The Grid preferences panel is opened from menu Window → Preferences → oXygen+Editor+Grid

Figure 21.9. The Grid editor preferences panel

Compact representation If checked a child element is displayed at the same height level with the parent
element. If unchecked a child elements is presented nested with one level in the
parent container, that is lower than the parent with one row.

Format and indent when passing
from grid to text or on save

The content of the document is formatted by applying the Format and Indent
action on every switch from the grid editor to the text editor of the same docu-
ment.

516

Configuring the application

Default column width (characters) The default width in characters of a table column of the grid. A column can hold
an element name and its text content, an attribute name and its value. If the total
width of the grid structure is too large you can resize any column with the mouse
but the change is not persistent. To make it persistent set the new column width
in this user option. the

Current selection color The background color used in the focused selected cell of the grid to make it
different in the set of selected cells. For example when an entire row is selected
only one cell of the row is the focused selected one.

Selection color The background color used in the selected cells of the grid except the focused
selected cell which uses a different background color.

Border color The color used for the lines that separate the grid cells.

Background color The background color of grid cells that are not selected.

Foreground color The color of the text used for the element names, text content of elements, attrib-
ute names and attribute values.

Row header colors - Background
color

The background color of row headers that are not selected.

Row header colors - Current selec-
tion color

The background color of the row header that is currently selected and has the
focus.

Row header colors - Selection color The background color of the row header that is currently selected and does not
have the focus.

Column header colors - Background
color

The background color of column headers that are not selected.

Column header colors - Current selec-
tion color

The background color of the column header that is currently selected and has
the focus.

Column header colors - Selection
color

The background color of the column header that is currently selected and does
not have the focus.

The column headers are painted with two color gradients, one for the upper 1/3 part of the header and the other for the
lower 2/3 part. The start and end colors of the first gradient are set with the first two color buttons. The start and end
colors of the second gradient are set with the last two color buttons.

Author

The Author preferences panel is opened from menu Window → Preferences → oXygen+Editor+Author

517

Configuring the application

Figure 21.10. The <oXygen/> Author preferences panel

Show caret position tooltip If checked, the position information tooltip will be displayed. More information
about the position information tooltip can be found in the section Position in-
formation tooltip. The documentation tooltip can be disabled from the Content
Completion Annotations preferences panel.

Show placeholders for empty ele-
ments

When checked, placeholders will be displayed for empty elements to make them
clearly visible.

Show Author layout messages If checked, all errors reported during layout creation will be presented in the
Errors view.

Show block range If checked, a block range indicator will be shown in a stripe located in the left
side of the editor.

Hide comments When checked, comments from the documents edited in Author mode will be
hidden.

Hide processing instructions When checked, processing instructions from the documents edited in Author
mode will be hidden.

Hide doctype When checked, doctype sections from the documents edited in Author mode
will be hidden.

518

Configuring the application

Show very large images If unchecked, images larger than 6 megapixels(24MB uncompressed) will not
be loaded and displayed in Author mode. Please be aware that this option is
unchecked by default because of the large amounts of application memory that
images of high resolution can occupy. As a result, an OutOfMemory error could
occur which would practically make <oXygen/> unusable without a restart of
the entire application.

Display referred content (e.g.: entit-
ies, XInclude, DITA conref, etc.)

When checked, the references(entities, XInclude, DITA conref, etc) will also
display the content of the resources they refer.

Highlight caret proximity elements In this option it is set the color that will be used for the background of the current
element at cursor position or the background of two elements when the cursor
is between two elements.

Format and indent Here you can set the method of format and indent that is applied when a docu-
ment is saved in Author mode:

Only the modified content The save operation formats only the
nodes that were modified in Author
mode.

The entire document The save operation applies formatting to
the entire document regardless of the
nodes that were modified in Author
mode. If the checkbox Apply also
the 'Text' page 'Format and
Indent' action is selected the con-
tent of the document is formatted by ap-
plying the Format and Indent ac-
tion on every switch from the author ed-
itor to the text editor of the same docu-
ment.

Quick up/down navigation Up and Down arrows will skip positions between blocks and will stop on the
next/previous line only if the caret is vertical.

Tags display mode Default display mode for element tags presented in Author mode. You can
choose between Full Tags with Attributes, Full Tags, Block Tags, Inline Tags,
Partial Tags and No Tags.

Tags background color Allows you to configure the author tags background color.

Tags foreground color Allows you to configure the author tags foreground color.

Schema aware

The Schema aware preferences panel is opened from menu Window → Preferences → oXygen+Editor+Author+Schema
aware

519

Configuring the application

Figure 21.11. The <oXygen/> Schema aware preferences panel

Schema aware normalization, format
and indent

When opening a document in Author, white spaces can be normalized or removed
in order to obtain a more compact display. The reverse process takes place when
saving the document in the Author. By default this algorithm is controlled by
the CSS 'display' property.

If this option is checked then this process will be schema aware so the algorithm
will take into account if the element is declared as element-only or mixed. It
will also take into account options Preserve space elements, Default space
elements, Mixed content elements from option page Window → Preferences
→ oXygen → Editor → Format → XML

Indent blocks-only content If checked, even if an element is declared in the schema as being mixed but it
has a blocks-only content (as specified by the CSS property 'display' of its chil-
dren), it will be treated as being element-only.

Schema Aware Editing Editing in Author will take into account the schema.

On Enable all schema aware editing options.

Off Disable all schema aware editing options.

Custom Delete element tags with backspace
and delete

Controls the behaviour for
deleting element tags using
delete or backspace keys.

Available options:

• Smart delete If the result
of the delete action is inval-

520

Configuring the application

id, different strategies will
be applied in order to keep
the document valid. If
backspace/delete is
pressed at the begin-
ning/end of an element the
action that should take
place is unwrap (the ele-
ment will be deleted and
its content will be put in
its place). If its content is
not accepted by the
schema in that position,
you can keep a valid docu-
ment by applying different
strategies like:

• Search for a preced-
i n g (b a c k s p a c e
case)/following(delete
case) element in which
you can append that
content.

• If the tag markers of the
element to unwrap are
not visible a caret move
action in the delete ac-
tion direction will be
performed.

• Reject action when its
result is invalid If
checked and the result of
the delete action is invalid,
the action will not be per-
formed.

Paste and Drag and Drop Controls the behaviour for
paste and drag and drop ac-
tions.

Available options:

• Smart paste and drag
and drop If the content
inserted by a paste or drop
action is not valid at the
caret position, according
to the schema, different
strategies are applied to
find an appropriate insert
position:

521

Configuring the application

• If the sibling element
can accept the content,
then a new element with
the same name as the
sibling is created in
which the content will
be inserted.

• You will iterate to the
left or to the right of the
insertion position,
without leaving the cur-
rent context, and try to
insert the fragment in
one of the encountered
elements (that accepts
the content to be inser-
ted).

• Reject action when its
result is invalid If
checked and the result of
the paste or drop action is
invalid, the action will not
be performed.

Typing Controls the behaviour that
takes place when typing.

Available options:

• Smart typing If the typed
character cannot be inser-
ted at element from the
caret position then a sib-
ling element that can ac-
cept it will be searched for.
If the sibling element can
accept the content, then a
new element with the same
name as the sibling is cre-
ated in which the content
will be inserted.

• Reject action when its
result is invalid If
checked and the result of
the typing action is invalid,
the action will not be per-
formed.

Content Completion Controls the behaviour that
takes place when inserting
elements using content com-
pletion.

522

Configuring the application

Available options:

• Allow only insertion of
valid elements and attrib-
utes If checked, only ele-
ments or attributes form
the content completion
proposals list can be inser-
ted in the document
through content comple-
tion.

Warn on invalid content when per-
forming action

A warning message will be
displayed when performing
an action that will result in
invalid content.

Available options:

• Delete Element Tags If
checked, when the Delete
Element Tags action will
result in an invalid content,
a warning message will be
displayed in which the
user is asked if the opera-
tion should continue.

• Join Elements If checked,
when the Join Elements
action will result in an in-
valid content, a warning
message will be displayed
in which the user is asked
if the operation should
continue.

If the Schema Aware Editing is On or Custom all actions that can generate invalid content will be forwarded first toward
AuthorSchemaAwareEditingHandler.

Track Changes

The Author Track Changes preferences panel is opened from menu Window → Preferences → oXygen+Editor+Au-
thor+Track Changes

523

Configuring the application

Figure 21.12. The <oXygen/> Track Changes preferences panel

Author The name of the user who performs the changes when Change Tracking is active
for a given editor. This information will be associated with each performed change.

Inserted content color Automatically assign colors for the insert changes based on the Author
name.

Auto

Custom Use a custom color for all insert changes, regardless of the Author name.

Deleted content color Automatically assign colors for the delete changes based on the Author
name.

Auto

Custom Use a custom color for all delete changes, regardless of the Author
name.

Messages

Figure 21.13. The Author's Messages preferences panel

Show author page warning When checked, a warning dialog will be displayed when switching to Author
mode. The warning reminds you that the whitespaces from the text content are
evaluated according to the value of the CSS white-space property associated to
the enclosing elements.

Show warning when switching to
Developer Role

When checked, a warning dialog will be displayed when choosing to switch to
developer role in the Document Type Association page.

Schema Design

The XML Schema editor preferences panel is opened from menu Window → Preferences → oXygen+Editor+Schema

524

Configuring the application

Figure 21.14. The XML Schema editor preferences panel

Show additional attributes in the
diagram

If checked the component symbols of the XML Schema diagram will include
also element properties like the name of the referred element (in case of a refer-
ence symbol), the base type, etc.

Show annotation in the diagram The content of xs:documentation elements is displayed only if this option is
checked.

When trying to edit components from
another schema

Specifies the default behavior when you try to edit a component from another
schema. You can choose between:

• Always to its definition

• Never go to its definition

• Always ask

Properties

You can decide to show additional properties for components in the diagram and customize the properties to be displayed
for each schema component.

Figure 21.15. The Schema Properties preferences panel

For a component's properties you can decide if you want to display them only when having a specified value or all the
time.

525

Configuring the application

Format

The Format preferences panel is opened from menu Window → Preferences → oXygen+Editor+Format

Figure 21.16. The Format preferences panel

Detect indent on open The editor tries to detect the indent settings of the opened XML document. In
this way you can correctly format (pretty-print) files that were created with dif-
ferent settings, without changing your options. More than that you can activate
the advanced option for detecting the maximum line width to be used for
formatting and hard wrap. These features were designed to minimize the differ-
ences created by the pretty print operation when working with a versioning
system, like CVS for example.

Indent with tabs When checked enables 'Indent with tabs' to set the indent to a tab unit. When
unchecked, 'Indent with tabs' is disabled and the indent will measure as many
spaces as needed in order to go to the next tab stop position. The maximum
number of space characters is defined by the 'Indent size' option.

Indent size Sets the number of spaces or the tab size that will equal a single indent. The
Indent can be spaces or a tab, select the preference using the Indent With Tabs
option. If set to 4 one tab will equal 4 white spaces or 1 tab with size of 4 char-
acters depending on which option was set in the Indent With Tabs option.

Hard line wrap This feature saves time when writing a reach text XML document. You can set
a limit for the length of the lines in your document. When this limit is exceeded
the editor will insert a new line before the word that breaks the limit, and indent
the next line. This will minimize the need of reformatting the document.

Indent on Enter If checked, it indents the new line introduced when pressing Enter.

Enable Smart Enter If checked, it inserts a new indented line between start and end tag.

Detect line width on open If checked, it detects the line width automatically when the document is opened.

Format and indent the document on
open

When checked, the Format and indent the document on open operation will
format and indent an XML document before opening it in the editor panel. This

526

Configuring the application

option applies only to documents associated with the XML editor, not to docu-
ments associated with the XSD editor, RNG editor or XSL editor.

Line width - Format and Indent Defines the point at which the "Format and Indent" (Pretty-Print) function will
perform hard line wrapping. So if set to 100 Pretty-Print will wrap lines at the
100th space inclusive of white spaces, tags and elements.

Clear undo buffer before Format and
Indent

If checked, the undo buffer is cleared. The undo action can now only undo the
Format and Indent action

XML

The XML Format preferences panel is opened from menu Window → Preferences → oXygen+Editor+Format+XML

Figure 21.17. The XML format preferences panel

Preserve empty lines When checked, the Format and Indent operation will preserve all empty lines
found in the document on which the pretty-print operation os applied.

Preserve text as it is If checked, the "Format and Indent" (Pretty-Print) function will preserve text
nodes as they are without removing or adding any whitespace.

Preserve line breaks in attributes If checked, the "Format and Indent" (Pretty-Print) function will preserve the
line breaks found in attributes. When this option is checked, Break long lines
option will be disabled.

Break long attributes If checked, the "Format and Indent" (Pretty-Print) function will break long at-
tributes.

Indent inline elements If checked, the inline elements will be broken and indented on separate lines if
there are whitespace to the left and they follow another element start or end tag.

527

Configuring the application

Expand empty elements When checked, the Format and Indent operation will output empty elements
with a separate closing tag, ex. <a atr1="v1">. When not checked the same
operation will represent an empty element in a more compact form: <a
atr1="v1"/>

Sort attributes When checked, the Format and Indent operation will sort the attributes of an
element alphabetically. When not checked the same operation will leave them
in the same order as before applying the operation.

Add space before slash in empty
elements

When checked, the Format and Indent operation will add a space before the
closing slash of an empty element, for instance an empty br will appear as
.

Break line before attribute's name If checked, the "Format and Indent" (Pretty-Print) function will break the line
before the attribute's name.

Preserve space elements (XPath) This list contains simplified XPath expressions for the names of the elements
for which the contained white spaces like blanks, tabs and newlines are preserved
by the Format and Indent operation exactly as before applying the operation.
The allowed XPath expressions are of one of the form:

• author

• //listing

• /chapter/abstract/title

• //xs:documentation
The namespace prefixes like xs in the previous example are treated as part of
the element name without taking into account its binding to a namespace.

Default space elements (XPath) This list contains the names of the elements for which contiguous white spaces
like blanks, tabs and newlines are merged by the Format and Indent operation
into one blank.

Mixed content elements (XPath) The elements from this list will be treated as mixed when applying the Pretty-
Print operation, meaning that the operation will break the line only when
whitespaces are encountered.

Schema aware format and indent When checked, the Format and Indent operation will take into account the
schema information regarding the space preserve, mixed or element only property
of an element.

Indent (when typing) in preserve
space elements

If checked, automatic tags indentation while editing will take place for all ele-
ments including the ones that are excluded from Pretty Print (default behaviour).
When unchecked, indentation while editing will not take place in elements that
have the 'xml:space' attribute set on 'preserve' or are in the list of Preserve Space
Elements.

Indent on paste Indent paste text corresponding to the indent settings set by the user. This is
useful for keeping the indent style of text copied from other document.

528

Configuring the application

Note

Preserve space elements, Default space elements, Mixed content elements and Schema aware format and indent
work together. No matter which one indicates a more restrictive property, that property will be applied (if one
of them indicates that an element is space preserve then it will be treated accordingly).

Note

Preserve empty lines, Preserve text as it is, Preserve line breaks in attributes, Break long attributes, Indent (when
typing) in preserve space elements don't apply when switching from Author to Text page.

Whitespaces

This panel displays the special whitespace characters of Unicode. Any character that is checked in this panel is considered
whitespace that can be normalized in an XML document. The whitespaces are normalized when the action Format
and Indent is applied or when you switch from Text mode to Author mode or from Author mode to Text mode.

The characters with the codes 9, 10, 13 and 32 are always in the group of whitespace characters that must be normalized
so they are always enabled in this panel.

Figure 21.18. The Whitespaces preferences panel

CSS

The CSS Format preferences panel is opened from menu Window → Preferences → oXygen+Editor+Format+CSS

529

Configuring the application

Figure 21.19. The CSS format preferences panel

Indent class content If checked, the class content is indented during a "Format and Indent" (Pretty-
Print) operation.

Class body on new line If checked, the class body (including the curly brackets) are placed on a new
line after a Pretty-Print operation.

Add new line between classes If checked, an empty line is added between two classes after a Pretty-Print oper-
ation is performed.

Preserve empty lines If checked, the empty lines from the CSS content are preserved.

Allow formatting embedded CSS If checked, the CSS content embedded in XML will be formated when the XML
content is formated.

JavaScript

The JavaScript Format preferences panel is opened from menu Window → Preferences → oXygen+Editor+Format+JavaS-
cript

Figure 21.20. The JavaScript Format preferences panel

Start curly brace on new line If true, opening curly braces will start on a new line.

Preserve empty lines If true, empty lines in the JavaScript code will be preserved.

Allow formatting embedded JavaS-
cript

If checked, the JavaScript content embedded in XML will be formated when
the XML content is formated.

Content Completion

The Content Completion feature enables inline syntax lookup and Auto Completion of mark-up elements and attributes
to streamline mark-up and reduce errors while editing.

These settings define the operating mode of the content assistant.

The Content Completion preferences panel is opened from menu Window → Preferences → oXygen+Editor+Content
Completion

530

Configuring the application

Figure 21.21. The Content Completion preferences panel

Auto close the last opened tag If the Use Content Completion option is not checked and if this option is checked,
<oXygen/> will close the last opened tag when </ is typed.

Automatically rename matching tag If checked, <oXygen/> will automatically rename the matching end tag when
the start tag is modified in the editor.

Use Content Completion When unchecked, all Content Completion features are disabled.

Close the inserted element When inserting elements from the Content Completion assistant, both start and
end tags are inserted.

If it has no matching tag When checked, the end tag of the inserted element will be automatically added
only if it is not already present in the document.

Add element content When checked, <oXygen/> will insert automatically the required elements from
the DTD or XML Schema or RELAX NG schema. This option is applied also
in the Author mode of the XML editor.

Add optional content When checked, <oXygen/> will insert automatically the optional elements from
the DTD or XML Schema or RELAX NG schema. This option is applied also
in the Author mode of the XML editor.

Add first Choice particle When checked, <oXygen/> will insert automatically the first Choice particle
from the DTD or XML Schema or RELAX NG schema. This option is applied
also in the Author mode of the XML editor.

Case sensitive search When it is checked the search in the content completion window when you type
a character is case sensitive ('a' and 'A' are different characters). This option is
applied also in the Author mode of the XML editor.

531

Configuring the application

Cursor position between tags When checked, <oXygen/> will set the cursor automatically between tags. Even
if the auto-inserted elements have attributes that are not required, the position
of cursor can be forced between tags.

Show all entities When checked, <oXygen/> will display a list with all the internal and external
entities declared in the current document when the user types the start character
of an entity reference (i.e. &).

Insert the required attributes When checked, <oXygen/> will insert automatically the required attributes from
the DTD or XML Schema for an element inserted with the help of the Content
Completion assistant. This option is applied also in the Author mode of the XML
editor.

Insert the fixed attributes When checked, <oXygen/> will insert automatically any FIXED attributes from
the DTD or XML Schema for an element inserted with the help of the Content
Completion assistant. This option is applied also in the Author mode of the XML
editor.

Show recently used items When checked, <oXygen/> will remember the last inserted items from the
Content Completion window. The number of items to be remembered is limited
by Maximum number of recent items shown combo box. These most frequently
used items are displayed on the top of Content Completion window and their
icon is decorated with a small red square. This option is applied also in the Author
mode of the XML editor.

Maximum number of recent items
shown

Limits the number of recently used items presented at the top of the content
completion window. This option is applied also in the Author mode of the XML
editor.

Learn attributes values When checked, <oXygen/> will display a list with all attributes values learned
from the current document. This option is applied also in the Author mode of
the XML editor.

Learn on open document When checked, <oXygen/> will automatically learn the document structure
when the document is opened. This option is applied also in the Author mode
of the XML editor.

Learn words (Dynamic Abbrevi-
ations, available on CTRL+SPACE)

When checked, <oXygen/> will automatically learn the typed words and will
make them available in a Content Completion fashion by pressing
CTRL+SPACE.

Note

In order to be learned, the words need to be separated by space characters.

Annotations

The Annotations preferences panel is opened from menu Window → Preferences → oXygen+Editor+Content Comple-
tion+Annotations

532

Configuring the application

Figure 21.22. The Content Completion Annotations preferences panel

Show annotations When checked, <oXygen/> will display the annotations that are present in the
used schema for the current element, attribute or attribute value. This option is
applied also in the Author mode of the XML editor.

Show annotations as tooltip If checked, it shows the annotations of elements and attributes as tooltips. This
option is applied also in the Author mode of the XML editor.

Use DTD comments as annotation When checked, <oXygen/> will use all DTD comments as annotation. If it is
not checked the following decision is performed: if among the gathered comments
there are special <oXygen/> doc: comments, only those will be presented. If
not, all encountered comments will be presented.

Use all Relax NG annotations as
documentation

When checked any element that is not from the Relax NG namespace, that is
"http://relaxng.org/ns/structure/1.0" will be considered annotation and will be
displayed in the annotation window next to the content completion window and
in the Model View. When unchecked only elements from the Relax NG annota-
tions namespace, that is "http://relaxng.org/ns/compatibility/annotations/1.0"
will be considered annotation.

XSL

These settings define what elements are suggested by the content assistant in addition to the XSL ones.

The XSL preferences panel is opened from menu Window → Preferences → oXygen+Editor+Content Completion+XSL

Figure 21.23. The Content Completion XSL preferences panel

You can choose to automatically detect if the XSL should use the XHTML or FO schemas for content completion
based on the namespaces declared on the root element. If the detection fails, the following options will apply:

None The Content Completion will offer only the XSL information.

533

Configuring the application

XHTML transitional Includes XHTML Transitional elements as substitutes for xsl:element.

Formating objects Includes Formating Objects elements as substitutes for xsl:element.

Other Includes elements from a DTD, XML Schema, RNG schema or NVDL schema for insert-
ing elements from the target language of the stylesheet.

You can choose an additional schema which will be used for documenting XSL stylesheets. Either select the built-in
schema or choose a custom one. Supported schemas are XSD, RNG, RNC, DTD and NDVL.

XPath

The XPath preferences panel is opened from menu Window → Preferences → oXygen+Editor+Content Comple-
tion+XPath

Figure 21.24. The Content Completion XPath preferences panel

Enable content completion for XPath
expressions

Disables and enables content completion in XPath expressions entered in the
XSL attributes match, select and test and also in the XPath toolbar.

Options are available to allow the user to include XPath functions, XSLT func-
tions or axes in the content completion suggestion list.

The XPath section controls if the functions, axes are presented in the content completion list when editing XPath ex-
pressions.

Show signatures of XSLT/XPath
functions

If checked, the editor will indicate in a tooltip helper the signature of the XPath
function located at the caret position. See the XPath Tooltip Helper section for
more information.

XSD

These settings define what elements are suggested by the content assistant, in addition to the ones from the XML
Schema schema, inside the xs:annotation/xs:appinfo elements of an XML Schema.

The XSD preferences panel is opened from menu Window → Preferences → oXygen+Editor+Content Completion+XSD

534

Configuring the application

Figure 21.25. The Content Completion XSD preferences panel

None The Content Completion will offer only the XML Schema schema information.

ISO Schematron Includes ISO Schematron elements in xs:appinfo.

Schematron 1.5 Includes Schematron 1.5 elements in xs:appinfo.

Other Includes in xs:appinfo elements from an XML Schema specified from a URL.

Syntax Highlight

<oXygen/> supports Syntax Highlight for XML, DTD, Relax NG (XML and Compact Syntax), Java, JavaScript,
PHP,CSS, XQuery, C++, C, Perl, Properties, SQL, Shell and Batch documents. While <oXygen/> provides a default
color configuration for highlighting the tokens, you may choose to customize, as required, using the Colors dialog.

The Syntax Highlight preferences panel is opened from menu Window → Preferences → oXygen+Editor+Syntax
Highlight

535

Configuring the application

Figure 21.26. The Colors preferences panel

Choose one of the supported document types. Each document type contains a set of tokens. The tokens for XML doc-
uments are used also in XSD, XSL, RNG documents so the Preview area has 4 tabs when an XML token is selected
in the Element area for viewing the rendered result in all four types of documents: XML, XSD, XSL, RNG. When a
document type node is expanded, the associated tokens are listed. Selecting a token displays the current color properties
and enables you to modify them. You can also select a token by clicking directly in the preview area on that type of
token.

You can edit the following color properties of the selected token:

Foreground color The Foreground button opens a color dialog that allow setting the color properties for the
selected token with one of the methods: Swatches, HSB or RGB.

Background color The Background button opens the same color dialog as the Foreground button.

536

Configuring the application

Bold style This checkbox enables the bold variant of the font for the selected token. This property is
not applied to a bidirectional document.

Italic style This checkbox enables the italic variant of the font for the selected token. This property is
not applied to a bidirectional document.

The Preview panel displays the appearance of all token colors in a sample document as they will be rendered in the
editor.

Modifications are saved when the OK button is clicked. Cancel discards changes. Restore Defaults button changes all
the token colors to the default values.

Syntax Highlight / Elements/Attributes by Prefix

The Syntax Highlight preferences panel is opened from menu Window → Preferences → oXygen+Editor+Syntax
Highlight+Elements/Attributes by Prefix

Figure 21.27. The Elements/Attributes by Prefix preferences panel

One row of the table contains the association between a namespace prefix and the properties to mark start tags and end
tags or attribute names in that prefix. Note that the marking mechanism does not look at the namespace bound to that
prefix. If the prefix is bound to different namespaces in different XML elements of the same file all the tags and attribute
names with the prefix will be marked with the same color.

You can edit the following color properties of the selected token:

Foreground color The Foreground button opens a color dialog that allow setting the color properties for the
selected token with one of the methods: Swatches, HSB or RGB.

Background color The Background button opens the same color dialog as the Foreground button.

You can choose that only the prefix to be displayed in the chosen color by checking the Draw only the prefix with a
separate color option.

Open/Save

The Open/Save preferences panel is opened from menu Window → Preferences → oXygen+Editor+Open/Save

537

Configuring the application

Figure 21.28. The Open/Save preferences panel

Format document when long lines
exceeds

Specifies the default behavior when the longest line of a document exceeds the
specified limit. You can choose between:

• Always format

• Never format

• Always ask

Check well-formedness on save If selected the <oXygen/> plugin will perform a well-formed check every time
the user saves a document.

Save all files before transformation
or validation

Save all opened files before validating or transforming an XML document. In
this way the dependencies are resolved, for example when modifying both the
XML document and its XML Schema.

Clear undo buffer on save If checked, the undo action has no effect after you've saved your document. You
can only undo the modifications made after you've saved it.

Code Templates

Code templates are small document fragments that can be reused in other editing sessions. <oXygen/> comes with a
large set of ready-to use templates for XSL, XQuery and XML Schema. You can even share your code templates with
your colleagues using the Export and Import functions. To obtain the template list you can use the Content Completion
on request shortcut key (usually CTRL-SPACE) or the Code Templates on request shortcut key (CTRL-SHIFT-SPACE).
The first shortcut displays the code templates in the same content completion list with elements from the schema of
the document. The second shortcut displays only the code templates and is the default shortcut of the action Document
→ Content Completion → Show Code Templates .

The Code Templates preferences panel is opened from menu Window → Preferences → oXygen+Editor+Tem-
plates+Code Templates

538

Configuring the application

Figure 21.29. The Code Templates preferences panel

New Define a new code template.

You can define a code template for a specific type of editor or for all editor types.

Edit Edit the selected code template.

Duplicate Duplicate the selected code template.

Delete Delete the selected code template.

Import Import a file with code templates.

Export Export a file with code templates.

Document Templates

The user can add template files in the templates folder of the <oXygen/> install directory. Directories to be scanned
for additional templates can also be specified in the Document Templates option page.

The Document Templates preferences panel is opened from menu Window → Preferences → oXygen+Editor+Tem-
plates+Document Templates

Figure 21.30. Document Templates preferences panel

539

Configuring the application

Figure 21.31. Document Templates input dialog

Spell Check

The Spell Check preferences panel is opened from menu Window → Preferences → oXygen+Editor+Spell Check

Figure 21.32. Spell check preferences panel

Automatic Spell Check When checked, the spell checker is activated. Spell errors will be highlighted
as you type.

Spell checking engine The engines available are Hunspell and AZ Check. Each engine has a specific
format of spelling dictionaries. The languages of the built-in dictionaries of the
selected engine are listed in the Default language combo box.

540

Configuring the application

Default language The default language combo allows you to choose the language used by default.
If the language of your documents is not listed in this combo box you can add
a spelling dictionary for your language which will be added to this list.

Delete learned words Press this button to reset the list of words that were added to the known words
using the Learn feature.

Obey "lang" and "xml:lang" attrib-
utes

If selected the contents of any element with such an attribute will be checked
using a dictionary for the language specified in the attribute value if this diction-
ary is available. When these attributes are missing the language used is controlled
by the two radio buttons. The two options are to Use the default language or
Do not check the spelling.

XML spell checking in These options allow the user to specify if the spell checker will be enabled inside
Comments, Attribute values, Text and CDATA sections.

Case sensitive When checked, spell checking reports capitalization errors, for example a word
that starts with lowercase after etc. or i.e..

Ignore mixed case words When checked, operations do not check words containing case mixing (e.g.
"SpellChecker").

Ignore words with digits When checked, the Spell Checker does not check words containing digits (e.g.
"b2b").

Ignore Duplicates When checked, the Spell Checker does not signal two successive identical words
as an error.

Ignore URL When checked, ignores words looking like URL or file names (e.g.
"www.oxygenxml.com" or "c:\boot.ini") .

Check punctuation When checked, punctuation checking is enabled: misplaced white space and
wrong sequences, like a dot following a comma, are detected.

Allow compounds words When checked, all words formed by concatenating two legal words with an
hyphen are accepted. If the language allows it, two words concatenated without
hyphen are also accepted.

Allow general prefixes When checked, a word formed by concatenating a registered prefix and a legal
word is accepted. For example if "mini-" is a registered prefix, accepts "mini-
computer".

Allow file extensions When checked, accepts any word ending with registered file extensions (e.g.
"myfile.txt", "index.html" etc.).

Ignore acronyms When checked the acronyms are not reported as errors when checking the doc-
ument.

Ignore elements A list of XPath expressions for the elements that will be ignored by spell
checking. Only a small subset of XPath expressions are supported, that is only
the '/' and '//' separators and the '*' wildcard. An example of XPath expression:
/a/*/b.

541

Configuring the application

Document Checking

The Document Checking preferences panel is opened from menu Window → Preferences → oXygen+Editor+Document
Checking

Figure 21.33. Document Checking preferences panel

Validate as you type Validation of edited document is executed as the document is modified by
editing in <oXygen/>.

Delay after the last key event (s) The period of keyboard inactivity which starts a new validation (in seconds).

Maximum number of errors reported
per document

If there are many validation errors the process of marking them in the document
is long. You should limit the maximum number of reported errors with this setting
to keep the time for error marking short

Clear validation markers on close When a document edited with the <oXygen/> plugin is closed all the error
markers added in the Problems view for the validation errors obtained for that
document are removed.

Custom Validation

The Custom Validation preferences panel is opened from menu Window → Preferences → oXygen+Editor+Custom
Validation

Figure 21.34. Custom Validation preferences panel

If you want to add a new custom validation tool or edit the properties of an exiting one you can use the Custom Valid-
ator dialog displayed by pressing New or Edit buttons.

542

Configuring the application

Figure 21.35. Custom validator dialog

Name Name of the custom validation tool displayed in the Custom Validation Engines
toolbar

Executable path Path to the executable file of the custom validation tool. You can insert here
editor variables like ${homeDir}, ${pd}, etc.

Working directory The working directory of the custom validation tool. The following editor vari-
ables can be used:

${homeDir} The path to user home directory

${pd} Project directory

${oxygenInstallDir} <oXygen/> installation directory

Associated editors The editors which can perform validation with the external tool.

Command line arguments for detec-
ted schemas

Command line arguments used to validate the current edited file against different
types of schema (W3C XML Schema, Relax NG full syntax, Relax NG compact
syntax, Namespace Routing Language, Schematron, DTD, other schema type).
The arguments can include any custom switch (like -rng) and the editor variables:

${cf} The path of the currently edited file

${cfu} Path of current file (URL)

543

Configuring the application

${ds} The path of detected schema file

${dsu} The path of detected schema file (URL)

CSS Validator
The CSS Validator preferences panel is opened from menu Window → Preferences → oXygen+CSS Validator

Figure 21.36. CSS Validator preferences panel

Profile Choose one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3, SVG, SVG Basic,
SVG Tiny, Mobile, TV Profile, ATSC TV Profile

Media Type Choose one of the available mediums: all, aural, braille, embossed, handheld, print, projection,
screen

Warning Level Set the minimum severity level for reported validation warnings. It is one of: all, normal, most
important, no warnings.

XML

XML Catalog

The XML Catalog preferences panel is opened from menu Window → Preferences → oXygen+XML+XML Catalog

544

Configuring the application

Figure 21.37. The XML Catalog preferences panel

The Prefer option is used to specify if <oXygen/> will try to resolve first the PUBLIC or SYSTEM reference using
the specified XML catalogs. If a PUBLIC reference is not mapped in any of the catalogs then a SYSTEM reference is
looked up.

When using catalogs it is sometimes useful to see what catalog files are parsed, if they are valid or not, and what
identifiers are resolved by the catalogs. The Verbosity option selects the detail level of such messages of the catalog
resolver that will be displayed in the Catalogs view at the bottom of the window:

None No message is displayed by the catalog resolver when it tries to resolve a URI reference
with the XML catalogs set in the application.

Unresolved entities Only the messages that track the failed attempts to resolve URI references are displayed.

All messages The messages of both failed attempts and successful ones are displayed.

If the Process namespaces through URI mappings for XML Schema option is not checked only the schema location
of an XML Schema that is declared in an XML document is searched in XML catalogs. If the option is checked the
schema location of an XML Schema that is declared in an XML document is searched in XML catalogs and if the
schema location is not resolved the namespace of the schema is also searched in the XML catalogs.

If the Use default catalog option is checked the first XML catalog which <oXygen/> will use to resolve system IDs at
document validation and URI references at document transformation will be a default built-in catalog which maps such
references to the built-in local copies of the local DocBook and TEI frameworks and the schemas for XHTML, SVG
and JSP documents.

You can also add or configure catalogs for each of the defined document types from Document Type Association
preferences page.

When you add/delete or edit an XML catalog to/from the list you must sometimes reopen the current edited files which
use the modified catalog so that the changes take full effect.

545

Configuring the application

XML Parser

The XML Parser preferences panel is opened from menu Window → Preferences → oXygen+XML+XML Parser

Figure 21.38. The XML Parser preferences panel

http://apache.org/xml/features/valid-
ation/schema-full-checking

This option sets the 'schema-full-checking' feature to true.

http://apache.org/xml/features/hon-
our-all-schema-location

This option sets the 'honour-all-schema-location' feature to true. This means all
the schemas that are imported for a specific namespace are used to compose the
validation model. If this is false, only the first schema import is taken into ac-
count.

Ignore the DTD for validation if a
schema is specified

This option forces validation against a referred schema (XML Schema, Relax
NG schema, Schematron schema) even if the document includes also a DTD
declaration. It is useful when the DTD declaration is used to declare entities and
the schema reference is used for validation.

Enable XInclude processing Enable XInclude processing - if checked the XInclude support in <oXygen/> is
turned on.

Base URI fix-up [Xerces XML Parser documentation:] According to the specification for XIn-
clude, processors must add an xml:base attribute to elements included from
locations with a different base URI. Without these attributes, the resulting infoset
information would be incorrect.

Unfortunately, these attributes make XInclude processing not transparent to
Schema validation.

One solution to this is to modify your schema to allow xml:base attributes to
appear on elements that might be included from different base URIs.

546

Configuring the application

If the addition of xml:base and/or xml:lang is undesired by your application,
you can disable base URI fix-up.

Language fix-up [Xerces XML Parser documentation:]The processor will preserve language in-
formation on a top-level included element by adding an xml:lang attribute if its
include parent has a different [language] property.

If the addition of xml:lang is undesired by your application, you can disable the
Language fix-up.

Check ID/IDREF Checks the ID/IDREF matches when the Relax NG document is validated.

Check feasibly valid Checks the Relax NG to be feasibly valid when this document is validated.

Schematron XPath Version 1.0 - Allows XSLT 1.0 expressions for Schematron 1.5 assertion tests.

2.0 - Allows XSLT 2.0 expressions for Schematron 1.5 assertion tests.

Optimize (visit-no-attributes) If your ISO Schematron assertion tests do not contain the attributes axis you
should check this option for faster ISO Schematron validation.

Allow foreign elements (allow-for-
eign)

Enable support for allow-foreign on ISO Schematron. Used to pass non-
Schematron elements to the generated stylesheet.

Use Saxon EE (schema aware) for
xslt2 query binding

If checked, Saxon EE will be used for xslt2 query binding.

Saxon EE Validation

The Saxon EE Validation preferences panel is opened from menu Window → Preferences → oXygen+XML+XML
Parser+Saxon EE Validation

Figure 21.39. The Saxon EE preferences panel

XML Schema version 1.0 The validation of XML Schema schemas is done according to the W3C XML
Schema 1.0 specification.

XML Schema version 1.1 The validation of XML Schema schemas is done according to the W3C XML
Schema 1.1 specification.

XML Instances Generator

The XML Instances Generator preferences panel is opened from menu Window → Preferences → oXygen+XML+XML
Instances Generator

547

Configuring the application

Figure 21.40. The XML Instances Generator preferences panel

Generate optional elements If checked the elements declared optional in the schema will be generated in
the XML instance

Generate optional attributes If checked the attributes declared optional in the schema will be generated in
the XML instance

Values of elements and attributes Specifies what values are generated in elements and attributes of the XML in-
stance. It can have one of the values: None (no values for elements and attrib-
utes), Default (the value is like the element name or attribute name), Random
(a random value).

Preferred number of repetitions The number of repetitions for an element that has a big value of the maxOccurs
attribute.

Maximum recursivity level For recursive type definitions this parameter specifies the number of levels of
recursive elements inserted in the parent element with the same name.

Choice strategy For choice element models specifies what choice will be generated in the XML
instance. It can be First (the first choice is generated) or Random (a random
choice is generated).

Generate the other options as com-
ments

If checked the other options of the choice element model which are not selected
will be generated inside a comment in the XML instance.

Use incremental attribute/element
names as default

If checked the value of an element/attribute is like the name of that element/at-
tribute. For example the values of a elements are a1, a2, a3, etc. If not checked
the value is the name of the type of that element /attribute, for example string,
decimal, etc.

Maximum length The maximum length of string values generated for elements and attributes.

Discard optional elements after nes-
ted level

When generating XML instances the optional elements that exceed the specified
nested level are discarded.

548

Configuring the application

XProc Engines

<oXygen/> comes with a built-in engine called Calabash XProc. An external XProc engine can be configured in this
panel.

Figure 21.41. The XProc Engines preferences panel

When Show XProc messages is enabled all messages emitted by the XProc processor during a transformation will be
presented in the results view.

For an external engine you must specify the name that will be displayed in the XProc transformation scenario and the
command line that will start it.

549

Configuring the application

Figure 21.42. Creating an XProc external engine

Also other parameters can be set: a description, the encodings for the output stream and the error stream of the engine,
the working directory of the command that will start the engine. The encodings will be used for reading and displaying
the output of the engine. The working directory and the command line can use built-in editor variables and custom
editor variables for parameterizing a file path.

XSLT/FO/XQuery

The XSLT/FO/XQuery preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery

Figure 21.43. The XSLT/FO/XQuery preferences panel

Check the option Create transformation temporary files in system temporary directory when creating transformation
temporary files in the same folder as the source of the transformation breaks the transformation, for example the
transformation processes all the files located in the same folder as the source of the transformation, which will include
the temporary files, which you probably do not want.

XSLT

The XSLT preferences panel is opened from menu Window → Preferences → oXygen+XML+XSLT/FO/XQuery+XSLT

550

Configuring the application

Figure 21.44. The XSLT preferences panel

If you want to use an XSLT transformer different than the ones that ship with <oXygen/> namely Apache Xalan and
Saxon all you have to do is to specify the name of the transformer's factory class which <oXygen/> will set as the value
of the Java property "javax.xml.transform.TransformerFactory". To perform an XSLT transformation with Saxon 7
for instance you have to place the Saxon 7 jar file in the <oXygen/> libraries directory (the lib subdirectory of the in-
stallation directory), set "net.sf.saxon.TransformerFactoryImpl" as the property value and select JAXP as the XSLT
processor in the transformation scenario associated to the transformed XML document.

Value Allows the user to enter the name of the transformer factory Java class.

XSLT 1.0 Validate with Allows the user to set the XSLT Engine used for validation of XSL 1.0 documents.

XSLT 2.0 Validate with Allows the user to set the XSLT Engine used for validation of XSL 2.0 documents.

Saxon6

The Saxon 6 preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XSLT+Saxon+Saxon 6

Figure 21.45. The Saxon 6 XSLT preferences panel

• Line numbering: If checked line numbers are maintained for the source document.

• Disable calls on extension functions: If checked external functions called is disallowed. Checking this is recommended
in an environment where untrusted stylesheets may be executed. Also disables user-defined extension elements, to-
gether with the writing of multiple output files, all of which carry similar security risks.

• Policy for handling recoverable errors in the stylesheet: Allows the user to choose how dynamic errors will be
handled. Either one of the following options can be selected: recover silently, recover with warnings or signal the
error and do not attempt recovery.

Saxon HE/PE/EE

The Saxon HE/PE/EE preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XSLT+Saxon+Saxon HE/PE/EE

551

Configuring the application

The XSLT options which can be configured for the Saxon 9 transformer (both the Basic and the Schema Aware versions)
are:

Figure 21.46. The Saxon HE/PE/EE XSLT preferences panel

• Version warnings: If checked a warning will be generated when running an XSLT 2.0 processor against an XSLT
1.0 stylesheet. The XSLT specification requires this to be done by default.

• Allows calls on extension functions: If checked external functions called is disallowed. Checking this is recommended
in an environment where untrusted stylesheets may be executed. Also disables user-defined extension elements, to-
gether with the writing of multiple output files, all of which carry similar security risks.

• DTD based validation of the source file: If checked XML source documents are validated against their DTD.

• Line numbering: If checked line numbers are maintained for the source document.

• Policy for handling recoverable errors in the stylesheet: Allows the user to choose how dynamic errors will be
handled. Either one of the following options can be selected: recover silently, recover with warnings or signal the
error and do not attempt recovery.

• Strip whitespaces feature can be one of the three options: All, Ignorable, None.

All strips all whitespace text nodes from source documents before any further processing, regardless of
any xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the source document.

Ignorable strips all ignorable whitespace text nodes from source documents before any further processing, re-
gardless of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the source
document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or
schema as having element-only content.

None strips no whitespace before further processing. (However, whitespace will still be stripped if this is
specified in the stylesheet using xsl:strip-space).

Saxon9SA specific options

• Schema based validation of the source file: This determines whether source documents should be parsed with schema-
validation enabled.

552

Configuring the application

• Lax schema based validation of the source file: This determines whether source documents should be parsed with
schema-validation enabled.

• Validation errors in the result tree treated as warnings: If checked, all validation errors are treated as warnings, oth-
erwise they are treated as fatal.

Saxon HE/PE/EE Advanced options

The Saxon HE/PE/EE Advanced preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XSLT+Saxon+Saxon HE/PE/EE+Advanced

The advanced XSLT options which can be configured for the Saxon 9 transformer (both the Basic and the Schema
Aware versions) are:

Figure 21.47. The Saxon HE/PE/EE XSLT Advanced preferences panel

• URI Resolver class name: Allows the user to specify a custom implementation for the URI resolver used by the
XSLT Saxon 9 transformer ("-r" option when run from the command line). The class name must be fully specified
and the corresponding jar or class extension must be configured from the dialog for configuring the XSLT extension
for the particular scenario

• Collection URI Resolver class name: Allows the user to specify a custom implementation for the Collection URI
resolver used by the XSLT Saxon 9 transformer ("-cr" option when run from the command line). The class name
must be fully specified and the corresponding jar or class extension must be configured from the dialog for config-
uring the XSLT extension for the particular scenario

XSLTProc

The XSLTProc preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XSLT+XSLTProc

553

Configuring the application

Figure 21.48. The XSLTProc preferences panel

The options of the XSLTProc processor are the same as the ones available in the command line for the XSLTProc
processor:

Enable XInclude processing If checked XInclude references will be resolved when XSLTProc is used as
transformer in the transformation scenario.

Skip loading the document's DTD If checked the DTD specified in the DOCTYPE declaration will not be loaded.

Do not apply default attributes from
document's DTD

If checked the default attributes declared in the DTD and not specified in the
document are not included in the transformed document.

Do not use Internet to fetch DTD's,
entities or docs

If checked the remote references to DTD's and entities are not followed.

Maximum depth in templates stack If the limit of maximum templates is reached the transformation ends with an
error.

Verbosity If checked the transformation will output detailed status messages about the
transformation process in the Warnings view.

Show version of libxml and libxslt
used

If checked <oXygen/> will display in the Warnings view the version of the
libxml and libxslt libraries invoked by XSLTProc.

Show time information If checked the Warnings view will display the time necessary for running the
transformation.

Show debug information If checked the Warnings view will display debug information about what tem-
plates are matched, parameter values, etc.

Show all documents loaded during
processing

If checked <oXygen/> will display in the Warnings view the URL of all the
files loaded during transformation.

Show profile information If checked <oXygen/> will display in the Warnings view a table with all the
matched templates, and for each template: the match XPath expression, template
name, number of template modes, number of calls, execution time.

554

Configuring the application

Show the list of registered extensions If checked <oXygen/> will display in the Warnings view a list with all the re-
gistered extension functions, extension elements and extension modules.

Refuses to write to any file or re-
source

If checked the XSLTProc processor will not write any part of the transformation
result to an external file on disk. If such an operation is requested by the pro-
cessed XSLT stylesheet the transformation ends with a runtime error.

Refuses to create directories If checked the XSLTProc processor will not create any directory during the
transformation process. If such an operation is requested by the processed XSLT
stylesheet the transformation ends with a runtime error.

MSXML

The MSXML preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XSLT+MSXML

Figure 21.49. The MSXML preferences panel

The options of the MSXML 3.0 and 4.0 processors are the same as the ones available in the command line for the
MSXML processors: [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp]

Validate documents during parse
phase

If checked and either the source or style sheet document has a DTD or schema
against which its content should be checked, validation is performed.

Do not resolve external definitions
during parse phase

By default, MSXSL instructs the parser to resolve external definitions such as
document type definition (DTD), external subsets or external entity references
when parsing the source and style sheet documents. If this option is checked the
resolution is disabled.

Strip non-significant whitespaces If checked strip non-significant white space from the input XML document
during the load phase. Enabling this option can lower memory usage and improve
transformation performance while, in most cases, creating equivalent output.

Show time information If checked the relative speed of various transformation steps can be measured:
time to load, parse, and build the input document; time to load, parse, and build
the style sheet document; time to compile the style sheet in preparation for the
transformation; time to execute the style sheet.

Start transformation in this mode Although style sheet execution usually begins in the empty mode, this default
may be changed by specifying another mode. Changing the start mode allows
execution to jump directly to an alternate group of templates.

MSXML.NET

The MSXML.NET preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XSLT+MSXML.NET

555

Configuring the application

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp

Figure 21.50. The MSXML.NET preferences panel

The options of the MSXML.NET processor are the same as the ones available in the command line for the MSXML.NET
processor: [http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx]

Enable XInclude processing If checked XInclude references will be resolved when MSXML.NET is used as
transformer in the transformation scenario.

Validate documents during parse
phase

If checked and either the source or style sheet document has a DTD or schema
against which its content should be checked, validation is performed.

Do not resolve external definitions
during parse phase

By default MSXML.NET resolves external definitions such as DTD external
subsets or external entity references when parsing source XML document and
stylesheet document. Using this option you can disable this behaviour. (Note,
that it may affect also the validation process.)

Strip non-significant whitespaces If checked strip non-significant white space from the input XML document
during the load phase. Enabling this option can lower memory usage and improve
transformation performance while, in most cases, creating equivalent output.

Show time information If checked the relative speed of various transformation steps can be measured:
time to load, parse, and build the input document; time to load, parse, and build
the style sheet document; time to compile the style sheet in preparation for the
transformation; time to execute the style sheet.

Forces ASCII output encoding There is a known problem with .NET 1.X XSLT processor (Sys-
tem.Xml.Xsl.XslTransform class) - it doesn't support escaping of characters as
XML character references when they cannot be represented in the output encod-
ing. That means that when you output a character that cannot be represented in
output encoding, it will be outputted as '?'. Usually this happens when output
encoding is set to ASCII. With this option checked the output is forced to be
ASCII encoded and all non-ASCII characters get escaped as XML character
references (&#nnnn; form).

556

Configuring the application

http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx

Allow multiple output documents This option allows to create multiple result documents using the exsl:docu-
m e n t e x t e n s i o n e l e m e n t .
[http://www.exslt.org/exsl/elements/document/index.html]

Use named URI resolver class This option allows to specify a custom URI resolver class to resolve URI refer-
ences in xsl:import/xsl:include instructions (during XSLT stylesheet loading
phase) and in document() function (during XSL transformation phase).

Assembly file name for URI resolver
class

The previous option specifies partially or fully qualified URI resolver class
name, e.g. Acme.Resolvers.CacheResolver. Such name requires addi-
tional assembly specification using this option or the next option, but fully
qualified class name (which always includes an assembly specifier) is all-suffi-
cient. See MSDN for more info about fully qualified class names.
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconspecifyingfullyqualifiedtypenames.asp] This option specifies a file name
of the assembly, where the specified resolver class can be found.

Assembly GAC name for URI resolv-
er class

This option specifies partially or fully qualified name of the assembly in the
g l o b a l a s s e m b l y c a c h e
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconglobalassemblycache.asp] (GAC), where the specified resolver class can
be found. See MSDN for more info about partial assembly names.
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconpartialassemblyreferences.asp] Also see the previous option.

List of extension object class names This opt ion a l lows to speci fy extens ion object
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconxsltargumentlistforstylesheetparametersextensionobjects.asp] classes,
whose public methods then can be used as extension functions in an XSLT
stylesheet. It is a comma-separated list of namespace-qualified extension object
class names. Each class name must be bound to a namespace URI using prefixes
a s w h e n p r o v i d i n g X S L T p a r a m e t e r s .
[http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters]

Use specified EXSLT assembly MSXML.NET supports rich library of the EXSLT [http://www.exslt.org/] and
EXSLT.NET [http://www.xmllab.net/exslt] extension functions via embedded
or plugged in EXSLT.NET [http://workspaces.gotdotnet.com/exslt] library.
EXSLT support is enabled by default and cannot be disabled in this version. If
you want to use an external EXSLT.NET implementation instead of a built-in
one use this option.

Credential loading source xml This option allows to specify user credentials to be used when loading XML
source documents. The credentials should be provided in the "username:pass-
word@domain" format (all parts are optional).

Credential loading stylesheet This option allows to specify user credentials to be used when loading XSLT
stylesheet documents. The credentials should be provided in the "username:pass-
word@domain" format (all parts are optional).

XQuery

The XQuery preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XQuery

557

Configuring the application

http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.exslt.org/
http://www.exslt.org/
http://www.xmllab.net/exslt
http://www.xmllab.net/exslt
http://workspaces.gotdotnet.com/exslt
http://workspaces.gotdotnet.com/exslt

Figure 21.51. The XQuery preferences panel

XQuery validate with Allows you to select the processor to validate the XQuery. In case you are val-
idating an XQuery file that has an associated validation scenario , <oXygen/>
uses the processor specified in the scenario. If no validation scenario is associ-
ated, but the file has an associated transformation scenario, the processor spe-
cified in the scenario will be used. If the processor does not support validation
or if no scenario is associated, then the value from this combo box will be used
as validation processor

Size limit of Sequence view (MB) When the result of an XQuery transformation is set in the transformation scenario
as sequence the size of one chunk of the result that is fetched from the database
in one step is set in this option.

Size limit of Sequence view (MB) The limit of the data extract from a database when execute a XQuery in lazy
mode. If this limit is exceed you can extract more data from the database by
click on "More result available" node from the Sequence view.

Format transformer output When checked the transformer's output is formatted and indented (pretty printed).
Option is ignored if in the transformation scenario you choose Sequence(lazy
extract data from a database).

Create structure indicating the type
nodes

If checked, <oXygen/> takes the results of a query and creates an XML document
containing copies of all items in the sequence, suitably wrapped. Option is ig-
nored if in the transformation scenario you choose Sequence(lazy extract data
from a database).

Saxon HE/PE/EE

The XQuery/Saxon HE/PE/EE preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XQuery+Saxon HE/PE/EE

558

Configuring the application

Figure 21.52. The Saxon XQuery preferences panel

Saxon9 options:

Recoverable errors Allows the user to choose how dynamic errors will be handled. Either one of
the following options can be selected: recover silently, recover with warnings
or signal the error and do not attempt recovery.

Strip whitespaces Can have one of the three values: All, Ignore, None. All - strips all whitespace
text nodes from source documents before any further processing, regardless of
any xml:space attributes in the source document. Ignore - strips all ignorable
whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document. Whitespace text
nodes are ignorable if they appear in elements defined in the DTD or schema
as having element-only content. None - strips no whitespace before further
processing.

Optimization level This option allows optimization to be suppressed in cases where reducing
compile time is important, or where optimization gets in the way of debugging,
or causes extension functions with side-effects to behave unpredictably.

Disable calls on extension functions If unchecked external functions called is allowed. Checking this is recommended
in an environment where untrusted stylesheets may be executed. Also disables
user-defined extension elements, together with the writing of multiple output
files, all of which carry similar security risks.

Saxon9SA specific options:

Schema based validation of the
source

This determines whether source documents should be parsed with schema-val-
idation enabled.

Lax schema based validation of the
source

This determines whether source documents should be parsed with schema-val-
idation enabled.

Validation errors in the result tree
treated as warnings

If checked, all validation errors are treated as warnings, otherwise they are
treated as fatal.

559

Configuring the application

Saxon HE/PE/EE Advanced options

The XQuery/Saxon HE/PE/EE Advanced preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+XQuery+Saxon HE/PE/EE+Advanced

The advanced XQuery options which can be configured for the Saxon 9 transformer (both the Basic and the Schema
Aware versions) are:

Figure 21.53. The Saxon HE/PE/EE XQuery Advanced preferences panel

• URI Resolver class name: Allows the user to specify a custom implementation for the URI resolver used by the
XQuery Saxon 9 transformer ("-r" option when run from the command line). The class name must be fully specified
and the corresponding jar or class extension must be configured from the dialog for configuring the XQuery extension
for the particular scenario

• Collection URI Resolver class name: Allows the user to specify a custom implementation for the Collection URI
resolver used by the XQuery Saxon 9 transformer ("-cr" option when run from the command line). The class name
must be fully specified and the corresponding jar or class extension must be configured from the dialog for config-
uring the XQuery extension for the particular scenario

Debugger

Figure 21.54. The Debugger preferences panel

The following settings are available:

Show xsl:result-document output If checked, the debugger presents the output of xsl: result-document instruction
into the debugger output view.

Infinite loop detection Set this option to receive notifications when an infinite loop occurs during
transformation.

Maximum depth in templates stack How many templates (<xsl:templates>) instructions can appear on the
current stack. This setting is used by the infinite loop detection.

Debugger layout A horizontal layout means that the stack of XML editors takes the left half of
the editing area and the stack of XSL editors takes the right one. A vertical layout

560

Configuring the application

means that the stack of XML editors takes the upper half of the editing area and
the stack of XSL editors takes the lower one.

Profiler

This section explains the settings available for XSLT Profiler mode. To display settings select Window → Preferences
→ oXygen → XML → XSLT/FO/XQuery+Profiler (see the section called “Debugger”).

Figure 21.55. The Profiler preferences panel

The following settings are available:

Show time Show the total time that was spent in the node.

Show inherent time Show the inherent time that was spent in the node. The inherent time is defined
as the total time of a node minus the time of its child nodes.

Show invocation count Show how many times the node was called in this particular call sequence.

Time scale The time scale options determine the unit of time measurement, which may be
milliseconds (ms) or microseconds (µs).

Hotspot threshold The threshold below which hot spots are ignored is entered in milliseconds (ms).

Ignore invocation less than The threshold below which invocations are ignored is entered in microseconds
(µs).

Percentage calculation The percentage base determines against what time span percentages are calcu-
lated.

• Absolute: Percentage values show the contribution to the total time.

• Relative: Percentage values show the contribution to the calling node.

561

Configuring the application

FO Processors

Besides the built-in formatting objects processor (Apache FOP) the user can use other external processors. <oXygen/>
has implemented an easy way to add two of the most used commercial FO processors. You can easily add RenderX
XEP as external FO processor if the user has the XEP installed. Also, if you have the Antenna House v4 or v5 FO
processors Oxygen will use the environmental variables set by the installation to detect and use it for transformations.
If the environmental variables are not set for the Antenna House installation you can browse and choose the executable
just as you would for XEP.

The FO Processors preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+FO Processors

Figure 21.56. The FO Processors preferences panel

Enable the output of the built-in FOP When checked all FOP output will be displayed in a results pane at the bottom
of the editor window including warning messages about FO instructions not
supported by FOP.

Memory available to the built-in FOP If your FOP transformations fail with an "Out of Memory" error select from this
combo box a larger value for the amount of memory reserved for FOP transform-
ations.

Configuration file for the built-in
FOP

You should specify here the path to a FOP configuration file, necessary for ex-
ample to render to PDF using a special true type font a document containing
Unicode content.

Generates PDF/A-1b output When selected PDF/A-1b output is generated.

Note

All fonts have to be embedded, even the implicit ones. More information
about configuring metrics files for the embedded fonts can be found in
Add a font to the built-in FOP.

562

Configuring the application

Note

You cannot use the <filterList> key in the configuration file. FOP
will generate the following error: The Filter key is prohibited when PDF/A-
1 is active.

The users can configure the external processors for use with <oXygen/> in the following dialog.

Figure 21.57. The external FO processor configuration dialog

Name The name that will be displayed in the list of available FOP processors on the FOP tab of
the Transforming Configuration dialog.

Description The description of the FO processor displayed in the Preferences->FO Processors option.

Output Encoding The encoding used for the output stream of the FO processor which will be displayed in
a results panel at the bottom of the <oXygen/> window.

Error Encoding The encoding used for the error stream of the FO processor which will be displayed in a
results panel at the bottom of the <oXygen/> window.

Working directory The directory in which the intermediate and final results of the processing will be stored.
Here you can use one of the following editor variables:

${homeDir} The path to user home directory.

${cfd} The path of current file directory. If the current file
is not a local file the directory will be the user's
Desktop directory.

${pd} The project directory.

563

Configuring the application

${oxygenInstallDir} The <oXygen/> installation directory.

Command line The command line that will start the FO processor, specific to each processor. Here you
can use one of the following editor variables:

${method} The FOP transformation method (pdf, ps, txt).

${fo} The input FO file.

${out} The output file.

${pd} The project directory.

${frameworksDir} The path of the frameworks subdirectory of the
<oXygen/> install directory.

${oxygenInstallDir} The <oXygen/> installation directory.

${ps} The separator which can be used on different oper-
ating systems between libraries specified in the class
path.

XPath

The XPath preferences panel is opened from menu Window → Preferences → oXygen+XML+XSLT/FO/XQuery+XPath

Figure 21.58. The XPath preferences panel

Unescape XPath expression When checked, unescapes the entities found in the XPath expression. For example
the expression

//varlistentry[starts-with(@os,'s')]

564

Configuring the application

is equivalent with

//varlistentry[starts-with(@os,'s')]

.

No namespace If checked <oXygen/> will consider unprefixed element names in XPath expres-
sions evaluated in the XPath console as belonging to no namespace.

Use the default namespace from the
root element

If checked <oXygen/> will consider unprefixed element names in XPath expres-
sions evaluated in the XPath console as belonging to the default namespace de-
clared on the root element of the document.

Use the namespace of the root If checked <oXygen/> will consider unprefixed element names in XPath expres-
sions evaluated in the XPath console as belonging to the same namespace as
the root element of the document.

This namespace The user has the possibility to enter here the namespace of the unprefixed ele-
ments used in the XPath console

Default prefix-namespace mappings Associates prefixes to namespaces. These mappings are useful when applying
an XPath in XPath console and you don't have to define these mappings for each
document separately.

The New button creates an editable prefix-namespace mapping.

The Remove button deletes the selected mapping.

Custom Engines

One can configure transformation engines other than the ones which come with the <oXygen/> distribution. Such an
external engine can be used for XSLT / XQuery transformations within <oXygen/>, in the Editor perspective, and is
available in the list of engines in the dialog for editing transformation scenarios.However it cannot be used in the De-
bugger perspective.

The Custom Engines preferences panel is opened from menu Window → Preferences → oXy-
gen+XML+XSLT/FO/XQuery+Custom Engines

Figure 21.59. Configuration of custom transformation engines

The following parameters can be configured for a custom engine:

565

Configuring the application

Figure 21.60. Parameters of a custom transformation engine

Engine type Combo box allowing you to choose the transformer type. There are two options: XSLT
engines and XQuery engines.

Name The name of the transformer displayed in the dialog for editing transformation scenarios

Description Text description of the transformer

Output Encoding The encoding of the characters sent to the output stream of the transformer

Error Encoding The encoding of the characters sent to the error stream of the transformer

Working directory The start directory of the transformer executable program. The following editor variables
are available for making the path to the working directory independent of the input XML
file:

• ${homeDir} - the user home directory in the operating system

• ${cfd} - the path to the directory of the current file

• ${pd} - the path to the directory of the current project

• ${oxygenInstallDir} - the <oXygen/> install directory

566

Configuring the application

Command line The command line that must be executed by <oXygen/> to perform a transformation with
the engine. The following editor variables are available for making the items of the com-
mand line (the transformer executable, the input files) independent of the input XML file:

• ${xml} - the XML input document as a file path

• ${xmlu} - the XML input document as a URL

• ${xsl} - the XSL / XQuery input document as a file path

• ${xslu} - the XSL / XQuery input document as a URL

• ${out} - the output document as a file path

• ${outu} - the output document as a URL

• ${ps} - the separator which can be used on different operating systems between libraries
specified in the class path.

Import

The Import preferences panel is opened from menu Window → Preferences → oXygen+XML+Import

Here it is configured how empty values and null values are handled when they are encountered in an import operation.

Figure 21.61. The XML Import preferences panel

Create empty elements for empty
values

If this option is enabled an empty value from a database column or from a text
file will be imported as an empty element.

Create empty elements for null val-
ues

If this option is enabled a null value from a database column will be imported
as an empty element.

Add annotations for generated XML
Schema

If checked, the generated XML Schema will contain an annotation for each of
the imported table's columns. The documentation inside the annotation tag will

567

Configuring the application

contain the remarks of the database columns (if available) and also information
about the conversion between the column type and the generated XML Schema
type.

Date/Time format

The section Date/Time format specifies the format used for importing date and time values from Excel spreadsheets
or database tables and in the generated XML schemas.

Unformatted If this option is selected the date and time formats specific to the database will be
used for import. When importing data from Excel a string representation of date
or time values will be used. The type used in the generated XML Schema will be
xs:string.

XML Schema date format If this option is checked, the XML Schema specific format ISO8601 will be used
for imported date/time data (yyyy-MM-dd'T'HH:mm:ss for datetime, yyyy-
MM-dd for date and HH:mm:ss for time). The types used in the generated XML
Schema will be xs:datetime, xs:date and xs:time.

Custom format If this is selected, the user can define a custom format for date/time values or choose
from the predefined formats. A preview of the values is presented when a format
is used. The type used in the generated XML Schema is xs:string.

Date/Time Patterns

Table 21.1. Pattern letters

ExamplesPresentationDate or Time ComponentLetter

ADTextEra designatorG

1996; 96YearYeary

July; Jul; 07MonthMonth in yearM

27NumberWeek in yearw

2NumberWeek in monthW

189NumberDay in yearD

10NumberDay in monthd

2NumberDay of week in monthF

Tuesday; TueTextDay in weekE

PMTextAm/pm markera

0NumberHour in day (0-23)H

24NumberHour in day (1-24)k

0NumberHour in am/pm (0-11)K

12NumberHour in am/pm (1-12)h

30NumberMinute in hourm

55NumberSecond in minutes

978NumberMillisecondS

Pacific Standard Time; PST; GMT-08:00General time zoneTime zonez

-0800RFC 822 time zoneTime zoneZ

568

Configuring the application

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text: If the number of pattern letters is 4 or more, the full form is used; otherwise a short or abbreviated form is used
if available.

• Number: the number of pattern letters is the minimum number of digits, and shorter numbers are zero-padded to this
amount.

• Year: If the number of pattern letters is 2, the year is truncated to 2 digits; otherwise it is interpreted as a number.

• Month: If the number of pattern letters is 3 or more, the month is interpreted as text; otherwise, it is interpreted as
a number.

• General time zone: Time zones are interpreted as text if they have names. For time zones representing a GMT offset
value, the following syntax is used:

GMTOffsetTimeZone: GMT Sign Hours : Minutes

Sign: one of + -

Hours: Digit - Digit Digit

Minutes: Digit Digit

Digit: one of 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale independent and
digits must be taken from the Basic Latin block of the Unicode standard.

• RFC 822 time zone: The RFC 822 4-digit time zone format is used:

RFC822TimeZone: Sign TwoDigitHours Minutes

TwoDigitHours: Digit Digit

TwoDigitHours must be between 00 and 23.

Data Sources
The Data Sources preferences panel is opened from menu Window → Preferences → oXygen+Data Sources

Configuration of Data Sources

Here you can configure data sources and connections to relational databases as well as native XML databases. You
can check the list of drivers (http://www.oxygenxml.com/database_drivers.html) available for the major database
servers.

569

Configuring the application

http://www.oxygenxml.com/database_drivers.html

Figure 21.62. The Data Sources preferences panel

New Opens the Data Sources Drivers dialog, allowing you to configure a new driver.

Figure 21.63. The Data Sources Drivers dialog

Name Allows you to name the new data source driver.

Type Select data source type from the supported driver types.

Help Open the User Manual at the list of the sections where the configuration of supported
data sources is explained and the URLs for downloading the database drivers are spe-
cified.

Driver Class Provide the Driver Class for the data source driver

Add Adds the driver class library.

Remove Removes driver class library from the list.

Detect Detects driver candidates.

Stop Stops the detection of the driver candidates.

570

Configuring the application

Edit Opens the Data Sources Drivers dialog, allowing you to edit the selected driver. See above the specifications
for the Data Sources Drivers dialog (in order to edit a data source , there must be no connections using that
data source driver).

Delete Deletes the selected Data Source Driver (in order to delete a data source , there must be no connections
using that data source driver).

Figure 21.64. The Connections preferences panel

Note

Checked connections will be visible in the Data Source Explorer View.

For performance issues, you can set the maximum number of cells that will be displayed in the Table Explorer view.
Leave the field Limit the number of cells empty if you want the entire content of the table to be displayed. By default
this field is set to 2,000. If a table having more cells than the value set here is displayed in the Table Explorer view, a
warning dialog will inform you that the table is only partially shown.

In Oracle XML and Tamino databases a container can hold millions of resources. If the node corresponding to such a
container in the Data Source Explorer view would display all the contained resources at the same time the performance
of the view would be very slow. To prevent such a situation only a limited number of the contained resources is displayed
as child nodes of the container node. Navigation to other contained resources from the same container is enabled by
the Up and Down buttons of the Data Source Explorer view. This limited number is set in the option Maximum number
of children for container nodes. The default value is 200 nodes.

The Show warning when expanding other database schema in the section Convert DB Structure to XML Schema
controls if a warning message will be displayed when expanding another database schema and there are tables selected
in the current expanded one. This applies for the dialog Select database table when invoking Convert DB Structure to
XML Schema action.

New Opens the Connection dialog.

571

Configuring the application

Figure 21.65. The Connection dialog

Name Allows you to name the new connection.

Data Source Select data source defined in the Data Source Drivers dialog.

Depending upon the selected Data Source, you can set some of the following parameters in the Connection
details area:

URL: The URL used to connect.

User: Provide the database user .

Password: Provide the database password.

Host: Provide the host address.

Port: Provide a port to connect.

XML DB URI: Provide the database URI to connect.

Database: Provide the initial database.

Collection: Select one of the available collections for the specified data source.

Environment home directory: Specify the home directory for a Berkeley database.

Verbosity: Set the verbosity level for a Berkeley database.

Edit Opens the Connection dialog, allowing you to edit the selected connection. See above the specifications
for the Connection dialog.

Delete Deletes the selected connection.

Download links for database drivers

You can find below the locations where you have to go to get the drivers necessary for accessing databases in <oXygen/>

572

Configuring the application

Berkeley DB XML database Copy the jar files from the Berkeley database install directory to the <oXygen/>
install directory as described in the procedure for configuring a Berkeley DB
data source.

IBM DB2 Pure XML database Go to the IBM website: http://www-306.ibm.com/software/data/db2/ex-
p r e s s / d o w n l o a d . h t m l
[http://www-306.ibm.com/software/data/db2/express/download.html], in the
DB2 Clients and Development Tools category select the DB2 Driver for JDBC
and SQLJ download link, fill the download form and download the zip file.
Unzip the zip file and use the db2jcc.jar and db2jcc_license_cu.jar files in
<oXygen/> for configuring a DB2 data source.

eXist database Copy the jar files from the eXist database install directory to the <oXygen/>
install directory as described in the procedure for configuring an eXist data
source.

MarkLogic database Download Java and .NET XCC distributions (XCC Connectivity Packages)
from http://xqzone.marklogic.com/download/#XCC. Details about configuring
a MarkLogic data source are here.

Microsoft SQL Server 2005 / 2008
database

Both SQL Server 2005 and SQL Server 2008 are supported. Download the SQL
Server 2005 JDBC driver called sqljdbc.jar from the Microsoft website:
http://www.microsoft.com/downloads/details.aspx?familyid=C47053EB-3B64-
4794-950D-81E1EC91C1BA&displaylang=en and use it for configuring an
SQL Server data source. Download the SQL Server 2008 JDBC driver called
sqljdbc4.jar from the Microsoft website: http://www.microsoft.com/down-
loads/details.aspx?FamilyID=99b21b65-e98f-4a61-b811-19912601fdc9&dis-
playlang=en and use it for configuring an SQL Server data source.

Oracle 11g database Download the Oracle 11g JDBC driver called ojdbc5.jar from the Oracle website:
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
[http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html]
and use it for configuring an Oracle data source.

PostgreSQL 8.3 database Download the PostgreSQL 8.3 JDBC driver called postgresql-8.3-603.jdbc3.jar
from the PostgreSQL website: http://jdbc.postgresql.org/download.html and use
it for configuring a PostgreSQL data source.

RainingData TigerLogic XDMS
database

Copy the jar files from the TigerLogic JDK lib directory from the server side
to the <oXygen/> install directory as described in the procedure for configuring
a TigerLogic data source.

SoftwareAG Tamino database Copy the jar files from the SDK\TaminoAPI4J\lib subdirectory of the Tamino
database install directory to the <oXygen/> install directory as described in the
procedure for configuring a Tamino data source.

Documentum xDb (X-Hive/DB)
XML database

Copy the jar files from the Documentum xDb (X-Hive/DB) database install
directory to the <oXygen/> install directory as described in the procedure for
configuring an XHive data source.

MySQL database A MySQL driver file is included in the Oxygen kit. The installer creates the file
mysql.jar in the folder [Oxygen-install-folder]/lib. When creating
a new data source select the type Generic JDBC and add the file [Oxygen-
install-folder]/lib/mysql.jar in Driver files. If you want to connect

573

Configuring the application

http://www-306.ibm.com/software/data/db2/express/download.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://xqzone.marklogic.com/download/#XCC
http://www.microsoft.com/downloads/details.aspx?familyid=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=99b21b65-e98f-4a61-b811-19912601fdc9&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=99b21b65-e98f-4a61-b811-19912601fdc9&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=99b21b65-e98f-4a61-b811-19912601fdc9&displaylang=en
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://jdbc.postgresql.org/download.html

to a MySQL 5 server you may need the latest driver from the MySQL website:
http://dev.mysql.com/downloads/connector/j/5.1.html

Table Filters

The Table Filters preferences panel is opened from menu Window → Preferences → oXygen+Data Sources+Table
Filters

Here you can choose which of the table types will be displayed in the Data Source Explorer view.

Figure 21.66. Table Filters Preferences Page

Note

Table types filtering depends on the driver implementation.

Archive
The Archive preferences panel is opened from menu Window → Preferences → oXygen+Archive

Figure 21.67. The Archive preferences panel

The following options are available in the Archive preferences page:

574

Configuring the application

http://dev.mysql.com/downloads/connector/j/5.1.html

The following archive backup op-
tions are considered default options

No backup Perform no backup of the archive before save.
This means that the file will be saved directly in
the archive without any additional precautions.for backup in the Archive Backup

dialog.
Single file backup Before any operation which modifies the archive

is performed, the archive contents will be duplic-
ated. The duplicate file name will be origin-
alArchiveFileName.bak and will be saved
in the same directory.

Incremental backup Before each operation which modifies the archive
is performed, the archive contents will be duplic-
ated. The duplicate file names will be origin-
alArchiveFileName.bak#dupNo and the
files will be saved in the same directory.

Show archive backup dialog Check this if you want to be notified for backup when modifying in archives.
The last backup option you chose will always be used as the default one.

Archive types table This table contains all known archive extensions mapped to known archive
formats. You can edit the table to modify existing mappings or add your own
extensions to the list of known archive extensions.

Figure 21.68. Edit the Archive extension mappings

You can map a list of extensions to an archive type supported in <oXygen/>.

Important

You have to restart <oXygen/> after removing an extension from the table
in order for that extension to not be recognised anymore as an archive
extension.

Custom Editor Variables
A custom editor variable is defined by a name, a string value and a text description and can be used in the same expres-
sions where the built-in variables can be used, for example the command line of an external tool, the working directory
of a custom external validator or the input URL of a transformation scenario. The string value will replace the name
of the variable in the expression at runtime.

575

Configuring the application

Figure 21.69. Custom editor variables

Network Connections
Some networks use Proxy servers to provide Internet Services to LAN Clients. Clients behind the Proxy may therefore,
only connect to the Internet via the Proxy Service. The Proxy Configuration dialog enables this configuration. If you
are not sure whether your computer is required to use a Proxy server to connect to the Internet or the values required
by the Proxy Configuration dialog, please consult your Network Administrator.

Open the Network Connections panel by selecting Window → Preferences → oXygen+Network Configuration.

Figure 21.70. The Network Connections preferences panel

Complete the dialog as follows:

Enable the HTTP/WEBDAV proto-
cols

When checked Http/WebDAV proxy and proxy settings are enabled. The host,
port, username and password that the <oXygen/> plugin uses are the ones set
in the general Network Connections settings of Eclipse.

576

Configuring the application

Important

This may affect other plugins functionality.

Lock WebDAV files on open If checked the files opened through WebDAV are locked on the server so that
they cannot be edited by other users while the lock placed by the current user
still exists.

Encoding for FTP control connection The encoding used to communicate with FTP servers. It is one of ISO-8859-1
and UTF-8. If the server supports the UTF-8 encoding <oXygen/> will use it
for communication. Otherwise it will use ISO-8859-1.

Private key file The path to the file containing the private key used for the private key method
of authentication of the secure FTP (SFTP) protocol. The user/password method
of authentication has precedence if it is used in the Open URL dialog.

Passphrase The passphrase used for the private key method of authentication of the secure
FTP (SFTP) protocol. The user/password method of authentication has preced-
ence if it is used in the Open URL dialog.

Show SFTP certificate warning dia-
log

If checked a warning dialog will be shown each time when the authenticity of
the host cannot be established.

Certificates
In <oXygen/> there are provided two types of Keystores: Java KeyStore (JKS) and Public-Key Cryptography Standards
version 12 (PKCS-12). A keystore file is protected by a password.

The Certificates preferences panel is opened from menu Window → Preferences → oXygen+Certificates

Figure 21.71. The Certificates preferences panel

Keystore type Represents the type of keystore to be used.

Keystore file Represents the location of the file to be imported.

Keystore password The password which is used to protect the privacy of the stored keys.

Certificate alias The alias to be used to store the key entry (the certificate and /or the private key) inside
the keystore.

577

Configuring the application

Private key password It is only necessary in case of JKS keystore. It represents the certificate's private key
password.

Validate Verifies the entries from the fields; assures that the certificate is valid.

XML Structure Outline
The XML Structure Outline preferences panel is opened from menu Window → Preferences → oXygen+Outline

Figure 21.72. The XML Structure Outline preferences panel

Preferred attribute names for display The attribute names which should be preferred when displaying element's attrib-
utes in the outline view. If there is no preferred attribute name specified the first
attribute of an element is displayed in the outline view.

Enable outline drag and drop When drag and drop is disabled for the tree displayed by the outline view there
is no possibility to accidentally change the structure of the document.

Scenarios Management
The Scenarios Management preferences panel is opened from menu Window → Preferences → oXygen+Scenarios
Management

Figure 21.73. The Scenarios Management preferences panel

Import transformation scenarios Allows you to import all transformation scenarios from a scenarios properties
file. Their names will appear in the "Configure Transformation Scenario" dialog
followed by "(import)". This way there are no scenarios' names conflicts.

Export transformation scenarios Allows you to export all transformation scenarios available in the "Configure
Transformation Scenario" dialog.

578

Configuring the application

View
The View preferences panel is opened from menu Window → Preferences → oXygen+View

Figure 21.74. The View preferences panel

Fixed width console When checked, a line in the Console view will be hard wrapped after Maximum
character width characters.

Limit console output When checked the content of the Console view will be limited to a configurable
number of characters.

Console buffer - specifies the maximum number of characters that can be written at
some point in the Console view.

Tab width - specifies the number of spaces used for depicting a tab.

Automatically importing the preferences from
the other distribution
If you want to use the settings from “standalone” in the Eclipse plugin just delete the file with the Eclipse plugin settings
[user-home-dir]/Application Data/com.oxygenxml/oxyOptionsEc11.2.xml on Windows /
[user-home-dir]/.com.oxygenxml/oxyOptionsEc11.2.xml on Linux, start Eclipse and the “standalone”
settings will be automatically imported in Eclipse. The same for importing the Eclipse plugin settings in “standalone”:
delete the file [user-home-dir]/com.oxygenxml/oxyOptionsSa11.2.xml, start the <oXygen/> “stan-
dalone” distribution and the Eclipse settings will be automatically imported.

Reset Global Options
To reset all custom user settings of the application that are stored in a local file (not in the project), to the installation
defaults go to: Window+Preferences → oXygen+Reset Global Options The list of transformation scenarios will be
reset to the default scenarios.

Scenarios Management
You can import, export and reset the scenarios stored in the global options.

• The action Window → Preferences+oXygen / Scenarios Management+ Import Global Transformation Scenarios
loads a properties file with scenarios.

579

Configuring the application

• The action Window → Preferences+oXygen / Scenarios Management+ Export Global Transformation scenarios
stores all the scenarios in a separate properties file.

• The action Window → Preferences+oXygen / Scenarios Management+ Import Global Validation Scenarios loads
a properties file with scenarios.

• The action Window → Preferences+oXygen / Scenarios Management+ Export Global Validation scenarios stores
all the scenarios in a separate properties file.

The option to Export Transformation/Validation Scenarios is used to store all the scenarios in a separate file , a prop-
erties file. In this file will also be saved the associations between document URLs and scenarios. The saved URLs are
absolute. You can load the saved scenarios using Import Transformation Scenarios/Validation option. All the imported
scenarios will have added to the name the word 'import'.

Note

The scenarios are exported/imported from/in the global options, not from the project options. So be aware that
the list of scenarios kept at the project level are not affected.

Editor variables
An editor variable is a shorthand notation for a file path or directory path. It is used in the definition of a command
(the input URL of a transformation, the output file path of a transformation, the command line of an external tool, etc.)
to make the command generic. When the same command is applied the notation is expanded so that the same command
has different effects depending on the actual value of the notation.

The following editor variables can be used in <oXygen/> commands:

${frameworks} the path of the frameworks subdirectory of the <oXygen/> install directory
as URL

${frameworksDir} the path of the frameworks subdirectory of the <oXygen/> install directory

${home} the path of the user home directory as URL

${homeDir} the path of the user home directory

${cfdu} current file directory url - the path of the current edited document up to the name
of the parent directory as URL

${cfd} current file directory - the path of the current edited document up to the name
of the parent directory

${cfn} current file name - the name of the current edited document without extension
and parent directory

${cf} current file - the absolute file path of the current edited document

${currentFileURL} current file as URL - the absolute file path of the current edited document as
URL

${ps} Path Separator - The separator which can be used on different operating systems
between libraries specified in the class path.

580

Configuring the application

${timeStamp} Time Stamp - The current Unix time on the computer which can be used to save
transformation results in different output files on each transform.

Custom editor variables
An editor variable can be created by the user and included in any user defined expression where a built-in editor variable
is also allowed. For example a custom editor variable may be necessary for configuring the command line of an external
tool, the working directory of a custom validator, the command line of aa custom XSLT engine, a custom FO processor,
etc. All the custom editor variables are listed together with the built-in editor variables, for example when editing the
working directory or the command line of a custom validator, the working directory or a custom validator, etc.

Creating a custom editor variable is very simple: just specify the name that will be used in user defined expressions,
the value that will replace the variable name at runtime and a textual description for the user of that variable.

An editor variable can be created also from a Java system property. For example the Java system property var.name
can be inserted in any expression where built-in editor variables like ${currentFileURL} are allowed with the expression
${system(var.name)}.

An editor variable can be created also from an environment variable of the operating system. For example the environ-
ment variable VAR_NAME can be inserted in any expression where built-in editor variables like ${currentFileURL}
are allowed with the expression ${env(VAR_NAME)}.

The current date can be inserted at cursor location with the custom variable ${date(yyyy-MM-dd)}. The date format
is: the year with 4 digits, the month with 2 leters, the day with 2 letters.

The custom editor variables are configured in Preferences.

581

Configuring the application

Chapter 22. Common problems
22.1. When I run a transformation in the XSLT Debugger perspective it is very slow. Can I increase the

speed? .. 582
22.2. Before installing Oxygen XML Editor/Author I had no problems viewing XML files in Internet Explorer

but now Internet Explorer opens an XML file in Oxygen XML Editor/Author. How can I view XML
files in Internet Explorer again? .. 582

22.3. I associated the .ext extension with <oXygen/> in Eclipse. Why does an .ext file opened with the
Oxygen XML Editor not have syntax highlight? ... 582

22.1. When I run a transformation in the XSLT Debugger perspective it is very slow. Can I increase the speed?

Disable rendering of output to the XHTML Output view during the transformation process if the transformation
produces HTML or XHTML output. In order to view the output result run the transformation in the Editor per-
spective with the option "Open in browser" or run it in the Debugger perspective, save the Text output area to
a file and use an external browser for viewing.

22.2. Before installing Oxygen XML Editor/Author I had no problems viewing XML files in Internet Explorer but
now Internet Explorer opens an XML file in Oxygen XML Editor/Author. How can I view XML files in Internet
Explorer again?

XML files are opened in Oxygen because Internet Explorer uses the Windows file associations for opening files
and you associated XML files with Oxygen XML Editor/Author in the installer panel called File Associations.
This installer panel displays a warning above the XML file association that XML files will not be viewed correctly
in Internet Explorer if you associate them with Oxygen XML Editor/Author.

For viewing XML files in Internet Explorer again you have to associate XML files with IE by right-clicking on
an XML file in Windows Explorer, selecting Open With -> Choose Program, selecting IE in the list of applications
and checking the checkbox "Always use the selected program". Also you have to run the following command
from a command line:

wscript revert.vbs

where revert.vbs is a text file with the following content:

 function revert()
 Set objShell = CreateObject("WScript.Shell")
 objShell.RegWrite "HKCR\.xml\", "xmlfile", "REG_SZ"
 objShell.RegWrite "HKCR\.xml\Content Type", "text/xml", "REG_SZ"
 end function

 revert()

22.3. I associated the .ext extension with <oXygen/> in Eclipse. Why does an .ext file opened with the Oxygen
XML Editor not have syntax highlight?

Associating an extension with <oXygen/> in Eclipse 3.5+ requires three steps:

1. Associate the .ext extension with the Oxygen XML Editor: go to Windows -> Preferences -> General ->
Editors -> File Associations, add *.ext to the list of file types, select *.ext in the list by clicking on it, add
Oxygen XML Editor to the list of Associated editors and make it the default editor.

582

2. Associate the .ext extension with the Oxygen XML content type: go to Windows -> Preferences -> General
-> Content Types and for the Text -> XML -> oXygen XML content type add *.ext to the File associations
list.

3. Press the OK button of the Eclipse preferences dialog.

When a *.ext file is opened the icon of the editor and the syntax highlight should be the same as for XML files
opened with the Oxygen XML Editor.

583

Common problems

Index
Symbols
<oXygen/> CSS extensions

<oXygen/> CSS custom functions, 331
attributes(), 334
base-uri(), 332
capitalize(), 332
concat(), 332
local-name(), 331
lowercase(), 332
name(), 331
parent-url(), 332
replace(), 333
unparsed-entity-uri(), 333
uppercase(), 332
url(), 331

additional properties
display tags, 330
folding elements, 328
link elements, 329

supported features from CSS Level 3
additional custom selectors, 326
attr() function, 324
namespace selectors, 323

A
Archives, 443

browse, 443
edit, 444
file browser, 443
modify, 443

Author editor, 172
Attributes view, 176
Change Tracking, 190
content author role, 173
contextual menu, 182
edit content, 186
edit markup, 184
editing XML, 184
Elements view, 176
Entities view, 178
external references, 182
find/replace, 182
navigation, 179

bookmarks, 180
display the markup, 180

Outline view, 174
position information tooltip, 180
reload content, 188
roles: content author, developer, 173

validation, 188
whitespace handling, 189

versions differences, 190
WYSIWYG editing, 172

Author Settings
actions, 268

insert section, 268
insert table, 271

Author default operations, 274
Java API, 277

Author Extension State Listener, 295
Author Schema Aware Editing Handler, 296
CSS Styles Filter, 307
example 1, 278
example 2, 281
Extensions Bundle, 292
generate unique ID, 315
References Resolver, 304
Table Cell Span Provider, 312
Table Column Width Provider, 308

menus, 268
contextual menu, 274
main menu, 273

toolbars, 268
configure toolbar, 272

C
Common problems, 582
Composing Web Service calls, 493

generate WSDL documentation, 497
SOAP request, 493

testing remote WSDL files, 496
UDDI Registry browser, 496

Configure the application, 509
Archive, 574
certificates, 577
CSS validator, 544
custom validation, 542
Data Sources, 569

download links for database drivers, 572
table filters, 574

document type association, 511
Editor preferences, 513

author, 517
author track changes, 523
code templates, 538
content completion, 530
document checking, 542
document templates, 539
elements and attributes by prefix, 537
format, 526
format - CSS, 529
format - JavaScript, 530

584

format - XML, 527
grid, 516
open/save, 537
pages, 514
schema aware, 519
schema design, 524
spell check, 540
syntax highlight, 535
text/diagram, 515

editor variables, 580
fonts, 511
global, 510
import, 567

date/time format, 568
date/time patterns, 568

import preferences from other distribution, 579
import/export global options, 509
license, 510
Network Connections, 576
outline, 578
reset global options, 579
scenarios management, 578, 579
view, 579
XML, 544
XML catalog, 544
XML Instances Generator, 547
XML parser, 546

Saxon EE Validation, 547
XProc, 549
XSLT, 550
XSLT/FO/XQuery, 550
XSLT/FO/XQuery preferences

custom engines, 565
debugger, 560
FO Processors, 562
MSXML, 555
MSXML.NET, 555
profiler, 561
Saxon HE/PE/EE, 551, 558
Saxon HE/PE/EE advanced options, 553, 560
Saxon6, 551
XPath, 564
XQuery, 557
XSLTProc, 553

Content Management System, 487
copy/paste

grid editor, 381
CSS support in <oXygen/> Author

<oXygen/> CSS extensions, 322
Media Type oxygen, 322

CSS 2.1 features
properties support table, 319
supported selectors, 317
unsupported selectors, 318

Customization support, 244
Document Type Associations (advanced customization
tutorial), 250

Author Settings, 267
Basic Association, 250
configuring extensions - Link target reference finder,
299
configuring Transformation Scenarios, 289
New File Templates, 286
XML Catalogs, 288

example files, 334
the Simple Documentation Framework Files, 334

simple customization tutorial
CSS, 246
XML Instance Template , 249
XML Schema, 245

D
Databases, 446

Native XML databases (NXD), 458
Relational databases, 446
WebDAV Connection, 477
XQuery, 474

debugging, 476
drag and drop from Data Source Explorer, 475
transformation, 475
validation, 475

Debugging XSLT/XQuery documents, 423
layout, 423

Control toolbar, 425
information views, 426
multiple output documents in XSLT 2.0, 427

XSLT/XQuery debugger, 427
Digital signature, 499

canonicalizing files, 500
certificates, 501
signing files, 502
verifying the signature, 503

DITA Map
DITA specialization support, 211

editing DITA Topic specialization, 211
DITA MAP document type, 228

association rules, 229
Author extension, 229

catalogs, 230
templates, 230
transformation scenarios, 230

schema, 229
DITA Maps, 193

advanced operations, 199
edit properties, 201
inserting a topic group, 200
inserting a topic heading, 200

585

Index

inserting a topic reference, 199
DITA OT customization support, 209

customizing the <oXygen/> Ant tool, 210
increase the memory for Ant, 210
resolve topic reference through an XML catalog,
211
upgrade DITA OT, 210
use your own custom build file, 210
use your own DITA OT, 210

DITA specialization
editing DITA Map specialization, 211

DITA transformation scenario, 202
transforming DITA Maps, 201

output formats, 201
running an ANT transformation, 209

DITA Topics document type, 221
association rules, 221
Author extensions, 221

catalogs, 228
templates, 228
transformation scenarios, 228

schema, 221
DITA transformation scenario, 202

customize scenario, 203
DocBook Targetset document type, 220

association rules, 221
Author extensions, 221

templates, 221
schema, 221

DocBook V4 document type, 215
association rules, 216
Author extensions, 216

catalogs, 219
templates, 219
transformation scenarios, 219

schema, 216
DocBook V5 document type, 220

association rules, 220
Author extensions, 220

catalogs, 220
templates, 220
transformation scenarios, 220

schema, 220
Documentum (CMS) Support, 487

actions, 488
cabinets/folders, 489
connection, 489
resources, 490

configuration, 487
connection, 488
data source, 487

E
EAD document type, 243

association rules, 243
Author extensions, 243

templates, 243
schema, 243

edit, 20
archives, 444
change user interface language, 170
close documents, 30
create new documents, 21
file properties, 30
open and close documents, 20
open current document in Web browser, 30
open read-only files, 170
open remote documents (FTP/SFTP/WebDAV), 26
save documents, 26
Unicode documents, 20
Unicode support, 20

Editing CSS stylesheets, 167
content completion, 168
folding, 169
format and indent (pretty print), 169
other editing actions, 169
Outline view, 168
validation, 168

Editing NVDL Schemas, 137
editor specific actions, 139
schema diagram, 137

actions in the diagram view, 138
full model view, 138
Outline view, 139

searching and refactoring actions, 139
Editing NVDL schemas

Component Dependencies View, 140
Editing Relax NG schemas, 129

editor specific actions, 133
schema diagram, 129

actions, 132
full model view, 129
logical model view, 131
Outline view, 133
symbols, 130

searching and refactoring actions, 133
Editing Relax NG Schemas

Resource Hierarchy/Dependencies View, 134
Editing RelaxNG Schemas

Component Dependencies View, 136
Editing XML documents, 31

associate a schema to a document, 31
adding a processing instruction, 31
learning a document structure, 32
setting a default schema, 31

586

Index

converting between schema languages, 59
document navigation, 50

folding, 50
outline view, 51

editor specific actions, 63
document actions, 65
edit actions, 63
refactoring actions, 65
select actions, 64
smart editing, 66
source actions, 64
syntax highlight depending on namespace prefix,
67

formatting and indenting documents (pretty print), 61
grouping documents in XML projects, 54

large documents, 54
new project, 55

including document parts with XInclude, 56
status information, 63
streamline with content completion, 33

code templates, 37
the Attributes panel, 38
the Elements view, 39
the Entities view, 39
the Model panel, 37

working with XML Catalogs, 58
Editing XML Schemas, 67

(see also XML Schema Diagram Editor)
(see also XML Schema Text Editor)
Component Dependencies View, 128
generate documentation for XML Schema, 114

as HTML, 116
as PDF, DocBook or custom format, 119
from command line, 119

relational database table to XML schema, 105
Resource Hierarchy/Dependencies View, 125
schema instance generator, 105

running from command line, 111
schema regular expressions builder, 112
Searching and refactoring actions, 122

Editing XQuery documents, 166
folding, 166
generate HTML documentation, 166

Editing XSL Stylesheets
Component Dependencies View, 165

Editing XSLT stylesheets, 141
content completion, 141

code templates, 146
in XPath expressions, 142

find XSLT references and declarations, 160
Outline View, 148
refactoring actions, 161
Resource Hierarchy/Dependencies View, 162
validate, 141

custom validation, 141
validation scenario, 141

XSLT Input View, 147
Editing XSLT Stylesheets

generate documentation for XSLT stylesheet, 151
generate documentation for XSLT Stylesheets

as HTML, 154
from command line, 158
in custom format, 157

XSLT stylesheet documentation, 150

F
find/replace

Author editor, 182
Find All Elements dialog, 504

FO document type, 242
association rules, 243
Author extensions, 243

transformation scenarios, 243
schema, 243

G
Getting started, 12

help, 12
perspectives, 12

database, 18
editor, 12
XQuery debugger, 17
XSLT debugger, 16

supported types of documents, 12
grid editor, 377

add nodes, 380
bidirectional text, 383
clear column content, 380
copy/paste, 381
drag and drop, 381
duplicate nodes, 380
insert table row, 380
inserting table column, 380
layouts (grid vs. tree), 378
navigation, 378

collapse all, 379
collapse children, 379
collapse others, 379
expand all, 379
expand children, 379

refresh layout, 380
sort table column, 379
start editing a cell value, 380
stop editing a cell value, 380

587

Index

I
Importing data, 480

from database
convert table structure to XML Schema, 484
table content as XML document, 480

from HTML files, 485
from MS Excel, 485
from text files, 485

Installation
Eclipse

Update Site method (Eclipse 3.3), 5
Update Site method (Eclipse 3.4), 5
zip archive method (Eclipse 3.3), 5
zip archive method (Eclipse 3.4), 6

environment, 4
requirements, 4

L
License

floating (concurrent) license, 7
floating license server, 8
license server installed as Windows service, 9
register a license key, 6
registration code, 10
release floating license, 10
unregister license key, 10

M
MathML document type, 236

association rules, 237
schema, 237
templates, 237

Microsoft Office OOXML document type, 237
association rules, 237
schema, 238

N
Native XML databases (NXD), 458

data sources configuration, 458
Berkeley DB XML, 458
Documentum xDb (X-Hive/DB), 461
eXist, 459
MarkLogic, 459
Tamino, 460
TigerLogic, 460

database connections configuration, 461
Berkeley DB XML, 461
Documentum xDb (X-Hive/DB), 463
eXist, 462
MarkLogic, 462
Tamino, 463
TigerLogic, 463

resource management
Data Source Explorer view, 464

NVDL document type, 240
association rules, 240
Author extensions, 241

O
OASIS XML Catalog document type, 239

association rules, 239
schema, 239

Open Office ODF document type, 238
association rules, 239
schema, 239

P
Profiling XSLT stylesheets and XQuery documents, 439

profiling information, 439
Hotspots view, 440
Invocation tree view, 439

XSLT/XQuery profiler, 441

Q
Querying documents

running XPath expressions, 411
XPath console, 411

XQuery, 415
Input view, 417
other editing actions, 419
Outline view, 416
syntax highlight and content completion, 415
transforming XML documents; advanced Saxon
B/SA options, 420
validation, 419

R
Relational databases, 446

connections configuration, 448
IBM DB2, 449
JDBC-ODBC connection, 449
Microsoft SQL Server, 450
MySQL, 450
Oracle 11g, 450
PostgreSQL 8.3, 451

creating XML Schema from databases, 458
data sources configuration, 446

generic JDBC data source, 447
IBM DB2, 446
Microsoft SQL Server, 447
MySQL, 447
Oracle 11g, 448
PostgreSQL 8.3, 448

importing from databases, 458

588

Index

resource management, 451
Data Source Explorer view, 451
Table Explorer view, 454

SQL execution support, 456
drag and drop from Data Source Explorer, 456
executing SQL statements, 458
SQL validation, 458

RelaxNG document type, 240
association rules, 240
Author extensions, 240

S
Schematron 1. 5 document type, 241
Schematron 1.5 document type

association rules, 241
Author extensions, 241

Schematron document type, 241
association rules, 241
Author extensions, 241

T
TEI P4 document type, 233

association rules, 233
Author extensions, 233

catalogs, 235
templates, 235
transformation scenarios, 235

schema, 233
TEI P5 document type, 235

association rules, 236
Author extensions, 236

catalogs, 236
templates, 236
transformation scenarios, 236

schema, 236
Text editor specific actions, 504

check spelling, 505
check spelling in files, 508

Transformation scenario, 385
batch transformation, 386
built-in transformation scenarios, 386
new transformation scenario

additional XSLT stylesheets, 395
configure transformation scenario, 386
creating a transformation scenario, 396
XSLT parameters, 394
XSLT/XQuery extensions, 396

Transforming documents, 384
common transformations, 402

HTML Help output, 404
HTML output, 404
Java Help output, 405
PDF output, 403

PS output, 403
TXT output, 404
XHTML output, 405

custom XSLT processors, 408
output formats, 384
supported XSLT processors, 405
Transformation scenario, 385
Transformation Scenarios view, 396
XSL-FO processors, 397
XSLT processors extensions paths, 408

U
Uninstalling the plugin, 11
Upgrade, 10

check for new version, 11

V
Validating XML documents, 40

against a schema, 42
caching the schema used for validation, 43
custom validation, 44
marking validation errors, 42
resolving references to remote schemas with an
XML Catalog, 50
validate as you type, 43
validation actions, 49
validation example, 43
validation scenario, 46

checking XML well-formedness, 40
Validation scenario

sharing the validation scenarios; project level scenarios,
49

W
WebDAV Connection, 477

actions
at connection level, 478
at file level, 478
at folder level, 478

configuration, 477

X
XHTML document type, 230

association rules, 230
Author extensions, 230

catalogs, 232
templates, 232
transformation scenarios, 233

CSS, 230
schema, 230

XML Outline view, 51
document structure change, 53

589

Index

popup menu, 53
document tag selection, 54
modification follow-up, 53
outliner filters, 52
XML document overview, 52

XML Schema Diagram Editor, 75
Attributes view, 86
edit schema namespaces, 88
editing actions, 77
Facets view, 87

editing patterns, 88
group schema components

attributes, 104
constraints, 104
substitutions, 105

navigation, 76
Outline view, 84
schema components

xs:any, 101
xs:anyAttribute, 101
xs:attribute, 92
xs:attributeGroup, 98
xs:complexType, 93
xs:element, 89
xs:field, 104
xs:group, 98
xs:import, 99
xs:include, 98
xs:key, 102
xs:keyRef, 103
xs:notation, 99
xs:redefine, 99
xs:schema, 89
xs:selector, 103
xs:sequence, xs:choice, xs:all, 100
xs:simpleType, 95
xs:unique, 102

validation, 76
XML Schema document type, 239

association rules, 240
XML Schema Text Editor, 67

content completion, 67
flatten an XML Schema, 68
XML Schema actions, 68

XMLSpec document type, 242
association rules, 242
Author extensions, 240, 242

catalogs, 242, 243
templates, 242
transformation scenarios, 242

schema, 242
XQJ connection

XQJ configuration, 420
XQJ support

XQJ processor configuration, 420
XSLT document type, 241

association rules, 241
Author extensions, 242

XSLT/XQuery debugger, 427
debug steps, 427
determining what XSL/XQuery expression generated
particular output, 437
using breakpoints, 428

inserting breakpoints, 428
removing breakpoints, 428

viewing processing information, 429
break conditions view, 431
breakpoints view, 430
context node view, 429
messages view, 431
node set view, 435
stack view, 432
templates view, 434
trace history view, 433
variables view, 435
XPath watch view, 429

590

Index

	<oXygen/> XML Editor 11.2 User Manual for Eclipse
	Table of Contents
	Chapter 1. Introduction
	Key Features and Benefits
	About the <oXygen/> User Manual

	Chapter 2. Installation
	Installation Requirements
	Platform Requirements
	Operating System, Tools and Environment Requirements
	Operating System
	Tools
	Environment Prerequisites

	Installation Instructions
	Starting <oXygen/> plugin
	Obtaining and registering a license key
	Named User license registration
	How floating (concurrent) licenses work
	How to install the <oXygen/> license server as a Windows service
	How to release a floating license

	License registration with a registration code

	Unregistering the license key
	Upgrading the <oXygen/> application
	Checking for new versions
	Uninstalling the Eclipse plugin

	Chapter 3. Getting started
	Supported types of documents
	Getting help
	Perspectives
	<oXygen/> XML perspective
	The <oXygen/> custom menu
	The <oXygen/> toolbar buttons
	The editor pane
	The Outline view
	The <oXygen/> Text view
	The <oXygen/> Browser view
	The <oXygen/> XPath Results view
	Supported editor types

	<oXygen/> XSLT Debugger Perspective
	<oXygen/> XQuery Debugger Perspective
	<oXygen/> Database perspective

	Chapter 4. Editing documents
	Working with Unicode
	Opening and saving Unicode documents

	Opening and closing documents
	Creating new documents
	<oXygen/> plugin wizards
	Creating Documents based on Templates

	Saving documents
	Opening and Saving Remote Documents via FTP/SFTP
	Changing file permissions on a remote FTP server
	WebDAV over HTTPS

	Opening the current document in a Web browser
	Closing documents
	Viewing file properties

	Editing XML documents
	Associate a schema to a document
	Setting a schema for the Content Completion
	Setting a default schema
	Adding a Processing Instruction
	Associating a schema with the namespace of the root element

	Learning document structure

	Streamline with Content Completion
	Code templates
	Content Completion helper panels
	The Model panel
	The Element Structure panel
	The Annotation panel

	The Attributes panel
	The Elements view
	The Entities View

	Validating XML documents
	Checking XML well-formedness
	Validating XML documents against a schema
	Marking Validation Errors
	Validation Example
	Caching the Schema Used for Validation
	Validate As You Type
	Custom validation of XML documents
	Linked output messages of an external engine

	Validation Scenario
	Sharing the Validation Scenarios. Project Level Scenarios
	Validation Actions in the User Interface
	Resolving references to remote schemas with an XML Catalog

	Document navigation
	Folding of the XML elements
	Outline View
	XML Document Overview
	Outliner filters
	Modification Follow-up
	Document Structure Change
	The popup menu of the Outline tree

	Document Tag Selection

	Grouping documents in XML projects
	Large Documents
	Creating an included part

	Creating a new project

	Including document parts with XInclude
	Working with XML Catalogs
	Converting between schema languages
	Formatting and indenting documents (pretty print)
	Viewing status information
	XML editor specific actions
	Edit actions
	Select actions
	Source actions
	XML document actions
	XML Refactoring actions
	Smart editing
	Syntax highlight depending on namespace prefix

	Editing XML Schemas
	XML Schema Text Editor
	Special content completion features
	XML Schema actions
	XML Schema editor specific actions
	Flatten an XML Schema

	XML Schema Diagram Editor
	Introduction
	Navigation in the schema diagram
	Schema validation
	Schema editing actions
	The Schema Outline View
	The Attributes view
	The Facets view
	Editing patterns

	Edit Schema Namespaces
	Schema Components
	xs:schema
	xs:element
	xs:attribute
	xs:complexType
	xs:simpleType
	xs:group
	xs:attributeGroup
	xs:include
	xs:import
	xs:redefine
	xs:notation
	xs:sequence, xs:choice, xs:all
	xs:any
	xs:anyAttribute
	xs:unique
	xs:key
	xs:keyRef
	xs:selector
	xs:field
	Constructs used to group schema components
	Attributes
	Constraints
	Substitutions

	Create an XML Schema from a relational database table
	XML Schema Instance Generator
	Running the XML instance generator from command line

	XML Schema regular expressions builder
	Generating documentation for an XML Schema
	Generate documentation in HTML format
	Generate documentation in PDF, DocBook or a custom format
	Generating documentation from the command line

	Searching and refactoring actions
	Resource Hierarchy/Dependencies View
	Component Dependencies View
	Linking between development and authoring

	Editing Relax NG schemas
	Relax NG schema diagram
	Introduction
	Full model view
	The symbols used in the schema diagram
	Logical model view
	Actions available in the diagram view
	Relax NG Outline view

	Relax NG editor specific actions
	Searching and refactoring actions
	Resource Hierarchy/Dependencies View
	Component Dependencies View
	Configuring a custom datatype library for a RELAX NG Schema
	Linking between development and authoring

	Editing NVDL schemas
	NVDL schema diagram
	Introduction
	Full model view
	Actions available in the diagram view
	NVDL Outline view

	NVDL editor specific actions
	Searching and refactoring actions
	Component Dependencies View
	Linking between development and authoring

	Editing XSLT stylesheets
	Validating XSLT stylesheets
	Custom validation of XSLT stylesheets
	Associate a validation scenario

	Content Completion in XSLT stylesheets
	Content Completion in XPath expressions
	Tooltip Helper for the XPath Functions Arguments

	Code templates

	The XSLT/XQuery Input View
	The XSLT Input View

	The XSLT Outline View
	XSLT Stylesheet documentation support
	Generating documentation for an XSLT Stylesheet
	Generate documentation in HTML format
	Generate documentation in a custom format
	Generating documentation from the command line

	Finding XSLT references and declarations
	XSLT refactoring actions
	Resource Hierarchy/Dependencies View
	Component Dependencies View
	Linking between development and authoring

	Editing XQuery documents
	Folding in XQuery documents
	Generating HTML Documentation for an XQuery Document

	Editing CSS stylesheets
	Validating CSS stylesheets
	Content Completion in CSS stylesheets
	CSS Outline View
	Folding in CSS stylesheets
	Formatting and indenting CSS stylesheets (pretty print)
	Other CSS editing actions

	Editing XProc Scripts
	Changing the user interface language
	Handling read-only files

	Chapter 5. Authoring in the tagless editor
	Authoring XML documents without the XML tags
	General Author Presentation
	Author views
	Outline view
	XML Document Overview
	Modification Follow-up
	Document Structure Change
	The popup menu of the Outline tree

	Elements view
	Attributes view
	Entities view

	The Author editor
	Navigating the document content
	Displaying the markup
	Bookmarks

	Position information tooltip
	Displaying referred content
	Finding and replacing text
	Contextual menu
	Editing XML in <oXygen/> Author
	Editing the XML markup
	Editing the XML content
	Table layout and resizing
	DocBook
	XHTML
	DITA

	Refreshing the content

	Validation and error presenting
	Whitespace handling
	Minimize differences between versions saved on different computers

	Change Tracking
	Managing changes

	Chapter 6. Author for DITA
	Creating DITA maps and topics
	Editing DITA Maps
	Creating a map
	Create a topic and add it to a map
	Organize topics in a map
	Create a bookmap
	Create relationships between topics
	Create an index entry
	Editing actions
	Advanced operations
	Inserting a Topic Reference
	Inserting a Topic Heading
	Inserting a Topic Group
	Edit properties

	Transforming DITA Maps
	Available Output Formats
	Configuring a DITA transformation
	Customizing the DITA scenario
	The Parameters tab
	The Filters tab
	The Advanced tab
	The Output tab
	The FO Processor tab

	Set a font for PDF output generated with Apache FOP
	Running a DITA Map ANT transformation

	DITA OT customization support
	Support for transformation customizations
	Using your own DITA OT toolkit from <oXygen/>
	Using your custom build file
	Customizing the <oXygen/> Ant tool
	Upgrading to a new version of DITA OT
	Increasing the memory for the Ant process
	Resolving topic references through an XML catalog

	DITA specializations support
	Integration of a DITA specialization
	Editing DITA Map specializations
	Editing DITA Topic specializations

	Use a new DITA Open Toolkit in <oXygen/>

	Reusing content
	Working with content references
	Reusable component
	Insert a direct content reference

	Chapter 7. Predefined document types
	The DocBook V4 document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The DocBook V5 document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The DocBook Targetset document type
	Association rules
	Schema
	Author extensions
	Templates

	The DITA Topics document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The DITA MAP document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The XHTML document type
	Association rules
	Schema
	CSS
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The TEI P4 document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The TEI P5 document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The MathML document type
	Association rules
	Schema
	Templates

	The Microsoft Office OOXML document type
	Association rules
	Schema

	The Open Office ODF document type
	Association rules
	Schema

	The OASIS XML Catalog document type
	Association rules
	Schema

	The XML Schema document type
	Association rules
	Author extensions

	The RelaxNG document type
	Association rules
	Author extensions

	The NVDL document type
	Association rules
	Author extensions

	The Schematron document type
	Association rules
	Author extensions

	The Schematron 1.5 document type
	Association rules
	Author extensions

	The XSLT document type
	Association rules
	Author extensions

	The XMLSpec document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs
	Transformation Scenarios

	The FO document type
	Association rules
	Schema
	Author extensions
	Transformation Scenarios

	The EAD document type
	Association rules
	Schema
	Author extensions
	Templates
	Catalogs

	Chapter 8. Author Developer Guide
	Introduction
	Simple Customization Tutorial
	XML Schema
	Writing the CSS
	The XML Instance Template

	Advanced Customization Tutorial - Document Type Associations
	Creating the Basic Association
	First step. XML Schema.
	Second step. The CSS.
	Defining the General Layout.
	Styling the section Element.
	Styling the table Element.
	Styling the Inline Elements.
	Styling Elements from other Namespace
	Styling images
	Marking elements as foldable
	Marking elements as links

	Third Step. The Association.
	Organizing the Framework Files
	Association Rules
	Java API: Rules implemented in Java

	Deciding the initial page
	Schema Settings
	Author CSS Settings
	Testing the Document Type Association
	Packaging and Deploying

	Author Settings
	Configuring Actions, Menus and Toolbars
	The Insert Section Action
	The Insert Table Action
	Configuring the Toolbars
	Configuring the Main Menu
	Configuring the Contextual Menu
	Author Default Operations
	The arguments of InsertFragmentOperation
	The arguments of SurroundWithFragmentOperation

	Java API - Extending Author Functionality through Java
	Example 1. Step by Step Example. Simple Use of a Dialog from an Author Operation.
	Example 2. Operations with Arguments. Report from Database Operation.

	Configuring New File Templates
	Configuring XML Catalogs
	Configuring Transformation Scenarios
	Configuring Extensions
	Configuring an Extensions Bundle
	Implementing an Author Extension State Listener
	Implementing an Author Schema Aware Editing Handler
	Configuring a Content completion handler
	Configuring a Link target element finder
	The DefaultElementLocatorProvider implementation
	The XPointerElementLocator implementation
	The IDElementLocator implementation

	Creating a customized link target reference finder

	Configuring a custom Drag and Drop listener
	Configuring a References Resolver
	Configuring CSS Styles Filter
	Configuring a Table Column Width Provider
	Configuring a Table Cell Span Provider
	Configuring an Unique Attributes Recognizer

	Customizing the default CSS of a document type
	Document type sharing

	CSS support in <oXygen/> Author
	CSS 2.1 features
	Supported selectors
	Unsupported selectors
	Properties Support Table

	<oXygen/> CSS Extensions
	Media Type oxygen
	Supported Features from CSS Level 3
	Namespace Selectors
	The attr() function: Properties Values Collected from the Edited Document.
	Additional Custom Selectors

	Additional Properties
	Folding elements: foldable and not-foldable-child properties
	Link elements
	Display Tag Markers

	<oXygen/> Custom CSS functions
	The local-name() function
	The name() function
	The url() function
	The base-uri() function
	The parent-url() function
	The capitalize() function
	The uppercase() function
	The lowercase() function
	The concat() function
	The replace() function
	The unparsed-entity-uri() function
	The attributes() function

	Example Files Listings
	The Simple Documentation Framework Files
	XML Schema files
	sdf.xsd
	abs.xsd

	CSS Files
	sdf.css

	XML Files
	sdf_sample.xml

	XSL Files
	sdf.xsl

	Java Files
	InsertImageOperation.java
	QueryDatabaseOperation.java
	SDFExtensionsBundle.java
	SDFSchemaManagerFilter.java
	SDFSchemaAwareEditingHandler.java
	TableCellSpanProvider.java
	TableColumnWidthProvider.java
	ReferencesResolver.java
	CustomRule.java
	DefaultElementLocatorProvider.java
	XPointerElementLocator.java
	IDElementLocator.java

	Chapter 9. Grid Editor
	Introduction
	Layouts: Grid and Tree
	Navigating the grid
	Expand All Action
	Collapse All Action
	Expand Children Action
	Collapse Children Action
	Collapse Others

	Specific Grid Actions
	Sorting a Table Column
	Inserting a row in a table
	Inserting a column in a table
	Clearing the content of a column
	Adding nodes
	Duplicating nodes
	Refresh layout
	Start editing a cell value
	Stop editing a cell value

	Drag and Drop(DnD) in the Grid Editor
	Copy and Paste in the Grid Editor
	Bidirectional Text Support in the Grid Editor

	Chapter 10. Transforming documents
	XSLT Transformations
	Output formats
	Transformation scenario
	Batch transformation
	Built-in transformation scenarios
	Defining a new transformation scenario
	XSLT Stylesheet Parameters
	Additional XSLT Stylesheets
	XSLT/XQuery Extensions
	Creating a Transformation Scenario

	Transformation Scenarios view
	XSL-FO processors
	Add a font to the built-in FOP
	Locate font
	Generate font metrics file
	Register font to FOP configuration
	Set FOP configuration file in Oxygen
	Add new font to FO output
	DocBook Stylesheets
	TEI Stylesheets
	DITA-OT Stylesheets

	Common transformations
	PDF Output
	PS Output
	TXT Output
	HTML Output
	HTML Help Output
	Java Help Output
	XHTML Output

	Supported XSLT processors
	Configuring custom XSLT processors
	Configuring the XSLT processor extensions paths

	XProc Transformations
	XProc transformation scenario
	Integration of an external XProc engine - the XProc API

	Chapter 11. Querying documents
	Running XPath expressions
	What is XPath
	<oXygen/>'s XPath console

	Working with XQuery
	What is XQuery
	Syntax Highlight and Content Completion
	XQuery Outline View
	The Query Input View
	XQuery Validation
	Other XQuery editing actions
	Transforming XML Documents Using XQuery
	XQJ transformer support
	How to configure an XQJ Data source
	How to Configure an XQJ Connection

	Display result in Sequence view
	Advanced Saxon HE/PE/EE transform options
	Updating XML documents using XQuery

	Chapter 12. Debugging XSLT stylesheets and XQuery documents
	Overview
	Layout
	Control Toolbar
	Information views
	Multiple output documents in XSLT 2.0

	Working with the XSLT/XQuery Debugger
	Steps in a typical debug process
	Using breakpoints
	Inserting breakpoints
	Removing breakpoints

	Viewing processing information
	Context node view
	XPath watch view
	Breakpoints View
	Break conditions view
	Messages View
	Stack View
	Trace history view
	Templates view
	Node set view
	Variables View

	Determining what XSL/XQuery expression generated particular output

	Chapter 13. Profiling XSLT stylesheets and XQuery documents
	Overview
	Viewing profiling information
	Invocation tree view
	Hotspots View

	Working with XSLT/XQuery profiler

	Chapter 14. Working with Archives
	Using files directly from archives
	Browsing and modifying archives' structure
	Editing files from archives

	Chapter 15. Working with Databases
	Relational Database Support
	Configuring Database Data Sources
	How to configure an IBM DB2 Data Source
	How to configure a Generic JDBC Data Source
	How to configure a Microsoft SQL Server Data Source
	How to configure a MySQL Data Source
	How to configure an Oracle 11g Data Source
	How to configure a PostgreSQL 8.3 Data Source

	Configuring Database Connections
	How to Configure an IBM DB2 Connection
	How to Configure a JDBC-ODBC Connection
	How to Configure a Microsoft SQL Server Connection
	How to Configure a MySQL Connection
	How to Configure an Oracle 11g Connection
	How to Configure a PostgreSQL 8.3 Connection

	Resource Management
	Data Source Explorer View
	Actions available at connection level
	Actions available at catalog level
	Actions available at schema level
	Actions available at table level
	XML Schema Repository level
	Oracle's XML Schema Repository Level
	IBM DB2's XML Schema Repository Level
	Microsoft SQL Server's XML Schema Repository Level

	Table Explorer View

	SQL Execution Support
	Drag and Drop from Data Source Explorer
	SQL Validation
	Executing SQL Statements

	Importing from Databases
	Creating XML Schema from Databases

	Native XML Database (NXD) Support
	Configuring Database Data Sources
	How to configure a Berkeley DB XML datasource
	How to configure an eXist datasource
	How to configure a MarkLogic datasource
	How to configure a Software AG Tamino datasource
	How to configure a Raining Data TigerLogic datasource
	How to configure a Documentum xDb (X-Hive/DB) datasource

	Configuring Database Connections
	How to configure a Berkeley DB XML Connection
	How to configure an eXist Connection
	How to configure a MarkLogic Connection
	How to configure a Software AG Tamino Connection
	How to configure a Raining Data TigerLogic Connection
	How to configure an Documentum xDb (X-Hive/DB) Connection

	Resource Management
	Data Source Explorer View
	Oracle XML DB Browser
	Actions available at XML Repository level
	Actions available at container level
	Actions available at resource level

	PostgreSQL connection
	Actions available at container level
	Actions available at resource level

	Berkeley DB XML Connection
	Actions available at connection level
	Actions available at container level
	Actions available at resource level

	eXist Connection
	Actions available at connection level
	Actions available at container level
	Actions available at resource level

	MarkLogic Connection
	Software AG Tamino Connection
	Actions available at connection level
	Actions available at collection level
	Actions available at schema level
	Actions available at resource level

	Raining Data TigerLogic Connection
	Documentum xDb (X-Hive/DB) Connection
	Actions available at connection level
	Actions available at catalog level
	Actions available at schema resource level
	Actions available at library level
	Actions available at resource level
	Documentum xDb (X-Hive/DB) parser configuration for adding XML instances

	XQuery and Databases
	Drag and Drop from Data Source Explorer
	XQuery validation
	XQuery transformation
	XQuery database debugging
	Debugging with MarkLogic
	Debugging with Berkeley DB XML

	WebDAV Connection
	How to Configure a WebDAV Connection
	WebDAV connection actions
	Actions available at connection level
	Actions available at folder level
	Actions available at file level

	Chapter 16. Importing data
	Introduction
	Import from database
	Import table content as XML document
	Convert table structure to XML Schema

	Import from MS Excel files
	Import from HTML files
	Import from text files

	Chapter 17. Content Management System (CMS) Integration
	Documentum (CMS) Support
	How to configure Documentum (CMS) support
	How to configure a Documentum (CMS) data source
	How to configure a Documentum (CMS) connection

	Documentum (CMS) actions
	Actions available on connection
	Actions available on cabinets/folders
	Actions available on resources

	DITA transformations on DITA content from Documentum

	Chapter 18. Composing Web Service calls
	Overview
	Composing a SOAP request
	Testing remote WSDL files
	The UDDI Registry browser

	Generate WSDL documentation

	Chapter 19. Digital signature
	Overview
	Canonicalizing files
	Certificates
	Signing files
	Verifying the signature

	Chapter 20. Text editor specific actions
	Finding and replacing text in the current file
	The Find All Elements/Attributes dialog

	Using Check Spelling
	Adding a spell dictionary
	Adding a Hunspell dictionary
	Adding an AZ Check dictionary

	Learning words
	Ignoring words
	Spell checking as you type
	Check Spelling in Files

	Chapter 21. Configuring the application
	Importing/Exporting Global Options
	Preferences
	<oXygen/> License
	Global
	Fonts
	Document Type Association
	Editor
	Pages
	Text/Diagram
	Grid
	Author
	Schema aware
	Track Changes
	Messages

	Schema Design
	Properties

	Format
	XML
	Whitespaces

	CSS
	JavaScript

	Content Completion
	Annotations
	XSL
	XPath
	XSD

	Syntax Highlight
	Syntax Highlight / Elements/Attributes by Prefix
	Open/Save
	Code Templates
	Document Templates
	Spell Check
	Document Checking
	Custom Validation

	CSS Validator
	XML
	XML Catalog
	XML Parser
	Saxon EE Validation

	XML Instances Generator
	XProc Engines
	XSLT/FO/XQuery
	XSLT
	Saxon6
	Saxon HE/PE/EE
	Saxon HE/PE/EE Advanced options
	XSLTProc
	MSXML
	MSXML.NET

	XQuery
	Saxon HE/PE/EE
	Saxon HE/PE/EE Advanced options

	Debugger
	Profiler
	FO Processors
	XPath
	Custom Engines

	Import
	Date/Time format
	Date/Time Patterns

	Data Sources
	Configuration of Data Sources
	Download links for database drivers
	Table Filters

	Archive
	Custom Editor Variables
	Network Connections
	Certificates
	XML Structure Outline
	Scenarios Management
	View

	Automatically importing the preferences from the other distribution
	Reset Global Options
	Scenarios Management
	Editor variables
	Custom editor variables

	Chapter 22. Common problems
	Index

