
Author Developer Guide



 | Contents | 2

Contents

Author Developer Guide..........................................................................................4
Simple Customization Tutorial.............................................................................................................................5

XML Schema............................................................................................................................................ 5
CSS Stylesheet.......................................................................................................................................... 6
The XML Instance Template................................................................................................................... 9

Advanced Customization Tutorial - Document Type Associations...................................................................10
Document Type.......................................................................................................................................10
Editing attributes in-place using form controls......................................................................................36
Localizing Frameworks.......................................................................................................................... 36
How to Deploy a Plugin or a Framework as an  Add-on......................................................................37
Creating the Basic Association.............................................................................................................. 38
Configuring New File Templates........................................................................................................... 45
Configuring XML Catalogs....................................................................................................................48
Configuring Transformation Scenarios.................................................................................................. 49
Configuring Validation Scenarios.......................................................................................................... 52
Configuring Extensions.......................................................................................................................... 54
Customizing the Default CSS of a Document Type..............................................................................80
Document Type Sharing.........................................................................................................................81
Adding Custom Persistent Highlights.................................................................................................... 82

CSS Support in Author.......................................................................................................................................82
Handling CSS Imports............................................................................................................................82
Media Type oxygen............................................................................................................................. 82
Standard W3C CSS Supported Features................................................................................................ 83
Oxygen CSS Extensions.........................................................................................................................95

Example Files Listings - The Simple Documentation Framework Files......................................................... 123
XML Schema files................................................................................................................................123
CSS Files...............................................................................................................................................125
XML Files.............................................................................................................................................127
XSL Files.............................................................................................................................................. 129

Author Component............................................................................................................................................130
Licensing............................................................................................................................................... 130
Installation Requirements..................................................................................................................... 131
Customization........................................................................................................................................131
Deployment........................................................................................................................................... 133
Sample SharePoint Integration of the Author Component.................................................................. 138
Frequently asked questions...................................................................................................................143

Creating and Running Automated Tests.......................................................................................................... 146

API Frequently Asked Questions (API FAQ)....................................................148
Difference Between a Document Type (Framework) and a Plugin Extension................................................ 148
Dynamically Modify the Content Inserted by the Writer................................................................................149
Split Paragraph on Enter (Instead of Showing Content Completion List).......................................................150
Impose Custom Options for Writers................................................................................................................ 150
Highlight Content..............................................................................................................................................151
How Do I Add My Custom Actions to the Contextual Menu?.......................................................................151
Adding Custom Callouts.................................................................................................................................. 152
Change the DOCTYPE of an Opened XML Document..................................................................................157
Customize the Default Application Icons for Toolbars/Menus....................................................................... 157



 | Contents | 3

Disable Context-Sensitive Menu Items for Custom Author Actions...............................................................158
Dynamic Open File in  Distributed via JavaWebStart.................................................................................... 159
Change the Default Track Changes (Review) Author Name...........................................................................159
Multiple Rendering Modes for the Same Author Document...........................................................................160
Obtain a DOM Element from an AuthorNode or AuthorElement........................................................ 160
Print Document Within the Author Component.............................................................................................. 160
Running XSLT or XQuery Transformations................................................................................................... 161
Use Different Rendering Styles for Entity References, Comments or Processing Instructions....................... 161
Insert an Element with all the Required Content.............................................................................................164
Obtain the Current Selected Element Using the Author API.......................................................................... 165
Debugging a Plugin Using the Eclipse Workbench.........................................................................................165
Debugging an SDK Extension Using the Eclipse Workbench........................................................................ 166
Extending the Java Functionality of an Existing Framework (Document Type).............................................166
Controlling XML Serialization in the Author Component.............................................................................. 167
How can I add a custom Outline view for editing XML documents in the Text mode?................................. 168
Dynamically Adding Form Controls Using a StylesFilter..........................................................................172
Modifying the XML content on open..............................................................................................................173



 | Author Developer Guide | 4

Author Developer Guide

The Author editor of  was designed to bridge the gap between the XML source editing and a friendly user interface.
The main achievement is the fact that the Author combines the power of source editing with the intuitive interface of
a text editor.

This guide is targeted at advanced authors who want to customize the Author editing environment and is included
both as a chapter in the  user manual and as a separate document in the Author SDK.

Figure 1:  Author Visual Editor

Figure 2:  Author Visual Editor

http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK


 | Author Developer Guide | 5

Although  comes with already configured frameworks for DocBook, DITA, TEI, XHTML, you might need to create
a customization of the editor to handle other types of documents. The common use case is when your organization
holds a collection of XML document types used to define the structure of internal documents and they need to be
visually edited by people with no experience in working with XML files.

There are several ways to customize the editor:

1. Create a CSS file defining styles for the XML elements the user will work with, and create XML files that refer
the CSS through an xml-stylesheet processing instruction.

2. Fully configure a document type association. This involves putting together the CSSs, the XML schemes, actions,
menus, etc, bundling them and distributing an archive. The CSS and the GUI elements are settings of the  Author.
The other settings like the templates, catalogs, transformation scenarios are general settings and are enabled
whenever the association is active, no matter the editing mode (Text, Grid or Author).

Both approaches will be discussed in the following sections.

Simple Customization Tutorial
The most important elements of a document type customization are represented by an XML Schema to define the
XML structure, the CSS to render the information and the XML instance template which links the first two together.

XML Schema

Let's consider the following XML Schema, test_report.xsd defining a report with results of a testing session.
The report consists of a title, few lines describing the test suite that was run and a list of test results, each with a name
and a boolean value indicating if the test passed or failed.

    
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
    <xs:element name="report">
        <xs:complexType>
            <xs:sequence>
                <xs:element ref="title"/>
                <xs:element ref="description"/>
                <xs:element ref="results"/>
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    <xs:element name="title" type="xs:string"/>
    <xs:element name="description">
        <xs:complexType>
            <xs:sequence maxOccurs="unbounded">
                <xs:element name="line">
                    <xs:complexType mixed="true">
                        <xs:sequence minOccurs="0" 
                            maxOccurs="unbounded">
                            <xs:element name="important" 
                              type="xs:string"/>
                        </xs:sequence>
                    </xs:complexType>
                </xs:element>                
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    
    <xs:element name="results">
        <xs:complexType>
            <xs:sequence maxOccurs="unbounded">
                <xs:element name="entry">



 | Author Developer Guide | 6

                    <xs:complexType>
                        <xs:sequence>
                            <xs:element name="test_name" 
                              type="xs:string"/>
                            <xs:element name="passed" 
                               type="xs:boolean"/>
                        </xs:sequence>
                    </xs:complexType>
                </xs:element>
            </xs:sequence>
        </xs:complexType>
    </xs:element>
</xs:schema>

The use-case is that several users are testing a system and must send report results to a content management system.
The Author customization should provide a visual editor for this kind of documents.

CSS Stylesheet
A set of rules must be defined for describing how the XML document is to be rendered into the Author. This is done
using Cascading Style Sheets or CSS on short. CSS is a language used to describe how an HTML or XML document
should be formatted by a browser. CSS is widely used in the majority of websites.

The elements from an XML document are displayed in the layout as a series of boxes. Some of the boxes contain text
and may flow one after the other, from left to right. These are called in-line boxes. There are also other type of boxes
that flow one below the other, like paragraphs. These are called block boxes.

For example consider the way a traditional text editor arranges the text. A paragraph is a block, because it contains
a vertical list of lines. The lines are also blocks. But any block that contains inline boxes is arranging its children in
a horizontal flow. That is why the paragraph lines are also blocks, but the traditional "bold" and "italic" sections are
represented as inline boxes.

The CSS allows us to specify that some elements are displayed as tables. In CSS a table is a complex structure and
consists of rows and cells. The "table" element must have children that have "table-row" style. Similarly, the "row"
elements must contain elements with "table-cell" style.

To make it easy to understand, the following section describes the way each element from the above schema is
formatted using a CSS file. Please note that this is just one from an infinite number of possibilities of formatting the
content.

report This element is the root element of the report document.
It should be rendered as a box that contains all other
elements. To achieve this the display type is set to block.
Additionally some margins are set for it. The CSS rule
that matches this element is:

report{
    display:block;
    margin:1em;
}

title The title of the report. Usually titles have a larger
font. The block display should also be used - the next
elements will be placed below it, and change its font to
double the size of the normal text.

title {
    display:block;
    font-size:2em;    
}



 | Author Developer Guide | 7

description This element contains several lines of text describing
the report. The lines of text are displayed one below
the other, so the description will have the same block
display. To make it standout the background color is
changed.

description {
    display:block;
    background-color:#EEEEFF;
    color:black;
}

line A line of text in the description. A specific aspect is not
defined for it, just indicate that the display should be
block.

line {
    display:block;
}

important The important element defines important text from
the description. Because it can be mixed with text, its
display property must be set to inline. To make it easier
to spot, the text will be emphasized.

important {
    display:inline;
    font-weight:bold;
}

results The results element shows the list of test_names and
the result for each one. To make it easier to read, it is
displayed as a table with a green border and margins.

results{
    display:table;
    margin:2em;
    border:1px solid green;
}

entry An item in the results element. The results are displayed
as a table so the entry is a row in the table. Thus, the
display is table-row.

entry {
    display:table-row;
}

test_name, passed The name of the individual test, and its result. They are
cells in the results table with display set to table-cell.
Padding and a border are added to emphasize the table
grid.

test_name, passed{
    display:table-cell;
    border:1px solid green;
    padding:20px;
}

passed{



 | Author Developer Guide | 8

    font-weight:bold;
}

The full content of the CSS file test_report.css is:

report {
    display:block;
    margin:1em;
}

description {
    display:block;
    background-color:#EEEEFF;
    color:black;
}

line {
    display:block;
}

important {
    display:inline;
    font-weight:bold;
}

title {
    display:block;
    font-size:2em;    
}

results{
    display:table;
    margin:2em;       
    border:1px solid green;
}

entry {
    display:table-row;
}

test_name, passed{
    display:table-cell;
    border:1px solid green;
    padding:20px;
}

passed{
    font-weight:bold;
}                        
                    



 | Author Developer Guide | 9

Figure 3: A report opened in the Author

Note:

You can edit attributes in-place in the Author mode using form-based controls.

The XML Instance Template
Based on the XML Schema and the CSS file the Author can help the content author in loading, editing and validating
the test reports. An XML file template must be created, a kind of skeleton, that the users can use as a starting point
for creating new test reports. The template must be generic enough and refer the XML Schema file and the CSS
stylesheet.

This is an example:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="test_report.css"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xsi:noNamespaceSchemaLocation="test_report.xsd">
  <title>Automated test report</title>
  <description>
    <line>This is the report of the test automatically ran. Each test suite is
 ran at 20:00h each
      day. Please <important>check</important> the failed ones!</line>
  </description>
  <results>
    <entry>
      <test_name>Database connection test</test_name>
      <passed>true</passed>
    </entry>
    <entry>
      <test_name>XSLT Transformation test</test_name>
      <passed>true</passed>
    </entry>
    <entry>
      <test_name>DTD validation test</test_name>
      <passed>false</passed>
    </entry>
  </results>
</report>



 | Author Developer Guide | 10

The processing instruction xml-stylesheet associates the CSS stylesheet to the XML file. The href pseudo
attribute contains the URI reference to the stylesheet file. In our case the CSS is in the same directory as the XML
file.

The next step is to place the XSD file and the CSS file on a web server and modify the template to use the HTTP
URLs, like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" 
        href="http://www.mysite.com/reports/test_report.css"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
        xsi:noNamespaceSchemaLocation=
        "http://www.mysite.com/reports/test_report.xsd">
    <title>Test report title</title>
    <description>
.......

The alternative is to create an archive containing the test_report.xml, test_report.css and
test_report.xsd and send it to the content authors.

Advanced Customization Tutorial - Document Type Associations
is highly customizable. Practically you can associate an entire class of documents (grouped logically by some
common features like namespace, root element name or filename) to a bundle consisting of CSS stylesheets,
validation schemas, catalog files, new files templates, transformation scenarios and even custom actions. The bundle
is called document type and the association is called Document Type Association or, more generically, framework.

In this tutorial, we create a Document Type Association for a set of documents. As an example, we create a light
documentation framework (similar to DocBook), then we set up a complete customization of the Author mode.

You can find the samples used in this tutorial in the Example Files Listings and the complete source code in the
Simple Documentation Framework project. This project is included in the Oxygen Author SDK zip, available for
download at http://www.oxygenxml.com/oxygen_sdk.html.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

Document Type

A document type or framework is associated to an XML file according to a set of rules. It includes also many settings
that improve editing in the Author mode for the category of XML files it applies for. These settings include:

• a default grammar used for validation and content completion in both Author mode and Text mode;
• CSS stylesheet(s) for rendering XML documents in Author mode;
• user actions invoked from toolbar or menu in Author mode;
• predefined scenarios used for transformation of the class of XML documents defined by the document type;
• XML catalogs;
• directories with file templates;
• user-defined extensions for customizing the interaction with the content author in Author mode.

Note:  The Author mode allows WYSIWYG-like visual editing of XML documents and is available only in 
Editor and  Author.

The tagless editor comes with some predefined document types already configured when the application is installed
on the computer. These document types describe well-known XML frameworks largely used today for authoring
XML documents. Editing a document which conforms to one of these types is as easy as opening it or creating it from
one of the predefined document templates which also come with .

To see our video demonstration about configuring a framework in , go to http://oxygenxml.com/demo/
FrameworkConfiguration.html.

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/oxygen_sdk.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://oxygenxml.com/demo/FrameworkConfiguration.html
http://oxygenxml.com/demo/FrameworkConfiguration.html


 | Author Developer Guide | 11

Document Type Settings

You can add a new Document Type Association or edit the properties of an existing one from the Options >
Preferences > Document Type Association option pane. All the changes can be made into the Document type edit
dialog.

Figure 4: The Document Type

You can specify the following properties for a document type:

• Name - The name of the document type.
• Priority - When multiple document types match the same document, the priority determines the order in which

they are applied. It can be one of: Lowest, Low, Normal, High, Highest. The predefined document types that are
already configured when the application is installed on the computer have the default Low priority.

Note:  The frameworks having the same priority are alphabetically sorted.

• Description - The document type description displayed as a tooltip in the Document Type Association
table.Document Type Association table.Document Type Association table.Document Type Association
table.Document Type Association table.

• Storage - The location where the document type is saved. If you select the External storage, the document type
is saved in the specified file with a mandatory framework extension, located in a subfolder of the current
frameworks directory. If you select the Internal storage option, the document type data is saved in the current
.xpr  project file (for Project-level Document Type Association Options) or in the  internal options (for Global-
level Document Type Association Options). You can change the Document Type Association Options level in the

http://www.oxygenxml.com/doc/ug-editor/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-document-type-association.html


 | Author Developer Guide | 12

Document Type Association panel.Document Type Association panel.Document Type Association panel.Document
Type Association panel.Document Type Association panel.

• Initial edit mode - Allows you to select the initial editing mode (Editor specific, Text, Author, Grid and
Design (available only for the W3C XML Schema editor)) for this document type. If the Editor specific option
is selected, the initial edit mode is determined depending on the editor type. You can find the mapping between
editors and edit modes in the Edit modes preferences page.Edit modes preferences page.Edit modes preferences
page.Edit modes preferences page.Edit modes preferences page. You can decide to impose an initial mode for
opening files which match the association rules of the document type. For example if the files are usually edited in
the Author mode you can set it in the Initial edit mode combo box.

Note:  You can also customize the initial mode for a document type in the Edit modes preferences page.
To open this page, go to Options > Preferences > Editor > Edit modes Window > Preferences > oXygen
XML Editor > Editor > Edit modes.

You can specify the association rules used for determining a document type for an opened XML document. A rule can
define one or more conditions. All conditions need to be fulfilled in order for a specific rule to be chosen. Conditions
can specify:

• Namespace - The namespace of the document that matches the document type.
• Root local name of document - The local name of the document that matches the document type.
• File name - The file name (including the extension) of the document that matches the document type.
• Public ID (for DTDs) - The PUBLIC identifier of the document that matches the document type.
• Attribute - This field allows you to associate a document type depending on a certain value of the attribute in the

root.
• Java class - Name of Java class that is called for finding if the document

type should be used for an XML document. Java class must implement
ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher interface from Author API.

In the Schema tab, you can specify the type and URI of schema used for validation and content completion of all
documents from the document type, when there is no schema detected in the document.

You can choose one of the following schema types:

• DTD;
• Relax NG schema (XML syntax);
• Relax NG schema (XML syntax) + Schematron;
• Relax NG schema (compact syntax);
• XML Schema;
• XML Schema + Schematron rules;
• NVDL schema.

Configuring Actions, Menus and Toolbars

You can change the Author toolbars and menus to gain a productive editing experience. You can create a set of
actions that are specific to a document type, using the Document Type dialog.

In the example with the sdf framework, you created the stylesheet and the validation schema. Now let's add some
actions to insert a section and a table. To add a new action, follow the procedure:

1. Go to Options >  Preferences >  Document Types Association and click the framework for which you want to
create an action.

2. Click Edit and in the Document Type dialog go to the Author tab, then go to Actions.
3. Click the  New  and use the Action dialogAction dialog to create an action.

Creating the Insert Section Action

This section presents all the steps that you need to follow, to define the Insert Section action. We assume the icon

files  (Section16.png) for the menu item and  (Section20.png) for the toolbar, are already available.

http://www.oxygenxml.com/doc/ug-editor/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-document-type-association.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-pages.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-editor-pages.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-editor-pages.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-editor-pages.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-editor-pages.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/DocumentTypeCustomRuleMatcher.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html


 | Author Developer Guide | 13

Although you could use the same icon size for both menu and toolbar, usually the icons from the toolbars are larger
than the ones found in the menus. These files should be placed in the frameworks / sdf directory.

Figure 5: The Action Dialog



 | Author Developer Guide | 14

Figure 6: The Action Dialog

1. Set the ID field to insert_section. This is an unique action identifier.
2. Set the Name field to Insert Section. This will be the action's name, displayed as a tooltip when the action is

placed in the toolbar, or as the menu item name.
3. Set the Menu access key to i. On Windows, the menu items can be accessed using (ALT + letter) combination,

when the menu is visible. The letter is visually represented by underlining the first letter from the menu item name
having the same value.

4. Set the Description field to Insert a section at caret position.
5. Set the Large icon (20x20) field to ${frameworks} / sdf / Section20.png. A good practice is to store the image

files inside the framework directory and use editor variable ${frameworks} to make the image relative to the
framework location.

If the images are bundled in a jar archive together with some Java operations implementation for instance, it might
be convenient for you to refer the images not by the file name, but by their relative path location in the class-path.

If the image file Section20.png is located in the images directory inside the jar archive, you can refer to it by
using /images/Section20.png. The jar file must be added into the Classpath list.

6. Set the Small icon (16x16) field to ${frameworks} / sdf / Section16.png.



 | Author Developer Guide | 15

7. Click the text field next to Shortcut key and set it to Ctrl (Meta on Mac OS)+Shift+S. This will be the key
combination to trigger the action using the keyboard only.

The shortcut is enabled only by adding the action to the main menu of the Author mode which contains all the
actions that the author will have in a menu for the current document type.

8. At this time the action has no functionality added to it. Next you must define how this action operates. An action
can have multiple operation modes, each of them activated by the evaluation of an XPath version 2.0 expression.
The first enabled action mode will be executed when the action is triggered by the user. The scope of the XPath
expression must be only element nodes and attribute nodes of the edited document, otherwise the expression will
not return a match and will not fire the action. For this example we'll suppose you want allow the action to add a
section only if the current element is either a book, article or another section.
a) Set the XPath expression field to:

local-name()='section' or local-name()='book' or 
 local-name()='article'

b) Set the invoke operation field to InsertFragmentOperation built-in operation, designed to insert
an XML fragment at caret position. This belongs to a set of built-in operations, a complete list of which can
be found in the Author Default Operations section. This set can be expanded with your own Java operation
implementations.

c) Configure the arguments section as follows:

<section xmlns=
"http://www.oxygenxml.com/sample/documentation">
     <title/>
</section>

insertLocation - leave it empty. This means the location will be at the caret position.

insertPosition - select "Inside".

The Insert Table Action

You will create an action that inserts into the document a table with three rows and three columns. The first row is the
table header. Similarly to the insert section action, you will use the InsertFragmentOperation.

Place the icon files for the menu item and for the toolbar in the frameworks / sdf directory.

1. Set ID field to insert_table.
2. Set Name field to Insert table.
3. Set Menu access key field to t.
4. Set Description field to Adds a section element.
5. Set Toolbar icon to ${frameworks} / sdf / toolbarIcon.png.
6. Set Menu icon to ${frameworks} / sdf / menuIcon.png.
7. Set Shortcut key to Ctrl (Meta on Mac OS)+Shift+T.
8. Set up the action's functionality:

a) Set XPath expression field to true().
true() is equivalent with leaving this field empty.

b) Set Invoke operation to use InvokeFragmentOperation built-in operation that inserts an XML fragment to
the caret position.

c) Configure operation's arguments as follows:

fragment - set it to:

<table xmlns=
"http://www.oxygenxml.com/sample/documentation">
  <header><td/><td/><td/></header>
  <tr><td/><td/><td/></tr>
  <tr><td/><td/><td/></tr>
</table>



 | Author Developer Guide | 16

insertLocation - to add tables at the end of the section use the following code:

ancestor::section/*[last()]

insertPosition - Select After.

Configuring the Toolbars

Now that you have defined the Insert Section action and the Insert Table action, you can add them to the toolbar.
You can configure additional toolbars on which to add your custom actions.

1. Open the Document Type edit dialog for the SDF framework and select on the Author tab. Next click on the
Toolbar label.

Figure 7: Configuring the Toolbar

Figure 8: Configuring the Toolbar

The panel is divided in two sections: the left side contains a list of actions, while the right one contains an action
tree, displaying the list of actions added in the toolbar. The special entry called Separator allows you to visually
separate the actions in the toolbar.



 | Author Developer Guide | 17

2. Select the Insert section action in the left panel section and the Toolbar label in the right panel section, then press
the  Add as child  button.

3. Select the Insert table action in the left panel section and the Insert section in the right panel section. Press the 
Add as sibling  button.

4. When opening a Simple Documentation Framework test document in Author mode, the toolbar below will be
displayed at the top of the editor.

Figure 9: Author Custom Actions Toolbar

Tip:  If you have many custom toolbar actions, or want to group actions according to their category,
add additional toolbars with custom names and split the actions to better suit your purpose. In case your
toolbar is not displayed when switching to the Author mode, right click the main toolbar and make sure
the entry labeled Author custom actions 1 is enabled.

Configuring the Main Menu

Defined actions can be grouped into customized menus in the  menu bar.

1. Open the Document Type dialog for the SDF framework and click on the Author tab.
2. Click on the Menu label. In the left side you have the list of actions and some special entries:

• Submenu - Creates a submenu. You can nest an unlimited number of menus.
• Separator - Creates a separator into a menu. This way you can logically separate the menu entries.

3. The right side of the panel displays the menu tree with Menu entry as root. To change its name click on this label
to select it, then press the  Edit  button. Enter SD Framework as name, and D as menu access key.

4. Select the Submenu label in the left panel section and the SD Framework label in the right panel section, then
press the  Add as child  button. Change the submenu name to Table, using the  Edit  button.

5. Select the Insert section action in the left panel section and the Table label in the right panel section, then press
the  Add as sibling  button.

6. Now select the Insert table action in the left panel section and the Table in the right panel section. Press the 
Add as child  button.



 | Author Developer Guide | 18

Figure 10: Configuring the Menu

Figure 11: Configuring the Menu

When opening a Simple Documentation Framework test document in Author mode, the menu you created is
displayed in the editor menu bar, between the Tools and the Document menus. The upper part of the menu contains
generic Author actions (common to all document types) and the two actions created previously (with Insert table
under the Table submenu).

Figure 12: Author Menu



 | Author Developer Guide | 19

Figure 13: Author Menu

Configuring the Contextual Menu

The contextual menu is shown when you right click (Ctrl (Meta on Mac OS) + mouse click on Mac) in the Author
editing area. In fact you are configuring the bottom part of the menu, since the top part is reserved for a list of generic
actions like Copy, Paste, Undo, etc.

1. Open the Document Type dialog for the SDF framework and click on the Author tab. Next click on the
Contextual Menu label.

2. Follow the same steps as explained in the Configuring the Main Menu, except changing the menu name because
the contextual menu does not have a name.

Figure 14: Configuring the Contextual Menu

Figure 15: Configuring the Contextual Menu

To test it, open the test file, and open the contextual menu. In the lower part there is shown the Table sub-menu and
the Insert section action.



 | Author Developer Guide | 20

Customize Content Completion

You can customize the content of the following Author controls, adding items (which, when invoked, perform
custom actions) or filtering the default contributed ones:

• Content Completion window;
• Elements view;
• Element Insert menus (from the Outline view or breadcrumb contextual menus).

You can use the content completion customization support in the Simple Documentation Framework following the
next steps:

1. Open the Document type edit dialog for the SDF framework and select the Author tab. Next click on the
Content Completion tab.

Figure 16: Customize Content Completion

Figure 17: Customize Content Completion

The top side of the Content Completion section contains the list with all the actions defined within the simple
documentation framework and the list of actions that you decided to include in the Content Completion



 | Author Developer Guide | 21

Assistant list of proposals. The bottom side contains the list with all the items that you decided to remove from
the Content Completion Assistant list of proposals.

2. If you want to add a custom action to the list of current Content Completion items, select the action item from
the Available actions list and press the Add as child  or  Add as sibling  button to include it in the Current
actions list. The following dialog appears, giving you the possibility to select where to provide the selected action:

Figure 18: Insert action dialog

Figure 19: Insert action dialog
3. If you want to exclude a certain item from the Content Completion items list, you can use the  Add  button

from the Filter - Remove content completion items list. The following dialog is displayed, allowing you to input
the item name and to choose the controls that filter it.

Figure 20: Remove item dialog



 | Author Developer Guide | 22

Figure 21: Remove item dialog

Author Default Operations

Below are listed all the operations and their arguments:

• InsertFragmentOperation

Inserts an XML fragment at the current cursor position. The selection - if there is one, remains unchanged. The
fragment will be inserted in the current context of the cursor position meaning that if the current XML document
uses some namespace declarations then the inserted fragment must use the same declarations. The inserted
fragment will not be copied and pasted to the cursor position, but the namespace declarations of the fragment will
be adapted if needed to the existing namespace declarations of the XML document. For more details about the list
of parameters go to The arguments of InsertFragmentOperation operation on page 25.

• InsertOrReplaceFragmentOperation

Similar to InsertFragmentOperation, except it removes the selected content before inserting the fragment.
• InsertOrReplaceTextOperation

Inserts a text at current position removing the selected content, if any. The argument of this operation is:

• text - the text section to insert.
• SurroundWithFragmentOperation

Surrounds the selected content with a text fragment. Since the fragment can have multiple nodes, the surrounded
content will be always placed in the first leaf element. If there is no selection, the operation will simply
insert the fragment at the caret position. For more details about the list of parameters go to The arguments of
SurroundWithFragmentOperation  on page 27.

• SurroundWithTextOperation

This operation has two arguments (two text values) that will be inserted before and after the selected content. If
there is no selected content, the two sections will be inserted at the caret position. The arguments of the operation
are:

• header - the text that is placed before the selection;
• footer - the text that is placed after the selection.

• InsertEquationOperation

Inserts a fragment containing a MathML equation at caret offset. The argument of this operation is:

• fragment - the XML fragment containing the MathML content which should be inserted.
• InsertXIncludeOperation

Insert an XInclude element at caret offset.
• ChangeAttributeOperation

This operation allows adding/modifying/removing an attribute. You can use this operation in your own Author
action to modify the value for a certain attribute on a specific XML element. The arguments of the operation are:

• name - the attribute local name;



 | Author Developer Guide | 23

• namespace - the attribute namespace;
• elementLocation - the XPath location that identifies the element;
• value - the new value for the attribute. If empty or null the attribute will be removed;
• editAttribute - if an in-place editor exists for this attribute, it will automatically activate the in-pace

editor and start editing;
• removeIfEmpty - the possible values are true and false. True means that the attribute should be

removed if an empty value is provided. The default behavior is to remove it.
• UnwrapTagsOperation

This operation allows removing the element tags either from the current element or for an element identified with
an XPath location. The argument of the operation is

• unwrapElementLocation - an XPath expression indicating the element to unwrap. If it is not defined, the
element at caret is unwrapped.

• ToggleSurroundWithElementOperation

This operation allows wrapping and unwrapping content in a specific element with specific attributes. It is useful
to implement toggle actions like highlighting text as bold, italic, or underline. The arguments of the operation are:

• element - the element to wrap or unwrap content;
• schemaAware - this argument applies only on the surround with element operation and controls if the

insertion is schema aware or not.
• ExecuteTransformationScenariosOperation

This operation allows running one or more transformation scenarios defined in the current document type
association. It is useful to add to the toolbar buttons that trigger publishing to various output formats. The
argument of the operation is:

• scenarioNames - the list of scenario names that will be executed, separated by new lines.
• XSLTOperation and XQueryOperation

Applies an XSLT or XQuery script on a source element and then replaces or inserts the result in a specified target
element.

This operation has the following parameters:

• sourceLocation

An XPath expression indicating the element that the script will be applied on. If it is not defined then the
element at the caret position will be used.

There may be situations in which you want to look at an ancestor of the current element and take decisions in
the script based on this. In order to do this you can set the sourceLocation to point to an ancestor node
(for example /) then declare a parameter called currentElementLocation in your script and use it to re-
position in the current element like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform" version="2.0" 
  xpath-default-namespace="http://docbook.org/ns/docbook" 
  xmlns:saxon="http://saxon.sf.net/" exclude-result-prefixes="saxon">     
    <!-- This is an XPath location which will be sent by the operation to
 the script -->
    <xsl:param name="currentElementLocation"/>
    
    <xsl:template match="/">
        <!-- Evaluate the XPath of the current element location -->
        <xsl:apply-templates 
        select="saxon:eval(saxon:expression($currentElementLocation))"/>
    </xsl:template>
    
    <xsl:template match="para">
        <!-- And the context is again inside the current element, 
        but we can use information from the entire XML -->



 | Author Developer Guide | 24

        <xsl:variable 
            name="keyImage" select="//imagedata[@fileref='images/
lake.jpeg']
              /ancestor::inlinemediaobject/@xml:id/string()"/>
                <xref linkend="{$keyImage}" role="key_include" 
                  xmlns="http://docbook.org/ns/docbook">
                    <xsl:value-of 
                          select="$currentElementLocation"></xsl:value-of>
        </xref>
    </xsl:template>    
</xsl:stylesheet>

• targetLocation

An XPath expression indicating the insert location for the result of the transformation. If it is not defined then
the insert location will be at the caret.

• script

The script content (XSLT or XQuery). The base system ID for this will be the framework file, so any include/
import reference will be resolved relative to the .framework file that contains this action definition.

For example, for the following script, the imported xslt_operation.xsl needs to be located in the
current framework's directory.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
             version="1.0">
    <xsl:import href="xslt_operation.xsl"/>
</xsl:stylesheet>

• action

The insert action relative to the node determined by the target XPath expression. It can be: Replace, At caret
position, Before, After, Inside as first child or Inside as last child.

• caretPosition

The position of the caret after the action is executed. It can be: Preserve, Before, Start, First editable position,
End or After. If not specified the caret position ca be specified by outputting in the XSLT script a ${caret}
editor variable.

• expandEditorVariables

Parameter controlling the expansion of editor variables returned by the script processing. Expansion is enabled
by default.

• ExecuteMultipleActionsOperation

This operation allows the execution of a sequence of actions, defined as a list of action IDs. The actions must be
defined by the corresponding framework, or one of the common actions for all frameworks supplied by Oxygen.

• actionIDs - the action IDs list which will be executed in sequence, the list must be a string sequence
containing the IDs separated by new lines.

Author operations can take parameters that might contain the following editor variables:

• ${caret} - The position where the caret is inserted. This variable can be used in a code template, in Author
operations, or in a selection plugin;

• ${selection} - The current selected text content in the current edited document. This variable can be used in a code
template, in Author operations, or in a selection plugin;

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...),
'default_value')}  - To prompt for values at runtime, use the ask('message', type,
('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default-value'') editor variable. You can
set the following parameters:

• 'message' - the displayed message. Note the quotes that enclose the message;
• type - optional parameter. Can have one of the following values:

• url - input is considered an URL.  checks that the URL is valid before passing it to the transformation;



 | Author Developer Guide | 25

• password - input characters are hidden;
• generic - the input is treated as generic text that requires no special handling;
• relative_url - input is considered an URL.  tries to make the URL relative to that of the document

you are editing;

Note:  You can use the $ask editor variable in file templates. In this case,  keeps an absolute URL.

• combobox - displays a dialog that contains a non-editable combo-box;
• editable_combobox - displays a dialog that contains an editable combo-box;
• radio - displays a dialog that contains radio buttons;

• 'default-value' - optional parameter. Provides a default value in the input text box;

Examples:

• ${ask('message')} - Only the message displayed for the user is specified.
• ${ask('message', generic, 'default')} - 'message' is displayed, the type is not

specified (the default is string), the default value is 'default'.
• ${ask('message', password)} - 'message' is displayed, the characters typed are masked with

a circle symbol.
• ${ask('message', password, 'default')} - same as before, the default value is

'default'.
• ${ask('message', url)} - 'message' is displayed, the parameter type is URL.
• ${ask('message', url, 'default')} - same as before, the default value is 'default'.

• ${timeStamp} - Time stamp, that is the current time in Unix format. It can be used for example to save
transformation results in different output files on each transform;

• ${uuid} - Universally unique identifier;An unique sequence of 32 hexadecimal digits generated by the Java UUID
class;

• ${id} - Application-level unique identifier;A short sequence of 10-12 letters and digits which is not guaranteed to
be universally unique;

• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently
opened and selected;

• ${cfne} - Current file name with extension. The current file is the one currently opened and selected;
• ${cf} - Current file as file path, that is the absolute file path of the current edited document;
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent

folder;
• ${frameworksDir} - The path (as file path) of the frameworks subfolder of the  installation folder;
• ${pd} - Current project folder as file path. Usually the current folder selected in the Project View;
• ${oxygenInstallDir} -  installation folder as file path;
• ${homeDir} - The path (as file path) of the user home folder;
• ${pn} - Current project name;
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed

by the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor
variable;

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified
in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for
operating system environment variables, use the${env(VAR_NAME)} editor variable instead;

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat
class. Example: yyyy-MM-dd;

Note:  This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to http://www.w3.org/
TR/xmlschema-2/#dateTime.

The arguments of InsertFragmentOperation operation

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime


 | Author Developer Guide | 26

fragment This argument has a textual value. This value is parsed
by  as it was already in the document at the caret
position. You can use entity references declared in the
document and it is namespace aware. The fragment may
have multiple roots.

You can even use namespace prefixes that are not
declared in the inserted fragment, if they are declared in
the document where the insertion is done. For the sake of
clarity, you should always prefix and declare namespaces
in the inserted fragment!

If the fragment contains namespace declarations that are
identical to those found in the document, the namespace
declaration attributes will be removed from elements
contained by the inserted fragment.

There are two possible scenarios:

1. Prefixes that are not bound explicitly

For instance, the fragment:

<x:item id="dty2"/>
&ent;
<x:item id="dty3"/>

Can be correctly inserted in the document: ('|' marks
the insertion point):

Result:

2. Default namespaces

If there is a default namespace declared in the
document and the document fragment does not declare
a namespace, the elements from the fragment are
considered to be in no namespace.

For instance the fragment:

<item id="dty2"/>
<item id="dty3"/>

Inserted in the document:

Gives the result document:

insertLocation An XPath expression that is relative to the current node.
It selects the reference node for the fragment insertion.

insertPosition One of the three constants: "Inside", "After", or
"Before" , showing where the insertion is made
relative to the reference node selected by the
insertLocation. "Inside" has the meaning of the
first child of the reference node.

goToNextEditablePosition After inserting the fragment, the first editable position
is detected and the caret is placed at that location. It
handles any in-place editors used to edit attributes. It
will be ignored if the fragment specifies a caret position



 | Author Developer Guide | 27

using the caret editor variable. The possible values of this
action are true and false.

The arguments of SurroundWithFragmentOperation

The Author operation SurroundWithFragmentOperation has only one argument:

• fragment -

The XML fragment that will surround the selection. For example let's consider the fragment:

<F>
   <A></A>
   <B>
     <C></C>
   </B>
</F>

and the document:

<doc>
  <X></X>
  <Y></Y>
  <Z></Z>
<doc>

Considering the selected content to be surrounded is the sequence of elements X and Y, then the result is:

<doc>
   <F>
      <A>
         <X></X>
         <Y></Y>
      </A>
      <B>
        <C></C>
      </B>
   </F> 
  <Z></Z>
<doc>

Because the element A was the first leaf in the fragment, it received the selected content. The fragment was then
inserted in the place of the selection.

How to Add a Custom Operation to an Existing Document Type

This task explains how to add a custom Author operation to an existing document type.

1. Download the Author SDK toolkit:http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK
2. Create a Java project with a custom implementation of ro.sync.ecss.extensions.api.AuthorOperation

which performs your custom operation and updates the Author mode using our API like:
AuthorAccess.getDocumentController().insertXMLFragment.

3. Pack the operation class inside a Java jar library.
4. Copy the jar library to the OXYGEN_INSTALL_DIR/frameworks/framework_dir directory.
5. Go to Oxygen Preferences > Document Type Association page and edit the document type (you need write

access to the OXYGEN_INSTALLATION_DIR).
a) In the Classpath tab, add a new entry like: ${frameworks}/docbook/customAction.jar.
b) In the Author tab, add a new action which uses your custom operation.
c) Mount the action to the toolbars or menus.

6. Share the modifications with your colleagues. The files which should be shared are your customAction.jar
library and the .framework configuration file from the OXYGEN_INSTALL_DIR/frameworks/
framework_dir directory.

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html


 | Author Developer Guide | 28

Java API - Extending Author Functionality through Java

Author has a built-in set of operations covering the insertion of text and XML fragments (see the Author Default
Operations) and the execution of XPath expressions on the current document edited in Author mode. However, there
are situations in which you need to extend this set. For instance if you need to enter an element whose attributes
should be edited by the user through a graphical user interface. Or the users must send the selected element content
or even the whole document to a server, for some kind of processing or the content authors must extract pieces
of information from a server and insert it directly into the edited XML document. Or you need to apply an XPath
expression on the current Author document and process the nodes of the result nodeset.

The following sections contain the Java programming interface (API) available to the developers. You will need
the Oxygen Author SDK available on the  website which includes the source code of the Author operations in the
predefined document types and the full documentation in Javadoc format of the public API available for the developer
of Author custom actions.

The next Java examples are making use of AWT classes. If you are developing extensions for the  XML Editor plugin
for Eclipse you will have to use their SWT counterparts.

It is assumed you already read the Configuring Actions, Menus, Toolbar section and you are familiar with the  Author
customization. You can find the XML schema, CSS and XML sample in the Example Files Listings.

Attention:

Make sure the Java classes of your custom Author operations are compiled with the same Java version used
by . Otherwise the classes may not be loaded by the Java virtual machine. For example if you run XML Editor
XML Author with a Java 1.6 virtual machine but the Java classes of your custom Author operations are
compiled with a Java 1.7 virtual machine then the custom operations cannot be loaded and used by the Java
1.6 virtual machine.

Example 1. Step by Step Example. Simple Use of a Dialog from an Author Operation.

Let's start adding functionality for inserting images in the Simple Documentation Framework (shortly SDF). The
images are represented by the image element. The location of the image file is represented by the value of the href
attribute. In the Java implementation you will show a dialog with a text field, in which the user can enter a full URL,
or he can browse for a local file.

1. Create a new Java project, in your IDE of choice. Create the lib folder in the project folder. Copy the
oxygen.jar file from the {oXygen_installation_directory}/lib folder into the newly created
lib folder. oxygen.jar contains the Java interfaces you have to implement and the API needed to access the
Author features.

2. Create the simple.documentation.framework.InsertImageOperation class that implements the
ro.sync.ecss.extensions.api.AuthorOperation interface. This interface defines three methods:
doOperation, getArguments and getDescription

A short description of these methods follows:

• The doOperation method is invoked when the action is performed either by pressing the toolbar button, by
selecting the menu item or by pressing the shortcut key. The arguments taken by this methods can be one of
the following combinations:

• an object of type ro.sync.ecss.extensions.api.AuthorAccess and a map
• argument names and values

• The getArguments method is used by  when the action is configured. It returns the list of arguments (name
and type) that are accepted by the operation.

• The getDescription method is used by  when the operation is configured. It returns a description of the
operation.

Here is the implementation of these three methods:

/**
 * Performs the operation.
 */
public void doOperation(

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html


 | Author Developer Guide | 29

               AuthorAccess authorAccess, 
               ArgumentsMap arguments)
 throws IllegalArgumentException, 
                  AuthorOperationException {

 JFrame oxygenFrame = (JFrame) authorAccess.getParentFrame();
 String href = displayURLDialog(oxygenFrame);
 if (href.length() != 0) {  
     // Creates the image XML fragment.
     String imageFragment = 
        "<image xmlns='http://www.oxygenxml.com/sample/documentation'
 href='" 
        + href + "'/>";
  
     // Inserts this fragment at the caret position.
     int caretPosition = authorAccess.getCaretOffset();  
     authorAccess.insertXMLFragment(imageFragment, caretPosition);
 }
}
 
/**
 * Has no arguments.
 * 
 * @return null.
 */
public ArgumentDescriptor[] getArguments() {
 return null;
}

/**
 * @return A description of the operation.
 */
public String getDescription() {
 return "Inserts an image element. Asks the user for a URL reference.";
}

Note:  The complete source code can be found in the Simple Documentation Framework project, included
in the Oxygen Author SDK zip available for download on the  website.

Important:

Make sure you always specify the namespace of the inserted fragments.

<image xmlns='http://www.oxygenxml.com/sample/documentation'
  href='path/to/image.png'/>

3. Package the compiled class into a jar file. An example of an ANT script that packages the classes folder
content into a jar archive named sdf.jar is listed below:

<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="dist">    
    <target name="dist">
   <jar destfile="sdf.jar" basedir="classes">
    <fileset dir="classes">
     <include name="**/*"/>
     </fileset>
   </jar>        
    </target>
</project>

4. Copy the sdf.jar file into the frameworks / sdf folder.
5. Add the sdf.jar to the Author class path. To do this, open the Options > Preferences > Document Type

Association dialog, select SDF and press the Edit button.

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html


 | Author Developer Guide | 30

6. Select the Classpath tab in the lower part of the dialog and press the  Add  button . In the displayed dialog enter
the location of the jar file, relative to the  frameworks folder.

7. Let's create now the action which will use the defined operation. Click on the Actions label. Copy the icon files
for the menu item and for the toolbar in the frameworks / sdf folder.

8. Define the action's properties:

• Set ID to insert_image.
• Set Name to Insert image.
• Set Menu access key to letter i.
• Set Toolbar action to ${frameworks}/sdf/toolbarImage.png.
• Set Menu icon to ${frameworks}/sdf/menuImage.png.
• Set Shortcut key to Ctrl (Meta on Mac OS)+Shift+i.

9. Now let's set up the operation. You want to add images only if the current element is a section, book or
article.

• Set the value of XPath expression to

local-name()='section' or local-name()='book' 
 or local-name()='article'

• Set the Invoke operation field to simple.documentation.framework.InsertImageOperation.

Figure 22: Selecting the Operation



 | Author Developer Guide | 31

Figure 23: Selecting the Operation
10. Add the action to the toolbar, using the Toolbar panel.

To test the action, you can open the sdf_sample.xml sample, then place the caret inside a section between two
para elements for instance. Press the button associated with the action from the toolbar. In the dialog select an image
URL and press OK. The image is inserted into the document.

Example 2. Operations with Arguments. Report from Database Operation.

In this example you will create an operation that connects to a relational database and executes an SQL statement. The
result should be inserted in the edited XML document as a table. To make the operation fully configurable, it will
have arguments for the database connection string, the user name, the password and the SQL expression.

1. Create a new Java project in your preferred IDE. Create the lib folder in the Java project directory and copy the
oxygen.jar file from the {oXygen_installation_directory}/lib directory.

2. Create the class simple.documentation.framework.QueryDatabaseOperation. This class must
implements the ro.sync.ecss.extensions.api.AuthorOperation interface.

import ro.sync.ecss.extensions.api.ArgumentDescriptor;
import ro.sync.ecss.extensions.api.ArgumentsMap;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperation;
import ro.sync.ecss.extensions.api.AuthorOperationException;

public class QueryDatabaseOperation implements AuthorOperation{
3. Now define the operation's arguments. For each of them you will use a String constant representing the

argument name:

private static final String ARG_JDBC_DRIVER ="jdbc_driver";
private static final String ARG_USER ="user";
private static final String ARG_PASSWORD ="password";
private static final String ARG_SQL ="sql";

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html


 | Author Developer Guide | 32

private static final String ARG_CONNECTION ="connection";
4. You must describe each of the argument name and type. To do this implement the getArguments method

which will return an array of argument descriptors:

public ArgumentDescriptor[] getArguments() {
  ArgumentDescriptor args[] = new ArgumentDescriptor[] {
    new ArgumentDescriptor(
      ARG_JDBC_DRIVER,
      ArgumentDescriptor.TYPE_STRING,
      "The name of the Java class that is the JDBC driver."),
    new ArgumentDescriptor(
      ARG_CONNECTION,
      ArgumentDescriptor.TYPE_STRING,
      "The database URL connection string."),
    new ArgumentDescriptor(
      ARG_USER,
      ArgumentDescriptor.TYPE_STRING,
      "The name of the database user."),
    new ArgumentDescriptor(
      ARG_PASSWORD,
      ArgumentDescriptor.TYPE_STRING,
      "The database password."),
    new ArgumentDescriptor(
      ARG_SQL,
      ArgumentDescriptor.TYPE_STRING,
      "The SQL statement to be executed.")
  };
  return args;
 }

These names, types and descriptions will be listed in the Arguments table when the operation is configured.
5. When the operation is invoked, the implementation of the doOperation method extracts the arguments,

forwards them to the method that connects to the database and generates the XML fragment. The XML fragment
is then inserted at the caret position.

public void doOperation(AuthorAccess authorAccess, ArgumentsMap map)
   throws IllegalArgumentException, AuthorOperationException {
  
  // Collects the arguments.
  String jdbcDriver = 
   (String)map.getArgumentValue(ARG_JDBC_DRIVER);
  String connection = 
   (String)map.getArgumentValue(ARG_CONNECTION);
  String user = 
   (String)map.getArgumentValue(ARG_USER);
  String password = 
   (String)map.getArgumentValue(ARG_PASSWORD);
  String sql = 
   (String)map.getArgumentValue(ARG_SQL);

  int caretPosition = authorAccess.getCaretOffset();
  try {
   authorAccess.insertXMLFragment(
     getFragment(jdbcDriver, connection, user, password, sql), 
     caretPosition);
  } catch (SQLException e) {
   throw new AuthorOperationException(
     "The operation failed due to the following database error: " 
     + e.getMessage(), e);
  } catch (ClassNotFoundException e) {
   throw new AuthorOperationException(
     "The JDBC database driver was not found. Tried to load ' " 



 | Author Developer Guide | 33

     + jdbcDriver + "'", e);
  }
 }

6. The getFragment method loads the JDBC driver, connects to the database and extracts the data. The result
is a table element from the http://www.oxygenxml.com/sample/documentation namespace.
The header element contains the names of the SQL columns. All the text from the XML fragment is escaped.
This means that the '<' and '&' characters are replaced with the '&lt;' and '&amp;' character entities to ensure the
fragment is well-formed.

private String getFragment(
  String jdbcDriver, 
  String connectionURL, 
  String user, 
  String password, 
  String sql) throws 
   SQLException, 
   ClassNotFoundException {  
  
      Properties pr = new Properties();
      pr.put("characterEncoding", "UTF8");
      pr.put("useUnicode", "TRUE");
      pr.put("user", user);
      pr.put("password", password);
        
      // Loads the database driver.
      Class.forName(jdbcDriver);        
      // Opens the connection
      Connection connection = 
         DriverManager.getConnection(connectionURL, pr);
      java.sql.Statement statement = 
         connection.createStatement();
      ResultSet resultSet = 
         statement.executeQuery(sql);
        
      StringBuffer fragmentBuffer = new StringBuffer();
      fragmentBuffer.append(
        "<table xmlns=" + 
        "'http://www.oxygenxml.com/sample/documentation'>");
        
      //
      // Creates the table header.
      //
      fragmentBuffer.append("<header>");
      ResultSetMetaData metaData = resultSet.getMetaData();
      int columnCount = metaData.getColumnCount();
      for (int i = 1; i <= columnCount; i++) {
          fragmentBuffer.append("<td>");
          fragmentBuffer.append(
            xmlEscape(metaData.getColumnName(i)));
          fragmentBuffer.append("</td>");
      }
      fragmentBuffer.append("</header>");
        
      //
      // Creates the table content.
      //
      while (resultSet.next()) {
          fragmentBuffer.append("<tr>");
          for (int i = 1; i <= columnCount; i++) {
              fragmentBuffer.append("<td>");
              fragmentBuffer.append(
                xmlEscape(resultSet.getObject(i)));



 | Author Developer Guide | 34

              fragmentBuffer.append("</td>");
          }
          fragmentBuffer.append("</tr>");
      }
      
      fragmentBuffer.append("</table>");
      
      // Cleanup
      resultSet.close();
      statement.close();
      connection.close();
      return fragmentBuffer.toString();        
}

Note:  The complete source code can be found in the Simple Documentation Framework project, included
in the Oxygen Author SDK zip available for download on the  website.

7. Package the compiled class into a jar file.
8. Copy the jar file and the JDBC driver files into the frameworks / sdf directory.
9. Add the jars to the Author class path. For this, Open the options Document Type Dialog, select SDF and press the

Edit button. Select the Classpath tab in the lower part of the dialog.
10. Click on the Actions label. The action properties are:

• Set ID to clients_report.
• Set Name to Clients Report.
• Set Menu access key to letter r.
• Set Description to Connects to the database and collects the list of clients.
• Set Toolbar icon to ${frameworks}/sdf/TableDB20.png (image  TableDB20.png is already stored in

the frameworks / sdf folder).
• Leave empty the Menu icon.
• Set shortcut key to Ctrl (Meta on Mac OS)+Shift+C.

11. The action will work only if the current element is a section. Set up the operation as follows:

• Set XPath expression to:

local-name()='section'
• Use the Java operation defined earlier to set the Invoke operation field. Press the Choose button, then select

simple.documentation.framework.QueryDatabaseOperation. Once selected, the list of
arguments is displayed. In the figure below the first argument, jdbc_driver, represents the class name of the
MySQL JDBC driver. The connection string has the URL syntax : jdbc://<database_host>:<database_port>/
<database_name>.

The SQL expression used in the example follows, but it can be any valid SELECT expression which can be
applied to the database:

SELECT userID, email FROM users
12. Add the action to the toolbar, using the Toolbar panel.

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html


 | Author Developer Guide | 35

Figure 24: Java Operation Arguments Setup

Figure 25: Java Operation Arguments Setup

To test the action you can open the sdf_sample.xml sample place the caret inside a section between two para

elements for instance. Press the  Create Report  button from the toolbar. You can see below the toolbar with the
action button and sample table inserted by the Clients Report action.



 | Author Developer Guide | 36

Figure 26: Table Content Extracted from the Database

Editing attributes in-place using form controls

To edit attributes in the Author mode, use the Attributes View Attributes ViewAttributes ViewAttributes View or the
in-place attributes editing dialog.

The oxy_editor CSS extension function allows you to edit attribute and element text values directly in the Author
mode using form-based controls. Various implementations are available out of the box: combo boxes, checkboxes,
text fields, pop-ups, buttons which invoke custom Author actions or URL choosers. You can also implement custom
editors for your specific needs.

As a working example, the bundled samples project contains a file called personal.xml which allows editing
attributes in-place using some of these default implementations.

Localizing Frameworks

supports framework localization (translating framework actions, buttons, and menu entries to different languages).
This lets you develop and distribute a framework to users that speak different languages without changing the
distributed framework. Changing the language used in  (in Options > Preferences > Global > Language Global
preferences page) is enough to set the right language for each framework.

To localize the content of a framework, create a translation.xml file which contains all the translation (key,
value) mappings. The translation.xml has the following format:

<translation>
    <languageList>
        <language description="English" lang="en_US"/>
        <language description="German" lang="de_DE"/>
        <language description="French" lang="fr_FR"/>
    </languageList>
    <key value="list">
        <comment>List menu item name.</comment>
        <val lang="en_US">List</val>
        <val lang="de_DE">Liste</val>
        <val lang="fr_FR">Liste</val>
    </key>  
......................
</translation> 

http://www.oxygenxml.com/doc/ug-editor/topics/author-attributes-view.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/author-attributes-view.html
http://www.oxygenxml.com/doc/ug-author/topics/author-attributes-view.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-attributes-view.html


 | Author Developer Guide | 37

matches the GUI language with the language set in the translation.xml file. In case this language is not found,
the first available language declared in the languagelist tag for the corresponding framework is used.

Add the directory where this file is located to the Classpath list corresponding to the edited document type.

After you create this file, you are able to use the keys defined in it to customize the name and description of:

• framework actions;
• menu entries;
• contextual menus;
• toolbar;
• static CSS content.

For example, if you want to localize the bold action go to Options >  Preferences >  Document Type
Association. Open the Document type dialog, go to Author >  Actions, and rename the bold action to
${i18n(translation_key)}. Actions with a name format different than ${i18n(translation_key)}
are not localized. Translation_key corresponds to the key from the translation.xml file.

Now open the translation.xml file and edit the translation entry if it exists or create one if it does not exist.
This example presents an entry in the translation.xml file:

<key value="translation_key">
        <comment>Bold action name.</comment>
        <val lang="en_US">Bold</val>
        <val lang="de_DE">Bold</val>
        <val lang="fr_FR">Bold</val>
    </key>

To use a description from the translation.xml file in the Java code used by your custom framework, use
the new ro.sync.ecss.extensions.api.AuthorAccess.getAuthorResourceBundle() API
method to request for a certain key the associated value. In this way all the dialogs that you present from your custom
operations can have labels translated in different languages.

You can also refer a key directly in the CSS content:

title:before{
    content:"${i18n(title.key)} : ";
}

Note:  You can enter any language you want in the languagelist tag and any number of keys.

The translation.xml file for the DocBook framework is located
here:[OXYGEN_INSTALL_DIR]/frameworks/docbook/i18n/translation.xml. In
the Classpath list corresponding to the Docbook document type the following entry was added:
${framework}/i18n/.

In Options > Preferences > Document Type Association > Author > 
Actions, you can see how the DocBook actions are defined to use
these keys for their name and description. If you look in the Java class
ro.sync.ecss.extensions.docbook.table.SADocbookTableCustomizerDialog
available in the Author SDK, you can see how the new
ro.sync.ecss.extensions.api.AuthorResourceBundle API is used to retrieve
localized descriptions for different keys.

How to Deploy a Plugin or a Framework as an  Add-on

To deploy a plugin or a framework as an  add-on:

1. Pack it as a ZIP file or a . Please note that you should pack the entire root directory not just it's contents.



 | Author Developer Guide | 38

2. Digitally sign the package. Please note that you can perform this step only if you have created a at the previous
step. You will need a certificate signed by a trusted authority. To sign the jar you can either use the jarsigner
command line tool inside Oracle's Java Development Kit. ('JDK_install_dir'/bin/jarsigner.exe)
or, if you are working with , you can use the signjar task (which is just a front for the jarsigner command
line tool).
The benefit of having a signed add-on is that the user can verify the integrity of the add-on issuer. If you don't
have such a certificate you can generate one yourself using the keytool command line tool. Please note that this
approach is mostly recommended for tests since anyone can create a self signed certificate.

3. Create a descriptor file. You can use a template that  provides. To use this template, go to File >  New and select
the Oxygen add-ons update site template.

4. Copy the ZIP file and the descriptor file to an HTTP server. The URL to this location serves as the Update Site
URL.

Creating the Basic Association

Let us go through an example of creating a document type and editing an XML document of this type. We will call
our document type Simple Documentation Framework.

First Step - XML Schema

Our documentation framework will be very simple. The documents will be either articles or books, both
composed of sections. The sections may contain titles, paragraphs, figures, tables and other
sections. To complete the picture, each section will include a def element from another namespace.

The first schema file:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
    targetNamespace="http://www.oxygenxml.com/sample/documentation"
    xmlns:doc="http://www.oxygenxml.com/sample/documentation"
    xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
    elementFormDefault="qualified">

    <xs:import namespace=
    "http://www.oxygenxml.com/sample/documentation/abstracts" 
     schemaLocation=
    "abs.xsd"/>
                    

The namespace of the documents will be http://www.oxygenxml.com/sample/documentation. The
namespace of the def element is http://www.oxygenxml.com/sample/documentation/abstracts.

Now let's define the structure of the sections. They all start with a title, then have the optional def element then either
a sequence of other sections, or a mixture of paragraphs, images and tables.

<xs:element name="book" type="doc:sectionType"/>
<xs:element name="article" type="doc:sectionType"/>
<xs:element name="section" type="doc:sectionType"/>
    
<xs:complexType name="sectionType">
    <xs:sequence>
        <xs:element name="title" type="xs:string"/>
        <xs:element ref="abs:def" minOccurs="0"/>
        <xs:choice>
            <xs:sequence>
                <xs:element ref="doc:section" maxOccurs="unbounded"/>
            </xs:sequence>    
            <xs:choice maxOccurs="unbounded">
                <xs:element ref="doc:para"/>
                <xs:element ref="doc:image"/>
                <xs:element ref="doc:table"/>                



 | Author Developer Guide | 39

            </xs:choice>
        </xs:choice>
    </xs:sequence>
</xs:complexType>

The paragraph contains text and other styling markup, such as bold (b) and italic (i) elements.

<xs:element name="para" type="doc:paragraphType"/>
    
<xs:complexType name="paragraphType" mixed="true">
    <xs:choice minOccurs="0" maxOccurs="unbounded">
        <xs:element name="b"/>
        <xs:element name="i"/>
    </xs:choice>
</xs:complexType>

The image element has an attribute with a reference to the file containing image data.

<xs:element name="image">
    <xs:complexType>
        <xs:attribute name="href" type="xs:anyURI" use="required"/>
    </xs:complexType>
</xs:element>

The table contains a header row and then a sequence of rows (tr elements) each of them containing the cells. Each
cell has the same content as the paragraphs.

 <xs:element name="table">
    <xs:complexType>
        <xs:sequence>
            <xs:element name="header">
                <xs:complexType>
                    <xs:sequence>
                        <xs:element name="td" maxOccurs="unbounded" 
                            type="doc:paragraphType"/>
                    </xs:sequence>
                </xs:complexType>
            </xs:element>
            <xs:element name="tr" maxOccurs="unbounded">
                <xs:complexType>
                    <xs:sequence>
                        <xs:element name="td" type="doc:tdType" 
                             maxOccurs="unbounded"/>                          
      
                    </xs:sequence>
                </xs:complexType>
            </xs:element>
        </xs:sequence>
    </xs:complexType>
</xs:element>

<xs:complexType name="tdType">
    <xs:complexContent>
        <xs:extension base="doc:paragraphType">
            <xs:attribute name="row_span" type="xs:integer"/>
            <xs:attribute name="column_span" type="xs:integer"/>
        </xs:extension>            
    </xs:complexContent>
</xs:complexType>    

The def element is defined as a text only element in the imported schema abs.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 



 | Author Developer Guide | 40

    targetNamespace=
     "http://www.oxygenxml.com/sample/documentation/abstracts">
    <xs:element name="def" type="xs:string"/>
</xs:schema>

Now the XML data structure will be styled.

Schema Settings

In the dialog for editing the document type properties, in the bottom section there are a series of tabs. The first one
refers to the schema that is used for validation of the documents that match the defined Association Rules.

Important:

If the document refers a schema, using for instance a DOCTYPE declaration or a xsi:schemaLocation
attribute, the schema from the document type association will not be used when validating.

Schema Type Select from the combo box the value XML Schema.

Schema URI Enter the value ${frameworks}/sdf/schema/
sdf.xsd. We should use the ${frameworks} editor
variable in the schema URI path instead of a full path in
order to be valid for different  installations.

Important:

The ${frameworks} variable is expanded at
the validation time into the absolute location of
the directory containing the frameworks.

Second Step - The CSS

If you read the Simple Customization Tutorial then you already have some basic notions about creating simple
styles. The example document contains elements from different namespaces, so you will use CSS Level 3 extensions
supported by the Author layout engine to associate specific properties with that element.

Defining the General Layout

Now the basic layout of the rendered documents is created.

Elements that are stacked one on top of the other are: book, article, section, title, figure, table,
image. These elements are marked as having block style for display. Elements that are placed one after the other in
a flowing sequence are: b, i. These will have inline display.

/* Vertical flow */
book,
section,
para,
title,
image,
ref {
    display:block;
}

/* Horizontal flow */
b,i {
    display:inline;
}

Important:

Having block display children in an inline display parent, makes  Author change the style of the parent
to block display.



 | Author Developer Guide | 41

Styling the section Element

The title of any section must be bold and smaller than the title of the parent section. To create this effect a sequence
of CSS rules must be created. The * operator matches any element, it can be used to match titles having progressive
depths in the document.

title{
    font-size: 2.4em;
    font-weight:bold;    
}
* * title{
    font-size: 2.0em;
}
* * * title{
    font-size: 1.6em;
}
* * * * title{
    font-size: 1.2em;
}

It's useful to have before the title a constant text, indicating that it refers to a section. This text can include also the
current section number. The :before and :after pseudo elements will be used, plus the CSS counters.

First declare a counter named sect for each book or article. The counter is set to zero at the beginning of each
such element:

book, 
article{
    counter-reset:sect;
}
                        

The sect counter is incremented with each section, that is a direct child of a book or an article element.

book > section,
article > section{
    counter-increment:sect;
}   

The "static" text that will prefix the section title is composed of the constant "Section ", followed by the decimal value
of the sect counter and a dot.

book > section > title:before,
article > section > title:before{
    content: "Section " counter(sect) ". ";
}

To make the documents easy to read, you add a margin to the sections. In this way the higher nesting level, the larger
the left side indent. The margin is expressed relatively to the parent bounds:

section{
    margin-left:1em;
    margin-top:1em;
}



 | Author Developer Guide | 42

Figure 27: A sample of nested sections and their titles.

In the above screenshot you can see a sample XML document rendered by the CSS stylesheet. The selection "avoids"
the text that is generated by the CSS "content" property. This happens because the CSS generated text is not present in
the XML document and is just a visual aid.

Styling the Inline Elements

The "bold" style is obtained by using the font-weight CSS property with the value bold, while the "italic" style
is specified by the font-style property:

b {
    font-weight:bold;
}

i {
    font-style:italic;
}

Styling Images

The CSS 2.1 does not specify how an element can be rendered as an image. To overpass this limitation,  Author
supports a CSS Level 3 extension allowing to load image data from an URL. The URL of the image must be specified
by one of the element attributes and it is resolved through the catalogs specified in .

image{
    display:block;
    content: attr(href, url);
    margin-left:2em;
}

Our image element has the required attribute href of type xs:anyURI. The href attribute contains an image
location so the rendered content is obtained by using the function:

attr(href, url)

The first argument is the name of the attribute pointing to the image file. The second argument of the attr function
specifies the type of the content. If the type has the url value, then  identifies the content as being an image. If the
type is missing, then the content will be the text representing the attribute value.

Author handles both absolute and relative specified URLs. If the image has an absolute URL location (e.g: "http://
www.oasis-open.org/images/standards/oasis_standard.jpg") then it is loaded directly from this location. If the image



 | Author Developer Guide | 43

URL is relative specified to the XML document (e.g: "images/my_screenshot.jpg") then the location is obtained by
adding this value to the location of the edited XML document.

An image can also be referenced by the name of a DTD entity which specifies the location of the image file. For
example if the document declares an entity graphic which points to a JPEG image file:

<!ENTITY graphic SYSTEM "depo/keyboard_shortcut.jpg" NDATA JPEG>

and the image is referenced in the XML document by specifying the name of the entity as the value of an attribute:

<mediaobject>
    <imageobject>
        <imagedata entityref="graphic" scale="50"/>
    </imageobject>
</mediaobject>

The CSS should use the functions url, attr and unparsed-entity-uri for displaying the image in the
Author mode:

imagedata[entityref]{
    content: url(unparsed-entity-uri(attr(entityref))); 
}

To take into account the value of the width attribute of the imagedata and use it for resizing the image, the CSS
can define the following rule:

imagedata[width]{
  width:attr(width, length);
}

Figure 28: Samples of images in Author

Testing the Document Type Association

To test the new Document Type create an XML instance that is conforming with the Simple Documentation
Framework association rules. You will not specify an XML Schema location directly in the document, using an
xsi:schemaLocation attribute;  will detect instead its associated document type and use the specified schema.

<book xmlns="http://www.oxygenxml.com/sample/documentation" 
      xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">

    <title>My Technical Book</title>
    <section>
        <title>XML</title>
        <abs:def>Extensible Markup Language</abs:def>
        <para>In this section of the book I will 



 | Author Developer Guide | 44

           explain different XML applications.</para>
    </section>
</book>

When trying to validate the document there should be no errors. Now modify the title to title2. Validate again.
This time there should be one error:

  cvc-complex-type.2.4.a: Invalid content was found starting with element 
  'title2'. One of '{"http://www.oxygenxml.com/sample/documentation":title}' 
  is expected.

Undo the tag name change. Press on the Author button at the bottom of the editing area.  should load the CSS from
the document type association and create a layout similar to this:

Organizing the Framework Files

First, create a new folder called sdf (from "Simple Documentation Framework") in
{oXygen_installation_directory}/frameworks. This folder will be used to store all files related to the
documentation framework. The following folder structure will be created:

oxygen
  frameworks
     sdf
       schema
       css

The frameworks directory is the container where all the oXygen framework customizations are located. Each
subdirectory contains files related to a specific type of XML documents: schemas, catalogs, stylesheets, CSSs, etc.
Distributing a framework means delivering a framework directory.

It is assumed that you have the right to create files and folder inside the oXygen installation directory. If you do not
have this right, you will have to install another copy of the program in a folder you have access to, the home directory
for instance, or your desktop. You can download the "all platforms" distribution from the oXygen website and extract
it in the chosen folder.

To test your framework distribution, copy it in the frameworks directory of the newly installed application and
start oXygen by running the provided start-up script files.

You should copy the created schema files abs.xsd and sdf.xsd, sdf.xsd being the master schema, to the
schema directory and the CSS file sdf.css to the css directory.

Packaging and Deploying

Using a file explorer, go to the  frameworks directory. Select the sdf directory and make an archive from it. Move
it to another  installation (eventually on another computer). Extract it in the frameworks directory. Start  and test
the association as explained above.



 | Author Developer Guide | 45

If you create multiple document type associations and you have a complex directory structure it might be easy from
the deployment point of view to use an  All Platforms distribution. Add your framework files to it, repackage it and
send it to the content authors.

Attention:

When deploying your customized sdf directory please make sure that your sdf directory contains the
sdf.framework file (that is the file defined as External Storage in Document Type Association dialog
shall always be stored inside the sdf directory). If your external storage points somewhere else  will not be
able to update the Document Type Association options automatically on the deployed computers.

Configuring New File Templates

You will create a set of document templates that the content authors will use as starting points for creating Simple
Document Framework books and articles.

Each Document Type Association can point to a directory, usually named templates, containing the file templates.
All files found here are considered templates for the respective document type. The template name is taken from the
file name, and the template type is detected from the file extension.

1. Go to the [oxygen-install-dir]\frameworks\sdf directory and create a directory named
templates.
The directory tree of the documentation framework now is:

oxygen
    frameworks
        sdf
            schema
            css
            templates

2. In the templates directory create two files: a file for the book template and another one for the article template.

The Book.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
    <title>Book Template Title</title>
    <section>
        <title>Section Title</title>
        <abs:def/>
        <para>This content is copyrighted:</para>
        <table>
            <header>
                <td>Company</td>
                <td>Date</td>
            </header>
            <tr>
                <td/>
                <td/>
            </tr>
        </table>
    </section>
    </book>

The Article.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<article 
    xmlns="http://www.oxygenxml.com/sample/documentation" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <title></title>
    <section>



 | Author Developer Guide | 46

        <title></title>
        <para></para>
        <para></para>
    </section>        
</article>

You can also use editor variables in the template files' content and they will be expanded when the files are
opened.

Note:  You should avoid using the ${cfd},${cf},${cfu}, and ${cfdu} editor variables when you
save your documents in a data base.

3. Open the Document Type dialog for the SDF framework and click the Templates tab. In the Templates
directory text field, introduce the ${frameworkDir} / templates path. As you have already seen before,
it is recommended that all the file references made from a Document Type Association to be relative to the
${frameworkDir} directory. Binding a Document Type Association to an absolute file (e. g.: "C:\some_dir
\templates") makes the association difficult to share between users.

4. To test the templates settings, go to File/New to display the New dialog. The names of the two templates are
prefixed with the name of the Document Type Association (SDF in this case). Selecting one of them should create
a new XML file with the content specified in the template file.

Editor Variables

An editor variable is a shorthand notation for context-dependent information, like a file or folder path, a time-stamp,
or a date. It is used in the definition of a command (for example the input URL of a transformation, the output file
path of a transformation, the command line of an external tool) to make a command or a parameter generic and
reusable with other input files. When the same command is applied to different files, the notation is expanded at the
execution of the command so that the same command has different effects depending on the actual file.

You can use the following editor variables in  commands of external engines or other external tools, in transformation
scenarios, and in validation scenarios, and Author operations:

• ${oxygenHome} -  installation folder as URL;
• ${oxygenInstallDir} -  installation folder as file path;
• ${frameworks} - The path (as URL) of the frameworks subfolder of the  install folder;
• ${frameworksDir} - The path (as file path) of the frameworks subfolder of the  installation folder;
• ${home} - The path (as URL) of the user home folder;
• ${homeDir} - The path (as file path) of the user home folder;
• ${pdu} - Current project folder as URL. Usually the current folder selected in the Project View;
• ${pd} - Current project folder as file path. Usually the current folder selected in the Project View;
• ${pn} - Current project name;
• ${cfdu} - Current file folder as URL, that is the path of the current edited document up to the name of the parent

folder, represented as a URL;
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent

folder;
• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently

opened and selected;
• ${cfne} - Current file name with extension. The current file is the one currently opened and selected;
• ${cf} - Current file as file path, that is the absolute file path of the current edited document;
• ${cfu} - The path of the current file as a URL. The current file is the one currently opened and selected;
• ${af} - The local file path of the ZIP archive that includes the current edited document;
• ${afu} - The URL path of the ZIP archive that includes the current edited document;
• ${afd} - The local directory path of the ZIP archive that includes the current edited document;
• ${afdu} - The URL path of the directory of the ZIP archive that includes the current edited document;
• ${afn} - The file name (without parent directory and without file extension) of the zip archive that includes the

current edited file;



 | Author Developer Guide | 47

• ${afne} - The file name (with file extension, for example .zip or .epub, but without parent directory) of the zip
archive that includes the current edited file;

• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document represented
as URL;

• ${ps} - Path separator, that is the separator which can be used on the current platform (Windows, Mac OS X,
Linux) between library files specified in the class path;

• ${timeStamp} - Time stamp, that is the current time in Unix format. It can be used for example to save
transformation results in different output files on each transform;

• ${caret} - The position where the caret is inserted. This variable can be used in a code template, in Author
operations, or in a selection plugin;

• ${selection} - The current selected text content in the current edited document. This variable can be used in a code
template, in Author operations, or in a selection plugin;

• ${id} - Application-level unique identifier;A short sequence of 10-12 letters and digits which is not guaranteed to
be universally unique;

• ${uuid} - Universally unique identifier;An unique sequence of 32 hexadecimal digits generated by the Java UUID
class;

• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed
by the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor
variable;

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified
in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for
operating system environment variables, use the${env(VAR_NAME)} editor variable instead;

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...),
'default_value')}  - To prompt for values at runtime, use the ask('message', type,
('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default-value'') editor variable. You can
set the following parameters:

• 'message' - the displayed message. Note the quotes that enclose the message;
• type - optional parameter. Can have one of the following values:

• url - input is considered an URL.  checks that the URL is valid before passing it to the transformation;
• password - input characters are hidden;
• generic - the input is treated as generic text that requires no special handling;
• relative_url - input is considered an URL.  tries to make the URL relative to that of the document

you are editing;

Note:  You can use the $ask editor variable in file templates. In this case,  keeps an absolute URL.

• combobox - displays a dialog that contains a non-editable combo-box;
• editable_combobox - displays a dialog that contains an editable combo-box;
• radio - displays a dialog that contains radio buttons;

• 'default-value' - optional parameter. Provides a default value in the input text box;

Examples:

• ${ask('message')} - Only the message displayed for the user is specified.
• ${ask('message', generic, 'default')} - 'message' is displayed, the type is not

specified (the default is string), the default value is 'default'.
• ${ask('message', password)} - 'message' is displayed, the characters typed are masked with

a circle symbol.
• ${ask('message', password, 'default')} - same as before, the default value is

'default'.
• ${ask('message', url)} - 'message' is displayed, the parameter type is URL.
• ${ask('message', url, 'default')} - same as before, the default value is 'default'.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat
class. Example: yyyy-MM-dd;

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html


 | Author Developer Guide | 48

Note:  This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to http://www.w3.org/
TR/xmlschema-2/#dateTime.

• ${dbgXML} - The local file path to the XML document which is current selected in the Debugger source combo
box (for tools started from the XSLT/XQuery Debugger);

• ${dbgXSL} - The local file path to the XSL/XQuery document which is current selected in the Debugger
stylesheet combo box (for tools started from the XSLT/XQuery Debugger);

• ${tsf} - The transformation result file path. If the current opened file has an associated scenario which specifies a
transformation output file, this variable expands to it;

• ${dsu} - The path of the detected schema as an URL for the current validated XML document;
• ${ds} - The path of the detected schema as a local file path for the current validated XML document;
• ${cp} - Current page number. Used to display the current page number on each printed page in the Editor / Print

Preferences page;
• ${tp} - Total number of pages in the document. Used to display the total number of pages on each printed page in

the Editor / Print Preferences page.

Custom Editor Variables

An editor variable can be created by the user and included in any user defined expression where a built-in editor
variable is also allowed. For example a custom editor variable may be necessary for configuring the command line of
an external tool, the working directory of a custom validator, the command line of a custom XSLT engine, a custom
FO processor, etc. All the custom editor variables are listed together with the built-in editor variables, for example
when editing the working folder or the command line of an external toolexternal toolexternal tool external tool or of a
custom validatorcustom validatorcustom validatorcustom validator , the working directory, etc.

Creating a custom editor variable is very simple: just specify the name that will be used in user defined expressions,
the value that will replace the variable name at runtime and a textual description for the user of that variable.

You can configure the custom editor variables in the Preferences page.Preferences page.Preferences
page.Preferences page.Preferences page.

Create Your Own Stylesheet Templates

allows you to create your own stylesheets templates and place them in the templates directory:

• Customize the stylesheet (add namespaces etc.) that you want to become a template and save it to a file with an
appropriate name.

• Copy the file to the templates directory in the  installation directory.
• Open  and go to File > New to see your custom template.

Configuring XML Catalogs

In the XML sample file for SDF you did not use a xsi:schemaLocation attribute, but instead you let the editor use the
schema from the association. However there are cases in which you must refer for instance the location of a schema
file from a remote web location and an Internet connection may not be available. In such cases an XML catalog may
be used to map the web location to a local file system entry. The following procedure presents an example of using an
XML catalogs, by modifying our sdf.xsd XML Schema file from the Example Files Listings.

1. Create a catalog file that will help the parser locate the schema for validating the XML document. The file must
map the location of the schema to a local version of the schema.

Create a new XML file called catalog.xml and save it into the
{oXygen_installation_directory} / frameworks / sdf directory. The content of the file
should be:

<?xml version="1.0"?> 
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
    <uri name="http://www.oxygenxml.com/SDF/abs.xsd"
            uri="schema/abs.xsd"/>
    <uri name="http://www.oxygenxml.com/SDF/abs.xsd" 

http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-external-tools.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-external-tools.html
http://www.oxygenxml.com/doc/ug-developer/topics/preferences-external-tools.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-custom-engines.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-custom-engines.html
http://www.oxygenxml.com/doc/ug-developer/topics/preferences-custom-engines.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-custom-editor-variables.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-custom-editor-variables.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-custom-editor-variables.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-custom-editor-variables.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-custom-editor-variables.html


 | Author Developer Guide | 49

               uri="schema/abs.xsd"/>
</catalog>

2. Add catalog files to your Document Type Association using the Catalogs tab from the Document Type dialog.

To test the catalog settings, restart  and try to validate a new sample Simple Documentation Framework document.
There should be no errors.

The sdf.xsd schema that validates the document refers the other file abs.xsd through an
import element:

<xs:import namespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts" 
 schemaLocation="http://www.oxygenxml.com/SDF/abs.xsd"/>

The schemaLocation attribute references the abs.xsd file:

xsi:schemaLocation="http://www.oxygenxml.com/sample/documentation/
abstracts
    http://www.oxygenxml.com/SDF/abs.xsd"/>

The catalog mapping is:

http://www.oxygenxml.com/SDF/abs.xsd -> schema/abs.xsd

This means that all the references to http://www.oxygenxml.com/SDF/abs.xsd must be resolved to
the abs.xsd file located in the schema directory. The URI element is used by URI resolvers, for
example for resolving a URI reference used in an XSLT stylesheet.

Configuring Transformation Scenarios

When distributing a framework to the users, it is a good idea to have the transformation scenarios already configured.
This would help the content authors publish their work in different formats. Being contained in the Document Type
Association the scenarios can be distributed along with the actions, menus, toolbars, catalogs, etc.

These are the steps that allow you to create a transformation scenario for your framework.

1. Create a xsl folder inside the frameworks / sdf folder.

The folder structure for the documentation framework should be:

oxygen
  frameworks
     sdf
       schema
       css
       templates
       xsl

2. Create the sdf.xsl file in the xsl folder. The complete content of the sdf.xsl file is found in the Example
Files Listings.

3. Open the Options/Preferences/Document Type Associations. Open the Document Type dialog for the SDF
framework then choose the Transformation tab. Click the New button.
In the Edit Scenario dialog, fill the following fields:

• Fill in the Name field with SDF to HTML. This will be the name of your transformation scenario.
• Set the XSL URL field to ${frameworks}/sdf/xsl/sdf.xsl.
• Set the Transformer to Saxon 9B.



 | Author Developer Guide | 50

Figure 29: Configuring a transformation scenario

Figure 30: Configuring a transformation scenario
4. Change to the Output tab. Configure the fields as follows:

• Set the Save as field to ${cfd}/${cfn}.html. This means the transformation output file will have the
name of the XML file and the html extension and will be stored in the same folder.

• Enable the Open in Browser/System Application option.

Note:  If you already set the Default Internet browser option in the Global preferences page, it takes
precedence over the default system application settings.



 | Author Developer Guide | 51

• Enable the Saved file option.

Now the scenario is listed in the Transformation tab:

Figure 31: The transformation tab

Figure 32: The transformation tab

To test the transformation scenario you just created, open the SDF XML sample from the Example Files Listings.

Click the  Apply Transformation Scenario(s)  button to display the Configure Transformation Scenario(s)
dialog. Its scenario list contains the scenario you defined earlier SDF to HTML. Click it then choose Transform now.
The HTML file should be saved in the same folder as the XML file and displayed in the browser.

Figure 33: Selecting the predefined scenario



 | Author Developer Guide | 52

Figure 34: Selecting the predefined scenario

Configuring Validation Scenarios

You can distribute a framework with a series of already configured validation scenarios. Also, this provides enhanced
validation support allowing you to use multiple grammars to check the document. For example, you can use
Schematron rules to impose guidelines, otherwise impossible to enforce using conventional validation.

To associate a validation scenario with a specific framework, follow these steps:

1. Open the Options/Preferences/Document Type Associations. Open the Document Type dialog for the SDF
framework, then choose the Validation tab. This tab holds a list of document types for which you can define
validation scenarios. To set one of the validation scenarios as default for a specific document type, select it and
press /  Toggle default .

2. Press the New button to add a new scenario.
3. Press the Add button to add a new validation unit with default settings.

The dialog that lists all validation units of the scenario is opened.



 | Author Developer Guide | 53

Figure 35: Add / Edit a Validation Unit

Figure 36: Add / Edit a Validation Unit

The table holds the following information:

• Storage - allows you to create a scenario at project level, or as global;
• URL of the file to validate - the URL of the main module which includes the current module. It is also the

entry module of the validation process when the current one is validated;
• File type - the type of the document validated in the current validation unit.  automatically selects the file type

depending on the value of the URL of the file to validate field;
• Validation engine - one of the engines available in  for validation of the type of document to which the

current module belongs. Default engine is the default setting and means that the default engine executes the
validation. This engine is set in Preferences pages for the type of the current document (XML document,
XML Schema, XSLT stylesheet, XQuery file, and others) instead of a validation scenario;

• Automatic validation - if this option is checked, then the validation operation defined by this row of the
table is applied also by the automatic validation feature. the automatic validation feature. If the Automatic
validation feature is disabled in Preferences disabled in Preferences then this option does not take effect as the
Preference setting has higher priority;

• Schema - the this option becomes active when you set the File type to XML Document;



 | Author Developer Guide | 54

• Settings - opens the Specify Schema dialog box, allowing you to set a schema for validating XML documents,
or a list of extensions for validating XSL or XQuery documents. You can also set a default phase for validation
with a Schematron schema.

4. Edit the URL of the main validation module.

Specify the URL of the main module:

• browsing for a local, remote, or archived file;
• using an editor variable or a custom editor variable, available in the following pop-up menu, opened after

pressing the  button:

Figure 37: Insert an Editor Variable

Figure 38: Insert an Editor Variable
5. Select the type of the validated document.

Note that it determines the list of possible validation engines.
6. Select the validation engine.
7. Select the Automatic validation option if you want to validate the current unit when automatic validation feature

is turned on in Preferences. automatic validation feature is turned on in Preferences.
8. Choose what schema is used during validation: the one detected after parsing the document or a custom one.

Configuring Extensions

You can add extensions to your Document Type Association using the Extensions tab from the Document Type
dialog.

Note:  It is possible for a plugin to share the same classes with a framework. For further details, go to How to
Share the Classloader Between a Framework and a Plugin.



 | Author Developer Guide | 55

Configuring an Extensions Bundle

Starting with  10.3 version a single bundle was introduced acting as a provider for all other extensions. The
individual extensions can still be set and if present they take precedence over the single provider, but this practice
is being discouraged and the single provider should be used instead. To set individual extensions go to Options >
Preferences > Document Type Association, double-click a document type and go to the extension tab.

The extensions bundle is represented by the ro.sync.ecss.extensions.api.ExtensionsBundle class.
The provided implementation of the ExtensionsBundle is instantiated when the rules of the Document Type
Association defined for the custom framework match a document opened in the editor. Therefor references to objects
which need to be persistent throughout the application running session must not be kept in the bundle because the
next detection event can result in creating another ExtensionsBundle instance.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

1. Create a new Java project, in your IDE. Create the lib folder in the Java project folder and copy in it the
oxygen.jar file from the {oXygen_installation_directory}/lib folder.

2. Create the class simple.documentation.framework.SDFExtensionsBundle which must extend the
abstract class ro.sync.ecss.extensions.api.ExtensionsBundle.

public class SDFExtensionsBundle extends ExtensionsBundle {
3. A Document Type ID and a short description should be defined first by implementing the methods

getDocumentTypeID and getDescription. The Document Type ID is used to uniquely identify the
current framework. Such an ID must be provided especially if options related to the framework need to be
persistently stored and retrieved between sessions.

 public String getDocumentTypeID() {
      return "Simple.Document.Framework.document.type";
 }

 public String getDescription() {
      return "A custom extensions bundle used for the Simple Document" + 
                    "Framework document type";
 }

4. In order to be notified about the activation of the custom Author extension in relation with an opened document
an ro.sync.ecss.extensions.api.AuthorExtensionStateListener should be implemented.
The activation and deactivation events received by this listener should be used to perform custom initializations
and to register / remove listeners like ro.sync.ecss.extensions.api.AuthorListener,
ro.sync.ecss.extensions.api.AuthorMouseListener or
ro.sync.ecss.extensions.api.AuthorCaretListener. The custom author extension state listener
should be provided by implementing the method createAuthorExtensionStateListener.

 public AuthorExtensionStateListener createAuthorExtensionStateListener() {
      return new SDFAuthorExtensionStateListener();
 }

The AuthorExtensionStateListener is instantiated and notified about the activation of the framework
when the rules of the Document Type Association match a document opened in the Author editor mode.
The listener is notified about the deactivation when another framework is activated for the same document,
the user switches to another mode or the editor is closed. A complete description and implementation of
an ro.sync.ecss.extensions.api.AuthorExtensionStateListener can be found in the
Implementing an Author Extension State Listener.

If Schema Aware mode is active in Oxygen, all actions that can generate invalid content will be redirected toward
the ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler. The handler can
either resolve a specific case, let the default implementation take place or reject the edit entirely by throwing an
ro.sync.ecss.extensions.api.InvalidEditException. The actions that are forwarded to this
handler include typing, delete or paste.

See the Implementing an Author Schema Aware Editing Handler section for more details about this handler.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExtensionStateListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorMouseListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/InvalidEditException.html


 | Author Developer Guide | 56

5. Customizations of the content completion proposals are permitted by creating a schema manager filter
extension. The interface that declares the methods used for content completion proposals filtering is
ro.sync.contentcompletion.xml.SchemaManagerFilter. The filter can be applied on
elements, attributes or on their values. Responsible for creating the content completion filter is the method
createSchemaManagerFilter. A new SchemaManagerFilter will be created each time a document
matches the rules defined by the Document Type Association which contains the filter declaration.

 public SchemaManagerFilter createSchemaManagerFilter() {
      return new SDFSchemaManagerFilter();
 }

A detailed presentation of the schema manager filter can be found in Configuring a Content completion handler
section.

6. The Author supports link based navigation between documents and document sections. Therefore, if the
document contains elements defined as links to other elements, for example links based on the id attributes,
the extension should provide the means to find the referred content. To do this an implementation of the
ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface should be returned by
the createElementLocatorProvider method. Each time an element pointed by a link needs to be located
the method is invoked.

 public ElementLocatorProvider createElementLocatorProvider() {
      return new DefaultElementLocatorProvider();
 }

The section that explains how to implement an element locator provider is Configuring a Link target element
finder.

7. The drag and drop functionality can be extended by implementing the
ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener interface.
Relevant methods from the listener are invoked when the mouse is dragged, moved over, or exits the
Author editor mode, when the drop action changes, and when the drop occurs. Each method receives
the DropTargetEvent containing information about the drag and drop operation. The drag and drop
extensions are available on Author mode for both  Eclipse plugin and standalone application. The Text
mode corresponding listener is available only for  Eclipse plugin. The methods corresponding to each
implementation are: createAuthorAWTDndListener, createTextSWTDndListener and
createAuthorSWTDndListener.

 public AuthorDnDListener createAuthorAWTDndListener() {
      return new SDFAuthorDndListener();
 }

For more details about the Author drag and drop listeners see the Configuring a custom Drag and Drop listener
section.

8. Another extension which can be included in the bundle is the reference resolver. In our case the references are
represented by the ref element and the attribute indicating the referred resource is location. To be able to obtain
the content of the referred resources you will have to implement a Java extension class which implements the
ro.sync.ecss.extensions.api.AuthorReferenceResolver. The method responsible for creating
the custom references resolver is createAuthorReferenceResolver. The method is called each time
a document opened in an Author editor mode matches the Document Type Association where the extensions
bundle is defined. The instantiated references resolver object is kept and used until another extensions bundle
corresponding to another Document Type is activated as result of the detection process.

 public AuthorReferenceResolver createAuthorReferenceResolver() {
      return new ReferencesResolver();
 }

A more detailed description of the references resolver can be found in the Configuring a References Resolver
section.

9. To be able to dynamically customize the default CSS styles for a certain
ro.sync.ecss.extensions.api.node.AuthorNode an implementation of the
ro.sync.ecss.extensions.api.StylesFilter can be provided. The extensions bundle method

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/SchemaManagerFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/com/oxygenxml/editor/editors/author/AuthorDnDListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReferenceResolver.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorNode.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html


 | Author Developer Guide | 57

responsible for creating the StylesFilter is createAuthorStylesFilter. The method is called each
time a document opened in an Author editor mode matches the document type association where the extensions
bundle is defined. The instantiated filter object is kept and used until another extensions bundle corresponding to
another Document Type is activated as a result of the detection process.

 public StylesFilter createAuthorStylesFilter() {
      return new SDFStylesFilter();
 }

See the Configuring CSS styles filter section for more details about the styles filter extension.
10. In order to edit data in custom tabular format implementations of the

ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider and the
ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider interfaces should
be provided. The two methods from the ExtensionsBundle specifying these two extension points are
createAuthorTableCellSpanProvider and createAuthorTableColumnWidthProvider.

 public AuthorTableCellSpanProvider createAuthorTableCellSpanProvider() {
      return new TableCellSpanProvider();
 }
 
 public AuthorTableColumnWidthProvider 
          createAuthorTableColumnWidthProvider() {
      return new TableColumnWidthProvider();
 }

The two table information providers are not reused for different tables. The methods are called for each table
in the document so new instances should be provided every time. Read more about the cell span and column
width information providers in Configuring a Table Cell Span Provider and Configuring a Table Column Width
Provider sections.

If the functionality related to one of the previous extension point does not need to be modified then the developed
ro.sync.ecss.extensions.api.ExtensionsBundle should not override the corresponding method
and leave the default base implementation to return null.

11. An XML vocabulary can contain links to different areas of a document. In case the document contains
elements defined as link you can choose to present a more relevant text description for each link. To do this an
implementation of the ro.sync.ecss.extensions.api.link.LinkTextResolver interface should
be returned by the createLinkTextResolver method. This implementation is used each time the oxy_link-
text() function is encountered in the CSS styles associated with an element.

public LinkTextResolver createLinkTextResolver() {
  return new DitaLinkTextResolver();
}

offers built in implementations for DITA and DocBook:
ro.sync.ecss.extensions.dita.link.DitaLinkTextResolver
ro.sync.ecss.extensions.docbook.link.DocbookLinkTextResolver

12. Pack the compiled class into a jar file.
13. Copy the jar file into the frameworks / sdf directory.
14. Add the jar file to the Author class path.
15. Register the Java class by clicking on the Extensions tab. Press the Choose button and select from the displayed

dialog the name of the class: SDFExtensionsBundle.

Note:  The complete source code can be found in the Simple Documentation Framework project, included
in the Oxygen Author SDK zip available for download on the  website.

Customize Profiling Conditions

For each document type, you can configure the phrase-type elements that wrap the profiled content by setting a
custom ro.sync.ecss.extensions.api.ProfilingConditionalTextProvider. This configuration
is set by default for DITA and Docbook frameworks.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSpanProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ExtensionsBundle.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/LinkTextResolver.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/dita/link/DitaLinkTextResolver.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/docbook/link/DocbookLinkTextResolver.html
http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/ProfilingConditionalTextProvider.html


 | Author Developer Guide | 58

Preserve Style and Format on Copy and Paste from External Applications

Styled content can be inserted in the Author editor by copying or dragging it from:

• Office-type applications (Microsoft Word and Microsoft Excel, OpenOffice.org Writer and OpenOffice.org
Calc);

• web browsers (like Mozilla Firefox or Microsoft Internet Explorer);
• the Data Source Explorer view (where resources are available from WebDAV or CMS servers).

The styles and general layout of the copied content like: sections with headings, tables, list items, bold, and italic text,
hyperlinks, are preserved by the paste operation by transforming them to the equivalent XML markup of the target
document type. This is available by default in the following predefined document types: DITA, DocBook 4, DocBook
5, TEI 4, TEI 5, XHTML.

For other document types the default behavior of the paste operation is to keep only the text content
without the styling but it can be customized by setting an XSLT stylesheet in that document type. The
XSLT stylesheet must accept as input an XHTML flavor of the copied content and transform it to the
equivalent XML markup that is appropriate for the target document type of the paste operation. The
stylesheet is set up by implementing the getImporterStylesheetFileName method of an
instance object of the AuthorExternalObjectInsertionHandler class which is returned by the
createExternalObjectInsertionHandler method of the ExtensionsBundle instance of the target
document type.

Implementing an Author Extension State Listener

The ro.sync.ecss.extensions.api.AuthorExtensionStateListener implementation is notified
when the Author extension where the listener is defined is activated or deactivated in the Document Type detection
process.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorExtensionStateListener;

public class SDFAuthorExtensionStateListener implements
  AuthorExtensionStateListener {
  private AuthorListener sdfAuthorDocumentListener;
  private AuthorMouseListener sdfMouseListener;
  private AuthorCaretListener sdfCaretListener;
  private OptionListener sdfOptionListener;

The activation event received by this listener when the rules of the Document Type Association
match a document opened in the Author editor mode, should be used to perform custom initializations
and to register listeners like ro.sync.ecss.extensions.api.AuthorListener,
ro.sync.ecss.extensions.api.AuthorMouseListener or
ro.sync.ecss.extensions.api.AuthorCaretListener.

 public void activated(AuthorAccess authorAccess) {
   // Get the value of the option.
   String option = authorAccess.getOptionsStorage().getOption(
               "sdf.custom.option.key", "");
   // Use the option for some initializations...
   
   // Add an option listener.
   authorAccess.getOptionsStorage().addOptionListener(sdfOptionListener);
   
   // Add author document listeners.
   sdfAuthorDocumentListener = new SDFAuthorListener();
   authorAccess.getDocumentController().addAuthorListener(
               sdfAuthorDocumentListener);
 
   // Add mouse listener.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExtensionStateListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorMouseListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html


 | Author Developer Guide | 59

   sdfMouseListener = new SDFAuthorMouseListener();
   authorAccess.getEditorAccess().addAuthorMouseListener(sdfMouseListener);
 
   // Add caret listener.
   sdfCaretListener = new SDFAuthorCaretListener();
   authorAccess.getEditorAccess().addAuthorCaretListener(sdfCaretListener);
 
   // Other custom initializations...
 
 }

The authorAccess parameter received by the activated method can be used to gain access to Author specific
actions and informations related to components like the editor, document, workspace, tables, or the change tracking
manager.

If options specific to the custom developed Author extension need to be stored or retrieved, a reference
to the ro.sync.ecss.extensions.api.OptionsStorage can be obtained by calling the
getOptionsStorage method from the author access. The same object can be used to register
ro.sync.ecss.extensions.api.OptionListener listeners. An option listener is registered in relation
with an option key and will be notified about the value changes of that option.

An AuthorListener can be used if events related to the Author document modifications are of interest. The
listener can be added to the ro.sync.ecss.extensions.api.AuthorDocumentController. A
reference to the document controller is returned by the getDocumentController method from the author
access. The document controller can also be used to perform operations involving document modifications.

To provide access to Author editor component related functionality and information, the author access has a reference
to the ro.sync.ecss.extensions.api.access.AuthorEditorAccess that can be obtained when
calling the getEditorAccess method. At this level AuthorMouseListener and AuthorCaretListener
can be added which will be notified about mouse and caret events occurring in the Author editor mode.

The deactivation event is received when another framework is activated for the same document, the user switches
to another editor mode or the editor is closed. The deactivate method is typically used to unregister the listeners
previously added on the activate method and to perform other actions. For example, options related to the
deactivated author extension can be saved at this point.

 public void deactivated(AuthorAccess authorAccess) {
   // Store the option.
   authorAccess.getOptionsStorage().setOption(
               "sdf.custom.option.key", optionValue);
   
   // Remove the option listener.
   authorAccess.getOptionsStorage().removeOptionListener(sdfOptionListener);
    
   // Remove document listeners.
   authorAccess.getDocumentController().removeAuthorListener(
               sdfAuthorDocumentListener);
    
   // Remove mouse listener.
   authorAccess.getEditorAccess().removeAuthorMouseListener(sdfMouseListener);

   // Remove caret listener.
   authorAccess.getEditorAccess().removeAuthorCaretListener(sdfCaretListener);
    
   // Other actions...
    
 }

Implementing an Author Schema Aware Editing Handler

To implement your own handler for actions like typing, deleting, or pasting, provide an implementation of
ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler. For this handler to be
called, the Schema Aware EditingSchema Aware EditingSchema Aware EditingSchema Aware EditingSchema

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/OptionsStorage.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/OptionListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/access/AuthorEditorAccess.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorSchemaAwareEditingHandlerAdapter.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-schema-aware.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-schema-aware.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-schema-aware.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-schema-aware.html


 | Author Developer Guide | 60

Aware Editing option must be set to On,or Custom. The handler can either resolve a specific case, let the default
implementation take place, or reject the edit entirely by throwing an InvalidEditException.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

package simple.documentation.framework.extensions;

/**
 * Specific editing support for SDF documents.
 * Handles typing and paste events inside section and tables.
 */
public class SDFSchemaAwareEditingHandler implements
 AuthorSchemaAwareEditingHandler {

Typing events can be handled using the handleTyping method. For example, the
SDFSchemaAwareEditingHandler checks if the schema is not a learned one, was loaded successfully and
Smart PasteSmart PasteSmart PasteSmart PasteSmart Paste is active. If these conditions are met, the event will be
handled.

/**
 * @see
 ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler#handleTyping(int,
 char, ro.sync.ecss.extensions.api.AuthorAccess)
 */
public boolean handleTyping(int offset, char ch, AuthorAccess authorAccess)
throws InvalidEditException {
  boolean handleTyping = false;
  AuthorSchemaManager authorSchemaManager =
 authorAccess.getDocumentController().getAuthorSchemaManager();
  if (!authorSchemaManager.isLearnSchema() && 
      !authorSchemaManager.hasLoadingErrors() &&
      authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartTyping())
 {
    try {
      AuthorDocumentFragment characterFragment = 
       
 authorAccess.getDocumentController().createNewDocumentTextFragment(String.valueOf(ch));
    
      handleTyping = handleInsertionEvent(offset, new AuthorDocumentFragment[]
 {characterFragment}, authorAccess);
    } catch (AuthorOperationException e) {
      throw new InvalidEditException(e.getMessage(), "Invalid typing event: "
 + e.getMessage(), e, false);
    }
  }
  return handleTyping;    
}

Implementing the AuthorSchemaAwareEditingHandler gives the possibility to handle other events like: the
keyboard delete event at the given offset (using Delete or Backspace keys), delete element tags, delete selection, join
elements or paste fragment.

Note:  The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the  website.

Configuring a Content Completion Handler

You can filter or contribute to items offered for content completion by implementing the
ro.sync.contentcompletion.xml.SchemaManagerFilter interface.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-schema-aware.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-schema-aware.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-schema-aware.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-schema-aware.html
http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/SchemaManagerFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip


 | Author Developer Guide | 61

import java.util.List;

import ro.sync.contentcompletion.xml.CIAttribute;
import ro.sync.contentcompletion.xml.CIElement;
import ro.sync.contentcompletion.xml.CIValue;
import ro.sync.contentcompletion.xml.Context;
import ro.sync.contentcompletion.xml.SchemaManagerFilter;
import ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatPossibleValuesHasAttributeContext;

public class SDFSchemaManagerFilter implements SchemaManagerFilter {

You can implement the various callbacks of the interface either by returning the default values given by  or by
contributing to the list of proposals. The filter can be applied on elements, attributes or on their values. Attributes
filtering can be implemented using the filterAttributes method and changing the default content completion
list of ro.sync.contentcompletion.xml.CIAttribute for the element provided by the current
ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext context. For example, the
SDFSchemaManagerFilter checks if the element from the current context is the table element and adds the
frame attribute to the table list of attributes.

/**
 * Filter attributes of the "table" element.
 */
public List<CIAttribute> filterAttributes(List<CIAttribute> attributes,
    WhatAttributesCanGoHereContext context) {
  // If the element from the current context is the 'table' element add the
  // attribute named 'frame' to the list of default content completion
 proposals
  if (context != null) {
    ContextElement contextElement = context.getParentElement();
    if ("table".equals(contextElement.getQName())) {
      CIAttribute frameAttribute = new CIAttribute();
      frameAttribute.setName("frame");
      frameAttribute.setRequired(false);
      frameAttribute.setFixed(false);
      frameAttribute.setDefaultValue("void");
      if (attributes == null) {
        attributes = new ArrayList<CIAttribute>();
      }
      attributes.add(frameAttribute);
    }
  }
  return attributes;
}

The elements that can be inserted in a specific context can be filtered using the filterElements method. The
SDFSchemaManagerFilter uses this method to replace the td child element with the th element when
header is the current context element.

public List<CIElement> filterElements(List<CIElement> elements,
    WhatElementsCanGoHereContext context) {
  // If the element from the current context is the 'header' element remove
 the
  // 'td' element from the list of content completion proposals and add the
  // 'th' element.
  if (context != null) {  
    Stack<ContextElement> elementStack = context.getElementStack();
    if (elementStack != null) {
      ContextElement contextElement = context.getElementStack().peek();
      if ("header".equals(contextElement.getQName())) {
        if (elements != null) {

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/CIAttribute.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/contentcompletion/xml/WhatAttributesCanGoHereContext.html


 | Author Developer Guide | 62

          for (Iterator<CIElement> iterator = elements.iterator();
 iterator.hasNext();) {
            CIElement element = iterator.next();
            // Remove the 'td' element
            if ("td".equals(element.getQName())) {
              elements.remove(element);
              break;
            }
          }
        } else {
          elements = new ArrayList<CIElement>();
        }
        // Insert the 'th' element in the list of content completion proposals
        CIElement thElement = new SDFElement();
        thElement.setName("th");
        elements.add(thElement);
      }
    }
  } else {
    // If the given context is null then the given list of content completion
 elements contains
    // global elements. 
  }
  return elements;
}

The elements or attributes values can be filtered using the filterElementValues or
filterAttributeValues methods.

Note:  The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the  website.

Configuring a Link target element finder

The link target reference finder represents the support for finding references from links which indicate specific
elements inside an XML document. This support will only be available if a schema is associated with the document
type.

If you do not define a custom link target reference finder, the DefaultElementLocatorProvider
implementation will be used by default. The interface which should be implemented for a custom link target reference
finder is ro.sync.ecss.extensions.api.link.ElementLocatorProvider. As an alternative, the
ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider implementation can also
be extended.

The used ElementLocatorProvider will be queried for an ElementLocator when a link location
must be determined (when a link is clicked). Then, to find the corresponding (linked) element, the obtained
ElementLocator will be queried for each element from the document.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

The DefaultElementLocatorProvider implementation

The DefaultElementLocatorProvider implementation offers support for the most common types of links:

• links based on ID attribute values
• XPointer element() scheme

The method getElementLocator determines what ElementLocator should be used. In the default
implementation it checks if the link is an XPointer element() scheme otherwise it assumes it is an ID. A non-null
IDTypeVerifier will always be provided if a schema is associated with the document type.

The link string argument is the "anchor" part of the of the URL which is composed from the value of the link
property specified for the link element in the CSS.

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip


 | Author Developer Guide | 63

public ElementLocator getElementLocator(IDTypeVerifier idVerifier, 
               String link) {
  ElementLocator elementLocator = null;
  try {
    if(link.startsWith("element(")){
      // xpointer element() scheme
      elementLocator = new XPointerElementLocator(idVerifier, link);
    } else {
      // Locate link element by ID
      elementLocator = new IDElementLocator(idVerifier, link);
    }
  } catch (ElementLocatorException e) {
    logger.warn("Exception when create element locator for link: " 
        + link + ". Cause: " + e, e);
  }
  return elementLocator;
}

The XPointerElementLocator implementation

XPointerElementLocator is an implementation of the abstract class
ro.sync.ecss.extensions.api.link.ElementLocator for links that have one of the following
XPointer element() scheme patterns:

element(elementID) Locate the element with the specified id.

element(/1/2/3) A child sequence appearing alone identifies an element
by means of stepwise navigation, which is directed by a
sequence of integers separated by slashes (/); each integer
n locates the nth child element of the previously located
element.

element(elementID/3/4) A child sequence appearing after a NCName identifies an
element by means of stepwise navigation, starting from
the element located by the given name.

The constructor separates the id/integers which are delimited by slashes(/) into a sequence of identifiers (an XPointer
path). It will also check that the link has one of the supported patterns of the XPointer element() scheme.

public XPointerElementLocator(IDTypeVerifier idVerifier, String link)
                      throws ElementLocatorException {
  super(link);
  this.idVerifier = idVerifier;

  link = link.substring("element(".length(), link.length() - 1);

  StringTokenizer stringTokenizer = new StringTokenizer(link, "/", false);
  xpointerPath = new String[stringTokenizer.countTokens()];
  int i = 0;
  while (stringTokenizer.hasMoreTokens()) {
    xpointerPath[i] = stringTokenizer.nextToken();
    boolean invalidFormat = false;
    
    // Empty xpointer component is not supported
    if(xpointerPath[i].length() == 0){
      invalidFormat = true;
    }
    
    if(i > 0){
      try {
        Integer.parseInt(xpointerPath[i]);

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html


 | Author Developer Guide | 64

      } catch (NumberFormatException e) {
        invalidFormat = true;
      }
    }

    if(invalidFormat){
      throw new ElementLocatorException(
        "Only the element() scheme is supported when locating XPointer links."
        + "Supported formats: element(elementID), element(/1/2/3), 
              element(elemID/2/3/4).");
    }
    i++;
  }

  if(Character.isDigit(xpointerPath[0].charAt(0))){
    // This is the case when xpointer have the following pattern /1/5/7
    xpointerPathDepth = xpointerPath.length;
  } else {
    // This is the case when xpointer starts with an element ID
    xpointerPathDepth = -1;
    startWithElementID  = true;
  }
}

The method startElement will be invoked at the beginning of every element in the XML document(even when
the element is empty). The arguments it takes are

uri The namespace URI, or the empty string if the element
has no namespace URI or if namespace processing is
disabled.

localName Local name of the element.

qName Qualified name of the element.

atts Attributes attached to the element. If there are no
attributes, this argument will be empty.

The method returns true if the processed element is found to be the one indicated by the link.

The XPointerElementLocator implementation of the startElement will update the depth of the current
element and keep the index of the element in its parent. If the xpointerPath starts with an element ID then the
current element ID is verified to match the specified ID. If this is the case the depth of the XPointer is updated taking
into account the depth of the current element.

If the XPointer path depth is the same as the current element depth then the kept indices of the current element path
are compared to the indices in the XPointer path. If all of them match then the element has been found.

public boolean startElement(String uri, String localName, 
        String name, Attr[] atts) {
  boolean linkLocated = false;
  // Increase current element document depth
  startElementDepth ++;
  
  if (endElementDepth != startElementDepth) {
    // The current element is the first child of the parent
    currentElementIndexStack.push(new Integer(1));
  } else {
    // Another element in the parent element
    currentElementIndexStack.push(new Integer(lastIndexInParent + 1));
  }
  



 | Author Developer Guide | 65

  if (startWithElementID) {
    // This the case when xpointer path starts with an element ID.
    String xpointerElement = xpointerPath[0];
    for (int i = 0; i < atts.length; i++) {
      if(xpointerElement.equals(atts[i].getValue())){
        if(idVerifier.hasIDType(
            localName, uri, atts[i].getQName(), atts[i].getNamespace())){
          xpointerPathDepth = startElementDepth + xpointerPath.length - 1;
          break;
        }
      }
    }
  }
      
  if (xpointerPathDepth == startElementDepth){
    // check if xpointer path matches with the current element path
    linkLocated = true;
    try {        
      int xpointerIdx = xpointerPath.length - 1;
      int stackIdx = currentElementIndexStack.size() - 1;
      int stopIdx = startWithElementID ? 1 : 0;
      while (xpointerIdx >= stopIdx && stackIdx >= 0) {
        int xpointerIndex = Integer.parseInt(xpointerPath[xpointerIdx]);
        int currentElementIndex = 
          ((Integer)currentElementIndexStack.get(stackIdx)).intValue();
        if(xpointerIndex != currentElementIndex) {
          linkLocated = false;
          break;
        }
        
        xpointerIdx--;
        stackIdx--;
      }

    } catch (NumberFormatException e) {
      logger.warn(e,e);
    }
  }
  return linkLocated;
}

The method endElement will be invoked at the end of every element in the XML document (even when the
element is empty).

The XPointerElementLocator implementation of the endElement updates the depth of the current element
path and the index of the element in its parent.

public void endElement(String uri, String localName, String name) {
  endElementDepth = startElementDepth;
  startElementDepth --;
  lastIndexInParent = ((Integer)currentElementIndexStack.pop()).intValue();
}

The IDElementLocator implementation

The IDElementLocator is an implementation of the abstract class
ro.sync.ecss.extensions.api.link.ElementLocator for links that use an id.

The constructor only assigns field values and the method endElement is empty for this implementation.

The method startElement checks each of the element's attribute values and when one matches the link, it
considers the element found if one of the following conditions is satisfied:

• the qualified name of the attribute is xml:id
• the attribute type is ID

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocator.html


 | Author Developer Guide | 66

The attribute type is checked with the help of the method IDTypeVerifier.hasIDType.

public boolean startElement(String uri, String localName, 
        String name, Attr[] atts) {
  boolean elementFound = false;
  for (int i = 0; i < atts.length; i++) {
    if (link.equals(atts[i].getValue())) {
      if("xml:id".equals(atts[i].getQName())) {
        // xml:id attribute
        elementFound = true;          
      } else {
        // check if attribute has ID type
        String attrLocalName = 
          ExtensionUtil.getLocalName(atts[i].getQName());
        String attrUri = atts[i].getNamespace();
        if (idVerifier.hasIDType(localName, uri, attrLocalName, attrUri)) {
          elementFound = true;
        }
      }
    }
  }
  
  return elementFound;
}

Creating a customized link target reference finder

If you need to create a custom link target reference finder you can do so by creating the class which will implement
the ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface. As an alternative,
your class could extend ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider,
the default implementation.

Note:  The complete source code of the
ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider,
ro.sync.ecss.extensions.commons.IDElementLocator or
ro.sync.ecss.extensions.commons.XPointerElementLocator can be found in the Oxygen
Default Frameworks project, included in the Oxygen Author SDK zip available for download on the  website.

Configuring a custom Drag and Drop listener

Sometimes it is useful to perform various operations when certain objects are dropped from outside sources in the
editing area. You can choose from three interfaces to implement depending on whether you are using the framework
with the Eclipse plugin or the standalone version of the application or if you want to add the handler for the Text or
Author modes.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

Table 1: Interfaces for the DnD listener

Interface Description

ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListenerReceives callbacks from the standalone application for
Drag And Drop in Author mode.

com.oxygenxml.editor.editors.author.AuthorDnDListenerReceives callbacks from the Eclipse plugin for Drag And
Drop in Author mode.

com.oxygenxml.editor.editors.TextDnDListenerReceives callbacks from the Eclipse plugin for Drag And
Drop in Text mode.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/link/ElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/IDElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/XPointerElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip


 | Author Developer Guide | 67

Configuring a References Resolver

You need to provide a handler for resolving references and obtain the content they refer. In our case the element
which has references is ref and the attribute indicating the referred resource is location. You will have to implement a
Java extension class for obtaining the referred resources.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

1. Create the class simple.documentation.framework.ReferencesResolver. This class must
implement the ro.sync.ecss.extensions.api.AuthorReferenceResolver interface.

import ro.sync.ecss.extensions.api.AuthorReferenceResolver;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;
import ro.sync.ecss.extensions.api.node.AuthorNode;

public class ReferencesResolver 
      implements AuthorReferenceResolver {

2. The hasReferences method verifies if the handler considers the node to have references. It takes as argument
an AuthorNode that represents the node which will be verified. The method will return true if the node is
considered to have references. In our case, to be a reference the node must be an element with the name ref and it
must have an attribute named location.

public boolean hasReferences(AuthorNode node) {
  boolean hasReferences = false;
  if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
    AuthorElement element = (AuthorElement) node;
    if ("ref".equals(element.getLocalName())) {
      AttrValue attrValue = element.getAttribute("location");
      hasReferences = attrValue != null;
    }
  }
  return hasReferences;
}

3. The method getDisplayName returns the display name of the node that contains the expanded referred
content. It takes as argument an AuthorNode that represents the node for which the display name is needed. The
referred content engine will ask this AuthorReferenceResolver implementation what is the display name
for each node which is considered a reference. In our case the display name is the value of the location attribute
from the ref element.

public String getDisplayName(AuthorNode node) {
  String displayName = "ref-fragment";
  if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
    AuthorElement element = (AuthorElement) node;
    if ("ref".equals(element.getLocalName())) {
      AttrValue attrValue = element.getAttribute("location");
      if (attrValue != null) {
        displayName = attrValue.getValue();
      }
    }
  }
  return displayName;
}

4. The method resolveReference resolves the reference of the node and returns a SAXSource with the parser
and the parser's input source. It takes as arguments an AuthorNode that represents the node for which the
reference needs resolving, the systemID of the node, the AuthorAccess with access methods to the Author
data model and a SAX EntityResolver which resolves resources that are already opened in another editor or
resolve resources through the XML catalog. In the implementation you need to resolve the reference relative to the
systemID, and create a parser and an input source over the resolved reference.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReferenceResolver.html


 | Author Developer Guide | 68

public SAXSource resolveReference(
    AuthorNode node, 
    String systemID, 
    AuthorAccess authorAccess,
    EntityResolver  entityResolver) {
  SAXSource saxSource = null;
  
  if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
    AuthorElement element = (AuthorElement) node;
    if ("ref".equals(element.getLocalName())) {
      AttrValue attrValue = element.getAttribute("location");
      if (attrValue != null) {
        String attrStringVal = attrValue.getValue();
        try {
          URL absoluteUrl = new URL(new URL(systemID), 
              authorAccess.correctURL(attrStringVal));
          
          InputSource inputSource = entityResolver.resolveEntity(null, 
              absoluteUrl.toString());
          if(inputSource == null) {
            inputSource = new InputSource(absoluteUrl.toString());
          }
          
          XMLReader xmlReader = authorAccess.newNonValidatingXMLReader();
          xmlReader.setEntityResolver(entityResolver);
          
          saxSource = new SAXSource(xmlReader, inputSource);
        } catch (MalformedURLException e) {
          logger.error(e, e);
        } catch (SAXException e) {
          logger.error(e, e);
        } catch (IOException e) {
          logger.error(e, e);
        }
      }
    }
  }

  return saxSource;
}

5. The method getReferenceUniqueID should return an unique identifier for the node reference. The unique
identifier is used to avoid resolving the references recursively. The method takes as argument an AuthorNode
that represents the node with the reference. In the implementation the unique identifier is the value of the location
attribute from the ref element.

public String getReferenceUniqueID(AuthorNode node) {
  String id = null;
  if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
    AuthorElement element = (AuthorElement) node;
    if ("ref".equals(element.getLocalName())) {
      AttrValue attrValue = element.getAttribute("location");
      if (attrValue != null) {
        id = attrValue.getValue();
      }
    }
  }
  return id;
}

6. The method getReferenceSystemIDshould return the systemID of the referred content. It takes as arguments
an AuthorNode that represents the node with the reference and the AuthorAccess with access methods to



 | Author Developer Guide | 69

the Author data model. In the implementation you use the value of the location attribute from the ref element and
resolve it relatively to the XML base URL of the node.

public String getReferenceSystemID(AuthorNode node, 
                                   AuthorAccess authorAccess) {
  String systemID = null;
  if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
    AuthorElement element = (AuthorElement) node;
    if ("ref".equals(element.getLocalName())) {
      AttrValue attrValue = element.getAttribute("location");
      if (attrValue != null) {
        String attrStringVal = attrValue.getValue();
        try {
          URL absoluteUrl = new URL(node.getXMLBaseURL(), 
              authorAccess.correctURL(attrStringVal));
          systemID = absoluteUrl.toString();
        } catch (MalformedURLException e) {
          logger.error(e, e);
        }
      }
    }
  }
  return systemID;
}

Note:  The complete source code can be found in the Simple Documentation Framework project, included
in the Oxygen Author SDK zip available for download on the  website.

In the listing below, the XML document contains the ref element:

<ref location="referred.xml">Reference</ref>

When no reference resolver is specified, the reference has the following layout:

Figure 39: Reference with no specified reference resolver

When the above implementation is configured, the reference has the expected layout:

Figure 40: Reference with reference resolver

Configuring CSS Styles Filter

You can modify the CSS styles for each ro.sync.ecss.extensions.api.node.AuthorNode rendered
in the Author mode using an implementation of  ro.sync.ecss.extensions.api.StylesFilter.
You can implement the various callbacks of the interface either by returning the default value given by  or by
contributing to the value. The received styles ro.sync.ecss.css.Styles can be processed and values can be
overwritten with your own. For example you can override the KEY_BACKGROUND_COLOR style to return your own
implementation of ro.sync.exml.view.graphics.Color or override the KEY_FONT style to return your
own implementation of ro.sync.exml.view.graphics.Font.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorNode.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/view/graphics/Color.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/view/graphics/Font.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip


 | Author Developer Guide | 70

For instance in our simple document example the filter can change the value of the KEY_FONT property for the
table element:

package simple.documentation.framework;

import ro.sync.ecss.css.Styles;
import ro.sync.ecss.extensions.api.StylesFilter;
import ro.sync.ecss.extensions.api.node.AuthorNode;
import ro.sync.exml.view.graphics.Font;

public class SDFStylesFilter implements StylesFilter {

     public Styles filter(Styles styles, AuthorNode authorNode) {
         if (AuthorNode.NODE_TYPE_ELEMENT == authorNode.getType() 
           && "table".equals(authorNode.getName())) {
           styles.setProperty(Styles.KEY_FONT, new Font(null, Font.BOLD, 12));
         }
         return styles;
     }
}

Configuring tables

There are standard CSS properties used to indicate what elements are tables, table rows and table cells. What CSS is
missing is the possibility to indicate the cell spanning, row separators or the column widths.  Author offers support for
adding extensions to solve these problems. This will be presented in the next chapters.

The table in this example is a simple one. The header must be formatted in a different way than the ordinary rows, so
it will have a background color.

table{
    display:table;
    border:1px solid navy;
    margin:1em;
    max-width:1000px;
    min-width:150px;
}

table[width]{
  width:attr(width, length);
}

tr, header{
    display:table-row;
}

header{
    background-color: silver;
    color:inherit
}

td{
  display:table-cell;
  border:1px solid navy;
  padding:1em;
}

Because in the schema the td tag has the attributes row_span and column_span that are not automatically
recognized by  Author, a Java extension will be implemented which will provide information about the cell spanning.
See the section Configuring a Table Cell Span Provider.



 | Author Developer Guide | 71

The column widths are specified by the attributes width of the elements customcol that are not automatically
recognized by  Author. It is necessary to implement a Java extension which will provide information about the
column widths. See the section Configuring a Table Column Width Provider.

The table from our example does not make use of the attributes colsep and rowsep (which are automatically
recognized) but we still want the rows to be separated by horizontal lines. It is necessary to implement a Java
extension which will provide information about the row and column separators. See the section Configuring a Table
Cell Row And Column Separator Provider on page 77.

Configuring a Table Column Width Provider

In the sample documentation framework the table element as well as the table columns can have specified widths.
In order for these widths to be considered by Author we need to provide the means to determine them. As explained
in the Configuring tables on page 70, if you use the table element attribute width  can determine the table width
automatically. In this example the table has col elements with width attributes that are not recognized by default.
You will need to implement a Java extension class to determine the column widths.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

1. Create the class simple.documentation.framework.TableColumnWidthProvider. This class
must implement the ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider
interface.

import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorOperationException;
import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;
import ro.sync.ecss.extensions.api.WidthRepresentation;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableColumnWidthProvider 
      implements AuthorTableColumnWidthProvider {

2. Method init is taking as argument an ro.sync.ecss.extensions.api.node.AuthorElement
that represents the XML table element. In our case the column widths are specified in col elements from the
table element. In such cases you must collect the span information by analyzing the table element.

 public void init(AuthorElement tableElement) {
  this.tableElement = tableElement;
  AuthorElement[] colChildren =
 tableElement.getElementsByLocalName("customcol");
  if (colChildren != null && colChildren.length > 0) {
   for (int i = 0; i < colChildren.length; i++) {
    AuthorElement colChild = colChildren[i];
    if (i == 0) {
     colsStartOffset = colChild.getStartOffset();
    } 
    if (i == colChildren.length - 1) {
     colsEndOffset = colChild.getEndOffset();
    }
    // Determine the 'width' for this col.
    AttrValue colWidthAttribute = colChild.getAttribute("width");
    String colWidth = null;
    if (colWidthAttribute != null) {
     colWidth = colWidthAttribute.getValue();
     // Add WidthRepresentation objects for the columns this 'customcol'
 specification
     // spans over.
     colWidthSpecs.add(new WidthRepresentation(colWidth, true));
    }
   }
  }
 }

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html


 | Author Developer Guide | 72

3. The method isTableAcceptingWidth should check if the table cells are td.

public boolean isTableAcceptingWidth(String tableCellsTagName) {
  return "td".equals(tableCellsTagName);
}

4. The method isTableAndColumnsResizable should check if the table cells are td. This method determines
if the table and its columns can be resized by dragging the edge of a column.

public boolean isTableAndColumnsResizable(String tableCellsTagName) {
  return "td".equals(tableCellsTagName);
}

5. Methods getTableWidth and getCellWidth are used to determine the table and column width. The table
layout engine will ask this ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider
implementation what is the table width for each table element and the cell width for each cell element from the
table that was marked as cell in the CSS using the property display:table-cell. The implementation is
simple and just parses the value of the width attribute. The methods must return null for the tables / cells that do
not have a specified width.

 public WidthRepresentation getTableWidth(String tableCellsTagName) {
  WidthRepresentation toReturn = null;
  if (tableElement != null && "td".equals(tableCellsTagName)) {
   AttrValue widthAttr = tableElement.getAttribute("width");
   if (widthAttr != null) {
    String width = widthAttr.getValue();
    if (width != null) {
     toReturn = new WidthRepresentation(width, true);
    }
   }
  }
  return toReturn;
 }

 public List<WidthRepresentation> getCellWidth(AuthorElement
 cellElement, int colNumberStart,
   int colSpan) {
  List<WidthRepresentation> toReturn = null;
  int size = colWidthSpecs.size();
  if (size >= colNumberStart && size >= colNumberStart + colSpan) {
   toReturn = new ArrayList<WidthRepresentation>(colSpan);
   for (int i = colNumberStart; i < colNumberStart + colSpan; i ++) {
    // Add the column widths
    toReturn.add(colWidthSpecs.get(i));
   }
  }
  return toReturn;
 }

6. Methods commitTableWidthModification and commitColumnWidthModifications are used to
commit changes made to the width of the table or its columns when using the mouse drag gestures.

 public void commitTableWidthModification(AuthorDocumentController
 authorDocumentController,
   int newTableWidth, String tableCellsTagName) throws
 AuthorOperationException {
  if ("td".equals(tableCellsTagName)) {
   if (newTableWidth > 0) {
    if (tableElement != null) {
     String newWidth = String.valueOf(newTableWidth);

     authorDocumentController.setAttribute(
       "width",
       new AttrValue(newWidth),
       tableElement);

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableColumnWidthProvider.html


 | Author Developer Guide | 73

    } else {
     throw new AuthorOperationException("Cannot find the element
 representing the table.");
    }
   }
  }
 }

public void commitColumnWidthModifications(AuthorDocumentController
 authorDocumentController,
   WidthRepresentation[] colWidths, String tableCellsTagName) throws
 AuthorOperationException {
  if ("td".equals(tableCellsTagName)) {
   if (colWidths != null && tableElement != null) {
    if (colsStartOffset >= 0 && colsEndOffset >= 0 && colsStartOffset <
 colsEndOffset) {
     authorDocumentController.delete(colsStartOffset,
       colsEndOffset);
    }
    String xmlFragment = createXMLFragment(colWidths);
    int offset = -1;
    AuthorElement[] header = tableElement.getElementsByLocalName("header");
    if (header != null && header.length > 0) {
     // Insert the cols elements before the 'header' element 
     offset = header[0].getStartOffset();
    }
    if (offset == -1) {
     throw new AuthorOperationException("No valid offset to insert the
 columns width specification.");
    }
    authorDocumentController.insertXMLFragment(xmlFragment, offset);
   }
  }
 }

 private String createXMLFragment(WidthRepresentation[]
 widthRepresentations) {
  StringBuffer fragment = new StringBuffer();
  String ns = tableElement.getNamespace();
  for (int i = 0; i < widthRepresentations.length; i++) {
   WidthRepresentation width = widthRepresentations[i];
   fragment.append("<customcol");
   String strRepresentation = width.getWidthRepresentation();
   if (strRepresentation != null) {
    fragment.append(" width=\"" + width.getWidthRepresentation() + "\"");
   }
   if (ns != null && ns.length() > 0) {
    fragment.append(" xmlns=\"" + ns + "\"");
   }
   fragment.append("/>");
  }
  return fragment.toString();
 }

7. The following three methods are used to determine what type of column width specifications the table column
width provider support. In our case all types of specifications are allowed:

 public boolean isAcceptingFixedColumnWidths(String tableCellsTagName) {
  return true;
 }

 public boolean isAcceptingPercentageColumnWidths(String tableCellsTagName)
 {



 | Author Developer Guide | 74

  return true;
 }

 public boolean isAcceptingProportionalColumnWidths(String
 tableCellsTagName) {
  return true;
 }

Note:  The complete source code can be found in the Simple Documentation Framework project, included
in the Oxygen Author SDK zip available for download on the  website.

In the listing below, the XML document contains the table element:

<table width="300">
    <customcol width="50.0px"/>
    <customcol width="1*"/>
    <customcol width="2*"/>
    <customcol width="20%"/>
    <header>
        <td>C1</td>
        <td>C2</td>
        <td>C3</td>
        <td>C4</td>
    </header>
    <tr>
        <td>cs=1, rs=1</td>
        <td>cs=1, rs=1</td>
        <td row_span="2">cs=1, rs=2</td>
        <td row_span="3">cs=1, rs=3</td>
    </tr>
    <tr>
        <td>cs=1, rs=1</td>
        <td>cs=1, rs=1</td>
    </tr>
    <tr>
        <td column_span="3">cs=3, rs=1</td>
    </tr>
</table>

When no table column width provider is specified, the table has the following layout:

Figure 41: Table layout when no column width provider is specified

When the above implementation is configured, the table has the correct layout:

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html


 | Author Developer Guide | 75

Figure 42: Columns with custom widths

Configuring a Table Cell Span Provider

In the sample documentation framework the table element can have cells that span over multiple columns and
rows. As explained in Configuring tables on page 70, you need to indicate  a method to determine the cell
spanning. If you use the cell element attributes rowspan and colspan or rows and cols,  can determine the cell
spanning automatically. In our example the td element uses the attributes row_span and column_span that are not
recognized by default. You will need to implement a Java extension class for defining the cell spanning.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

1. Create the class simple.documentation.framework.TableCellSpanProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSpanProvider 
      implements AuthorTableCellSpanProvider {

2. The init method is taking as argument the ro.sync.ecss.extensions.api.node.AuthorElement
that represents the XML table element. In our case the cell span is specified for each of the cells so you leave
this method empty. However there are cases like the table CALS model when the cell spanning is specified in the
table element. In such cases you must collect the span information by analyzing the table element.

public void init(AuthorElement table) {
}

3. The getColSpan method is taking as argument the table cell. The table layout engine will ask this
AuthorTableSpanSupport implementation what is the column span and the row span for each XML
element from the table that was marked as cell in the CSS using the property display:table-cell. The
implementation is simple and just parses the value of column_span attribute. The method must return null for
all the cells that do not change the span specification.

public Integer getColSpan(AuthorElement cell) {
  Integer colSpan = null;

  AttrValue attrValue = cell.getAttribute("column_span");
  if(attrValue != null) {
    // The attribute was found.
    String cs = attrValue.getValue();
    if(cs != null) {        
      try {
        colSpan = new Integer(cs);
      } catch (NumberFormatException ex) {
        // The attribute value was not a number.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSpanProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html


 | Author Developer Guide | 76

      }     
    }   
  }
  return colSpan;
}

4. The row span is determined in a similar manner:

public Integer getRowSpan(AuthorElement cell) {
  Integer rowSpan = null;

  AttrValue attrValue = cell.getAttribute("row_span");
  if(attrValue != null) {
    // The attribute was found.
    String rs = attrValue.getValue();
    if(rs != null) {        
      try {
        rowSpan = new Integer(rs);
      } catch (NumberFormatException ex) {
        // The attribute value was not a number.
      }     
    }   
  }
  return rowSpan;
}

5. The method hasColumnSpecifications always returns true considering column specifications always
available.

public boolean hasColumnSpecifications(AuthorElement tableElement) {
  return true;
}

Note:  The complete source code can be found in the Simple Documentation Framework project, included
in the Oxygen Author SDK zip available for download on the  website.

6. In the listing below, the XML document contains the table element:

<table>
    <header>
        <td>C1</td>
        <td>C2</td>
        <td>C3</td>
        <td>C4</td>
    </header>
    <tr>
        <td>cs=1, rs=1</td>
        <td column_span="2" row_span="2">cs=2, rs=2</td>
        <td row_span="3">cs=1, rs=3</td>
    </tr>
    <tr>
        <td>cs=1, rs=1</td>
    </tr>
    <tr>
        <td column_span="3">cs=3, rs=1</td>
    </tr>
</table>

When no table cell span provider is specified, the table has the following layout:

http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html


 | Author Developer Guide | 77

Figure 43: Table layout when no cell span provider is specified

When the above implementation is configured, the table has the correct layout:

Figure 44: Cells spanning multiple rows and columns.

Configuring a Table Cell Row And Column Separator Provider

In the sample documentation framework the table element has separators between rows. As explained in
Configuring tables on page 70 section which describes the CSS properties needed for defining a table, you need
to indicate  a method to determine the way rows and columns are separated. If you use the rowsep and colsep cell
element attributes, or your table is conforming to the CALS table model,  can determine the cell separators. In the
example there are no attributes defining the separators but we still want the rows to be separated. You will need to
implement a Java extension.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip


 | Author Developer Guide | 78

1. Create the class simple.documentation.framework.TableCellSepProvider. This class must
implement the ro.sync.ecss.extensions.api.AuthorTableCellSepProvider interface.

import ro.sync.ecss.extensions.api.AuthorTableCellSepProvider;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSepProvider implements AuthorTableCellSepProvider{
2. The init method is taking as argument the ro.sync.ecss.extensions.api.node.AuthorElement

that represents the XML table element. In our case the separator information is implicit, it does not depend on
the current table, so you leave this method empty. However there are cases like the table CALS model when the
cell separators are specified in the table element - in that case you should initialize your provider based on the
given argument.

public void init(AuthorElement table) {
}

3. The getColSep method is taking as argument the table cell. The table layout engine will ask this
AuthorTableCellSepProvider implementation if there is a column separator for each XML element from
the table that was marked as cell in the CSS using the property display:table-cell. In our case we choose
to return false since we do not need column separators.

  /**
   * @return false - No column separator at the right of the cell.
   */
  @Override
  public boolean getColSep(AuthorElement cellElement, int columnIndex) {
    return false;
  }

4. The row separators are determined in a similar manner. This time the method returns true, forcing a separator
between the rows.

  /**
   * @return true - A row separator below each cell.
   */
  @Override
  public boolean getRowSep(AuthorElement cellElement, int columnIndex) {
    return true;
  }

Note:  The complete source code can be found in the Simple Documentation Framework project, included
in the Oxygen Author SDK zip available for download on the  website.

5. In the listing below, the XML document contains the table element:

 <table>
      <header>
        <td>H1</td>
        <td>H2</td>
        <td>H3</td>
        <td>H4</td>
      </header>
      <tr>
        <td>C11</td>
        <td>C12</td>
        <td>C13</td>
        <td>C14</td>
      </tr>
      <tr>
        <td>C21</td>
        <td>C22</td>
        <td>C23</td>
        <td>C24</td>
      </tr>
      <tr>

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorTableCellSepProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorElement.html
http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html


 | Author Developer Guide | 79

        <td>C31</td>
        <td>C32</td>
        <td>C33</td>
        <td>C34</td>
      </tr>
    </table>

When the borders for the td element are removed from the CSS, the row separators become visible:

Figure 45: Row separators provided by the Java implementation.

Configuring an Unique Attributes Recognizer

The ro.sync.ecss.extensions.api.UniqueAttributesRecognizer interface can be implemented if
you want to provide for your framework the following features:

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

• Automatic ID generation - You can automatically generate unique IDs for newly inserted elements.
Implementations are already available for the DITA and Docbook frameworks. The following methods can
be implemented to accomplish this: assignUniqueIDs(int startOffset, int endOffset),
isAutoIDGenerationActive()

• Avoiding copying unique attributes when "Split" is called inside an element - You can split the current block
element by pressing the "Enter" key and then choosing "Split". This is a very useful way to create new paragraphs,
for example. All attributes are by default copied on the new element but if those attributes are IDs you sometimes
want to avoid creating validation errors in the editor. Implementing the following method, you can decide
whether an attribute should be copied or not during the split: boolean copyAttributeOnSplit(String
attrQName, AuthorElement element)

Tip:

The ro.sync.ecss.extensions.commons.id.DefaultUniqueAttributesRecognizer
class is an implementation of the interface which can be extended by your customization to provide easy
assignation of IDs in your framework. You can also check out the DITA and Docbook implementations
of ro.sync.ecss.extensions.api.UniqueAttributesRecognizer to see how they were
implemented and connected to the extensions bundle.

Configuring an XML Node Renderer Customizer

You can use this API extension to customize the way an XML node is rendered in the Author Outline view, Author
breadcrumb navigation bar, Text mode Outline view, content completion assistant window or DITA Maps Manager
view.

Note:   uses XMLNodeRendererCustomizer implementations for the following frameworks: DITA,
DITAMap, Docbook 4, Docbook 5, TEI P4, TEI P5, XHTML, XSLT, and XML Schema.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/UniqueAttributesRecognizer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/id/DefaultUniqueAttributesRecognizer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip


 | Author Developer Guide | 80

There are two methods to provide an implementation of
ro.sync.exml.workspace.api.node.customizer.XMLNodeRendererCustomizer:

• as a part of a bundle - returning it from the createXMLNodeCustomizer() method of the
ExtensionsBundle associated with your document type in the Document type dialog, Extensions tab,
Extensions bundle field.

• as an individual extension - associated with your document type in the Document type dialog, Extensions tab,
Individual extensions section, XML node renderer customizer field.

Sample project reference

Note:  The complete source code can be found in the Simple Documentation Framework project, included in
the Oxygen Author SDK zip available for download on the  website.

Note:  The complete source code of the
ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider,
ro.sync.ecss.extensions.commons.IDElementLocator or
ro.sync.ecss.extensions.commons.XPointerElementLocator can be found in the Oxygen
Default Frameworks project, included in the Oxygen Author SDK zip available for download on the  website.

Note:  The Javadoc documentation of the Author API used in the example files is available on the  website.
Also it can be downloaded as a zip archive from the website.

Customizing the Default CSS of a Document Type

The easiest way of customizing the default CSS stylesheet of a document type is to create a new CSS stylesheet
in the same folder as the customized one, import the customized CSS stylesheet and set the new stylesheet as the
default CSS of the document type. For example let us customize the default CSS for DITA documents by changing
the background color of the task and topic elements to red.

1. First you create a new CSS stylesheet called my_dita.css in the folder ${frameworks}/dita/
css_classed where the default stylesheet called dita.css is located. ${frameworks} is the subfolder
frameworks of the  Editor. The new stylesheet my_dita.css contains:

@import "dita.css";
    
task, topic{
    background-color:red;
}

2. To set the new stylesheet as the default CSS stylesheet for DITA documents first open the Document Type
Association preferences panel from menu Options > Preferences > Document Type Association. Select the
DITA document type and start editing it by pressing the Edit button. In the Author tab of the document type
edit dialog change the URI of the default CSS stylesheet from ${frameworks}/dita/css_classed/
dita.css to ${frameworks}/dita/css_classed/my_dita.css.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/DefaultElementLocatorProvider.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/IDElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/XPointerElementLocator.html
http://www.oxygenxml.com/InstData/Editor/SDK/oxygenAuthorSDK.zip
http://www.oxygenxml.com/developer.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html
http://www.oxygenxml.com/InstData/Editor/SDK/doc.zip


 | Author Developer Guide | 81

Figure 46: Set the location of the default CSS stylesheet
3. Press OK in all the dialogs to validate the changes. Now you can start editing DITA documents based on the new

CSS stylesheet. You can edit the new CSS stylesheet itself at any time and see the effects on rendering DITA
XML documents in the Author mode by running the Refresh action available on the Author toolbar and on the
DITA menu.

Document Type Sharing

allows you to share the customizations for a specific XML type by creating your own Document Type in the
Document Type Association preferences page.

A document type can be shared between authors as follows:

• Save it externally in a separate framework folder in the OXYGEN_INSTALL_DIR/frameworks directory.

Important:  For this approach to work, have the application installed to a folder with full write access.

Please follow these steps:

1. Go to OXYGEN_INSTALL_DIR/frameworks and create a directory for your new framework (name it
for example custom_framework). This directory will contain resources for your framework (CSS files,
new file templates, schemas used for validation, catalogs). See the Docbook framework structure from the
OXYGEN_INSTALL_DIR/frameworks/docbook as an example.

2. Create your custom document type and save it externally, in the custom_framework directory.
3. Configure the custom document type according to your needs, take special care to make all file references

relative to the OXYGEN_INSTALL_DIR/frameworks directory by using the ${frameworks} editor
variable. The Author Developer Guide contains all details necessary for creating and configuring a new
document type.

4. If everything went fine then you should have a new configuration file saved in: OXYGEN_INSTALL_DIR/
frameworks/custom_framework/custom.framework after the Preferences are saved.

5. Then, to share the new framework directory with other users, have them copy it to their
OXYGEN_INSTALL_DIR/frameworks directory. The new document type will be available in the list of
Document Types when  starts.

Note:  In case you have a frameworks directory stored on your local drive, you can also go to the
Document Type Association > Locations preferences page and add your frameworks directory in
the Additional frameworks directories list.

• Save the document type at project level in the Document Type Association preferences page.

Please see the following steps:

1. On your local drive, create a directory with full write access, containing the  project file and associated
document type resources (CSS files, new file templates, schemas used for validation, catalogs).

2. Start , go to the Project view and create a project. Save it in the newly created directory.



 | Author Developer Guide | 82

3. In the Document Type Association preferences page, select Project Options at the bottom of the page.
4. Create your custom document type using the default internal storage for it. It will actually be saved in the

previously chosen  project .xpr file.
5. Configure the custom document type according to your needs, take special care to make all file references

relative to the project directory by using the ${pd} editor variable. The Author Developer Guide contains all
details necessary for creating and configuring a new document type.

6. You can then share the new project directory with other users. When they open the customized project file in
the Project view, the new document type becomes available in the list of Document Types.

• Deploy your document type configuration as an add-on.

Adding Custom Persistent Highlights

The Author API allows you to create or remove custom persistent highlights, set their properties, and customize their
appearance. They get serialized in the XML document as processing instructions, having the following format:

<?oxy_custom_start prop1="val1"....?> xml content <?oxy_custom_end?>

The functionality is available in the AuthorPersistentHighlighter class, accessible through
AuthorEditorAccess#getPersistentHighlighter() method. For more information, see JavaDoc
online at: http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html

CSS Support in Author
Author editing mode supports most CSS 2.1 selectors, a lot of CSS 2.1 properties and a few CSS 3 selectors. Also
some custom functions and properties that extend the W3C CSS specification and are useful for URL and string
manipulation are available to the developer who creates an Author editing framework.

Handling CSS Imports

When a CSS document contains imports to other CSS documents, the references are also passed through the XML
catalog URI mappings in order to determine an indirect CSS referenced location.

You can have a CSS import like:

@import "http://host/path/to/location/custom.css";

and then add to the XML / XML Catalog preferences page your own XML catalog file which maps
the location to a custom CSS:

<uri name="http://host/path/to/location/custom.css" uri="path/to/
custom.css"/>

In addition to this, you can also add in your XML Catalog file the following mapping:

<uri name="http://www.oxygenxml.com/extensions/author/css/userCustom.css"
 uri="path/to/custom.css"/>

This extra mapped CSS location will be parsed every time the application processes the CSSs used to render the
opened XML document in the visual Author editing mode. In this way your custom CSS can be used without the
need to modify all other CSSs contributed in the document type configuration.

Media Type oxygen

The CSS stylesheets can specify how a document is presented on different media: on the screen, on paper, on speech
synthesizer, etc. You can specify that some of the selectors from your CSS should be taken into account only in the
Author mode and ignored in the rest. This can be accomplished by using the oxygen media type.

For instance using the following CSS:

b{

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/index.html


 | Author Developer Guide | 83

 font-weight:bold;
 display:inline; 
}

@media oxygen{
 b{
  text-decoration:underline;
 }
}

would make a text bold if the document was opened in a web browser that does not recognize @media oxygen and
bold and underlined in  Author.

You can use this media type to group specific  CSS selectors and have them ignored when opening the documents
with other viewers.

Standard W3C CSS Supported Features

oXygen supports most of the CSS Level 3 selectors and most of the CSS Level 2.1 properties

Supported CSS Selectors

Expression Name CSS Level Description / Example

* Universal selector CSS Level 2 Matches any element

E Type selector CSS Level 2 Matches any E element (i. e. an element
with the local name E)

E F Descendant selector CSS Level 2 Matches any F element that is a
descendant of an E element.

E > F Child selectors CSS Level 2 Matches any F element that is a child of
an element E.

E:lang(c) Language pseudo-class CSS Level 2 Matches element of type E if it is in
(human) language c (the document
language specifies how language is
determined).

E + F Adjacent selector CSS Level 2 Matches any F element immediately
preceded by a sibling element E.

E[foo] Attribute selector CSS Level 2 Matches any E element with the "foo"
attribute set (whatever the value).

E[foo="warning"]Attribute selector with value CSS Level 2 Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

E[foo~="warning"]Attribute selector containing
value

CSS Level 2 Matches any E element whose "foo"
attribute value is a list of space-
separated values, one of which is
exactly equal to "warning".

E[lang|="en"] Attribute selector containing
hyphen separated values

CSS Level 2 Matches any E element whose "lang"
attribute has a hyphen-separated list of
values beginning (from the left) with
"en".

E:before and
E:after

Pseudo elements CSS Level 2 The ':before' and ':after'
pseudo-elements can be used to insert



 | Author Developer Guide | 84

Expression Name CSS Level Description / Example
generated content before or after an
element's content.

E:first-child The first-child pseudo-class CSS Level 2 Matches element E when E is the first
child of its parent.

E:not(s) Negation pseudo-class CSS Level 2 An E element that does not match
simple selector s.

E:hover The hover pseudo-class CSS Level 2 The :hover pseudo-class applies
while the user designates an element
with a pointing device, but does not
necessarily activate it. When moving
the pointing device over an element, all
the parent elements up to the root are
taken into account.

E:focus The focus pseudo-class CSS Level 2 The :focus pseudo-class applies
while an element has the focus (accepts
keyboard input).

E#myid The ID selector CSS Level 2 Matches any E element with ID equal
to "myid".

Important:  Limitation:
In oXygen the match is
performed taking into account
only the attributes with the
exact name: "id".

E[att^="val"] Substring matching attribute
selector

CSS Level 3 An E element whose att attribute
value begins exactly with the string
val.

E[att$="val"] Substring matching attribute
selector

CSS Level 3 An E element whose att attribute
value ends exactly with the string val.

E[att*="val"] Substring matching attribute
selector

CSS Level 3 An E element whose att attribute
value contains the substring val.

E:root Root pseudo-class CSS Level 3 Matches the root element of the
document. In HTML, the root element
is always the HTML element.

E:empty Empty pseudo-class CSS Level 3 An E element which has no text or child
elements.

E:nth-child(n) The nth-child pseudo-class CSS Level 3 An E element, the n-th child of its
parent.

E:nth-last-
child(n)

The nth-last-child pseudo-class CSS Level 3 An E element, the n-th child of its
parent, counting from the last one.

E:nth-of-
type(n)

The nth-of-type pseudo-class CSS Level 3 An E element, the n-th sibling of its
type.



 | Author Developer Guide | 85

Expression Name CSS Level Description / Example

E:nth-last-of-
type(n)

The nth-last-of-type pseudo-
class

CSS Level 3 An E element, the n-th sibling of its
type, counting from the last one.

E:last-child The last-child pseudo-class CSS Level 3 An E element, last child of its parent.

E:first-of-
type

The first-of-type pseudo-class CSS Level 3 An E element, first sibling of its type.

E:last-of-type The last-of-type pseudo-class CSS Level 3 An E element, last sibling of its type.

E:only-child The only-child pseudo-class CSS Level 3 An E element, only child of its parent.

E:only-of-type The only-of-type pseudo-class CSS Level 3 An E element, only sibling of its type.

ns|E Element namespace selector CSS Level 3 An element that has the local name E
and the namespace given by the prefix
"ns". The namespace prefix can be
bound to an URI by the at-rule:

@namespace ns "http://
some_namespace_uri";

See Namespace Selector on page
85.

E!>F The subject selector CSS Level 4
(experimental)

An element that has the local name E
and has a child F. See Subject Selector
on page 86.

Namespace Selector

In the CSS 2.1 standard the element selectors are ignoring the namespaces of the elements they are matching. Only
the local name of the elements are considered in the selector matching process.

Author uses a different approach similar to the CSS Level 3 specification. If the element name from the CSS selector
is not preceded by a namespace prefix it is considered to match an element with the same local name as the selector
value and ANY namespace, otherwise the element must match both the local name and the namespace.

In CSS up to version 2.1 the name tokens from selectors are matching all elements from ANY namespace that have
the same local name. Example:

<x:b xmlns:x="ns_x"/>
<y:b xmlns:y="ns_y"/>

Are both matched by the rule:

b {font-weight:bold}

Starting with CSS Level 3 you can create selectors that are namespace aware.

Defining both prefixed namespaces and the default namespace

Given the namespace declarations:

@namespace sync "http://sync.example.org";
@namespace "http://example.com/foo";

In a context where the default namespace applies:



 | Author Developer Guide | 86

sync|A represents the name A in the http://
sync.example.org namespace.

|B represents the name B that belongs to NO
NAMESPACE.

*|C represents the name C in ANY namespace,
including NO NAMESPACE.

D represents the name D in the http://
example.com/foo namespace.

Defining only prefixed namespaces

Given the namespace declaration:

@namespace sync "http://sync.example.org";

Then:

sync|A represents the name A in the http://
sync.example.org namespace.

|B represents the name B that belongs to NO
NAMESPACE.

*|C represents the name C in ANY namespace,
including NO NAMESPACE.

D represents the name D in ANY namespace,
including NO NAMESPACE.

Defining prefixed namespaces combined with pseudo-elements

To match the def element its namespace will be declared, bind it to the abs prefix, and then write a
CSS rule:

@namespace abs "http://www.oxygenxml.com/sample/documentation/
abstracts";

Then:

abs|def represents the name "def" in the http://
www.oxygenxml.com/sample/
documentation/abstracts namespace.

abs|def:before represents the :before pseudo-element
of the "def" element from the http://
www.oxygenxml.com/sample/
documentation/abstracts namespace.

Subject Selector

Author supports the subject selector described in CSS Level 4 (currently a working draft at W3C http://dev.w3.org/
csswg/selectors4/). This selector matches a structure of the document, but unlike a compound selector, the styling
properties are applied to the subject element (the one marked with "!") instead of the last element from the path.

http://dev.w3.org/csswg/selectors4/
http://dev.w3.org/csswg/selectors4/


 | Author Developer Guide | 87

The subject of the selector can be explicitly identified by appending an exclamation mark (!) to one of the compound
selectors in a selector. Although the element structure that the selector represents is the same with or without the
exclamation mark, indicating the subject in this way can change which compound selector represents the subject in
that structure.

table! > caption {
  border: 1px solid red;
}

A border will be drawn to the table elements that contain a caption as direct child.

This is different from:

table > caption {
  border: 1px solid red;
}

which draws a border around the caption.

Important:  As a limitation of the current implementation the general descendant selectors are taken into
account as direct child selectors. For example the two CSS selectors are considered equivalent:

a! b c

and:

a! > b > c

Supported CSS Properties

validates all CSS 2.1 properties, but does not render in Author mode aural and paged categories properties, as
well as some of the values of the visual category, listed below under the Ignored Values column. For the  specific
(extension) CSS properties, go to Oxygen CSS Extensions on page 95.

Name Rendered Values Ignored Values

'background-attachment' ALL

'background-color' <color> | inherit transparent

'background-image' <uri> | none | inherit

'background-position' top | right | bottom |
left | center

<percentage> | <length>

'background-repeat' repeat | repeat-x |
repeat-y | no-repeat |
inherit

'background' ALL

'border-collapse' ALL

'border-color' <color> | inherit transparent

'border-spacing' ALL

'border-style' <border-style> | inherit

'border-top' 'border-
right' 'border-bottom'
'border-left'

[ <border-width> ||
<border-style> ||
'border-top-color' ] |
inherit



 | Author Developer Guide | 88

Name Rendered Values Ignored Values

'border-top-color'
'border-right-color'
'border-bottom-color'
'border-left-color'

<color> | inherit transparent

'border-top-style'
'border-right-style'
'border-bottom-style'
'border-left-style'

<border-style> | inherit

'border-top-width'
'border-right-width'
'border-bottom-width'
'border-left-width'

<border-width> | inherit

'border-width' <border-width> | inherit

'border' [ <border-width> ||
<border-style> ||
'border-top-color' ] |
inherit

'bottom' ALL

'caption-side' ALL

'clear' ALL

'clip' ALL

'color' <color> | inherit

'content' normal | none |
[ <string> | <URI>
| <counter> |
attr( <identifier> )
| open-quote | close-
quote ]+ | inherit

no-open-quote | no-
close-quote

'counter-increment' [ <identifier>
<integer> ? ]+ | none |
inherit

'counter-reset' [ <identifier>
<integer> ? ]+ | none |
inherit

'cursor' ALL

'direction' ltr| rtl | inherit

'display' inline | block | list-
item | table | table-
row-group | table-header-
group | table-footer-
group | table-row |
table-column-group |
table-column | table-cell
| table-caption | none |
inherit

run-in | inline-
block | inline-table -
considered block



 | Author Developer Guide | 89

Name Rendered Values Ignored Values

'empty-cells' show | hide | inherit

'float' ALL

'font-family' [[ <family-name> |
<generic-family> ] [,
<family-name> | <generic-
family> ]* ] | inherit

'font-size' <absolute-size> |
<relative-size> |
<length> | <percentage> |
inherit

'font-style' normal | italic | oblique
| inherit

'font-variant' ALL

'font-weight' normal | bold | bolder |
lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 |
800 | 900 | inherit

'font' [ [ 'font-style' ||
'font-weight' ]? 'font-
size' [ / 'line-
height' ]? 'font-
family' ] | inherit

'font-variant' 'line-
height' caption | icon
| menu | message-box |
small-caption | status-
bar

'height' ALL

'left' ALL

'letter-spacing' ALL

'line-height' normal | <number> |
<length> | <percentage> |
inherit

'list-style-image' ALL

'list-style-position' ALL

'list-style-type' disc | circle | square |
decimal | lower-roman |
upper-roman | lower-latin
| upper-latin | lower-
alpha | upper-alpha | -
oxy-lower-cyrillic-ru | -
oxy-lower-cyrillic-uk | -
oxy-upper-cyrillic-ru | -
oxy-upper-cyrillic-uk |
box | diamond | check |
hyphen | none | inherit

lower-greek | armenian
| georgian

'list-style' [ 'list-style-type' ] |
inherit

'list-style-position'
|| 'list-style-image'

'margin-right' 'margin-
left'

<margin-width> | inherit
| auto



 | Author Developer Guide | 90

Name Rendered Values Ignored Values

'margin-top' 'margin-
bottom'

<margin-width> | inherit

'margin' <margin-width> | inherit
| auto

'max-height' ALL

'max-width' <length> | <percentage>
| none | inherit - supported
for inline, block-level, and replaced
elements, e.g. images, tables, table
cells.

'min-height' ALL

'min-width' <length> | <percentage>
| inherit - supported for inline,
block-level, and replaced elements, e.
g. images, tables, table cells.

'outline-color' ALL

'outline-style' ALL

'outline-width' ALL

'outline' ALL

'overflow' ALL

'padding-top' 'padding-
right' 'padding-bottom'
'padding-left'

<padding-width> | inherit

'padding' <padding-width> | inherit

'position' ALL

'quotes' ALL

'right' ALL

'table-layout' auto fixed | inherit

'text-align' left | right | center |
inherit

justify

'text-decoration' none | [ underline
|| overline || line-
through ] | inherit

blink

'text-indent' ALL

'text-transform' ALL

'top' ALL

'unicode-bidi' bidi-override| normal|
embed| inherit

'vertical-align' baseline | sub | super |
top | text-top | middle

<percentage> | <length>



 | Author Developer Guide | 91

Name Rendered Values Ignored Values
| bottom | text-bottom |
inherit

'visibility' visible | hidden |
inherit | -oxy-collapse-
text

collapse

'white-space' normal | pre | nowrap |
pre-wrap | pre-line

'width' <length> | <percentage>
| auto | inherit - supported
for inline, block-level, and replaced
elements, e.g. images, tables, table
cells.

'word-spacing' ALL

'z-index' ALL

Transparent Colors

CSS3 supports RGBA colors. The RGBA declaration allows you to set opacity (via the Alpha channel) as part of
the color value. A value of 0 corresponds to a completely transparent color, while a value of 1 corresponds to a
completely opaque color. To specify a value, you can use either a real number between 0 and 1, or a percent.

RGBA color

personnel:before {
    display:block;    
    padding: 1em;
    font-size: 1.8em;
    content: "Employees";
    font-weight: bold;
    color:#EEEEEE;    
    background-color: rgba(50, 50, 50, 0.6);
}

The attr() Function: Properties Values Collected from the Edited Document.

In CSS Level 2.1 you may collect attribute values and use them as content only for the pseudo-elements. For instance
the :before pseudo-element can be used to insert some content before an element. This is valid in CSS 2.1:

title:before{
  content: "Title id=(" attr(id) ")";
}

If the title element from the XML document is:

<title id="title12">My title.</title>

Then the title will be displayed as:

                           Title id=(title12) My title.                      
  

In  Author the use of attr() function is available not only for the content property, but also for any other
property. This is similar to the CSS Level 3 working draft: http://www.w3.org/TR/2006/WD-css3-values-20060919/
#functional. The arguments of the function are:

attr (  attribute_name  ,  attribute_type  ,  default_value  )

http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional
http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional


 | Author Developer Guide | 92

attribute_name The attribute name. This argument is required.

attribute_type The attribute type. This argument is optional. If it is
missing, argument's type is considered string. This
argument indicates what is the meaning of the attribute
value and helps to perform conversions of this value. 
Author accepts one of the following types:

color The value represents a
color. The attribute may
specify a color in different
formats.  Author supports
colors specified either
by name: red, blue,
green, etc. or as an
RGB hexadecimal value
#FFEEFF.

url The value is an URL
pointing to a media object. 
Author supports only
images. The attribute
value can be a complete
URL, or a relative one
to the XML document.
Please note that this URL
is also resolved through
the catalog resolver.

integer The value must be
interpreted as an integer.

number The value must be
interpreted as a float
number.

length The value must be
interpreted as an integer.

percentage The value must be
interpreted relative to
another value (length, size)
expressed in percents.

em The value must be
interpreted as a size. 1 em
is equal to the font-size of
the relevant font.

ex The value must be
interpreted as a size. 1 ex
is equal to the height of the
x character of the relevant
font.



 | Author Developer Guide | 93

px The value must be
interpreted as a size
expressed in pixels relative
to the viewing device.

mm The value must be
interpreted as a size
expressed in millimeters.

cm The value must be
interpreted as a size
expressed in centimeters.

in The value must be
interpreted as a size
expressed in inches. 1
inch is equal to 2.54
centimeters.

pt The value must be
interpreted as a size
expressed in points. The
points used by CSS2 are
equal to 1/72th of an inch.

pc The value must be
interpreted as a size
expressed in picas. 1 pica
is equal to 12 points.

default_value This argument specifies a value that is used by default if
the attribute value is missing. This argument is optional.

Usage samples for the attr() function

Consider the following XML instance:

<sample>
    <para bg_color="#AAAAFF">Blue paragraph.</para>
    <para bg_color="red">Red paragraph.</para>
    <para bg_color="red" font_size="2">Red paragraph with large
 font.</para>
    <para bg_color="#00AA00" font_size="0.8" space="4">
        Green paragraph with small font and margin.</para>
</sample>

The para elements have bg_color attributes with RGB color values like #AAAAFF. You can
use the attr() function to change the elements appearance in the editor based on the value of this
attribute:

background-color:attr(bg_color, color);

The attribute font_size represents the font size in em units. You can use this value to change the
style of the element:

font-size:attr(font_size, em);

The complete CSS rule is:

para{



 | Author Developer Guide | 94

 display:block;
 background-color:attr(bg_color, color);
 font-size:attr(font_size, em);
 margin:attr(space, em);
}

The document is rendered as:

Supported CSS At-rules

Oxygen supports some of the at-rules specified by CSS Level 2.1 and 3.

The @font-face at-rule

allows you to use custom fonts in the Author mode by specifying them in the CSS using the @font-face media
type. Only the src and font-family CSS properties can be used for this media type.

@font-face{
    font-family:"Baroque Script";
    /*The location of the loaded TTF font must be relative to the
 CSS*/
    src:url("BaroqueScript.ttf");
}

The specified font-family must match the name of the font declared in the .ttf file.

The @media at-rule

supports several media types, allowing you to set different styles for presenting a document on different media (on
the screen, on paper and so on). The following media types are supported:

• screen - the styles marked with this media type are used only for rendering a document in the Author mode;
• all - the styles marked with this media type are used for rendering a document in the Author mode and also for

printing the document;
• oxygen - the styles marked with this media type are used only for rendering a document in the Author mode;

Note:  This is an  specific media.

• print - the styles marked with this media type are used only for printing a document.



 | Author Developer Guide | 95

Oxygen CSS Extensions

CSS stylesheets provide support mainly for displaying documents. When editing documents some non-standard,
oXygen specific CSS extensions are useful, for example:

• property for marking foldable elements in large files;
• enforcing a display mode for the XML tags regardless of the current mode selected by the author user;
• construct an URL from a relative path location;
• string processing functions.

Additional CSS Selectors

Author provides support for selecting additional types of nodes. These custom selectors apply to: document,
doctype sections, processing-instructions, comments, CDATA sections, reference sections, and entities. Processing-
instructions are not displayed by default. To display them, go to Options >  Preferences >  Editor >  Author and
select Show processing instructions.

Note:  The custom selectors are presented in the default CSS for Author mode and all of their properties are
marked with an !important flag. For this reason, you have to set the !important flag on each property of the
custom selectors from your CSS to be applicable.

For the custom selectors to work in your CSSs, declare the Author extensions namespace at the beginning of the
stylesheet documents:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');

• The oxy|document selector matches the entire document:

oxy|document {
    display:block !important;
}

• The following example changes the rendering of doctype sections:

oxy|doctype {
    display:block !important;
    color:blue !important;
    background-color:transparent !important;
}

• To match the processing instructions, you can use the oxy|processing-instruction selector:

oxy|processing-instruction {
    display:block !important;
    color:purple !important;
    background-color:transparent !important;
}

A processing instruction usually has a target and one or more pseudo attributes:

<?target_name data="b"?>

You can match a processing instruction with a particular target from the CSS using the construct:

oxy|processing-instruction[target_name]

You can also match the processing instructions having a certain target and pseudo attribute value like:

oxy|processing-instruction[target_name][data="b"]
• The XML comments display in Author mode can be changed using the oxy|comment selector:

oxy|comment {
    display:block !important;
    color:green !important;
    background-color:transparent !important;
}

• The oxy|cdata selector matches CDATA sections:



 | Author Developer Guide | 96

oxy|cdata{
    display:block !important;
    color:gray !important;
    background-color:transparent !important;
} 

• The oxy|entity selector matches the entities content:

oxy|entity {
    display:morph !important;
    editable:false !important;
    color:orange !important;
    background-color:transparent !important;
}

• The references to entities, XInclude, and DITA conrefs are expanded by default in Author mode and the referred
content is displayed.the referred content is displayed.the referred content is displayed.the referred content is
displayed.the referred content is displayed. The referred resources are loaded and displayed inside the element or
entity that refers them.

• You can use the reference property to customize the way these references are rendered in the Author mode:

oxy|reference {
  border:1px solid gray !important;
}

In the Author mode, content is highlighted when parts of text contain:

• comments;comments;comments;comments;comments;
• changes and Track ChangesTrack ChangesTrack ChangesTrack ChangesTrack Changes was active when the

content was modified.

If this content is referred, the Author mode does not display the highlighted areas in the new context. If you
want to mark the existence of this comments and changes you can use the oxy|reference[comments], oxy|
reference[changeTracking], and oxy|reference[changeTracking][comments] selectors.

Note:  Two artificial attributes (comments and changeTracking) are set on the reference node, containing
information about the number of comments and track changes in the content.

• The following example represents the customization of the reference fragments that contain comments:

oxy|reference[comments]:before {
  content: "Comments: " attr(comments) !important;  
}

• To match reference fragments based on the fact that they contain change tracking inside, use the oxy|
reference[changeTracking] selector.

oxy|reference[changeTracking]:before {
  content: "Change tracking: " attr(changeTracking) !important;  
}

• Here is an example of how you can set a custom color to the reference containing both track changes and
comments:

oxy|reference[changeTracking][comments]:before {
  content: "Change tracking: " attr(changeTracking) " and comments: "
 attr(comments) !important;  
}

A sample document rendered using these rules:

http://www.oxygenxml.com/doc/ug-editor/topics/author-displaying-referred-content.html
http://www.oxygenxml.com/doc/ug-editor/topics/author-displaying-referred-content.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/author-displaying-referred-content.html
http://www.oxygenxml.com/doc/ug-author/topics/author-displaying-referred-content.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-displaying-referred-content.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-displaying-referred-content.html
http://www.oxygenxml.com/doc/ug-editor/topics/author-change-tracking.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/author-change-tracking.html
http://www.oxygenxml.com/doc/ug-author/topics/author-change-tracking.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-change-tracking.html
http://www.oxygenxml.com/doc/ug-editor/topics/author-change-tracking.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/author-change-tracking.html
http://www.oxygenxml.com/doc/ug-author/topics/author-change-tracking.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-change-tracking.html


 | Author Developer Guide | 97

Additional CSS Properties

Author offers an extension of the standard CSS properties suited for content editing.

Folding Elements: -oxy-foldable, -oxy-not-foldable-child and -oxy-folded properties

Author allows you to declare some elements to be foldable (collapsible). This is especially useful when working with
large documents organized in logical blocks, editing a large DocBook article or book for instance.  marks the foldable
content with a small blue triangle. When you hover with your mouse pointer over this marker, a dotted line borders
the collapsible content. The following contextual actions are available:

• Ctrl (Meta on Mac OS) + NumPad + / > Document > Folding > Close Other Folds  > Ctrl (Meta on Mac

OS) + NumPad + / Close Other Folds Ctrl (Meta on Mac OS) + NumPad + /  - Folds all the elements except
the current element.

• Document > Folding > Collapse Child Folds (Ctrl+Decimal)  (Ctrl+NumPad+-)  ( (Cmd+NumPad+-

on Mac OS)) Collapse Child Folds (Ctrl+Decimal)  - Folds the elements indented with one level inside the
current element.

• Document > Folding > Expand Child Folds (Ctrl+NumPad++)  ( (Cmd+NumPad++))  Expand Child
Folds (Ctrl+Equals)- Unfolds all child elements of the currently selected element.

• Document > Folding > Expand All (Ctrl+NumPad+*)  ( (Cmd+NumPad+* on Mac OS))  Expand All
(Ctrl+NumPad+*) - Unfolds all elements in the current document.

• Document > Folding > Toggle Fold (Alt+Shift+Y)  ( (Cmd+Alt+Y on Mac OS))  Toggle Fold  - Toggles
the state of the current fold.

To define the element whose content can be folded by the user, you must use the property: -oxy-
foldable:true;. To define the elements that are folded by default, use the -oxy-folded:true property.



 | Author Developer Guide | 98

Note:  The -oxy-folded property works in conjunction with the -oxy-foldable property. Thus, the
folded property is ignored if the -oxy-foldable property is not set on the same element.

When collapsing an element, it is useful to keep some of its content visible, like a short description of the collapsed
region. The property -oxy-not-foldable-child is used to identify the child elements that are kept visible. It
accepts as value an element name or a list of comma separated element names. If the element is marked as foldable
(-oxy-foldable:true;) but it doesn't have the property -oxy-not-foldable-child or none of the
specified non-foldable children exists, then the element is still foldable. In this case the element kept visible when
folded will be the before pseudo-element.

Note:  Deprecated properties foldable, not-foldable-child, and folded are also supported.

Folding DocBook Elements

All the elements below can have a title child element and are considered to be logical sections.
You mark them as being foldable leaving the title element visible.

set,
book,
part,
reference,
chapter,
preface,
article,
sect1,
sect2,
sect3,
sect4,
section,
appendix,
figure,
example,
table {
    -oxy-foldable:true;
    -oxy-not-foldable-child: title;
}

Placeholders for empty elements: -oxy-show-placeholder and -oxy-placeholder-content
properties

Author displays the element name as pseudo-content for empty elements, if the Show placeholders for empty
elementsShow placeholders for empty elementsShow placeholders for empty elementsShow placeholders for empty
elementsShow placeholders for empty elements option is enabled and there is no before or after content set is CSS
for this type of element.

To control the displayed pseudo-content for empty elements, you can use the -oxy-placeholder-content
CSS property.

The -oxy-show-placeholder property allows you to decide whether the placeholder must be shown. The
possible values are:

• always - Always display placeholders.
• default - Always display placeholders if before or after content are not set is CSS.
• inherit - The placeholders are displayed according to Show placeholders for empty elements option (if

before and after content is not declared).

Note:  Deprecated properties show-placeholder and placeholder-content are also supported.

Read-only elements: -oxy-editable property

If you want to inhibit editing a certain element content, you can set the -oxy-editable (deprecated property
editable is also supported) CSS property to false.

http://www.oxygenxml.com/doc/ug-editor/topics/preferences-author.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-author.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-author.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-author.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-author.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-author.html


 | Author Developer Guide | 99

Display Elements: -oxy-morph value

Author allows you to specify that an element has an -oxy-morph display type (deprecated morph property is also
supported), meaning that the element is inline if all its children are inline.

Let's suppose we have a wrapper XML element allowing users to set a number of attributes on all
sub-elements. This element should have an inline or block behavior depending on the behavior of
its child elements:

wrapper{
 display:-oxy-morph;
}

The whitespace property: -oxy-trim-when-ws-only value

Author allows you to set the whitespace property to -oxy-trim-when-ws-only, meaning that the leading
and trailing whitespaces are removed.

The visibility property: -oxy-collapse-text

Author allows you to set the value of the visibility property to -oxy-collapse-text, meaning that the
text content of that element is not rendered. If an element is marked as -oxy-collapse-text you are not able
to position the caret inside it and edit it. The purpose of -oxy-collapse-text is to make the text value of an
element editable only through a form control.

The text value of an XML element will be edited using a text field form control. In this case, we
want the text content not to be directly present in the Author visual editing mode:

title{
 content: oxy_textfield(edit, '#text', columns, 40);
 visibility:-oxy-collapse-text;
}

Cyrillic Counters: list-style-type values -oxy-lower-cyrillic

Author allows you to set the value of the list-style-type property to -oxy-lower-cyrillic-ru, -
oxy-lower-cyrillic-uk, -oxy-upper-cyrillic-ru or -oxy-upper-cyrillic-uk, meaning that
you can have Russian and Ukrainian counters.

Counting list items with Cyrillic symbols:

li{
  display:list-item;
  list-style-type:-oxy-lower-cyrillic-ru;
}

The link property: link

Author allows you to declare some elements to be links. This is especially useful when working with many
documents which refer each other. The links allow for an easy way to get from one document to another. Clicking on
the link marker will open the referred resource in an editor.

To define the element which should be considered a link, you must use the property link on the before or after
pseudo element. The value of the property indicates the location of the linked resource. Since links are usually
indicated by the value of an attribute in most cases it will have a value similar to attr(href)

Docbook Link Elements

All the elements below are defined to be links on the before pseudo element and their value is
defined by the value of an attribute.

*[href]:before{



 | Author Developer Guide | 100

    link:attr(href);
    content: "Click " attr(href) " for opening" ;
}

ulink[url]:before{
    link:attr(url);
    content: "Click to open: " attr(url);
}

olink[targetdoc]:before{
    -oxy-link: attr(targetdoc);
    content: "Click to open: " attr(targetdoc);
} 

Display Tag Markers: -oxy-display-tags

Author allows you to choose whether tag markers of an element should never be presented or the current display
mode should be respected. This is especially useful when working with :before and :after pseudo-elements in
which case the element range is already visually defined so the tag markers are redundant.

The property is named -oxy-display-tags, with the following possible values:

• none - Tags markers must not be presented regardless of the current Display mode.Display mode.Display
mode.Display mode.Display mode.

• default - The tag markers will be created depending on the current Display mode.Display mode.Display
mode.Display mode.Display mode.

• inherit - The value of the property is inherited from an ancestor element.

-oxy-display-tags
    Value: none | default | inherit
    Initial: default
    Applies to: all nodes(comments, elements, CDATA, etc)
    Inherited: false
    Media: all 

Docbook Para elements

In this example the para element from Docbook is using an :before and :after element so
you don't want its tag markers to be visible.

para:before{
    content: "{";
}

para:after{
    content: "}";
}

para{
    -oxy-display-tags: none;
    display:block;
    margin: 0.5em 0;
}

Append Content Properties: -oxy-append-content and -oxy-prepend-content

The -oxy-append-content Property

This property appends the specified content to the content generated by other matching CSS rules of lesser specificity.
Unlike the content property, where only the value from the rule with the greatest specificity is taken into account,
the -oxy-append-conent property adds content to that generated by the lesser specificity rules into a new
compound content.

http://www.oxygenxml.com/doc/ug-editor/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-author/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-author/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-editor/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-author/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-author/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-display-markup.html


 | Author Developer Guide | 101

-oxy-append-content Example

element:before{
    content: "Hello";
}
element:before{
    -oxy-append-content: " World!";
}

The content shown before the element will be Hello World!.

The -oxy-prepend-content Property
Prepends the specified content to the content generated by other matching CSS rules of lesser specificity. Unlike the
content property, where only the value from the rule with the greatest specificity is taken into account, the -oxy-
prepend-conent prepends content to that generated by the lesser specificity rules into a new compound content.

-oxy-prepend-content Example

element:before{
    content: "Hello!";
}
element:before{
    -oxy-prepend-content: "said: ";
}
element:before{
    -oxy-prepend-content: "I ";
}

The content shown before the element will be I said: Hello!.

Custom colors for element tags: -oxy-tags-color and -oxy-tags-background-color

By default  does not display element tags. You can use this button  from the Author tool bar to control the amount
of displayed markup.displayed markup.displayed markup.displayed markup.

To configure the default background and foreground colors of the tags, go to Editor >  Edit modes >  Author. The -
oxy-tags-background-color and -oxy-tags-color properties allow you to control the background and
foreground colors for any particular XML element.

para {
    -oxy-tags-color:white;
    -oxy-tags-background-color:green;
}
title {
    -oxy-tags-color:yellow;
    -oxy-tags-background-color:black;
}

Custom CSS Functions

The visual Author editing mode supports also a wide range of custom CSS extension functions.

The oxy_local-name() Function

The oxy_local-name() function evaluates the local name of the current node. It does not have any arguments.

To insert as static text content before each element its local name, use this CSS selector:

*:before{
  content: oxy_local-name() ": ";

http://www.oxygenxml.com/doc/ug-editor/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-author/topics/author-display-markup.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/author-display-markup.html


 | Author Developer Guide | 102

}

The oxy_name() Function

The oxy_name() function evaluates the qualified name of the current node. It does not have any arguments.

To insert as static text content before each element its qualified name, use this CSS selector:

*:before{
  content: oxy_name() ": ";
}

The oxy_url() Function

The oxy_url() function extends the standard CSS url() function, by allowing you to specify additional relative
path components (parameters loc_1 to loc_n).  uses all these parameters to construct an absolute location.

oxy_url (  location  , loc_1 , loc_2 )

location The location as string. If not absolute, will be solved
relative to the CSS file URL.

loc_1 ... loc_n Relative location path components as string. (optional)

The following function:

oxy_url('http://www.oxygenxml.com/css/test.css', '../dir1/',
 'dir2/dir3/', '../../dir4/dir5/test.xml')

returns

'http://www.oxygenxml.com/dir1/dir4/dir5/test.xml'

As a concrete example if you have image references but you want to see in the visual Author editing
mode thumbnail images which reside in the same folder:

image[href]{
 content:oxy_url(oxy_base-uri(),
 oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}

The oxy_base-uri() Function

The oxy_base-uri() function evaluates the base URL in the context of the current node. It does not have any
arguments and takes into account the xml:base context of the current node. See the XML Base specification for
more details.

If you have image references but you want to see in the visual Author editing mode thumbnail
images which reside in the same folder:

image[href]{
 content:oxy_url(oxy_base-uri(),
 oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}

The oxy_parent-url() Function

The oxy_parent-url() function evaluates the parent URL of an URL received as string.

oxy_parent-url ( URL )

URL The URL as string.

http://www.w3.org/TR/xmlbase/


 | Author Developer Guide | 103

The oxy_capitalize() Function

This function capitalizes the first letter of the text received as argument.

oxy_capitalize (  text  )

text The text for which the first letter will be capitalized.

To insert as static text content before each element its capitalized qualified name, use this CSS
selector:

*:before{
  content: oxy_capitalize(oxy_name()) ": ";
}

The oxy_uppercase() Function

The oxy_uppercase() function transforms to upper case the text received as argument.

oxy_uppercase (  text  )

text The text to be capitalized.

To insert as static text content before each element its upper-cased qualified name, use this CSS
selector:

*:before{
  content: oxy_uppercase(oxy_name()) ": ";
}

The oxy_lowercase() Function

The oxy_lowercase() function transforms to lower case the text received as argument.

oxy_lowercase (  text  )

text The text to be lower cased.

To insert as static text content before each element its lower-cased qualified name, use this CSS
selector:

*:before{
  content: oxy_lowercase(oxy_name()) ": ";
}

The oxy_concat() Function

The oxy_concat() function concatenates the received string arguments.

oxy_concat (  str_1  ,  str_2  )

str_1 ... str_n The string arguments to be concatenated.

If an XML element has an attribute called padding-left:

and you want to add a padding before it with that specific amount specified in the attribute value:

*[padding-left]{
 padding-left:oxy_concat(attr(padding-left), "px");
}



 | Author Developer Guide | 104

The oxy_replace() Function

The oxy_replace() function has two signatures:

• oxy_replace (  text  ,  target  ,  replacement  )

This function replaces each substring of the text that matches the literal target string with the specified literal
replacement string.

text The text in which the replace will occur.

target The target string to be replaced.

replacement The string replacement.

• oxy_replace (  text  ,  target  ,  replacement  ,  isRegExp  )

This function replaces each substring of the text that matches the target string with the specified replacement
string.

text The text in which the replace will occur.

target The target string to be replaced.

replacement The string replacement.

isRegExp If true the target and replacement arguments are
considered regular expressions in PERL syntax, if false
they are considered literal strings.

If you have image references but you want to see in the visual Author editing mode thumbnail
images which reside in the same folder:

image[href]{
 content:oxy_url(oxy_base-uri(),
 oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}

The oxy_unparsed-entity-uri() Function

The oxy_unparsed-entity-uri() function returns the URI value of an unparsed entity name.

oxy_unparsed-entity-uri (  unparsedEntityName  )

unparsedEntityName The name of an unparsed entity defined in the DTD.

This function can be useful to display images which are referred with unparsed entity names.

CSS for displaying the image in Author for an  imagedata  with  entityref  to an
unparsed entity

imagedata[entityref]{
content: oxy_url(oxy_unparsed-entity-uri(attr(entityref))); 
}

The oxy_attributes() Function

The oxy_attributes() function concatenates the attributes for an element and returns the serialization.

oxy_attributes ( )

oxy_attributes()

For the following XML fragment:<element att1="x" xmlns:a="2" x="&quot;"/> 
the CSS selector



 | Author Developer Guide | 105

element{
  content:oxy_attributes();
}

will displayatt1="x" xmlns:a="2" x=""".

The oxy_substring() Function

The oxy_substring() function has two signatures:

• oxy_substring (  text  ,  startOffset )

Returns a new string that is a substring of the original text string. It begins with the character at the specified
index and extends to the end of text string.

text The original string.

startOffset The beginning index, inclusive

• substring (  text  ,  startOffset  ,  endOffset  )

Returns a new string that is a substring of the original text string. The substring begins at the specified startOffset
and extends to the character at index endOffset - 1.

text The original string.

startOffset The beginning index, inclusive

endOffset The ending index, exclusive.

oxy_substring('abcd', 1) returns the string 'bcd'.

oxy_substring('abcd', 4) returns an empty string.

oxy_substring('abcd', 1, 3) returns the string 'bc'.

If we want to display only part of an attribute's value, the part which comes before an Appendix
string:

image[longdesc]{
 content: oxy_substring(attr(longdesc), 0,
 oxy_indexof(attr(longdesc), "Appendix"));
}

The oxy_getSomeText(text, length) Function

The oxy_getSomeText(text, length) function allows you to truncate a long string and to set a maximum
number of displayed characters.

The following properties are supported:

• text - displays the actual text;
• length - sets the maximum number of characters that are displayed;
• endsWithPoints - specifies whether the truncated text ends with ellipsis.

If an attribute value is very large we can trim its content before it is displayed as static content:

*[longdesc]:before{
  content: oxy_getSomeText(attr(longdesc), 200);
}

The oxy_indexof() Function

The oxy_indexof() function has two signatures:

• oxy_indexof (  text  ,  toFind )



 | Author Developer Guide | 106

Returns the index within text string of the first occurrence of the toFind substring.

text Text to search in.

toFind The searched substring.

• oxy_indexof (  text  ,  toFind  ,  fromOffset  )

Returns the index within text string of the first occurrence of the toFind substring. The search starts from
fromOffset index.

text Text to search in.

toFind The searched substring.

fromOffset The index from which to start the search.

oxy_indexof('abcd', 'bc') returns 1.

oxy_indexof('abcdbc', 'bc', 2) returns 4.

If we want to display only part of an attribute's value, the part which comes before an Appendix
string:

image[longdesc]{
 content: oxy_substring(attr(longdesc), 0,
 oxy_indexof(attr(longdesc), "Appendix"));
}

The oxy_lastindexof() Function

The oxy_lastindexof() function has two signatures:

• oxy_lastindexof (  text  ,  toFind )

Returns the index within text string of the rightmost occurrence of the toFind substring.

text Text to search in.

toFind The searched substring.

• oxy_lastindexof (  text  ,  toFind  ,  fromOffset  )

The search starts from fromOffset index. Returns the index within text string of the last occurrence of the toFind
substring, searching backwards starting from the fromOffset index.

text Text to search in.

toFind The searched substring.

fromOffset The index from which to start the search backwards.

oxy_lastindexof('abcdbc', 'bc') returns 4.

oxy_lastindexof('abcdbccdbc', 'bc', 2) returns 1.

If we want to display only part of an attribute's value, the part which comes before an Appendix
string:

image[longdesc]{
 content: oxy_substring(attr(longdesc), 0,
 oxy_lastindexof(attr(longdesc), "Appendix"));
}



 | Author Developer Guide | 107

The oxy_xpath() Function

The oxy_xpath() function has one signature:

• oxy_xpath (  expression  )

Evaluates the given XPath expression using Saxon 9 and returns the result.

Note:  The entities are ignored when the XPath expressions are evaluated.

expression An XPath 2.0 expression to be evaluated.

The following example counts the number of words from a paragraph and displays the result in
front of it:

para:before{ 
  content: 
    concat("|Number of words:", 
           oxy_xpath(
                "count(tokenize(normalize-space(string-
join(text(), '')), ' '))"
           ), "| "); 
}

The oxy_editor() Function
The oxy_editor function allows you to edit attributes or simple element values in the Author mode using standard
form controls like combo boxes, text fields, pop-ups, URL choosers or to implement your own custom form controls
and renderers.

The oxy_editor() function can appear in the content property of a CSS rule. The function's arguments are
property name - property value pairs:

myElement {
    content: oxy_editor(
        type, combo,
        edit, "@my_attr"
    )
}

The form control allows you to edit Processing Instructions (PIs), the value of an attribute, or the text content of an
element. This is specified using the edit property. This property can have the following values:

• @attribute_name - specifies that the presented/edited value is the value of an attribute;
• #text - specifies that the presented/edited value is the simple text value of an element. This text can contain built-

in character entities.

Note:  You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies.

You can use a number of built-in form controls through the type property. The following values are recognized:

• text - a text field with optional content completion capabilities is used to present and edit a value;
• combo - a combo-box is used to present and edit a value;
• check - a single check box or multiple check boxes are used to present and edit a value;
• popupSelection - a pop-up with single/multiple selection is used as form control;
• button - a button that invokes an author action is used as form control;
• urlChooser - a text field with a browse button is used as form control.
• datePicker - a text field with a calendar browser button is used as form control.

To watch our video demonstration about form controls, go to http://oxygenxml.com/demo/Form_Controls.html.

http://oxygenxml.com/demo/Form_Controls.html


 | Author Developer Guide | 108

The Text Field Form Control

A text field with optional content completion capabilities is used to present and edit the value of an attribute or an
element. This type of form control supports the following properties:

• type - this property specifies the built-in form control you are using. For the Text form control, its value has to
be text;

• columns - controls the width of the form control. The unit size is the width of the w character;
• fontInherit - this value specifies whether the form control inherits its font from its parent element. The

values of this property can be true, or false.To make the pop-up form control inherit its font from its parent
element, set the fontInherit property to true;

• visible - specifies whether the form control is visible. The possible values of this property are true (the form
control is visible) and false (the form control is not visible);

• values - specifies the values that populate the content completion list of proposals. In case these values are not
specified, they are collected from the associated schema;

• tooltips - specifies a tooltip for the values of the form control. The values of this property are a list of tooltips
separated by commas. In case you want the tooltip to display a comma, use the ${comma} variable;

• tooltip - specifies a tooltip for the form control itself. This tooltip is displayed when you hover the form
control using your cursor;

• color - specifies the foreground color of the form control. In case the value of the color property is inherit,
the form control has the same color as the element in which it is inserted.

Text Field Form Control

element {
    content: "Label: "
        oxy_editor(
            type, text,
            edit, "@my_attr",
            values, "value1, value2"
            columns, 40);
}

The oxy_editor function acts as a proxy that allows you to insert any of the supported form
controls. Alternatively, you can use the oxy_textfield dedicated function.

element {
    content: "Label: "
        oxy_textfield(
            edit, "@my_attr",
            values, "value1, value2"
            columns, 40);
}

The Combo Box Form Control

A combo box is used to present and edit the value of an attribute or an element. This type of form control supports the
following properties:

• type - this property specifies the built-in form control you are using. For the Combo box form control, its value
has to be combo;

• columns - controls the width of the form control. The unit size is the width of the w character;
• visible - specifies whether the form control is visible. The possible values of this property are true (the form

control is visible) and false (the form control is not visible);
• editable - this property accepts the true and false values. The true value generates an editable combo-box that

allows you to insert other values than the proposed ones. The false value generates a combo-box that only accepts
the proposed values;

• tooltips - specifies a tooltip for the values of the form control. The values of this property are a list of tooltips
separated by commas. In case you want the tooltip to display a comma, use the ${comma} variable;



 | Author Developer Guide | 109

• values - specifies the values that populate the content completion list of proposals. In case these values are not
specified, they are collected from the associated schema;

• fontInherit - this value specifies whether the form control inherits its font from its parent element. The values
of this property can be true, or false. To make the Combo-box form control inherit its font from its parent
element, set the fontInherit property to true;

• labels - this property must have the same number of items as the values property. Each item provides a literal
description of the items listed in the values property;

Note:  This property is available only for read-only Combo boxes (Combo boxes that have the
editable property set to false).

• color - specifies the foreground color of the form control. In case the value of the color property is inherit,
the form control has the same color as the element in which it is inserted.

Combo Box Form Control

comboBox:before {
    content: "A combo box that edits an attribute value. The
 possible values are provided from CSS:"
        oxy_editor(
            type, combo,
            edit, "@attribute",
            editable, true,
            values, "value1, value2, value3",
            labels, "Value no1, Value no2, Value no3");
}

The oxy_editor function acts as a proxy that allows you to insert any of the supported form
controls. Alternatively, you can use the oxy_combobox dedicated function.

comboBox:before {
    content: "A combo box that edits an attribute value. The
 possible values are provided from CSS:"
        oxy_combobox(           
            edit, "@attribute",
            editable, true,
            values, "value1, value2, value3",
            labels, "Value no1, Value no2, Value no3");
}

The Check Box Form Control

A single check-box or multiple check-boxes are used to present and edit the value on an attribute or element. This
type of form control supports the following properties:

• type - this property specifies the built-in form control you are using. For the Check Box form control, its value
has to be check;

• resultSeparator - in case multiple check-boxes are used, the separator is used to compose the final result;
• tooltips - specifies a tooltip for the values of the form control. The values of this property are a list of tooltips

separated by commas. In case you want the tooltip to display a comma, use the ${comma} variable;
• visible - specifies whether the form control is visible. The possible values of this property are true (the form

control is visible) and false (the form control is not visible);
• values - specifies the values that are committed when the check-boxes are selected. In case these values are not

specified in the CSS, they are collected from the associated XML Schema;
• fontInherit - this value specifies whether the form control inherits its font from its parent element. The values

of this property can be true, or false. To make the Check box form control inherit its font from its parent
element, set the fontInherit property to true.

• uncheckedValues - specifies the values that are committed when the check-boxes are not selected;
• labels - this property must have the same number of items as the values property. Each item provides a literal

description of the items listed in the values property. In case this property is not specified, the values property
is used as label;



 | Author Developer Guide | 110

• columns - controls the width of the form control. The unit size is the width of the w character;
• color - specifies the foreground color of the form control. In case the value of the color property is inherit,

the form control has the same color as the element in which it is inserted.

Single Check-box Form Control

checkBox[attribute]:before {
    content: "A check box editor that edits a two valued attribute
 (On/Off).
              The values are specified in the CSS:"
oxy_editor(
    type, check,
        edit, "@attribute",
        values, "On",
        uncheckedValues, "Off",
        labels, "On/Off"); 

Multiple Check-boxes Form Control

multipleCheckBox[attribute]:before {
    content: "Multiple checkboxes editor that edits an attribute
 value. 
              Depending whether the check-box is selected a
 different value is committed:"
        oxy_editor(
        type, check,
        edit, "@attribute",
        values, "true, yes, on",
        uncheckedValues, "false, no, off",
        resultSeparator, ","
        labels, "Present, Working, Started");

The oxy_editor function acts as a proxy that allows you to insert any of the supported form
controls. Alternatively, you can use the oxy_checkbox dedicated function.

multipleCheckBox[attribute]:before {
    content: "Multiple checkboxes editor that edits an attribute
 value. 
              Depending whether the check-box is selected a
 different value is committed:"
        oxy_checkbox(        
        edit, "@attribute",
        values, "true, yes, on",
        uncheckedValues, "false, no, off",
        resultSeparator, ","
        labels, "Present, Working, Started");

The Pop-up Form Control

A pop-up with single or multiple selection is used as a form control. This type of form control supports the following
properties:

• type - this property specifies the built-in form control you are using. For the Pop-up form control, its value has to
be popupSelection;

• rows - this property specifies the number of rows that the form control presents;

Note:  In case the value of the rows property is not specifies, the default value of 12 is used.

• color - specifies the foreground color of the form control. In case the value of the color property is inherit,
the form control has the same color as the element in which it is inserted;

• visible - specifies whether the form control is visible. The possible values of this property are true (the form
control is visible) and false (the form control is not visible);



 | Author Developer Guide | 111

• tooltips - specifies a tooltip for the values of the form control. The values of this property are a list of tooltips
separated by commas. In case you want the tooltip to display a comma, use the ${comma} variable;

• values - specifies the values that are committed when the check-boxes are selected. In case these values are not
specified in the CSS, they are collected from the associated XML Schema;

• resultSeparator - in case multiple check-boxes are used, the separator is used to compose the final result;

Note:  The value of the resultSeparator property cannot exceed one character.

• selectionMode - specifies whether the form control allows the selection of a single value or of multiple
values. The predefined values of this property are single and multiple;

• labels - specifies the label associated with each entry used for presentation. In case this property is not
specified, the values property is used as label;

• columns - controls the width of the form control. The unit size is the width of the w character. This property is
used for the visual representation of the form control;

• rendererSort - allows you to sort the values rendered on the pop-up form control label. The possible values of
this property are ascending and descending;

• rendererSeparator - defines a separator used when multiple values are rendered;
• fontInherit - this value specifies whether the form control inherits its font from its parent element. The values

of this property can be true, or false. To make the Pop-up form control inherit its font from its parent element,
set the fontInherit property to true;

Tip:  In the below example, the value of the fontInherit property is true, meaning that the pop-up form
control inherits the font size of 30px from the font-size property.

Pop-up Form Control

popupWithMultipleSelection:before {
    content: " This editor edits an attribute value. The possible
 values are     specified
    inside the CSS: "
        oxy_editor(
            type, popupSelection,
            edit, "@attribute",
            values, "value1, value2, value3, value4, value5",
            labels, "Value no1, Value no2, Value no3, Value no4,
 Value no5",
            resultSeparator, "|",
            columns, 10,
            selectionMode, "multiple",
            fontInherit, true);
    font-size:30px;
}

The oxy_editor function acts as a proxy that allows you to insert any of the supported form
controls. Alternatively, you can use the oxy_popup dedicated function.

popupWithMultipleSelection:before {
    content: " This editor edits an attribute value. The possible
 values are     specified
    inside the CSS: "
        oxy_popup(
            edit, "@attribute",
            values, "value1, value2, value3, value4, value5",
            labels, "Value no1, Value no2, Value no3, Value no4,
 Value no5",
            resultSeparator, "|",
            columns, 10,
            selectionMode, "multiple",
            fontInherit, true);
    font-size:30px;



 | Author Developer Guide | 112

}

The Button Form Control

This form control contributes a button that invokes a custom Author action (defined in the associated Document
Type) using its defined ID. The following properties are supported:

• type - this property specifies the built-in form control you are using. For the Button form control the value of the
type property is button;

• actionContext - specifies the context in which the action associated with the form control is executed. Its
possible values are element and caret. If you select the element value, the context is the element that holds
the form control. If you select the caret value, the action is invoked at the caret location. In case the caret is not
inside the element that holds the form control, the element value is selected automatically;

• fontInherit - this value specifies whether the form control inherits its font from its parent element. The
values of this property can be true, or false. To make the button form control inherit its font from its parent
element, set the fontInherit property to true;

• color - specifies the foreground color of the form control. In case the value of the color property is inherit,
the form control has the same color as the element in which it is inserted;

• actionID - the ID of the action specified in Author actions, that is invoked when you click the button;

Note:  The element that contains the Button form control represents the context where the action is
invoked.

• visible - specifies whether the form control is visible. The possible values of this property are true (the form
control is visible) and false (the form control is not visible);

• transparent - flattens the aspect of the button form control, removing its border and background.
• showText - specifies if the action text should be displayed on the button form control. If this property is missing

then the button displays only the icon if it is available, or the text if the icon is not available. The values of this
property can be true or false.

element {
  content: oxy_button(actionID, 'remove.attribute', showText, true);
}

• showIcon - specifies if the action icon should be displayed on the button form control. If this property is missing
then the button displays only the icon if it is available, or the text if the icon is not available. The values of this
property can be true or false.

element {
  content: oxy_button(actionID, 'remove.attribute', showIcon, true);
}

Button Form Control

button:before {
    content: "Label:"
        oxy_editor(
            type, button,
            /* This action is declared in the document type
 associated with the XML document. */
            actionID, "insert.popupWithMultipleSelection");
}

The oxy_editor function acts as a proxy that allows you to insert any of the supported form
controls. Alternatively, you can use the oxy_button dedicated function.

button:before {
    content: "Label:"
        oxy_button(
            /* This action is declared in the document type
 associated with the XML document. */
            actionID, "insert.popupWithMultipleSelection");



 | Author Developer Guide | 113

}

The Button Group Form Control

A pop-up menu is shown, which can invoke one of the several custom Author actions (defined in the associated
Document Type) specified by their ID. This type of form control supports the following properties:

• actionIDs - comma separated IDs of the actions to be displayed in the pop-up menu;
• label - specifies the label to be displayed on the button;
• icon - the path to the icon to be displayed on the button;
• actionContext - specifies the context in which the action associated with the form control is executed. Its

possible values are element and caret. If you select the element value, the context is the element that holds
the form control. If you select the caret value, the action is invoked at the caret location. In case the caret is not
inside the element that holds the form control, the element value is selected automatically;

• visible - specifies whether the form control is visible. The possible values of this property are true (the form
control is visible) and false (the form control is not visible);

• actionStyle - specifies what to display for an action in the pop-up menu. The values of this property can be
text, and icon, or both;

• tooltips - specifies a tooltip for the values of the form control. The values of this property are a list of tooltips
separated by commas. In case you want the tooltip to display a comma, use the ${comma} variable;

• transparent - makes the button transparent without any borders or background colors. The values of this
property can be true or false;

• fontInherit - this value specifies whether the form control inherits its font from its parent element. The values
of this property can be true, or false. To make the form control inherit its font from its parent element, set the
fontInherit property to true.

The Button Group Form Control

buttongroup:before {     
    content:        
        oxy_label(text, "Button Group:", width, 150px, text-
align, left)        
        oxy_buttonGroup(
            label, 'A group of actions',
            /* The action IDs are declared in the document type 
 associated with the XML document. */
           
 actionIDs, "insert.popupWithMultipleSelection,insert.popupWithSingleSelection",
            actionStyle, "both"); 
} 

The Text Area Form Control

A text area with optional syntax highlight capabilities is used to present and edit the value of an attribute or an
element. This type of form control supports the following properties:

• type - this property specifies the built-in form control you are using. For the Text Area form control, its value
has to be textArea;

• columns - controls the width of the form control. The unit size is the width of the w character;
• fontInherit - this value specifies whether the form control inherits its font from its parent element. The values

of this property can be true, or false;
• visible - specifies whether the form control is visible. The possible values of this property are true (the form

control is visible) and false (the form control is not visible);
• rows - this property specifies the number of rows that the form control presents. In case the form control has

more lines, you are able to scroll and see them all;
• edit - lets you edit the value of an attribute, the text content of an element or Processing Instructions (PIs). This

property can have the following values:

• @attribute_name - specifies that the presented/edited value is the value of an attribute;



 | Author Developer Guide | 114

• #text - specifies that the presented/edited value is the simple text value of an element.

Note:  You can set the value of the visibility property to -oxy-collapse-text to render the
text only in the form control that the oxy_editor function specifies

• contentType - specifies the type of content for which the form control offers syntax highlight. The following
values are supported:

• text/css; text/shell; text/cc; text/xquery; text/xml; text/python; text/
xsd; text/c; text/xpath; text/javascript; text/xsl; text/wsdl; text/html;
text/xproc;

• text/properties; text/sql; text/rng; text/sch; text/json; text/perl; text/
php; text/java; text/batch; text/rnc; text/dtd; text/nvdl; text/plain.

• indentOnTab - specifies the behaviour of the Tab key. If the value of this property is set to true, the Tab
key inserts characters. If it is set to false, Tab is used for navigation, jumping to the next editable position in the
document.

The white-space CSS property influences the value that you edit, as well as the from control size:

• pre - the white spaces and new lines of the value are preserved and edited. If the rows and columns properties
are not specifies, the Text Area form control calculates its size on its own so that all the text is visible;

• pre-wrap - the long lines are wrapped to avoid horizontal scrolling;

Note:  The rows and columns properties have to be specified. In case these are not specified, the form
control considers the value to be pre.

• normal - the white spaces and new lines are normalized.

The following example presents a text area with CSS syntax highlight which calculates its own
dimension, and a second one with XML syntax highlight with defined dimension.

The Text Area Form Control

textArea {
    visibility: -oxy-collapse-text;
    white-space: pre;
}

textArea[language="CSS"]:before {
    content: oxy_textArea(
      edit, '#text',
      contentType, 'text/css');
}

textArea[language="XML"]:before {
    content: oxy_textArea(
      edit, '#text',
      contentType, 'text/xml',
      rows, 10,
      columns, 30);
}

The URL Chooser Form Control

A field that allows you to select local and remote resources is used as a form control. The inserted reference will be
made relative to the current opened editor's URL. This type of editor supports the following properties:

• type - this property specifies the built-in form control you are using. For the URL Chooser editor, its value has to
be urlChooser;

• columns - controls the width of the form control. The unit size is the width of the w character;
• color - specifies the foreground color of the form control. In case the value of the color property is inherit,

the form control has the same color as the element in which it is inserted;



 | Author Developer Guide | 115

• visible - specifies whether the form control is visible. The possible values of this property are true (the form
control is visible) and false (the form control is not visible);

• fontInherit - this value specifies whether the form control inherits its font from its parent element. The values
of this property can be true, or false.

URL Chooser Form Control

urlChooser[file]:before {
    content: "An URL chooser editor that allows browsing for a
 URL. The selected URL is made relative to the currently edited
 file:"
        oxy_editor(
        type, urlChooser,
        edit, "@file",
        columns 25);
}

The oxy_editor function acts as a proxy that allows you to insert any of the supported form
controls. Alternatively, you can use the oxy_urlChooser dedicated function.

urlChooser[file]:before {
    content: "An URL chooser editor that allows browsing for a
 URL. The selected URL is made relative to the currently edited
 file:"
        oxy_urlChooser(        
        edit, "@file",
        columns 25);
}

The Date Picker Form Control

A text field with a calendar browser is used as a form control. The browse button shows a date chooser allowing you
to easily choose a certain date. This type of form control supports the following properties:

• type - this property specifies the built-in form control you are using. For the Date picker form control, its value
has to be datePicker;

• columns - controls the width of the form control. The unit size is the width of the w character;
• color - specifies the foreground color of the form control. In case the value of the color property is inherit,

the form control has the same color as the element in which it is inserted;
• format - this property specifies the format of the inserted date. The pattern value must be a valid Java date (or

date-time) format. If missing, the type of the date is determined from the associated schema;
• visible - specifies whether the form control is visible. The possible values of this property are true (the form

control is visible) and false (the form control is not visible);
• validateInput - specifies if the form control is validated. In case you introduce a date that does not respect

the format, the datePicker form control is rendered with red foreground. By default, the input is validated. To
disable the validation, set this property to false.

Date Picker Form Control

date {
    content:
        oxy_label(text, "Date time attribute with format defined
 in CSS: ", width, 300px)
        oxy_editor(
            type, datePicker, 
            columns, 16, 
            edit, "@attribute",
            format, "yyyy-MM-dd");
}

The oxy_editor function acts as a proxy that allows you to insert any of the supported form
controls. Alternatively, you can use the oxy_datePicker dedicated function.



 | Author Developer Guide | 116

date {
    content:
        oxy_label(text, "Date time attribute with format defined
 in CSS: ", width, 300px)
        oxy_datePicker(
            columns, 16, 
            edit, "@attribute",
            format, "yyyy-MM-dd");
}

Editing PIs Using Form Controls

allows you to edit processing instructions, comments, and cdata using the built-in editors.

Note:  You can edit both the content and the attribute value from a processing instruction.

Editing an Attribute from a Processing Instruction

PI content

<?pi_target attr="val"?>

CSS

oxy|processing-instruction:before {
    display:inline;
    content: 
        "EDIT attribute: " oxy_textfield(edit, '@attr', columns,
 15);
    visibility:visible;
}
oxy|processing-instruction{
    visibility:-oxy-collapse-text;
}

Implementing Custom Form Controls

In case the built-in form controls are not enough, you can implement custom form controls in Java and specify them
using the following properties:

• rendererClassName - the name of the class that draws the edited value. It must be an implementation of
ro.sync.ecss.extensions.api.editor.InplaceRenderer. The renderer has to be a SWING
implementation and can be used both in the standalone and Eclipse distributions;

• swingEditorClassName - you can use this property for the standalone (Swing-based)
distribution to specify the name of the class used for editing. It is a Swing implementation of
ro.sync.ecss.extensions.api.editor.InplaceEditor;

• swtEditorClassName - you can use this property for the Eclipse plug-in distribution
to specify the name of the class used for editing. It is a SWT implementation of the
ro.sync.ecss.extensions.api.editor.InplaceEditor;

• classpath - you can use this property to specify the location of the classes used for a custom form control. The
value of the classpath property is an enumeration of URLs separated by comma;

• edit - in case your form control edits the value of an attribute, or the text value of an element, you can use the
@attribute_name and #text predefined values and oxygen will perform the commit logic by itself. You can use
the custom value to perform the commit logic yourself.

Note:  If the custom form control chooses to perform the commit by itself, it must do so after it triggers
the
ro.sync.ecss.extensions.api.editor.InplaceEditingListener.editingStopped(EditingEvent)
notification.



 | Author Developer Guide | 117

If the custom form control is intended to work in the  standalone distribution, the declaration of swtEditorClassName
is not required. The renderer (the class that draws the value) and the editor (the class that edits the value) have
different properties because you can present a value in one way and edit it in another way.

The custom form controls can use any of the predefined properties of the oxy_editor function, as well as specified
custom properties. This is an example of how to specify a custom form control:

myElement {
    content: oxy_editor(
        rendererClassName, "com.custom.editors.CustomRenderer",
        swingEditorClassName, "com.custom.editors.SwingCustomEditor",
        swtEditorClassName, "com.custom.editors.SwtCustomEditor",
        edit, "@my_attr"
        customProperty1, "customValue1",
        customProperty2, "customValue2"
    )
}

Note:  Add these custom Java implementations in the classpath of the document type associated with the
document you are editing. To get you started the Java sources for the SimpleURLChooserEditor are
available in the Author SDK.

The oxy_editor function can receive other functions as parameters for obtaining complex behaviors.

The following example shows how the combo box editor can obtain its values from the current
XML file by calling the oxy_xpath function:

link:before{
      content: "Managed by:"
        oxy_editor(
            type, combo, 
            edit, "@manager",
            values, oxy_xpath('string-join(//@id , ",") '));

The oxy_label() Function

The oxy_label() function can be used in conjunction with the CSS content property to change the style of
generated text. The arguments of the function are property name - property value pairs. The following properties are
supported:

• text - this property specifies the built-in form control you are using;
• width - specifies the horizontal space reserved for the content. The value of this property has the same format as

the value of the CSS width property. In case this value is not specified, the text is wrapped;
• color - specifies the foreground color of the form control. In case the value of the color property is inherit,

the form control has the same color as the element in which it is inserted;
• background-color - specifies the background color of the form control. In case the value of the

background-color property is inherit, the form control has the same color as the element in which it is
inserted;

• styles - specifies styles for the form control. The values of this property are a set of CSS properties:

• font-weight, font-size, font-style, font;
• text-align, text-decoration;
• width;
• color, background-color.

element{
    content: oxy_label(text, "Label Text", styles,
      "font-size:2em;color:red;");
}

If the text from an oxy_label() function contains new lines, for example oxy_label(text, 'LINE1\A
LINE2', width, 100px), the text is split and the new line has the specified width (100 pixels in this case).



 | Author Developer Guide | 118

Note:  The text is split only after \A. In case a width is specified for the oxy_label() function and a \A
is encountered, the new line has the specified width.

You can use the oxy_editor() and oxy_label() functions together to create a form control based layout.

Let's say we want to edit two attributes on a single element using form controls on separate lines:

person:before {
  content: "Name:*" oxy_textfield(edit, '@name', columns, 20) "\A
 Address:" oxy_textfield(edit, '@address', columns, 20)
}

We can use oxy_label() if we want only the Name label to be bold and also to properly align
the two controls:

person:before {
  content: oxy_label(text, "Name:*", styles, "font-
weight:bold;width:200px") oxy_textfield(edit, '@name', columns,
 20) "\A "
           oxy_label(text, "Address:", styles, "width:200px")
 oxy_textfield(edit, '@address', columns, 20)
}

The oxy_link-text() Function

You can use the oxy_link-text() function on the CSS content property to obtain a text description from the
source of a reference. By default, the oxy_link-text() function resolves DITA and DocBook references. For
further details about how you can also extend this functionality to other frameworks, go to Configuring an Extensions
Bundle.

DITA Support

For DITA, the oxy_link-text() function resolves the xref element and the elements that have a keyref
attribute. The text description is the same as the one presented in the final output for those elements. If you use this
function for a topicref element that has the navtitle and locktitle attributes set, the function returns the
value of the navtitle attribute.

DocBook Support

For DocBook, the oxy_link-text() function resolves the xref element that defines a link in the same
document. The text description is the same as the one presented in the final output for those elements.

For the following XML and associated CSS fragments the oxy_link-text() function is resolved to the value of
the xreflabel attribute.

<para><code id="para.id" xreflabel="The reference label">my code</code></para>
<para><xref linkend="para.id"/></para>

xref {
    content: oxy_link-text();
}

Arithmetic Functions

You can use any of the arithmetic functions implemented in the java.lang.Math class: http://
download.oracle.com/javase/6/docs/api/java/lang/Math.html.

In addition to that, the following functions are available:

Syntax Details

oxy_add(param1, ... , paramN,
'returnType')

Adds the values of all parameters from param1 to paramN.

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html
http://download.oracle.com/javase/6/docs/api/java/lang/Math.html


 | Author Developer Guide | 119

Syntax Details

oxy_subtract(param1, ..., paramN,
'returnType')

Subtracts the values of parameters param2 to paramN from param1.

oxy_multiply(param1, ..., paramN,
'returnType')

Multiplies the values of parameters from param1 to paramN.

oxy_divide(param1, param2,
'returnType')

Performs the division of param1 to param2.

oxy_modulo(param1, param2,
'returnType')

Returns the reminder of the division of param1 to param2.

Note:  The returnType can be 'integer', 'number', or any of the supported CSS measuring types.

If we have an image with width and height specified on it we can compute the number of pixels on
it:

image:before{
 content: "Number of pixels: " oxy_multiply(attr(width),
 attr(height), "px");
}

Custom CSS Pseudo-classes

You can set your custom CSS pseudo-classes on the nodes from the AuthorDocument model. These are similar to the
normal XML attributes, with the important difference that they are not serialized, and by changing them the document
does not create undo and redo edits - the document is considered unmodified. You can use custom pseudo-classes for
changing the style of an element (and its children) without altering the document.

In oXygen they are used to hide/show the colspec elements from CALS tables. To take a look at the implementation,
see:

1. OXYGEN_INSTALL_DIR/frameworks/docbook/css/cals_table.css (Search for -oxy-
visible-colspecs)

2. The definition of action table.toggle.colspec from the DocBook 4 framework makes use of the pre-
defined TogglePseudoClassOperation Author operation.

Here are some examples:

Controlling the visibility of a section using a pseudo-class

You can use a non standard (custom) pseudo-class to impose a style change on a specific element.
For instance you can have CSS styles matching the custom pseudo-class access-control-
user, like the one below:

section {
  display:none;
}

section:access-control-user {
  display:block;
} 

By setting the pseudo-class access-control-user, the element section will become visible by
matching the second CSS selector.

Coloring the elements over which the caret was placed

*:caret-visited {  

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocument.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/TogglePseudoClassOperation.html


 | Author Developer Guide | 120

  color:red;
} 

You could create an AuthorCaretListener that sets the caret-visited pseudo-class to the
element at the caret location. The effect will be that all the elements traversed by the caret become
red.

The API you can use from the caret listener:

ro.sync.ecss.extensions.api.AuthorDocumentController#setPseudoClass(java.lang.String,
 ro.sync.ecss.extensions.api.node.AuthorElement)
ro.sync.ecss.extensions.api.AuthorDocumentController#removePseudoClass(java.lang.String,
 ro.sync.ecss.extensions.api.node.AuthorElement)

Pre-defined AuthorOperations can be used directly in your framework ("Author/Actions") to work with custom
pseudo classes:

1. TogglePseudoClassOperation
2. SetPseudoClassOperation
3. RemovePseudoClassOperation

Builtin CSS Stylesheet

When  renders content in the Author mode, it adds built-in CSS selectors (in addition to the CSS stylesheets linked
in the XML or specified in the document type associated to the XML document). These built-in CSS selectors are
processed before all other CSS content, but they can be overwritten in case the CSS developer wants to modify a
default behavior.

List of CSS Selector Contributed by

@namespace oxy "http://www.oxygenxml.com/extensions/author";
@namespace xi "http://www.w3.org/2001/XInclude";
@namespace xlink "http://www.w3.org/1999/xlink";
@namespace svg "http://www.w3.org/2000/svg";
@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {
    display:block !important;
}

oxy|cdata {
    display:-oxy-morph !important;
    white-space:pre-wrap !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|processing-instruction {
    display:block !important;
    color: rgb(139, 38, 201) !important;
    white-space:pre-wrap !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|comment {
    display:-oxy-morph !important;
    color: rgb(0, 100, 0) !important;
    background-color:rgb(255, 255, 210) !important;
    white-space:pre-wrap !important;

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorCaretListener.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#setPseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#setPseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#removePseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentController.html#removePseudoClass(java.lang.String,%20ro.sync.ecss.extensions.api.node.AuthorElement)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/TogglePseudoClassOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/SetPseudoClassOperation.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/commons/operations/RemovePseudoClassOperation.html


 | Author Developer Guide | 121

    border-width:0px !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|reference:before,
oxy|entity[href]:before{  
  link: attr(href) !important;
  text-decoration: underline !important;
  color: navy !important;
  
  margin: 2px !important;
  padding: 0px !important;  
}

oxy|reference:before {
  display: -oxy-morph !important;
  content: url(../images/editContent.gif) !important;  
}

oxy|entity[href]:before{
  display: -oxy-morph !important;
  content: url(../images/editContent.gif) !important;
}

oxy|reference,
oxy|entity {
    -oxy-editable:false !important;
    background-color: rgb(240, 240, 240) !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|reference {
    display:-oxy-morph !important;
    /*EXM-28674 No need to present tags for these artificial references.*/
    -oxy-display-tags: none;
}

oxy|entity {
    display:-oxy-morph !important;
}

oxy|entity[href] {
  border: 1px solid rgb(175, 175, 175) !important;
  padding: 0.2em !important;
}

xi|include {
    display:-oxy-morph !important;
    margin-bottom: 0.5em !important;
    padding: 2px !important;
}
xi|include:before,
xi|include:after{
    display:inline !important;
    background-color:inherit !important;
    color:#444444 !important;
    font-weight:bold !important;
}

xi|include:before {
    content:url(../images/link.gif) attr(href)  !important;



 | Author Developer Guide | 122

    link: attr(href) !important;
}
xi|include[xpointer]:before {
    content:url(../images/link.gif) attr(href) " " attr(xpointer) !important;
    link: oxy_concat(attr(href), "#", attr(xpointer)) !important;
}

xi|fallback {
    display:-oxy-morph !important;
    margin: 2px !important;
    border: 1px solid #CB0039 !important;
}

xi|fallback:before {
    display:-oxy-morph !important;
    content:"XInclude fallback: " !important;
    color:#CB0039 !important;
}

oxy|doctype {
    display:block !important;
    background-color: transparent !important;
    color:blue !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 2px !important;
}

oxy|error {
    display:-oxy-morph !important;
    -oxy-editable:false !important;
    white-space:pre !important;
    color: rgb(178, 0, 0) !important;
    font-weight:bold !important;
}

oxy|error:before {
    content:url(../images/ReferenceError.png) !important;
}

*[xlink|href]:before {
    content:url(../images/link.gif);
    link: attr(xlink|href) !important;
}

/*No direct display of the MathML and SVG images.*/
svg|svg{ 
 display:inline !important;
    white-space: -oxy-trim-when-ws-only;
}
/*EXM-28827 SVG can contain more than one namespace in it*/
svg|svg * {
    display:none !important;
    white-space:normal;
}

mml|math{ 
 display:inline !important;
    white-space: -oxy-trim-when-ws-only;
}
mml|math mml|*{



 | Author Developer Guide | 123

    display:none !important;
    white-space: normal;
}

/*Text direction attributes*/
*[dir='rtl'] { direction:rtl; unicode-bidi:embed; }
*[dir='rlo'] { direction:rtl; unicode-bidi:bidi-override; }

*[dir='ltr'] { direction:ltr; unicode-bidi:embed; }
*[dir='lro'] { direction:ltr; unicode-bidi:bidi-override; }

To show all entities in the Author mode as transparent, without that grayed-out background, first
define in your CSS after all imports the namespace:

@namespace oxy "http://www.oxygenxml.com/extensions/author";

and then add the following selector:

oxy|entity {
    background-color: inherit !important;
}

Example Files Listings - The Simple Documentation Framework Files
This section lists the files used in the customization tutorials: the XML Schema, CSS files, XML files, XSLT
stylesheets.

XML Schema files

 sdf.xsd

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples
\Simple Documentation Framework - SDF\framework\schema" directory.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
    targetNamespace="http://www.oxygenxml.com/sample/documentation"
    xmlns:doc="http://www.oxygenxml.com/sample/documentation"
    xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
    elementFormDefault="qualified">
    
    <xs:import
        namespace="http://www.oxygenxml.com/sample/documentation/abstracts"
        schemaLocation="abs.xsd"/>
    
    <xs:element name="book" type="doc:sectionType"/>
    <xs:element name="article" type="doc:sectionType"/>
    <xs:element name="section" type="doc:sectionType"/>
    
    <xs:complexType name="sectionType">
        <xs:sequence>
            <xs:element name="title" type="xs:string"/>
            <xs:element ref="abs:def" minOccurs="0"/>
            <xs:choice>
                <xs:sequence>
                    <xs:element ref="doc:section"
                        maxOccurs="unbounded"/>
                </xs:sequence>
                <xs:choice maxOccurs="unbounded">

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK


 | Author Developer Guide | 124

                    <xs:element ref="doc:para"/>
                    <xs:element ref="doc:ref"/>
                    <xs:element ref="doc:image"/>
                    <xs:element ref="doc:table"/>
                </xs:choice>
            </xs:choice>
        </xs:sequence>
    </xs:complexType>
    
    <xs:element name="para" type="doc:paragraphType"/>
    
    <xs:complexType name="paragraphType" mixed="true">
        <xs:choice minOccurs="0" maxOccurs="unbounded">
            <xs:element name="b"/>
            <xs:element name="i"/>
            <xs:element name="link"/>
        </xs:choice>
    </xs:complexType>
    
    <xs:element name="ref">
        <xs:complexType>
            <xs:attribute name="location" type="xs:anyURI"
                use="required"/>
        </xs:complexType>
    </xs:element>
    
    <xs:element name="image">
        <xs:complexType>
            <xs:attribute name="href" type="xs:anyURI"
                use="required"/>
        </xs:complexType>
    </xs:element>
    
    <xs:element name="table">
        <xs:complexType>
            <xs:sequence>
                <xs:element name="customcol" maxOccurs="unbounded">
                    <xs:complexType>
                        <xs:attribute name="width" type="xs:string"/>
                    </xs:complexType>
                </xs:element>
                <xs:element name="header">
                    <xs:complexType>
                        <xs:sequence>
                            <xs:element name="td"
                                maxOccurs="unbounded"
                                type="doc:paragraphType"/>
                        </xs:sequence>
                    </xs:complexType>
                </xs:element>
                <xs:element name="tr" maxOccurs="unbounded">
                    <xs:complexType>
                        <xs:sequence>
                            <xs:element name="td"
                                type="doc:tdType"
                                maxOccurs="unbounded"/>
                        </xs:sequence>
                    </xs:complexType>
                </xs:element>
            </xs:sequence>
            <xs:attribute name="width" type="xs:string"/>



 | Author Developer Guide | 125

        </xs:complexType>
    </xs:element>
    
    
    <xs:complexType name="tdType">
        <xs:complexContent>
            <xs:extension base="doc:paragraphType">
                <xs:attribute name="row_span"
                    type="xs:integer"/>
                <xs:attribute name="column_span"
                    type="xs:integer"/>
            </xs:extension>
        </xs:complexContent>
    </xs:complexType>
</xs:schema>

 abs.xsd

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples
\Simple Documentation Framework - SDF\framework\schema" directory.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
    targetNamespace=
 "http://www.oxygenxml.com/sample/documentation/abstracts">
    <xs:element name="def" type="xs:string"/>
</xs:schema>

CSS Files

 sdf.css

This sample file can also be found in the Author SDK distribution in the oxygenAuthorSDK\samples\Simple
Documentation Framework - SDF\framework\css directory.

/* Element from another namespace */
@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";

abs|def{
    font-family:monospace;
    font-size:smaller;    
}
abs|def:before{
    content:"Definition:";
    color:gray;
}

/* Vertical flow */
book,
section,
para,
title,
image,
ref {
    display:block;
}

/* Horizontal flow */
b,i {
    display:inline;
}

section{

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK
http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK


 | Author Developer Guide | 126

    margin-left:1em;
    margin-top:1em;
}

section{
    -oxy-foldable:true;
    -oxy-not-foldable-child: title;
}

link[href]:before{
    display:inline;
    link:attr(href);
    content: "Click to open: " attr(href);
}

/* Title rendering*/
title{
    font-size: 2.4em;
    font-weight:bold;    
}

* * title{
    font-size: 2.0em;
}
* * * title{
    font-size: 1.6em;
}
* * * * title{
    font-size: 1.2em;
}

book, 
article{
    counter-reset:sect;
}
book > section,
article > section{
    counter-increment:sect;
}
book > section > title:before,
article > section > title:before{
    content: "Section: " counter(sect) " ";
}

/* Inlines rendering*/
b {
    font-weight:bold;
}

i {
    font-style:italic;
}

/*Table rendering */
table{
    display:table;
    border:1px solid navy;
    margin:1em;
    max-width:1000px;
    min-width:150px;
}

table[width]{



 | Author Developer Guide | 127

  width:attr(width, length);
}

tr, header{
    display:table-row;
}

header{
    background-color: silver;
    color:inherit
}

td{
  display:table-cell;
  border:1px solid navy;
  padding:1em;
}

image{
    display:block;
    content: attr(href, url);
    margin-left:2em;
}

XML Files

 sdf_sample.xml

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples
\Simple Documentation Framework - SDF\framework" directory.

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://www.oxygenxml.com/sample/documentation"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
    <title>My Technical Book</title>
    <section>
        <title>XML</title>
        <abs:def>Extensible Markup Language</abs:def>
        <para>In this section of the book I will explain
            different XML applications.</para>
    </section>
    <section>
        <title>Accessing XML data.</title>
        <section>
            <title>XSLT</title>
            <abs:def>Extensible stylesheet language
                transformation (XSLT) is a language for
                transforming XML documents into other XML
                documents.</abs:def>
            <para>A list of XSL elements and what they do..</para>
            <table>
                <header>
                    <td>XSLT Elements</td>
                    <td>Description</td>
                </header>
                <tr>
                    <td>
                        <b>xsl:stylesheet</b>
                    </td>
                    <td>The <i>xsl:stylesheet</i> element is
                        always the top-level element of an
                        XSL stylesheet. The name

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK


 | Author Developer Guide | 128

                            <i>xsl:transform</i> may be used
                        as a synonym.</td>
                </tr>
                <tr>
                    <td>
                        <b>xsl:template</b>
                    </td>
                    <td>The <i>xsl:template</i> element has
                        an optional mode attribute. If this
                        is present, the template will only
                        be matched when the same mode is
                        used in the invoking
                            <i>xsl:apply-templates</i>
                        element.</td>
                </tr>
                <tr>
                    <td>
                        <b>for-each</b>
                    </td>
                    <td>The xsl:for-each element causes
                        iteration over the nodes selected by
                        a node-set expression.</td>
                </tr>
                <tr>
                    <td column_span="2">End of the list</td>
                </tr>
            </table>
        </section>
        <section>
            <title>XPath</title>
            <abs:def>XPath (XML Path Language) is a terse
                (non-XML) syntax for addressing portions of
                an XML document. </abs:def>
            <para>Some of the XPath functions.</para>
            <table>
                <header>
                    <td>Function</td>
                    <td>Description</td>
                </header>
                <tr>
                    <td>format-number</td>
                    <td>The <i>format-number</i> function
                        converts its first argument to a
                        string using the format pattern
                        string specified by the second
                        argument and the decimal-format
                        named by the third argument, or the
                        default decimal-format, if there is
                        no third argument</td>
                </tr>
                <tr>
                    <td>current</td>
                    <td>The <i>current</i> function returns
                        a node-set that has the current node
                        as its only member.</td>
                </tr>
                <tr>
                    <td>generate-id</td>
                    <td>The <i>generate-id</i> function
                        returns a string that uniquely
                        identifies the node in the argument
                        node-set that is first in document
                        order.</td>



 | Author Developer Guide | 129

                </tr>
            </table>
        </section>
    </section>
    <section>
        <title>Documentation frameworks</title>
        <para>One of the most important documentation
            frameworks is Docbook.</para>
        <image
            href="http://www.xmlhack.com/images/docbook.png"/>
        <para>The other is the topic oriented DITA, promoted
            by OASIS.</para>
        <image
href="http://www.oasis-open.org/images/standards/oasis_standard.jpg"
        />
    </section>
</book>

XSL Files

 sdf.xsl

This sample file can also be found in the Author SDK distribution in the "oxygenAuthorSDK\samples
\Simple Documentation Framework - SDF\framework\xsl" directory.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet 
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"
    xpath-default-namespace=
    "http://www.oxygenxml.com/sample/documentation">
    
    <xsl:template match="/">
        <html><xsl:apply-templates/></html>
    </xsl:template>
    
    <xsl:template match="section">
        <xsl:apply-templates/>
    </xsl:template>

    <xsl:template match="image">
        <img src="{@href}"/>
    </xsl:template>
    
    <xsl:template match="para">
        <p>
            <xsl:apply-templates/>
        </p>
    </xsl:template>
    
    <xsl:template match="abs:def"
        xmlns:abs=
        "http://www.oxygenxml.com/sample/documentation/abstracts">
        <p>
            <u><xsl:apply-templates/></u>
        </p>
    </xsl:template>
    
    <xsl:template match="title">
        <h1><xsl:apply-templates/></h1>
    </xsl:template>
    
    <xsl:template match="b">
        <b><xsl:apply-templates/></b>

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK


 | Author Developer Guide | 130

    </xsl:template>
    
    <xsl:template match="i">
        <i><xsl:apply-templates/></i>
    </xsl:template>
    
    <xsl:template match="table">
        <table frame="box" border="1px">
            <xsl:apply-templates/>
        </table>
    </xsl:template>
    
    <xsl:template match="header">
        <tr>
            <xsl:apply-templates/>
        </tr>
    </xsl:template>
    
    <xsl:template match="tr">
        <tr>
            <xsl:apply-templates/>
        </tr>
    </xsl:template>
    
    <xsl:template match="td">
        <td>
            <xsl:apply-templates/>
        </td>
    </xsl:template>
    
    <xsl:template match="header/header/td">
        <th>
            <xsl:apply-templates/>
        </th>
    </xsl:template>

</xsl:stylesheet>

Author Component
The Author Component was designed as a separate product to provide the functionality of the standard Author mode.
Recently (in version 14.2), the component API was extended to also allow multiple edit modes like Text and Grid.
The component can be embedded either in a third-party standalone Java application or customized as a Java Web
Applet to provide WYSIWYG-like XML editing directly in your web browser of choice.

The Author Component Startup Project for Java/Swing integrations is available online on the  website: http://
www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip

Licensing

The licensing terms and conditions for the Author Component are defined in the <oXygen/> XML Editor SDK
License Agreement. To obtain the licensing terms and conditions and other licensing information as well, you can
also contact our support team at support@oxygenxml.com. You may also obtain a free of charge evaluation license
key for development purposes. Any development work using the Author Component is also subject to the terms of the
SDK agreement.

There are two main categories of Author Component integrations:

1. Integration for internal use.

http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip
http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip


 | Author Developer Guide | 131

You develop an application which embeds the Author Component to be used internally (in your company or by
you). You can buy and use oXygen XML Author standard licenses (either user-based or floating) to enable the
Author Component in your application.

2. Integration for external use.

Using the Author Component, you create an application that you distribute to other users outside your company
(with a CMS for example). In this case you need to contact us to apply for a Value Added Reseller (VAR)
partnership.

From a technical point of view, the Author Component provides the Java API to:

• Inject floating license server details in the Java code. The following link provides details about how to configure a
floating license servlet or server:http://www.oxygenxml.com/license_server.html.

AuthorComponentFactory.getInstance().init(frameworkZips, optionsZipURL,
 codeBase, appletID,
    //The servlet URL
    "http://www.host.com/servlet", 
    //The HTTP credentials user name
    "userName", 
    //The HTTP credentials password
    "password");

• Inject the licensing information key (for example the evaluation license key) directly in the component's Java
code.

AuthorComponentFactory.getInstance().init(
   frameworkZips, optionsZipURL, codeBase, appletID,
   //The license key if it is a fixed license.
   licenseKey);

• Display the license registration dialog to the end user. This is the default behavior in case a null license key
is set using the API, this transfers the licensing responsibility to the end-user. The user can license an Author
component using standard  Editor/Author license keys. The license key will be saved to the local user's disk and
on subsequent runs the user will not be asked anymore.

AuthorComponentFactory.getInstance().init(
   frameworkZips, optionsZipURL, codeBase, appletID,
   //Null license key, will ask the user.
   null);

Installation Requirements

Running the Author component as a Java applet requires:

• Oracle (Sun) Java JRE version 1.6 update 10 or newer;
• At least 100 MB disk space and 100MB free memory;
• The applet needs to be signed with a valid certificate and will request full access to the user machine, in order to

store customization data (like options and framework files);
• A table of supported browsers can be found here:Supported browsers and operating systems on page 135.

Running the Author component embedded in a third-party Java/Swing application requires:

• Oracle (Sun) Java JRE version 1.6 or newer;
• At least 100 MB disk space and 100MB free memory;

Customization

For a special type of XML, you can create a custom framework (which also works in an Oxygen standalone version). 
already has frameworks for editing DocBook, DITA, TEI, and so on. Their sources are available in the Author SDK.
This custom framework is then packed in a zip archive and used to deploy the component.

The following diagram shows the components of a custom framework.

http://www.oxygenxml.com/buy.html#buy_ath
http://www.oxygenxml.com/license_server.html
http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK


 | Author Developer Guide | 132

More than one framework can coexist in the same component and can be used at the same time for editing XML
documents.

You can add on your custom toolbar all actions available in the standalone  application for editing in the Author
mode. You can also add custom actions defined in the framework customized for each XML type.

The Author component can also provide the Outline, Model, Elements and Attributes views which can be added to
your own developed containers.



 | Author Developer Guide | 133

Packing a fixed set of options

The Author Component shares a common internal architecture with the standalone application although it does not
have a Preferences dialog. But the Author Component Applet can be configured to use a fixed set of user options on
startup.

The sample project contains a resource called APPLET_PROJECT/resources/options.zip.jar. The JAR
contains a ZIP archive which contains a file called options.xml. Such an XML file can be obtained by exporting
to an XML format from a standalone application.

To create an options file in the :

• make sure the options that you want to set are not stored at project level;
• set the values you want to impose as defaults in the Preferences pages;
• select Options > Export Global Options.

Deployment

The Author Component Java API allows you to use it in your Java application or as a Java applet. The JavaDoc
for the API can be found in the sample project in the lib/apiSrc.zip archive. The sample project also comes
with Java sources (ro/sync/ecss/samples/AuthorComponentSample.java) demonstrating how the
component is created, licensed and used in a Java application.

Web Deployment

The Author Component can be deployed as a Java Applet using the new Applet with JNLP Java technology, available
in Oracle (Sun) Java JRE version 1.6 update 10 or newer.

The sample project demonstrates how the Author component can be distributed as an applet.

Here are the main steps you need to follow in order to deploy the Author component as a Java Applet:

• Unpack the sample project archive and look for Java sources of the sample Applet implementation. They can be
customized to fit your requirements.

• The default.properties configuration file must first be edited to specify your custom certificate
information used to sign the applet libraries. You also have to specify the code base from where the applet will be
downloaded.

• You can look inside the author-component-dita.html and author-component-dita.js sample
Web resources to see how the applet is embedded in the page and how it can be controlled using Javascript (to set
and get XML content from it).

• The sample Applet author-component-dita.jnlp JNLP file can be edited to add more libraries. The
packed frameworks and options are delivered using the JNLP file as JAR archives:

<jar href="resources/frameworks.zip.jar"/>
<jar href="resources/options.zip.jar"/>

• The sample frameworks and options JAR archives can be found in the resources directory.
• Use the build.xml ANT build file to pack the component. The resulting applet distribution is copied in the

dist directory. From this on, you can copy the applet files on your web server.

http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip
http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip


 | Author Developer Guide | 134

Figure 47:  Author Component deployed as a Java applet

Generate a Testing Certificate For Signing an Applet

All jar files of an applet deployed on a remote Web server must be signed with the same certificate before the applet
is deployed. The following steps describe how to generate a test certificate for signing the jar files. We will use the
tool called keytool which is included in the Oracle's Java Development Kit.

1. Create a keystore with a RSA encryption key.

Invoke the following in a command line terminal:

keytool -genkey -alias myAlias -keystore keystore.pkcs -storetype PKCS12
 -keyalg RSA -keysize 2048 -dname "cn=your name here, ou=organization unit
 name,  o=organization name, c=US"

This command creates a keystore file called keystore.pkcs. The certificate attributes are specified in the
dname parameter: common name of the certificate, organization unit name (for example Purchasing or Sales
Department), organization name, country.

2. Generate a self-signed certificate.

Invoke the following in a command line terminal:

keytool -selfcert -alias myAlias -keystore keystore.pkcs -storetype PKCS12
3. Optionally display the certificate details in a human readable form.

First, the certificate must be exported to a separate file with the following command:

keytool -export -alias myAlias -keystore keystore.pkcs -storetype PKCS12 -
file certfile.cer

The certificate details are displayed with the command:

keytool -printcert -file certfile.cer



 | Author Developer Guide | 135

4. Edit the default.properties file and fill-in the parameters that hold the path to keystore.pkcs file
(keystore parameter), keystore type (storetype parameter, with JSK or PKCS12 as possible values), alias
(alias parameter) and password (password parameter).

5. Sign the jar files using the certificate by running the sign Ant task available in the applet project.

Supported browsers and operating systems

The applet was tested for compatibility with the following browsers:

IE 7 IE 8 IE 9 IE 10 IE 11 Firefox Safari Chrome Opera

Windows
XP

Passed Passed - - - Passed - Passed Passed

Vista - Passed Passed Passed Passed Passed - Passed Passed

Windows
7

- - Passed Passed Passed Passed - Passed Passed

Windows
8

- - - Passed Passed Passed - Passed Passed

Mac OS
X (10.6 -
10.9)

- - - - - Passed Passed Failed Passed

Linux
Ubuntu
10

- - - - - Passed - Failed Passed

Communication between the Web Page and Java Applet

Using the Java 1.6 LiveConnect technology, applets can communicate with Javascript code which runs in the Web
Page. Javascript code can call an applet's Java methods and from the Java code you can invoke Javascript code from
the web page.

You are not limited to displaying only Swing dialogs from the applet. From an applet's operations
you can invoke Javascript API which shows a web page and then obtains the data which has been
filled by the user.

Troubleshooting

When the applet fails to start:

1. Make sure that your web browser really runs the next generation Java plug-in and not the legacy Java plug-in.

For Windows and Mac OSX the procedure is straight forward. Some steps are given below for installing the Java
plug-in on Linux.

Manual Installation and Registration of Java Plugin for Linux: http://www.oracle.com/technetwork/java/javase/
manual-plugin-install-linux-136395.html

2. Refresh the web page.
3. Remove the Java Webstart cache from the local drive and try again.

• On Windows this folder is located in: %APPDATA%\LocalLow\Sun\Java\Deployment\cache;
• On Mac OSX this folder is located in: /Users/user_name/Library/Caches/Java/cache;
• On Linux this folder is located in: /home/user/.java/deployment/cache.

4. Remove the Author Applet Frameworks cache from the local drive and try again:

• On Windows Vista or 7 this folder is located in: %APPDATA%\Roaming
\com.oxygenxml.author.component;

• On Windows XP this folder is located in: %APPDATA%\com.oxygenxml.author.component;

http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip
http://jdk6.java.net/plugin2/liveconnect/
http://www.oracle.com/technetwork/java/javase/manual-plugin-install-linux-136395.html
http://www.oracle.com/technetwork/java/javase/manual-plugin-install-linux-136395.html


 | Author Developer Guide | 136

• On Mac OSX this folder is located in: /Users/user_name/Library/Preferences/
com.oxygenxml.author.component;

• On Linux this folder is located in: /home/user/.com.oxygenxml.author.component.
5. Problems sometimes occur after upgrading the web browser and/or the JavaTM runtime. Redeploy the applet

on the server by running ANT in your Author Component project. However, doing this does not always fix the
problem, which often lies in the web browser and/or in the Java plug-in itself.

6. Sometimes when the HTTP connection is slow on first time uses the JVM would simply shut down while
the jars were being pushed to the local cache (i.e., first time uses). This shut down typically occurs while
handling oxygen.jar. One of the reasons could be that some browsers (Firefox for example) implement
some form of "Plugin hang detector" See https://developer.mozilla.org/en/Plugins/Out_of_process_plugins/
The_plugin_hang_detector.

7. If you are running the Applet using Safari on MAC OS X and it has problems writing to disk or fails to start, do
the following:

• in Safari, go to Safari->Preferences->Security;
• select Manage Website Settings;
• then select Java and for the oxygenxml.com entry choose the Run in Unsafe mode option.

Enable JavaWebstart logging on your computer to get additional debug information:

1. Open a console and run javaws -viewer;
2. In the Advanced tab, expand the Debugging category and select all boxes.
3. Expand the Java console category and choose Show console.
4. Save settings.
5. After running the applet, you will find the log files in:

• On Windows this folder is located in: %APPDATA%\LocalLow\Sun\Java\Deployment\log;
• On Mac OSX this folder is located in: /Users/user_name/Library/Caches/Java/log;
• On Linux this folder is located in: /home/user/.java/deployment/log.

Avoiding Resource Caching

A Java plugin installed in a web browser caches access to all HTTP resources that the applet uses. This is useful in
order to avoid downloading all the libraries each time the applet is run. However, this may have undesired side-effects
when the applet presents resources loaded via HTTP. If such a resource is modified on the server and the browser
window is refreshed, you might end-up with the old content of the resource presented in the applet.

To avoid such a behaviour, you need to edit the
ro.sync.ecss.samples.AuthorComponentSampleApplet class and set a custom
URLStreamHandlerFactory implementation. A sample usage is already available in the class, but it is
commented-out for increased flexibility:

//THIS IS THE WAY IN WHICH YOU CAN REGISTER YOUR OWN PROTOCOL HANDLER TO THE
 JVM.
//THEN YOU CAN OPEN YOUR CUSTOM URLs IN THE APPLET AND THE APPLET WILL USE
 YOUR HANDLER
URL.setURLStreamHandlerFactory(new URLStreamHandlerFactory() {
 public URLStreamHandler createURLStreamHandler(String protocol) {
  if("http".equals(protocol) || "https".equals(protocol)) {
   return new URLStreamHandler() {
    @Override
    protected URLConnection openConnection(URL u) throws IOException {
     URLConnection connection = new HttpURLConnection(u, null);
     if(!u.toString().endsWith(".jar")) {
      //Do not cache HTTP resources other than JARS
      //By default the Java HTTP connection caches content for 
      //all URLs so if one URL is modified and then re-loaded in the
      //applet the applet will show the old content.
      connection.setDefaultUseCaches(false);
     }

https://developer.mozilla.org/en/Plugins/Out_of_process_plugins/The_plugin_hang_detector
https://developer.mozilla.org/en/Plugins/Out_of_process_plugins/The_plugin_hang_detector


 | Author Developer Guide | 137

     return connection;
    }
   };
  }
  return null;
 }
});

Adding MathML support in the Author Component Web Applet

By default the Author Component Web Applet project does not come with the libraries necessary for viewing and
editing MathML equations in the Author page. You can view and edit MathML equations either by adding support for
JEuclid or by adding support for MathFlow.

Adding MathML support using JEuclid

In the author-component-dita.jnlp JNLP file, refer additional libraries necessary for the JEuclid library
to parse MathML equations:

<jar href="lib/jcip-annotations.jar"/>
<jar href="lib/jeuclid-core.jar"/>
<jar href="lib/batik-all-1.7.jar"/>
<jar href="lib/commons-io-1.3.1.jar"/>
<jar href="lib/commons-logging-1.0.4.jar"/>
<jar href="lib/xmlgraphics-commons-1.4.jar"/>

Copy these additional libraries to the component project lib directory from an
OXYGEN_INSTALLATION_DIRECTORY/lib directory.

To edit specialized DITA Composite with MathML content, include the entire
OXYGEN_INSTALLATION_DIRECTORY/frameworks/mathml2 Mathml2 framework directory in the
frameworks bundled with the component frameworks.zip.jar. This directory is used to solve references to
MathML DTDs.

Adding MathML support using MathFlow

In the author-component-dita.jnlp JNLP file, refer additional libraries necessary for the MathFlow
library to parse MathML equations:

<jar href="lib/MFComposer.jar"/>        
<jar href="lib/MFExtraSymFonts.jar"/> 
<jar href="lib/MFSimpleEditor.jar"/>
<jar href="lib/MFStructureEditor.jar"/>         
<jar href="lib/MFStyleEditor.jar"/> 

Copy these additional libraries from the MathFlow SDK.

In addition, you must obtain fixed MathFlow license keys for editing and
composing MathML equations and register them using these API methods:
AuthorComponentFactory.setMathFlowFixedLicenseKeyForEditor and
AuthorComponentFactory.setMathFlowFixedLicenseKeyForComposer.

To edit specialized DITA Composite with MathML content, include the entire
OXYGEN_INSTALLATION_DIRECTORY/frameworks/mathml2 Mathml2 framework directory in the frameworks
bundled with the component frameworks.zip.jar. This directory is used to solve references to MathML DTDs.

Adding Support to Insert References from a WebDAV Repository

Already defined actions which insert references, like the Insert Image Reference action, display an URL chooser
which allows you to select the Browse Data Source Explorer action. To use an already configured WebDAV
connection in the Author Component, follow these steps:

1. Open a standalone Oxygen XML 14.2 and configure a WebDAV connection;
2. Pack the fixed set of options from the standalone to use them with the Author Component Project;



 | Author Developer Guide | 138

3. In the Author Component, the defined connection still does not work when expanded because the additional JAR
libraries used to browse the WebDAV repository are missing. Go to the installation directory of Oxygen XML and
from the lib directory copy the httpclient-4.2.1.jar, httpcore-4.2.1.jar, commons-logging-1.1.1.jar and commons-
codec-1.6.jar libraries. These libraries are used in the class path of the component (applet).
If you want to have a different WebDAV connection URL, user name and password depending on the user who
has started the component, you have a more flexible approach using the API:

//DBConnectionInfo(String id, String driverName, String url, String user,
 String passwd, String host, String port) 
DBConnectionInfo info = new DBConnectionInfo("WEBDAV", "WebDAV
 FTP", "http://host/webdav-user-root", "userName", "password", null, null);
AuthorComponentFactory.getInstance().setObjectProperty("database.stored.sessions1", new
 DBConnectionInfo[] {info}); 

Using Plugins with the Author Component

To bundle Workspace Access plugins, that are developed for standalone application with the Author Component,
follow these steps:

• The content that is bundled to form the frameworks.zip.jar must contain the additional plugin directories,
besides the framework directories. The content must also contain a plugin.dtd file.

Note:

Copy the plugin.dtd file from an OXYGEN_INSTALL_DIR\plugins folder.
• In the class which instantiates the AuthorComponentFactory, for example

the ro.sync.ecss.samples.AuthorComponentSample class, call the
methods AuthorComponentFactory.getPluginToolbarCustomizers(),
AuthorComponentFactory.getPluginViewCustomizers() and
AuthorComponentFactory.getMenubarCustomizers(), obtain the customizers which have been
added by the plugins and call them to obtain the custom swing components that they contribute. There is a
commented-out example for this in the AuthorComponentSample.reconfigureActionsToolbar()
method for adding the toolbar from the Acrolinx plugin.

Important:  As the Author Component is just a subset of the entire application, there is no guarantee that all
the functionality of the plugin works.

Sample SharePoint Integration of the Author Component

This section presents the procedure to integrate the Author Component as a Java applet on a SharePoint site.

Author Component

The Author Component was designed as a separate product to provide the functionality of the standard Author mode.
Recently (in version 14.2), the component API was extended to also allow multiple edit modes like Text and Grid.
The component can be embedded either in a third-party standalone Java application or customized as a Java Web
Applet to provide WYSIWYG-like XML editing directly in your web browser of choice.

The Author Component Startup Project for Java/Swing integrations is available online on the <oXygen/> XML
Editor website: http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip

Microsoft SharePoint®

Microsoft SharePoint® is a Web application platform developed by Microsoft®.

SharePoint comprises a multipurpose set of Web technologies backed by a common technical infrastructure. It
provides the benefit of a central location for storing and collaborating on documents, which can significantly reduce
emails and duplicated work in an organization. It is also capable of keeping track of the different versions created by
different users.

http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip


 | Author Developer Guide | 139

Why Integrate the Author Component with SharePoint

The Author Component can be embedded in a SharePoint site as a Java applet. This is a simple and convenient way
for you to retrieve, open, and save XML and XML related documents stored on your company's SharePoint server,
directly from your web browser.

For example, let's say that you are working on a team project that uses the DITA framework for writing product
documentation. You have the DITA Maps and topics stored on a SharePoint repository. By using a custom defined
action from the contextual menu of a document, you can easily open it in the Author Component applet that is
embedded in your SharePoint Documents page.

You can embed the applet either on a site that is located on a standalone SharePoint server, or on your company's
Microsoft Office 365 account.

This example can be used as a starting point for other CMS integrations.

Integration Adjustments
Deploying Resources

You are able to embed the Author component in a SharePoint site as a Java Applet, using the new Applet with JNLP
Java technology. Sign with a valid certificate the JNLP file and the associated JAR files that the applet needs.

Deploy these resources on a third party server (other than the SharePoint server). The Java applet downloads the
resources as needed. If you deploy the JNLP and JAR files on the SharePoint server, the Java Runtime Environment
will not be able to access the applet resources because it is not aware of the current authentication tokens from your
browser. This causes the Java Class Loader to fail loading classes, making the applet unable to start.

Accessing Documents

One of the main challenges when integrating the Author Component applet in your SharePoint site is to avoid
authenticating twice when opening a document resource stored in your SharePoint repository.

You have already signed in when you started the SharePoint session, but the applet is not aware of your current
session. In this case every time the applet is accessing a document it will ask you to input your credentials again.

As a possible solution, do not execute HTTP requests directly from the Java code, but forward them to the web
browser that hosts the applet, because it is aware of the current user session (authentication cookies).

To open documents stored on your SharePoint repository, register your own protocol handler to the JVM.
We implemented a handler for both http and https protocols that forwards the HTTP requests to a JavaScript
XMLHttpRequest object. This way, the browser that executes the JavaScript code is responsible for handling the
authentication to the SharePoint site.

To install this handler, add the following line to your Java Applet code (in our case, in the
ro.sync.ecss.samples.AuthorComponentSampleApplet class):

URL.setURLStreamHandlerFactory(new
 ro.sync.net.protocol.http.handlers.CustomURLStreamHandlerFactory(this));

To enable JavaScript calls from your Java applet code, set the MAYSCRIPT attribute to true in the <applet>
element embedded in you HTML page:

<applet width="100%" height="600"
  code="ro.sync.ecss.samples.AuthorComponentSampleApplet"
  name="authorComponentAppletName" id="authorComponentApplet" 
  MAYSCRIPT="true">
    .....
</applet>

Tip:  In case the applet is not working, or you cannot open documents from your SharePoint repository,
enable the debugging tools that come bundled with your Web Browser or the Java Console from your
operating system to try to identify the cause of the problem.



 | Author Developer Guide | 140

Getting Started

To integrate the Author Component as a Java applet with your SharePoint site, you need the author component start-
up project. This project contains the Author SDK and the basic resources to get started.

The project is available at http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-
project.zip.

An online demo applet is deployed at http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-dita-
requirements.html.

Customize Your Applet

Follow these steps to customize the Author Component Java applet:

1. Unpack the sample project archive and look for the Java sources (these can be customized to fit your
requirements) of the sample applet implementation;

Note:  The Java source files are located in the src folder.

2. Look inside author-component-dita.aspx and the associated *.js resources, to see how the applet is
embedded in the page and how it can be controlled using Javascript (to set and get XML content from it).

3. Edit the default.properties configuration to specify your custom certificate information, used to sign the
applet libraries. Also, specify the code base from where the applet resources will be downloaded;

4. To add more libraries to your applet, edit the author-component-dita.jnlp JNLP file. The packed
frameworks and options are delivered using the JNLP file as JAR archives:

<jar href="resources/frameworks.zip.jar"/>
<jar href="resources/options.zip.jar"/>

The sample frameworks and options JAR archives are located in the resources directory.

Note:  The JNLP file and the associated resources and libraries must be deployed on a non-SharePoint
web server, otherwise the applet will not be loaded.

5. Use the build.xml ANT build file to pack the component. The resulting applet distribution is copied in the
dist directory. From now on, you can copy the applet files on your web server.

Add Resources to Your SharePoint Site

Copy the following resources to a sub-folder (in our example named author-component) of the SitePages
folder from your SharePoint site, where you want to embed the applet:

1. author-component-dita.aspx - an HTML document containing the Java applet;

Note:  It has an .aspx extension instead of .html. If you use the latter extension, the browser will
download the HTML document instead of displaying it.

Note:  Edit the .aspx file and change the value of the applet parameter jnlp_href to the URL of the
deployed author-component-dita.jnlp. Keep in mind that the JNLP file should be deployed on a
third party server. For example:

<applet>
    <param name="jnlp_href"
           value="http://www.oxygenxml.com/demo/AuthorDemoApplet/
author-component-dita.jnlp"/>
    ..........
</applet>

2. author-component-dita.css - contains custom styling rules for the HTML document;
3. author-component-dita.js - contains JavaScript code, giving access to the Author Component contained

by the Java applet;
4. connectionUtil.js - contains JavaScript utility methods.

Note:  Replace the value of the SPRootSiteURL property with the URL of your SharePoint root site,
without trailing '/'. This is used by the openListItemInAuthor(itemUrl) method, to compute
the absolute URL of the list item that is to be opened in the Author applet.

http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip
http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-startup-project.zip
http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-dita-requirements.html
http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-dita-requirements.html


 | Author Developer Guide | 141

Copy Resources Using <oXygen/> XML Editor

You can use <oXygen/> XML Editor to copy your resources to the SharePoint server:

1. Configure a new connection to your SharePoint site in the Data Source Explorer View.

Note:  To watch our video demonstration about connecting to repository located on a SharePoint server,
go to http://www.oxygenxml.com/demo/SharePoint_Support.html.

2. Browse your new SharePoint connection site and select the SitePages folder;
3. Create a folder named author-component using the New Folder contextual menu action;
4. Upload your resources to this folder using the Import Files contextual menu action.

 

 

Embed the Java Applet in Your SharePoint Site

To embed the Java Applet in your SharePoint site, edit the page that contains the applet and add a new Script Editor
Web Part next to an existing Documents web part.

Note:  It is recommended that you deselect the Enable Java content in the browser option from the Java
Control Panel until you finish editing the page. Otherwise, the browser will load the applet for every change
that you will make.

Edit the page directly in your browser, following these steps:

1. Navigate to the home page of your SharePoint site where you want to add the Author Component Java applet;
2. Select the Page tab from the ribbon located at top of the page and click the Edit button;
3. Select the Insert tab and click Web Part;
4. In the Categories panel, select Media and Content;

http://www.oxygenxml.com/demo/SharePoint_Support.html


 | Author Developer Guide | 142

5. In the Parts panel, select the Script Editor Web Part;
6. Click the Add button to insert the selected Web Part to your page content;
7. Select the newly added Web Part;
8. Select the Web Part tab and click the Web Part Properties button.
9. Click the Edit Snippet link under your Web Part;
10. Insert the following HTML snippet to your newly created Web Part:

<div>
    <iframe 
       id="appletIFrame" 
       src="/applet/SitePages/author-component/author-component-dita.aspx"
       width="800px" height="850px">
    </iframe>
    <script type="text/JavaScript">
        function openInAuthor(itemUrl) {          
            var appletFrame = document.getElementById("appletIFrame");
            var appletWin = appletFrame.contentWindow;        
            appletWin.openListItemInAuthor(itemUrl);
        }
    </script>
</div>

The above HTML fragment contains an IFrame that points to the page where the Java applet resides. Replace the
value of the src attribute with the path of the author-component-dita.aspx HTML page that you added
earlier to the SitePages folder;

Note:  Use the iframe element from the HTML fragment with the expanded form (<iframe></
iframe>). Otherwise, the Web Part will not display the target page of the frame.

11. Save the changes you made to the page.

Note:  Do not forget to select the Enable Java content in the browser, to allow the browser to load the
Java applet.

Create a SharePoint Custom Action

To open a document from your SharePoint repository in the Author Component applet, add a new custom action to
the contextual menu of your Documents Library:

1. Open your SharePoint site in Microsoft SharePoint Designer®;
2. Click Lists and Libraries in the Navigation pane;
3. Open the Documents library;
4. Go to the Custom Actions panel;
5. Click the New button to add a new custom action;
6. Give a name to the action, for example Open In Oxygen XML Author;
7. In the Select the type of action section, select the Navigate to URL option an enter the following text:

javascript:openInAuthor("{ItemUrl}")

Note:  This translates to a call to the openInAuthor(itemUrl) JavaScript function defined in the
HTML fragment that was embedded in the Script Editor Web Part. The {ItemUrl} parameter will be
expanded to the URL of the list item that the action is invoked on.

8. Click the OK button to save the action.

The Result

The Author Component applet embedded in a SharePoint site:
 



 | Author Developer Guide | 143

 

Frequently asked questions

Installation and licensing

1. What hosting options are available for applet delivery and licensing services (i.e., Apache, IIS, etc.)?

For applet delivery any web server. We currently use Apache to deploy the sample on our site. For the floating
license server you would need a J2EE server, like Tomcat if you want to restrict the access to the licenses.

If you do not need the access restrictions that are possible with a J2EE server you can simplify the deployment of
the floating license server by using the standalone version of this server. The standalone license server is a simple
Java application that communicates with Author Component by TCP/IP connections.

2. Are there any client requirements beyond the Java VM and (browser) Java Plug-In Technology?

Oracle (formerly Sun) Java JRE version 1.6 update 10 or newer. At least 200 MB disk space and 200MB free
memory would be necessary for the Author Applet component.

3. Are there any other client requirements or concerns that could make deployment troublesome (i.e., browser
security settings, client-side firewalls and AV engines, etc.)?

The applet is signed and will request access to the user machine, in order to store customization data
(frameworks). The applet needs to be signed by you with a valid certificate.

4. How sensitive is the applet to the automatic Java VM updates, which are typically on by default (i.e., could
automatic updates potentially "break" the run-time)?

The component should work well with newer Java versions but we cannot guarantee this.
5. How and when are "project" related files deployed to the client (i.e., applet code, DTD, styling files,

customizations, etc.)?

Framework files are downloaded on the first load of the applet. Subsequent loads will re-use the cached
customization files and will be much faster.

6. For on-line demo (http://www.oxygenxml.com/demo/AuthorDemoApplet/author-component-dita.html), noted a
significant wait during initial startup. Any other mechanisms to enhance startup time?

See explanation above.



 | Author Developer Guide | 144

7. Does the XML Author component support multiple documents being open simultaneously? What are the licensing
ramifications?

A single AuthorComponentFactory instance can create multiple EditorComponentProvider
editors which can then be added and managed by the developer who is customizing the component in a Swing
JTabbedPane. A single license (floating or user-based) is enough for this.

If you need to run multiple Java Applets or distinct Java processes using the Author component, the current
floating license model allows for now only two concurrent components from the same computer when using the
license servlet. An additional started component will take an extra license seat.

Another licensing technique would be to embed the license key in one of the jar libraries used by the applet. But
you would need to implement your own way of determining how many users are editing using the Author applet.

8. Is there any internet traffic during an editing session (user actively working on the content, on the client side, in
the XML Author component))?

No.

Functionality

1. How and when are saves performed back to the hosting server?

What you can see on our web site is just an example of the Author component (which is a Java Swing component)
used in an Applet.

This applet is just for demonstration purposes. It's source can be at most a starting point for a customization. You
should implement, sign and deploy your custom applet implementation.

The save operation could be implemented either in Javascript by requesting the XML content from the Applet or
in Java directly working with the Author component. You would be responsible to send the content back to the
CMS.

2. Is there a particular XML document size (or range) when the Author applet would start to exhibit performance
problems?

The applet has a total amount of used memory specified in the JNLP JavaWebstart configuration file which can be
increased if necessary. By default it is 156 Mb. It should work comfortably with documents of 1-3 megabytes.

3. What graphic formats can be directly rendered in the XML Author component?

GIF, JPEG, PNG, BMP and SVG.
4. Can links be embedded to retrieve (from the server) and "play" other types of digital assets, such as audio or video

files?

You could add listeners to intercept clicks and open the clicked links. This would require a good knowledge of the
Author SDK. The Author component can only render static images (no GIF animations).

5. Does the XML Author component provide methods for uploading ancillary files (new graphics, for instance) to
the hosting server?

No.
6. Does the XML Author component provide any type of autosave functionality?

By default no but you could customize the applet that contains the author component to save its content
periodically to a file on disk.

7. Assuming multiple documents can be edited simultaneously, can content be copied, cut and pasted from one XML
Author component "instance" to another?

Yes.
8. Does the XML Author component support pasting content from external sources (such as a web page or a

Microsoft Word document and, if so, to what extent?

If no customizations are available the content is pasted as simple text. We provide customizations for the major
frameworks (DITA, Docbook, TEI, etc) which use a conversion XSLT stylesheet to convert HTML content from
clipboard to the target XML.



 | Author Developer Guide | 145

9. Can UTF-8 characters (such as Greeks, mathematical symbols, etc.) be inserted and rendered?

Any UTF-8 character can be inserted and rendered as long as the font used for editing supports rendering the
characters. The font can be changed by the developers but not by the users. When using a logical font (which by
default is Serif for the Author component) the JVM will know how to map all characters to glyphs. There is no
character map available but you could implement one

Customization

1. Please describe, in very general terms, the menus, toolbars, context menu options, "helper panes", etc. that are
available for the XML Author component "out of the box".

You can mount on your custom toolbar all actions available in the standalone Oxygen application for editing in
the Author page. This includes custom actions defined in the framework customized for each XML type.

The Author component also can provide the Outline, Model, Elements and Attributes views which can be added to
your own panels (see sample applet).

2. Please describe, in general terms, the actions, project resources (e.g., DTD/Schema for validation purposes, CSS/
XSL for styling, etc.) and typical level of effort that would be required to deploy a XML Author component
solution for a customer with a proprietary DTD.

The Author internal engine uses CSS to render XML.

For a special type of XML you can create a custom framework (which also works in an Oxygen standalone
version) which would also contain default schemas and custom actions. A simple framework would probably
need 2-3 weeks development time. For a complex framework with many custom actions it could take a couple of
months. Oxygen already has frameworks for editing Docbook, DITA, TEI, etc. Sources for them are available in 
the Author SDK.

More than one framework can coexist in the same Oxygen instance (the desktop standalone version or the applet
version) and can be used at the same time for editing XML documents.

3. Many customers desire a very simplistic interface for contributors (with little or no XML expertise) but a more
robust XML editing environment for editors (or other users with more advanced XML savviness). How well does
the XML Author component support varying degrees of user interface complexity and capability?

• Showing/hiding menus, toolbars, helpers, etc.

All the UI parts from the Author component are assembled by you. You could provide two applet
implementations: one for advanced/power users and one for technical writers.

• Forcing behaviors (i.e., ensuring change tracking is on and preventing it from being shut down)

You could avoid placing the change tracking toolbar actions in the custom applet. You could also use API to
turn change tracking ON when the content has been loaded.

• Preventing access to "privilege"d editor processes (i.e., accept/reject changes)

You can remove the change tracking actions completely in a custom applet implementation. Including the ones
from the contextual menu.

• Presenting and/or describing XML constructs (i.e., tags) in "plain-Englis"h

Using our API you can customize what the Outline or Breadcrumb presents for each XML tag. You can also
customize the in-place content completion list.

• Presenting a small subset of the overall XML tag set (rather than the full tag set) for use by contributors
(i.e., allowing an author to only insert Heading, Para and inline emphasis) Could varying "interface"s, with
different mixes these capabilities and customizations, be developed and pushed to the user based on a "rol"e or
a similar construct?

The API allows for a content completion filter which also affects the Elements view.
4. Does the XML Author component's API provide access to the XML document, for manipulation purposes, using

common XML syntax such as DOM, XPath, etc.?

Yes, using the Author API.

http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK
http://www.oxygenxml.com/developer.html#XML_Editor_Authoring_SDK


 | Author Developer Guide | 146

5. Can custom dialogs be developed and launched to collect information in a "form" (with scripting behind to push
tag the collection information and embed it in the XML document?

Yes.
6. Can project resources, customizations, etc. be readily shared between the desktop and component versions of your

XML Author product line?

A framework developed for the Desktop Oxygen application can then be bundled with an Author component in a
custom applet. For example the Author demo applet from our web site is DITA-aware using the same framework
as the Oxygen standalone distribution.

A custom version of the applet that includes one or more customized frameworks and user options can be built and
deployed for non-technical authors by a technical savvy user using a built-in tool of Oxygen. All the authors that
load the deployed applet from the same server location will share the same frameworks and options.

A custom editing solution can deploy one or more frameworks that can be used at the same time.

Creating and Running Automated Tests
If you have developed complex custom plugins and/or document types the best way to test your implementation
and insure that further changes will not interfere with the current behavior is to make automated tests for your
customization.

An  installation standalone (Author or Editor) comes with a main oxygen.jar library located in the
OXYGEN_INSTALLATION_DIRECTORY. That JAR library contains a base class for testing developer
customizations named ro.sync.exml.workspace.api.PluginWorkspaceTCBase.

Please see below some steps in order to develop JUnit tests for your customizations using the Eclipse workbench:

1. Create a new Eclipse Java project and copy to it the entire contents of the
OXYGEN_INSTALLATION_DIRECTORY.

2. Add to the Java Build Path->Libraries tab all JAR libraries present in the
OXYGEN_INSTALLATION_DIRECTORY/lib directory. Make sure that the main JAR library oxygen.jar
or oxygenAuthor.jar is the first one in the Java classpath by moving it up in the Order and Export tab.

3. Download and add to the Java build path the additional JUnit libraries jfcunit.jar and junit.jar.
4. Create a new Java class which extends ro.sync.exml.workspace.api.PluginWorkspaceTCBase.
5. Pass on to the constructor of the super class the following parameters:

• File frameworksFolder The file path to the frameworks directory. It can point to a custom frameworks
directory where the custom framework resides.

• File pluginsFolder The file path to the plugins directory. It can point to a custom plugins directory
where the custom plugins resides.

• String licenseKey The license key used to license the test class.
6. Create test methods which use the API in the base class to open XML files and perform different actions on them.

Your test class could look something like:

public class MyTestClass extends PluginWorkspaceTCBase {
 
 /**
  * Constructor.
  */
 public MyTestClass() throws Exception {
  super(new File("frameworks"), new File("plugins"), 
        "------START-LICENSE-KEY------\n" + 
    "\n" + 
    "Registration_Name=Developer\n" + 
    "\n" + 
    "Company=\n" + 
    "\n" + 
    "Category=Enterprise\n" + 

http://sourceforge.net/projects/jfcunit/
http://www.junit.org


 | Author Developer Guide | 147

    "\n" + 
    "Component=XML-Editor, XSLT-Debugger, Saxon-SA\n" + 
    "\n" + 
    "Version=14\n" + 
    "\n" + 
    "Number_of_Licenses=1\n" + 
    "\n" + 
    "Date=09-04-2012\n" + 
    "\n" + 
    "Trial=31\n" + 
    "\n" + 
    "SGN=MCwCFGNoEGJSeiC3XCYIyalvjzHhGhhqAhRNRDpEu8RIWb8icCJO7HqfVP4++A\\=\
\=\n" + 
    "\n" + 
  "-------END-LICENSE-KEY-------");
 }
 
  /**
    * <p><b>Description:</b> TC for opening a file and using the bold
 operation</p>
    * <p><b>Bug ID:</b> EXM-20417</p>
    *
    * @author radu_coravu
    *
    * @throws Exception
    */
   public void testOpenFileAndBoldEXM_20417() throws Exception {
     WSEditor ed = open(new File("D:/projects/eXml/test/authorExtensions/
dita/sampleSmall.xml").toURL());
     //Move caret
     moveCaretRelativeTo("Context", 1, false);
     
     //Insert <b>
     invokeAuthorExtensionActionForID("bold");
     assertEquals("<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" + 
       "<!DOCTYPE task PUBLIC \"-//OASIS//DTD DITA Task//EN\" \"http://
docs.oasis-open.org/dita/v1.1/OS/dtd/task.dtd\">\n" + 
       "<task id=\"taskId\">\n" + 
       "    <title>Task <b>title</b></title>\n" + 
       "    <prolog/>\n" + 
       "    <taskbody>\n" + 
       "        <context>\n" + 
       "            <p>Context for the current task</p>\n" + 
       "        </context>\n" + 
       "        <steps>\n" + 
       "            <step>\n" + 
       "                <cmd>Task step.</cmd>\n" + 
       "            </step>\n" + 
       "        </steps>\n" + 
       "    </taskbody>\n" + 
       "</task>\n" + 
       "", getCurrentEditorXMLContent());
   }
}



 | API Frequently Asked Questions (API FAQ) | 148

API Frequently Asked Questions (API FAQ)

This section contains answers to common questions regarding the  customisations using the Author SDK, Author
Component, or Plugins.

For additional questions, contact us. The preferred approach is via email because API questions must be analysed
thoroughly. We also provide code snippets in case they are required.

To stay up-to-date with the latest API changes, discuss issues and ask for solutions from other developers working
with the  SDK, register to the oXygen-SDK mailing list.

Difference Between a Document Type (Framework) and a Plugin Extension

Question

What is the difference between a Document Type (Framework) and a Plugin Extension?

Answer

Two ways of customising the application are possible:

1. Implementing a plugin.

A plugin serves a general purpose and influences any type of XML file that you open in .

For the Plugins API, Javadoc, samples, and documentation, go to http://www.oxygenxml.com/
oxygen_sdk.html#Developer_Plugins

2. Creating or modifying the document type which is associated to your specific XML vocabulary.

This document type is used to provide custom actions for your type of XML files and to mount them on the
toolbar, menus, and contextual menus.

For example, if the application end users are editing DITA, all the toolbar actions which are specific for DITA are
provided by the DITA Document Type. If you look in the Oxygen Preferences->"Document Type Association"
there is a "DITA" document type.

If you edit that document type in  you will see that it has an Author tab in which it defines all custom DITA
actions and adds them to the toolbars, main menus, contextual menus.

We have a special chapter in our user manual which explains how such document types are constructed and
modified:

http://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/author-devel-guide-intro.html

If you look on disk in the:

OXYGEN_INSTALL_DIR\frameworks\dita

folder there is a file called dita.framework. That file gets updated when you edit a document type from the
Oxygen Preferences. Then you can share that updated file with all users.

The same folder contains some JAR libraries. These libraries contain custom complex Java operations which are
called when the user presses certain toolbar actions.

If you want to add a custom action this topic explains how:

http://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/tasks/addCustomActionHowTo.html

We have an Author SDK which contains the Java sources from all the DITA Java customizations:

http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK
http://www.oxygenxml.com/oxygen_sdk.html#oXygen_component
http://www.oxygenxml.com/oxygen_sdk.html#oXygen_component
http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
http://www.oxygenxml.com/contact.html
http://www.oxygenxml.com/mailinglists.html#oxygen-sdk
http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
http://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/author-devel-guide-intro.html
http://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/tasks/addCustomActionHowTo.html
http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK


 | API Frequently Asked Questions (API FAQ) | 149

Important:  It is possible for a plugin to share the same classes with a framework. For further details, go to
How to Share the Classloader Between a Framework and a Plugin.

Dynamically Modify the Content Inserted by the Writer

Question

Is there a way to insert typographic quotation marks instead of double quotes?

Answer

By using the API you can set a document filter to change the text that is inserted in the Author document. You can use
this method to change the insertion of double quotes with the typographic quotes.

Here is some sample code:

authorAccess.getDocumentController().setDocumentFilter(new
 AuthorDocumentFilter() {
  /**
   * @see
 ro.sync.ecss.extensions.api.AuthorDocumentFilter#insertText(ro.sync.ecss.extensions.api.AuthorDocumentFilterBypass,
 int, java.lang.String)
   */
  @Override
  public void insertText(AuthorDocumentFilterBypass filterBypass, int offset,
 String toInsert) {
    if(toInsert.length() == 1 && "\"".equals(toInsert)) {
      //User typed a quote but he actually needs a smart quote.
      //So we either have to add \u201E (start smart quote)
      //Or we add \u201C (end smart quote)
      //Depending on whether we already have a start smart quote inserted in
 the current paragraph.
     
      try {
        AuthorNode currentNode =
 authorAccess.getDocumentController().getNodeAtOffset(offset);
        int startofTextInCurrentNode = currentNode.getStartOffset();
        if(offset > startofTextInCurrentNode) {
          Segment seg = new Segment();
         
 authorAccess.getDocumentController().getChars(startofTextInCurrentNode,
 offset - startofTextInCurrentNode, seg);
          String previosTextInNode = seg.toString();
          boolean insertStartQuote = true;
          for (int i = previosTextInNode.length() - 1; i >= 0; i--) {
            char ch = previosTextInNode.charAt(i);
            if('\u201C' == ch) {
              //Found end of smart quote, so yes, we should insert a start one
              break;
            } else if('\u201E' == ch) {
              //Found start quote, so we should insert an end one.
              insertStartQuote = false;
              break;
            }
          }
         
          if(insertStartQuote) {
            toInsert = "\u201E";
          } else {
            toInsert = "\u201C";
          }



 | API Frequently Asked Questions (API FAQ) | 150

        }
      } catch (BadLocationException e) {
        e.printStackTrace();
      }
    }
    System.err.println("INSERT TEXT |" + toInsert + "|");
    super.insertText(filterBypass, offset, toInsert);
  }
});

You can find the online Javadoc for AuthorDocumentFilter API here: http://www.oxygenxml.com/InstData/
Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html

An alternative to using a document filtering is the use of a
ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandlerAdapter which has clear
callbacks indicating the source from where the API is called (Paste, Drag and Drop, Typing).

Split Paragraph on Enter (Instead of Showing Content Completion List)

Question

How to split the paragraph on Enter instead of showing the content completion list?

Answer

To obtain this behaviour, edit your Document Type and in the Author tab, Actions tab, add your own split action.
This action must have the Enter shortcut key associated and must trigger your own custom operation which handles
the split.

So, when you press Enter, your Java operation is invoked and it will be your responsibility to split the paragraph
using the current API (probably creating a document fragment from the caret offset to the end of the paragraph,
removing the content and then inserting the created fragment after the paragraph).

This solution has as a drawback.  hides the content completion window when you press Enter. If you want to
show allowed child elements at that certain offset, implement your own content proposals window using the
ro.sync.ecss.extensions.api.AuthorSchemaManager API to use information from the associated
schema.

Impose Custom Options for Writers

Question

How to enable Track Changes at startup?

Answer

There are two ways to enable Track Changes for every document that you open:

1. You could customise the default optionscustomise the default optionscustomise the default optionscustomise the
default optionscustomise the default options which are used by your writers and set the Track Changes Initial
State optionInitial State optionInitial State optionInitial State optionInitial State
option to Always On.

2. Use the API to toggle the Track Changes state after a document is opened in Author mode:

// Check the current state of Track Changes 
boolean trackChangesOn =
 authorAccess.getReviewController().isTrackingChanges();
if (!trackChangesOn) {

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorDocumentFilter.html
http://www.oxygenxml.com/doc/ug-editor/topics/default-options.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/default-options.html
http://www.oxygenxml.com/doc/ug-author/topics/default-options.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/default-options.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/default-options.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-editor/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-track-changes.html


 | API Frequently Asked Questions (API FAQ) | 151

  // Set Track Changes state to On
  authorAccess.getReviewController().toggleTrackChanges();
}

Highlight Content

Question

How can we add custom highlights to the Author document content?

Answer

There are two types of highlights you can add:

1. Not Persistent Highlights. Such highlights are removed when the document is closed and then re-opened.

You can use the following API method:

ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getHighlighter()

to obtain an AuthorHighlighter which allows you to add a highlight between certain offsets with a certain painter.

For example you can use this support to implement your custom spell checker.
2. Persistent Highlights. Such highlights are saved in the XML content as processing instructions.

You can use the following API method:

ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getPersistentHighlighter()

to obtain an AuthorPersistentHighlighter which allows you to add a persistent highlight between certain offsets
and containing certain custom properties and render it with a certain painter.

For example you can use this support to implement your own way of adding review comments.

How Do I Add My Custom Actions to the Contextual Menu?
The API methods WSAuthorEditorPageBase.addPopUpMenuCustomizer and
WSTextEditorPage.addPopUpMenuCustomizer allow you to customize the contextual menu shown either
in the Author or in the Text modes. The API is available both in the standalone application and in the Eclipse plugin.

Here's an elegant way to add from your Eclipse plugin extension actions to the Author page:

1. Create a pop-up menu customizer implementation:

import org.eclipse.jface.action.ContributionManager;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.menus.IMenuService;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.structure.AuthorPopupMenuCustomizer;
/**
* This class is used to create the possibility to attach certain
* menuContributions to the {@link ContributionManager}, which is used for
 the
* popup menu in the Author Page of the Oxygen Editor.<br />
* You just need to use the org.eclipse.ui.menus extension and add a
* menuContribution with the locationURI: <b>menu:oxygen.authorpage</b>
*/
public class OxygenAuthorPagePopupMenuCustomizer implements
        AuthorPopupMenuCustomizer {

    @Override
    public void customizePopUpMenu(Object menuManagerObj,

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorHighlighter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html


 | API Frequently Asked Questions (API FAQ) | 152

            AuthorAccess authoraccess) {
        if (menuManagerObj instanceof ContributionManager) {
            ContributionManager contributionManager = (ContributionManager)
 menuManagerObj;
            IMenuService menuService = (IMenuService)
 PlatformUI.getWorkbench()
                   
 .getActiveWorkbenchWindow().getService(IMenuService.class);

            menuService.populateContributionManager(contributionManager,
                    "menu:oxygen.authorpage");
            contributionManager.update(true);
        }
    }
}

2. Add a workbench listener and add the pop-up customizer when an editor is opened in the Author page:

Workbench.getInstance().getActiveWorkbenchWindow().getPartService().addPartListener(
    new IPartListener() {
      @Override
      public void partOpened(IWorkbenchPart part) {
        if(part instanceof ro.sync.exml.workspace.api.editor.WSEditor) {
          WSEditorPage currentPage = ((WSEditor)part).getCurrentPage();
          if(currentPage instanceof WSAuthorEditorPage) {
            ((WSAuthorEditorPage)currentPage).addPopUpMenuCustomizer(new
 OxygenAuthorPagePopupMenuCustomizer());
          }
        }
      }
      ........
    });

3. Implement the extension point in your plugin.xml:

<extension
       point="org.eclipse.ui.menus">
    <menuContribution
          allPopups="false"
          locationURI="menu:oxygen.authorpage">
       <command
           
  commandId="eu.doccenter.kgu.client.tagging.removeTaggingFromOxygen"
             style="push">
       </command>
    </menuContribution>
</extension>

Adding Custom Callouts

Question

I'd like to highlight validation errors, instead of underlining them, for example changing the text background color to
light red (or yellow).Also I like to let oxygen write a note about the error type into the author view directly at the error
position, like " [value "text" not allowed for attribute "type"] ". Is this possible using the API?

Answer

The Plugins API allows setting a ValidationProblemsFilter which gets notified when automatic validation
errors are available. Then you can map each of the problems to an offset range in the Author page using the API
WSTextBasedEditorPage.getStartEndOffsets(DocumentPositionedInfo). For each of those
offsets you can add either persistent or non-persistent highlights. If you add persistent highlights you can also



 | API Frequently Asked Questions (API FAQ) | 153

customize callouts to appear for each of them, the downside is that they need to be removed before the document gets
saved. The end result would look something like:

Here is a small working example:

    /**
    * Plugin extension - workspace access extension.
    */
    public class CustomWorkspaceAccessPluginExtension 
                          implements WorkspaceAccessPluginExtension {
     
      /**
       * @see ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension
              
 #applicationStarted(ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)
       */
      public void applicationStarted(final StandalonePluginWorkspace
 pluginWorkspaceAccess) {
        pluginWorkspaceAccess.addEditorChangeListener(new
 WSEditorChangeListener() {
          /**
           * @see
 ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorOpened(java.net.URL)
           */
          @Override
          public void editorOpened(URL editorLocation) {
            final WSEditor currentEditor =
 pluginWorkspaceAccess.getEditorAccess(editorLocation,
 StandalonePluginWorkspace.MAIN_EDITING_AREA);
            WSEditorPage currentPage = currentEditor.getCurrentPage();
            if(currentPage instanceof WSAuthorEditorPage) {
              final WSAuthorEditorPage currentAuthorPage =
 (WSAuthorEditorPage)currentPage;
             
 currentAuthorPage.getPersistentHighlighter().setHighlightRenderer(new
 PersistentHighlightRenderer() {
                @Override
                public String getTooltip(AuthorPersistentHighlight highlight)
 {
                  return highlight.getClonedProperties().get("message");
                }
                @Override



 | API Frequently Asked Questions (API FAQ) | 154

                public HighlightPainter
 getHighlightPainter(AuthorPersistentHighlight highlight) {
                  //Depending on severity could have different color.
                  ColorHighlightPainter painter = new
 ColorHighlightPainter(Color.COLOR_RED, -1, -1);
                  painter.setBgColor(Color.COLOR_RED);
                  return painter;
                }
              });
              currentAuthorPage.getReviewController()
               
 .getAuthorCalloutsController().setCalloutsRenderingInformationProvider(
                    new CalloutsRenderingInformationProvider() {
                @Override
                public boolean shouldRenderAsCallout(AuthorPersistentHighlight
 highlight) {
                  //All custom highlights are ours
                  return true;
                }
                @Override
                public AuthorCalloutRenderingInformation
 getCalloutRenderingInformation(
                    final AuthorPersistentHighlight highlight) {
                  return new AuthorCalloutRenderingInformation() {
                    @Override
                    public long getTimestamp() {
                      //Not interesting
                      return -1;
                    }
                    @Override
                    public String getContentFromTarget(int limit) {
                      return "";
                    }
                    @Override
                    public String getComment(int limit) {
                      return highlight.getClonedProperties().get("message");
                    }
                    @Override
                    public Color getColor() {
                      return Color.COLOR_RED;
                    }
                    @Override
                    public String getCalloutType() {
                      return "Problem";
                    }
                    @Override
                    public String getAuthor() {
                      return "";
                    }
                    @Override
                    public Map<String, String> getAdditionalData() {
                      return null;
                    }
                  };
                }
              });
              currentEditor.addValidationProblemsFilter(new
 ValidationProblemsFilter() {
                List<int[]> lastStartEndOffsets = new ArrayList<int[]>();
                /**
                 * @see
 ro.sync.exml.workspace.api.editor.validation.ValidationProblemsFilter



 | API Frequently Asked Questions (API FAQ) | 155

                   
 #filterValidationProblems(ro.sync.exml.workspace.api.editor.validation.ValidationProblems)
                 */
                @Override
                public void filterValidationProblems(ValidationProblems
 validationProblems) {
                  List<int[]> startEndOffsets = new ArrayList<int[]>();
                  List<DocumentPositionedInfo> problemsList =
 validationProblems.getProblemsList();
                  if(problemsList != null) {
                    for (int i = 0; i < problemsList.size(); i++) {
                      try {
                       
 startEndOffsets.add(currentAuthorPage.getStartEndOffsets(problemsList.get(i)));
                      } catch (BadLocationException e) {
                        e.printStackTrace();
                      }
                    }
                  }
                    if(lastStartEndOffsets.size() != startEndOffsets.size()) {
                      //Continue
                    } else {
                      boolean equal = true;
                      for (int i = 0; i < startEndOffsets.size(); i++) {
                        int[] o1 = startEndOffsets.get(i);
                        int[] o2 = lastStartEndOffsets.get(i);
                        if(o1 == null && o2 == null) {
                          //Continue
                        } else  if(o1 != null && o2 != null
                            && o1[0] == o2[0] && o1[1] == o2[1]){
                          //Continue
                        } else {
                          equal = false;
                          break;
                        }
                      }
                      if(equal) {
                        //Same list of problems already displayed.
                        return;
                      }
                    }
                    //Keep last used offsets.
                    lastStartEndOffsets = startEndOffsets;
                  try {
                    if(! SwingUtilities.isEventDispatchThread()) {
                      SwingUtilities.invokeAndWait(new Runnable() {
                        @Override
                        public void run() {
                          //First remove all custom highlights.
                         
 currentAuthorPage.getPersistentHighlighter().removeAllHighlights();
                        }
                      });
                    }
                  } catch (InterruptedException e1) {
                    e1.printStackTrace();
                  } catch (InvocationTargetException e1) {
                    e1.printStackTrace();
                  }
                  if(problemsList != null) {
                    for (int i = 0; i < problemsList.size(); i++) {
                      //A reported problem (could be warning, could be error).



 | API Frequently Asked Questions (API FAQ) | 156

                      DocumentPositionedInfo dpi = problemsList.get(i);
                      try {
                        final int[] currentOffsets = startEndOffsets.get(i);
                        if(currentOffsets != null) {
                          //These are offsets in the Author content.
                          final LinkedHashMap<String, String> highlightProps
 = new LinkedHashMap<String, String>();
                          highlightProps.put("message", dpi.getMessage());
                          highlightProps.put("severity",
 dpi.getSeverityAsString());
                          if(! SwingUtilities.isEventDispatchThread()) {
                            SwingUtilities.invokeAndWait(new Runnable() {
                              @Override
                              public void run() {
                               
 currentAuthorPage.getPersistentHighlighter().addHighlight(
                                    currentOffsets[0], currentOffsets[1] - 1,
 highlightProps);
                              }
                            });
                          }
                        }
                      } catch (InterruptedException e) {
                        e.printStackTrace();
                      } catch (InvocationTargetException e) {
                        e.printStackTrace();
                      }
                    }
                  }
                }
              });
              currentEditor.addEditorListener(new WSEditorListener() {
                /**
                 * @see
 ro.sync.exml.workspace.api.listeners.WSEditorListener#editorAboutToBeSavedVeto(int)
                 */
                @Override
                public boolean editorAboutToBeSavedVeto(int operationType) {
                  try {
                    if(! SwingUtilities.isEventDispatchThread()) {
                      SwingUtilities.invokeAndWait(new Runnable() {
                        @Override
                        public void run() {
                          //Remove all persistent highlights before saving
                         
 currentAuthorPage.getPersistentHighlighter().removeAllHighlights();
                        }
                      });
                    }
                  } catch (InterruptedException e) {
                    e.printStackTrace();
                  } catch (InvocationTargetException e) {
                    e.printStackTrace();
                  }
                  return true;
                }
              });
            }
          }
        }, StandalonePluginWorkspace.MAIN_EDITING_AREA);
      }
     



 | API Frequently Asked Questions (API FAQ) | 157

      /**
       * @see
 ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension#applicationClosing()
       */
      public boolean applicationClosing() {
        return true;
      }
    }

Change the DOCTYPE of an Opened XML Document

Question

How to change the DOCTYPE of a document opened in the Author mode?

Answer

The following API:

ro.sync.ecss.extensions.api.AuthorDocumentController.getDoctype()  

allows you to get the DOCTYPE of the current XML file opened in the Author page.

There is also an API method available which would allow you to set the DOCTYPE back to the XML:

ro.sync.ecss.extensions.api.AuthorDocumentController.setDoctype(AuthorDocumentType)
  

Here is an example of how this solution would work:

AuthorDocumentType dt = new
 AuthorDocumentType("article", "testSystemID", "testPublicID",
            "<!DOCTYPE article PUBLIC \"testPublicID\" \"testSystemID\">");
docController.setDoctype(dt); 

Basically you could take the entire content from the existing DOCTYPE,

ro.sync.ecss.extensions.api.AuthorDocumentType.getContent()

modify it to your needs, and create another AuthorDocumentType object with the new content and with the same
public, system IDs.

For example you could use this API is you want to add unparsed entities in the XML DOCTYPE.

Customize the Default Application Icons for Toolbars/Menus

Question

How can we change the default icons used for the application built-in actions?

Answer

If you look inside the main JAR library OXYGEN_INSTALL_DIR\lib\oxygen.jar or
OXYGEN_INSTALL_DIR\lib\author.jar it contains an images folder in which all the images which we use
for our buttons, menus, and toolbars exist.

In order to overwrite them with your own creations:

1. In the OXYGEN_INSTALL_DIR\lib directory create a folder called endorsed;
2. In the endorsed folder create another folder called images;
3. Add your own images in the images folder.



 | API Frequently Asked Questions (API FAQ) | 158

You can use this mechanism to overwrite any kind of resource located in the main Oxygen JAR library. The folder
structure in the endorsed directory and in the main Oxygen JAR must be identical.

Disable Context-Sensitive Menu Items for Custom Author Actions

Question

Is there a way to disable menu items for custom Author actions depending on the cursor context?

Answer

By default Oxygen does not toggle the enabled/disabled states for actions based on whether the activation
XPath expressions for that certain Author action are fulfilled. This is done because the actions can be many and
evaluating XPath expression on each caret move can lead to performance problems. But if you have your own
ro.sync.ecss.extensions.api.ExtensionsBundle implementation you can overwrite the method:

ro.sync.ecss.extensions.api.ExtensionsBundle.createAuthorExtensionStateListener()

and when the extension state listener gets activated you can use the API like:

/**
 * @see
 ro.sync.ecss.extensions.api.AuthorExtensionStateListener#activated(ro.sync.ecss.extensions.api.AuthorAccess)
 */
public void activated(final AuthorAccess authorAccess) {

  //Add a caret listener to enable/disable extension actions:
  authorAccess.getEditorAccess().addAuthorCaretListener(new
 AuthorCaretListener() {
    @Override
    public void caretMoved(AuthorCaretEvent caretEvent) {
      try {
        Map<String, Object> authorExtensionActions =
 authorAccess.getEditorAccess().getActionsProvider().getAuthorExtensionActions();
        //Get the action used to insert a paragraph. It's ID is "paragraph"
        AbstractAction insertParagraph = (AbstractAction)
 authorExtensionActions.get("paragraph");
        //Evaluate an XPath expression in the context of the current node in
 which the caret is located
        Object[] evaluateXPath =
 authorAccess.getDocumentController().evaluateXPath(".[ancestor-or-self::p]",
 false, false, false, false);
        if(evaluateXPath != null && evaluateXPath.length > 0 &&
 evaluateXPath[0] != null) {
          //We are inside a paragraph, disable the action.
          insertParagraph.setEnabled(false);
        } else {
          //Enable the action
          insertParagraph.setEnabled(true);
        }
      } catch (AuthorOperationException e) {
        e.printStackTrace();
      }
    }
  });

When the extension is deactivated you should remove the caret listener in order to avoid adding multiple caret
listeners which perform the same functionality.



 | API Frequently Asked Questions (API FAQ) | 159

Dynamic Open File in  Distributed via JavaWebStart

Question

How can we dynamically open a file in an  distributed via JWS?

Answer

The JWS packager ANT build file which comes with Oxygen signs by default the JNLP file (this means that a copy
of it is included in the main JAR library) in this step:

 
<copy file="${outputDir}/${packageName}/${productName}.jnlp" tofile="${home}/
JNLP-INF/APPLICATION.JNLP"/>

Signing the JNLP file indeed means that it is impossible to automatically generate a JNLP file containing some
dynamic arguments.

But the JNLP does not need to be signed. Indeed the user probably receives this information when launching the
application but at least in this way you should be able to dynamically generate a JNLP file via a PHP script based on
the URL which was clicked by the user.

The generated JNLP would then take as argument the URL which needs to be opened when Oxygen starts.

Maybe a different approach (more complicated though) would be to have the JNLP file signed and always refer as a
URL argument a location like this:

http://path/to/server/redirectEditedURL.php

When the URL gets clicked on the client side you would also call a PHP script on the server side which would update
the redirect location for redirectEditedURL.php to point to the clicked XML resource. Then the opened
Oxygen would try to connect to the redirect PHP and be redirected to open the XML.

Change the Default Track Changes (Review) Author Name

Question

How can we change the default author name used for Track Changes in the Author Component?

Answer

The Track Changes (Review) Author name is determined in the following order:

1. API - The review user name can be imposed through the following API:

ro.sync.ecss.extensions.api.AuthorReviewController.setReviewerAuthorName(String)
2. Options - If the author name was not imposed from the API, it is determined from the Author option set from

the following Preferences page: Editor / Edit modes / Author / Review.Editor / Edit
modes / Author / Review.Editor / Edit modes / Author / Review.Editor / Edit
modes / Author / Review.Editor / Edit modes / Author / Review.

3. System properties - If the author name was not imposed from the API or from the application options then the
following system property is used:

System.getProperty("user.name")

So, to impose the Track Changes author, use one of the following approaches:

1. Use the API to impose the reviewer Author name. Here is the online Javadoc of this method:
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/
AuthorReviewController.html#setReviewerAuthorName(java.lang.String)

http://www.oxygenxml.com/doc/ug-editor/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-author/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-track-changes.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/preferences-track-changes.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReviewController.html#setReviewerAuthorName(java.lang.String)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReviewController.html#setReviewerAuthorName(java.lang.String)


 | API Frequently Asked Questions (API FAQ) | 160

2. Customise the default optionsCustomise the default optionsCustomise the default optionsCustomise the default
optionsCustomise the default options and set a specific value for the reviewer Author name option.

3. Set the value of user.name system property when the applet is initialising and before any document is loaded.

Multiple Rendering Modes for the Same Author Document

Question

How can we add multiple buttons, each showing different visualisation mode of the same Author document (by
associating additional/different CSS style sheet)?

Answer

In the toolbar of the Author mode there is a drop-down button which contains alternative CSS styles for the same
document. To add an alternative CSS stylesheet go to  Preferences->Document Type Association page,
select the document type associated with your documents and press Edit. In the Document Type dialog that
appears go to "Author" tab, "CSS" tab and add there references to alternate CSS stylesheets.

For example, one of the alternate CSSs that we offer for DITA document type is located here:

OXYGEN_INSTALL_DIR/frameworks/dita/css_classed/hideColspec.css

If you open it, you will see that it imports the main CSS and then adds selectors of its own.

Obtain a DOM Element from an AuthorNode or AuthorElement

Question

Can a DOM Element be obtained from an AuthorNode or an AuthorElement?

Answer

No, a DOM Element cannot be obtained from an AuthorNode or an AuthorElement. The AuthorNode
structure is also hierarchical but the difference is that all the text content is kept in a single text buffer instead of
having individual text nodes.

We have an image in the Javadoc which explains the situation:http://www.oxygenxml.com/InstData/Editor/SDK/
javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html

Print Document Within the Author Component

Question

Can a document be printed within the Author Component?

Answer

You can use the following API method to either print the Author document content to the printer or to show the Print
Preview dialog, depending on the preview parameter value:

AuthorComponentProvider.print(boolean preview)

Here is the online Javadoc for this method: http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/
extensions/api/component/AuthorComponentProvider.html#print(boolean)

http://www.oxygenxml.com/doc/ug-editor/topics/default-options.html
http://www.oxygenxml.com/doc/ug-editorEclipse/topics/default-options.html
http://www.oxygenxml.com/doc/ug-author/topics/default-options.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/default-options.html
http://www.oxygenxml.com/doc/ug-authorEclipse/topics/default-options.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AuthorComponentProvider.html#print(boolean)
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AuthorComponentProvider.html#print(boolean)


 | API Frequently Asked Questions (API FAQ) | 161

Running XSLT or XQuery Transformations

Question

Can I run XSL 2.0 / 3.0 transformation with Saxon EE using the oXygen SDK?

Answer

The API class ro.sync.exml.workspace.api.util.XMLUtilAccess allows you to create an XSLT
Transformer which implements the JAXP interface javax.xml.transform.Transformer. Then this
type of transformer can be used to transform XML. Here's just an example of transforming when you have an
AuthorAccess API available:

 InputSource is = new org.xml.sax.InputSource(URLUtil.correct(new File("test/
personal.xsl")).toString());
 xslSrc = new SAXSource(is);
 javax.xml.transform.Transformer transformer =
 authorAccess.getXMLUtilAccess().createXSLTTransformer(xslSrc, null,
 AuthorXMLUtilAccess.TRANSFORMER_SAXON_ENTERPRISE_EDITION);
 transformer.transform(new StreamSource(new File("test/personal.xml")), new
 StreamResult(new File("test/personal.html")));

If you want to create the transformer from the plugins side, you can use this method instead:
ro.sync.exml.workspace.api.PluginWorkspace.getXMLUtilAccess().

Use Different Rendering Styles for Entity References, Comments or
Processing Instructions

Question

Is there a way to display entity references in the Author mode without the distinct gray background and tag markers?

Answer

There is a built-in CSS stylesheet in the Oxygen libraries which is used when styling content in the Author mode, no
matter what CSS you use. This CSS has the following content:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');
@namespace xi "http://www.w3.org/2001/XInclude";
@namespace xlink "http://www.w3.org/1999/xlink";
@namespace svg "http://www.w3.org/2000/svg";
@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {
    display:block !important;
}

oxy|cdata {
    display:morph !important;
    white-space:pre-wrap !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|processing-instruction {
    display:block !important;
    color: rgb(139, 38, 201) !important;



 | API Frequently Asked Questions (API FAQ) | 162

    white-space:pre-wrap !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|comment {
    display:morph !important;
    color: rgb(0, 100, 0) !important;
    background-color:rgb(255, 255, 210) !important;
    white-space:pre-wrap !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|reference:before,
oxy|entity[href]:before{  
  link: attr(href) !important;
  text-decoration: underline !important;
  color: navy !important;
  
  margin: 2px !important;
  padding: 0px !important;  
}

oxy|reference:before {
  display: morph !important;
  content: url(../images/editContent.gif) !important;  
}

oxy|entity[href]:before{
  display: morph !important;
  content: url(../images/editContent.gif) !important;
}

oxy|reference,
oxy|entity {
    editable:false !important;
    background-color: rgb(240, 240, 240) !important;
    margin:0px !important;
    padding: 0px !important;
}

oxy|reference {
    display:morph !important;
}

oxy|entity {
    display:morph !important;
}

oxy|entity[href] {
  border: 1px solid rgb(175, 175, 175) !important;
  padding: 0.2em !important;
}

xi|include {
    display:block !important;
    margin-bottom: 0.5em !important;
    padding: 2px !important;
}



 | API Frequently Asked Questions (API FAQ) | 163

xi|include:before,
xi|include:after{
    display:inline !important;
    background-color:inherit !important;
    color:#444444 !important;
    font-weight:bold !important;
}

xi|include:before {
    content:url(../images/link.gif) attr(href)  !important;
    link: attr(href) !important;
}
xi|include[xpointer]:before {
    content:url(../images/link.gif) attr(href) " " attr(xpointer) !important;
    link: oxy_concat(attr(href), "#", attr(xpointer)) !important;
}

xi|fallback {
    display:morph !important;
    margin: 2px !important;
    border: 1px solid #CB0039 !important;
}

xi|fallback:before {
    display:morph !important;
    content:"XInclude fallback: " !important;
    color:#CB0039 !important;
}

oxy|doctype {
    display:block !important;
    background-color: transparent !important;
    color:blue !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 2px !important;
}

oxy|error {
    display:morph !important;
    editable:false !important;
    white-space:pre !important;
    color: rgb(178, 0, 0) !important;
    font-weight:bold !important;
}

*[xlink|href]:before {
    content:url(../images/link.gif);
    link: attr(xlink|href) !important;
}

/*No direct display of the MathML and SVG images.*/
svg|svg{ 
 display:inline !important;
    white-space: trim-when-ws-only;
}
svg|svg svg|*{
    display:none !important;
    white-space:normal;
}



 | API Frequently Asked Questions (API FAQ) | 164

mml|math{ 
 display:inline !important;
    white-space: trim-when-ws-only;
}
mml|math mml|*{
    display:none !important;
    white-space: normal;
}

In the CSS used for rendering the XML in Author mode do the following:

• import the special Author namespace;
• use a special selector to customize the entity node.

Example:

@namespace oxy url('http://www.oxygenxml.com/extensions/author');
oxy|entity {   
   background-color: inherit !important;
   margin:0px !important;
   padding: 0px !important;   
    -oxy-display-tags:none;
}

You can overwrite styles in the predefined CSS in order to custom style comments, processing instructions and CData
sections. You can also customize the way in which xi:include elements are rendered.

Insert an Element with all the Required Content

Question

I'm inserting a DITA image XML element, using the Author API, which points to a certain resource and has required
content. Can the required content be automatically inserted by the application?

Answer

The API ro.sync.ecss.extensions.api.AuthorSchemaManager can
propose valid elements which can be inserted at the specific offset. Using the method
AuthorSchemaManager.createAuthorDocumentFragment(CIElement) you can convert the
proposed elements to document fragments (which have all the required content filled in) which can then be inserted in
the document.

AuthorSchemaManager schemaManager
 = this.authorAccess.getDocumentController().getAuthorSchemaManager();
WhatElementsCanGoHereContext context =
 schemaManager.createWhatElementsCanGoHereContext(this.authorAccess.getEditorAccess().getCaretOffset());
List<CIElement> possibleElementsAtCaretPosition =
 schemaManager.whatElementsCanGoHere(context);
loop: for (int i = 0; i < possibleElementsAtCaretPosition.size(); i++) {
  CIElement possibleElement = possibleElementsAtCaretPosition.get(i);
  List<CIAttribute> attrs = possibleElement.getAttributes();
  if(attrs != null) {
    for (int j = 0; j < attrs.size(); j++) {
      CIAttribute ciAttribute = attrs.get(j);
      if (ciAttribute.getName().equals("class")) {
        if (ciAttribute.getDefaultValue() != null
            && ciAttribute.getDefaultValue().contains("  topic/image ")) {
          //Found a CIElement for image
          //Create a fragment for it. The fragment contains all required child
 elements already built.



 | API Frequently Asked Questions (API FAQ) | 165

          AuthorDocumentFragment frag =
 schemaManager.createAuthorDocumentFragment(possibleElement);
          //Now set the @href to it.
          //Ask the user and obtain a value for the @href
          //Then:

          String href = "test.png";
          List<AuthorNode> nodes = frag.getContentNodes();
          if(!nodes.isEmpty()) {
            AuthorElement imageEl = (AuthorElement) nodes.get(0);
            imageEl.setAttribute("href", new AttrValue(href));
          }
          //And insert the fragment.
        
  this.authorAccess.getDocumentController().insertFragment(this.authorAccess.getEditorAccess().getCaretOffset(),
 frag);
          break loop;
        }
      }
    }
  }
} 

Obtain the Current Selected Element Using the Author API

Question

If in the Author mode, an element is fully selected, I would like to perform an action on it. If not, I would like to
perform an action on the node which is located at the caret position. Is this possible via the API?

Answer

When an element is fully selected by the user the selection start and end offsets are actually outside of the node's
offset bounds. So using AuthorDocumentController.getNodeAtOffset will actually return the
parent of the selected node. We have some special API which makes it easier for you to determine this situation:
WSAuthorEditorPageBase.getFullySelectedNode().

AuthorDocumentController controller =
 authorPageAccess.getDocumentController();
AuthorAccess authorAccess = authorPageAccess.getAuthorAccess();
int caretOffset = authorAccess.getEditorAccess().getCaretOffset();

AuthorElement nodeAtCaret = (AuthorElement)
 authorAccess.getEditorAccess().getFullySelectedNode();
if (nodeAtCaret == null) {
     //We have no fully selected node. We can look at the caret offset.
     nodeAtCaret = (AuthorElement)
 authorAccess.getDocumentController().getNodeAtOffset(caretOffset);
    //Or we could look at the selection start and end, see which node is the
 parent of each offset and get the closest common ancestor.
}

Debugging a Plugin Using the Eclipse Workbench
To debug problems in the code of the plugin without having to re-bundle the Java classes of the plugin in a JAR
library, follow these steps:

1. Download and unpack an all platforms standalone version of Oxygen XML Author/Editor to a folder on your hard
drive.

http://www.oxygenxml.com//InstData/Editor/All/oxygen.tar.gz


 | API Frequently Asked Questions (API FAQ) | 166

Note:  Name the folder OXYGEN_DIR.

2. Download the Plugins SDK.
3. Create an Eclipse Java Project (let's call it MyPluginProject) with the Java sources from one of the sample

plugins (the Workspace Access plugin for example).
4. In the Project root folder, create a folder called myPlugin and add the plugin.xml from the sample plugin

in there. Modify the added plugin.xml to add a library reference to the project's classes directory: <library
name="../classes"/>.

5. Copy the plugin.dtd from the OXYGEN_DIR/plugins folder in the root Project folder.
6. In the Project's build path add external JAR references to all the JAR libraries in the OXYGEN_DIR/lib folder.

Now your Project should compile successfully.
7. Create a new Java Application configuration for debugging. The Main Class should be

ro.sync.exml.Oxygen. The given VM Arguments should be:

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m 
-XX:MaxPermSize=384m -Dcom.oxygenxml.editor.plugins.dir=D:\projects
\MyPluginProject

8. Add a break point in one of the source Java classes.
9. Debug the created configuration. When the code reaches your breakpoint, the debug perspective should take over.

Debugging an SDK Extension Using the Eclipse Workbench
To debug problems in the extension code without having to bundle the extension's Java classes in a JAR library,
perform the following steps:

1. Download and unpack an all platforms standalone version of Oxygen XML Author/Editor to a folder on your hard
drive.

Note:  Name the folder OXYGEN_DIR.

2. Download the Author SDK.
3. Create an Eclipse Java Project (let's call it MySDKProject) with the corresponding Java sources (for example a

custom implementation of the ro.sync.ecss.extensions.api.StylesFilter interface).
4. In the Project's build path add external JAR references to all the JAR libraries in the OXYGEN_DIR/lib folder.

Now your Project should compile successfully.
5. Start the standalone version of Oxygen from the OXYGEN_DIR and in the Document Type Association

Preferences page edit the document type (for example DITA). In the Classpath tab, add a reference to your
Project's classes directory and in the Extensions tab, select your custom StylesFilter extension as a value
for the CSS styles filter property. Close the application to save the changes to the framework file.

6. Create a new Java Application configuration for debugging. The Main Class should be
ro.sync.exml.Oxygen. The given VM Arguments should be

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m
 -XX:MaxPermSize=384m

7. Add a break point in one of the source Java classes.
8. Debug the created configuration. When the code reaches your breakpoint, the debug perspective should take over.

Extending the Java Functionality of an Existing Framework (Document
Type)

Question

How can I change the way Docbook 4 xref's display in author view based on what element is at the linkend?

Please follow the steps below:

http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
http://www.oxygenxml.com//InstData/Editor/All/oxygen.tar.gz
http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK


 | API Frequently Asked Questions (API FAQ) | 167

1. Download the Author SDK, create a Java project (we work with Eclipse for example) which adds to the classpath
all libraries of the SDK.

2. Also add to the project's class path the: "OXYGEN_INSTALL_DIR\frameworks\docbook\docbook.jar".
3. Create a class which extends ro.sync.ecss.extensions.docbook.DocBook4ExtensionsBundle

and overwrites the method:
ro.sync.ecss.extensions.api.ExtensionsBundle#createLinkTextResolver()

4. For your custom resolver implementation you can start from the Java sources of the
ro.sync.ecss.extensions.docbook.link.DocbookLinkTextResolver (the Java code for the
entire Docbook customization is present in a subfolder in the Author SDK).

5. Pack your extension classes in a JAR file. Copy the JAR to: "OXYGEN_INSTALL_DIR\frameworks\docbook
\custom.jar".

6. Start Oxygen, in the Preferences > Document Type Association-> page edit the Docbook 4 document type. In
the Classpath list add the path to the new JAR. In the extensions list select your custom extension instead of the
regular Docbook one.

7. You can rename the document type and also the "docbook" framework folder to something else like
"custom_docbook" and share it with others. A document type can also be installed using our add-on support.

Controlling XML Serialization in the Author Component

Question

How can I force the Author Component to save the XML with zero indent size and not to break the line inside block-
level elements?

Answer

Usually, in a standalone version of , the Editor  > Format and Editor >  Format >  XML preferences pages allow
you to control the way the XML is saved on the disk after you edit it in the Author mode.

In the editor application (Standalone or Eclipse-based), you can either bundle a default set of optionsdefault set of
options or use the PluginWorkspace.setGlobalObjectProperty(String, Object) API:

//For not breaking the line
//Long line
pluginWorkspace.setObjectProperty("editor.line.width", new Integer(100000));
//Do not break before inline elements
pluginWorkspace.setObjectProperty("editor.format.indent.inline.elements",
 false);

//For forcing zero indent
//Force indent settings to be controlled by us
pluginWorkspace.setObjectProperty("editor.detect.indent.on.open", false);
//Zero indent size
pluginWorkspace.setObjectProperty("editor.indent.size.v9.2", 0);

In the Author Component, you can either bundle a fixed set of options, or use our Java API to set properties which
overwrite the default options:

//For not breaking the line
//Long line
AuthorComponentFactory.getInstance().setObjectProperty("editor.line.width", new
 Integer(100000));
//Do not break before inline elements
AuthorComponentFactory.getInstance().setObjectProperty("editor.format.indent.inline.elements",
 false);

//For forcing zero indent
//Force indent settings to be controlled by us



 | API Frequently Asked Questions (API FAQ) | 168

AuthorComponentFactory.getInstance().setObjectProperty("editor.detect.indent.on.open",
 false);
//Zero indent size
AuthorComponentFactory.getInstance().setObjectProperty("editor.indent.size.v9.2",
 0);

How can I add a custom Outline view for editing XML documents in the
Text mode?

Let's say you have XML documents like

<doc startnumber="15">
    <sec counter="no">
        <info/>
        <title>Introduction</title>   
      </sec>
    <sec>
        <title>Section title</title>       
      <para>Content</para>
        <sec>
            <title>Section title</title> 
                <para>Content</para>
        </sec>
    </sec>
    <sec> 
            <title>Section title</title>
        <para>Content</para>   
      </sec>
</doc>

and you want to display the XML content in a simplified Outline view like:

doc "15"
sec Introduction
sec 15 Section title
sec 15.1 Section title
sec 16 Section title

Usually an Outline should have the following characteristics:

1. Double clicking in the Outline the corresponding XML content would get selected.
2. When the caret moves in the opened XML document the Outline would select the proper entry.
3. When modifications occur in the document, the Outline would refresh.

A simple implementation using a Workspace Access plugin type could be something like:

/**
 * Simple Outline for the Text mode based on executing XPaths over the text
 content.
 */
public class CustomWorkspaceAccessPluginExtension implements
 WorkspaceAccessPluginExtension {
  /**
   * The custom outline list.
   */
  private JList customOutlineList;
  
  /**
   * Maps outline nodes to ranges in document
   */
  private WSXMLTextNodeRange[] currentOutlineRanges; 
  



 | API Frequently Asked Questions (API FAQ) | 169

  /**
   * The current text page
   */
  private WSXMLTextEditorPage currentTextPage;
  
  /**
   * Disable caret listener when we select from the caret listener.
   */
  private boolean enableCaretListener = true;
  
  /**
   * @see
 ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension#applicationStarted(ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)
   */
  @Override
  public void applicationStarted(final StandalonePluginWorkspace
 pluginWorkspaceAccess) {
    pluginWorkspaceAccess.addViewComponentCustomizer(new
 ViewComponentCustomizer() {
      /**
       * @see
 ro.sync.exml.workspace.api.standalone.ViewComponentCustomizer#customizeView(ro.sync.exml.workspace.api.standalone.ViewInfo)
       */
      @Override
      public void customizeView(ViewInfo viewInfo) {
        if(
            //The view ID defined in the "plugin.xml"
            "SampleWorkspaceAccessID".equals(viewInfo.getViewID())) {
          customOutlineList = new JList();
          //Render the content in the Outline.
          customOutlineList.setCellRenderer(new DefaultListCellRenderer() {
            /**
             * @see
 javax.swing.DefaultListCellRenderer#getListCellRendererComponent(javax.swing.JList,
 java.lang.Object, int, boolean, boolean)
             */
            @Override
            public Component getListCellRendererComponent(JList<?> list,
 Object value, int index,
                boolean isSelected, boolean cellHasFocus) {
              JLabel label = (JLabel) super.getListCellRendererComponent(list,
 value, index, isSelected, cellHasFocus);
              String val = null;
              if(value instanceof Element) {
                Element element = ((Element)value);
                val = element.getNodeName();
                if(!"".equals(element.getAttribute("startnumber"))) {
                  val += " " + "'" + element.getAttribute("startnumber")
 + "'";
                }
                NodeList titles = element.getElementsByTagName("title");
                if(titles.getLength() > 0) {
                  val += " \"" + titles.item(0).getTextContent() + "\"";
                }
              }
              label.setText(val);
              return label;
            }
          });
          //When we click a node, select it in the text page.
          customOutlineList.addMouseListener(new MouseAdapter() {
            @Override



 | API Frequently Asked Questions (API FAQ) | 170

            public void mouseClicked(MouseEvent e) {
              if(SwingUtilities.isLeftMouseButton(e) && e.getClickCount() ==
 2) {
                int sel = customOutlineList.getSelectedIndex();
                enableCaretListener = false;
                try {
                 
 currentTextPage.select(currentTextPage.getOffsetOfLineStart(currentOutlineRanges[sel].getStartLine())
 + currentOutlineRanges[sel].getStartColumn() - 1, 
                     
 currentTextPage.getOffsetOfLineStart(currentOutlineRanges[sel].getEndLine())
 + currentOutlineRanges[sel].getEndColumn());
                } catch (BadLocationException e1) {
                  e1.printStackTrace();
                }
                enableCaretListener = true;
              }
            }
          });
          viewInfo.setComponent(new JScrollPane(customOutlineList));
          viewInfo.setTitle("Custom Outline");
        } 
      }
    }); 
    
    pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener()
 {
      /**
       * @see
 ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorOpened(java.net.URL)
       */
      @Override
      public void editorOpened(URL editorLocation) {
        //An editor was opened
        WSEditor editorAccess =
 pluginWorkspaceAccess.getEditorAccess(editorLocation,
 StandalonePluginWorkspace.MAIN_EDITING_AREA);
        if(editorAccess != null) {
          WSEditorPage currentPage = editorAccess.getCurrentPage();
          if(currentPage instanceof WSXMLTextEditorPage) {
            //User editing in Text mode an opened XML document.
            final WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage)
 currentPage;
            //Reconfigure outline on each change.
            xmlTP.getDocument().addDocumentListener(new DocumentListener() {
              @Override
              public void removeUpdate(DocumentEvent e) {
                reconfigureOutline(xmlTP);
              }
              @Override
              public void insertUpdate(DocumentEvent e) {
                reconfigureOutline(xmlTP);
              }
              @Override
              public void changedUpdate(DocumentEvent e) {
                reconfigureOutline(xmlTP);
              }
            });
            JTextArea textComponent = (JTextArea) xmlTP.getTextComponent();
            textComponent.addCaretListener(new CaretListener() {
              @Override
              public void caretUpdate(CaretEvent e) {



 | API Frequently Asked Questions (API FAQ) | 171

                if(currentOutlineRanges != null && currentTextPage != null &&
 enableCaretListener) {
                  enableCaretListener = false;
                  //Find the node to select in the outline.
                  try {
                    int line = xmlTP.getLineOfOffset(e.getDot());
                    for (int i = currentOutlineRanges.length - 1; i >= 0; i--)
 {
                      if(line > currentOutlineRanges[i].getStartLine() && line
 < currentOutlineRanges[i].getEndLine()) {
                        customOutlineList.setSelectedIndex(i);
                        break;
                      }
                    }
                  } catch (BadLocationException e1) {
                    e1.printStackTrace();
                  }
                  enableCaretListener = true;
                }
              }
            });
          }
        }
      }
      /**
       * @see
 ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorActivated(java.net.URL)
       */
      @Override
      public void editorActivated(URL editorLocation) {
        //An editor was selected, reconfigure the common outline
        WSEditor editorAccess =
 pluginWorkspaceAccess.getEditorAccess(editorLocation,
 StandalonePluginWorkspace.MAIN_EDITING_AREA);
        if(editorAccess != null) {
          WSEditorPage currentPage = editorAccess.getCurrentPage();
          if(currentPage instanceof WSXMLTextEditorPage) {
            //User editing in Text mode an opened XML document.
            WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage) currentPage;
            reconfigureOutline(xmlTP);
          }
        }
      }
    }, StandalonePluginWorkspace.MAIN_EDITING_AREA);
  }
  
  /**
   * Reconfigure the outline
   * 
   * @param xmlTP The XML Text page.
   */
  protected void reconfigureOutline(final WSXMLTextEditorPage xmlTP) {
    try {
      //These are DOM nodes.
      Object[] evaluateXPath = xmlTP.evaluateXPath("//doc | //sec");
      //These are the ranges each node takes in the document.
      currentOutlineRanges = xmlTP.findElementsByXPath("//doc | //sec");
      currentTextPage = xmlTP;
      DefaultListModel listModel = new DefaultListModel();
      if(evaluateXPath != null) {
        for (int i = 0; i < evaluateXPath.length; i++) { 
          listModel.addElement(evaluateXPath[i]);
        }



 | API Frequently Asked Questions (API FAQ) | 172

      }
      customOutlineList.setModel(listModel);
    } catch(XPathException ex) {
      ex.printStackTrace();
    }
  }

  /**
   * @see
 ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension#applicationClosing()
   */
  @Override
  public boolean applicationClosing() {
    return true;
  }
}

Dynamically Adding Form Controls Using a StylesFilter
Usually, a form control is added from the CSS using The oxy_editor() Function on page 107. However,
in some cases you don't have all the information you need to properly initialize the form control
at CSS level. In these cases you can add the form controls by using the API, more specifically 
ro.sync.ecss.extensions.api.StylesFilter.

For instance, let's assume that we want a combo box form control and the values to populate the combo are specified
inside a file (for a more interesting scenario we could imagine that they come from a database). Here is how to add the
form control from the API:

public class SDFStylesFilter implements StylesFilter {

  public Styles filter(Styles styles, AuthorNode authorNode) {
    if(authorNode.getType() == AuthorNode.NODE_TYPE_PSEUDO_ELEMENT 
        && "before".equals(authorNode.getName())) {
      authorNode = authorNode.getParent();
      if ("country".equals(authorNode.getName())) {
        // This is the BEFORE pseudo element of the "country" element.
        // Read the supported countries from the configuration file.
        // This will be a comma separated enumeration: France, Spain, Great
 Britain
        String countries = readCountriesFromFile();
        Map<String, Object> formControlArgs = new HashMap<String, Object>();
        formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDIT, "#text");
        formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_TYPE,
 InplaceEditorArgumentKeys.TYPE_COMBOBOX);
        formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES,
 countries);
       
 formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDITABLE, "false");

        // We also add a label in form of the form control.
        Map<String, Object> labelProps = new HashMap<String, Object>();
        labelProps.put("text", "Country: ");
        labelProps.put("styles", "* {width: 100px; color: gray;}");
        StaticContent[] mixedContent = new StaticContent[] {new
 LabelContent(labelProps), new EditorContent(formControlArgs)};
        styles.setProperty(Styles.KEY_MIXED_CONTENT, mixedContent);
      }
    }
    
    // The previously added form control is the only way the element can be
 edited.

http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html
http://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/StylesFilter.html


 | API Frequently Asked Questions (API FAQ) | 173

    if ("country".equals(authorNode.getName())) {
      styles.setProperty(Styles.KEY_VISIBITY, "-oxy-collapse-text");
    }

    return styles;
  }

The full source code for this example is available inside the Author SDK.

Modifying the XML content on open

Question

I have a bunch of DITA documents which have a fixed path the image src attributes. These paths are not valid and
I am trying to move away from this practice by converting it in to relative paths. When an XML document is opened,
can I trigger the Java API to change the fixed path to a relative path?

Answer

Our Plugins SDK:http://www.oxygenxml.com/oxygen_sdk.html#Developer_Pluginscontains a sample Plugin Type
called WorkspaceAccess.Such a plugin is notified when the application starts and it can do what you want in a couple
of ways:

1. You add a listener which notifies you when the user opens an XML document. Then if the XML document is
opened in the Author visual editing mode you can use our Author API to change attributes:

    pluginWorkspaceAccess.addEditorChangeListener(new 
 WSEditorChangeListener() {
      /**
       * @see
 ro.sync.exml.workspace.api.listeners.WSEditorChangeListener#editorOpened(java.net.URL) 
       */
      @Override
      public void editorOpened(URL editorLocation) {
        WSEditor openedEditor =
 pluginWorkspaceAccess.getCurrentEditorAccess(StandalonePluginWorkspace.MAIN_EDITING_AREA); 
        if(openedEditor.getCurrentPage() instanceof WSAuthorEditorPage) {   
  
        WSAuthorEditorPage authPage = (WSAuthorEditorPage) 
 openedEditor.getCurrentPage();
        AuthorDocumentController docController =
 authPage.getDocumentController();
        try {
         //All changes will be undone by pressing Undo once.            
         docController.beginCompoundEdit();
         fixupImageRefs(docController,
          docController.getAuthorDocumentNode());
        } finally {       
           docController.endCompoundEdit();
          }
        }   
      }

      private void fixupImageRefs(AuthorDocumentController docController,
 AuthorNode authorNode) {
          if(authorNode instanceof AuthorParentNode) {
            //Recurse
            List<AuthorNode> contentNodes =
 ((AuthorParentNode)authorNode).getContentNodes();   
            if(contentNodes != null) {
               for (int i = 0; i < contentNodes.size(); i++) {

http://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK
http://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins


 | API Frequently Asked Questions (API FAQ) | 174

                 fixupImageRefs(docController, contentNodes.get(i));
               }
             }       
          }
          if(authorNode.getType() == AuthorNode.NODE_TYPE_ELEMENT) {   
            AuthorElement elem = (AuthorElement) authorNode;         
            if("image".equals(elem.getLocalName())) {           
               if(elem.getAttribute("href") != null) {
                 String originalHref = elem.getAttribute("href").getValue();
                 URL currentLocation =
 docController.getAuthorDocumentNode().getXMLBaseURL();
                //TODO here you compute the new href.
                String newHref = null;   
                docController.setAttribute("href", new AttrValue(newHref),
 elem); 
             }
          }
        }
      }
    },
  StandalonePluginWorkspace.MAIN_EDITING_AREA);

2. You also have API to open XML documents in the application:

ro.sync.exml.workspace.api.Workspace.open(URL)

So you can create up a plugin which automatically opens one by one XML documents from a certain folder in the
application, makes modifications to them, saves the content by calling:

ro.sync.exml.workspace.api.editor.WSEditorBase.save()

and then closes the editor:

ro.sync.exml.workspace.api.Workspace.close(URL)



 | Index | 175

Index

A
Author Settings

actions
insert section 12
insert table 15

Author default operations 22
content

configuring the content completion 20
content completion customization wizard 20

Java API
Author extension state listener 58
Author schema aware editing handler 59
configure XML node renderer customizer 79
CSS styles filter 69
customize outline icons 79
customize XML node 79
extensions bundle 55
generate unique ID 79
references resolver 67
table cell row and column separators provider 77
table cell span provider 75
table column width provider 71

Java API example 28
menus

contextual menu 19
main menu 17

toolbars
configure toolbar 16

C
Configure the Application

editor variables 46
internationalization 36

CSS arithmetic functions
CSS arithmetic extensions 118

CSS Support in <oXygen/> Author
CSS 2.1 features

properties support table 87
supported selectors 83

Oxygen CSS extensions
media type oxygen 82

Customization Support
document type associations (advanced customization

tutorial)
Author settings 11
basic association 38
configuring extensions - link target reference finder 62
configuring transformation scenarios 49
configuring validation scenarios 52
new file templates 45
XML Catalogs 48

example files
the Simple Documentation Framework Files 123

simple customization tutorial
CSS 6
XML instance template 9

XML Schema 5

O
Oxygen CSS extensions

<oXygen/> CSS custom functions
oxy_unparsed-entity-uri() 104
oxy_url() 102

Oxygen CSS Extensions
<oXygen/> CSS custom functions 101
additional properties

display tags 100
editable property 98
folding elements 97
link elements 99
morph value 99
placeholders for empty elements 98

supported features from CSS level 3
additional custom selectors 95
attr() function 91
namespace selectors 85

supported features from CSS level 4
subject selectors 86


	Contents
	Author Developer Guide
	Simple Customization Tutorial
	XML Schema
	CSS Stylesheet
	The XML Instance Template

	Advanced Customization Tutorial - Document Type Associations
	Document Type
	Document Type Settings
	Configuring Actions, Menus and Toolbars
	Creating the Insert Section Action
	The Insert Table Action
	Configuring the Toolbars
	Configuring the Main Menu
	Configuring the Contextual Menu
	Customize Content Completion
	Author Default Operations
	The arguments of InsertFragmentOperation operation
	The arguments of SurroundWithFragmentOperation

	How to Add a Custom Operation to an Existing Document Type

	Java API - Extending Author Functionality through Java
	Example 1. Step by Step Example. Simple Use of a Dialog from an Author Operation.
	Example 2. Operations with Arguments. Report from Database Operation.



	Editing attributes in-place using form controls
	Localizing Frameworks
	How to deploy a framework as an add-on
	Creating the Basic Association
	First Step - XML Schema
	Schema Settings
	Second Step - The CSS
	Defining the General Layout
	Styling the section Element
	Styling the Inline Elements
	Styling Images
	Testing the Document Type Association
	Organizing the Framework Files
	Packaging and Deploying

	Configuring New File Templates
	Create Your Own Stylesheet Templates

	Configuring XML Catalogs
	Configuring Transformation Scenarios
	Configuring Validation Scenarios
	Configuring Extensions
	Configuring an Extensions Bundle
	Customize Profiling Conditions
	Preserve Style and Format on Copy and Paste from External Applications
	Implementing an Author Extension State Listener
	Implementing an Author Schema Aware Editing Handler
	Configuring a Content Completion Handler
	Configuring a Link target element finder
	The DefaultElementLocatorProvider implementation
	The XPointerElementLocator implementation
	The IDElementLocator implementation

	Creating a customized link target reference finder

	Configuring a custom Drag and Drop listener
	Configuring a References Resolver
	Configuring CSS Styles Filter
	Configuring tables
	Configuring a Table Column Width Provider
	Configuring a Table Cell Span Provider
	Configuring a Table Cell Row And Column Separator Provider

	Configuring an Unique Attributes Recognizer
	Configuring an XML Node Renderer Customizer

	Customizing the Default CSS of a Document Type
	Document Type Sharing
	Adding Custom Persistent Highlights

	CSS Support in Author
	Handling CSS Imports
	Media Type oxygen
	Standard W3C CSS Supported Features
	Supported CSS Selectors
	Namespace Selector
	Subject Selector

	Supported CSS Properties
	Transparent Colors
	The attr() Function: Properties Values Collected from the Edited Document.

	Supported CSS At-rules
	The @font-face at-rule
	The @media at-rule


	Oxygen CSS Extensions
	Additional CSS Selectors
	Additional CSS Properties
	Folding Elements: -oxy-foldable, -oxy-not-foldable-child and -oxy-folded properties
	Placeholders for empty elements: -oxy-show-placeholder and -oxy-placeholder-content properties
	Read-only elements: -oxy-editable property
	Display Elements: -oxy-morph value
	The whitespace property: -oxy-trim-when-ws-only value
	The visibility property: -oxy-collapse-text
	Cyrillic Counters: list-style-type values -oxy-lower-cyrillic
	The link property: link
	Display Tag Markers: -oxy-display-tags
	Append Content Properties: -oxy-append-content and -oxy-prepend-content
	Custom colors for element tags: -oxy-tags-color and -oxy-tags-background-color

	Custom CSS Functions
	The oxy_local-name() Function
	The oxy_name() Function
	The oxy_url() Function
	The oxy_base-uri() Function
	The oxy_parent-url() Function
	The oxy_capitalize() Function
	The oxy_uppercase() Function
	The oxy_lowercase() Function
	The oxy_concat() Function
	The oxy_replace() Function
	The oxy_unparsed-entity-uri() Function
	The oxy_attributes() Function
	The oxy_substring() Function
	The oxy_getSomeText(text, length) Function
	The oxy_indexof() Function
	The oxy_lastindexof() Function
	The oxy_xpath() Function
	The oxy_editor() Function
	The Text Field Form Control
	The Combo Box Form Control
	The Check Box Form Control
	The Pop-up Form Control
	The Button Form Control
	The Button Group Form Control
	The Text Area Form Control
	The URL Chooser Form Control
	The Date Picker Form Control
	Editing PIs Using Form Controls
	Implementing Custom Form Controls

	The oxy_label() Function
	The oxy_link-text() Function
	Arithmetic Functions

	Custom CSS Pseudo-classes
	Builtin CSS Stylesheet


	Example Files Listings - The Simple Documentation Framework Files
	XML Schema files
	sdf.xsd
	abs.xsd

	CSS Files
	sdf.css

	XML Files
	sdf_sample.xml

	XSL Files
	sdf.xsl


	Author Component
	Licensing
	Installation Requirements
	Customization
	Packing a fixed set of options

	Deployment
	Web Deployment
	Generate a Testing Certificate For Signing an Applet
	Supported browsers and operating systems
	Communication between the Web Page and Java Applet
	Troubleshooting
	Avoiding Resource Caching

	Adding MathML support in the Author Component Web Applet
	Adding MathML support using JEuclid
	Adding MathML support using MathFlow

	Adding Support to Insert References from a WebDAV Repository
	Using Plugins with the Author Component


	Sample SharePoint Integration of the Author Component
	Author Component
	Microsoft SharePoint®
	Why Integrate the Author Component with SharePoint
	Integration Adjustments
	Deploying Resources
	Accessing Documents

	Getting Started
	Customize Your Applet
	Add Resources to Your SharePoint Site
	Copy Resources Using <oXygen/> XML Editor

	Embed the Java Applet in Your SharePoint Site
	Create a SharePoint Custom Action

	The Result

	Frequently asked questions

	Creating and Running Automated Tests

	API Frequently Asked Questions (API FAQ)
	Difference Between a Document Type (Framework) and a Plugin Extension
	Dynamically Modify the Content Inserted by the Writer
	Split Paragraph on Enter (Instead of Showing Content Completion List)
	Impose Custom Options for Writers
	Highlight Content
	How Do I Add My Custom Actions to the Contextual Menu?
	Adding Custom Callouts
	Change the DOCTYPE of an Opened XML Document
	Customize the Default Application Icons for Toolbars/Menus
	Disable Context-Sensitive Menu Items for Custom Author Actions
	Dynamic Open File in Distributed via JavaWebStart
	Change the Default Track Changes (Review) Author Name
	Multiple Rendering Modes for the Same Author Document
	Obtain a DOM Element from an AuthorNode or AuthorElement
	Print Document Within the Author Component
	Running XSLT or XQuery Transformations
	Use Different Rendering Styles for Entity References, Comments or Processing Instructions
	Insert an Element with all the Required Content
	Obtain the Current Selected Element Using the Author API
	Debugging a Plugin Using the Eclipse Workbench
	Debugging an SDK Extension Using the Eclipse Workbench
	Extending the Java Functionality of an Existing Framework (Document Type)
	Controlling XML Serialization in the Author Component
	How can I add a custom Outline view for editing XML documents in the Text mode?
	Dynamically Adding Form Controls Using a StylesFilter
	Modifying the XML content on open

	Index

