
Oxygen XML Developer plugin 13.2.0

Contents

Chapter 1: Introduction..11

Chapter 2: Installation..13
Installation Requirements..14

Platform Requirements..14

Operating System..14

Environment Requirements...14

Installation Instructions...14

Obtaining and Registering a License Key...14

Named User License Registration...15

Named User License Registration with Text File..16

Named User License Registration with XML File..16

How Floating (Concurrent) Licenses Work...16

License Registration with an Activation Code..21

Uninstalling the Application..21

Uninstalling the Eclipse plugin...21

Performance Problems..21

External Processes...21

Chapter 3: Getting Started...23
Getting Help..24

Supported Types of Documents...24

Perspectives...24

Oxygen XML Developer plugin XML Perspective ..25

XSLT Debugger Perspective ..29

XQuery Debugger Perspective ...30

Oxygen XML Developer plugin Database Perspective ..31

Chapter 4: Editing Documents..35
Working with Unicode..36

Opening and Saving Unicode Documents...36

Opening and Closing Documents..36

Creating New Documents...36

Saving Documents...40

Opening and Saving Remote Documents via FTP/SFTP ...40

Opening the Current Document in System Application..44

Closing Documents...44

Table of Contents | 3

Viewing File Properties...44

Grouping Documents in XML Projects...44

Creating a New Project..44

Editing XML Documents..46

Associate a Schema to a Document..46

Streamline with Content Completion..49

Validating XML Documents...57

Document Navigation..65

Large Documents..68

Working with XML Catalogs..71

Converting Between Schema Languages..72

Formatting and Indenting Documents (Pretty Print)...74

Viewing Status Information...74

XML Editor Specific Actions..75

Editing XHTML Documents...78

Editing XML Schemas..78

XML Schema Text Editor...78

XML Schema Diagram Editor..79

Contextual Editing...107

Create an XML Schema From a Relational Database Table...107

Generate Sample XML Files...107

XML Schema Regular Expressions Builder...111

Generating Documentation for an XML Schema..112

Searching and Refactoring Actions...119

Search and Refactor Operations Scope...121

Resource Hierarchy / Dependencies View..122

Component Dependencies View..123

Highlight Component Occurrences...124

XML Schema Quick Assist Support...125

Editing Relax NG Schemas...125

Relax NG Schema Diagram..125

Relax NG Editor Specific Actions...129

Searching and Refactoring Actions...130

Resource Hierarchy/Dependencies View..130

Component Dependencies View..131

RNG Quick Assist Support...132

Configuring a Custom Datatype Library for a RELAX NG Schema..133

Editing NVDL Schemas..133

NVDL Schema Diagram...133

NVDL Editor Specific Actions..135

Searching and Refactoring Actions...135

Component Dependencies View..135

Editing XSLT Stylesheets..136

Validating XSLT Stylesheets...136

Contextual Editing...137

Table of Contents | 4

Syntax Highlight...137

Content Completion in XSLT Stylesheets...137

The XSLT/XQuery Input View..142

The XSLT Outline View..144

XSLT Stylesheet Documentation Support...146

Generating Documentation for an XSLT Stylesheet...146

Finding XSLT References and Declarations...154

Highlight Component Occurrences...154

XSLT Refactoring Actions..154

Resource Hierarchy/Dependencies View..155

Component Dependencies View..157

XSLT Quick Assist Support..158

Editing XQuery Documents..158

XQuery Outline View..158

Folding in XQuery Documents...159

Generating HTML Documentation for an XQuery Document...160

Editing CSS Stylesheets..161

Validating CSS Stylesheets...161

Content Completion in CSS Stylesheets...162

CSS Outline View..163

Folding in CSS Stylesheets...163

Formatting and Indenting CSS Stylesheets (Pretty Print)...163

Other CSS Editing Actions..163

Editing JSON Documents...163

JSON Editor Text Mode..164

JSON Editor Grid Mode..165

Validating JSON Documents...165

Convert XML to JSON..166

Editing XProc Scripts..166

Editing Schematron Schemas..167

Combined RELAX NG / W3C XML Schemas and Schematron Schema..168

Validate an XML Document..168

Handling Read-Only Files...169

Chapter 5: Predefined Document Types...171
Document Type...172

The DocBook 4 Document Type...172

Transformation Scenarios..172

Templates...172

Inserting olink Links in Docbook Documents..172

The DocBook 5 Document Type...175

Transformation Scenarios..175

Templates...176

Inserting olink Links in Docbook Documents..176

Table of Contents | 5

The DocBook Targetset Document Type..179

Templates...179

The DITA Topics Document Type...179

Transformation Scenarios..179

Templates...179

The DITA Map Document Type..180

Transformation Scenarios..180

Templates...181

The XHTML Document Type...181

Transformation Scenarios..181

Templates...181

The TEI ODD Document Type...181

Transformation Scenarios..182

Templates...182

The TEI P4 Document Type..182

Transformation Scenarios..182

Templates...183

The TEI P5 Document Type..183

Transformation Scenarios..183

Templates...183

The EPUB Document Type...183

Chapter 6: Grid Editor...185
Layouts: Grid and Tree..186

Navigating the Grid...186

Specific Grid Actions..187

Sorting a Table Column...187

Inserting a Row in a Table...187

Inserting a Column in a Table...187

Clearing the Content of a Column...187

Adding Nodes..187

Duplicating Nodes...187

Refresh Layout..188

Start Editing a Cell Value..188

Stop Editing a Cell Value..188

Drag and Drop in the Grid Editor..188

Copy and Paste in the Grid Editor...188

Bidirectional Text Support in the Grid Editor...190

Chapter 7: Transforming Documents..191
Output Formats..192

Transformation Scenario...193

Batch Transformation..193

Table of Contents | 6

Built-in Transformation Scenarios..193

Defining a New Transformation Scenario...194

Transformation Scenarios View...204

XSLT Processors...205

Supported XSLT Processors..205

Configuring Custom XSLT Processors...206

Configuring the XSLT Processor Extensions Paths..206

XSL-FO Processors...207

The Built-in XSL-FO Processor..207

Add a Font to the Built-in FOP - The Simple Version..207

Add a Font to the Built-in FOP...208

XProc Transformations...211

XProc Transformation Scenario..211

Integration of an External XProc Engine..212

Chapter 8: Querying Documents...213
Running XPath Expressions..214

What is XPath..214

Oxygen's XPath Console...214

Working with XQuery...217

What is XQuery...217

Syntax Highlight and Content Completion...218

XQuery Outline View..218

The XQuery Input View..219

XQuery Validation...221

Other XQuery Editing Actions..222

Transforming XML Documents Using XQuery..222

Chapter 9: Debugging XSLT Stylesheets and XQuery Documents..................227
Overview...228

Layout..228

Control Toolbar...229

Information View...230

Multiple Output Documents in XSLT 2.0...239

Working with the XSLT / XQuery Debugger..239

Steps in a Typical Debug Process..239

Using Breakpoints...240

Determining What XSLT / XQuery Expression Generated Particular Output......................................240

Debugging Java Extensions...242

Supported Processors for XSLT / XQuery Debugging...242

Chapter 10: Profiling XSLT Stylesheets and XQuery Documents...................243
Overview...244

Table of Contents | 7

Viewing Profiling Information..244

Invocation Tree View...244

Hotspots View..244

Working with XSLT/XQuery Profiler...245

Chapter 11: Working with Archives..247
Browsing and Modifying Archive Structure...248

Working with EPUB..249

Create an EPUB...249

Publish to EPUB..250

Editing Files From Archives..250

Chapter 12: Working with Databases...251
Relational Database Support...252

Configuring Database Data Sources..252

Configuring Database Connections...258

Resource Management..263

SQL Execution Support...268

Native XML Database (NXD) Support...270

Configuring Database Data Sources..271

Configuring Database Connections...273

Data Source Explorer View...276

XQuery and Databases..285

Build Queries With Drag and Drop From Data Source Explorer View..285

XQuery Transformation..286

XQuery Database Debugging..288

WebDAV Connection..289

How to Configure a WebDAV Connection..289

WebDAV Connection Actions...289

Chapter 13: Importing Data..291
Introduction...292

Import from Database..292

Import Table Content as XML Document...292

Convert Table Structure to XML Schema...295

Import from MS Excel Files..295

Import from HTML Files..295

Import from Text Files...296

Chapter 14: Content Management System (CMS) Integration........................299
Integration with Documentum (CMS)..300

Configure Connection to Documentum Server...300

Table of Contents | 8

Documentum (CMS) Actions in the Data Source Explorer View...301

Transformations on DITA Content from Documentum (CMS)..305

Chapter 15: Composing Web Service Calls..307
Overview...308

Composing a SOAP Request...308

Testing Remote WSDL Files...310

The UDDI Registry Browser...310

Generate WSDL Documentation...311

Chapter 16: Digital Signatures...313
Overview...314

Canonicalizing Files..315

Certificates...316

Signing Files..316

Verifying the Signature..317

Chapter 17: Text Editor Specific Actions..319
Finding and Replacing Text in the Current File..320

The Find All Elements / Attributes Dialog..320

Spell Checking..321

Spell Checking Dictionaries..322

Learned Words...323

Ignored Words...323

Automatic Spell Check..323

Spell Checking in Multiple Files...323

Chapter 18: Configuring the Application...325
Configuring Options..326

Customized Default Options...326

Importing / Exporting Global Options..326

Preferences..327

Oxygen XML Developer plugin License..328

Global..328

Fonts..328

Document Type Association..328

Editor...329

CSS Validator..342

XML..343

Data Sources..360

Archive..364

Custom Editor Variables..365

Table of Contents | 9

Network Connections ...365

Certificates...366

XML Structure Outline...367

Scenarios Management..368

View...368

Reset Global Options...369

Scenarios Management..369

Editor Variables...369

Custom Editor Variables..371

Chapter 19: Common Problems..373
XSLT Debugger Is Very Slow...374

Syntax Highlight Not Available in Eclipse Plugin..374

Problem Report Submitted on the Technical Support Form...374

Signature verification failed error on open or edit a resource from Documentum...375

Chapter 20: Terms...377

Table of Contents | 10

Chapter

1

Introduction

Welcome to the User Manual of Oxygen XML Developer plugin 13.2.0 .

This user guide is focused mainly at describing features, functionality and
application interface to help you get started in no time.

Chapter

2

Installation

This section explains platform requirements and installation procedures. It also
provides instructions on how to obtain and register a license key, how to perform
upgrades and uninstall the application.

Topics:

• Installation Requirements
• Installation Instructions

If you need help at any point during these procedures please send email to
support@oxygenxml.com• Obtaining and Registering a

License Key
• Uninstalling the Application
• Performance Problems

Installation Requirements
This section contains details about the platform and environment requirements necessary for installing and running the
application.

Platform Requirements

The run-time requirements of the application are:

• CPU (processor): minimum - Intel Pentium III™/AMD Athlon™ class processor, 500 Mhz; recommended - Dual Core
class processor.

• Computer memory: minimum - 512 MB of RAM (1 GB on Windows Vista™ and Windows 7) ; recommended - 2
GB of RAM.

• Hard disk space: minimum - 300 MB free disk space ; recommended - 500 MB free disk space.

Operating System
Windows XP, Windows Vista, Windows 7, Windows 2003, Windows Server 2008.Windows

Mac OS X version 10.5 64-bit or later.Mac OS

Any Unix/Linux distribution with an available Java SE Runtime Environment version
1.6.0 or later from Oracle (formerly from Sun).

Unix/Linux

Environment Requirements

This section specifies the Java platform requirements and other tools that may be needed for installing the application.

Tools

Installation packages are supplied in compressed archives. Ensure you have installed a suitable archive extraction utility
with which to extract the archive. The MD5 sum is available on the Download page for every archive. You should check
the MD5 sum of the downloaded archive with a MD5 checking tool available on your platform.

Java Virtual Machine Prerequisites

Prior to installation ensure that the latest stable Eclipse version (available at the release date of Oxygen XML Developer
plugin) is installed on your computer. The current Eclipse version number is 3.7.

Oxygen XML Developer plugin supports only official and stable Java virtual machine versions 1.6.0 and later from
Sun/Oracle (available at http://www.oracle.com/technetwork/java/javase/downloads/index.html) and from Apple
Computer. The Java Virtual Machine from Apple is pre-installed on Mac OS X computers. For Mac OS X, Java Virtual
Machine updates are available at the Apple website. Oxygen XML Developer plugin may work very well with JVM
implementations from other vendors but the eventual incompatibilities will not be solved in further Oxygen XML
Developer plugin releases. Oxygen XML Developer plugin does not work with the GNU libgcj Java virtual machine.

Installation Instructions
Before proceeding with the following instructions, please ensure that your system complies with the prerequisites detailed
in the installation requirements.

Obtaining and Registering a License Key
Oxygen XML Developer plugin is not free software and requires a license in order to enable the application.

For demonstration and evaluation purposes a time limited license is available upon request from the Oxygen XML website
. This license is supplied at no cost for a period of 30 days from date of issue. During this period the software is fully

Installation | 14

http://www.oxygenxml.com/download.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oxygenxml.com/forum/ftopic1887.html
http://www.oxygenxml.com/register.html

functional, enabling you to test all its aspects. Thereafter, the software is disabled and a permanent license must be
purchased in order to use it. For special circumstances, if a trial period of greater than 30 days is required, please contact
support@oxygenxml.com .

For definitions and legal details of the license types, consult the End User License Agreement received with the license
key. It is also available at http://www.oxygenxml.com/eula_developer.html .

There are several ways to register a license, depending on its type and use case:

• using the application's Register dialog (the most common case) to register a named-user based or concurrent license;
• storing the license key into a file (either text or xml) that is copied into the application's install folder.

When started, the application looks for a valid license key in the following location, in this order:

• xml file registration;
• text file registration;
• application's internal settings files created after you used the Register dialog to validate a named-user based or

concurrent license.

Named User License Registration

1. Save a backup copy of the message containing the new license key.

2. Start the application.

3. Copy to the clipboard the license text as explained in the message.

4. If this is a new install of the application then it will display automatically the registration dialog when it is started.
In the case you already used the application and obtained a new license, go to Window > Preferences > oXygen,
Register button.

Figure 1: Registration Dialog

5. Select Use a license key as licensing method.

6. Paste the license text in the registration dialog.

Installation | 15

http://www.oxygenxml.com/eula_developer.html

7. Press the OK button.

Named User License Registration with Text File

1. Save the license key in a file named licensekey.txt.

2. Copy the file in the application install folder or in the lib subfolder of the install folder.

3. Start the application.

Named User License Registration with XML File

This procedure is designed to help system administrators register Oxygen for multiple users, without the hassle of
configuring the application licensing for each of them.

1. Depending on your license type, register the application for the currently logged user, using one of the following
procedures:

• Named User License Registration;
• Request a Floating License from a License Server Running as a Standalone Process or Request a Floating License

from a License Server Running as a Java Servlet, if you have a floating license key.

2. Copy the license.xml file from the application's preferences directory to the application's installation directory
(or its lib sub-directory).

3. For each Oxygen installation (either on the same computer or different computers) repeat step 2.

How Floating (Concurrent) Licenses Work

Floating licenses are "pooled" licenses that can be shared across a group of users. They are most often deployed when
an organization has a group of users that will only consume a license for a minority of their working hours. The licenses
are returned back into the license pool as soon as they are released. Other users can then immediately reuse them.

Note: A user who runs two different distributions of the application (for example Standalone and Eclipse Plugin)
at the same time on the same computer, consumes a single license.

The license management is done either by the application itself or by the Oxygen XML Developer plugin license server:

• if you plan to use the application on machines running in the same local network, Oxygen XML Developer plugin
can manage the licenses usage by itself. Different running instances of the application communicate between them.
The registration procedure requires you to paste the license key in the license registration dialog. See Named User
License Registration procedure for more details.

• if you plan to use the application on machines running in different network segments, then you must use a Oxygen
XML Developer plugin floating license server. A floating license server can be installed either as a Java servlet or
as a standalone process.

Setting up a Floating License Server Running as a Java Servlet
Setting up the floating license servlet.

Apache Tomcat 5.5 or higher is necessary. You can get it from: http://tomcat.apache.org/

1. Download the license servlet Web ARchive (.war) from one of the download URLs included in the registration
email message.

2. Go to the Tomcat Web Application Manager page. In the WAR file to deploy section choose the WAR file and then
press the Deploy button. The oXygen License Servlet should be up and running, but there is no licensing information
set.

3. To set the license key, log on the deployment machine, and go to the Tomcat installation folder (usually
/usr/local/tomcat). Then go to the webapps/oXygenLicenseServlet/WEB-INF/license/ folder
and create a new file called license.txt. Copy the license text that was sent to you via e-mail into this file and
save it.

4. It is recommended to password protect your pages using a Tomcat Realm. Please refer to the Tomcat Documentation
for detailed info, like the Realm Configuration HOW-TO - Memory Based Realm section.

Installation | 16

http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html

5. Once you have defined a realm resource, you have to edit
webapps/oXygenLicenseServlet/WEB-INF/web.xml file to configure user access rights on the license
server. Note that Tomcat's standard security roles are used, i.e.: standard for licensing and admin or manager for
the license usage report page.

6. By default, the license server is logging its activity in
/usr/local/tomcat/logs/oxygenLicenseServlet.log file. To change the log file location, edit the
log4j.appender.R2.File property from the
/usr/local/tomcat/webapps/oXygenLicenseServlet/WEB-INF/lib/log4j.properties
configuration file.

7. Restart oXygen License Servlet from the Tomcat Web Application Manager page.

Contact the Oxygen XML Developer plugin XML support staff at support@oxygenxml.com and ask for a new license
key if:

• you have multiple license keys for the same Oxygen XML Developer plugin version and you want to have all of
them managed by the same server;

• you have a multiple-user floating license and you want to split it between two or more license servers.

Report Page

You can access an activity report at
http://hostName:port/oXygenLicenseServlet/license-servlet/report.

It displays in real time the following information:

• License load - a graphical indicator that shows how many licenses are available. When the indicator turns red, there
are no more licenses available.

• Floating license server status - general information about the license server status like:

• server start time
• license count
• rejected and acknowledged requests
• average usage time
• license refresh and timeout intervals
• location of the license key
• server version

• License key information - license key data:

• licensed product
• registration name
• company name
• license category
• number of floating users
• Maintenance Pack validity

• Current license usage - lists all currently acknowledged users:

• user name
• date and time when the license was granted
• name and IP address of the computer where Oxygen XML Developer plugin runs
• MAC address of the computer where Oxygen XML Developer plugin runs

Note: The report is available also in XML format at
http://hostName:port/oXygenLicenseServlet/license-servlet/report-xml.

Setting up a Floating License Server Running as a Standalone Process
Setting up the floating license server.

Installation | 17

1. Download the license server installation kit for your platform from one of the download URLs included in the
registration email message with your floating license key.

2. Unzip the install kit in a new folder.

The Windows installer installs the license server as a Windows service. It provides the following optional features
that are not available in the other license server installers:

• Set the Windows Service name;
• Start the Windows service automatically at Windows startup;
• Create shortcuts on the Start menu for starting and stopping the Windows service manually.

If you use the zip archive on Windows you have to run the scripts provided in the archive for installing, starting,
stopping and uninstalling the server as a Windows service.

The zip archive can be used for running the license server on any platform where a Java virtual machine can run
(Windows, Mac OS X, Linux / Unix, etc).

3. Start the server using the startup script.

The startup script is called licenseServer.bat for Windows and licenseServer.sh for Mac OS X and
Unix / Linux. It has 2 parameters:

• licenseDir - the path of the directory where the license files will be placed. Default value: license.
• port - the port number used to communicate with Oxygen XML Developer plugin instances. Default value:

12346.

The following is an example command line for starting the license server on Unix/Linux and Mac OS X:

sh licenseServer.sh myLicenseDir 54321

The following is an example command line for starting the license server on Windows:

licenseServer.bat myLicenseDir 54321

The license folder must contain a text file called license.txt which must contain a single floating license key
corresponding to the set of purchased floating licenses. If you have more than one floating license key for the same
Oxygen XML Developer plugin version obtained from different purchases or you want to split a set of license keys
between 2 different servers please contact us at support@oxygenxml.com to merge / split your license keys.
Install the License Server as a Windows Service

1. Download the Windows installer of the license server from the URL provided in the registration email message
containing your floating license key.

2. Run the downloaded installer.

3. Enable the Windows service on the machine that hosts the license server, either during installation or at a later time
with the service management batch scripts (installWindowsService.bat).

If you want to install, start, stop and uninstall manually the server as a Windows service you must run the following
scripts from command line. On Windows Vista and Windows 7 you have to run the commands as Administrator.

• installWindowsService.bat [serviceName] - install the server as a Windows service with the
name serviceName. The parameters for the license key folder and the server port can be set in the
oXygenLicenseServer.vmoptions file.

• startWindowsService.bat [serviceName] - start the Windows service.
• stopWindowsService.bat [serviceName] - stop the Windows service.
• uninstallWindowsService.bat [serviceName] - uninstall the Windows service.

Note: If you do not provide the serviceName argument, the default name, oXygenLicenseServer, is used.

When the license server is used as a Windows service the output and error messages are redirected automatically to the
following log files created in the install folder:

Installation | 18

• outLicenseServer.log - server's standard output stream
• errLicenseServer.log - server's standard error stream

Note: Before starting the server, the JAVA_HOME variable must point to the home folder of a Java runtime
environment installed on your Windows system.

Note:

On Windows Vista and Windows 7 if you want to start or stop the Windows service with the Start menu shortcut
called Start Windows service / Stop Windows service you have to run the shortcut as Administrator.

Common Problems

Here are the common problems that may appear when setting up a floating license server running as a standalone process.

Windows service reports Incorrect Function when started

The "Incorrect Function" error message when starting the Windows service usually appears because the Windows service
launcher cannot locate a Java virtual machine on your system.

Make sure that you have installed a 32-bit Java SE from Oracle(or Sun) on the system:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

When started, the Windows service reports Error 1067: The process terminated unexpectedly.

This error message appears if the Windows service launcher has quit immediately after being started.

This problem usually happens because the license key has not been correctly deployed(license.txt file in the license
folder). More details about this can found here.

Request a Floating License from a License Server Running as a Standalone Process

Figure 2: Floating License Server Running as a Standalone Process

1. Start the Eclipse platform.

2. Go to menu Window > Preferences > oXygen > Register .
The license dialog is displayed.

3. Choose Use a license server as licensing method.

4. Select Standalone server as server type.

5. Fill-in the Host text field with the host name or IP address of the license server.

6. Fill-in the Port text field with the port number used to communicate with the license server.

7. Click the OK button.

If the maximum number of available licenses was not exceeded a license key is received from the floating license server
and registered in Oxygen XML Developer plugin . The license details are displayed in the About dialog opened from
the Help menu. If the maximum number of licenses was exceeded a warning dialog pops up letting you know about the

Installation | 19

http://www.oracle.com/technetwork/java/javase/downloads/index.html

problem. The message contains information about the users who requested and successfully received the floating licenses
before exceeding the maximum number of licenses.

Request a Floating License from a License Server Running as a Java Servlet

Starting with Oxygen XML Developer plugin version 12.1, Oxygen XML Developer plugin can use a license server
running as a Java Servlet to manage floating licenses.

Figure 3: Floating License Server Running as a Servlet

1. Start the Eclipse platform.

2. Go to menu Window > Preferences > oXygen > Register .
The license dialog is displayed.

3. Choose Use a license server as licensing method.

4. Select HTTP/HTTPS Server as server type.

5. Fill-in the URL text field with the address of the license server.
The URL address has the following format:
http://hostName:port/oXygenLicenseServlet/license-servlet

6. Fill-in the User and Password text fields. Contact your server administrator to supply you this information.

7. Click the OK button.

If the maximum number of available licenses was not exceeded a license key is received from the floating license server
and registered in Oxygen XML Developer plugin . The license details are displayed in the About dialog opened from
the Help menu. If the maximum number of licenses was exceeded a warning dialog pops up letting you know about the
problem. The message contains information about the users who requested and successfully received the floating licenses
before exceeding the maximum number of licenses.

Note: Two different Oxygen XML Developer plugin instances (for example one standalone and one Eclipse
plugin) run on the same machine, consume a single license key.

Release a Floating License

To manually release a floating license key to be returned to the server's pool of available license keys:

1. Go to the main Oxygen XML Developer plugin preferences panel .

2. Select Register.

3. Select Use a license key as licensing method.

4. Paste a Named User license key in the registration dialog. Leave the text area empty to return to the previously used
license key, if any.

Installation | 20

5. Press the OK button of the dialog.

License Registration with an Activation Code

If you have only an activation code and you want to register the associated license key you must request this license key
by filling the registration code and other details associated with your license in a request form on the Oxygen XML
Developer plugin website. The button Request license for registration code in the registration dialog available from
menu Window > Preferences > oXygen > Register opens this request form in the default Web browser on your
computer.

Uninstalling the Application
This section contains uninstallation procedures.

Uninstalling the Eclipse plugin

Caution:

The following procedure will remove the Oxygen XML from your system. It will not remove the Eclipse platform.
If you wish to uninstall Eclipse please see its uninstall instructions.

1. Choose the menu option Help > About > Installation Details.

2. Select Oxygen XML from the list of plugins.

3. Choose Uninstall.

4. Accept the Eclipse restart.

5. If you want to remove also the user preferences that were configured in the Preferences dialog you must remove
the folder %APPDATA%\com.oxygenxml.developer on Windows (usually %APPDATA% has the value
[user-home-dir]\Application Data) / the subfolder .com.oxygenxml.developerof the user home directory on
Linux / the subfolder Library/Preferences/com.oxygenxml.developer of the user home folder on
Mac OS X.

Performance Problems
This section contains the solutions for some common problems that may appear when running the application.

External Processes

The amount of memory allocated to generate PDF output with the built-in Apache FOP processor is controlled by the
FOP memory setting available in Oxygen XML Developer plugin Preferences: Memory available to the built-in FOP.
In the application throws an Out Of Memory error (OutOfMemoryError), this is the setting that must be modified to
allow more memory for the built-in FOP.

For external XSL-FO processors configured in Window > Preferences > oXygen > XML > XSLT/FO/XQuery > FO
Processors and for external XSLT processors configured in Window > Preferences > oXygen > XML >
XSLT/FO/XQuery > Custom Engines the maximum memory must be set in the command line of the tool with a
parameter -Xmx set to the Java virtual machine.

Installation | 21

Chapter

3

Getting Started

This section will get you started with the editing perspectives of the application.Topics:

• Getting Help
• Supported Types of Documents
• Perspectives

Getting Help
Online help is available at any time while working in Oxygen XML Developer plugin by going to menu Help > Help
Contents > Oxygen plugin

Supported Types of Documents
Oxygen XML Developer plugin provides a rich set of features for working with:

• XML documents and applications

• XSL stylesheets - transformations and debugging support

• Schema languages: XML Schema, Relax NG (full and compact syntax), NVDL, Schematron, DTD

• Querying documents using XPath and XQuery

• Analyzing, composing and testing WSDL SOAP messages

• CSS documents

Perspectives
The Oxygen XML Developer plugin interface uses standard interface conventions and components to provide a familiar
and intuitive editing environment across all operating systems.

In Oxygen XML Developer plugin you can work with documents in one of the perspectives:

Documents editing is supported by specialized and synchronized editors and
views.

Editor perspective

XSLT stylesheets can be debugged by tracing their execution step by step.XSLT Debugger perspective

XQuery transforms can be debugged by tracing their execution step by step.XQuery Debugger perspective

Multiple connections to relational databases, native XML databases, WebDAV
sources and FTP sources can be managed at the same time in this perspective:
database browsing, SQL execution, XQuery execution and data export to XML.

Database perspective

Getting Started | 24

Oxygen XML Developer plugin XML Perspective

The Oxygen XML Developer plugin XML perspective is used for editing the content of your XML documents.

Figure 4: Oxygen XML Developer plugin XML perspective

As the majority of the work process centers around the Editor area, other views can be hidden using the controls located
on the views headers.

This perspective organizes the workspace in the following sections:

The Oxygen XML Developer plugin Custom Menu

When the current editor window contains a document associated with Oxygen XML Developer plugin a custom menu
is added to the Eclipse menu bar named after the document type: XML, XSL, XSD, RNG, RNC, Schematron, DTD,
FO, WSDL, XQuery, HTML, CSS.

The Oxygen XML Developer plugin Toolbar Buttons

The toolbar buttons added by the Oxygen XML Developer plugin plugin provide easy access to common and frequently
used functions. Each icon is a button that acts as a shortcut to a related function.

Getting Started | 25

The Editor Pane

The editor pane is where you edit your documents opened or created by the Oxygen XML Developer plugin Eclipse
plugin. You know the document is associated with Oxygen XML Developer plugin from the special icon displayed in
the editor's title bar which has the same graphic pattern painted with different colors for different types of documents.

This pane has three different modes of displaying and editing the content of a document available as different tabs at
the bottom left margin of the editor panel: Text mode, Grid Mode, Author mode (CSS based tagless editor).

The Outline View

The Outline view displays a general tag overview of the current edited XML Document. It also shows the correct
hierarchical dependencies between the tag elements. That makes easier for the user to be aware of the document structure
and the way tags are nested. It allows fast navigation of the document by displaying the start of the content of the child
elements in the node of the parent element thus allowing to see quickly the content of an element without expanding it
in the Outline tree. It also allows the user to insert or delete nodes using pop-up menu actions.

The outline view has the following functions: XML document overview, outliner filters, modification follow-up, document
structure change, document tag selection.

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcards
(*, ?) and separate multiple patterns with commas.

Figure 5:The Outline View

The Oxygen XML Developer plugin Text View

The Oxygen XML Developer plugin Text view is automatically showed in the views pane of the Eclipse window to
display text output from XSLT transformations, FO processor's info, warning and error messages. It contains a tab for
each file with text results displayed in the view.

Getting Started | 26

Figure 6:The Text View

The Oxygen XML Developer plugin Browser View

The Oxygen XML Developer plugin Browser view is automatically showed in the views pane of the Eclipse window
to display HTML output from XSLT transformations. It contains a tab for each file with HTML results displayed in the
view.

Figure 7:The Browser View

The Results View

The Results View displays the messages generated as a result of user actions like validations, transformations, search
operations etc. Each message is a link to the location related to the event that triggered the message. Double clicking
on a message opens the file containing the location and positions the cursor at the location offset. The actions that can
generate result messages are:

• Validate action
•
• Check Spelling in Files action
•
•
• Search References action
• XPath expression results
• SQL results

Getting Started | 27

Figure 8: Errors View

The actions available on the toolbar of this view are:

• remove actions: Remove selected, Remove all - these actions reduce the number of the messages from the view by
removing them. It is useful when the view is cluttered by messages that are not important.

The actions available on the contextual menu are:

• Remove selected - Removes selected messages from the view.
• Copy - Copies the information associated with the selected messages:

• the file path of the document that triggered the output message,
• error severity (error, warning, info message, etc),
• name of validating processor,
• the line and column in the file that triggered the message.

• Save Results ... - Saves the complete list of messages in a file in text format. For each message the included details
are the same as the ones for the Copy action.

• Save Results as XML - Saves the complete list of messages in a file in XML format. For each message the included
details are the same as the ones for the Copy action.

• Expand All - Expands all the nodes of the tree, which is useful when the messages are presented in a hierarchical
mode.

• Collapse All - Collapses all thenodes of the tree, which is useful when the messages are presented in a hierarchical
mode.

The Oxygen XML Developer plugin XPath Results View

The Oxygen XML Developer plugin XPath Results view is automatically showed in the views pane of the Eclipse
window to display XPath results.

Figure 9:The XPath Results View

Supported Editor Types

The Oxygen XML Developer plugin Eclipse plugin provides special Eclipse editors identified by the following icons:

• - The XML documents icon

• - The XSL stylesheets icon

Getting Started | 28

• - The XML Schema icon

• - The Document Type Definition schemas icon

• - The RELAX NG full syntax schemas icon

• - The RELAX NG compact syntax schemas icon

• - The Namespace-based Validation Dispatching Language schemas icon

• - The XSL:FO documents icon

• - The XQuery documents icon

• - The WSDL documents icon

• - The Schematron documents icon

• - The JavaScript documents icon

• - The Python documents icon

• - The CSS documents icon

•

XSLT Debugger Perspective

The XSLT Debugger perspective is used for detecting problems in an XSLT transformation process by executing the
process step by step in a controlled environment and inspecting the information provided in the special views. The
workspace is organized as an editing area supported by special helper views. The editing area contains editor panels and
can be split horizontally or vertically in two stacks of editors: XML editor panels and XSLT editor panels. The XML
file and XSL file are displayed in Text mode. The Grid mode) is available only in the Editor perspective.

Getting Started | 29

Figure 10: Oxygen XML Developer plugin - XSLT Debugger perspective

• Source document view - Displays and allows editing of data or document oriented XML files (documents).
• Stylesheet document view - Displays and allows editing of XSL files(stylesheets).
• Output document view - Displays the transformed output that results from the input of a selected document (XML)

and selected stylesheet (XSL) to the transformer. The result of transformation is dynamically written as the
transformation is processed. There are three types of views for the output: a text view (with XML syntax highlight),
an XHTML view and one text view for each xsl:result-document element used in the stylesheet (if it is a XSLT 2.0
stylesheet).

• Control toolbar - Contains all actions needed in order to configure and control the debug process.
• Information views - Distributed in two panes, they are displaying various types of information that can be used to

understand the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This allows the developer to obtain
a clear view of the transformation progress.

XQuery Debugger Perspective

The XQuery Debugger perspective is similar to the XSLT Debugger perspective. It is used to detect problems in an
XQuery transformation process by executing the process step by step in a controlled environment and inspecting the
information provided in the special views. The workspace is organized as follows:

Getting Started | 30

Figure 11: Oxygen XML Developer plugin XQuery Debugger perspective

• Source document view - Allows editing of data or document oriented XML files (documents).
• XQuery document view - Allows editing of XQuery files.
• Output document view - Displays the transformed output that results from the input of a selected document (XML)

and selected XQuery document to the XQuery transformer. The result of transformation is dynamically written as
the transformation is processed. There are two types of views for the output: a text view (with XML syntax highlight)
and an XHTML view.

• Control toolbar - Contains all actions needed in order to configure and control the debug process.
• Information views - Distributed in two panes they are displaying various types of information that can be used to

understand the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This allows the developer to obtain
a clear view of the transformation progress.

Oxygen XML Developer plugin Database Perspective

The Database perspective is similar to the Editor perspective. It allows you to manage a database, offering support for
browsing multiple connections at the same time, relational and native XML databases, SQL execution, XQuery execution
and data export to XML.

This perspective offers database specific support for:

• Oracle Berkeley DB XML Database
• eXist XML Database
• IBM DB2 (Enterprise edition only)
• JDBC-ODBC Bridge

Getting Started | 31

• MarkLogic (Enterprise edition only, XQuery support only)
• Microsoft SQL Server 2005 and Microsoft SQL Server 2008 (Enterprise edition only)
• MySQL
• Oracle 11g (Enterprise edition only)
• PostgreSQL 8.3 (Enterprise edition only)
• Documentum xDb (X-Hive/DB) 10 XML Database (Enterprise edition only)
• Documentum (CMS) 6.5 (Enterprise edition only)

The XML capabilities of the databases marked in this list with "Enterprise edition only" are available only in the Enterprise
edition of Oxygen XML Developer plugin . The non-XML capabilities of any database listed here are available also in
the Academic and Professional editions of Oxygen XML Developer plugin by registering the database driver as a
generic JDBC driver (the Generic JDBC type in the list of driver types) when defining the data source for accessing the
database in Oxygen XML Developer plugin .

The non-XML capabilities are:

• browsing the structure of the database instance;
• opening a database table in the Table Explorer view;
• handling the values from XML Type columns as String values.

The XML capabilities are:

• displaying an XML Schema node in the tree of the database structure (for databases with such an XML specific
structure) with actions for opening/editing/validating the schemas in an Oxygen XML Developer plugin editor
panel;

• handling the values from columns of type XML Type as XML instance documents that can be opened and edited in
an Oxygen XML Developer plugin editor panel;

• validating an XML instance document added to an XML Type column of a table, etc.

For a detailed feature matrix that compares the Academic, Professional and Enterprise editions of Oxygen XML
Developer plugin please go to the Oxygen XML Developer plugin website.

Note: Only connections configured on relational data sources can be used to import data to XML or to generate
XML schemas.

Getting Started | 32

http://www.oxygenxml.com/feature_matrix.html

Figure 12: Database perspective

• Main menu - provides access to all the features and functions available within Oxygen XML Developer plugin .
• Main toolbar - provides easy access to common and frequently used functions. Each icon is a button that acts as a

shortcut to a related function.
• Editor area - the place where you spend most of your time, reading, editing, applying markup and validating your

documents.
• Data Source explorer - provides browsing support for the configured connections.
• Table explorer - provides table content editing support for inserting new rows, deleting table rows, cell value editing,

export to XML file.

Getting Started | 33

Chapter

4

Editing Documents

This chapter explains the editor types available in the Oxygen XML Developer
plugin application and how to work with them for editing different types of
documents.

Topics:

• Working with Unicode
• Opening and Closing Documents
• Grouping Documents in XML

Projects
• Editing XML Documents
• Editing XML Schemas
• Editing Relax NG Schemas
• Editing NVDL Schemas
• Editing XSLT Stylesheets
• Editing XQuery Documents
• Editing CSS Stylesheets
• Editing JSON Documents
• Editing XProc Scripts
• Editing Schematron Schemas
• Handling Read-Only Files

Working with Unicode
Unicode provides a unique number for every character, independent of the platform and language. Unicode is an
internationally recognized standard, adopted by industry leaders. The Unicode is required by modern standards such as
XML, Java, ECMAScript (JavaScript), LDAP, CORBA 3.0, WML, etc., and is the official way to implement ISO/IEC
10646.

It is supported in many operating systems, all modern browsers, and many other products. The emergence of the Unicode
Standard, and the availability of tools supporting it, are among the most significant recent global software technology
trends. Incorporating Unicode into client-server or multi-tiered applications and websites offers significant cost savings
over the use of legacy character sets.

As a modern XML Editor, Oxygen XML Developer plugin provides support for the Unicode standard enabling your
XML application to be targeted across multiple platforms, languages, and countries without re-engineering. Internally,
the Oxygen XML Developer plugin XML Editor uses 16bit characters covering the Unicode Character set.

Note: Oxygen XML Developer plugin may not be able to display characters that are not supported by the
operating system (either not installed or unavailable).

Tip: Windows XP/2003: You can enable support for CJK (Chinese, Japanese, Korean) languages from Control
Panel / Regional and Language Options / Languages / Install files for East Asian languages.

Opening and Saving Unicode Documents

On loading documents of the type XML, XSL, XSD, and DTD, Oxygen XML Developer plugin receives the encoding
of the document from the Eclipse platform. This encoding is then used to instruct the Java Encoder to load support for
and to save the document using the specified code chart.

While in most cases you are using UTF-8, simply changing the encoding name causes the application to save the file
using the new encoding.

To edit documents written in Japanese or Chinese, change the font to one that supports the specific characters (a Unicode
font). For the Windows platform, Arial Unicode MS or MS Gothic is recommended. Do not expect Wordpad or Notepad
to handle these encodings. Use Internet Explorer or Word to examine XML documents.

When a document with a UTF-16 encoding is edited and saved in Oxygen XML Developer plugin , the saved document
has a byte order mark (BOM) which specifies the byte order of the document content. The default byte order is
platform-dependent. That means that a UTF-16 document created on a Windows platform (where the default byte order
mark is UnicodeLittle) has a different BOM than a UTF-16 document created on a Mac OS platform (where the byte
order mark is UnicodeBig). The byte order and the BOM of an existing document are preserved Oxygen XML Developer
plugin when the document is edited and saved.

Opening and Closing Documents
This section explains the actions and wizards available for creating new files, opening existing files, and closing files.

Creating New Documents

This section details the procedures available for creating new documents.

Oxygen XML Developer plugin Plugin Wizard for New Document

The New wizard only creates a skeleton document containing the document prolog, a root element and possibly other
child elements depending on the options specific for each schema type. If you need to generate full and valid XML
instance documents based on an XML Schema schema, you should use the XML instance generation tool instead.

Editing Documents | 36

The Oxygen XML Developer plugin plugin installs a series of Eclipse wizards for easy creation of new documents.
Using these wizards you let Oxygen XML complete details like the system ID or schema location of a new XML
document, the minimal markup of a DocBook article or the namespace declarations of a Relax NG schema.

1. Select File > New > -> Other (Ctrl+N) > oXygen or press the New toolbar button.
The New wizard is displayed.

2. Select a document type.

3. Click the Next button.

For example if XML was selected the Create an XML Document wizard is started.

The Create an XML Document dialog enables definition of an XML Document Prolog using the system identifier
of an XML Schema, DTD, Relax NG (full or compact syntax) schema, or NVDL (Namespace-based Validation
Dispatching Language) schema. As not all XML documents are required to have a Prolog, you may choose to skip
this step by clicking OK. If the prolog is required, complete the fields as described in the next step.

4. Type a name for the new document and press the Next button.

5. If Customize was clicked, the following dialog is opened. Depending on the selected document type, different
properties can be set:

•

Figure 13: New XML Document Dialog

• Schema URL - Path to the schema file. When a file is selected, Oxygen XML Developer plugin analyzes
its content and tries to fill-in the rest of the dialog;

• Schema type - The following options are available: XML Schema, DTD, RelaxNG XML syntax, RelaxNG
compact syntax, and NVDL;

• Public ID - Specifies the PUBLIC identifier declared in the document prolog;
• Namespace - The document namespace;
• Prefix - The prefix for the namespace of the document root;
• Root Element - Populated with elements defined in the specified schema, enables selection of the element

to be used as document root;

Editing Documents | 37

• Description - Shows a small description of the selected document root;
• Add optional content - When selected, the elements and attributes that are defined in the XML Schema as

optional, are generated in the skeleton XML document;
• Add first Choice particle - When selected, the first element of an xs:choice schema element is generated in

the skeleton XML document created in a new editor panel when the OK button is pressed.

•

Figure 14: New XSL Document Dialog

• Stylesheet version - Stylesheet version number. Possible options: 1.0 and 2.0;
• Add documentation annotations - Adds annotation for XSL components.

Editing Documents | 38

•

Figure 15: New XML Schema Document Dialog

• Target namespace - Specifies the schema target namespace;
• Namespace prefix declaration table - Contains namespace prefix declarations. Table information can be

managed using the New and Delete buttons.

•

Figure 16: New Schematron Document Dialog

• Schematron version - Specifies the Schematron version. Possible options: 1.5 and ISO.

Editing Documents | 39

Creating Documents Based on Templates

The New wizard enables you to select predefined templates or custom templates. Custom templates are created in previous
sessions or by other users.

The list of templates presented in the dialog includes:

• Document Types templates - Templates supplied with the defined document types.
• User defined templates - The user can add template files in the templates folder of the Oxygen XML Developer

plugin install directory. Also in the option page Window > Preferences > oXygen > Editor > Templates >
Document Templates can be specified a custom templates folder to be scanned.

1. Go to menu File > New > Other > oXygen > New From Templates.

2. Select a document type.

3. Type a name for the new document and press the Next button.

4. Press the Finish button.

The newly created document already contains the structure and content provided in the template.
Document Templates

Templates are documents containing a predefined structure. They provide starting points on which one can rapidly build
new documents that repeat the same basic characteristics: file type, prolog, root element, existing content. Oxygen XML
Developer plugin installs a rich set of templates for a number of XML applications. You may also create your own
templates from Options > Windows > Preferences > oXygen > Editor > Templates > Document Templatesand share
them with other users.

You can also use editor variables in the template files' content and they will be expanded when the files are opened.

Saving Documents

The edited document can be saved with one of the following actions:

• File > Save > (Ctrl+S).
• File > Save As: displays the Save As dialog, used either to name and save an open document to a file or to save an

existing file with a new name.
• File > Save All: Saves all open documents.

Opening and Saving Remote Documents via FTP/SFTP

Oxygen XML Developer plugin supports editing remote files, using the FTP, SFTP protocols. The remote files can be
edited exactly as the local ones, for example they can be added to a project, and can be subject to XSL and FO
transformations.

You can open one or more remote files in the dialog Open using FTP/SFTP.

To improve the transfer speed, the content exchanged between Oxygen XML Developer plugin and the HTTP / WebDAV
server is compressed using the GZIP algorithm.

The current WebDAV Connection details can be saved using the button and then used in the Data Source Explorer
view.

The Dialog

The dialog Open using FTP/SFTP is displayed from the menu File > Open URL ... or from the toolbar button Open
URL

Editing Documents | 40

Figure 17: Open URL dialog

The displayed dialog is composed of several parts:

• The editable combo box, in which it can be specified directly the URL to be opened or saved.

Tip:

You can type in here an URL like ftp://anonymous@some.site/home/test.xml if the file is accessible through
anonymous FTP.

This combo box is also displaying the current selection when the user changes selection by browsing the tree of
folders and files on the server.

• The Identification section contains the access credentials. If you want to browse for a file on a server, you have to
specify the user and password. This information is bound to the selected URL displayed in the File URL combo
box, and used further in opening/saving the file. If the check box Save is selected, then the user and password are
saved between editing sessions. The password is kept encrypted into the options file.

Note:

Your password is well protected. In the case the options file is used on other machine by a user with a different
username the password will become unreadable, since the encryption is username dependent. This is also
true if you add URLs having user and password to your project.

• The Browse for remote file section contains the server combo and the Autoconnect check box. Into the server combo
it may be specified the protocol , the name or IP of the server .

Editing Documents | 41

Tip:

Server URLs

When accessing a FTP server, you need to specify only the protocol and the host, like: ftp://server.com, or
if using a nonstandard port: ftp://server.com:7800/.

By pressing the Browse button the directory listing will be shown in the component below. When Autoconnect is
selected then at every time the dialog is shown, the browse action will be performed.

• The tree view of the documents stored on the server. You can browse the directories, and make multiple selections.
Additionally, you may use the Rename, Delete, and New Folder to manage the file repository.

The file names are sorted in a case-insensitive way.

Changing File Permissions on a Remote FTP Server

Some FTP servers allow the modification of permissions of the files served over the FTP protocol. This protocol feature
is accessible directly in the FTP file browser dialog by right-clicking on a tree node and selecting the Change permissions
menu item.

The usual Unix file permissions Read, Write and Execute are granted or denied in this dialog for the file owner, owner
group and the rest of the users. The permission's aggregate number is updated in the Permissions text field when it is
modified with one of the check boxes.

WebDAV over HTTPS

If you want to access a WebDAV repository across an insecure network, Oxygen XML Developer plugin allows you
to load and save the documents over the HTTPS protocol (if the server understands this protocol) so that any data
exchange with the WebDAV server is encrypted.

When a WebDAV repository is first accessed over HTTPS, the server hosting the repository will present a security
certificate as part of the HTTPS protocol, without any user intervention. Oxygen XML Developer plugin will use this
certificate to decrypt any data stream received from the server. For the authentication to succeed you should make sure
the security certificate of the server hosting the repository can be read by Oxygen XML Developer plugin . This means
that Oxygen XML Developer plugin can find the certificate in the key store of the Java Runtime Environment in which
it runs. You know the server certificate is not in the JRE key store if you get the error No trusted certificate found when
trying to access the WebDAV repository.

How to Add a HTTPS Server Certificate to Oxygen XML Developer plugin

You add a HTTPS server certificate to the Java key store by exporting it to a local file using any HTTPS-capable Web
browser (for example Internet Explorer) and then importing this file into the JRE using the keytool executable bundled
with the JRE. The steps are the following using Internet Explorer (if you use other browser the procedure is similar):

1. Export the certificate into a local file

a) Point your HTTPS-aware Web browser to the repository URL.

If this is your first visit to the repository it will be displayed a security alert stating that the security certificate
presented by the server is not trusted.

Editing Documents | 42

Figure 18: Security alert - untrusted certificate

b) Go to menu Tools > Internet Options.
Internet Options dialog is opened.

c) Select Security tab.
d) Select Trusted sites icon.
e) Press Sites button.

This will open Trusted sites dialog.
f) Add repository URL to Websites list.
g) Close Trusted sites dialog and Internet Options dialog.
h) Try again to connect to the same repository URL in Internet Explorer.

The same error page as above will be displayed.
i) Select Continue to this website option.

A clickable area with a red icon and text Certificate Error is added to Internet Explorer address bar.
j) Click on Certificate Error area.

A dialog containing View certificates link is displayed.
k) Click on View certificates link.

Certificate dialog is displayed.
l) Select Details tab of Certificate dialog.
m) Press Copy to File button.

Certificate Export Wizard is started.
n) Follow indications of wizard for DER encoded binary X.509 certificate. Save certificate to local file server.cer.

2. Import the local file into the JRE running Oxygen XML Developer plugin .

a) Open a text-mode console.
b) Go to the lib/security subfolder of your JRE directory, that is of the directory where it is installed the JRE

running Oxygen XML Developer plugin . You find the home folder of the JRE in the java.home property that
is displayed in the About dialog tab.

c) Run the following command:

..\..\bin\keytool.exe -import -trustcacerts -file server.cer -keystore
cacerts

Editing Documents | 43

The local-file.cer file contains the server certificate, created during the previous step. keytool requires
a password before adding the certificate to the JRE keystore. The default password is changeit. If somebody
changed the default password then he is the only one who can perform the import. As a workaround you can
delete the cacerts file, re-type the command and enter as password any combination of at least 6 characters.
This will set the password for future operations with the key store.

3. Restart Oxygen XML Developer plugin .

Opening the Current Document in System Application

To open the current document in the associated system application, use the Open in Browser/System Application
action available on the XML > File menu and also on the Document toolbar. The action is enabled when the current
document has the file, FTP, HTTP or SFTP protocol.

Closing Documents

To close documents use one of the following methods:

• Go to menu File > Close (Ctrl+F4) : Closes only the selected tab. All other tab instances remain opened.
• Go to menu File > Close All (Ctrl+Shift+F4): Closes all open documents. If a document is modified or has no file,

a prompt to save, not to save, or cancel the save operation is displayed.
• Select the item Close from the contextual menu of an editor tab: Closes the selected editor.
• Select the item Close Other Files from the contextual menu of an editor tab: Closes the other files except the selected

tab.
• Select the item Close All from the contextual menu of an editor tab: Closes all open editors within the panel.

Viewing File Properties

In the Properties view you can quickly access information about the current edited document like:

• character encoding
• full path on the file system
• schema used for content completion and document validation
• document type name and path
• associated transformation scenario
• file's read-only state
• bidirectional text (left to right and right to left) state
• document's total number of characters
• line width
• indent with tabs state
• indent size

The view can be accessed from Window > Show View > Other ... > oXygen > Editor properties

To copy a value from the Properties view in the clipboard, for example the full file path, use the Copy action available
on the contextual menu of the view.

Grouping Documents in XML Projects
This section explains how to create and work with projects.

Creating a New Project

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down list that holds
all recently used projects and project management actions:

Editing Documents | 44

• Open Project ... (Ctrl+F2) - Opens an existing project. An alternate way to open a project is to drop an Oxygen
XML Developer plugin XPR project file from the file explorer in the Project panel.

• New Project - Creates a new, empty project.

The files are organized in an XML project usually as a collection of folders. They are created and deleted with the usual
Eclipse actions.

Creating New Project Items

A series of actions are available in the contextual menu:

• New > File - Creates a new file and adds it to the project structure.
• Add Folder - Adds a link to a physical folder, whose name and content mirror a real folder existing in the file

system on disk. The icon of this action is different on Mac OS X () as the standard folder icon on Mac OS X is
not the usual one from Windows and Unix/Linux systems.

• New > Logical Folder - Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS

X -).
• New > Logical Folders from Web - Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV,

as a structure of logical folders. The newly created logical folders contain the file structure of the folder it points to.
• New > Project - Creates a new project, after closing the current project and all open files.

Managing Project Content

Validate Files

The currently selected files in the Package Explorer view can be validated against a schema of type Schematron, XML
Schema, Relax NG, NVDL, or a combination of the later with Schematron with one of the following contextual menu
actions:

• Validate available on the Batch Validation submenu of the contextual menu of the Package Explorer view.
• Validate with ... available on the Batch Validation submenu of the contextual menu of the Package Explorer view.

Applying Transformation Scenarios

The currently selected files associated to the Oxygen XML Developer plugin plugin in the Package Explorer view
can be transformed in one step with one of the actions Apply Transformation, Configure Transformation ... and
Transform with... available on the Transformation sub-menu of the right-click menu of the Package Explorer view.
This, together with the logical folder support of the project allows you to group your files and transform them very
easily.

If the resources from a linked folder in the project have been changed outside the view, you can refresh the content of
the folder by using the Refresh action from the contextual menu. The action is also performed when selecting the
linked resource and pressing F5 key

You can also use drag and drop to arrange the files in logical folders . Also, dragging and dropping files from the project
tree to the editor area results in the files being opened.

Other Context-Dependent Actions

Many of the actions available in the Project view are grouped in a contextual menu. This menu is displayed after selecting
a file or folder and then pressing right-click (or Ctrl+Click on Mac OS X)

• Open with - Open selected file with one of internal tools: , , , , WSDL/SOAP Analyzer, , .
• Open All Files - Action available only when at least one folder is selected. Opens in the editor view all files contained

by the selected resources.

Editing Documents | 45

Create an Oxygen XML Developer plugin XML Project

1. Go to menu File > New (Ctrl+N) > XML Project
The New XML Project wizard is displayed.

2. Type a name for the new project.

3. Click the Next button.

4. Select other Eclipse projects that you want to reference in the new project.

5. Click the Finish button.

Editing XML Documents
This section explains the XML editing features of the application. All the user interface components and actions available
to users are described in detail with appropriate procedures for various tasks.

Associate a Schema to a Document

This section explains the methods of associating a schema to a document for validation and content completion purposes.

Setting a Schema for Content Completion

This section explains the available methods of setting a schema for content completion in an XML document edited in
Oxygen XML.

Supported Schema Types for XML Documents

The supported schema types are:

• W3C XML Schema (with and without embedded Schematron rules)
• DTD
• Relax NG - XML syntax (with and without embedded Schematron rules)
• Relax NG - compact syntax
• NVDL
• Schematron (both ISO Schematron and Schematron 1.5)

Setting a Default Schema

Oxygen XML uses the following search pattern when it tries to detect an XML schema:

• in the validation scenario associated with the document;
• in the validation scenario associated with the document type (if defined).
• specified in the document;

Note: If a DTD schema is specified in the document, the content completion for Author mode is based on
this schema (even if there is already one detected from the validation scenario);

• detected from the document type that matches the edited document - Each document type available in Document
Type Association preferences page contains a set of rules for associating a schema with the current document.

Note: The locations are sorted by priority, from high to low.

The schema has one of the following types: XML Schema, XML Schema with embedded Schematron rules, Relax NG
(XML syntax or compact syntax), Relax NG (XML syntax) with embedded Schematron rules, Schematron, DTD, NVDL.

The rules are applied in the order they appear in the table and take into account the local name of the root element, the
default namespace and the file name of the document.

Editing Documents | 46

Important:

The editor is creating the content completion lists by analysing the specified schema and the current context
(the position in the editor). If you change the schema, then the list of tags to be inserted is updated.

Figure 19: Content Completion Driven by DocBook DTD

Making the Schema Association Explicit in the XML Instance Document

The schema used by the content completion assistant and document validation engine can be associated with the document
using the Associate Schema action. For most of the schema types, it uses the xml-model processing instruction, the
exceptions being:

• W3C XML Schema - the xsi:schemaLocation attribute is used;
• DTD - the DOCTYPE declaration is used.

The association can specify a relative file path or a URL of the schema. The advantage of relative file path is that you
can configure the schema at file level instead of document type level.

Go to menu Document > Schema > Associate schema... or click the Associate schema toolbar button to select
the schema that will be associated with the XML document. The following dialog is displayed:

Figure 20:The Associate Schema Dialog

The following options are available:

• URL - contains a predefined set of schemas that are used more often and it also keeps a history of the last used
schemas. The URL must point to the schema file which can be loaded from the local disk or from a remote server
through HTTP(S), FTP(S).

• Schema type - selected automatically from the list of possible types in the Schema type combo box (XML Schema,
DTD, Relax NG, Relax NG Compact, Schematron, NVDL) based on the extension of the schema file that was entered
in the URL field.

Editing Documents | 47

• Public ID - Specify a public ID if you have selected a DTD.
• Embedded schematron rules - if you have selected XML Schema or Relax NG schemas with embedded Schematron

rules, enable this option.
• Use relative paths - enable this option if the XML instance document and the associated schema contain relative

paths. The location of the schema file is inserted in the XML instance document as a relative file path. This practice
allows you, for example, to share these documents with other users, without running into problems caused by different
project locations on physical disk.

The association with an XML Schema is added as an attribute of the root element. The Associate schema action adds
a:

• xsi:schemaLocation attribute, if the root element of the document sets a default namespace with an xmlns
attribute;

• or a xsi:noNamespaceSchemaLocation attribute, if the root element does not set a default namespace.

The association with a DTD is added as a DOCTYPE declaration. The association with a Relax NG , Schematron or
NVDL schema is added as xml-model processing instruction.

Associating a Schema With the Namespace of the Root Element

The namespace of the root element of an XML document can be associated with an XML Schema using an XML catalog.
If there is no xsi:schemaLocation attribute on the root element and the XML document is not matched with a
document type, the namespace of the root element is searched in the XML catalogs set in Preferences.

If the XML catalog contains an uri or rewriteUri or delegateUri element, its schema will be used by the
application to drive the content completion and document validation.

The xml-model Processing Instruction

The xml-model processing instruction associates a schema with the XML document that contains the processing
instruction. It must be added at the beginning of the document, just after the XML prologue. The following code snippet
contains an xml-model processing instruction declaration:

<?xml-model href="../schema.sch" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/schematron" phase="ALL" title="Main
schema"?>

It is available in the content completion assistant, before XML document root element and has the following attributes:

• href - schema file location. Mandatory attribute.
• type - content type of schema. Optional attribute with the following possible values:

• for DTD the recommended value is application/xml-dtd;
• for W3C XML Schema the recommended value is application/xml or can be left unspecified;
• for RELAX NG the recommended value is application/xml or can be left unspecified;
• for RELAX NG - compact syntax the recommended value is application/relax-ng-compact-syntax;
• for Schematron the recommended value is application/xml or can be left unspecified;
• for NVDL the recommended value is application/xml or can be left unspecified.

• schematypens - namespace of schema language of referenced schema with the following possible values:

• for DTD - not specified;
• for W3C XML Schema the recommended value is http://www.w3.org/2001/XMLSchema;
• for RELAX NG the recommended value is http://relaxng.org/ns/structure/1.0;
• for RELAX NG - not specified;
• for Schematron the recommended value is http://purl.oclc.org/dsdl/schematron;
• for NVDL the recommended value is http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0.

• phase - phase name of validation function in Schematron schema. Optional attribute.
• title - title for associated schema. Optional attribute.

Editing Documents | 48

Older versions of Oxygen XML used the oxygen processing instruction with the following attributes:

• RNGSchema - specifies the path to the Relax NG schema associated with the current document;
• type - specifies the type of Relax NG schema. It is used together with the RNGSchema attribute and can have the

value "xml" or "compact";
• NVDLSchema - specifies the path to the NVDL schema associated with the current document;
• SCHSchema - specifies the path to the SCH schema associated with the current document.

Note: Documents that use the oxygen processing instruction are compatible with newer versions of Oxygen
XML.

Learning Document Structure

When working with documents that do not specify a schema, or for which the schema is not known or does not exist,
Oxygen XML Developer plugin is able to learn and translate the document structure to a DTD. You can choose to save
the learned structure to a file in order to provide a DTD as an initialization source for content completion and document
validation. This feature is also useful for producing DTD's for documents containing personal or custom element types.

When you open a document that is not associated with a schema, Oxygen XML Developer plugin automatically learns
the document structure and uses it for content completion. To disable this feature you have to uncheck the checkbox
Learn on open document in the user preferences.

Create a DTD from Learned Document Structure

When there is no schema associated with an XML document, Oxygen XML Developer plugin can learn the document
structure by parsing the document internally. This feature is enabled with the option Learn on open document that is
available in the user preferences.

To create a DTD from the learned structure:

1. Open the XML document for which a DTD will be created.

2. Go to menu XML > Learn Structure (Ctrl+Shift+L).
The Learn Structure action reads the mark-up structure of the current document. The Learn completed message
is displayed in the application's status bar when the action is finished.

3. Go to menu XML > Save Structure (Ctrl+Shift+S). Enter the DTD file path.

4. Press the Save button.

Streamline with Content Completion

Oxygen XML Developer plugin 's intelligent Content Completion feature enables rapid, in-line identification and insertion
of structured language elements, attributes and in some cases their parameter options.

Figure 21: Content Completion Assistant

Oxygen XML Developer plugin logs the URL of the detected schema in the Status view.

Editing Documents | 49

If the Content Completion assistant is enabled in user preferences (the option Use Content Completion), then it is
displayed:

• automatically, after a configurable delay from the last key press of the < character. The delay is configurable in
Preferences as a number of milliseconds from last key press.

• on demand, by pressing CTRL+Space on a partial element or attribute name.

Elements are highlighted in the list using the Up and Down cursor keys. Here are the options to insert the selected
content:

• press the Enter key or the Tab key to insert both the start and end tags.
• press CTRL + Enter. The application inserts both the start and end tags, separated by an empty line. The cursor is

positioned on the empty line on an indented position with regard to the start tag.

Note: When the DTD, XML Schema or RELAX NG schema specifies required child elements for the newly
added element, they will be inserted automatically only if the Add Element Content option (found in Preferences
> Editor > Content Completion options page) is enabled. The Content Completion assistant can also add
optional content and first choice particle, as specified in the DTD or XML Schema or RELAX NG schema, for
the element if these two options are enabled.

After inserting the element, the cursor will be positioned:

• before the > character of the start tag, if the element allows attributes, in order to enable rapid insertion of any of the
attributes supported by the element. Pressing the space bar will display the Content Completion list once again. This
time it will contain the list of allowed attribute names. If the attribute supports a fixed set of parameters, the assistant
list will display the list of valid parameters. If the parameter setting is user-defined and therefore variable, the assistant
will be closed to enable manual insertion. The values of the attributes can be learned from the same elements in the
current document.

• after the > char of the start tag if the element has no attributes.

The content assistant can be started at any time by pressing CTRL+Space The effect is that the context-sensitive list of
proposals will be shown in the caret's current position if element, attribute or attribute value insertion makes sense. The
Content Completion assistant is displayed:

• anywhere within a tag name or at the beginning of a tag name in an XML document, XML Schema, DTD or Relax
NG (full or compact syntax) schema;

• anywhere within an attribute name or at the beginning of an attribute name in any XML document with an associated
schema;

• within attribute values or at the beginning of attribute values in XML documents where lists of possible values have
been defined for that element in the schema associated with the document

The items that populate the Content Completion assistant are dependent on the element structure specified in the DTD,
XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema associated to the edited document.

The number and type of elements displayed by the assistant is dependent on the cursor's current position in the structured
document. The child elements displayed within a given element are defined by the structure of the specified DTD, XML
Schema, Relax NG (full or compact syntax) schema, or NVDL schema. All elements that can't be child elements of the
current element according to the specified schema are not displayed.

If only one element name must be displayed by the content assistant then the assistant is not displayed anymore but this
only option is automatically inserted in the document at the current cursor position.

A schema may declare certain attributes as ID or IDREF/IDREFS. When the document is validated, oXygen XML
checks the uniqueness and correctness of the ID attributes. It also collects the attribute values declared in the document
to prepare the content completion assistant's list of proposals. This is available for documents that use DTD, XML
Schema and Relax NG schema.

Also values of all the xml:id attributes are treated as ID attributes and collected and displayed by the Content Completion
assistant as possible values for anyURI attributes defined in the schema of the edited document. This works only for
XML Schema and Relax NG schemas.

Editing Documents | 50

For documents that use an XML Schema or Relax NG schema the content assistant offers proposals for attributes and
elements values that have as type an enumeration of tokens. Also if a default value or a fixed value is defined in the
XML Schema used in validation for an attribute or element then that value is offered in the content completion window.

The operation of the Content Completion assistant is configured by the options available in the options group called
Content Completion.

Set Schema for Content Completion

The DTD, XML Schema, Relax NG, or NVDL schema used to populate the Content Completion assistant is specified
in the following methods, in order of precedence:

• the schema specified explicitly in the document. In this case Oxygen XML Developer plugin reads the beginning
of the document and resolves the location of the DTD, XML Schema, Relax NG schema, or NVDL schema;

• the default schema rule declared in the Document Type Association preferences panel which matches the edited
document;

• for XSLT stylesheets, the schema specified in the Oxygen XML Developer plugin Content Completion options.
Oxygen XML Developer plugin will read the Content Completion settings when the prolog fails to provide or resolve
the location of a DTD, XML Schema, Relax NG or NVDL schema;

• for XML Schemas, the schema specified in the Oxygen XML Developer plugin Content Completion options.
Oxygen XML Developer plugin will read the Content Completion settings and the specified schema will enhance
the content completion inside the xs:annotation/xs:appinfo elements of the XML Schema.

Content Completion in Documents with Relax NG Schemas

Inside the documents that use a Relax NG schema the Content Completion assistant is able to present element values if
such values are specified in the Relax NG schema. Also in Relax NG documents the Content Completion assistant
presents additional values of type ID for an anyURI data type. It presents also pattern names defined in the Relax NG
schema as possible values for pattern references. For example if the schema defines an enumValuesElem element like:

<element name="enumValuesElem">
 <choice>
 <value>value1</value>
 <value>value2</value>
 <value>value3</value>
 </choice>
</element>

In documents based on this schema, the Content Completion assistant offers the following list of values:

Figure 22: Content Completion assistant - element values in Relax NG documents

Schema Annotations

If the document's schema is an XML Schema, Relax NG (full syntax), NVDL or DTD and it contains element, attributes
or attributes values annotations, these will be presented when the content completion window is displayed, only if the
option Show annotations is enabled. Also the annotation is presented in a small tooltip window displayed automatically
when the mouse hovers over an element or attribute annotated in the associated schema of the edited document.

In an XML Schema the annotations are specified in an <xs:annotation> element like this:

 <xs:annotation>
 <xs:documentation>

Editing Documents | 51

 Description of the element.
 </xs:documentation>
 </xs:annotation>

If the current element / attribute in the edited document does not have an annotation in the schema and that schema is
an XML Schema, Oxygen XML Developer plugin seeks an annotation in the type definition of the element / attribute
or, if no annotation is found there, in the parent type definition of that definition, etc.

When editing a Schematron schema the content completion assistant displays XSLT 1.0 functions and optionally XSLT
2.0 functions in the attributes path, select, context, subject, test depending on the Schematron options that are set in
Preferences. If the Saxon 6.5.5namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9.3.0.5
namespace is declared in the Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content
completion displays also the XSLT Saxon extension functions as in the following figure:

Figure 23: XSLT extension functions in Schematron schemas documents

In a Relax NG schema any element outside the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as
annotation and the text content is displayed in the annotation window together with the content completion window:

For NVDL schemas annotations for the elements / attributes in the referred schemas (XML Schema, RNG, etc) are
presented

Figure 24: Schema annotations displayed at Content Completion

The following HTML tags are recognized inside the text content of an XML Schema annotation: p, br, ul, li. They
are rendered as in an HTML document loaded in a web browser: p begins a new paragraph, br breaks the current line,
ul encloses a list of items, li encloses an item of the list.

Editing Documents | 52

For DTD Oxygen XML Developer plugin defines a custom mechanism for annotation using comments enabled from
the option Use DTD comments as annotations . The text of a comment with the following format will be presented on
content completion:

<!--doc:Description of the element. -->

Content Completion Helper Views

Information about the current element being edited is also available in the Model view and Attributes view, located on
the left-hand side of the main window. The Model view and the Attributes view combined with the powerful Outline
view provide spatial and insight information on the edited document.

The Model View

The Model view presents the structure of the current edited tag and tag documentation defined as annotation in the
schema of the current document. Open the Model view from Window > Show View > Other > oXygen > Model view

Figure 25:The Model View

The Element Structure Panel

The element structure panel shows the structure of the current edited or selected tag in a tree-like format.

The information includes the name, model and attributes the currently edited tag may have. The allowed attributes are
shown along with imposed restrictions, if any.

Editing Documents | 53

Figure 26:The Element Structure Panel

The Annotation Panel

The Annotation panel displays the annotations that are present in the used schema for the currently edited or selected
tag. This information can be very useful to developers learning XML because it has small available definitions for each
used tag.

Figure 27:The Annotation panel

The Attributes View

The Attributes View presents all possible attributes of the current element.

The attributes present in the document are painted in the Attributes View with a bold font. You can start editing the
value of an attribute by clicking the Value cell of a table row. If the possible values of the attribute are specified as list
in the schema associated with the edited document, the Value cell works as a list box where you can select one of the
possible values to be inserted in the document.

The Attributes table is sortable, three sorting modes being available by clicking the Attribute column name: alphabetically
ascending, alphabetically descending, or custom order. The custom order places the already used attributes at the
beginning of the table, as they appear in the element, followed by the rest of the allowed elements, as they are declared
in the associated schema.

Editing Documents | 54

Figure 28:The Attributes View

The Elements View

The Elements view presents a list of all defined elements that you can insert at the current caret position according to
the document's schema. Double-clicking any of the listed elements inserts that element in the edited document. All
elements from a sequence are presented but the invalid proposals (which cannot be inserted in the current context) are
grayed-out.

Figure 29:The Elements View

The Entities View

This view displays a list with all entities declared in the current document as well as built-in ones. Double clicking one
of the entities will insert it at the current cursor position. You can also sort entities by name and value.

Editing Documents | 55

Figure 30:The Entities View

Code Templates

You can define short names for predefined blocks of code called code templates. The short names are displayed in the
Content Completion window if the word at cursor position is a prefix of such a short name. If there is no prefix at cursor
position, that is the character at the left of cursor is a whitespace, all the code templates are listed.

Oxygen XML Developer plugin comes with a lot of predefined code templates but you can define your own code
templates for any type of editor. For more details see the example for XSLT editor code templates.

To obtain the template list you can use the Content Completion on request shortcut key (usually CTRL-SPACE) or the
Code Templates on request shortcut key (CTRL-SHIFT-SPACE). The first shortcut displays the code templates in the
same content completion list with elements from the schema of the document. The second shortcut displays only the
code templates and is the default shortcut of the action Document > Content Completion > Show Code Templates.

The syntax of the code templates allows you to use the following editor variables:

• ${caret} - The position where the caret is inserted. This variable can be used in a or in a
• ${selection} - The XML content of the current selection in the editor panel. This variable can be used in a
• ${ask('user-message', param-type, 'default-value' ?)} - To prompt for values at runtime, use the ask('user-message',

param-type, 'default-value' ?) editor variable. The following parameters can be set:

• 'user-message' - the actual message to be displayed. Note the quotes that enclose the message.
• param-type - optional parameter. Can have one of the following values:

• url - input is considered to be an URL. Oxygen XML Developer plugin checks that the URL is valid before
passing it to the transformation.

• password - input characters are hidden.
• generic - the input is treated as generic text that requires no special handling.

• 'default-value' - optional parameter. Provides a default value in the input text box.

Examples:

• ${ask('message')} - Only the message displayed for the user is specified.
• ${ask('message', generic, 'default')} - 'message' will be displayed for the user, the

type is not specified (the default is string), the default value will be 'default'.
• ${ask('message', password)} - 'message' will be displayed for the user, the characters typed

will be replaced with a circle character.
• ${ask('message', password, 'default')} - Same as above, default value will be 'default'.
• ${ask('message', url)} - 'message' will be displayed for the user, the type of parameter will be

URL.
• ${ask('message', url, 'default')} - Same as above, default value will be 'default'.

• ${timeStamp} - Time stamp, that is the current time in Unix format. It can be used for example to save transformation
results in different output files on each transform.

• ${uuid} - Universally unique identifier.
• ${id} - Application-level unique identifier.

Editing Documents | 56

• ${cfn} - Current file name without extension and without parent folder.
• ${cfne} - Current file name with extension.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent

folder.
• ${frameworksDir} - The path (as file path) of the frameworks subfolder of the Oxygen XML Developer plugin

installation folder.
• ${pd} - Current project folder as file path.
• ${oxygenInstallDir} - Oxygen XML Developer plugin installation folder as file path.
• ${homeDir} - The path (as file path) of the user home folder.
• ${pn} - Current project name.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable.
• ${system(var.name)} - Value of the var.name system variable.
• ${date(pattern)} - Current date. Follows the given pattern. Example: yyyy-MM-dd.

Validating XML Documents

The W3C XML specification states that a program should not continue to process an XML document if it finds a
validation error. The reason is that XML software should be easy to write, and that all XML documents should be
compatible. With HTML it was possible to create documents with lots of errors (like when you forget an end tag). One
of the main reasons that HTML browsers are so big and incompatible, is that they have their own ways to figure out
what a document should look like when they encounter an HTML error. With XML this should not be possible.

However, when creating an XML document, errors are very easily introduced. When working with large projects or
many files, the probability that errors will occur is even greater. Determining that your project is error-free can be time
consuming and even frustrating. For this reason Oxygen XML Developer plugin provides functions that enable easy
error identification and rapid error location.

Checking XML Well-Formedness

A Well-Formed XML document is a document that conforms to the XML syntax rules. A Namespace Well-Formed XML
document is a document that is XML Well-Formed and is also namespace-wellformed and namespace-valid.

The XML Syntax rules for Well-Formed XML are:

• All XML elements must have a closing tag.
• XML tags are case sensitive.
• All XML elements must be properly nested.
• All XML documents must have a root element.
• Attribute values must always be quoted.
• With XML, white space is preserved.

The namespace-wellformed rules are:

• All element and attribute names contain either zero or one colon.
• No entity names, processing instruction targets, or notation names contain any colons.

The namespace-valid rules are:

• The prefix xml is by definition bound to the namespace name http://www.w3.org/XML/1998/namespace. It MAY,
but need not, be declared, and MUST NOT be undeclared or bound to any other namespace name. Other prefixes
MUST NOT be bound to this namespace name.

• The prefix xmlns is used only to declare namespace bindings and is by definition bound to the namespace name
http://www.w3.org/2000/xmlns/. It MUST NOT be declared or undeclared. Other prefixes MUST NOT be bound to
this namespace name.

• All other prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved. This means
that users SHOULD NOT use them except as defined by later specifications and processors MUST NOT treat them
as fatal errors.

Editing Documents | 57

• The namespace prefix, unless it is xml or xmlns, MUST have been declared in a namespace declaration attribute in
either the start-tag of the element where the prefix is used or in an ancestor element (i.e. an element in whose content
the prefixed markup occurs). Furthermore, the attribute value in the innermost such declaration MUST NOT be an
empty string.

If you select menu Document > Validate > Check Well-Formedness (Alt+Shift+V W (Cmd+Alt+V W on Mac)) or

click the toolbar button Check Well-Formedness Oxygen XML Developer plugin checks if your document is
Namespace Well-Formed XML. If any error is found the result is returned to the message panel. Each error is one record
in the result list and is accompanied by an error message. Clicking the record will open the document containing the
error and highlight its approximate location.

A not Well-Formed XML Document

<root><tag></root>

When Check Well-Formedness is performed the following error is raised:

The element type "tag" must be terminated by the matching end-tag
 "</tag>"

To resolve the error, click in the result list record which will locate and highlight the errors approximate
position. Identify which start tag is missing an end tag and insert </tag>.

A not namespace-wellformed document

<x::y></x::y>

When Check document form is performed the following error is raised:

Element or attribute do not match QName production:
QName::=(NCName':')?NCName.

A not namespace-valid document

<x:y></x:y>

When Check document form is performed the following error is raised:

The prefix "x" for element "x:y" is not bound.

Also the files contained in the current project and selected with the mouse in the Project view can be checked for

well-formedness with one action available on the popup menu of the Project view in the Validate submenu: Check
Well-Formedness.

Validating XML Documents Against a Schema

A Valid XML document is a Well Formed XML document, which also conforms to the rules of a schema which defines
the legal elements of an XML document. The schema type can be: XML Schema, Relax NG (full or compact syntax),
Schematron, Document Type Definition (DTD), or Namespace-based Validation Dispatching Language (NVDL).

The purpose of the schema is to define the legal building blocks of an XML document. It defines the document structure
with a list of legal elements.

Editing Documents | 58

The Oxygen XML Developer plugin Validate document function ensures that your document is compliant with
the rules defined by an associated DTD, XML Schema, Relax NG, or Schematron schema. XML Schema or Relax NG
Schema can embed Schematron rules. For Schematron validations, it is possible to select the validation phase.

Marking Validation Errors and Warnings

A line with a validation error or warning will be marked in the editor panel by underlining the error region with a red
color. Also a red sign will mark the position in the document of that line on the right side ruler of the editor panel. The
same will happen for a validation warning, only the color will be yellow instead of red.

The ruler on the right side of the document is designed to display the errors and warnings found during the validation
process and also to help the user to locate them more easily. The ruler contains the following areas:

• Top area containing a success validation indicator that will turn green in case the validation succeeded or red otherwise.
• Middle area where the error markers are depicted in red . The number of markers shown can be limited by modifying

the setting Window > Preferences > oXygen > Editor > Document checking > Maximum number of problems
reported per document .

Clicking on a marker will highlight the corresponding text area in the editor. The error message is displayed both in
the tool tip and in the error area on the bottom of the editor panel.

Status messages from every validation action are logged into the Console view.

If you want to see all the validation error messages grouped in a view you should run the action Validate which is
available both on the toolbar and on the XML menu. This action collects all error messages in the Problems view of
the Eclipse platform if the validated file is in the current workspace or in a custom Oxygen view called Errors if the
validated file is outside the workspace.

Validation Example - A DocBook Validation Error

In the following DocBook 4 document the content of the listitem element does not match the rules of the DocBook
4 schema, that is docbookx.dtd.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"
 "http://www.docbook.org/xml/4.4/docbookx.dtd">
<article>
 <title>Article Title</title>
 <sect1>
 <title>Section1 Title</title>
 <itemizedlist>
 <listitem>
 <link>a link here</link>
 </listitem>
 </itemizedlist>
 </sect1>
</article>

The Validate Document action will return the following error:

Unexpected element "link". The content of the parent element type must match
"(calloutlist|glosslist|bibliolist|itemizedlist|orderedlist|segmentedlist|simplelist
|variablelist|caution|important|note|tip|warning|literallayout|programlisting
|programlistingco|screen|screenco|screenshot|synopsis|cmdsynopsis|funcsynopsis
|classsynopsis|fieldsynopsis|constructorsynopsis|destructorsynopsis|methodsynopsis
|formalpara|para|simpara|address|blockquote|graphic|graphicco|mediaobject|mediaobjectco
|informalequation|informalexample|informalfigure|informaltable|equation|example|figure
|table|msgset|procedure|sidebar|qandaset|task|anchor|bridgehead|remark|highlights
|abstract|authorblurb|epigraph|indexterm|beginpage)+".

Editing Documents | 59

This error message is a little more difficult to understand, so understanding of the syntax or processing rules for the
DocBook XML DTD's listitem element is recommended. However, the error message does give us a clue as to the
source of the problem, indicating that “The content of element type c must match”.

Luckily most standards based DTD's, XML Schema's and Relax NG schemas are supplied with reference documentation.
This enables us to lookup the element and read about it. In this case you should learn about the child elements of
listitem and their nesting rules. Once you have correctly inserted the required child element and nested it in accordance
with the XML rules, the document will become valid on the next validation test.

Caching the Schema Used for Validation

If you don't change the active editor and you don't switch to other application, the schema associated to the current
document is parsed and cached by the first Validate Document action and is reused by the next actions without re-parsing
it. This increases the speed of the validate actions if the schema is large or is located on a remote server on the Web. To

reset the cache and re-parse the schema you have to use the Reset Cache and Validate action. This action will
also re-parse the catalogs and reset the schema used for content completion.

Automatic Validation

Oxygen XML Developer plugin can be configured to mark validation errors in the document as you are editing. If you
enable the Automatic validation option any validation errors and warnings will be highlighted automatically in the
editor panel. The automatic validation starts parsing the document and marking the errors after a configurable delay
from the last key typed. Errors are highlighted with underline markers in the main editor panel and small rectangles on
the right side ruler of the editor panel, in the same way as for manual validation invoked by the user.

Figure 31: Automatic Validation on the Edited Document

Custom Validators

If you need to validate the edited document with other validation engine than the built-in one you have the possibility
to configure external validators in the Oxygen XML Developer plugin user preferences. After such a custom validator
is properly configured it can be applied on the current document with just one click on the Custom Validation Engines
toolbar. The document is validated against the schema declared in the document.

Some validators are configured by default but they are third party processors which do not support the output message
format of Oxygen XML Developer plugin for linked messages:

• LIBXML - Included in Oxygen XML Developer plugin (Windows edition only). It is associated to XML Editor.
It is able to validate the edited document against XML Schema, Relax NG schema full syntax, internal DTD (included
in the XML document) or a custom schema type. XML catalogs support (the --catalogs parameter) and XInclude
processing (--xinclude) are enabled by default in the preconfigured LIBXML validator. The --postvalid parameter

Editing Documents | 60

is also set by default which allows LIBXML to validate correctly the main document even if the XInclude fragments
contain IDREFS to ID's located in other fragments.

For validation against an external DTD specified by URI in the XML document, the parameter --dtdvalid ${ds} must
be added manually to the DTD validation command line. ${ds} represents the detected DTD declaration in the XML
document.

Caution: Known problem: file paths containing spaces are not handled correctly in the LIBXML processor.
For example the built-in XML catalog files of the predefined document types (DocBook, TEI, DITA, etc)
are not handled by LIBXML if Oxygen XML Developer plugin is installed in the default location on
Windows (C:\Program Files) because the built-in XML catalog files are stored in the frameworks subfolder
of the installation folder which in this case contains at least one space character in the file path.

Attention:

On Mac OS X if the full path to the LIBXML executable file is not specified in the Executable path text
field, some errors may occur on validation against a W3C XML Schema like:

Unimplemented block at ... xmlschema.c

These errors can be avoided by specifying the full path to the LIBXML executable file.

• Saxon SA - Included in Oxygen XML Developer plugin . It is associated to XML Editor and XSD Editor. It is able
to validate XML Schema schemas and XML documents against XML Schema schemas. The validation is done
according to the W3C XML Schema 1.0 specification or according to the W3C XML Schema 1.1 specification. This
can be configured in Preferences.

• MSXML 4.0 - Included in Oxygen XML Developer plugin (Windows edition only). It is associated to XML Editor,
XSD Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD (included
in the XML document), external DTD or a custom schema type.

• MSXML.NET - Included in Oxygen XML Developer plugin (Windows edition only). It is associated to XML
Editor, XSD Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD
(included in the XML document), external DTD or a custom schema type.

• XSV - Not included in Oxygen XML Developer plugin . Windows and Linux distributions of XSV can be downloaded
from http://www.cogsci.ed.ac.uk/~ht/xsv-status.html. The executable path is already configured in Oxygen XML
Developer plugin for the [Oxygen-install-folder]/xsv installation folder. If it is installed in a different
folder the predefined executable path must be corrected in Preferences. It is associated to XML Editor and XSD
Editor. It is able to validate the edited document against XML Schema or a custom schema type.

• SQC (Schema Quality Checker from IBM) - Not included in Oxygen XML Developer plugin . It can be downloaded
from here (it comes as a .zip file, at the time of this writing SQC2.2.1.zip is about 3 megabytes). The executable path
and working directory are already configured for the SQC installation directory
[Oxygen-install-folder]/sqc. If it is installed in a different folder the predefined executable path and
working directory must be corrected in the Preferences page. It is associated to XSD Editor.

Linked Output Messages of an External Engine

Validation engines display messages in an output view at the bottom of the Oxygen XML Developer plugin window.
If such an output message (warning, error, fatal error, etc) spans between three to five lines of text and has the following
format then the message is linked to a location in the validated document so that a click on the message in the output
view highlights the location of the message in an editor panel containing the file referred in the message. This behavior
is similar to the linked messages generated by the default built-in validator. The format for linked messages is:

• Type:[F|E|W] (the string Type: followed by a letter for the type of the message: fatal error, error, warning) - this line
is optional in a linked message.

• SystemID: a system ID of a file (the string SystemID: followed by the system ID of the file that will be opened for
highlighting when the message is clicked in the output message - usually the validated file, the schema file or an
included file).

• Line: a line number (the string Line: followed by the number of the line that will be highlighted).
• Column: a column number (the string Column: followed by the number of the column where the highlight will start

on the highlighted line) - this line is optional in a linked message.

Editing Documents | 61

http://www.cogsci.ed.ac.uk/~ht/xsv-status.html
http://www.alphaworks.ibm.com/tech/xmlsqc/download

• Description: message content (the string Description: followed by the content of the message that will be displayed
in the output view).

Validation Scenario

A complex XML document is usually split in smaller interrelated modules which do not make much sense individually
and which cannot be validated in isolation due to interdependencies with the other modules. A mechanism is needed to
set the main module of the document which in fact must be validated when an imported module needs to be checked
for errors.

A typical example is the chunking DocBook XSL stylesheet which has chunk.xsl as the main module and param.xsl,
chunk-common.xsl and chunk-code.xsl as imported modules. param.xsl only defines XSLT parameters.
The module chunk-common.xsl defines a XSLT template with the name chunk which is called by
chunk-code.xsl. The parameters defined in param.xsl are used in the other modules without being redefined.

Validation of chunk-code.xsl as an individual XSLT stylesheet issues a lot of misleading errors referring to
parameters and templates used but undefined which are only caused by ignoring the context in which this module is
used in real XSLT transformations and in which it should be validated. To properly validate such a module, a validation
scenario must be defined to set the main module of the stylesheet and also the validation engine used to find the errors.
Usually this is the engine which applies the transformation in order to detect in validation the same errors that would
be issued by transformation.

A second benefit of a validation scenario is that the stylesheet can be validated with several engines to make sure that
it can be used in different environments with the same results. For example an XSLT stylesheet needs to be applied with
Saxon 6.5, Xalan and MSXML 4.0 in different production systems.

Other examples of documents which can benefit of a validation scenario are:

• A complex XQuery with a main module which imports modules developed independently but validated in the context
of the main module of the query. In an XQuery validation scenario the default validator of Oxygen XML Developer
plugin (Saxon 9) or any connection to a database that supports validation (Berkeley DB XML Database, eXist XML
Database, Software AG Tamino, Documentum xDb (X-Hive/DB) 10 XML Database) can be set as validation engine.

• An XML document in which the master file includes smaller fragment files using XML entity references.

How to Create a Validation Scenario

Follow these steps for creating a validation scenario:

1. Open the Configure Validation Scenario dialog from menu XML or from the toolbar of the Oxygen XML Developer
plugin plugin.
The following dialog is displayed. It contains the following types of scenarios:

• Default validation scenario validates the input using Oxygen XML Developer plugin default validation options
that apply to the type of the current document;

• Predefined scenarios are organized in categories depending on the type of file they apply to and can be easily
identified by a yellow key icon that marks them as read-only. If the predefined scenario is the framework's default
scenario its name is written in bold font. If you try to edit one of these scenarios, Oxygen XML Developer plugin
creates a customizable duplicate;

• User defined scenarios are organized under a single category, but you can use the drop-down option box to filter
them by the type of file they validate.

Editing Documents | 62

Figure 32: Configure Validation Scenario

2. Press the New button to add a new scenario.

3. Press the Add button to add a new validation unit with default settings.
The dialog that lists all validation units of the scenario is opened.

Figure 33: Add / Edit a Validation Unit

The table holds the following information:

• URL of the file to validate - The URL of the main module which includes the current module. It is also the entry
module of the validation process when the current one is validated.

• File type - The type of the document validated in the current validation unit. Oxygen XML Developer plugin
automatically selects the file type depending on the value of the URL of the file to validate field.

• Validation engine - One of the engines available in Oxygen XML Developer plugin for validation of the type
of document to which the current module belongs. Default engine is the default setting and means that the
validation is done by the default engine set in Preferences pages for the type of the current document (XML
document, XML Schema, XSLT stylesheet, XQuery file, etc) instead of a validation scenario.

• Automatic validation - If this option is checked, then the validation operation defined by this row of the table
is applied also by If the Automatic validation feature is then this option does not take effect as the Preference
setting has higher priority.

Editing Documents | 63

• Schema - Active when you set the File type to XML Document.
• Settings - Contains an action that allows you to set a schema, when validating XML documents, or a list of

extensions when validating XSL or XQuery documents.

4. Edit the URL of the main validation module.

Specify the URL of the main module:

• browsing for a local, remote or archived file;
• using an editor variable or a custom editor variable, available in the following pop-up menu, opened after pressing

the button:

Figure 34: Insert an Editor Variable

5. Select the type of the validated document.

Note that it determines the list of possible validation engines.

6. Select the validation engine.

7. Select the Automatic validation option if you want to validate the current unit when

8. Choose what schema is used during validation: the one detected after parsing the document or a custom one.

Validation Actions in the User Interface

Use one of the actions for validating the current document:

• Select menu XML > Validate Document (Alt+Shift+V V) ((Cmd+Alt+V V on Mac OS)) or click the button

Validate Document available in the Validate toolbar. This action returns an error list in the message panel.
Mark-up of current document is checked to conform with the specified DTD, XML Schema or Relax NG schema
rules. It caches the schema and the next execution of the action uses the cached schema.

• Select menu XML > Reset Cache and Validate or click the button Reset Cache and Validate available in
the Validate toolbar to reset the cache with the schema and validate the document. This action also parses again the
XML catalogs and reset the schema used for content completion. It returns an error list in the message panel. Mark-up
of current document is checked to conform with the specified DTD, XML Schema or Relax NG schema rules.

• Select menu XML > Validate with (Alt+Shift+V E) ((Cmd+Alt+V E on Mac OS)) or click the button
Validate with available in the Validate toolbar. This action can be used to validate the current document using a
selectable schema (XML Schema, DTD, Relax NG, NVDL, Schematron schema). It returns an error list in the
message panel. Mark-up of current document is checked to conform with the specified schema rules.

• Select submenu Batch Validation > Validate in the contextual menu of Navigator or Package Explorer view, to
validate all selected files with their declared schemas.

• Select submenu Batch Validation > Validate With ... of the contextual menu of Navigator or Package Explorer
view, to select a schema and validate all selected files with that schema.

• Select menu XML > Clear Validation Markers (Alt+Shift+V X) ((Cmd+Alt+V X on Mac OS)) or click the

toolbar button Clear Validation Markers to clear the error markers added to the Problems view at the last
validation of the current edited document.

Editing Documents | 64

• Select the submenu Batch Validation > Configure Validation Scenario ... of the contextual menu of Navigator
or Package Explorer view, to configure and apply a validation scenario in one action to all the selected files in the
Navigator or Package Explorer view.

Also you can select several files in the views Package Explorer or Navigator and validate them with one click by
selecting the action Validate selection, the action Validate selection with Schema ... or the action Configure Validation
Scenario ... available from the contextual menu of that view, the submenu Batch Validate.

If there are too many validation errors and the validation process takes too long, you can limit the maximum number of
reported errors in Preferences.

Resolving References to Remote Schemas with an XML Catalog

When a reference to a remote schema must be used in the validated XML document for interoperability purposes, but
a local copy of the schema should be actually used for validation for performance reasons, the reference can be resolved
to the local copy of the schema with an XML catalog. For example, if the XML document contains a reference to a
remote schema docbook.rng like this:

<?xml-model href="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
type="application/xml" schematypens="http://relaxng.org/ns/structure/1.0"?>

it can be resolved to a local copy with a catalog entry:

<system systemId="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"

 uri="rng/docbook.rng"/>

An XML catalog can be used also to map a W3C XML Schema specified with an URN in the xsi:schemaLocation
attribute of an XML document to a local copy of the schema. For example, if the XML document specifies the schema
with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

the URN can be resolved to a local schema file with a catalog entry like:

<system systemId="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

Document Navigation

This section explains various methods for navigating the edited XML document.

Folding of the XML Elements

An XML document is organized as a tree of elements. When working on a large document you can collapse some
elements leaving in the focus only the ones you need to edit. Expanding and collapsing works on individual elements:
expanding an element leaves the child elements unchanged.

Editing Documents | 65

Figure 35: Folding of the XML Elements

To toggle the folded state of an element click on the special mark displayed in the left part of the document editor next

to the start tag of that element or click on the action Toggle fold (Ctrl+Alt+Y) available from the contextual menu

Other menu actions related to folding of XML elements are available from the contextual menu of the current editor:

• (Ctrl+NumPad+/) > Document > Folding > Close Other Folds (Ctrl+NumPad+/) - Folds all the elements
except the current element.

• Document > Folding > Collapse Child Folds (Ctrl+Decimal) (Ctrl+NumPad+-) ((Cmd+NumPad+- on
Mac OS)) - Folds the elements indented with one level inside the current element.

• Document > Folding > Expand Child Folds (Ctrl+NumPad++) ((Cmd+NumPad++)) - Unfolds all child
elements of the currently selected element.

• Document > Folding > Expand All (Ctrl+NumPad+*) ((Cmd+NumPad+* on Mac OS)) - Unfolds all
elements in the current document.

• Document > Folding > Toggle Fold (Alt+Shift+Y) ((Cmd+Alt+Y on Mac OS)) - Toggles the state of the
current fold.

You can use folding by clicking on the special marks displayed in the left part of the document editor.

Outline View

The Outline view offers the following functionality:

• XML Document Overview on page 67
• Outline Specific Actions on page 67
• Modification Follow-up on page 68
• Document Structure Change on page 68
• Document Tag Selection on page 68

Editing Documents | 66

Figure 36:The Outline View

XML Document Overview

The Outline view displays a general tag overview of the current edited XML Document. It also shows the correct
hierarchical dependencies between the tag elements. That makes easier for the user to be aware of the document structure
and the way tags are nested. It allows fast navigation of the document by displaying the start of the content of the child
elements in the node of the parent element thus allowing to see quickly the content of an element without expanding it
in the Outline tree. It also allows the user to insert or delete nodes using pop-up menu actions.

The Expand all and Collapse all items of the popup menu available on the Outline tree enlarge or reduce the set of nodes
of the edited document currently visible in the view. The tree expansion action is a faster alternative to mouse clicks on
the plus signs of the tree when one wants to access quickly a node deeply nested in the hierarchy of document nodes.
When a large number of nodes become expanded and the document structure is not clear any more, the collapsing action
clears the view quickly by reducing the depth of the expanded nodes to only one child of the currently selected node.

Document errors (such as an element inserted in an invalid position, or a wrong attribute name, or a missing required
attribute value) are highlighted in the Outline tree. An easy-to-spot exclamation mark sign is used as element icon, a
red underline decorates the element name and value and a tooltip provides more information about the nature of the
error.

Outline Specific Actions

The following actions are available in the :

• Flat presentation mode of the filtered results - when active, the application flattens the filtered result elements
to a single level.

• Show comments and processing instructions - show/hide comments and processing instructions in the Outline
view.

• Show text - show/hide additional text content for the displayed elements.
• Show attributes - show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel.
• Configure displayed attributes - displays the XML Structured Outline preferences page.

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Editing Documents | 67

Modification Follow-up

When editing, the Outline view dynamically follows the modifications introduced by the user, showing in the middle
of the panel the node which is currently being modified. This gives the user better insight on location where in the
document one is positioned and how the structure of the document is affected by one's modifications.

Document Structure Change

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view in
drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another one in the same panel then the dragged
element will be moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will
be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or
lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the
target element.

• If you hold down the (Ctrl) key after dragging, there will be performed a copy operation instead of a move one.

The drag and drop action in the Outline view can be disabled and enabled from the Preferences dialog.

The Popup Menu of the Outline Tree

The Append Child, Insert Before and Insert After submenus of the outline tree popup menu allow to quickly insert new
tags in the document at the place of the element currently selected in the Outline tree. The Append Child submenu lists
the names of all the elements which are allowed by the schema associated with the current document as child of the
current element. The Insert Before and Insert After submenus of the Outline tree popup menu list the elements which
are allowed by the schema associated with the current document as siblings of the current element inserted immediately
before respectively after the current element.

Edit attributes for the selected node. A dialog is presented allowing the user to see and edit the attributes of the selected
node.

The Toggle comment item of the outline tree popup menu is the same item as in the editor popup menu with the same
name. It encloses the currently selected element of the outline tree in an XML comment, if the element is not commented,
or uncomments it, if it is commented.

The Cut, Copy and Delete items of the popup menu execute

Document Tag Selection

The Outline view can also be used to search for a specific tag's location and contents in the edited document. Intuitively,
by selecting with the left mouse button the desired tag in the Outline view, the document is scrolled to the position of
the selected tag. Moreover, the tag's contents are selected in the document, making it easy to notice the part of the
document contained by that specific tag and furthermore to easily copy and paste the tag's contents in other parts of the
document or in other documents.

You can also use key search to look for a particular tag name in the Outline tree.

Large Documents

Let's consider the case of documenting a large project. It is likely to be several people involved. The resulting document
can be few megabytes in size. How to deal with this amount of data in such a way the work parallelism would not be
affected ?

Fortunately, XML provides two solutions for this: DTD entities and XInclude. It can be created a master document,
with references to the other document parts, containing the document sections. The users can edit individually the
sections, then apply an XSLT stylesheet over the master and obtain the result files, let say PDF or HTML.

Including Document Parts with DTD Entities

There are two conditions for including a part using DTD entities:

Editing Documents | 68

• The master document should declare the DTD to be used, while the external entities should declare the XML sections
to be referred;

• The document containing the section must not define again the DTD.

A master document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "../xml/docbookx.dtd" [
<!ENTITY testing SYSTEM "testing.xml" >]
>
<book>
<chapter> ...

The referred document looks like this:

<section> ... here comes the section content ... </section>

Note:

The indicated DTD and the element names (section, chapter) are used here only for illustrating the inclusion
mechanism. You can use any DTD and element names you need.

At a certain point in the master document there can be inserted the section testing.xml entity:

... &testing; ...

When splitting a large document and including the separate parts in the master file using external entities, only the master
file will contain the Document Type Definition (the DTD) or other type of schema. The included sections can't define
again the schema because the main document will not be valid. If you want to validate the parts separately you have to
use XInclude for assembling the parts together with the master file.

Including Document Parts with XInclude

XInclude is a standard for assembling XML instances into another XML document through inclusion. It enables larger
documents to be dynamically created from smaller XML documents without having to physically duplicate the content
of the smaller files in the main file. XInclude is targeted as the replacement for External Entities. The advantage of using
XInclude is that, unlike the entities method, each of the assembled documents is permitted to contain a Document Type
Declaration (DOCTYPE Decl.). This means that each file is a valid XML instance and can be independently validated.
It also means that the main document to which smaller instances are included can be validated without having to remove
or comment the DOCTYPE Decl. as is the case with External Entities. This makes XInclude a more convenient and
effective method for managing XML instances that need to be stand-alone documents and part of a much larger project.

The main application for XInclude is in the document-oriented content frameworks such as manuals and Web pages.
Employing XInclude enables authors and content managers to manage content in a modular fashion that is akin to Object
Oriented methods used in languages such as Java, C++ or C#.

The advantages of modular documentation include: reusable content units, smaller file units that are easier to be edited,
better version control and distributed authoring.

Include a chapter in an article using XInclude

Create a chapter file and an article file in the samples folder of the Oxygen XML Developer plugin
install folder.

Editing Documents | 69

Chapter file (introduction.xml) looks like this:

<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/docbookx.dtd">
<chapter>
 <title>Getting started</title>
 <section>
 <title>Section title</title>
 <para>Para text</para>
 </section>
</chapter>

Main article file looks like this:

<?xml version="1.0"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.docbook.org/xml/4.3/docbookx.dtd"
[<!ENTITY % xinclude SYSTEM
"../frameworks/docbook/dtd/xinclude.mod">
%xinclude;
]>
<article>
 <title>Install guide</title>
 <para>This is the install guide.</para>
 <xi:include xmlns:xi="http://www.w3.org/2001/XInclude"
 href="introduction.dita">
 <xi:fallback>
 <para>
 <emphasis>FIXME: MISSING XINCLUDE CONTENT</emphasis>
 </para>
 </xi:fallback>
 </xi:include>
</article>

In this example the following is of note:

• the DOCTYPE Decl. defines an entity that references a file containing the information to add the xi namespace to
certain elements defined by the DocBook DTD;

• the href attribute of the xi:include element specifies that the introduction.xml file will replace the xi:include
element when the document is parsed;

• if the introduction.xml file cannot be found, the parser will use the value of the xi:fallback element - a FIXME
message.

If you want to include only a fragment of a file in the master file, the fragment must be contained in a tag having an
xml:id attribute and you must use an XPointer expression pointing to the xml:id value. For example if the master file is:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml"
schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>
 <xi:include href="a.xml" xpointer="a1"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
</test>

Editing Documents | 70

and the a.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<test>
 <a xml:id="a1">test
</test>

after resolving the XPointer reference the document is:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml"
schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>
 <a xml:id="a1" xml:base="a.xml">test
</test>

The XInclude support in Oxygen XML Developer plugin is turned on by default. You can toggle it by going to the
entry Enable XInclude processing in the menu Window > Preferences ... > oXygen > XML > XML Parser. When
enabled, Oxygen XML Developer plugin will be able to validate and transform documents comprised of parts added
using XInclude.

Working with XML Catalogs

When Internet access is not available or the Internet connection is slow the OASIS XML catalogs present in the list
maintained in the XML Catalog Preferences panel will be scanned trying to map a remote system ID (at document
validation) or a URI reference (at document transformation) pointing to a resource on a remote Web server to a local
copy of the same resource. If a match is found then Oxygen XML Developer plugin will use the local copy of the
resource instead of the remote one. This enables the XML author to work on his/hers XML project without Internet
access or when the connection is slow and waiting until the remote resource is accessed and fetched becomes unacceptable.
Also XML catalogs make documents machine independent so that they can be shared by many developers by modifying
only the XML catalog mappings related to the shared documents.

Oxygen XML Developer plugin supports any XML catalog file that conforms to one of:

• the OASIS XML Catalogs Committee Specification v1.1

• the OASIS Technical Resolution 9401:1997 including the plain-text flavor described in that resolution

The version 1.1 of the OASIS XML Catalog specification introduces the possibility to map a system ID, a public ID or
a URI to a local copy using only a suffix of the ID or URI used in the actual document. This is done using the new
catalog elements systemSuffix and uriSuffix.

An XML catalog can be used also to map a W3C XML Schema specified with an URN in the xsi:schemaLocation
attribute of an XML document to a local copy of the schema. For example if the XML document specifies the schema
with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

Inside an XML Schema if an xs:import statement specifies only the namespace attribute, without the schemaLocation
attribute, Oxygen XML Developer plugin will try to resolve the specified namespace URI through one of the XML
catalogs configured in Preferences pages.

The URN can be resolved to a local schema file with a catalog entry like:

<system systemId="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

Editing Documents | 71

http://www.oasis-open.org/committees/entity/spec.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/specs/a401.htm
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.systemsuffix
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.urisuffix

An XML Catalog file can be created quickly in Oxygen XML Developer plugin starting from the two XML Catalog
document templates called OASIS XML Catalog 1.0 and OASIS XML Catalog 1.1 and available in the document templates
dialog.

User preferences related to XML Catalogs can be configured from Window > Preferences ... > oXygen > XML >
XML Catalog

XML Catalog

An XML catalog helps the XML parser to check a document for errors if the schema or a part of the schema is not
available, for example when an Internet connection is not available.

Important:

Oxygen XML Developer plugin XML Editor collects all the catalog files listed in the installed frameworks. No
matter what the Document Type Association matches the edited file, all the catalog mappings are considered
when resolving external references.

Converting Between Schema Languages

The Generate/Convert Schema allows you to convert a DTD or Relax NG (full or compact syntax) schema or a set of
XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where perfect equivalence
is not possible due to limitations of the target language Oxygen XML Developer plugin will generate an approximation
of the source schema.

The conversion functionality is available from XML Tools > Generate/Convert Schema... (Ctrl+Shift+\) ((Cmd+Shift+/

on Mac OS)) and from the toolbar button Convert to... .

A schema being edited can be converted with just one click on a toolbar button if that schema can be the subject of a
supported conversion.

Figure 37: Convert a Schema to Other Schema Language

The language of the target schema is specified with one of the four radio buttons of the Output panel. The encoding,
the maximum line width and the number of spaces for one level of indentation can be also specified in this panel.

The conversion can be further fine-tuned by specifying more advanced options available from the Advanced options
button. For example if the input is a DTD and the output is an XML Schema the advanced options are:

Editing Documents | 72

Figure 38: Convert a Schema to Other Schema Language - Advanced Options

For the Input panel:

• xmlns field - Specifies the default namespace, that is the namespace used for unqualified element names;
• xmlns table - Each row specifies in the prefix used for a namespace in the input schema;
• colon-replacement - Replaces colons in element names with the specified chars when constructing the names of

definitions used to represent the element declarations and attribute list declarations in the DTD;
• element-define - Specifies how to construct the name of the definition representing an element declaration from the

name of the element. The specified value must contain exactly one percent character. This percent character is
replaced by the name of element (after colon replacement) and the result is used as the name of the definition;

• inline-attlist - Instructs the application not to generate definitions for attribute list declarations, but instead move
attributes declared in attribute list declarations into the definitions generated for element declarations. This is the
default behavior when the output language is XSD;

• attlist-define - Specifies how to construct the name of the definition representing an attribute list declaration from
the name of the element. The specified value must contain exactly one percent character. This percent character is
replaced by the name of element (after colon replacement) and the result is used as the name of the definition;

• any-name - Specifies the name of the definition generated for the content of elements declared in the DTD as having
a content model of ANY;

• strict-any - Preserves the exact semantics of ANY content models by using an explicit choice of references to all
declared elements. By default, Trang uses a wildcard that allows any element;

• generate-start - Specifies whether Trang should generate a start element. DTD's do not indicate what elements are
allowed as document elements. Trang assumes that all elements that are defined but never referenced are allowed
as document elements;

• annotation-prefix - Default values are represented using an annotation attribute prefix:defaultValue where prefix is
the specified value and is bound to http://relaxng.org/ns/compatibility/annotations/1.0 as defined by the RELAX NG
DTD Compatibility Committee Specification. By default, Trang will use a for prefix unless that conflicts with a
prefix used in the DTD.

Editing Documents | 73

For the Output panel:

• disable-abstract-elements - Disables the use of abstract elements and substitution groups in the generated XML
Schema. This can also be controlled using an annotation attribute;

• any-process-contents - One of the values: strict, lax, skip. Specifies the value for the processContents attribute of
any elements. The default is skip (corresponding to RELAX NG semantics) unless the input format is dtd, in which
case the default is strict (corresponding to DTD semantics);

• any-attribute-process-contents - Specifies the value for the processContents attribute of anyAttribute elements. The
default is skip (corresponding to RELAX NG semantics).

Formatting and Indenting Documents (Pretty Print)

In structured markup languages, the whitespace between elements that is created using the Space bar, Tab or multiple
line breaks is not recognized by the parsing tools. Often this means that when structured markup documents are opened,
they are arranged as one long, unbroken line, that seems to be a single paragraph.

While this is a perfectly acceptable practice, it makes editing difficult and increases the likelihood of errors being
introduced. It also makes the identification of exact error positions difficult. Formatting and Indenting, also called Pretty
Print, enables such documents to be neatly arranged, in a manner that is consistent and promotes easier reading on
screen and in print output.

Pretty print is in no way associated with the layout or formatting that will be used in the transformed document. This
layout and formatting is supplied by the XSL stylesheet specified at the time of transformation.

To change the indenting of the current selected text see the Indent selection action.

For user preferences related to formatting and indenting like Detect indent on open and Indent on paste see the
corresponding Preferences panel.

XML elements can be excepted from the reformatting performed by the pretty-print operation by including them in the
Preserve space elements (XPath) list. That means that when the Format and Indent (pretty-print) action encounters in
the document an element with the name contained in this list, the whitespace is preserved inside that element. This is
useful when most of the elements must be reformatted with the exception of a few ones which are listed here.

For the situation when whitespace should be preserved in most elements with the exception of a few elements, the names
of these elements must be added to the Strip space elements (XPath) list.

In addition to simple element names, both the Preserve space elements (XPath) list and the Strip space elements (XPath)
one accept a restricted set of XPath expressions to cover a pattern of XML elements with only one expression. The
allowed types of expressions are:

the XPath descendant axis can be used only at the beginning of the expression; the
namespace prefix can be attached to any namespace, no namespace binding check
is performed when applying the pretty-print operation

//xs:documentation

note the use of the XPath child axis/chapter/abstract/title

the descendant axis can be followed by the child axis//section/title

The value of an xml:space attribute present in the XML document on which the pretty-print operation is applied always
takes precedence over the Preserve space elements (XPath) and the Strip space elements (XPath) lists.

Viewing Status Information

Status information generated by the Schema Detection, Validation, Automatic validation and Transformation threads
are fed into the Console view allowing the user to monitor how the operation is being executed.

Editing Documents | 74

Figure 39:The Console view messages

Messages contain a timestamp, the name of the thread that generated it and the actual status information. The number
of displayed messages in the Console view can be controlled from the Options panel.

XML Editor Specific Actions

Oxygen XML Developer plugin offers groups of actions for working on single XML elements. They are available from
the the context menu of the main editor panel.

Edit Actions

The following XML specific editing actions are available in Text mode:

• contextual menu of current editor > Toggle comment (Ctrl + /) - Comments the current selection of the current
editor. If the selection already contains a comment the action removes the comment from around the selection. If
there is no selection in the current editor and the cursor is not positioned inside a comment the current line is
commented. If the cursor is positioned inside a comment then the commented text is uncommented.

Select Actions

In Text mode of the XML editor these actions are enabled when the caret is positioned inside a tag name:

• contextual menu of current editor > Select > Element - Selects the entire current element.
• contextual menu of current editor > Select > Content - Selects the content of the current element, excluding the

start tag and end tag. If it is applied repeatedly, starts with selecting the XML element from the cursor position and
extends the selection to the ancestor XML elements. Each execution of the action extends the current selection to
the surrounding element.

• contextual menu of current editor > Select > Attributes - Selects all the attributes of the current element.
• contextual menu of current editor > Select > Parent - Selects the parent element of the current element.
• Double click on an element or processing instruction - If the double click is done before the start tag of an element

or after the end tag of an element then all the element is selected by the double click action. If it is done after the
start tag or before the end tag then only the element content without the start tag and end tag is selected.

• Double click after the opening quote or before the closing quote of an attribute value - Select the whole attribute
value.

Source Actions

The following actions can be applied on the text content of the XML editor:

• contextual menu of current editor > Source > Escape Selection ... - Escapes a range of characters by replacing
them with the corresponding character entities.

• contextual menu of current editor > Source > Unescape Selection ... - Replaces the character entities with
the corresponding characters.

• contextual menu of current editor > Source > Indent selection (Ctrl + I) ((Cmd + I on Mac OS)) - Corrects
the indentation of the selected block of lines if it does not follow the current indenting preferences of the user.

Editing Documents | 75

• contextual menu of current editor > Source > Format and Indent Element (Ctrl + Shift + I) - Pretty prints
the element that surrounds the caret position.

• contextual menu of current editor > Source > Insert XInclude - Shows a dialog that allows you to browse
and select the content to be included and generates automatically the corresponding XInclude instruction.

• contextual menu of current editor > Source > Import entities list - Shows a dialog that allows you to select
a list of files as sources for external DTD entities. The internal subset of the DOCTYPE declaration of your document
will be updated with the chosen entities. For instance, if choosing the file chapter1.xml and chapter2.xml,
the following section is inserted in the DOCTYPE:

 <!ENTITY chapter1 SYSTEM "chapter1.xml">
 <!ENTITY chapter2 SYSTEM "chapter2.xml">

• contextual menu of current editor > Join and normalize - The action works on the selection. It joins the lines by
replacing the line separator with a single space character. It also normalizes the whitespaces by replacing a sequence
of such characters with a single space.

XML Document Actions

The Text mode of the XML editor provides the following document level actions:

• contextual menu of current editor > Show Definition - Moves the cursor to the definition of the current element
in the schema associated with the edited XML document (DTD, XML Schema, Relax NG schema).

• contextual menu of current editor > Copy XPath (Ctrl+Shift+.) - Copies the XPath expression of the current
element or attribute from the current editor to the clipboard.

• contextual menu of current editor > Go to Matching Tag - Moves the cursor to the end tag that matches the
start tag, or vice versa.

• contextual menu of current editor > Go after Next Tag (Ctrl+]) - Moves the cursor to the end of the next tag.
• contextual menu of current editor > Go after Previous Tag (Ctrl+[) - Moves the cursor to the end of the previous

tag.
• XML > Associate XSLT/CSS Stylesheet - Inserts an xml-stylesheet processing instruction at the

beginning of the document referencing either an XSLT or a CSS file depending on the user selection. Either reference
is useful for rendering the document in a Web browser when the action Open in browser is executed. Referencing
the XSLT file is also useful for automatic detection of the XSLT stylesheet when there is no scenario associated
with the current document.

When associating the CSS stylesheet, the user can also specify a title for it if it is an alternate one. Setting a Title for
the CSS makes it the author's preferred stylesheet. Selecting the Alternate checkbox makes the CSS an alternate
stylesheet.

Oxygen XML Developer plugin fully implements the W3C recommendation regarding Associating Style Sheets
with XML documents. See also Specifying external style sheets in HTML documents.

XML Refactoring Actions

The following refactoring actions are available while editing an XML document:

• context menu of current editor > XML Refactoring > Surround with tag... (Alt+Shift+E) ((Cmd+Alt+E
on Mac OS)) - Allows you to choose a tag that encloses a selected portion of content. If there is no selection, the
start and end tags are inserted at the caret position. The caret is placed:

• between the start and end tag, if the Cursor position between tags option is set;
• at the end of the start tag, in an insert-attribute position, if the Cursor position between tags option is not set.

• context menu of current editor > XML Refactoring > Surround with <tag> (Alt+Shift+/) ((Cmd+Alt+/
on Mac OS)) - Similar in behavior with the Surround with tag... action, except that it inserts the last tag used by
the Surround with tag... action.

Editing Documents | 76

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-html40/present/styles.html#h-14.3.2

• context menu of current editor > XML Refactoring > Rename element (Alt+Shift+R) ((Cmd+Alt+R on
Mac OS)) - the element from the caret position and the elements that have the same name as the current element
can be renamed according with the options from the Rename dialog.

context menu of current editor > XML Refactoring > Rename prefix (Alt+Shift+P) ((Cmd+Alt+P on Mac
OS)) - the prefix of the element from the caret position and the elements that have the same prefix as the current
element can be renamed according with the options from the Rename dialog.

Selecting the Rename current element prefix option, the application will recursively traverse the current element
and all its children.

For example, to change the xmlns:p1="ns1" association existing in the current element to xmlns:p5="ns1",
just select this option and press OK. If the association xmlns:p1="ns1" is applied on the parent of the current
element, then Oxygen XML Developer plugin will introduce a new declaration xmlns:p5="ns1" in the current
element and will change the prefix from p1 to p5. If p5 is already associated in the current element with another
namespace, let's say ns5, then a dialog showing the conflict will be displayed. Pressing the OK button, the prefix
will be modified from p1 to p5 without inserting a new declaration xmlns:p5="ns1". On Cancel no modification
is made.

Selecting the Rename current prefix in all document option, the application will apply the change on the entire
document.

To apply the action also inside attribute values one must check the Rename also attribute values that start with
the same prefix checkbox.

• context menu of current editor > XML Refactoring > Split element - Split the element from the caret position
in two identical elements. The caret must be inside the element.

• context menu of current editor > XML Refactoring > Join elements (Alt+Shift+F) ((Cmd+Alt+F on Mac
OS)) - Joins the left and right elements relative to the current caret position. The elements must have the same name,
attributes and attributes values.

• context menu of current editor > XML Refactoring > Delete element tags (Alt+Shift+,) ((Cmd+Alt+, on
Mac OS)) - Deletes the start and end tag of the current element.

Smart Editing

The following helper actions are available in the XML editor:

• Closing tag auto-expansion - If you want to insert content into an auto closing tag like <tag/> deleting the / character
saves some keystrokes by inserting a separate closing tag automatically and placing the cursor between the start and
end tags: <tag></tag>

• Auto-rename matching tag - When you edit the name of the start tag, Oxygen XML Developer plugin will mirror-edit
the name of the matching end tag. This feature can be controlled from the Content Completion option page.

• Auto-breaking the edited line - The Hard line wrap option breaks the edited line automatically when its length
exceeds the maximum line length defined for the pretty-print operation.

• Indent on Enter - The Indent on Enter option indents the new line inserted when Enter is pressed.
• Smart Enter - The Smart Enter option inserts an empty line between the start and end tags. If Enter is pressed between

a start and an end tag the action places the cursor in an indented position on the empty line between the lines that
contain the start and end tag.

• Triple click - A triple click with the left mouse button selects a different region of text of the current document
depending on the position of the click in the document:

• if the click position is inside a start tag or an end tag then the entire element enclosed by that tag is selected
• if the click position is immediately after a start tag or immediately before an end tag then the entire content of

the element enclosed by that tag is selected, including all the child elements but excluding the start tag and the
end tag of the element

• otherwise the triple click selects the entire current line of text

Editing Documents | 77

Syntax Highlight Depending on Namespace Prefix

The syntax highlight scheme of an XML file type allows the configuration of a color per each type of token which can
appear in an XML file. Distinguishing between the XML tag tokens based on the namespace prefix brings additional
visual help in editing some XML file types. For example in XSLT stylesheets elements from different namespaces like
XSLT, XHTML, XSL:FO or XForms are inserted in the same document and the editor panel can become cluttered.
Marking tags with different colors based on the namespace prefix allows easier identification of the tags.

Figure 40: Example of Coloring XML Tags by Prefix

Editing XHTML Documents

XHTML documents with embedded CSS, JS, PHP, and JSP scripts are rendered with dedicated coloring schemes. You
can customize them in the Window > Preferences > oXygen > Editor > Syntax Highlight preferences page.

Editing XML Schemas
An XML Schema describes the structure of an XML document and is used to validate XML document instances against
it, in order to check that the XML instances conform to the specified requirements. If an XML instance conforms to the
schema then it is said to be valid, otherwise it is invalid.

Oxygen XML Developer plugin provides two editing modes for working with XML Schema: the usual Text editing
mode and the visual Design editing mode.

XML Schema Text Editor

This page is used to edit the XML Schema in a text mode. It offers powerfull content completion support, a synchronized
Outline view and multiple refactory actions. The outline view has two display modes: the mode and the components
mode.

A diagram of the XML Schema can be presented side by side with the text. To activate the diagram presentation you
have to enable the Show Full Model XML Schema diagram checkbox from the Diagram preferences page.

Special Content Completion Features

The editor enhances the content completion of the XML editor inside the xs:annotation/xs:appinfo elements
of an XML Schema with special support for the elements and attributes from a custom schema (by default ISO
Schematron). This content completion enhancement can be configured from the XSD Content Completion preferences
page.

If the current XML Schema schema imports or includes other XML Schema schemas then the global types and elements
defined in the imported / included schemas are available in the content completion window together with the ones defined
in the current file.

Editing Documents | 78

Figure 41: Schematron Support in XML Schema Content Completion

XML Schema Actions

• The Show Definition action accessed from the contextual menu of current editor > Schema > Show Definition
(Ctrl + Alt + ENTER) moves the cursor to the definition of the referenced XML Schema item. The referenced item
can be an element, group, simple type or complex type. The same action is executed on a double click on a component
name in the Schema Outline view. You can define a scope for this action in the same manner you define it for Search
Declarations.

Flatten an XML Schema

If an XML Schema is organized on several levels linked by xs:include statements, sometimes it is more convenient
to work on the schema as a single flat file. To flatten schema, Oxygen XML recursively adds included files to the master
one. That means Oxygen XML replaces the xs:include elements with the ones coming from the included files.

This action works at file level not at schema document level so it is available only in Text mode of XML Schema editor.
It can be accessed from the XML Schema text editor's contextual menu > Refactoring > Flatten Schema. Alternatively
you can select one or more schemas in the Project view and invoke the action from the view's contextual menu. In this
last case the feedback of the action will be presented in the Information view.

Schema flattening can also be accessed from command line by running scripts that come with Oxygen XML installation:

• flattenSchema.bat on Windows;
• flattenSchema.sh on Mac OS X and Unix/Linux.

The input file is the first argument of the script and the output file is the second argument.

The references to the included schema files can be resolved through an XML Catalog.

XML Schema Diagram Editor

This section explains how to use the graphical diagram of a W3C XML Schema.

Introduction

XML Schemas enable document designers to specify the allowed structure and content of an XML document and to
check if an XML document is valid.

Oxygen XML Developer plugin provides a simple and expressive Design mode for editing XML Schemas. The schema
diagram helps both the content authors who want to understand a schema and schema designers who develop complex
schemas.

Editing Documents | 79

Figure 42: XML Schema Diagram

XML Schema Components

A schema diagram contains a series of interconnected components. To quickly identify the relation between two connected
components, the connection is represented as:

• a thick line to identify a connection with a required component (in the following image, family is a required
element);

• a thin line to identify a connection with an optional component (in the following image, email is an optional
element).

Editing Documents | 80

The following topics explain in detail all available components and their symbols as they appear in an XML schema
diagram.

xs:schema

Defines the root element of a schema. A schema document contains representations for a collection of schema components,
e.g. type definitions and element declarations, which have a common target namespace. See more info at
http://www.w3.org/TR/xmlschema-1/#element-schema.

By default it displays the targetNamespace property when rendered.

xs:schema properties

Possible ValuesDescriptionProperty Name

Any URIThe schema target namespace.Target Namespace

qualified, unqualified, [Empty]. Default
value is unqualified.

Determining whether local element
declarations will be
namespace-qualified by default.

Element Form Default

qualified, unqualified, [Empty]. Default
value is unqualified.

Determining whether local attribute
declarations will be
namespace-qualified by default.

Attribute Form Default

#all, extension, restriction, substitution,
restriction extension, restriction

Default value of the block attribute
of xs:element and
xs:complexType.

Block Default

substitution, extension substitution,
restriction extension substitution,
[Empty]

#all, restriction, extension, restriction
extension, [Empty]

Default value of the final attribute
of xs:element and
xs:complexType.

Final Default

Any tokenSchema versionVersion

Any IDThe schema idID

Not editable property.The edited component name.Component

Not editable property.The schema system idSystemID

xs:element

Defines an element. An element declaration is an association of a name with a type definition, either simple or complex,
an (optional) default value and a (possibly empty) set of identity-constraint definitions. See more info at
http://www.w3.org/TR/xmlschema-1/#element-element.

An element by default displays the following properties when rendered in the diagram: default, fixed, abstract and type.
When referenced or declared locally, the element graphical representation also contains the value for the minOccurs

Editing Documents | 81

http://www.w3.org/TR/xmlschema-1/#element-schema
http://www.w3.org/TR/xmlschema-1/#element-element

and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to
the element are drawn using dotted lines if the element is optional.

xs:element properties

MentionsPossible ValuesDescriptionProperty Name

If missing, will be displayed
as '[element]' in diagram.

Any NCName for global or
local elements, any QName
for element references.

The element name. Always
required.

Name

Appears only for local
elements.

true/falseWhen set, the local element
is a reference to a global
element.

Is Reference

For all elements. For
references, the value is set in
the referred element.

All declared or built-in
types. In addition, the
following anonymous types
are available:

The element type.Type

[ST-restriction], [ST-union],
[ST-list], [CT-anonymous],
[CT-extension SC],
[CT-restriction SC],
[CT-restriction CC],
[CT-extension CC].

For elements with complex
type, with simple or complex
content.

All declared or built-in typesThe extended/restricted base
type.

Base Type

For elements with complex
type.

true/falseDefines if the complex type
content model will be mixed.

Mixed

For elements with complex
type which extends/restricts

simple/complexThe content of the complex
type.

Content

a base type. It is
automatically detected.

For elements with complex
type which has a complex
content.

true/falseDefines if the complex
content model will be mixed.

Content Mixed

The fixed and default
attributes are mutually
exclusive.

Any stringDefault value of the element.
A default value is
automatically assigned to the
element when no other value
is specified.

Default

The fixed and default
attributes are mutually
exclusive.

Any stringA simple content element
may be fixed to a specific
value using this attribute. A
fixed value is also

Fixed

automatically assigned to the
element and you cannot
specify another value.

Only for references/local
elements

A numeric positive value.
Default value is 1

Minimum number of
occurrences of the element.

Min Occurs

Only for references/local
elements

A numeric positive value.
Default value is 1

Maximum number of
occurrences of the element.

Max Occurs

Editing Documents | 82

MentionsPossible ValuesDescriptionProperty Name

For global and reference
elements

All declared elementsQualified name of the head
of the substitution group to
which this element belongs.

Substitution Group

For global elements and
element references

true/falseControls whether the
element may be used directly
in instance XML documents.

Abstract

When set to true, the element
may still be used to define
content models, but it must
be substituted through a
substitution group in the
instance document.

Only for local elementsunqualified/qualifiedDefines if the element is
"qualified" (i.e., belongs to

Form

the target namespace) or
"unqualified" (i.e., doesn't
belong to any namespace).

For global elements and
element references

true/falseWhen this attribute is set to
true, the element can be
declared as nil using an

Nillable

xsi:nil attribute in the
instance documents.

For global elements and
element references

#all, restriction,
extension,substitution,
extension restriction,

Controls whether the
element can be subject to a
type or substitution group

Block

extension substitution,substitution. '#all' blocks any
restriction substitution,substitution, 'substitution'
restriction extension
substitution

blocks any substitution
through substitution groups
and 'extension'/'restriction'
block any substitution (both
through xsi:type and
substitution groups) by
elements or types, derived
respectively by extension or
restriction from the type of
the element. Its default value
is defined by the
blockDefault attribute
of the parent xs:schema.

For global elements and
element references

#all, restriction, extension,
restriction extension,
[Empty]

Controls whether the
element can be used as the
head of a substitution group
for elements whose types are

Final

derived by extension or
restriction from the type of
the element. Its default value
is defined by the
finalDefault attribute
of the parent xs:schema.

For all elements.Any idThe component id.ID

Editing Documents | 83

MentionsPossible ValuesDescriptionProperty Name

For all elements.Not editable property.The edited component name.Component

For all elements.Not editable property.The component namespace.Namespace

For all elements.Not editable property.The component system id.System ID

xs:attribute

Defines an attribute. See more info at http://www.w3.org/TR/xmlschema-1/#element-attribute.

An attribute by default displays the following properties when rendered in the diagram: default, fixed, use and type.
Connectors to the attribute are drawn using dotted lines if the attribute use is optional. The attribute name is stroked out
if prohibited.

xs:attribute properties

MentionsPossible ValueDescriptionProperty Name

For all local or global
attributes. If missing, will be

Any NCName for
global/local attributes, all

Attribute name. Always
required.

Name

displayed as '[attribute]' in
the diagram.

declared attributes' QName
for references.

For local attributes.true/falseWhen set, the local attribute
is a reference.

Is Reference

For all attributes. For
references, the type is set to
the referred attribute.

All global simple types and
built-in simple types. In
addition another 3 proposals
are present: [anonymous

Qualified name of a simple
type.

Type

restriction], [anonymous
list], [anonymous union] for
creating anonymous simple
types more easily.

For all local or global
attributes. For references the

Any stringDefault value. When
specified, an attribute is

Default

value is from the referred
attribute.

added by the schema
processor (if it is missing
from the instance XML
document) and it is given
this value. The default and
fixed attributes are mutually
exclusive.

For all local or global
attributes. For references the

Any stringWhen specified, the value of
the attribute is fixed and

Fixed

value is from the referred
attribute.

must be equal to this value.
The default and fixed
attributes are mutually
exclusive.

For local attributesoptional, required, prohibitedPossible usage of the
attribute. Marking an

Use

attribute "prohibited" is
useful to exclude attributes

Editing Documents | 84

http://www.w3.org/TR/xmlschema-1/#element-attribute

MentionsPossible ValueDescriptionProperty Name

during derivations by
restriction.

For local attributes.unqualified/qualifiedSpecifies if the attribute is
qualified (i.e., must have a

Form

namespace prefix in the
instance XML document) or
not. The default value for
this attribute is specified by
the
attributeFormDefault
attribute of the xs:schema
document element.

For all attributes.Any idThe component id.ID

For all attributes.Not editable property.The edited component name.Component

For all attributes.Not editable property.The component namespace.Namespace

For all attributes.Not editable property.The component system id.System ID

xs:complexType

Defines a top level complex type. Complex Type Definitions provide for: See more data at
http://www.w3.org/TR/xmlschema-1/#element-complexType.

• Constraining element information items by providing Attribute Declarations governing the appearance and content
of attributes.

• Constraining element information item children to be empty, or to conform to a specified element-only or mixed
content model, or else constraining the character information item children to conform to a specified simple type
definition.

• Using the mechanisms of Type Definition Hierarchy to derive a complex type from another simple or complex type.
• Specifying post-schema-validation infoset contributions for elements.
• Limiting the ability to derive additional types from a given complex type.
• Controlling the permission to substitute, in an instance, elements of a derived type for elements declared in a content

model to be of a given complex type.

Tip: A complex type which is a base type to another type will be rendered with yellow background.

xs:complexType properties

MentionsPossible ValuesDescriptionProperty Name

Only for global complex
types. If missing, will be

Any NCNameThe name of the complex
type. Always required.

Name

displayed as '[complexType]'
in diagram.

For complex types with
simple or complex content.

Any from the declared
simple or complex types.

The name of the
extended/restricted types.

Base Type Definition

Only when base type is set.
If the base type is a simple

restriction/ extensionThe derivation method.Derivation Method

type, the derivation method
is always extension.

Editing Documents | 85

http://www.w3.org/TR/xmlschema-1/#element-complexType

MentionsPossible ValuesDescriptionProperty Name

For complex types which
extend/restrict a base type. It
is automatically detected.

simple/ complexThe content of the complex
type.

Content

For complex contents.true/falseSpecifies if the complex
content model will be mixed.

Content Mixed

For global and anonymous
complex types.

true/falseSpecifies if the complex type
content model will be mixed.

Mixed

For global and anonymous
complex types.

true/falseWhen set to true, this
complex type cannot be used
directly in the instance

Abstract

documents and needs to be
substituted using an
xsi:type attribute.

For global complex types.all, extension, restriction,
extension restriction,
[Empty]

Controls whether a
substitution (either through
a xsi:type or substitution
groups) can be performed for

Block

a complex type, which is an
extension or a restriction of
the current complex type.
This attribute can only block
such substitutions (it cannot
"unblock" them), which can
also be blocked in the
element definition. The
default value is defined by
the blockDefault
attribute of xs:schema.

For global complex types.all, extension, restriction,
extension restriction,
[Empty]

Controls whether the
complex type can be further
derived by extension or
restriction to create new
complex types.

Final

For all complex types.Any idThe component id.ID

For all complex types.Not editable property.The edited component name.Component

For all complex types.Not editable property.The component namespace.Namespace

For all complex types.Not editable property.The component system id.System ID

xs:simpleType

Defines a simple type. A simple type definition is a set of constraints on strings and information about the values they
encode, applicable to the normalized value of an attribute information item or of an element information item with no
element children. Informally, it applies to the values of attributes and the text-only content of elements. See more info
at http://www.w3.org/TR/xmlschema-1/#element-simpleType.

Tip: A simple type which is a base type to another type will be rendered with yellow background.

xs:simpleType properties

Editing Documents | 86

http://www.w3.org/TR/xmlschema-1/#element-simpleType

ScopePossible ValuesDescriptionName

Only for global simple types.
If missing, will be displayed
as '[simpleType]' in diagram.

Any NCName.Simple type name. Always
required.

Name

For all simple types.restriction,list or unionThe simple type category:
restriction, list or union.

Derivation

For global and anonymous
simple types with the

All global simple types and
built-in simple types. In

A simple type definition
component. Required if

Base Type

derivation method set to
restriction.

addition another 3 proposals
are present: [anonymous
restriction], [anonymous

derivation method is set to
restriction.

list], [anonymous union] for
easily create anonymous
simple types.

For global and anonymous
simple types with the

All global simple types and
built-in simple types(from

A simple type definition
component. Required if

Item Type

derivation method set to list.schema for schema). Inderivation method is set to
list. Derivation by list is the

process of transforming a
addition another 3 proposals
are present: [anonymous

simple datatype (named therestriction], [anonymous
item type) into alist], [anonymous union] for
whitespace-separated list ofeasily create anonymous

simple types. values from this datatype.
The item type can be defined
inline by adding a
simpleType definition as a
child element of the list
element, or by reference,
using the itemType attribute
(it is an error to use both).

For global and anonymous
simple types with the

Not editable property.Category for grouping union
members.

Member Types

derivation method set to
union.

For global and anonymous
simple types with the

All global simple types and
built-in simple types(from

A simple type definition
component. Required if

Member

derivation method set toschema for schema). Inderivation method is set to
union. union. Deriving a simple

datatype by union merges the
addition another 3 proposals
are present: [anonymous

lexical spaces of severalrestriction], [anonymous
simple datatypes (calledlist], [anonymous union] for
member types) to create aeasily create anonymous

simple types. new simple datatype. The
member types can be defined
either by reference (through
the memberTypes attribute)
or embedded as simple
datatype local definitions in
the xs:union element. Both
styles can be mixed.

Only for global simple types.#all, list, restriction, union,
list restriction, list union,

Blocks any further
derivations of this datatype

Final

Editing Documents | 87

ScopePossible ValuesDescriptionName

restriction union. In addition,
[Empty] proposal is present
for set empty string as value.

(by list, union, derivation or
all).

For all simple typesAny id.The component id.ID

Only for global and local
simple types

Not editable property.The name of the edited
component.

Component

For global simple types.Not editable property.The component namespace.Namespace

Not present for built-in
simple types..

Not editable property.The component system id.System ID

xs:group

Defines a group of elements to be used in complex type definitions. See more info at
http://www.w3.org/TR/xmlschema-1/#element-group.

When referenced, the graphical representation also contains the value for the minOccurs and maxOccurs properties (for
0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the group are drawn using dotted
lines if the group is optional.

xs:group properties

MentionsPossible ValuesDescriptionProperty Name

If missing, will be displayed
as '[group]' in diagram.

Any NCName for global
groups, all declared groups
for reference.

The group name. Always
required.

Name

Appears only for reference
groups.

A numeric positive value.
Default value is 1.

Minimum number of
occurrences of the group.

Min Occurs

Appears only for reference
groups.

A numeric positive value.
Default value is 1.

Maximum number of
occurrences of the group.

Max Occurs

For all groups.Any idThe component id.ID

For all groups.Not editable property.The edited component name.Component

For all groups.Not editable propertyThe component namespace.Namespace

For all groups.Not editable property.The component system id.System ID

xs:attributeGroup

Defines an attribute group to be used in complex type definitions. See more info at
http://www.w3.org/TR/xmlschema-1/#element-attributeGroup.

xs:attributeGroup properties

MentionsPossible ValuesDescriptionProperty Name

For all global or referred
attribute groups. If missing,

Any NCName for global
attribute groups, all declared

Attribute group name.
Always required.

Name

will be displayed as
'[attributeGroup]' in diagram.

attribute groups for
reference.

Editing Documents | 88

http://www.w3.org/TR/xmlschema-1/#element-group
http://www.w3.org/TR/xmlschema-1/#element-attributeGroup

MentionsPossible ValuesDescriptionProperty Name

For all attribute groups.Any idThe component id.ID

For all attribute groups.Not editable property.The edited component name.Component

For all attribute groups.Not editable property.The component namespace.Namespace

For all attribute groups.Not editable property.The component system id.System ID

xs:include

Adds multiple schemas with the same target namespace to a document. See more info at
http://www.w3.org/TR/xmlschema-1/#element-include.

xs:include properties

Possible ValuesDescriptionProperty Name

Any URIIncluded schema location.Schema Location

Any IDInclude ID.ID

Not editable property.The component name.Component

xs:import

Adds multiple schemas with different target namespace to a document. See more info at
http://www.w3.org/TR/xmlschema-1/#element-import.

xs:import properties

Possible ValuesDescriptionProperty Name

Any URIImported schema locationSchema Location

Any URIImported schema namespaceNamespace

Any IDImport IDID

Not editable property.The component nameComponent

xs:redefine

Redefines simple and complex types, groups, and attribute groups from an external schema. See more info at
http://www.w3.org/TR/xmlschema-1/#element-redefine.

xs:redefine properties

Possible ValuesDescriptionProperty Name

Any URIRedefine schema location.Schema Location

Any IDRedefine IDID

Not editable property.The component name.Component

Editing Documents | 89

http://www.w3.org/TR/xmlschema-1/#element-include
http://www.w3.org/TR/xmlschema-1/#element-import
http://www.w3.org/TR/xmlschema-1/#element-redefine

xs:notation

Describes the format of non-XML data within an XML document. See more info at
http://www.w3.org/TR/xmlschema-1/#element-notation.

xs:notation properties

MentionsPossible valuesDescriptionProperty Name

If missing, will be displayed
as '[notation]' in diagram.

Any NCName.The notation name. Always
required.

Name

Required if public identifier
is absent, otherwise optional.

Any URIThe notation system
identifier.

System Identifier

Required if system identifier
is absent, otherwise optional.

A Public ID valueThe notation public
identifier.

Public Identifier

For all notations.Any IDThe component id.ID

For all notations.Not editable property.The edited component name.Component

For all notations.Not editable property.The component namespace.Namespace

For all notations.Not editable property.The component system id.System ID

xs:sequence, xs:choice, xs:all

Figure 43: An xs:sequence in diagram

xs:sequence specifies that the child elements must appear in a sequence. Each child element can occur from 0 to
any number of times. See more info at http://www.w3.org/TR/xmlschema-1/#element-sequence.

Figure 44: An xs:choice in diagram

xs:choice allows only one of the elements contained in the declaration to be present within the containing element.
See more info at http://www.w3.org/TR/xmlschema-1/#element-choice.

Figure 45: An xs:all in diagram

xs:all specifies that the child elements can appear in any order. Each child element can occur 0 or 1 time. See more
info at http://www.w3.org/TR/xmlschema-1/#element-all.

The compositor graphical representation also contains the value for the minOccurs and maxOccurs properties (for
0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the compositor are drawn using
dotted lines if the compositor is optional.

xs:sequence, xs:choice, xs:all properties

MentionsPossible ValuesDescriptionProperty Name

'all' is only available as a
child of a group or complex
type.

sequence, choice, all.Compositor type.Compositor

Editing Documents | 90

http://www.w3.org/TR/xmlschema-1/#element-notation
http://www.w3.org/TR/xmlschema-1/#element-sequence
http://www.w3.org/TR/xmlschema-1/#element-choice
http://www.w3.org/TR/xmlschema-1/#element-all

MentionsPossible ValuesDescriptionProperty Name

The property is not present
if compositor is 'all' and is
child of a group.

A numeric positive value.
Default is 1.

Minimum occurrences of
compositor.

Min Occurs

The property is not present
if compositor is 'all' and is
child of a group.

A numeric positive value.
Default is 1.

Maximum occurrences of
compositor.

Max Occurs

For all compositors.Any IDThe component id.ID

For all compositors.Not editable property.The edited component name.Component

For all compositors.Not editable property.The component system id.System ID

xs:any

Enables the author to extend the XML document with elements not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema-1/#element-any.

The graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and 1..1
occurs the values are implied by the connector style) and the connectors to the wildcard are drawn using dotted lines if
the wildcard is optional.

xs:any properties

Possible ValuesDescriptionProperty Name

##any, ##other, ##targetNamespace,
##local or anyURI

The list of allowed namespaces. The
namespace attribute expects a list of
namespace URIs. In this list, two

Namespace

values have a specific meaning:
'##targetNamespace' stands for the
target namespace, and '##local' stands
for local attributes (without
namespaces).

skip, lax, strictType of validation required on the
elements allowed for this wildcard.

Process Contents

A numeric positive value. Default is 1.Minimum occurrences of anyMin Occurs

A numeric positive value. Default is 1.Maximum occurrences of anyMax Occurs

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:anyAttribute

Enables the author to extend the XML document with attributes not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema-1/#element-anyAttribute.

xs:anyAttribute properties

Editing Documents | 91

http://www.w3.org/TR/xmlschema-1/#element-any
http://www.w3.org/TR/xmlschema-1/#element-anyAttribute

Possible ValueDescriptionProperty Name

##any, ##other, ##targetNamespace,
##local or anyURI

The list of allowed namespaces. The
namespace attribute expects a list of
namespace URIs. In this list, two

Namespace

values have a specific meaning:
'##targetNamespace' stands for the
target namespace, and '##local' stands
for local attributes (without
namespaces).

skip, lax, strictType of validation required on the
elements allowed for this wildcard.

Process Contents

Any ID.The component id.ID

Not editable property.The name of the edited component.Component

Not editable property.The component system id.System ID

xs:unique

Defines that an element or an attribute value must be unique within the scope. See more info at
http://www.w3.org/TR/xmlschema-1/#element-unique.

xs:unique properties

Possible ValuesDescriptionProperty Name

Any NCName.The unique name. Always required.Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:key

Specifies an attribute or element value as a key (unique, non-nullable and always present) within the containing element
in an instance document. See more info at http://www.w3.org/TR/xmlschema-1/#element-key.

xs:key properties

Possible ValueDescriptionProperty Name

Any NCName.The key name. Always required.Name

Editing Documents | 92

http://www.w3.org/TR/xmlschema-1/#element-unique
http://www.w3.org/TR/xmlschema-1/#element-key

Possible ValueDescriptionProperty Name

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:keyRef

Specifies that an attribute or element value corresponds to that of the specified key or unique element. See more info at
http://www.w3.org/TR/xmlschema-1/#element-keyref.

A keyref by default displays the Referenced Key property when rendered.

xs:keyRef properties

Possible ValuesDescriptionProperty Name

Any NCName.The keyref name. Always required.Name

any declared element constraints.The name of referred key.Referred Key

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component namespace.Namespace

Not editable property.The component system id.System ID

xs:selector

Specifies an XPath expression that selects a set of elements for an identity constraint. See more info at
http://www.w3.org/TR/xmlschema-1/#element-selector.

xs:selector properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying
the element on which the constraint
applies.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

xs:field

Editing Documents | 93

http://www.w3.org/TR/xmlschema-1/#element-keyref
http://www.w3.org/TR/xmlschema-1/#element-selector

Specifies an XPath expression that specifies the value used to define an identity constraint. See more info at
http://www.w3.org/TR/xmlschema-1/#element-field.

xs:field properties

Possible ValuesDescriptionProperty Name

An XPath expression.Relative XPath expression identifying
the field(s) composing the key, key
reference, or unique constraint.

XPath

Any ID.The component id.ID

Not editable property.The edited component name.Component

Not editable property.The component system id.System ID

Constructs Used to Group Schema Components

This section explains the components that can be used for grouping other schema components:

• Attributes
• Constraints
• Substitutions

Attributes

Groups all attributes and attribute groups belonging to a complex type.

Attributes properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the attributes
are displayed.

Component

Not editable property.The component system id.System ID

Constraints

Groups all constraints (xs:key, xs:keyRef or xs:unique) belonging to an element.

Attributes properties

Editing Documents | 94

http://www.w3.org/TR/xmlschema-1/#element-field

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the constraints
are displayed.

Component

Not editable property.The component system id.System ID

Substitutions

Groups all elements which can substitute the current element.

Attributes properties

Possible ValuesDescriptionProperty Name

Not editable property.The element for which the substitutions
are displayed.

Component

Not editable property.The component system id.System ID

Navigation in the Schema Diagram

The following editing and navigation features work for all types of schema components:

• Move/refer components in the diagram using drag-and-drop actions.
• Select consecutive components on the diagram (components from the same level) using the Shift key to . You can

also make discontinuous selections in the schema diagram using the Ctrl key.
• Use the arrow keys to navigate the diagram vertically and horizontally.
• Use Home/End keys to navigate to the first/last component from the same level. Use (Ctrl - Home) key combination

to go to the diagram root and (Ctrl - End) to go to the last child of the selected component.
• You can easily go back to a previously visited component while moving from left to right. The path will be preserved

only if you use the left arrow key or right arrow key. For example, if the current selection is on the second attribute
from an attribute group and you press the left arrow key to navigate to the attribute group, when you press the right
arrow key, then the selection will be moved to the second attribute.

• Go back and forward between components viewed or edited in the diagram by selecting them in the Outline view:

• Back (go to previous schema component)
• Forward (go to next schema component)
• Go to Last Modification (go to last modified schema component)

• Copy, refer or move global components, attributes, and identity constraints to a different position and from one
schema to another using the Cut/Copy and Paste/Paste as Reference actions.

• Go to the definition of an element or attribute with the Show Definition action.
• You can expand and see the contents of the imports/includes/redefines in the diagram. In order to edit components

from other schemas the schema for each component will be opened as a separate file in Oxygen XML Developer
plugin .

Editing Documents | 95

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will
be detected and you will be asked to refresh the current schema contents.

•
Recursive references are marked with a recurse symbol: . Click this symbol to navigate between the element
declaration and its reference.

Schema Validation

Validation for the Design mode is seamlessly integrated in the Oxygen XML Developer plugin XML documents
validation capability.

Figure 46: XML Schema Validation

A schema validation error is presented by highlighting the invalid component in the following places:

• in the Attributes View
• in the diagram by surrounding the component that has the error with a red border

Invalid facets for a component are highlighted in the Facets View.

Components with invalid properties are rendered with a red border. This is a default color, but you can customize it in
the Document checking user preferences. When hovering an invalid component, the tooltip will present the validation
errors associated with that component.

When editing a value which is supposed to be a qualified or unqualified XML name, the application provides automatic
validation of the entered value. This proves to be very useful in avoiding setting invalid XML names for the given
property.

If you validate the entire schema using Document > Validate Document (Alt+Shift+V) ((Cmd+Alt+V on Mac OS))
or the action available on the Validate toolbar, all validation errors will be presented in the Errors tab. To resolve an
error, just click on it (or double click for errors located in other schemas) and the corresponding schema component will
be displayed as the diagram root so that you can easily correct the error.

Editing Documents | 96

Important: If the schema imports only the namespace of other schema without specifying the schema location
and a catalog is set-up that maps the namespace to a certain location both the validation and the diagram will
correctly identify the imported schema.

Tip: If the validation action finds that the schema contains unresolved references, the application will suggest
the use of validation scenarios, but only if the current edited schema is a XML Schema module.

Schema Editing Actions

The schema can be edited using drag and drop operations or contextual menu actions.

Drag and drop action provides the easiest way to move the existing components to other locations in the schema. For
example, an element reference can be quickly inserted in the diagram with a drag and drop from the Outline view to a
compositor in the diagram. Also the components order in an xs:sequence can be easily changed using drag and drop.

If this property has not been set, you can easily set the attribute/element type by dragging over it a simple type or complex
type from the diagram. If the type property for a simple type or complex type is not already set, you can set it by dragging
over it a simple or complex type.

Depending on the drop area, different actions are available:

• move - Context dependent, the selected component is moved to the destination;
• refer - Context dependent, the selected component is referred from the parent;
• copy - If (Ctrl) key is pressed, a copy of the selected component is inserted to the destination.

Visual clues about the operation type are indicated by the mouse pointer shape:

•

 - When moving a component;
•

 - When referring a component;
•

 - When copying a component.

You can edit some schema components directly in the diagram. For these components, you can edit the name and the
additional properties presented in the diagram by double clicking the value you want to edit. If you want to edit the name
of a selected component, you can also press (Enter). The list of properties which can be displayed for each component
can be customized in the Preferences.

When editing references, you can choose from a list of available components. Components from an imported schema
for which the target namespace does not have an associated prefix is displayed in the list as
componentName#targetNamespace. If the reference is from a target namespace which was not yet mapped, you
are prompted to add prefix mappings for the inserted component namespace in the current edited schema.

You can also change the compositor by double-clicking it and choose the compositor you want from the proposals list.

There are some components that cannot be edited directly in the diagram: imports, includes, redefines. The editing action
can be performed if you double-click or press (Enter) on an import/include/redefine component. An edit dialog is
displayed, allowing you to customize the directives.

The contextual menu of the Design mode offers the following edit actions:

• Show Definition ((Ctrl - Shift - Enter)) - Shows the definition for the current selected component. For references,
this action is available by clicking the arrow displayed in its bottom right corner.

• Open Schema ((Ctrl - Shift - Enter)) - Opens the selected schema. This action is available for xsd:import,
xsd:include and xsd:redefine elements. If the file you try to open does not exist, a warning message is
displayed and you have the possibility to create the file.

• Edit Attributes... (Alt - Shift - Enter) - Allows you to edit the attributes of the selected component in a dialog that
presents the same attributes as in the Attributes View and the Facets View. The actions that can be performed on
attributes in this dialog are the same actions presented in the two views.

Editing Documents | 97

• Append child - Offers a list of valid components to append depending on the context. For example to a complex
type you can append a compositor, a group, attributes or identity constraints (unique, key, keyref). You can
set a name for a named component after it was added in the diagram.

• Insert before - Inserts before the selected component in the schema. The list of components that can be inserted
depends on the context. For example, before an xsd:import you can insert an xsd:import, xsd:include
or xsd:redefine. You can set a name for a named component after it was added in the diagram.

• Insert after - Inserts a component after the selected component on the schema. The list of components that can be
inserted depends on the context. You can set a name for a named component after it was added in the diagram.

• New global - Inserts a global component in the schema diagram. This action does not depend on the current context.
If you choose to insert an import you have to specify the URL of the imported file, the target namespace and the
import ID. The same information, excluding the target namespace, is requested for an xsd:include or
xsd:redefine element. See the Edit Import dialog for more details.

Note: If the imported file has declared a target namespace, the field Namespace is completed automatically.

• Edit Schema Namespaces... - When performed on the schema root, it allows you to edit the schema target namespace
and namespace mappings. You can also invoke the action by double-clicking the target namespace property from
Attributes view for the schema or by double-clicking the schema component.

• Edit Annotations... - Allows you to edit the annotation for the selected schema component in the Edit Annotations
dialog. You can perform the following operations in the dialog:

• Edit all appinfo/documentation items for a specific annotation - All appinfo/documentation
items for a specific annotation are presented in a table and can be easily edited. Information about an annotation
item includes: type (documentation/appinfo), content, source (optional, specify the source of the
documentation/appinfo element) and xml:lang. The content of a documentation/appinfo item
can be edited in the Content area below the table.

• Insert/Insert before/Remove documentation/appinfo. - Allows you to insert a new annotation item

(documentation/appinfo). You can add a new item before the item selected in table by pressing the

button. Also you can delete the selected item using the button.
• Move items up/down - To do this use the and buttons.
• Insert/Insert before/Remove annotation - Available for components that allow multiple annotations like schemas

or redefines.
• Specify an ID for the component annotation. The ID is optional.

Note: For imported/included components which do not belong to the current edited schema the dialog
presents the annotation as read-only and you will have to open the schema where the component is defined
in order to edit its annotation.

Note: Annotations are rendered by default under the graphical representation of the component. When you
have a reference to a component with annotations, these annotations are presented in the diagram also below
the reference component. The Edit Annotations action invoked from the contextual menu edit the annotations
for the reference. If the reference component does not have annotations, you can edit the annotations of the
referred component by double-clicking the annotations area. Otherwise you can edit the referred component
annotations only if you go to the definition of the component.

• Extract Global Element - Action available for local elements. A local element is made global and is replaced with
a reference to the global element. The local element properties that are also valid for the global element declaration
are kept.

Editing Documents | 98

Figure 47: Extracting a Global Element

If you execute Extract Global Element on element name, the result is:

• Extract Global Attribute - Action available for local attributes. A local attribute is made global and replaced with
a reference to the global attribute. The properties of local attribute that are also valid in the global attribute declaration
are kept.

Figure 48: Extracting a Global Attribute

If you execute Extract Global Attribute on attribute note the result is:

Editing Documents | 99

• Extract Global Group - Action available for compositors (sequence, choice, all). This action extracts a global group
and makes a reference to it. The action is enabled only if the parent of the compositor is not a group.

If you execute Extract Global Group on the sequence element, the Extract Global Component dialog is shown
and you can choose a name for the group. If you type personGroup, the result

is:

Figure 49: Extracting a Global Group

• Extract Global Type - Action used to extract an anonymous simple type or an anonymous complex type as global.
For anonymous complex types, the action is available on the parent element.

Editing Documents | 100

Figure 50: Extracting a Global Simple Type

If you use the action on the union component and choose numericST for the new global simple type name, the
result is:

Figure 51: Extracting a Global Complex Type

If you execute the action on element person and choose person_type for the new complex type name, the result
is:

• Rename Component - Rename the selected component.
•

Cut (Ctrl - X) - Cut the selected component(s).

Editing Documents | 101

•
Copy (Ctrl - C) - Copy the selected component(s).

•
Paste (Ctrl - V) - Paste the component(s) from the clipboard as children of the selected component.

• Paste as Reference - Create references to the copied component(s). If not possible a warning message is displayed.
• Remove (Delete) - Remove the selected component(s).
• Optional - Can be performed on element/attribute/group references, local attributes, elements, compositors, and

element wildcards. The minOccurs property is set to 0 and the use property for attributes is set to optional.
• Unbounded - Can be performed on element/attribute/group references, local attributes, elements, compositors, and

element wildcards. The maxOccurs property is set to unbounded and the use property for attributes is set to
required.

• Search - Can be performed on local elements or attributes. This action makes a reference to a global element or
attribute.

• Search References - Searches all references of the item found at current cursor position in the defined scope if
any.

• Search References in... - Searches all references of the item found at current cursor position in the specified scope.
• Search Occurrences in File - Searches all occurrences of the item found at current cursor position in the current

file.
• Component Dependencies - Allows you to see the dependencies for the current selected component.
• Resource Hierarchy - Allows you to see the hierarchy for the current selected resource.
• Resource Dependencies - Allows you to see the dependencies for the current selected resource.
• Expand all - Expands recursively all sub-components of the selected component.
• Collapse all - Collapses recursively all sub-components of the selected component.
• Save as Image... - Save the diagram as image, in JPEG, BMP, SVG or PNG format.
• Generate Sample XML Files - Generate XML files using the current opened schema. The selected component

is the XML document root. See more in the Generate Sample XML Files section.
• Options... - Show the Schema preferences panel.

Schema Outline View

The Outline view presents all the global components grouped by their location, namespace, or type. If hidden, you can
open it from Window > Show View > Other > oXygen > Outline.

Editing Documents | 102

Figure 52:The Outline View for XML Schema

The Outline view provides the following options:

• Selection update on caret move - Allows a synchronization between Outline view and schema diagram. The
selected view from the diagram is also selected in the Outline view.

• Sort - Allows you to sort alphabetically the schema components.
• Show all components - Displays all components that were collected starting from the main files. Components that

are not referable from the current file are marked with an orange underline. To refer them, you need to add an import
directive with the componentNS namespace.

• Show referable components - Displays all components (collected starting from the main files) that can be referred
from the current file. This option is set by default.

• Show local components - Displays components defined in the current file only.
• Group by location/namespace/type - These three operations allow you to group the components by location,

namespace, or type. When grouping by namespace, the main schema target namespace is the first presented in the
Outline view.

The following contextual menu actions are available:

• Remove (Delete) - Removes the selected item from the diagram.
• Search References - Searches all references of the item found at current cursor position in the defined scope,

if any.
• Search References in... - Searches all references of the item found at current cursor position in the specified scope.
• Component Dependencies - Allows you to see the dependencies for the current selected component.
• Resource Hierarchy - Allows you to see the hierarchy for the current selected resource.
• Resource Dependencies - Allows you to see the dependencies for the current selected resource.
• Rename Component - Renames the selected component.
• Generate Sample XML Files... - Generate XML files using the current opened schema. The selected component

is the XML document root.

Editing Documents | 103

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match (like *textToFind*).

The Outline content is synchronized with Text view; when you click a component in the Outline view, its definition
is highlighted in the Text view.

The Attributes View

The Attributes view presents the properties for the selected component in the schema diagram. If hidden, you can open
it from Window > Show View > Other > oXygen > Attributes.

Figure 53:The Attributes View

The default value of a property is presented in the Attributes view with blue foreground. The properties that can't be
edited are rendered with gray foreground. A non-editable category which contains at least one child is rendered with
bold. Bold properties are properties with values set explicitly to them.

Properties for components which do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking on by pressing Enter. For most properties you can choose valid values from
a list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted in the table
with the corresponding foreground color. By default properties with errors are highlighted with red and the properties
with warnings are highlighted with yellow. You can customize these colors from the Document checking user preferences.

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog will be shown
allowing you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit
Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:

• Add - Allows you to add a new member type to an union's member types category.

Editing Documents | 104

• Remove - Allows you to remove the value of a property.
• Move Up - Allows you to move up the current member to an union's member types category.
• Move Down - Allows you to move down the current member to an union's member types category.
•

 Copy - Copy the attribute value.
• Show Definition - Show the definition for the selected type.
• Show Facets - Allows you to edit the facets for a simple type.

The Facets View

The Facets view presents the facets for the selected component, if available. If hidden, you can open it from Window
> Show View > Other > oXygen > Facets.

Figure 54:The Facets View

The default value of a facet is rendered in the Facets view with a blue color. The facets that can't be edited are rendered
with a gray color. The grouping categories (eg: Enumerations and Patterns) are not editable. If these categories contain
at least one child they are rendered with bold. Bold facets are facets with values set explicitly to them.

Important: Usually inherited facets are presented as default in the Facets view but if patterns are inherited
from a base type and also specified in the current simple type only the current specified patterns will be presented.
You can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip
on the Patterns category.

Facets for components which do not belong to the current edited schema are read-only but if you double-click them you
can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking on it or by pressing Enter, when that facet is selected. For some facets you can
choose valid values from a list or you can specify another value. If a facet has an invalid value or a warning, it will be
highlighted in the table with the corresponding foreground color. By default facets with errors are presented with red
and the facets with warnings with yellow. You can customize the error colors from the Document Checking user
preferences.

The Facets view has four toolbar actions available also on the contextual menu:

• Add - Allows you to add a new enumeration or a new pattern.
• Remove - Allows you to remove the value of a facet.
• Move Up - Allows you to move up the current enumeration/pattern in Enumerations/Patterns category.
• Move Down - Allows you to move down the current enumeration/pattern in Enumerations/Patterns category.
•

 Copy - Copy the attribute value.
• Open in Regular Expressions Builder - Allows you to open the pattern in the XML Schema Regular Expressions

Builder

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the pin button.

Editing Documents | 105

Editing Patterns

You can edit regular expressions either be hand or you can right click, choose Open in Regular Expression Builder
and have a full-fledged XML Schema Regular Expression builder to guide you in testing and constructing the pattern.

The Palette View

Designed to offer quick access to XML Schema components, the Palette view improves the usability of the XML
Schema diagram builder allowing you drag components from the Palette view and drop them into the Design mode.

Figure 55: Palette View

Components are organized functionally into 4 collapsible categories:

• Basic components: elements, group, attribute, attribute group, complex type, simple type.
• Compositors and Wildcards: sequence, choice, all, any, any attribute.
• Directives: import, include, redefine.
• Identity constraints: key, keyref, unique, selector, field.

To add a component to the edited schema:

• click and hold a graphic symbol from the Palette view, then drag the component into the Design view;
• a line dynamically connects the component with the XML schema structure;
• release the component into a valid position.

Note: You cannot drop a component into an invalid position. When you hover the component into an invalid

position, the mouse cursor changes its shape into . Also, the connector line changes its color from the
usual dark grey to the color defined in the Validation error highlight color option (default color is red).

Edit Schema Namespaces

You can use the dialog XML Schema Namespaces to easily set a target namespace and define namespace mappings
for a newly created XML Schema. In the Design mode these namespaces can be modified anytime by choosing Edit
Schema Namespaces from the contextual menu. Also you can do that by double-clicking on the schema root in the
diagram.

The XML Schema Namespaces dialog allows you to edit the following information:

• Target namespace - The target namespace of the schema.

Editing Documents | 106

• Prefixes - The dialog shows a table with namespaces and the mapped prefixes. You can add a new prefix mapping
or remove an already existing one.

Contextual Editing

Smaller interrelated modules that define a complex XML Schema cannot be correctly edited or validated individually,
due to their interdependency with other modules. For example, a function defined in a main schema document is not
visible when you edit an included or imported module. Oxygen XML Developer plugin provides the support for defining
the main module (or modules), thus allowing you to edit any of the imported/included schema files in the context of the
larger schema structure.

To set a main schema files, you need to define a validation scenario and add validation units that point to the main
schemas. Oxygen XML Developer plugin warns you if the current module is not part of the dependencies graph
computed for the main schema. In this case, it considers the current module as the main schema.

The advantages of editing in the context of main file include:

• correct validation of a module in the context of a larger schema structure;
• content completion assistant displays all the referable components valid in the current context. This include components

defined in modules other than the currently edited one;
• the Outline displays the components collected from the entire schema structure;

Create an XML Schema From a Relational Database Table

To create an XML Schema from the structure of a relational database table use the special wizard available in the Tools
menu.

Generate Sample XML Files

To generate sample XML files from an XML Schema, use the Generate Sample XML Files... action. It is also available
on the contextual menu from the schema Design mode.

Editing Documents | 107

The Schema Tab

Figure 56:The Generate Sample XML Files Dialog

Complete the dialog as follows:

• URL - Schema location as an URL. A history of the last used URLs is available in the drop-down box.
• Namespace - Displays the namespace of the selected schema.
• Document root - After the schema is selected, this drop-down box is populated with all root candidates gathered

from the schema. Choose the root of the output XML documents.
• Output folder - Path to the folder where the generated XML instances will be saved.
• Filename prefix and Extension - Generated file names have the following format: prefixN.extension, where

N represents an incremental number from 0 up to Number of instances - 1.
• Number of instances - The number of XML files to be generated.
• Open first instance in editor - When checked, the first generated XML file is opened in editor.
• Namespaces - Here you can specify the default namespace as well as the proxies (prefixes) for namespaces.
• Load settings / Export settings - The current settings can be saved for further usage with the Export settings button,

and reloaded when necessary with the Load settings button.

The Options Tab

The Options tab allows you to set specific options for different namespaces and elements.

Editing Documents | 108

Figure 57:The Generate Sample XML Files Dialog

• Namespace / Element table - Allows you to set a namespace for each element name that appears in an XML
document instance. The following prefix-to-namespace associations are available:

• All elements from all namespaces (<ANY> - <ANY>). This is the default setting and can be customized from
the XML Instances Generator preferences page.

• All elements from a specific namespace.
• A specific element from a specific namespace.

• Settings

• Generate optional elements - When checked, all elements are generated, including the optional ones (having
the minOccurs attribute set to 0 in the schema).

• Generate optional attributes - When checked, all attributes are generated, including the optional ones (having
the use attribute set to optional in the schema.)

• Values of elements and attributes - Controls the content of generated attribute and element values. Several
choices are available:

• None - No content is inserted;
• Default - Inserts a default value depending of data type descriptor of the particular element or attribute. The

default value can be either the data type name or an incremental name of the attribute or element (according
to the global option from the XML Instances Generator preferences page). Note that type restrictions are
ignored when this option is enabled. For example, if an element is of a type that restricts an xs:string with
the xs:maxLength facet in order to allow strings with a maximum length of 3, the XML instance generator
tool may generate string element values longer than 3 characters.

• Random - Inserts a random value depending of data type descriptor of the particular element or attribute.

Editing Documents | 109

Important:

If all of the following are true, the XML Instances Generator outputs invalid values:

• at least one of the restrictions is a regexp;
• the value generated after applying the regexp does not match the restrictions imposed by one of

the facets.

This limitation leads to attributes or elements with values set to Invalid.

• Preferred number of repetitions - Allows the user to set the preferred number of repeating elements related
with minOccurs and maxOccurs facets defined in XML Schema.

• If the value set here is between minOccurs and maxOccurs, then that value is used;
• If the value set here is less than minOccurs, then the minOccurs value is used;
• If the value set here is greater than maxOccurs, then that value is used.

• Maximum recursion level - If a recursion is found, this option controls the maximum allowed depth of the same
element.

• Choice strategy - Option used in case of xs:choice or substitutionGroup elements. The possible
strategies are:

• First - the first branch of xs:choice or the head element of substitutionGroup is always used;
• Random - a random branch of xs:choice or a substitute element or the head element of a

substitutionGroup is used.

• Generate the other options as comments - Option to generate the other possible choices or substitutions (for
xs:choice and substitutionGroup). These alternatives are generated inside comments groups so you
can uncomment and use them later. Use this option with care (for example on a restricted namespace and element)
as it may generate large result files.

• Load settings / Export settings - The current settings can be saved for further usage with the Export settings
button, and reloaded when necessary with the Load settings button.

• Element values - The Element values tab allows you to add values that are used to generate the elements content.
If there are more than one value, then the values are used in a random order.

• Attribute values - The Attribute values tab allows you to add values that are used to generate the attributes content.
If there are more than one value, then the values are used in a random order.

The Advanced Tab

This tab allows you to set advanced options that controls the output values of elements and attributes.

• Use incremental attribute / element names as default - If checked, the value of an element or attribute starts with
the name of that element or attribute. For example, for an a element the generated values are: a1, a2, a3, etc. If not
checked, the value is the name of the type of that element / attribute, for example: string, decimal, etc.

• Maximum length - The maximum length of string values generated for elements and attributes.
• Discard optional elements after nested level - The optional elements that exceed the specified nested level are

discarded. This option is useful for limiting deeply nested element definitions that can quickly result in very large
XML documents.

Editing Documents | 110

XML Schema Regular Expressions Builder

The XML Schema regular expressions builder allows testing regular expressions on a fragment of text as they are applied
to an XML instance document. Start the tool from menu XML Schema Regular Expressions Builder.

Figure 58: XML Schema Regular Expressions Builder Dialog

The dialog contains the following sections:

• Regular expressions editor - allows you to edit the regular expression to be tested and used. Content completion
is available and presents a list with all the predefined expressions. It is triggered by pressing (Ctrl - Space).

• Error display area - if the edited regular expression is incorrect, an error message will be displayed here. The
message contains the description and the exact location of the error. Also, a click on the quick navigation button
() highlights the error inside the regular expression.

• Category combo box - here you can choose from several categories of predefined expressions. The selected category
influences the displayed expressions in the Available expressions table.

• Available expressions table - holds the available regular expressions and a short description for each of them. The
set of expressions depends on the category selected in the previous combo box. You can add an expression in the
Regular expressions editor by double-clicking on the expression row in the table. You will notice that in the case
of Character categories and Block names the expressions are also listed in complementary format. For example:
\p{Lu} - Uppercase letters; \P{Lu} - Complement of: Uppercase letters.

• Evaluate expression on radio buttons - there are available two options:

• Evaluate expression on each line - the edited expression will be applied on each line in the Test area;
• Evaluate expression on all text - the edited expression will be applied on the whole text.

Editing Documents | 111

• Test area - a text editor which allows you to enter a text sample on which the regular expression will be applied. All
matches of the edited regular expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button will become
active when an editor is opened in the background and there is an expression in the Regular expressions editor.

The regular expression builder cannot be used to insert regular expressions in the grid version or the schema version of
a document editor. Accordingly, the Insert button of the dialog will be disabled if the current document is edited in grid
mode.

Note: Some regular expressions may block indefinitely the Java Regular Expressions engine. If the execution
of the regular expression does not end in about five seconds, the application displays a dialog that allows you
to interrupt the operation.

Generating Documentation for an XML Schema

Oxygen XML Developer plugin can generate detailed documentation for the components of an XML Schema in HTML,
PDF and DocBook XML formats similar with the Javadoc documentation for the components of a Java class. You can
select the components and the level of detail. The components are hyperlinked in both HTML and DocBook documents.

To generate documentation for an XML Schema document use the dialog Schema Documentation. It is opened with
the action XML Tools > Generate Documentation > Schema Documentation... (Ctrl+Alt+S). It can be also opened
from the Navigator contextual menu: Generate Schema Documentation The dialog enables the user to configure a
large set of parameters for the process of generating the documentation.

Figure 59:The Output panel of the Schema Documentation Dialog

The Schema URL field of the dialog panel must contain the full path to the XML Schema (XSD) file you want to
generate documentation for. The schema may be a local or a remote one. You can specify the path to the schema using
the editor variables.

The following options are available in the Settings tab:

Editing Documents | 112

• Format - Allows you to choose between three predefined formats (HTML, PDF, DocBook) and a custom one
(Custom). This allows you to control the output format by proving a custom stylesheet.

• Output file - Name of the output file.
• Split output into multiple files - Instructs the application to split the output into multiple files. You can choose to

split them by namespace, location or component name.
• Open in Browser/System Application - Opens the result in the system application associated with the output file

type.

Note: If you already set the Default Internet browser option in the Global preferences page, it will take
precedence over the default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with the
xml:lang attribute set to the selected language. If you choose a primary language code (like en, for example), this
includes all its possible variations (for example en-us and en-uk just to name a few).

You can choose to split the output into multiple files by namespace, location or component.

Figure 60:The Settings Panel of the Schema Documentation Dialog

When you generate documentation for a schema you can choose what components to include in the output (global
elements, global attributes, local elements, local attributes, simple types, complex types, group, attribute groups, referenced
schemas, redefines) and the details to be included in the documentation:

• Diagram - Displays the diagram for each component. You can choose the image format (JPEG, PNG, SVG) to use
for the diagram section.

• Diagram annotations - This option controls whether or not the annotations of the components presented in the
diagram sections should be included.

• Namespace - Displays the namespace for each component.
• Location - Displays the schema location for each component.
• Type - Displays the component type if it is not an anonymous one.
• Type hierarchy - Displays the types hierarchy.

Editing Documents | 113

• Model - Displays the model (sequence, choice, all) presented in BNF form. Different separator characters are used
depending on the information item used:

• xs:all - its children will be separated by space characters;
• xs:sequence - its children will be separated by comma characters;
• xs:choice - its children will be separated by | characters.

• Children - Displays the list of component's children.
• Instance - Displays an XML instance generated based on each schema element.
• Used by - Displays the list of all the components that refer the current one. The list is sorted by component type and

name.
• Properties - Displays some of the component's properties.
• Facets - Displays the facets for each simple type
• Identity constraints - Displays the identity constraints for each element. For each constraint there are presented the

name, type (unique, key, keyref), refer attribute, selector and field(s).
• Attributes - Displays the attributes for the component. For each attribute there are presented the name, type, fixed

or default value, usage and annotation.
• Annotations - Displays the annotations for the component. If you choose Escape XML Content, the XML tags are

present in the annotations.
• Source - Displays the text schema source for each component.
• Generate index - Displays an index with the components included in the documentation.
• Include local elements and attributes - If checked, local elements and attributes are included in the documentation

index.
• Export settings / Load settings - The current settings can be saved for further usage (for example for generating

documentation from command-line interface) with the Export settings button, and reloaded when necessary with
the Load settings button.

These options are persistent between sessions.

Generate Documentation in HTML Format

The HTML documentation contains images corresponding to the schema definitions as the ones displayed by the schema
diagram editor. These images are divided in clickable areas which are linked to the definitions of the clicked names of
types or elements. The documentation of a definition includes a Used By section with links to the other definitions which
refer to it. If the Escape XML Content option is unchecked, the HTML or XHTML tags used inside the
xs:documentation elements of the input XML Schema for formatting the documentation text (for example ,
<i>, <u>, , , etc.) are rendered in the generated HTML documentation.

The generated images format is PNG. The image of an XML Schema component contains the graphical representation
of that component as it is rendered in the Schema Diagram panel of the Oxygen XML Developer plugin 's XSD editor
panel.

Editing Documents | 114

Figure 61: Schema Documentation Example

The generated documentation includes a table of contents. You can group the contents by namespace, location, or
component type. After the table of contents there is presented some information about the main schema, the imported,
included, and redefined schemas. This information contains the schema target namespace, schema properties (attribute
form default, element form default, version) and schema location.

Figure 62: Information About a Schema

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are
grouped in the same mode. If you split the output by location, each file contains a schema description and the components
that you have chosen to include. If you split the output by namespace, each file contains information about schemas
from that namespace and the list with all included components. If you choose to split the output by component, each
file contains information about a schema component.

After the documentation is generated you can collapse details for some schema components. This can be done using the
Showing view:

Editing Documents | 115

Figure 63:The Showing View

For each component included in the documentation, the section presents the component type follow by the component
name. For local elements and attributes, the name of the component is specified as parent name/component name. You
can easily go to the parent documentation by clicking the parent name.

Figure 64: Documentation for a Schema Component

If the schema contains imported or included modules, their dependencies tree is generated in the documentation.

Editing Documents | 116

Generate Documentation in PDF, DocBook or a Custom Format

Schema documentation can be also generated in PDF, DocBook, or a custom format. You can choose the format from
the Schema Documentation Dialog. For the PDF and DocBook formats, the option to split the output in multiple files
is disabled.

When choosing PDF, the documentation is generated in DocBook format and after that a transformation using the FOP
processor is applied to obtain the PDF file. To configure the FOP processor, see the FO Processors preferences page.

If you generate the documentation in DocBook format you can apply a transformation scenario on the output file, for
example one of the scenarios proposed by Oxygen XML Developer plugin (DocBook PDF or DocBook HTML) or
configure your own scenario for it.

For the custom format, you can specify your stylesheet to transform the intermediary XML generated in the documentation
process. You have to write your stylesheet based on the schema xsdDocSchema.xsd from
{INSTALLATION_DIRECTORY}/frameworks/schema_documentation. You can create a custom format
starting from one of the stylesheets used in the predefined HTML, PDF, and DocBook formats. These stylesheets are
available in {INSTALLATION_DIRECTORY}/frameworks/schema_documentation/xsl.

When using a custom format you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating Documentation From the Command-Line Interface

You can export the settings of the Schema Documentation dialog to an XML file by pressing the Export settings
button. With the exported settings file, you can generate the same documentation from the command-line interface by
running the following scripts:

• schemaDocumentation.bat on Windows;
• schemaDocumentation.sh (on Mac OS X / Unix / Linux).

The scripts are located in the Oxygen XML Developer plugin installation folder. The scripts can be integrated in an
external batch process launched from the command-line interface.

The script command-line parameter is the relative path to the exported XML settings file. The files which are specified
with relative paths in the exported XML settings are made absolute, relative to the folder where the script is ran from.

XML Configuration File

<serialized>
 <map>
 <entry>

Editing Documents | 117

 <String
xml:space="preserve">xsd.documentation.options</String>
 <xsdDocumentationOptions>
 <field name="outputFile">
 <String
xml:space="preserve">${cfn}.html</String>
 </field>
 <field name="splitMethod">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="openOutputInBrowser">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="format">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="customXSL">
 <null/>
 </field>
 <field name="deleteXMLFiles">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeIndex">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeSimpleTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeComplexTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeAttributesGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeRedefines">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeReferencedSchemas">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDiagram">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsNamespace">
 <Boolean xml:space="preserve">true</Boolean>
 </field>

Editing Documents | 118

 <field name="detailsLocation">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsType">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsTypeHierarchy">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsModel">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsChildren">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsInstance">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsUsedby">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsProperties">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsFacets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsIdentityConstr">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsEscapeAnn">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSource">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAnnotations">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 </xsdDocumentationOptions>
 </entry>
 </map>
</serialized>

Searching and Refactoring Actions

All the following actions can be applied on attribute, attributeGroup, element, group, key, unique,
keyref, notation, simple, or complex types:

• XSD > > References (Alt+Shift+S R) ((Cmd+Alt+S R on Mac OS)) - Searches all references of the item
found at current cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is
not part of the range of resources determined by this, a warning dialog is shown and you have the possibility to define
another search scope.

• contextual menu of current editor > Search > References in... - Searches all references of the item found at current
cursor position in the file or files that you specify when define a scope in the Search References dialog.

Editing Documents | 119

• XSD > > Declarations (Alt+Shift+S D) ((Cmd+Alt+S D on Mac OS)) - Searches all declarations of the item
found at current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is
not part of the range of resources determined by this, a warning dialog will be shown and you have the possibility
to define another search scope.

This action is not available in Design mode.

• contextual menu of current editor > Search > Declarations in... - Searches all declarations of the item found at
current cursor position in the file or files that you specify when define a scope in the dialog above. Action is not
available in Design mode.

• XSD > Occurrences in File (Alt+Shift+S O) ((Cmd+Alt+S O on Mac OS)) - Searches all occurrences of the item
at the caret position in the currently edited file.

• contextual menu of current editor > Rename Component... - Renames the selected component. Specify the new
component name and the file or files affected by the modification in the following dialog:

Figure 65: Rename Component Dialog

if you click the Preview button, you have the possibility to view the files affected by the Rename Component action.
The changes are shown in the following dialog:

Editing Documents | 120

Figure 66: Preview Dialog

Search and Refactor Operations Scope

By scope you should understand the collection of documents that define the context of the search and refactor operations.
To control it you can use the Change scope operation, available in the Quick Assist action set or on the Resource
Hierarchy/Dependency View toolbar. Here you can restrict the scope to the current project or to one or multiple working
sets.

Figure 67: Change Scope Dialog

The defined scope is applied to all future search and refactor operations until you alter it again. Contextual menu actions
allow you to add or delete files, folders and other resources to the working set structure.

Editing Documents | 121

Resource Hierarchy / Dependencies View

The Resource Hierarchy / Dependencies view allows you to easily see the hierarchy / dependencies for an XML
Schema, a Relax NG schema or an XSLT stylesheet. You can open the view from Window > Show View > Other >
oXygen > Resource Hierarchy/Dependencies.

This view is useful for example when you want to start from an XML Schema (XSD) file and build and review the
hierarchy of all the other XSD files that are imported, included or redefined in the given XSD file. Also the same view
is able to build the inversed-tree structure, that is the structure of all other XSD files that import, include or redefine the
given XSD file. The scope of the search is configurable: the current Oxygen project, a set of local folders, etc.

The build process for the hierarchy view is started with the Resource Hierarchy action available on the contextual
menu of the editor panel.

Figure 68: Resource Hierarchy/Dependencies View - Hierarchy for mainOffice.xsd

The build process for the dependencies view is started with the Resource Dependencies action available on the contextual
menu.

Figure 69: Resource Hierarchy/Dependencies View - Dependencies for dml-baseTypes.xsd

Editing Documents | 122

In the Resource Hierarchy/Dependencies view you have several actions in the toolbar:

• - Refreshes the Hierarchy/Dependencies structure.
• - Stop the hierarchy/dependencies computing.
• - Allows you to choose a schema to compute the hierarchy structure.
• - Allows you to choose a schema to compute the dependencies structure.
• - Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically

using the defined scope for future operations.
• - Repeats a previous dependencies computation.

The contextual menu contains the following actions:

• Open - Opens the schema. Also you can open the schema by a double-click on the Hierarchy/Dependencies structure.
• Copy location - Copies the location of the schema.
• Show Resource Hierarchy - Shows the hierarchy for the selected schema.
• Show Resource Dependencies - Shows the dependencies for the selected schema.
• Expand All - Expands all the children of the selected schema from the Hierarchy/Dependencies structure.
• Collapse All - Collapses all children of the selected schema from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special

icon .

Component Dependencies View

The Component Dependencies view allows you to spot the dependencies for the selected component of an XML
Schema, a Relax NG schema, a NVDL schema or an XSLT stylesheet. You can open the view from Window > Show
View > Other > oXygen > Component Dependencies.

If you want to see the dependencies of a schema component:

• select the desired schema component in the editor;
• choose the Component Dependencies action from the contextual menu.

The action is available for all named components (for example elements or attributes).

Editing Documents | 123

Figure 70: Component Dependencies View - Hierarchy for xhtml11.xsd

In the Component Dependencies view the following actions are available in the toolbar:

• - Refreshes the dependencies structure.
• - Stop the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure.
• - Contains a list of previously executed dependencies computations.

The contextual menu contains the following actions:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the currently selected component in the dependencies tree.

Tip: If a component contains multiple references to another components, a small table is shown containing all

these references. When a recursive reference is encountered, it is marked with a special icon .

Highlight Component Occurrences

When a component (for example types, elements, attributes) is found at current cursor position, Oxygen XML Developer
plugin performs a search over the entire document to find the component declaration and all its references. When found,
they are highlighted both in the document and in the stripe bar, at the right side of the document. Customizable colors
are used: one for the component definition and another one for component references. Occurrences are displayed until
another component is selected and a new search is performed. All occurrences are removed when you start to edit the
document.

This feature is set on automatic search by default and can be configured in the Options > Preferences > Editor > Mark
Occurrences page. A search can also be triggered with the Search > Search Occurrences in File (Ctrl+Shift+U)
contextual menu action. All matches are displayed in a separate tab of the Results view.

Editing Documents | 124

XML Schema Quick Assist Support

The Quick Assist action set was designed to help you improve the development work flow by offering quicker access
to the most commonly used actions.

It is activated automatically when the cursor is positioned inside a component name. It is accessible via a yellow bulb
help marker placed on the cursor line, in the editor line number stripe. Also, you can invoke the quick assist menu if
you press Alt + 1 keys (Meta + Alt + 1 on Mac OS X).

Figure 71: Quick Assist Support

The quick assist support offers direct access to the following actions:

• Rename Component - Renames the component and all its dependencies;
• Search Declaration - Searches the declaration of the component in a predefined scope. It is available only when

the context represents a component name reference;
• Search References - Searches all references of the component in a predefined scope;
• Component Dependencies - Searches the component dependencies in a predefined scope;
• Change Scope - Configures the scope that will be used for future search or refactor operations;
• Search Occurrences - Searches all occurrences of the file within the current scope.

Editing Relax NG Schemas
Oxygen XML Developer plugin provides a special type of editor for Relax NG schemas. This editor presents the usual
text view of an XML document synchronized in real time with an outline view. The outline view has two display modes:
the standard outline mode and the components mode.

Relax NG Schema Diagram

This section explains how to use the graphical diagram of a Relax NG schema.

Introduction

Oxygen XML Developer plugin provides a simple, expressive, and easy to read Schema Diagram view for Relax NG
schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG, or BMP images. It helps both schema authors in developing the schema and content authors who are using the
schema to understand it.

Oxygen XML Developer plugin is the only XML editor to provide a side by side source and diagram presentation and
have them real-time synchronized:

• the changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• changing the selected element in the diagram selects the underlaying code in the source editor.

Editing Documents | 125

Full Model View

When you create a new schema document or open an existing one, the editor panel is divided in two sections: one
containing the schema diagram and the second the source code. The Diagram view has two tabbed panes offering a
Full Model View and a Logical Model View.

Figure 72: Relax NG Schema Editor - Full Model View

The following references can be expanded in place: patterns, includes, and external references. This expansion mechanism,
coupled with the synchronization support, makes the schema navigation easy.

All the element and attribute names are editable: double-click any name to start editing it.

Symbols Used in the Schema Diagram

The Full Model View renders all the Relax NG Schema patterns with intuitive symbols:

•

 - define pattern with the name attribute set to the value shown inside the rectangle (in this example
name).

•

 - define pattern with the combine attribute set to interleave and the name attribute
set to the value shown inside the rectangle (in this example attlist.person).

•

 - define pattern with the combine attribute set to choice and the name attribute set to
the value shown inside the rectangle (in this example attlist.person).

•

 - element pattern with the name attribute set to the value shown inside the rectangle (in this example
name).

Editing Documents | 126

•

 - attribute pattern with the name attribute set to the value shown inside de rectangle (in this case
note).

•

 - ref pattern with the name attribute set to the value shown inside the rectangle (in this case family).
•

 - oneOrMore pattern.
•

 - zeroOrMore pattern.
•

 - optional pattern.
•

 - choice pattern.
•

 - value pattern, used for example inside a choice pattern.
•

 - group pattern.
•

 - pattern from the Relax NG Annotations namespace (http://relaxng.org/ns/compatibility/annotations/1.0)
which is treated as a documentation element in a Relax NG schema.

•

 - text pattern.
•

 - empty pattern.

Logical Model View

The Logical Model View presents the compiled schema which is a single pattern. The patterns that form the element
content are defined as top level patterns with generated names. These names are generated depending of the elements
name class.

Editing Documents | 127

Figure 73: Logical Model View for a Relax NG Schema

Actions Available in the Diagram View

The contextual menu offers the following actions:

• Append child - Appends a child to the selected component.
• Insert Before - Inserts a component before the selected component.
• Insert After - Inserts a component after the selected component.
• Edit attributes - Edits the attributes of the selected component.
• Remove - Removes the selected component.
• Show only the selected component - Depending on its state (selected/not selected), either the selected component

or all the diagram components are shown.
• Show Annotations - Depending on its state (selected/not selected), the documentation nodes are shown or hidden.
• Auto expand to references - This option controls how the schema diagram is automatically expanded. If you select

it and then edit a top-level element or you make a refresh, the diagram is expanded until it reaches referred components.
If this option is left unchecked, only the first level of the diagram is expanded, showing the top-level elements. For
large schemas, the editor disables this option automatically.

• Collapse Children - Collapses the children of the selected view.
• Expand Children - Expands the children of the selected view.
• Print Selection... - Prints the selected view.
• Save as Image... - Saves the current selection as JPEG, BMP, SVG or PNG image.
• Refresh - Refreshes the schema diagram according to the changes in your code. They represent changes in your

imported documents or changes that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

Relax NG Outline View

The Relax NG Outline view presents a list with the patterns that appear in the diagram in both the Full Model View
and Logical Model View cases. It allows a quick access to a component by name. By default it is displayed on screen.
If you closed the Outline view you can reopen it from menu Window > Show View > Other > oXygen > Outline.

Editing Documents | 128

You can switch between the Relax NG patterns version and the standard XML version of the view by pressing the
button.

Figure 74: Relax NG Outline View

The tree shows the XML structure or the define patterns collected from the current document. By default, the Outline
view presents the define patterns. The following action is available in the View menu on the Outline view's action bar:

• Show XML structure - Shows the XML structure of the current document.

When the XML elements are displayed, the following actions are available in the View menu on the Outline view's
action bar:

• Selection update on caret move - Allows a synchronization between Outline view and schema diagram. The
selected view from the diagram will be also selected in the Outline view.

• Show components - Shows the define patterns collected from the current document.
• Flat presentation mode of the filtered results - when active, the application flattens the filtered result elements

to a single level.
• Show comments and processing instructions - show/hide comments and processing instructions in the Outline

view.
• Show text - show/hide additional text content for the displayed elements.
• Show attributes - show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel.
• Configure displayed attributes - displays the XML Structured Outline preferences page.

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Relax NG Editor Specific Actions

The list of actions specific for the Relax NG (full syntax) editor is:

• contextual menu of current editor > Show Definition - Moves the cursor to the definition of the current element
in this Relax NG (full syntax) schema.

Editing Documents | 129

Searching and Refactoring Actions

All the following actions can be applied on ref and parentRef parameters only.

• RNG > Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined
by this scope, a warning dialog is shown and you can define another search scope. A search scope includes the project
or a collection of files and folders.

You can decide to use automatically the defined scope for future operations by checking the corresponding checkbox.

• contextual menu of current editor > Search > Search References in... - Searches all references of the item found
at current cursor position in the file or files specified in the defined scope.

All the following actions can be applied on named define parameters only.

• RNG > Search Declarations - Searches all declarations of the item found at current cursor position in the
defined scope if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this scope a warning dialog is shown and you can define another search scope. A search scope includes
the project or a collection of files and folders.

• contextual menu of current editor > Search > Search Declarations in... - Searches all declarations of the item
found at current cursor position in the files specified in the search scope.

• RNG > Search Occurrences in File - Searches all occurrences of the item at the caret position in the currently
edited file.

• contextual menu of current editor > Refactoring > Rename Component... - Renames the selected component.

Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a schema. You can
open the view from Window > Show View > Other > oXygen > Resource Hierarchy/Dependencies.

If you want to see the hierarchy of a schema, select the desired schema in the project view and choose Resource
Hierarchy from the contextual menu.

Figure 75: Resource Hierarchy/Dependencies View - hierarchy for dbmathml.rng

Editing Documents | 130

If you want to see the dependencies of a schema, select the desired schema in the project view and choose Resource
Dependencies from the contextual menu.

Figure 76: Resource Hierarchy/Dependencies View - Dependencies for third.rng

In the Resource Hierarchy/Dependencies view you have several actions in the toolbar:

• - Refreshes the Hierarchy/Dependencies structure.
• - Stops the hierarchy/dependencies computing.
• - Allows you to choose a schema to compute the hierarchy structure.
• - Allows you to choose a schema to compute the dependencies structure.
• - Allows you to configure a scope to compute the dependencies structure.
• - Repeats a previous dependencies computation.

The following actions are available in the contextual menu:

• Open - Opens the schema. Also you can open the schema by a double-click on the Hierarchy/Dependencies structure.
• Copy location - Copies the location of the schema.
• Resource Hierarchy - Shows the hierarchy for the selected schema.
• Resource Dependencies - Shows the dependencies for the selected schema.
• Expand All - Expands all the children of the selected schema from the hierarchy/dependencies structure.
• Collapse All - Collapses all the children of the selected schema from the hierarchy/dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special

icon .

Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected Relax NG component. You can
open the view from Window > Show View > Other > oXygen > Component Dependencies.

If you want to see the dependencies of a RelaxNG component, select the desired component in the editor and choose
the Component Dependencies action from the contextual menu. The action is available for all named defines.

Editing Documents | 131

Figure 77: Component Dependencies View - Hierarchy for xhtml.rng

In the Component Dependencies view you have several actions in the toolbar:

• - Refreshes the dependencies structure.
• - Allows you to stop the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure.
• - Allows you to repeat a previous dependencies computation.

The following actions are available on the contextual menu:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another components, a small table is shown containing all

references. When a recursive reference is encountered, it is marked with a special icon .

RNG Quick Assist Support

The Quick Assist action set was designed to help you improve the development work flow by offering quicker access
to the most commonly used actions.

It is activated automatically when the cursor is positioned inside a component name. It is accessible via a yellow bulb
help marker placed on the cursor line, in the editor line number stripe. Also, you can invoke the quick assist menu if
you press Alt + 1 keys (Meta + Alt + 1 on Mac OS X).

Editing Documents | 132

Figure 78: RNG Quick Assist Support

The quick assist support offers direct access to the following actions:

• Rename Component - Renames the component and all its dependencies;
• Search Declaration - Searches the declaration of the component in a predefined scope. It is available only when

the context represents a component name reference;
• Search References - Searches all references of the component in a predefined scope;
• Component Dependencies - Searches the component dependencies in a predefined scope;
• Change Scope - Configures the scope that will be used for future search or refactor operations;
• Search Occurrences - Searches all occurrences of the file within the current scope.

Configuring a Custom Datatype Library for a RELAX NG Schema

A RELAX NG schema can declare a custom datatype library for the values of elements found in XML document
instances. The datatype library must be developed in Java and it must implement the interface specified on the
www.thaiopensource.com website.

The jar file containing the custom library and any other dependent jar file must be added to the classpath of the application,
that is the jar files must be added to the folder [Oxygen-plugin-folder]/lib and a line <library
name="lib/custom-library.jar"/> must be added for each jar file to the file
[Oxygen-plugin-folder]/plugin.xml in the <runtime> element.

To load the custom library, restart the Eclipse platform.

Editing NVDL Schemas
Some complex XML documents are composed by combining elements and attributes from different namespaces. More,
the schemas which define these namespaces are not even developed in the same schema language. In such cases, it is
difficult to specify in the document all the schemas which must be taken into account for validation of the XML document
or for content completion. An NVDL (Namespace Validation Definition Language) schema can be used. This schema
allows the application to combine and interleave multiple schemas of different types (W3C XML Schema, RELAX NG
schema, Schematron schema) in the same XML document.

Oxygen XML Developer plugin provides a special type of editor for NVDL schemas. This editor presents the usual
text view of an XML document synchronized in real time with an outline view. The outline view has two display modes:
the standard outline mode and the components mode.

NVDL Schema Diagram

This section explains how to use the graphical diagram of a NVDL schema.

Introduction

Oxygen XML Developer plugin provides a simple, expressive, and easy to read Schema Diagram View for NVDL
schemas.

Editing Documents | 133

http://www.thaiopensource.com/relaxng/pluggable-datatypes.html
http://www.thaiopensource.com/relaxng/pluggable-datatypes.html

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG,
PNG, and BMP images. It helps both schema authors in developing the schema and content authors that are using the
schema to understand it.

Oxygen XML Developer plugin is the only XML Editor to provide a side by side source and diagram presentation and
have them real-time synchronized:

• the changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• changing the selected element in the diagram, selects the underlaying code in the source editor.

Full Model View

When you create a schema document or open an existing one, the editor panel is divided in two sections: one containing
the schema diagram and the second the source code. The diagram view has two tabbed panes offering a Full Model
View and a Logical Model View.

Figure 79: NVDL Schema Editor - Full Model View

The Full Model View renders all the NVDL elements with intuitive icons. This representation coupled with the
synchronization support makes the schema navigation easy.

Double click on any diagram component in order to edit its properties.

Actions Available in the Diagram View

The contextual menu offers the following actions:

Editing Documents | 134

• Show only the selected component - Depending on its state (selected/not selected), either the selected component
or all the diagram components are shown.

• Show Annotations - Depending on its state (selected/not selected), the documentation nodes are shown or hidden.
• Auto expand to references - This option controls how the schema diagram is automatically expanded. For instance,

if you select it and then edit a top-level element or you trigger a diagram refresh, the diagram will be expanded until
it reaches the referred components. If this option is left unchecked, only the first level of the diagram is expanded,
showing the top-level elements. For large schemas, the editor disables this option automatically.

• Collapse Children - Collapses the children of the selected view.
• Expand Children - Expands the children of the selected view.
• Print Selection... - Prints the selected view.
• Save as Image... - Saves the current selection as image, in JPEG, BMP, SVG or PNG format.
• Refresh - Refreshes the schema diagram according to the changes in your code (changes in your imported documents

or those that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

NVDL Outline View

The NVDL Outline view presents a list with the named or anonymous rules that appear in the diagram. It allows a quick
access to a rule by name. It can be opened from the Window > Show View > Other > oXygen > Outline menu.

NVDL Editor Specific Actions

The list of actions specific for the Oxygen XML Developer plugin NVDL editor of is:

• contextual menu of current editor > Show Definition - Moves the cursor to its definition in the schema used by
NVDL in order to validate it.

Searching and Refactoring Actions

All the following actions can be applied on mode name, useMode, and startMode attributes only.

• NVDL > Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined
by this scope, a warning dialog is shown. A search scope includes the project or a collection of files and directories.

You can decide to use automatically the defined scope for future operations by checking the corresponding checkbox.

• contextual menu of current editor > Search > Search References in... - Searches all references of the item found
at current cursor position in the file or files that you specify when define a scope in the dialog above.

All the following actions can be applied on named define parameters only.

• NVDL > Search Declarations - Searches all declarations of the item found at current cursor position in the
defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this scope, a warning dialog is shown. You have the possibility to define another search scope. A
search scope includes the project or a collection of files and folders.

• contextual menu of current editor > Search > Search Declarations in... - Searches all declarations of the item
found at current cursor position in the file or files specified in the search scope.

• NVDL > Search Occurrences in File - Searches all occurrences of the item at the caret position in the currently
edited file.

• contextual menu of current editor > Rename Component... - Allows you to rename the current component.

Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected NVDL named mode. You can
open the view from Window > Show View > Other > oXygen > Component Dependencies.

If you want to see the dependencies of an NVDL mode, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named modes.

Editing Documents | 135

Figure 80: Component Dependencies View - Hierarchy for test.nvdl

In the Component Dependencies the following actions are available on the toolbar:

• - Refreshes the dependencies structure.
• - Allows you to stop the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure. If you decide to set the application

to use automatically the defined scope for future operations, select the corresponding checkbox.
• - Repeats a previous dependencies computation.

The following actions are available in the contextual menu:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another component, a small table containing all references

is shown. When a recursive reference is encountered it is marked with a special icon .

Editing XSLT Stylesheets
This section explains the features of the XSLT editor.

Validating XSLT Stylesheets

Validation of XSLT stylesheets documents is performed with the help of an XSLT processor configurable from user
preferences according to the XSLT version: 1.0 or 2.0. For XSLT 1.0, the options are: Xalan, Saxon 6.5.5, Saxon 9.3.0.5,
MSXML 4.0, MSXML.NET, a JAXP transformer specified by the main Java class. For XSLT 2.0, the options are:
Saxon 9.3.0.5, a JAXP transformer specified by the main Java class.

Custom Validation of XSLT Stylesheets

If you must validate an XSLT stylesheet with other validation engine than the Oxygen XML Developer plugin 's built-in
ones, you have the possibility to configure external engines as custom XSLT validation engines. After such a custom
validator is properly configured in Preferences page, it can be applied on the current document with just one click on
the Custom Validation Engines toolbar.

There are two validators configured by default:

• MSXML 4.0 - included in Oxygen XML Developer plugin (Windows edition). It is associated to the XSL Editor
type in Preferences page.

• MSXML.NET - included in Oxygen XML Developer plugin (Windows edition). It is associated to the XSL Editor
type in Preferences page.

Editing Documents | 136

Associate a Validation Scenario

Validation of XSLT stylesheets documents can be also performed through a validation scenario. To define a validation
scenario, open the Configure Validation Scenario dialog. You do this with the Configure Validation Scenario action
available on the menu XML and on the toolbar of the Oxygen XML Developer plugin .

You can validate an XSLT document using the engine from transformation scenario or a custom validation scenario. If
you choose to validate using the engine from transformation scenario, and a transformation scenario is not associated
with the current document or the engine has no validation support, the default engine set in Window > Preferences >
oXygen > XML > XSLT/FO/XQuery > XSLT is used. The list of reusable scenarios for documents of the same type
as the current document is displayed in case you choose to use a custom validation scenario. For more details see
Validation Scenario.

Contextual Editing

Smaller interrelated modules that define a complex stylesheet cannot be correctly edited or validated individually, due
to their interdependency with other modules. For example, a function defined in a main stylesheet is not visible when
you edit an included or imported module. Oxygen XML Developer plugin provides the support for defining the main
module (or modules), thus allowing you to edit any of the imported/included files in the context of the larger stylesheet
structure.

To set a main files, you need to define a validation scenario and add validation units that point to the main modules.
Oxygen XML Developer plugin warns you if the current module is not part of the dependencies graph computed for
the main stylesheet. In this case, it considers the current module as the main stylesheet.

The advantages of editing in the context of main file include:

• correct validation of a module in the context of a larger stylesheet structure;
• content completion assistant displays all components valid in the current context;
• the Outline displays the components collected from the entire stylesheet structure.

Syntax Highlight

The XSL editor renders with dedicated coloring schemes the CSS and JS scripts, and XPath expressions. You can
customize the coloring schemes in the Window > Preferences > oXygen > Editor > Syntax Highlight preferences
page.

Content Completion in XSLT Stylesheets

Inside XSLT templates of an XSLT stylesheet, the content completion assistant presents all the elements allowed in any
context by the schema associated to the result of applying the stylesheet. That schema is defined by the user in the
Content Completion / XSL preferences page and can be of type: XML Schema, DTD, RELAX NG schema, or NVDL
schema. There are presented all the elements because in a template there is no context defined for the result document.
The user is allowed to insert any element defined by the schema of the result document.

The content completion window lists the following item types defined in the current stylesheet and in the imported and
included XSLT stylesheets:

• template modes
• template name
• variable names
• parameter names

The extension functions built in the Saxon transformation engine are presented in the content completion list only if the
Saxon namespace (http://saxon.sf.net for XSLT version 2.0 or http://icl.com/saxon for XSLT version 1.0) is mapped to
a prefix and one of the following conditions is true:

• the edited file has a transformation scenario that uses as transformation engine Saxon 6.5.5 (for XSLT version 1.0),
Saxon 9.3.0.5 PE or Saxon 9.3.0.5 EE (for XSLT version 2.0);

• the edited file has a validation scenario that uses as validation engine Saxon 6.5.5 (for version 1.0), Saxon 9.3.0.5
PE or Saxon 9.3.0.5 EE (for version 2.0);

Editing Documents | 137

• the validation engine specified in Options page is Saxon 6.5.5 (for version 1.0), Saxon 9.3.0.5 PE or Saxon 9.3.0.5
EE (for version 2.0).

Namespace prefixes in the scope of the current context are presented at the top of the content completion window to
speed up the insertion into the document of prefixed elements.

For the common namespaces like XSL namespace (http://www.w3.org/1999/XSL/Transform), XML Schema namespace
(http://www.w3.org/2001/XMLSchema) or Saxon namespace (http://icl.com/saxon for version 1.0, http://saxon.sf.net/
for version 2.0), Oxygen XML Developer plugin provides an easy mode to map them by proposing a prefix for these
namespaces.

Figure 81: Namespace Prefixes in the Content Completion Window

Content Completion in XPath Expressions

In XSLT stylesheets, the content completion assistant provides all the features available in the XML editor and also
adds some enhancements. In XPath expressions used in attributes of XSLT stylesheets elements like match, select
and test, the content completion assistant offers the names of XPath and XSLT functions, the XSLT axes, and
user-defined functions (the name of the function and its parameters). If a transformation scenario was defined and
associated to the edited stylesheet, the content completion assistant computes and presents elements and attributes based
on:

• the input XML document selected in the scenario;
• the current context in the stylesheet.

The associated document is displayed in the XSLT/XQuery Input view.

Content completion for XPath expressions is started:

• on XPath operators detected in one of the match, select and test attributes of XSLT elements: ", ', /, //, (, [, |,
:, ::, $

• for attribute value templates of non-XSLT elements, that is the { character when detected as the first character of
the attribute value

• on request, if the combination CTRL + Space is pressed inside an edited XPath expression.

The items presented in the content completion window are dependent on:

• the context of the current XSLT element;
• the XML document associated with the edited stylesheet in the stylesheet transformation scenario;
• the XSLT version of the stylesheet (1.0 or 2.0).

For example, if the document associated with the edited stylesheet is:

<personnel>
 <person id="Big.Boss">

Editing Documents | 138

 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and you enter an xsl:template element using the content completion assistant, the following actions are triggered:

• the match attribute is inserted automatically;
• the cursor is placed between the quotes;
• the XPath content completion assistant automatically displays a popup window with all the XSLT axes, XPath

functions and elements and attributes from the XML input document that can be inserted in the current context.

The set of XPath functions depends on the XSLT version declared in the root element xsl:stylesheet: 1.0 or 2.0.

Figure 82: Content Completion in the match Attribute

If the cursor is inside the select attribute of an xsl:for-each, xsl:apply-templates, xsl:value-of or
xsl:copy-of element the content completion proposals depend on the path obtained by concatenating the XPath
expressions of the parent XSLT elements xsl:template and xsl:for-each as shown in the following figure:

Editing Documents | 139

Figure 83: Content Completion in the select Attribute

Also XPath expressions typed in the test attribute of an xsl:if or xsl:when element benefit of the assistance of
the content completion.

Figure 84: Content Completion in the test Attribute

XSLT variable references are easier to insert in XPath expressions with the help of the content completion popup triggered
by the $ character which signals the start of such a reference in an XPath expression.

Figure 85: Content Completion in the test Attribute

Editing Documents | 140

If the { character is the first one in the value of the attribute, the same content completion assistant is available also in
attribute value templates of non-XSLT elements.

Figure 86: Content Completion in Attribute Value Templates

The time delay configured in Preferences page for all content completion windows is applied also for the XPath
expressions content completion window.

Tooltip Helper for the XPath Functions Arguments

When editing the arguments of an XPath/XSLT function, Oxygen XML Developer plugin tracks the current entered
argument by displaying a tooltip containing the function signature. The currently edited argument is highlighted with a
bolder font.

When moving the caret through the expression, the tooltip is updated to reflect the argument found at the caret position.

We want to concatenate the absolute values of two variables, named v1 and v2.

<xsl:template match="/">
 <xsl:value-of select="concat(abs($v1),
abs($v2))"></xsl:value-of>
</xsl:template>

When moving the caret before the first abs function, Oxygen XML Developer plugin identifies it
as the first argument of the concat function. The tooltip shows in bold font the following information
about the first argument:

• its name is $arg1;
• its type is xdt:anyAtomicType;
• it is optional (note the ? sign after the argument type).

The function takes also other arguments, having the same type, and returns a xs:string.

Figure 87: XPath Tooltip Helper - Identify the concat Function's First Argument

Moving the caret on the first variable $v1, the editor identifies the abs as context function and shows
its signature:

Editing Documents | 141

Figure 88: XPath Tooltip Helper - Identify the abs Function's Argument

Further, clicking the second abs function name, the editor detects that it represents the second argument
of the concat function. The tooltip is repainted to display the second argument in bold font.

Figure 89: XPath Tooltip Helper - Identify the concat Function's Second Argument

The tooltip helper is available also in the XPath toolbar and the XPath Builder view.

Code Templates

When the content completion is invoked by pressing (CTRL+Space), it also presents a list of code templates specific
to the type of the active editor. Such a code template provides a shortcut for inserting a small document fragment at the
current caret position. Oxygen XML Developer plugin comes with a large set of ready-to use templates for XSL and
XML Schema documents.

The XSL code template called Template-Match-Mode

Typing t in an XSL document and selecting tmm in the content assistant pop-up window inserts the
following template at the caret position in the document:

<xsl:template match="" mode="">

</xsl:template>

The user can easily define other templates. Also, the code templates can be shared with other users.

The XSLT/XQuery Input View

The structure of the XML document associated to the edited XSLT stylesheet, or the structure of the source documents
of the edited XQuery is displayed in a tree form in a view called XSLT/XQuery Input. The tree nodes represent the
elements of the documents.

The XSLT Input View

If you click a node, the corresponding template from the stylesheet is highlighted. A node can be dragged from this view
and dropped in the editor area for quickly inserting xsl:template, xsl:for-each, or other XSLT elements that
have the match/select/test attribute already completed. The value of the attribute is the correct XPath expression
referring to the dragged tree node. This value is based on the current editing context of the drop spot.

Editing Documents | 142

Figure 90: XSLT Input View

For example, for the following XML document:

<personnel>
 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and the following XSLT stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="2.0">
 <xsl:template match="personnel">
 <xsl:for-each select="*">

 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

if you drag the given element and drop it inside the xsl:for-each element, the following popup
menu is displayed:

Editing Documents | 143

Figure 91: XSLT Input Drag and Drop Popup Menu

Select for example Insert xsl:value-of and the result document is:

Figure 92: XSLT Input Drag and Drop Result

The XSLT Outline View

The XSLT Outline View presents the list of all the components (templates, attribute-sets, character-maps, variables,
functions) from both the edited stylesheet and its imports or includes. It can be opened from menu Window > Show
View > Other > oXygen > Outline.

Figure 93:The XSLT Outline View

The following actions are available in the View menu on the Outline view's action bar:

• Selection update on caret move - Controls the synchronization between Outline view and source document.
The selection in the Outline view can be synchronized with the caret's moves or the changes in the XSLT editor.
Selecting one of the components from the outline view also selects the corresponding item in the source document.

• Show XML structure - Displays the document's XML structure in a tree-like structure.

Editing Documents | 144

• Sort - Alphabetically sorts the stylesheet components.
• Show all components - Displays all components that were collected starting from the main file. This option is set

by default.
• Show local components - Displays components defined in the current file only.
• Group by location/type/mode - The stylesheet components can be grouped by location, type, and mode.
• Show components - Shows the define patterns collected from the current document.
• Flat presentation mode of the filtered results - when active, the application flattens the filtered result elements

to a single level.
• Show comments and processing instructions - show/hide comments and processing instructions in the Outline

view.
• Show text - show/hide additional text content for the displayed elements.
• Show attributes - show/hide attribute values for the displayed elements. The displayed attribute values can be

changed from the Outline preferences panel.
• Configure displayed attributes - displays the XML Structured Outline preferences page.

The following contextual menu actions are available:

• Append Child - Displays a list of elements that can be inserted as children of the current element.
• Insert Before - Displays a list of elements that can be inserted as siblings of the current element, before the current

element.
• Insert After - Displays a list of elements that can be inserted as siblings of the current element, after the current

element.
• Toggle Comment - Comments/uncomments the currently selected element.
• Remove (Delete) - Removes the selected item from the stylesheet.
• Search References (Ctrl+Shift+R) - Searches all references of the item found at current cursor position in the

defined scope, if any. See Finding XSLT References and Declarations for more details.
• Search References in... - Searches all references of the item found at current cursor position in the specified scope.

See Finding XSLT References and Declarations for more details.
• Component Dependencies - Allows you to see the dependencies for the current selected component. See

Component Dependencies View for more details.
• Rename Component - Renames the selected component. See XSLT Refactoring Actions for more details.

The stylesheet components information is presented on two columns: the first column presents the name and match
attributes, the second column the mode attribute. If you know the component name, match or mode, you can search it
in the Outline view by typing one of these pieces of information in the filter text field from the top of the view or directly
on the tree structure. When you type de component name, match or mode in the text field, you can switch to the tree
structure using:

• keyboard arrow keys;
• Enter key;
• Tab key;
• Shift-Tab key combination.

To switch from tree structure to the filter text field, you can use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string;
• ? - any character;
• , - patterns separator.

If no wildcards are specified, the string to search is used as a partial match (like *textToFind*).

On the XSLT Outline view you have some contextual actions like: Edit Attributes, Cut, Copy, Delete.

Editing Documents | 145

The Outline content is synchronized with Text view; when you click a component in the Outline view, its definition
is highlighted in the Text view.

XSLT Stylesheet Documentation Support

Oxygen XML Developer plugin offers built-in support for documenting XSLT stylesheets. If the expanded QName of
the element has a non-null namespace URI, the xsl:stylesheet element may contain any element not from the
XSLT namespace. Such elements are referred to as user-defined data elements. Such elements can contain the
documentation for the stylesheet and its elements (top-level elements whose names are in the XSLT namespace). Oxygen
XML Developer plugin offers its own XML schema that defines such documentation elements. The schema is named
stylesheet_documentation.xsd and can be found in
[oXygen-install-folder]/frameworks/stylesheet_documentation. The user can also specify a
custom schema in XSL Content Completion options.

When content completion is invoked inside an XSLT editor by pressing (CTRL+Space), it offers elements from the
XSLT documentation schema (either the built-in one or one specified by user).

In Text mode, to add documentation blocks while editing use the Add component documentation action available in
the contextual menu, Source submenu.

If the caret is positioned inside the xsl:stylesheet element context, documentation blocks are generated for all
XSLT elements. If the caret is positioned inside a specific XSLT element (like a template or a function), a documentation
block is generated for that element only.

Example of a documentation block using Oxygen XML Developer plugin built-in
schema

<xd:doc>
 <xd:desc>
 <xd:p>Search inside parameter <xd:i>string</xd:i> for the last
 occurrence of parameter
 <xd:i>searched</xd:i>. The substring starting from the 0
position to the identified last
 occurrence will be returned. <xd:ref
name="f:substring-after-last" type="function"
xmlns:f="http://www.oxygenxml.com/doc/xsl/functions">See
also</xd:ref></xd:p>
 </xd:desc>
 <xd:param name="string">
 <xd:p>String to be analyzed</xd:p>
 </xd:param>
 <xd:param name="searched">
 <xd:p>Marker string. Its last occurrence will be
identified</xd:p>
 </xd:param>
 <xd:return>
 <xd:p>A substring starting from the beginning of
<xd:i>string</xd:i> to the last
 occurrence of <xd:i>searched</xd:i>. If no occurrence is found
 an empty string will be
 returned.</xd:p>
 </xd:return>
</xd:doc>

Generating Documentation for an XSLT Stylesheet

Oxygen XML Developer plugin can generate detailed documentation for the elements (top-level elements whose names
are in the XSLT namespace) of an XSLT stylesheet in HTML format. You can select the XSLT elements to include and
the level of detail to present for each of them. Also the elements are hyperlinked. The user can also use custom stylesheets
to obtain a custom format.

Editing Documents | 146

To generate documentation for an XSLT stylesheet document, use the XSLT Stylesheet Documentation dialog. It is
opened with the XML Tools > Generate Documentation > XSLT Stylesheet Documentation... action. It can be also
opened from the Navigator contextual menu: Generate Stylesheet Documentation This dialog enables the user to
configure a large set of parameters used by the application to generate the documentation.

Figure 94:The Output Panel of the XSLT Stylesheet Documentation Dialog

The XSL URL field of the dialog panel must contain the full path to the XSL Stylesheet file you want to generate
documentation for. The stylesheet can be either a local or a remote one. You can also specify the path of the stylesheet
using editor variables.

You can choose to split the output into multiple files using different split criteria. For large XSLT stylesheets being
documented, choosing a different split criterion may generate smaller output files providing a faster documentation
browsing.

The available split criteria are:

• by location - each output file contains the XSLT elements from the same stylesheet;
• by namespace - each output file contains information about elements with the same namespace;
• by component - each output file contains information about one stylesheet XSLT element.

Editing Documents | 147

Figure 95:The Settings Panel of the XSLT Stylesheet Documentation Dialog

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include in the output
(templates, functions, global parameters, global variables, attribute sets, character maps, keys, decimal formats, output
formats, XSLT elements from referenced stylesheets) and the details to include in the documentation:

• Documentation - Shows the documentation for each XSLT element. For HTML format, the user-defined data
elements that are recognized and transformed in documentation blocks of the XSLT elements they precede, are the
ones from the following schemas:

• Oxygen XML Developer plugin built-in XSLT documentation schema.
• A subset of Docbook 5 elements. The recognized elements are: section, sect1 to sect5, emphasis,

title, ulink, programlisting, para, orderedlist, itemizedlist;
• A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul,

ol, pre, sl, sli, step, steps, li, title, xref;
• Full XHTML 1.0 support;
• XSLStyle documentation environment. XSLStyle uses Docbook or DITA languages inside its own user-defined

data elements. The supported Docbook and DITA elements are the ones mentioned above;
• Doxsl documentation framework. Supported elements are : codefrag, description, para, docContent,

documentation, parameter, function, docSchema, link, list, listitem, module, parameter,
template, attribute-set;

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre element.
You can change this behavior by using a custom format instead of the built-in HTML format and providing your
own XSLT stylesheets.

• Use comments - Controls whether the comments that precede an XSLT element is treated as documentation for the
element they precede. Comments that precede or succeed the xsl:stylesheet element, are treated as
documentation for the whole stylesheet. Please note that comments that precede an import or include directive are
not collected as documentation for the imported/included module. Also comments from within the body of the XSLT
elements are not collected at all.

• Namespace - Shows the namespace for named XSLT elements.
• Location - Shows the stylesheet location for each XSLT element.
• Parameters - Shows parameters of templates and functions.
• References - Shows the named XSLT elements that are referred from within an element.
• Used by - Shows the list of all the XSLT elements that refer the current named element.
• Supersedes - Shows the list of all the XSLT elements that are superseded the current element.

Editing Documents | 148

• Overriding - Shows the list of all the XSLT elements that override the current element.
• Return type - Shows the return type of the function.
• Source - Shows the text stylesheet source for each XSLT element.
• Import precedence - Shows the computed import precedence as declared in XSL transformation specifications.
• Generate index - Creates an index with all the XSLT elements included in the documentation.
• Load settings / Export settings - The current settings can be saved for further usage (for example for generating

documentation from command-line interface) with the Export settings button, and reloaded when necessary with
the Load settings button.

Generate Documentation in HTML Format

The generated documentation looks like:

Figure 96: XSLT Stylesheet Documentation Example

The generated documentation includes the following:

• Table of Contents - You can group the contents by namespace, location, or component type. The XSLT elements
from each group are sorted alphabetically (named templates are presented first and the match ones second).

• Information about main, imported, and included stylesheets - This information consists of:

• XSLT modules included or imported by the current stylesheet;
• the XSLT stylesheets where the current stylesheet is imported or included
• and the stylesheet location.

Editing Documents | 149

Figure 97: Information About an XSLT Stylesheet

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are
grouped using the same criteria as the split.

After the documentation is generated, you can collapse details for some stylesheet XSLT elements using the Showing
view.

Figure 98:The Showing View

For each element included in the documentation, the section presents the element type followed by the element name
(value of the name or match attribute for match templates).

Editing Documents | 150

Figure 99: Documentation for an XSLT Element

Generate Documentation in a Custom Format

XSLT stylesheet documentation can be also generated in a custom format. You can choose the format from the XSLT
Stylesheet Documentation dialog. Specify your own stylesheet to transform the intermediary XML generated in the
documentation process. You must write your stylesheet based on the schema xslDocSchema.xsd from
[Oxygen-install-folder]/frameworks/stylesheet_documentation. You can create a custom format
starting from one of the stylesheets used in the predefined HTML, PDF, and DocBook formats. These stylesheets are
available in [Oxygen-install-folder]/frameworks/stylesheet_documentation/xsl.

Editing Documents | 151

Figure 100:The Custom Format Options Dialog

When using a custom format, you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating Documentation From the Command Line Interface

You can export the settings of the XSLT Stylesheet Documentation dialog to an XML file by pressing the Export
settings button. With the exported settings file, you can generate the same documentation from the command line by
running the script stylesheetDocumentation.bat (on Windows) / stylesheetDocumentation.sh (on
Mac OS X / Unix / Linux) located in the Oxygen XML Developer plugin installation folder. The script can be integrated
in an external batch process launched from the command-line interface.

The command-line parameter of the script is the relative path to the exported XML settings file. The files which are
specified with relative paths in the exported XML settings are resolved relative to the script directory.

Example of an XML Configuration File

<serialized>
 <map>
 <entry>
 <String
xml:space="preserve">xsd.documentation.options</String>
 <xsdDocumentationOptions>
 <field name="outputFile">
 <String
xml:space="preserve">${cfn}.html</String>
 </field>
 <field name="splitMethod">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="openOutputInBrowser">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="format">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="customXSL">
 <null/>
 </field>
 <field name="deleteXMLFiles">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeIndex">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>

Editing Documents | 152

 <field name="includeGlobalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeSimpleTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeComplexTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeAttributesGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeRedefines">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeReferencedSchemas">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDiagram">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsNamespace">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsLocation">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsType">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsTypeHierarchy">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsModel">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsChildren">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsInstance">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsUsedby">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsProperties">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsFacets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAttributes">

Editing Documents | 153

 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsIdentityConstr">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsEscapeAnn">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSource">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAnnotations">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 </xsdDocumentationOptions>
 </entry>
 </map>
</serialized>

Finding XSLT References and Declarations

The following actions are available for search operations related with XSLT references and declarations:

• XSL > > Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined but the current edited resource is not part of the range of determined resources, a
warning dialog is shown. This dialog allows you to define another search scope.

• contextual menu of current editor > Search > Search References in... - Searches all references of the item found
at current cursor position in the file or files that you specify when define a scope in the dialog above.

• XSL > Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope, if any. If a scope is defined but the current edited resource is not part of the range of resources determined by
this scope, a warning dialog is shown.

• contextual menu of current editor > Search > Search Declarations in... - Searches all declarations of the item
found at current cursor position in the file or files that you specify when define a new scope.

• XSL > Search Occurrences in File - Searches all occurrences of the item at the caret position in the currently edited
file.

• XSL > Show Definition - Moves the cursor to the location of the definition of the current item.

Highlight Component Occurrences

When a component (for example variable or named template) is found at current cursor position, Oxygen XML Developer
plugin performs a search over the entire document to find the component declaration and all its references. When found,
they are highlighted both in the document and in the stripe bar, at the right side of the document. Customizable colors
are used: one for the component definition and another one for component references. Occurrences are displayed until
another component is selected and a new search is performed. All occurrences are removed when you start to edit the
document.

This feature is set on automatic search by default and can be configured in the Options > Preferences > Editor > Mark
Occurrences page. A search can also be triggered with the Search > Search Occurrences in File (Ctrl+Shift+U)
contextual menu action. Matches are displayed in separate tabs of the Results view.

XSLT Refactoring Actions

The following actions allow changing the structure of an XSLT stylesheet without changing the results of running it in
an XSLT transformation:

Editing Documents | 154

• XSL > > Create Template from Selection... - Opens a dialog that allows the user to specify the name of the
new template to be created. The possible changes to perform on the document can be previewed before altering the
document. After pressing OK the template is created and the selection is replaced with a <xsl:call-template>
instruction referring the newly created template.

Note: The selection must contain well-formed elements only.

• XSL > > Create Stylesheet from Selection... - Creates a separate stylesheet and replaces the selection with a
<xsl:include> instruction referring the newly created stylesheet.

Note: The selection must contain a well-formed top-level element.

• XSL > Extract Attributes as xsl:attributes... - Extracts the attributes from the selected element and represents each
of them with a <xsl:attribute> instruction. For example from the following element:

<person id="Big{test}Boss"/>

you obtain:

<person>
 <xsl:attribute name="id">
 <xsl:text>Big</xsl:text>
 <xsl:value-of select="test"/>
 <xsl:text>Boss</xsl:text>
 </xsl:attribute>
</person>

• contextual menu of current editor > Refactoring > Rename Component... - Renames the selected component.
Specify the new name for the component and the files affected by the modification as described for XML Schema.

Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a stylesheet. You can
open the view from Window > Show View > Other > oXygen > Resource Hierarchy/Dependencies.

If you want to see the hierarchy of a stylesheet, select the desired stylesheet in the project view and choose Resource
Hierarchy from the contextual menu.

Editing Documents | 155

Figure 101: Resource Hierarchy/Dependencies View - Hierarchy for docbook.xsl

If you want to see the dependencies of a stylesheet, select the desired stylesheet in the project view and choose Resource
Dependencies from the contextual menu.

Figure 102: Resource Hierarchy/Dependencies View - Dependencies for common.xsl

The following actions are available in the Resource Hierarchy/Dependencies toolbar:

• - Refreshes the hierarchy/dependencies structure.
• - Stop the hierarchy/dependencies computing.
• - Allows you to choose a stylesheet to compute the hierarchy structure.
• - Allows you to choose a stylesheet to compute the dependencies structure.
• - Allows you to configure a scope to compute the dependencies structure.
• - Allows you to repeat a previous dependencies computation.

The following actions are available in the contextual menu:

• Open - Opens the stylesheet. Alternatively, you can open the stylesheet by a double-click on the
Hierarchy/Dependencies structure.

• Copy location - Copies the location of the stylesheet.
• Show Resource Hierarchy - Shows the hierarchy for the selected stylesheet.

Editing Documents | 156

• Show Resource Dependencies - Shows the dependencies for the selected stylesheet.
• Expand All - Expands all the children of the selected stylesheet from the Hierarchy/Dependencies structure.
• Collapse All - Collapses all the children of the selected stylesheet from the Hierarchy/Dependencies structure.

Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected XSLT component. You can open
the view from Window > Show View > Other > oXygen > Component Dependencies.

If you want to see the dependencies of an XSLT component, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named components (templates,
variables, parameters, attribute sets, keys, etc).

Figure 103: Component Dependencies View - Hierarchy for table.xsl

In the Component Dependencies view you have several actions in the toolbar:

• - Refreshes the dependencies structure.
• - Stops the dependencies computing.
• - Allows you to configure a search scope to compute the dependencies structure. You can decide to use

automatically the defined scope for future operations by checking the corresponding checkbox.
• - Allows you to repeat a previous dependencies computation.

The following actions are available on the contextual menu:

• Go to First Reference - Selects the first reference of the referred component from the current selected component
in the dependencies tree.

• Go to Component - Shows the definition of the current selected component in the dependencies tree.

Tip:

If a component contains multiple references to another, a small table is shown containing all references.

When a recursive reference is encountered, it is marked with a special icon .

Editing Documents | 157

XSLT Quick Assist Support

The Quick Assist action set was designed to help you improve the development work flow by offering quicker access
to the most commonly used actions.

It is activated automatically when the cursor is positioned inside a component name. It is accessible via a yellow bulb
help marker placed on the cursor line, in the editor line number stripe. Also, you can invoke the quick assist menu if
you press Alt + 1 keys (Meta + Alt + 1 on Mac OS X).

Figure 104: XSLT Quick Assist Support

The quick assist support offers direct access to the following actions:

• Rename Component - Renames the component and all its dependencies;
• Search Declaration - Searches the declaration of the component in a predefined scope. It is available only when

the context represents a component name reference;
• Search References - Searches all references of the component in a predefined scope;
• Component Dependencies - Searches the component dependencies in a predefined scope;
• Change Scope - Configures the scope that will be used for future search or refactor operations;
• Search Occurrences - Searches all occurrences of the file within the current scope.

Editing XQuery Documents
This section explains the features of the XQuery editor and how they should be used.

XQuery Outline View

The XQuery document structure is presented in the XQuery Outline view. The outline tree presents the list of all the
components (namespaces, imports, variables, and functions) from both the edited XQuery file and its imports. It allows
quick access to a component by knowing its name. It can be opened from the Window > Show View > Other > oXygen
> Outline menu action.

Editing Documents | 158

Figure 105: XQuery Outline View

The following actions are available in the View menu on the Outline view's action bar:

• Selection update on caret move - Controls the synchronization between Outline view and source document.
The selection in the Outline view can be synchronized with the caret moves or the changes performed in the XQuery
editor. Selecting one of the components from the Outline view also selects the corresponding item in the source
document.

• Sort - Allows you to alphabetically sort the XQuery components.
• Show all components - Displays all collected components starting from the current file. This option is set by default.
• Show local components - Displays components defined in the current file only.
• Group by location/namespace/type - Allows you to group the components by location, namespace, and type. When

grouping by namespace, the main XQuery module namespace is presented first in the Outline view.

If you know the component name, you can search it in the Outline view by typing its name in the filter text field from
the top of the view or directly on the tree structure. When you type the component name in the filter text field you can
switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch from tree
structure to the filter text field, you can use (Tab), (Shift-Tab).

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match (like *textToFind*).

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

Folding in XQuery Documents

In a large XQuery document, the instructions enclosed in the '{' and '}' characters can be collapsed so that only the
needed instructions remain in focus. The same folding features available for XML documents are also available in
XQuery documents.

Editing Documents | 159

Figure 106: Folding in XQuery Documents

There is available the action Go to Matching BracketCtrl+Shift+G on contextual menu of XQuery editor for going
to matching character when cursor is located at '{' character or '}' character. It helps for finding quickly matching character
of current folding element.

Generating HTML Documentation for an XQuery Document

To generate HTML documentation for an XQuery document, use the dialog XQuery Documentation. It is opened with
the action XML Tools > Generate Documentation > XQuery Documentation.... . It can be also opened from the
Navigator's contextual menu > Generate XQuery Documentation. The dialog enables the user to configure a set of
parameters of the process of generating the HTML documentation. The parameters are:

Editing Documents | 160

Figure 107:The XQuery Documentation Dialog

• Input - The Input panel allows the user to specify either the File or the Folder which contains the files for which
to generate the documentation. One of the two text fields of the Input panel must contain the full path to the XQuery
file. Extensions for the XQuery files contained in the specified directory can be added as comma-separated values.
Default there are offered xquery, xq, xqy.

• Default function namespace - Optional URI for the default namespace for the submitted XQuery, only if it exists.
• Predefined function namespaces - Optional engine dependent, predefined namespaces that the submitted XQuery

refers to. They allow the conversion to generate annotation information to support the presentation component
hypertext linking, only if the predefined modules have been loaded into the local xqDoc XML repository.

• Open in Browser/System Application - Select this option if you want the result to be opened in the system application
associated with that file type.

Note: If you already set the Default Internet browser option in the Global preferences page, it will take
precedence over the default system application settings.

• Output - Allows the user to specify where the generated documentation is saved on disk.

Editing CSS Stylesheets
This section explains the features of the editor for CSS stylesheets and how these features should be used.

Validating CSS Stylesheets

Oxygen XML Developer plugin includes a built-in CSS validator integrated with the general validation support, bringing
the usual validation features to CSS stylesheets.

Editing Documents | 161

The CSS properties accepted by the validator are the ones included in the current CSS profile that is selected in the CSS
validation preferences. The profile CSS 3 with Oxygen extensions includes all the CSS 3 standard properties and the
CSS extensions specific for Oxygen that can be used in Author mode. That means all Oxygen specific extensions are
accepted in a CSS stylesheet by the built-in CSS validator when this profile is selected.

You can add custom CSS properties with a file called customProperties.xml located in the folder
[Oxygen-install-folder]/endorsed/builtin/css-validator. The custom properties and their values
are accepted by the CSS validator and are listed in the content completion window when editing a CSS stylesheet. For
example the custom property called custom with the possible values customValue1 and customValue2 is specified
with the following configuration file customProperties.xml:

<?xml version="1.0" encoding="UTF-8"?>
<css_keywords>
 <property name="custom">
 <summary>Description for custom property.</summary>
 <value name="customValue1"/>
 <value name="customValue2"/>
 </property>
</css_keywords>

Content Completion in CSS Stylesheets

A content completion assistant like the one available for XML documents offers the CSS properties and the values
available for each property. It is activated on the (CTRL - Space) shortcut and it is context-sensitive when invoked for
the value of a property.

Figure 108: Content Completion in CSS Stylesheets

The properties and the values offered as proposals are dependent on the CSS Profile selected in the Options > Preferences
> CSS Validator page, Profile combo box. The CSS 2.1 set of properties and property values is used for most of the
profiles, excepting CSS 1 and CSS 3. For these two, specific proposal sets are used.

You can add custom CSS properties with a file called customProperties.xml located in the folder
[Oxygen-install-folder]/endorsed/builtin/css-validator. The custom properties and their values
are accepted by the CSS validator and are listed in the content completion window when editing a CSS stylesheet. For
example the custom property called custom with the possible values customValue1 and customValue2 is specified
with the following configuration file customProperties.xml:

<?xml version="1.0" encoding="UTF-8"?>
<css_keywords>
 <property name="custom">
 <summary>Description for custom property.</summary>
 <value name="customValue1"/>
 <value name="customValue2"/>
 </property>
</css_keywords>

Editing Documents | 162

CSS Outline View

The CSS Outline view presents the import declarations for other CSS stylesheet files and all the selectors defined in
the current CSS document. The selector entries can be presented as follows:

• in the order they appear in the document;
• sorted by element name used in the selector;
• sorted by the entire selector string representation.

The selection in the Outline view can be synchronized with the caret moves or the changes made in the stylesheet
document. When selecting an entry from the Outline view, the corresponding import or selector is highlighted in the
CSS editor.

Figure 109: CSS Outline View

The selectors presented in this view can be quickly found using the key search field. When you press a sequence of
character keys while the focus is in the view, the first selector that starts with that sequence is selected automatically.

Folding in CSS Stylesheets

In a large CSS stylesheet document, some styles can be collapsed so that only the needed styles remain in focus. The
same folding features available for XML documents are also available in CSS stylesheets.

Formatting and Indenting CSS Stylesheets (Pretty Print)

If the edited CSS stylesheet becomes unreadable because of the bad alignment of the text lines, the pretty-print operation
available for XML documents is also available for CSS stylesheets. It works in the same way as for XML documents
and is available as the same menu and toolbar action.

Other CSS Editing Actions

The CSS editor type offers a reduced version of the popup menu available in the XML editor. Only the folding actions,
the edit actions and a part of the source actions (only the actions To lower case, To upper case, Capitalize lines) are
available.

Editing JSON Documents
This section explains the features of the Oxygen XML JSON Editor and how they should be used.

Editing Documents | 163

JSON Editor Text Mode

The Text Mode of the JSON editor provides the usual actions specific for a plain text editor: undo / redo, copy / paste,
find / replace, drag and drop, and other editor actions like validation and formatting and indenting (pretty print) document.

You can use the two Text and Grid buttons available at the bottom of the editor panel if you want to switch between
the editor Text Mode and Grid Mode .

Figure 110: JSON Editor Text Mode

Syntax highlight in JSON Documents

Oxygen XML Developer plugin supports Syntax Highlight for JavaScript / JSON editors and provides default
configurations for the JSON set of tokens. You can customize the foreground color, background color and the font style
for each JSON token type.

Folding in JSON

In a large JSON document, the data enclosed in the '{' and '}' characters can be collapsed so that only the needed data
remain in focus. The folding features available for XML documents are available in JSON documents.

Editing Documents | 164

JSON Editor Grid Mode

Figure 111: JSON Editor Grid Mode

Oxygen XML Developer plugin allows you to view and edit the JSON documents in the Grid Mode. The JSON is
represented in Grid mode as a compound layout of nested tables in which the JSON data and structure can be easily
manipulated with table-specific operations or drag and drop operations on the grid components. You can also use the
following JSON-specific contextual actions:

• Array - Useful when you want to convert a JSON value to array.
• Insert value before - Inserts a value before the currently selected one.
• Insert value after - Inserts a value after the currently selected one.
• Append value as child - Appends a value as a child of the currently selected value.

You can customize the JSON grid appearance according to your needs. For instance you can change the font, the cell
background, foreground, or even the colors from the table header gradients. The default width of the columns can also
be changed.

Validating JSON Documents

Oxygen XML Developer plugin includes a built-in JSON validator (based on the free JAVA source code available on
www.json.org), integrated with the general validation support.

Editing Documents | 165

Convert XML to JSON

The steps for converting an XML document to JSON are the following:

1. Go to menu XML Tools > XML to JSON....
The XML to JSON dialog is displayed:

2. Choose or enter the Input URL of the XML document.

3. Choose the Output file that will contain the conversion JSON result.

4. Check the Open in Editor option to open the JSON result of the conversion in the Oxygen XML JSON Editor

5. Click the OK button.

The operation result will be a document containing the JSON conversion of the input XML URL.

Editing XProc Scripts
An XProc script is edited as an XML document that is validated against a RELAX NG schema. If the script has an
associated transformation scenario, then the XProc engine from the scenario is invoked as validating engine. The default

Editing Documents | 166

engine for XProc scenarios is the Calabash engine which comes with Oxygen XML Developer plugin version 13.2.0
.

The content completion inside the element input/inline from the XProc namespace http://www.w3.org/ns/xproc
offers elements from the following schemas depending on the port attribute of input and the parent of input. When
invoking the content completion inside the XProc element inline, depending on the attribute port of its parent
input element and the parent of element input, elements from different schemas are offered inside the proposals
list.

• If the value of the port attribute is stylesheet and element xslt is the parent of element input, the content
completion assistant offers XSLT elements.

• If the value of the port attribute is schema and element validate-with-relax-ng is the parent of element
input, the content completion assistant offers RELAX NG schema elements.

• If the value of the port attribute is schema and element validate-with-xml-schema is the parent of element
input, the content completion assistant offers XML Schema schema elements.

• If the value of the port attribute is schema and element validate-with-schematron is the parent of element
input, the content completion assistant offers either ISO Schematron elements or Schematron 1.5 schema elements.

• If the above cases do not apply, then the content completion window offers elements from all the schemas from the
above cases.

The XProc editor renders with dedicated coloring schemes the XPath expressions. You can customize the coloring
schemes in the Window > Preferences > oXygen > Editor > Syntax Highlight preferences page.

Figure 112: XProc Content Completion

Editing Schematron Schemas
Schematron is a simple and powerful Structural Schema Language for making assertions about patterns found in XML
documents. It relies almost entirely on XPath query patterns for defining rules and checks. Schematron validation rules
allow you to specify a meaningful error message (as opposed to a cryptic error code) which will be provided to the user
if an error is encountered during validation stage.

Oxygen XML Developer plugin uses for validation the Skeleton XSLT processor and conforms with ISO Schematron
or Schematron 1.5. It allows you to validate XML documents against Schematron schema or against combined RELAX
NG / W3C XML Schema and Schematron.

Oxygen XML Developer plugin assists you in editing Schematron documents by providing schema-based content
completion and syntax coloring. A basic Schematron template is available in the New Document wizard. The Schematron

Editing Documents | 167

editor renders with dedicated coloring schemes the XPath expressions. You can customize the coloring schemes in the
Window > Preferences > oXygen > Editor > Syntax Highlight preferences page.

Any time you can validate the content using the Validate action. Another way to validate schemas is to check them
against their own Schematron schema rules using External validation action.

Combined RELAX NG / W3C XML Schemas and Schematron Schema

Schematron rules can be embedded into W3C Schema through annotation (using the appinfo element) or in any
element on any level of a RELAX NG Schema (taking into account that the RELAX NG validator ignores all elements
that are not in the RELAX NG namespace).

Oxygen XML Developer plugin accepts such documents as Schematron validation schemas and it is able to extract and
use the embedded rules. To validate a document with both RELAX NG schema and its embedded Schematron rules,
you need two persistence associations like in the following example:

<?xml-model href="percent.rng" type="application/xml"
schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="percent.rng" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/schematron"?>

The second association validates your document with Schematron rules extracted from the RELAX NG Schema. Similarly
you can specify as Schematron Schema a W3C XML Schema having the Schematron rules embedded:

<?xml-model href="percent.xsd" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/schematron"?>

Validate an XML Document

To validate an XML document against a Schematron schema, invoke the Validate action either from the application's
toolbar or from the Project view's contextual menu. If you would like to add a persistence association between your
Schematron rules and the current edited XML document, use the Associate Schema action. A custom processing
instruction is added into the document and the validation process will take into account the Schematron rules:

<?xml-model href="percent.sch" type="application/xml"
schematypens="http://purl.oclc.org/dsdl/schematron"?>

The possible errors which might occur during the validation process are presented in the Errors panel at the bottom
area of the Oxygen XML Developer plugin window. Each error is flagged with a severity level, which Errors are
flagged with a security level, which can be one of warning, error, fatal or info.

To set a severity level, Oxygen XML Developer plugin looks for the following information:

• the role attribute, which can have one of the following values:

• warn or warning, to set the severity level to warning;
• error, to set the severity level to error;
• fatal, to set the severity level to fatal;
• info or information, to set the severity level to info.

• the start of the message, after trimming leading white-spaces. Oxygen XML Developer plugin looks to match the
following exact string of characters (case sensitive):

• Warning:, to set the severity level to warning;
• Error:, to set the severity level to error;
• Fatal:, to set the severity level to fatal;
• Info:, to set the severity level to info;

Note: Displayed message does not contain the matched prefix.

Editing Documents | 168

• if none of the previous rules match, Oxygen XML Developer plugin sets the security level to error.

Handling Read-Only Files
The default workbench behavior applies when editing read-only files in the Text mode. For all other modes no modification
is allowed as long as the file remains read-only.

You can check out the read-only state of the file by looking in the Properties view. If you modify the file properties
from the operating system and the file becomes writable, you are able to modify it on the spot without having to reopen
it.

Editing Documents | 169

Chapter

5

Predefined Document Types

The following are the short presentations of some document types that come
bundled with Oxygen XML Developer plugin . For each document type there
are presented built-in transformation scenarios, document templates.

Topics:

• Document Type
• The DocBook 4 Document Type
• The DocBook 5 Document Type
• The DocBook Targetset

Document Type
• The DITA Topics Document Type
• The DITA Map Document Type
• The XHTML Document Type
• The TEI ODD Document Type
• The TEI P4 Document Type
• The TEI P5 Document Type
• The EPUB Document Type

Document Type
A document type or framework is associated to an XML file according to a set of rules. It includes also many settings
that improve editing in the Tagless editor for the category of XML files it applies for. These settings include:

• a default grammar used for validation and content completion in both Author mode and Text mode
• CSS stylesheet(s) for rendering XML documents in Author mode
• user actions invoked from toolbar or menu in Author mode
• predefined scenarios used for transformation of the class of XML documents defined by the document type
• XML catalogs
• directories with file templates
• user defined extensions for customizing the interaction with the content author in Author mode

Note: The Author mode allows WYSIWYG-like visual editing of XML documents and is available only in the
products Oxygen XML Editor and Oxygen XML Author.

The tagless editor comes with some predefined document types already configured when the application is installed on
the computer. These document types describe well-known XML frameworks largely used today for authoring XML
documents. Editing a document which conforms to one of these types is as easy as opening it or creating it from one of
the predefined document templates which also come with the application.

The DocBook 4 Document Type
DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly technical
documentation.

A file is considered to be a DocBook 4 document when one of the following conditions are true:

• root element name is book or article
• the PUBLIC ID of the document contains the string -//OASIS//DTD DocBook XML

The schema of DocBook 4 documents is ${frameworks}/docbook/dtd/docbookx.dtd, where
${frameworks} is a subdirectory of the Oxygen XML Developer plugin install directory.

The XML catalog is stored in ${frameworks}/docbook/catalog.xml.

Transformation Scenarios

Default transformation scenarios allow you to convert DocBook 4 to DocBook 5 documents and transform DocBook
documents to HTML, HTML Chunk, PDF, XHTML, XHTML Chunk, WebHelp (experimental) and EPUB.

Templates

Default templates are available in the New File wizard and can be used for easily creating a skeletal form of a DocBook
4 book or article. These templates are stored in the ${frameworks}/docbook/templates/DocBook 4 folder.

Here are some of the DocBook 4 templates available when creating new documents from templates.

• Article
• Article with MathML
• Article with SVG
• Article with XInclude
• Book
• Book with XInclude

Inserting olink Links in Docbook Documents
An olink is a type of link between two Docbook XML documents.

Predefined Document Types | 172

The olink element is the equivalent for linking outside the current Docbook document. It has the attribute targetdoc
for the document ID that contains the target element and the attribute targetptr for the ID (the value of an id or
xml:id attribute) of the target element. The combination of those two attributes provides a unique identifier to locate
cross references.

For example, the Administrator Guide is a book with the document ID MailAdminGuide and it contains a chapter
about user accounts like the following:

<chapter id="user_accounts">
<title>Administering User Accounts</title>
<para>blah blah</para>
...

You can form a cross reference to that chapter by adding an olink in the User Guide like the following:

You may need to update your
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts
</olink>
when you get a new machine.

1. Decide what documents are included in the domain for cross referencing.

An ID should be assigned to each document that will be referenced with an olink. Usually it is added as an id or
xml:id attribute to the root element of the document. A document ID is a string that is unique for each document
in your collection. For example the documentation may include a user's guide, an administrator's guide, and a reference
document. These could have simple IDs like ug, ag, and ref or more specific IDs like MailUserGuide,
MailAdminGuide, and MailReference.

2. Decide the output hierarchy.

For creating links between documents, the relative locations of the output documents must be known. Generally the
HTML files for multiple documents are output to different directories if chunking is used. Before going further you
must decide the names and locations of the HTML output directories for all the documents from the domain. Each
directory will be represented by an element <dir name="directory_name"> in the target database document.
In the example from the next step the hierarchy is documentation/guides/mailuser,
documentation/guides/mailadmin, documentation/guides/reference.

3. Create the target database document.

Each collection of documents has a master target database document that is used to resolve all olinks from that
collection. The target database document is an XML file that is created once. It provides a framework that pulls in
the target data for each document. The database document is static and all the document data is pulled in dynamically.
An example is the following:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset
 SYSTEM "file:///tools/docbook-xsl/common/targetdatabase.dtd" [
<!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">
<!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">
<!ENTITY reftargets SYSTEM "file:///doc/man/target.db">
]>
<targetset>
 <targetsetinfo>
 Description of this target database document,
 which is for the examples in olink doc.
 </targetsetinfo>

 <!-- Site map for generating relative paths between documents -->
 <sitemap>
 <dir name="documentation">
 <dir name="guides">
 <dir name="mailuser">
 <document targetdoc="MailUserGuide"

Predefined Document Types | 173

 baseuri="userguide.html">
 &ugtargets;
 </document>
 </dir>
 <dir name="mailadmin">
 <document targetdoc="MailAdminGuide">
 &agtargets;
 </document>
 </dir>
 </dir>
 <dir name="reference">
 <dir name="mailref">
 <document targetdoc="MailReference">
 &reftargets;
 </document>
 </dir>
 </dir>
 </dir>
 </sitemap>
</targetset>

An example of a target.db file:

<!DOCTYPE div
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<div element="book" href="#MailAdminGuide" number="1" targetptr="user_accounts">

 <ttl>Administering User Accounts</ttl>
 <xreftext>How to administer user accounts</xreftext>
 <div element="part" href="#d5e4" number="I">
 <ttl>First Part</ttl>
 <xreftext>Part I, “First Part”</xreftext>
 <div element="chapter" href="#d5e6" number="1">
 <ttl>Chapter Title</ttl>
 <xreftext>Chapter 1, Chapter Title</xreftext>
 <div element="sect1" href="#src_chapter" number="1"
targetptr="src_chapter">
 <ttl>Section1 Title</ttl>
 <xreftext>xreflabel_here</xreftext>
 </div>
 </div>
 </div>
</div>

4. Generate the target data files.

These files are the target.db files from the above example of target database document. They are created with
the same DocBook transformation scenario as the HTML or XHTML output. The XSLT parameter called
collect.xref.targets must be set to the value yes. The default name of a target data file is target.db
but it can be changed by setting an absolute file path in the XSLT parameter targets.filename.

5. Insert olink elements in the DocBook XML documents.

When a DocBook XML document is edited in Author mode Oxygen provides the Insert OLink action on the toolbar.
This action allows selecting the target of an olink from the list of all possible targets from a specified target database
document. In the following image the target database document is called target.xml.

Predefined Document Types | 174

Figure 113: Insert OLink Dialog

6. Process each document for output.

That is done using a DocBook transformation scenario in which the URL of the target database document is set in
the target.database.document parameter. The DocBook XSL stylesheets know how to resolve olinks
in the output files using the value of this parameter.

The DocBook 5 Document Type
A file is considered to be a DocBook 5 document when the namespace is http://docbook.org/ns/docbook.

DocBook 5 documents use a Relax NG and Schematron schema located in
${frameworks}/docbook/5.0/rng/docbookxi.rng, where ${frameworks} is a subdirectory of the Oxygen
XML Developer plugin install directory.

The XML catalog is stored in ${frameworks}/docbook/5.0/catalog.xml.

Transformation Scenarios

Default transformation scenarios allow you to transform DocBook 5 documents to HTML, HTML Chunk, PDF, XHTML,
XHTML Chunk, WebHelp (experimental) and EPUB.

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when possible.
To use a specific font:

• first you need to declare it in your CSS file, like:

@font-face {
font-family: "MyFont";
font-weight: bold;

Predefined Document Types | 175

font-style: normal;
src: url(fonts/MyFont.otf);
}

• tell the CSS where this font is used. To set it as default for h1 elements, use the font-family rule as in the
following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

• in your DocBook to EPUB transformation, set the epub.embedded.fonts parameter to fonts/MyFont.otf.
If you need to provide more files, use comma to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.

Templates

Default templates are available in the New File wizard and can be used for easily creating a skeletal form of a DocBook
5 book or article. These templates are stored in the ${frameworks}/docbook/templates/DocBook 5 folder.

Here are some of the DocBook 5 templates available when creating new documents from templates.

• Article
• Article with MathML
• Article with SVG
• Article with XInclude
• Book
• Book with XInclude

Inserting olink Links in Docbook Documents
An olink is a type of link between two Docbook XML documents.

The olink element is the equivalent for linking outside the current Docbook document. It has the attribute targetdoc
for the document ID that contains the target element and the attribute targetptr for the ID (the value of an id or
xml:id attribute) of the target element. The combination of those two attributes provides a unique identifier to locate
cross references.

For example, the Administrator Guide is a book with the document ID MailAdminGuide and it contains a chapter
about user accounts like the following:

<chapter id="user_accounts">
<title>Administering User Accounts</title>
<para>blah blah</para>
...

You can form a cross reference to that chapter by adding an olink in the User Guide like the following:

You may need to update your
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts
</olink>
when you get a new machine.

1. Decide what documents are included in the domain for cross referencing.

An ID should be assigned to each document that will be referenced with an olink. Usually it is added as an id or
xml:id attribute to the root element of the document. A document ID is a string that is unique for each document

Predefined Document Types | 176

in your collection. For example the documentation may include a user's guide, an administrator's guide, and a reference
document. These could have simple IDs like ug, ag, and ref or more specific IDs like MailUserGuide,
MailAdminGuide, and MailReference.

2. Decide the output hierarchy.

For creating links between documents, the relative locations of the output documents must be known. Generally the
HTML files for multiple documents are output to different directories if chunking is used. Before going further you
must decide the names and locations of the HTML output directories for all the documents from the domain. Each
directory will be represented by an element <dir name="directory_name"> in the target database document.
In the example from the next step the hierarchy is documentation/guides/mailuser,
documentation/guides/mailadmin, documentation/guides/reference.

3. Create the target database document.

Each collection of documents has a master target database document that is used to resolve all olinks from that
collection. The target database document is an XML file that is created once. It provides a framework that pulls in
the target data for each document. The database document is static and all the document data is pulled in dynamically.
An example is the following:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset
 SYSTEM "file:///tools/docbook-xsl/common/targetdatabase.dtd" [
<!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">
<!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">
<!ENTITY reftargets SYSTEM "file:///doc/man/target.db">
]>
<targetset>
 <targetsetinfo>
 Description of this target database document,
 which is for the examples in olink doc.
 </targetsetinfo>

 <!-- Site map for generating relative paths between documents -->
 <sitemap>
 <dir name="documentation">
 <dir name="guides">
 <dir name="mailuser">
 <document targetdoc="MailUserGuide"
 baseuri="userguide.html">
 &ugtargets;
 </document>
 </dir>
 <dir name="mailadmin">
 <document targetdoc="MailAdminGuide">
 &agtargets;
 </document>
 </dir>
 </dir>
 <dir name="reference">
 <dir name="mailref">
 <document targetdoc="MailReference">
 &reftargets;
 </document>
 </dir>
 </dir>
 </dir>
 </sitemap>
</targetset>

An example of a target.db file:

Predefined Document Types | 177

<!DOCTYPE div
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<div element="book" href="#MailAdminGuide" number="1" targetptr="user_accounts">

 <ttl>Administering User Accounts</ttl>
 <xreftext>How to administer user accounts</xreftext>
 <div element="part" href="#d5e4" number="I">
 <ttl>First Part</ttl>
 <xreftext>Part I, “First Part”</xreftext>
 <div element="chapter" href="#d5e6" number="1">
 <ttl>Chapter Title</ttl>
 <xreftext>Chapter 1, Chapter Title</xreftext>
 <div element="sect1" href="#src_chapter" number="1"
targetptr="src_chapter">
 <ttl>Section1 Title</ttl>
 <xreftext>xreflabel_here</xreftext>
 </div>
 </div>
 </div>
</div>

4. Generate the target data files.

These files are the target.db files from the above example of target database document. They are created with
the same DocBook transformation scenario as the HTML or XHTML output. The XSLT parameter called
collect.xref.targets must be set to the value yes. The default name of a target data file is target.db
but it can be changed by setting an absolute file path in the XSLT parameter targets.filename.

5. Insert olink elements in the DocBook XML documents.

When a DocBook XML document is edited in Author mode Oxygen provides the Insert OLink action on the toolbar.
This action allows selecting the target of an olink from the list of all possible targets from a specified target database
document. In the following image the target database document is called target.xml.

Figure 114: Insert OLink Dialog

Predefined Document Types | 178

6. Process each document for output.

That is done using a DocBook transformation scenario in which the URL of the target database document is set in
the target.database.document parameter. The DocBook XSL stylesheets know how to resolve olinks
in the output files using the value of this parameter.

The DocBook Targetset Document Type
DocBook Targetset documents are used to resolve cross references with DocBook olink's.

A file is considered to be a Targetset when the root name is targetset.

This type of documents use a DTD and schema located in
${frameworks}/docbook/xsl/common/targetdatabase.dtd, where ${frameworks} is a subdirectory
of the Oxygen XML Developer plugin install directory.

Templates

There is a default template for Targetset documents in the ${frameworks}/docbook/templates/Targetset
folder. It is available when creating new documents from templates.

• Docbook Targetset - Map - New Targetset Map.

The DITA Topics Document Type
The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering technical information. It divides content into small, self-contained topics that can be reused in different
deliverables. The extensibility of DITA permits organizations to define specific information structures and still use
standard tools to work with them.

A file is considered to be a DITA topic document when either of the following occurs:

• the root element name is one of the following: concept, task, reference, dita, topic
• PUBLIC ID of the document is one of the PUBLIC ID's for the elements above
• the root element of the file has an attribute named DITAArchVersion attribute from the

“http://dita.oasis-open.org/architecture/2005/” namespace. This enhanced case of matching is only applied when the
Enable DTD processing option from the is enabled.

The default schema used for DITA topic documents is located in ${frameworks}/dita/dtd/ditabase.dtd,
where ${frameworks} is a subdirectory of the Oxygen XML Developer plugin install directory.

The default XML catalog is ${frameworks}/dita/catalog.xml.

Transformation Scenarios

The following default transformation scenarios are available for DITA Topics:

• DITA XHTML - Transforms a DITA topic to XHTML using DITA Open Toolkit 1.5.4;
• DITA PDF (Idiom FO Plugin) - Transforms a DITA topic to PDF using the DITA Open Toolkit 1.5.4 and the

Apache FOP engine.

Templates

The default templates available for DITA topics are stored in ${frameworks}/dita/templates/topic folder.
They can be used for easily creating a DITA concept, reference, task or topic.

Here are some of the DITA templates available when creating new documents from templates.

• DITA - Composite - New DITA Composite
• DITA - Composite with MathML - New DITA Composite with MathML

Predefined Document Types | 179

• DITA - Concept - New DITA Concept
• DITA - General Task - New DITA Task
• DITA - Glossentry - New DITA Glossentry
• DITA - Glossgroup - New DITA Glossgroup
• DITA - Machinery Task - New DITA Machinery Task
• DITA - Reference - New DITA Reference
• DITA - Task - New DITA Task
• DITA - Topic - New DITA Topic
• DITA - Learning Assessment - New DITA Learning Assessment (learning specialization in DITA 1.2)
• DITA - Learning Content - New DITA Learning Content (learning specialization in DITA 1.2)
• DITA - Learning Summary - New DITA Learning Summary (learning specialization in DITA 1.2)
• DITA - Learning Overview - New DITA Learning Overview (learning specialization in DITA 1.2)

The DITA Map Document Type
DITA maps are documents that collect and organize references to DITA topics to indicate the relationships among the
topics. They can also serve as outlines or tables of contents for DITA deliverables and as build manifests for DITA
projects.

Maps allow scalable reuse of content across multiple contexts. They can be used by information architects, writers, and
publishers to plan, develop, and deliver content.

A file is considered to be a DITA map document when either of the following occurs:

• root element name is one of the following: map, bookmap
• public id of the document is -//OASIS//DTD DITA Map or -//OASIS//DTD DITA BookMap.
• the root element of the file has an attribute named class which contains the value map/map and a

DITAArchVersion attribute from the http://dita.oasis-open.org/architecture/2005/ namespace. This enhanced
case of matching is only applied when the Enable DTD processing option from the Document Type Detection
option page is enabled.

The default schema used for DITA map documents is located in ${frameworks}/dita/DITA-OT/dtd/map.dtd,
where ${frameworks} is a subdirectory of the Oxygen XML Developer plugin install directory.

The default XML catalog is stored in ${frameworks}/dita/catalog.xml.

Transformation Scenarios

The following default transformations are available:

• Predefined transformation scenarios allow you to transform a DITA Map to PDF, XHTML, WebHelp, EPUB and
CHM files.

• Run DITA OT Integrator - Use this transformation scenario if you want to integrate a DITA OT plugin. This
scenario runs an ANT task that integrates all the plug-ins from DITA-OT/plugins directory.

• DITA Map Metrics Report - Use this transformation scenario if you want to generate a DITA Map statistics report
containing information like:

• the number of processed maps and topics;
• content reuse percentage;
• number of elements, attributes, words, and characters used in the entire DITA Map structure;
• DITA conditional processing attributes used in the DITA Maps;
• words count;
• information types like number of containing maps, bookmaps, or topics.

Many more output formats are available by clicking the New button. The transformation process relies on DITA Open
Toolkit 1.5.4.

Predefined Document Types | 180

Templates

The default templates available for DITA maps are stored in ${frameworks}/dita/templates/map folder.
They can be used for easily creating a DITA map and bookmap files.

Here are some of the DITA Map templates available when creating new documents from templates:

• DITA Map - Bookmap - New DITA Bookmap
• DITA Map - Map - New DITA Map
• DITA Map - Learning Map - New DITA learning and training content specialization map
• DITA Map - Learning Bookmap - New DITA learning and training content specialization bookmap
• DITA Map - Eclipse Map - New DITA learning and training content specialization bookmap

The XHTML Document Type
The Extensible HyperText Markup Language, or XHTML, is a markup language that has the same depth of expression
as HTML, but also conforms to XML syntax.

A file is considered to be a XHTML document when the root element name is a html.

The schema used for these documents is located in ${frameworks}/xhtml/dtd/xhtml1-strict.dtd, where
${frameworks} is a subdirectory of the Oxygen XML Developer plugin install directory.

There are three default catalogs for XHTML document type:

• ${frameworks}/xhtml/dtd/xhtmlcatalog.xml

• ${frameworks}/xhtml11/dtd/xhtmlcatalog.xml

• ${frameworks}/xhtml11/schema/xhtmlcatalog.xml

Transformation Scenarios

The following default transformation scenarios are available for XHTML:

• XHTML to DITA concept - Converts an XHTML document to a DITA concept document
• XHTML to DITA reference - Converts an XHTML document to a DITA reference document
• XHTML to DITA task - Converts an XHTML document to a DITA task document
• XHTML to DITA topic - Converts an XHTML document to a DITA topic document

Templates

Default templates are available for XHTML. They are stored in ${frameworksDir}/xhtml/templates folder
and they can be used for easily creating basic XHTML documents.

Here are some of the XHTML templates available when creating new documents from templates.

• XHTML - 1.0 Strict - New Strict XHTML 1.0
• XHTML - 1.0 Transitional - New Transitional XHTML 1.0
• XHTML - 1.1 DTD Based - New DTD based XHTML 1.1
• XHTML - 1.1 DTD Based + MathML 2.0 + SVG 1.1 - New XHTML 1.1 with MathML and SVG insertions
• XHTML - 1.1 Schema based - New XHTML 1.1 XML Schema based

The TEI ODD Document Type
The Text Encoding Initiative - One Document Does it all (TEI ODD) is a TEI XML-conformant specification format
that allows creating a custom TEI P5 schema in a literate programming fashion. A system of XSLT stylesheets called
Roma was created by the TEI Consortium for manipulating the ODD files.

A file is considered to be a TEI ODD document when either of the following occurs:

Predefined Document Types | 181

http://www.tei-c.org/Guidelines/Customization/odds.xml
http://wiki.tei-c.org/index.php/Roma

• the file extension is .odd
• the document's namespace is http://www.tei-c.org/ns/1.0

The schema used for these documents is located in
${frameworks}/tei/xml/tei/custom/schema/relaxng/brown_odds.rng, where ${frameworks}
is a subdirectory of the Oxygen XML Developer plugin install directory.

There are two default catalogs for TEI ODD document type:

• ${frameworks}/tei/xml/tei/custom/schema/catalog.xml

• ${frameworks}/tei/xml/tei/schema/catalog.xml

Transformation Scenarios

The following default transformations are available:

• TEI ODD XHTML - Transforms a TEI ODD document into an XHTML document
• TEI ODD PDF - Transforms a TEI ODD document into a PDF document using the Apache FOP engine
• TEI ODD EPUB - Transforms a TEI ODD document into an EPUB document
• TEI ODD DOCX - Transforms a TEI ODD document into a DOCX document
• TEI ODD ODT - Transforms a TEI ODD document into an ODT document
• TEI ODD RelaxNG XML - Transforms a TEI ODD document into a RelaxNG XML document
• TEI ODD to DTD - Transforms a TEI ODD document into a DTD document
• TEI ODD to XML Schema - Transforms a TEI ODD document into an XML Schema document
• TEI ODD to RelaxNG Compact - Transforms a TEI ODD document into an RelaxNG Compact document

Templates

There is only one default template which is stored in the ${frameworks}/tei/templates/TEI ODD folder and
can be used for easily creating a basic TEI ODD document. This template is available when creating new documents
from templates.

• TEI ODD - New TEI ODD document

The TEI P4 Document Type
The Text Encoding Initiative (TEI) Guidelines is an international and interdisciplinary standard that enables libraries,
museums, publishers, and individual scholars to represent a variety of literary and linguistic texts for online research,
teaching, and preservation.

A file is considered to be a TEI P4 document when either of the following occurs:

• the root's local name is TEI.2
• the document's public id is -//TEI P4

The DTD schema used for these documents is located in ${frameworks}/tei/tei2xml.dtd, where
${frameworks} is a subdirectory of the Oxygen XML Developer plugin install directory.

There are two default catalogs for TEI P4 document type:

• ${frameworks}/tei/xml/teip4/schema/dtd/catalog.xml

• ${frameworks}/tei/xml/teip4/custom/schema/dtd/catalog.xml

Transformation Scenarios

The following default transformations are available:

• TEI HTML - Transforms a TEI document into a HTML document
• TEI P4 -> TEI P5 Conversion - Convert a TEI P4 document into a TEI P5 document
• TEI PDF - Transforms a TEI document into a PDF document using the Apache FOP engine

Predefined Document Types | 182

Templates

The default templates are stored in ${frameworks}/tei/templates/TEI P4 folder and they can be used for
easily creating basic TEI P4 documents. These templates are available when creating new documents from templates.

• TEI P4 - Lite - New TEI P4 Lite
• TEI P4 - New Document - New TEI P4 standard document

The TEI P5 Document Type
The TEI P5 document type is the same with that for TEI P4 with the following exceptions:

• A file is considered to be a TEI P5 document when the namespace is http://www.tei-c.org/ns/1.0.
• The schema is located in ${frameworks}/tei/xml/tei/custom/schema/relaxng/tei_allPlus.rng,

where ${frameworks} is a subdirectory of the Oxygen XML Developer plugin install directory.
• A drag and drop with an image file from the default file system application (Windows Explorer on Windows, Finder

on Mac OS X, etc) will insert an image element (the graphic DITA element with the url attribute) with the
location of the dragged file at the drop location, like the Insert Graphic toolbar action.

Transformation Scenarios

The following default transformations are available:

• TEI P5 XHTML - Transforms a TEI P5 document into a XHTML document
• TEI P5 PDF - Transforms a TEI P5 document into a PDF document using the Apache FOP engine
• TEI EPUB - Transforms a TEI P5 document into an EPUB output. The EPUB output will contain any images

referenced in the TEI XML document.
• TEI DOCX - Transforms a TEI P5 document into a DOCX (OOXML) document. The DOCX document will contain

any images referenced in the TEI XML document.
• TEI ODT - Transforms a TEI P5 document into an ODT (ODF) document. The ODT document will contain any

images referenced in the TEI XML document.

Templates

The default templates are stored in ${frameworks}/tei/templates/TEI P5 folder and they can be used for
easily creating basic TEI P5 documents. These templates are available when creating new documents from templates.

• TEI P5 - All - New TEI P5 All
• TEI P5 - Bare - New TEI P5 Bare
• TEI P5 - Lite - New TEI P5 Lite
• TEI P5 - Math - New TEI P5 Math
• TEI P5 - Speech - New TEI P5 Speech
• TEI P5 - SVG - New TEI P5 with SVG extensions
• TEI P5 - XInclude - New TEI P5 XInclude aware

The EPUB Document Type
Three distinct frameworks support the EPUB document type:

• NCX - A declarative global navigation definition.
• OCF - The Open Container Format(OCF) defines a mechanism by which all components of an Open Publication

Structure(OPS) can be combined into a single file-system entity.
• OPF: - The Open Packaging Format(OPF) defines the mechanism by which all components of a published work

conforming to the Open Publication Structure(OPS) standard including metadata, reading order and navigational
information are packaged into an OPS Publication.

Predefined Document Types | 183

Chapter

6

Grid Editor

In the grid editor the XML document is displayed as a structured grid of nested
tables in which the text content can be modified by non technical users without

Topics:

• Layouts: Grid and Tree editing directly the XML tags. The tables can be expanded and collapsed with
• Navigating the Grid a mouse click to show or hide the elements of the document as needed. The

document structure can also be changed easily with drag and drop operations• Specific Grid Actions
on the grid components. The tables can be zoomed using (Ctrl - +) , (Ctrl -
-), (Ctrl - 0) or (Ctrl - mouse wheel).

• Drag and Drop in the Grid Editor
• Copy and Paste in the Grid Editor

Figure 115:The Grid Editor

• Bidirectional Text Support in the
Grid Editor

You can switch between the text tab and the grid tab of the editor panel with
the buttons Text and Grid available at the bottom of the editor panel. .

If the edited document is associated with a schema (DTD, XML Schema, Relax
NG, etc.), the editor offers content completion for the element and attributes
names and values. If you choose to insert an element that has required content,
the subtree of needed elements and attributes will automatically be included.

To display the content completion popup you have to start editing, for example
by double clicking the cell. Pressing (Ctrl - Space) will also display the popup.

Figure 116: Content Completion in Grid Editor

Layouts: Grid and Tree
The grid editor has two modes for the layout. The default one is the grid layout. This smart layout detects the recurring
elements in the XML document and creates tables having as columns the children (including the attributes) of these
elements. This way it is possible to have tables nested in other tables, reflecting the structure of your document.

Figure 117: Grid Layout

The other layout mode is tree-like, does not create any tables and it only presents the structure of the document.

Figure 118:Tree Layout

or the contextual menu > Grid mode/Tree mode.

Navigating the Grid
At first the content of a document opened in the grid tab is collapsed, only the root eement and its attributes being shown..
The grid disposition of the node names and values is very similar to a web form or a dialog. The same set of key shortcuts
used to select dialog components is also available in the grid page. For instance moving to the next editable value in a
table row is done using the (Tab) key. Moving to the previous cell employs using the (Shift-Tab) key. Changing a
value involvespressing the (Enter) key or start typing the new value directly, and, when the editing is finished, pressing
(Enter) again to commit the data into the document.

The arrow keys and the (Page Up/Down) keys can be used for navigation. By pressing (Shift) while using these keys
you can create a selection zone. To add other nodes that are not close to this zone, you can use the mouse and the (Ctrl)
key ((Command) on Mac OS X).

The following key combinations may be used to scroll the grid:

• Ctrl - Up scrolls the grid upwards
• Ctrl - Down scrolls the grid downwards
• Ctrl - Left scrolls the grid to the left
• Ctrl - Right scrolls the grid to the right

An arrow sign displayed to the left of the node name indicates that this node has child nodes. You can click this sign to
display the children. The expand/collapse actions can be also invoked by pressing the (NumPad Plus) and (NumPad
Minus) keys. The same

expand/collapse actions can be accessed from the submenu Expand/Collapse of the contextual menu

Grid Editor | 186

The following actions are available on the Expand/Collapse menu:

• Expand All - Expands the selection and all its children.
• Collapse All - Collapses the selection and all its children.
• Expand Children - Expands all the children of the selection but not the selection.
• Collapse Children - Collapses all the children of the selection but not the selection.
• Collapse Others - Collapses all the siblings of the current selection but not the selection.

Specific Grid Actions
In order to access these actions you can click the column header and choose the Table item from the contextual menu.
The same set of actions are available in the Document menu and on the Grid toolbar which is opened from menu
Window > Show Toolbar > Grid.

Sorting a Table Column

You can sort the table by a specific column. The sorting can be either ascending or descending.

The icons for this pair of actions are:

The sorting result depends on the data type of the column content. It can be different in case of number (numerical
sorting) or text information (alphabetical sorting). The editor analyses automatically the content and decides what type
of sorting to apply. When a mixed set of values is present in the sorted column, a dialog will be displayed allowing to
choose the desired type of sorting between numerical and alphabetical.

Inserting a Row in a Table

A new row can be added using the copy/paste row operation, or by invoking the Insert row action from the Table
contextual menu.

A shorter way of inserting a new row is to move the selection over the row header, and then to press (Enter). The row
header is the zone in the left of the row that holds the row number. The new row will be inserted below the selection.

Inserting a Column in a Table

You can insert a column after the selected one, using the Insert column action from the Table contextual menu.

Clearing the Content of a Column

You can clear all the cells from a column, using the Clear content action from the Table contextual menu.

Adding Nodes

Using the contextual menu you can add nodes before, after, or as last child of the currently selected node.

The sub-menus containing detailed actions are:

• Insert before
• Insert after
• Append child

Duplicating Nodes

A quicker way of creating new nodes is to duplicate the existing ones. The action is available in the Duplicate contextual
menu and in the Document > Grid Edit > Duplicate menu.

Grid Editor | 187

Refresh Layout

When using drag and drop to reorganize the document, the resulted layout may be different from the expected one. For
instance, the layout may contain a set of sibling tables that could be joined together. To force the layout to be recomputed
you can use the Refresh action. The action is available in the Refresh selected contextual menu and in the Document
> Grid Edit > Refresh selected menu.

Start Editing a Cell Value

You can simply press (Enter) after you have selected the grid cell

Stop Editing a Cell Value

You stop editing a cell value when you press (Enter)

To cancel the editing without saving the current changes in the document, you have to press the (Esc) key.

Drag and Drop in the Grid Editor
The arrangement of the different sections in your XML document in the grid editor is made easy by the drag and drop
features.

Using drag and drop you can:

• Copy or move a set of nodes.
• Change the order of columns in the tables.
• Move the rows from the tables.

These operations are available for single and multiple selection.

Note that while dragging, the editor paints guide-lines showing locations where the nodes can be dropped.

Nodes can also be dragged outside the grid editor and text from other applications can be dropped inside the grid. See
Copy and Paste in the Grid Editor for details.

Copy and Paste in the Grid Editor
The selection in the grid is a bit complex relative to the selection in a text component. It consists of a current selected
cell and additional selected cells. These additional cells are either hand picked by the user using the mouse, or are implied
by the current selected cell. To be more specific, let's consider you click the name of the column - this becomes the
current selected cell, but the editor automatically extends the selection so that it contains all the cells from that column.
The current selected cell is painted with a color that is different from the rest of the selection.

You can select discontinuous regions of nodes and place them in the clipboard using the copy action. Pasting these nodes
relative to the current selected cell may be done in two ways: just below (after) as a brother, which is the default behavior,
or as the last child of the selected cell.

The Paste as Child action is available in the contextual menu.

The copied nodes from the grid can also be pasted into the text editor or other applications. When copying from grid
into the text editor or other text based applications the inserted string represents the nodes serialization. The nodes from
tables can be copied using HTML or RTF in table format. The resulting cells contain only the concatenated values of
the text nodes.

Grid Editor | 188

Figure 119: Copying from grid to other editors

In the grid editor you can paste wellformed xml content or tab separated values from other editors. If you paste xml
content the result will be the insertion of the nodes obtained by parsing this content.

Figure 120: Copying XML data into grid

If the pasted text contains multiple lines of tab separated values it can be considered as a matrix of values. By pasting
this matrix of values into the grid editor the result will be a matrix of cells. If the operation is performed inside existing
cells, the existing values will be overwritten and new cells will be created when needed. This is useful for example when
trying to transfer data from Excel like editors into the grid editor.

Grid Editor | 189

Figure 121: Copying tab separated values into grid

Bidirectional Text Support in the Grid Editor
If you are editing documents employing a different text orientation you can change the way the text is rendered and
edited in the grid cells by using the (Ctrl-Shift-O) shortcut to switch from the default left to right text orientation to
the right to left orientation.

Note: This change applies only to the text from the cells, and not to the layout of the grid editor.

Figure 122: Default left to right text orientation

Figure 123: Right to left text orientation

Grid Editor | 190

Chapter

7

Transforming Documents

XML is mainly used to store, carry, and exchange data, when you want to view
the data in a more user friendly form, you must either use the Author editor

Topics:

• Output Formats page, have an XML-compliant user agent or transform it to a format that can
be read by other user agents. This process is known as transformation.• Transformation Scenario

• XSLT Processors Status messages generated during transformation are displayed in the Console
view.• XSL-FO Processors

• XProc Transformations

Output Formats
Within the current version of Oxygen XML Developer plugin you can transform your XML documents to the following
formats without having to exit from the application:

• PDF - Adobe Portable Document Format (PDF) is a compact binary file format that can be viewed and printed by
anyone, anywhere across a broad range of hardware and software using the free PDF Viewer from Adobe.

• PS - PostScript is the leading printing technology from Adobe for high-quality, best-in-class printing solutions
ranging from desktop devices to the most advanced digital presses, platemakers, and large format image setters in
the world. PostScript files can be viewed using viewers such as GhostScript, but are more commonly created as a
prepress format.

• TXT - Text files are Plain ASCII Text and can be opened in any text editor or word processor.
• XML - XML stands for eXtensible Markup Language and is a W3C standard markup language, much like HTML,

which was designed to describe data. XML tags are not predefined in XML. You must define your own tags. XML
uses a Document Type Definition (DTD), an XML Schema or a Relax NG schema to describe the data. XML with
a DTD, XML Schema or Relax NG schema is designed to be self-descriptive. XML is not a replacement for HTML.
XML and HTML were designed with different goals:

• XML was designed to describe data and to focus on what data is.
• HTML was designed to display data and to focus on how data looks.
• HTML is about displaying information, XML is about describing information.

• XHTML - XHTML stands for eXtensible HyperText Markup Language, a W3C standard. XHTML is aimed to
replace HTML. While almost identical to HTML 4.01, XHTML is a stricter and cleaner version of HTML. XHTML
is HTML defined as an XML application.

For transformation to formats that are not listed above simply install the tool chain required to perform the transformation
and process the xml files created with Oxygen XML Developer plugin in accordance with the processor instructions.

All formatting during a transformation is provided under the control of an Extensible Stylesheet (XSLT). Specifying
the appropriate XSLT enables transformation to the above formats and preparation of output files for specific user agent
viewing applications, including:

• HTML - HTML stands for Hyper Text Markup Language and is a W3C Standard for the World Wide Web. HTML
is a text file containing small markup tags. The markup tags tell the Web browser how to display the page. An HTML
file must have an htm or html file extension. An HTML file can be created using a simple text editor.

• HTML Help - Microsoft HTML Help is the standard help system for the Windows platform. Authors can use HTML
Help to create online help for a software application or to create content for a multimedia title or Web site. Developers
can use the HTML Help API to program a host application or hook up context-sensitive help to an application.

• JavaHelp - JavaHelp software is a full-featured, platform-independent, extensible help system from Sun
Microsystems/Oracle that enables developers and authors to incorporate online help in applets, components,
applications, operating systems, and devices. JavaHelp is a free product and the binaries for JavaHelp can be
redistributed.

• Eclipse Help - Eclipse Help is the help system incorporated in the Eclipse platform that enables Eclipse plugin
developers to incorporate online help in their plugins.

Many other target formats are possible, these are the most popular. The basic condition for transformation to any format
is that your source document is well-formed. Always, make sure that the XSL used for the transformation is the right
one according to the desired output format and with the input source definition. For example, if you want to transform
to HTML format using a DocBook html stylesheet, your source xml document should respect the DocBook DTD.

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an instance of the class
is transformed into an output document by using special formatting vocabulary.

XSL consists of three parts:

• XSL Transformations (XSLT) - XSLT is a language for transforming XML documents.
• XML Path (XPath) Language - XPath is an expression language used by XSLT to access or refer parts of an XML

document. XPath is also used by the XML Linking specification.

Transforming Documents | 192

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com:80/products/postscript/main.html
http://www.w3c.org/XML/
http://www.w3c.org/MarkUp/
http://www.w3c.org/MarkUp/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/htmlhelp/html/vsconHH1Start.asp?frame=true
http://javahelp.java.net/
http://javahelp.java.net/
http://www.eclipse.org/

• XSL Formatting Objects (XSL:FO) - XSL:FO is an XML vocabulary for specifying formatting semantics.

Oxygen XML Developer plugin supports XSLT/XPath version 1.0 using Saxon 6.5.5, Xalan, Xsltproc, MSXML (3.0,
4.0, .NET) and XSLT/XPath 2.0 by using Saxon 9.3.0.5 HE, Saxon 9.3.0.5 PE, and Saxon 9.3.0.5 EE. The validation
is done also depending on the stylesheet version.

Transformation Scenario
Before transforming an XML document in Oxygen XML Developer plugin you must define a transformation scenario
to apply to that document. A scenario is a set of values for various parameters defining a transformation. It is not related
to any particular document but to a document type:

• Scenarios that apply to XML files - Such a scenario contains the location of an XSLT stylesheet that is applied on
the edited XML document and other transform parameters.

• Scenarios that apply to XSLT files - Such a scenario contains the location of an XML document that the edited
XSLT stylesheet is applied on and other transform parameters.

• Scenarios that apply to XQuery files - Such a scenario contains the location of an XML source that the edited
XQuery file is applied on and other transform parameters. When the XML source is a native XML database the XML
source field of the scenario is empty because the XML data is read with XQuery specific functions like document().
When the XML source is a local XML file the URL of the file is specified in the XML input field of the scenario.

• Scenarios that apply to SQL files - Such a scenario specifies a database connection for the database server that
will run the SQL file associated with the scenario. The data processed by the SQL script is located in the database.

• Scenarios that apply to XProc files - Such a scenario contains the location of an XProc script and other transform
parameters.

• DITA-OT scenarios - Such a scenario provides the parameters for an Ant transformation that will execute a DITA-OT
build script. Oxygen XML Developer plugin comes with a built-in version of Ant and a built-in version of DITA-OT
but different versions can be set in the scenario.

A scenario can be created at document type level or at global level. The scenarios defined at document type level are
available only for the documents that match that document type. The global scenarios are available for any document.

In order to apply a transformation scenario one has to press the Apply Transformation Scenario button from the
Transformation toolbar.

Batch Transformation

A transform action can be applied on a batch of files from the Project view's contextual menu without having to open
the files:

• Apply Transformation Scenario - Applies the transformation scenario associated to each of the selected files.
If the currently processed file does not have an associated transformation scenario then a warning is displayed in the
Warnings view.

•
• Transform with... - Allows you to select one transformation scenario to be applied to each one of the currently

selected files.

xsl:message output information is collected and displayed in the Results View. All entries in the Results View point to
the location of the code that triggered them.

Note: When you trigger a batch transformation, the output messages from the previous one are deleted.

Built-in Transformation Scenarios

If the Apply Transformation Scenario button from the Transformation toolbar is pressed and there is no scenario
associated with the edited document but this contains an xml-stylesheet processing instruction referring to a XSLT
stylesheet (commonly used to display the document in Internet browsers), then Oxygen XML Developer plugin will
prompt the user and offer the option to associate the document with a default scenario based on this processing instruction.

Transforming Documents | 193

The default scenario contains in the XSL URL field the URL from the href attribute of the processing instruction.
This scenario will have the Use xml-stylesheet declaration checkbox set by default, will use Saxon as transformation
engine, will perform no FO processing and will store the result in a file with the same URL as the edited document
except the extension which will be changed to html. The name and path will be preserved because the output file name
is specified with the help of two editor variables: ${cfd} and ${cfn}.

Oxygen XML Developer plugin comes with preconfigured built-in scenarios for usual transformations that enable the
user to quickly obtain the desired output. All you need to do is to associate one of the built-in scenarios with the current
edited document and then apply the scenario with just one click.

Defining a New Transformation Scenario

The Configure Transformation Scenario dialog is used to associate a scenario from the list of all scenarios with the

edited document by selecting an entry from the list. The dialog is opened by pressing the Configure Transformation
Scenario button on the Transformation toolbar of the document view. Once selected, the scenario will be applied with

only one click on the Apply Transformation Scenario from the same toolbar. Pressing the Apply
Transformation Scenario button before associating a scenario with the edited document will invoke first the Configure
Transformation Scenario dialog and then apply the selected scenario.

The Configure Transformation Scenario dialog can be opened using one of the methods previously presented or by
selecting XML > Configure transformation scenario. (Alt+Shift+T C) ((Cmd+Alt+T C on Mac OS)).

Figure 124: Configure Transformation Scenario Dialog

The Scenario type allows you to choose what type of user defined transformation scenario is displayed:

• All - No filtering. All user-defined scenarios are displayed.
• XML transformation with XSLT - Transformation scenarios that apply an XSLT stylesheet over an XML.
• XML transformation with XQuery - Transformation scenarios that apply an XQuery over an XML.
• DITA OT transformation - Transformation scenarios that use the DITA Open Toolkit (DITA-OT) to transform

XML content into an output format.
• ANT transformation - Transformation scenarios that execute ANT scripts.
• XSLT transformation - Transformation scenarios that apply an XSLT stylesheet over an XML file.
• XProc transformation - Transformation scenarios that execute XProc XML pipelines.
• XQuery transformation - Represents a transformation that consists in applying an XQuery over an XML.
• SQL transformation - Executes an SQL over a database.

Transforming Documents | 194

If you want an XSLT scenario select as Scenario type either XML transformation with XSLT or XSLT transformation
then complete the dialog as follows:

Figure 125:The Configure Transformation Dialog - XSLT Tab

• XML URL - Specifies an input XML file to be used for the transformation. Please note that this URL is resolved
through the catalog resolver. If the catalog does not have a mapping for the URL, then the file will be used directly.

Note: If the transformer engine is Saxon 9 and a custom URI resolver is configured in Preferences for
Saxon 9, then the XML input of the transformation is passed to that URI resolver.

Note: If the transformer engine is one of the built-in XSLT 2.0 engines and the name of an initial template
is specified in the scenario then the XML URL field can be empty. The XML URL field can also be empty
in case of external XSLT processors. In all other cases a non-empty XML URL value is mandatory.

The following buttons are shown immediately after the input field:

• Insert Editor Variables - Opens a pop-up menu allowing to introduce special Oxygen XML Developer
plugin editor variables or custom editor variables in the XML URL field.

• Browse for local file - Opens a local file browser dialog allowing to select a local file for the text field.
• Browse for remote file - Opens an URL browser dialog allowing to select a remote file for the text field.
• Browse for archived file - Opens a zip archive browser dialog allowing to select a file from a zip archive

that will be inserted in the text field.
•
• Open in editor - Opens the file with the path specified in the text field in an editor panel.

• XSL URL - Specifies an input XSL file to be used for the transformation. Please note that this URL is resolved
through the catalog resolver. If the catalog does not have a mapping for the URL, thenthe file will be used directly.
The set of browsing buttons described above for the XML URL field are also available for the XSL URL field.

• Use "xml-stylesheet" declaration - Use the stylesheet declared with an xml-stylesheet declaration instead
of the stylesheet specified in the XSL URL field. By default this checkbox is not selected and the transformation
applies the XSLT stylesheet specified in the XSL URL field. If it is checked the scenario applies the stylesheet
specified explicitly in the XML document with the xml-stylesheet processing instruction.

Transforming Documents | 195

• Transformer - This combo box contains all the transformer engines available for applying the stylesheet. These are
the built-in engines and the external engines defined in the user preferences. If you want to change the default selected
engine just select other engine from the drop down list of the combo box. For XSLT/XQuery files only, if no validation
scenario is associated, the transformer engine will also be used in validation process, if it has validation support.

• Parameters - Opens the dialog for configuring the XSLT parameters. In this dialog you set any global XSLT
parameters of the main stylesheet set in the XSL URL field or of the additional stylesheets set with the button
Additional XSLT stylesheets. If the XSLT transformer engine is custom defined this dialog cannot be used to
configure the parameters sent to the custom engine. In this case you can copy all parameters from the dialog using
the contextual menu actions and edit the custom XSLT engine to include in the command line the necessary parameters.

• Append header and footer - Opens a dialog for specifying an URL for a header HTML file added at the beginning
of the result of an HTML transformation and a URL for a footer HTML file added at the end of the HTML result of
the transformation.

• Additional XSLT stylesheets - Opens the dialog for adding XSLT stylesheets which are applied on the result of the
main stylesheet specified in the XSL URL field. This is useful when a chain of XSLT stylesheets must be applied
to the input XML document.

• Extensions - Opens the dialog for configuring the XSLT/XQuery extension jars or classes which define extension
Java functions or extension XSLT elements used in the XSLT/XQuery transformation.

• Advanced options - Configure advanced options specific for the Saxon HE / PE / EE engine. They are the same
options as the ones set in the user preferences but they are configured as a specific set of transformation options for
each transformation scenario. By default if you do not set a specific value in the transformation scenario each advanced
option has the same value as the global option with the same name set in the user preferences.

The advanced options include two options that are not available globally in the user preferences: the initial XSLT
template and the initial XSLT mode of the transformation. They are Saxon specific options that allow imposing the
name of the first XSLT template that starts the XSLT transformation or the initial mode of transformation.

The advanced options specific for Saxon HE / PE / EE are:

• Mode ("-im") - Specifies to the transformer the initial template mode
• Template ("-it") - Specifies the name of the initial template to the transformer. When specified, the XML input

URL for the transformation scenario is optional.
• Use a configuration file ("-config") - The URL input points to a Saxon advanced options configuration file.
• Version warnings ("-versmsg") - Warns you when the transformation is applied to an XSLT 1.0 stylesheet.
• Line numbering ("-l") - Error line number is included in the output messages.
• Debugger trace into XPath expressions (applies to debugging sessions) - Instructs the XSLT Debugger to step

into XPath expressions.
• DTD validation of the source ("-dtd") - The following options are available:

• On, requests DTD-based validation of the source file and of any files read using the document() function;
• Off (default setting) suppresses DTD validation.
• Recover, performs DTD validation but treats the errors as non-fatal.

Note that any external DTD is likely to be read even if not used for validation, because DTDs can contain definitions
of entities.

• Recoverable errors ("-warnings") - Policy for handling recoverable errors in the stylesheet: Allows you to choose
how dynamic errors are handled. One of the following options can be selected:

• Recover silently ("silent") ;
• Recover with warnings ("recover") - default setting;
• Signal the error and do not attempt recovery ("fatal").

• Strip whitespaces ("-strip") - Strip whitespaces feature can be one of the following three options:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless
of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the source document.

Transforming Documents | 196

• Ignorable ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes
in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or
schema as having element-only content.

• None ("none") - default setting. No whitespaces are stripped before further processing. However, whitespace
will still be stripped if this is specified in the stylesheet using xsl:strip-space.

• Optimization level ("-opt") - Set optimization level. The value is an integer in the range 0 (no optimization) to 10
(full optimization); currently all values other than 0 result in full optimization but this is likely to change in the future.
The default is full optimization; this feature allows optimization to be suppressed in cases where reducing compile
time is important, or where optimization gets in the way of debugging, or causes extension functions with side-effects
to behave unpredictably. (Note however, that even with no optimization, the lazy evaluation may still cause the
evaluation order to be not as expected.)

The advanced options available only in Saxon PE / EE are:

• Allow calls on extension functions ("-ext") - If checked, the stylesheet is allowed to call external Java functions.
This does not affect calls on integrated extension functions, including Saxon and EXSLT extension functions. This
option is useful when loading an untrusted stylesheet, perhaps from a remote site using an http:// URL; it ensures
that the stylesheet cannot call arbitrary Java methods and thereby gain privileged access to resources on your machine.

The advanced options available only in Saxon EE are:

• Validation of the source file ("-val") - Requests schema-based validation of the source file and of any files read
using the document() or similar functions. Validation is available only with Saxon-EE, and this flag automatically
switches on the -sa option. Available options:

• Schema validation ("strict") - This mode requires an XML Schema and specifies that the source documents
should be parsed with schema-validation enabled.

• Lax schema validation ("lax") - This mode specifies if the source documents should be parsed with
schema-validation enabled if an XML Schema is provided.

• Disable schema validation - This specifies that the source documents should be parsed with schema-validation
disabled.

• Validation errors in the results tree treated as warnings ("-outval") - Normally, if validation of result documents
is requested, a validation error is fatal. Enabling this option causes such validation failures to be treated as warnings.

• Write comments for non-fatal validation errors of the result document - The validation messages are written
(where possible) as a comment in the result document itself.

• Initializer class - Equivalent with the -init Saxon command line argument. The value is the name of a user-supplied
class that implements the interface net.sf.saxon.lib.Initializer; this initializer will be called during
the initialization process, and may be used to set any options required on the Configuration programmatically. It is
particularly useful for tasks such as registering extension functions, collations, or external object models, especially
in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer when running
from the command line, but the same code may be invoked to perform initialization when running user application
code.

When creating a scenario that applies to an XML file, Oxygen XML Developer plugin fills the XML URL field with
the default variable ${currentFileURL}. This means the input for the transformation is taken from the currently edited
file. You can modify this value to some other file path. This is the case when you are currently editing a section from a
large document, but you want the transformation to be performed on the main document. You can specify in this case
either a full absolute path: file:/c:/project/docbook/test.xml or a path relative to one of the editor
variables, for example or the current file directory: ${cfdu}/test.xml.

When the scenario applies to XSL files, the field XSL URL initially contains ${currentFile} editor variable. Just like
in the XML case, you can specify here the path to a master stylesheet. The path can be configured using the editor
variables or the custom editor variables.

Transforming Documents | 197

http://www.saxonica.com/documentation/javadoc/net/sf/saxon/lib/Initializer.html
http://www.saxonica.com/documentation/javadoc/net/sf/saxon/Configuration.html

Figure 126:The Configure Transformation Dialog - FO Processor Tab

• Perform FO Processing - Enables or disables applying an FO processor (either the built-in Apache FOP engine or
an external engine defined in Preferences) during the transformation.

• XSLT result as input - The FO processor is applied to the result of the XSLT transformation defined on the XSLT
tab of the dialog.

• XML URL as input - The FO processor is applied to the input XML file.
• Method - The output format of the FO processing. Available options depend on the selected processor type.
• Processor - The FO processor, which can be the built-in Apache FOP processor or an external processor.

Figure 127:The Configure Transformation Dialog - Output Tab

Transforming Documents | 198

• Prompt for file - At the end of the transformation a file browser dialog will be displayed for specifying the path and
name of the file which will store the transformation result.

• Save As - The path of the file where the transformation result will be stored. The path can include special Oxygen
XML Developer plugin editor variables or custom editor variables.

• Open in Browser/System Application - If enabled, Oxygen XML Developer plugin opens automatically the
transformation result in a system application associated with the type of that result (HTML/XHTML, PDF, text) file.

Note: If you already set the Default Internet browser option in the Global preferences page, it will take
precedence over the default system application settings.

Note: Go to Window > Preferences > General > Web Browser to set the web browser that will be used
for displaying HTML/XHTML pages.

• Saved file - When Open in Browser/System Application is selected this button can be used to specify that Oxygen
XML Developer plugin should open automatically at the end of the transformation the file specified in the Save As
text field.

• Other location - When Open in System Application is selected, this button can be used to specify that Oxygen
XML Developer plugin should not open the file specified in the Save As text field, it should open the file specified
in the text field of the Other location radio button. The file path can include special Oxygen XML Developer plugin
editor variables or custom editor variable.

• Open in editor - When this is checked the transformation result set in the Save As field is opened in a new editor
panel with the appropriate built-in editor type: if the result is an XML file it is opened with the built-in XML editor,
if it is an XSL-FO file it is opened with the built-in FO editor, etc.

• Show As XHTML - It is enabled only when Open in browser is disabled. If this is checked Oxygen XML Developer
plugin will display the transformation result in a built-in XHTML browser panel at the bottom of the application
window.

Important: When transforming very large documents you should be aware that enabling this feature will
result in a very long time necessary for rendering the transformation result in the XHTML result viewer
panel. This drawback appears due to the built-in Java XHTML browser implementation. In this situations
if you wish to see the XHTML result of the transformation you should use an external browser by checking
the Open in browser checkbox.

• Show As XML - If this is checked Oxygen XML Developer plugin will display the transformation result in an
XML viewer panel at the bottom of the application window with syntax highlight specific for XML documents.

• Image URLs are relative to - If Show As XHTML is checked this text field specifies the path used to resolve
image paths contained in the transformation result.

XSLT Stylesheet Parameters

The global parameters of the XSLT stylesheet used in the transformation scenario are configured from the dialog available
from the Parameters button of the Configure Transformation dialog:

Transforming Documents | 199

Figure 128: Configure parameters dialog

The table presents all the parameters of the XSLT stylesheet, all imported and included stylesheets and all additional
stylesheets with their current values. The following font type and color conventions are used:

• blue font values are the defaults collected from the stylesheet;
• black font values and bold font names indicate edited parameters.

If a parameter value was not edited then the table presents its default value. The bottom panel presents the default value
of the parameter selected in the table, a description of the parameter if available and the system ID of the stylesheet that
declares it.

For example setting the value of a parameter having a declared namespace like:

<xsl:param name="p:param" xmlns:p="namespace">default</xsl:param>

use the following expression in the Name column of the Parameters dialog:

{namespace}param

If the XPath column is checked, the parameter value is evaluated as an XPath expression before starting the XSLT
transformation.

For example you can use expressions like:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XSL stylesheet location. You can use full paths or editor
variables like ${cfdu} (current file directory) to specify other locations: doc('${cfdu}/test.xml')//*

2. You cannot use XSLT Functions. Only XPath functions are allowed.

Transforming Documents | 200

The following actions are available for managing parameters:

• New - Adds a new parameter to the list.
• Edit - Edits the value of the selected parameter.
• Unset - Resets the selected parameter to its default value. Available only for parameters with set values.
• Delete - Removes the selected parameter from the list. It is enabled only for parameters added to the list with the

New button.

The editor variables displayed at the bottom of the dialog (${frameworks}, ${home}, ${cfd}, etc) can be used in the
values of the parameters to make them independent of the location of the XSLT stylesheet or the XML document. To
prompt for values at runtime, use the ask('user-message', param-type, 'default-value' ?) editor variable.

Additional XSLT Stylesheets

The list of additional XSLT stylesheets can be edited in the dialog opened by the button Additional XSLT Stylesheets
from the Configure Transformation dialog.

• Add - Adds a stylesheet in the Additional XSLT stylesheets list using a file browser dialog. You can type an editor
variable in the file name field of the browser dialog. The name of the stylesheet will be added in the list after the
current selection.

• Remove - Deletes the selected stylesheet from the Additional XSLT stylesheets list.
• Up - Moves the selected stylesheet up in the list.
• Down - Moves the selected stylesheet down in the list.

The path specified in the URL text field can include special Oxygen XML Developer plugin editor variables.

XSLT/XQuery Extensions

The Libraries dialog is used to specify the jars and classes containing extension functions called from the XSLT/XQuery
file of the current transformation scenario.

An extension function called from the XSLT or XQuery file of the current transformation scenario will be searched in
the specified extensions in the order of the list displayed in the dialog. For changing the order of the items the user must

select the item that must be moved to other position in the list and press the up and down buttons.

Duplicate a Transformation Scenario

Use the following procedure to create a transformation scenario.

1. Go to menu XML > Configure Transformation Scenario (Alt+Shift+T C) ((Cmd+Alt+T C on Mac OS)) to
open the Configure Transformation dialog.

2. Click the Duplicate Scenario button of the dialog to create a copy of the current scenario.

3. Click in the Name field and type a new name.

a) You can choose to save the scenarios at project level by setting the Project Scenarios setting.

4. Click OK or Transform Now to save the scenario.

Ant Transformations

An Ant scenario is associated usually with an Ant build script. Oxygen XML Developer plugin runs an Ant scenario
as an external process that executes the Ant build script with the built-in Ant distribution (Apache Ant version 1.8.2)
that comes with the application or optionally with a custom Ant distribution configured in the scenario.

Transforming Documents | 201

Figure 129: Ant scenario - Options tab

The following parameters are available on the Options tab:

• Working directory - Path of the current directory of the Ant external process. An editor variable can be inserted
in this text box using the small green arrow button ().

• Build file - Ant script file that is the input of the Ant external process. An editor variable can be inserted in this text
box using the small green arrow button ().

• Build target - Optionally a build target from the Ant script file can be specified. If no target is specified the Ant
target that is specified as default in the Ant script file will be executed.

• Additional arguments - Additional command-line arguments to be passed to the Ant transformation (for example
-verbose).

• Ant Home - Path to the Ant installation to run the transformation. By default it is the Ant installation version 1.8.2
that is bundled with Oxygen XML Developer plugin . A custom Ant installation can also be set.

• Java Home - The path to the Java Virtual Machine that runs the Ant transformation. By default it is the Java Virtual
Machine that is bundled with Oxygen XML Developer plugin . A custom Java virtual machine can also be set.

• JVM Arguments - This parameter allows you to set specific parameters to the Java Virtual Machine used by Ant.
By default it is set to -Xmx256m which means the transformation process is allowed to use 256 megabytes of memory.
Sometimes, when performing a large DITA map transformation you may want to increase the memory allocated to
the Java Virtual Machine from the default value (256 MB) to a higher value, like 512 MB. In this way, you can avoid
running out of memory (OutOfMemoryError) when running an Ant process.

• Libraries - This button allows adding to the classpath of the Ant process any external libraries that are not bundled
with Ant (that is they are not built-in Ant libraries).

Transforming Documents | 202

Figure 130: Ant scenario - Parameters tab

On the Parameters tab the buttons New, Edit, and Delete can be used to set the parameters which will be accessible
as Ant properties in the Ant build script.

Figure 131: Ant scenario - Output tab

On the Output tab the following details can be configured:

• the file to open automatically when the transformation is finished in the Open text box, usually the output file of the
Ant process; an editor variable can be inserted in this text box using the small green arrow button ();

• if the file specified in the Open text box will be opened in the system application that is set in the operating system
as the default application for that type of files (for example the Acrobat Reader application for .pdf files.);

• if the file specified in the Open text box will be opened in Oxygen XML Developer plugin ; for example if it is an
.xml file it will be opened automatically in the XML editor panel, if it is a .zip file or an .epub file it will be
opened in the Archive Browser view, etc.;

Transforming Documents | 203

Transformation Scenarios View

The list of transformation scenarios may be easier to manage for some users as a list presented in a dockable and floating
view called Transformation Scenarios.

Figure 132:The Scenarios view

The actions available on the right click menu allow the same operations as in the dialog Configure Transformation
Scenario:

• Apply - Runs the current selected transformation scenario from the list.
• Debug Scenario - Switches to the Debugger perspective and initialize it with the parameters from the scenario:

the XML input, the XSLT or XQuery input, the transformation engine, the XSLT parameters.
• New - Creates a new transformation scenario.
•

Duplicate - Adds a new scenario to the list that is a duplicate of the current scenario. It is useful for creating a
new scenario that is the same as an existing one but needs some changes.

• Edit - Opens the dialog for editing the parameters of a transformation scenario.
• Remove - Removes the current scenario from the list. This action is also available on the Delete key.
• Show all scenarios / Show only the scenarios available for the editor - A toggle action that switches between

two modes:

• one that lists all transformation scenarios;
• one that shows only the transformation scenarios specified in the document type corresponding to the current

editor.

Note: Global scenarios (the scenarios that are not specified in a document type) are always displayed
in the view regardless of the state of this action.

Note: When no document is opened in the current editor, the view contains all the transformation
scenarios.

Transforming Documents | 204

XSLT Processors
This section explains how to configure an XSLT processor and extensions for such a processor in Oxygen XML
Developer plugin .

Supported XSLT Processors

Oxygen XML Developer plugin comes with the following XSLT processors:

• Xalan 2.7.1 - Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or other XML
document types. It implements XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Version
1.0.

• Saxon 6.5.5 - Saxon 6.5.5 is an XSLT processor, which implements the Version 1.0 XSLT and XPath with a number
of powerful extensions. This version of Saxon also includes many of the new features that were first defined in the
XSLT 1.1 working draft, but for conformance and portability reasons these are not available if the stylesheet header
specifies version="1.0".

• Saxon 9.3.0.5 Home Edition (HE), Professional Edition (PE) - Saxon-HE/PE implements the basic conformance
level for XSLT 2.0 and XQuery 1.0. The term basic XSLT 2.0 processor is defined in the draft XSLT 2.0 specifications:
it is a conformance level that requires support for all features of the language other than those that involve schema
processing. The HE product remains open source, but removes some of the more advanced features that were present
in Saxon-PE.

• Saxon 9.3.0.5 Enterprise Edition (EE) - Saxon EE is the schema-aware edition of Saxon and it is one of the built-in
processors of Oxygen XML Developer plugin . Saxon EE includes an XML Schema processor, and schema-aware
XSLT, XQuery, and XPath processors.

The validation in schema aware transformations is done according to the W3C XML Schema 1.0 specification or
according to the W3C XML Schema 1.1 one. This can be configured in Preferences.

Besides the above list Oxygen XML Developer plugin supports the following processors:

• Xsltproc (libxslt) - Libxslt is the XSLT C library developed for the Gnome project. Libxslt is based on libxml2
the XML C library developed for the Gnome project. It also implements most of the EXSLT set of processor-portable
extensions functions and some of Saxon's evaluate and expressions extensions. The libxml2 version included in
Oxygen XML Developer plugin is 2.7.6 and the libxslt version is 1.1.26

Oxygen XML Developer plugin uses Libxslt through its command line tool (Xsltproc). The XSLT processor is
included into the distribution kit of the stand-alone version for Windows and Mac OS X. Because there are differences
between different Linux distributions, on Linux you must install Libxslt on your machine as a separate application
and set the PATH variable to contain the Xsltproc executable.

If you do not have the Libxslt library already installed, you should copy the following files from Oxygen XML
Developer plugin stand-alone installation directory to the root of the com.oxygenxml.editor_ 13.2.0 plugin:

• on Windows: xsltproc.exe, zlib1.dll,libxslt.dll,libxml2.dll, libexslt.dll,iconv.dll
• on Linux: xsltproc,libexslt.so.0, libxslt.so.1,libxsml2.so.2
• on Mac OS X: xsltproc.mac, libexslt, libxslt, libxml

The Xsltproc processor can be configured from the XSLTPROC options page.

Caution: Known problem: file paths containing spaces are not handled correctly in the LIBXML processor.
For example the built-in XML catalog files of the predefined document types (DocBook, TEI, DITA, etc)
are not handled by LIBXML if Oxygen XML Developer plugin is installed in the default location on
Windows (C:\Program Files) because the built-in XML catalog files are stored in the frameworks
subdirectory of the installation directory which in this case contains at least a space character.

• MSXML 3.0/4.0 - MSXML 3.0/4.0 is available only on Windows 2000, Windows NT and Windows XP platforms.
It can be used for transformation and validation of XSLT stylesheets .

Oxygen XML Developer plugin uses the Microsoft XML parser through its command line tool msxsl.exe.

Transforming Documents | 205

http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sf.net/
http://www.saxonica.com/
http://xmlsoft.org/XSLT/
http://msdn.microsoft.com/xml/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnxml/html/msxsl.asp

Because msxsl.exe is only a wrapper, Microsoft Core XML Services (MSXML) must be installed on the computer
otherwise you will get a corresponding warning. You can get the latest Microsoft XML parser from Microsoft web-site

• MSXML .NET - MSXML .NET is available only on Windows NT4, Windows 2000 and Windows XP platforms. It
can be used for transformation and validation of XSLT stylesheets .

Oxygen XML Developer plugin performs XSLT transformations and validations using .NET Framework's XSLT
implementation (System.Xml.Xsl.XslTransform class) through the nxslt command line utility. The nxslt
version included in Oxygen XML Developer plugin is 1.6.

You should have the .NET Framework version 1.0 already installed on your system otherwise you will get the
following warning: MSXML.NET requires .NET Framework version 1.0 to be installed.
Exit code: 128

You can get the .NET Framework version 1.0 from the Microsoft website

• .NET 1.0 - A transformer based on the System.Xml 1.0 library available in the .NET 1.0 and .NET 1.1 frameworks
from Microsoft (http://msdn.microsoft.com/xml/). It is available only on Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed on your system otherwise you will get
the following warning: MSXML.NET requires .NET Framework version 1.0 to be installed.
Exit code: 128

You can get the .NET Framework version 1.0 from the Microsoft website

• .NET 2.0 - A transformer based on the System.Xml 2.0 library available in the .NET 2.0 framework from Microsoft.
It is available only on Windows.

You should have the .NET Framework version 2.0 already installed on your system otherwise you will get the
following warning: MSXML.NET requires .NET Framework version 2.0 to be installed.
Exit code: 128

You can get the .NET Framework version 2.0 from the Microsoft website

Configuring Custom XSLT Processors

You can configure other XSLT transformation engines than the ones which come with the Oxygen XML Developer
plugin distribution. Such an external engine can be used for XSLT transformations within Editor perspective, and is
available in the list of engines in the dialog for editing transformation scenarios . However it cannot be used in the
XSLT Debugger perspective.

The output messages of a custom processor are displayed in an output view at the bottom of the application window. If
an output message follows the format of an Oxygen XML Developer plugin linked message then a click on the message
in the output view highlights the location of the message in an editor panel containing the file referred in the message.

Configuring the XSLT Processor Extensions Paths

The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike a literal result
element, which the stylesheet simply transfers to the result tree, an extension element performs an action. The extension
is usually used because the XSLT stylesheet fails in providing adequate functions to the user for accomplishing a more
complex task.

Samples on how to use extensions can be found at:

• for Xalan - http://xml.apache.org/xalan-j/extensions.html
• for Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html
• for Saxon 9.3.0.5 - http://www.saxonica.com/documentation/extensibility/intro.xml

In order to set an XSLT processor extension (a directory or a jar file), you have to use the Extensions button of the
scenario edit dialog. The old way of setting an extension (using the parameter -Dcom.oxygenxml.additional.classpath)
was deprecated and you should use the extension mechanism of the XSLT transformation scenario.

Transforming Documents | 206

http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://xml.apache.org/xalan-j/extensions.html
http://saxon.sourceforge.net/saxon6.5.5/extensions.html
http://www.saxonica.com/documentation/extensibility/intro.xml

XSL-FO Processors
This section explains how to apply XSL-FO processors when transforming XML documents to various output formats
in Oxygen XML Developer plugin .

The Built-in XSL-FO Processor

The Oxygen XML Developer plugin installation package is distributed with the Apache FOP that is a Formatting
Objects processor for rendering your XML documents to PDF. FOP is a print and output independent formatter driven
by XSL Formatting Objects. FOP is implemented as a Java application that reads a formatting object tree and renders
the resulting pages to a specified output.

To include PNG images in the final PDF document you need the JIMI or JAI libraries. For TIFF images you need the
JAI library. For PDF images you need the fop-pdf-images library. These libraries are not bundled with Oxygen
XML Developer plugin but using them is very easy. You need to download them and create an external FO processor
based on the built-in FOP libraries and the extension library. The external FO processor created in Preferences will
have a command line like:

java -cp "${oxygenInstallDir}/lib/xercesImpl.jar:
${oxygenInstallDir}/lib/fop.jar:${oxygenInstallDir}/lib/
avalon-framework-4.2.0.jar:
${oxygenInstallDir}/lib/batik-all-1.7.jar:${oxygenInstallDir}/lib/
commons-io-1.3.1.jar:
${oxygenInstallDir}/lib/xmlgraphics-commons-1.3.1.jar:
${oxygenInstallDir}/lib/commons-logging-1.0.4.jar:
${oxygenInstallDir}/lib/saxon9ee.jar:${oxygenInstallDir}/lib/
saxon9-dom.jar:
${oxygenInstallDir}/lib/xalan.jar:${oxygenInstallDir}/lib/
serializer.jar:
${oxygenInstallDir}/lib/resolver.jar:${oxygenInstallDir}/lib/
fop-pdf-images-1.3.jar:
${oxygenInstallDir}/lib/PDFBox-0.7.3.jar"
org.apache.fop.cli.Main -fo ${fo} -${method} ${out}

You need to add to the classpath JimiProClasses.zip for JIMI and jai_core.jar, jai_codec.jar and
mlibwrapper_jai.jar for JAI. For the JAI package you can include the directory containing the native libraries
(mlib_jai.dll and mlib_jai_mmx.dll on Windows) in the PATH system variable.

The Mac OS X version of the JAI library can be downloaded from
http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html. In order to use it, install
the downloaded package.

Other FO processors can be configured in the Preferences dialog.

Add a Font to the Built-in FOP - The Simple Version

If the font that must be set to Apache FOP is one of the fonts that are installed in the operating system you should follow
the next steps for creating and setting a FOP configuration file that looks for the font that it needs in the system fonts.
It is a simplified version of the procedure for setting a custom font in Apache FOP.

1. Register the font in FOP configuration. (not necessary in case of DITA PDF transformations, see next step)

a) Create a FOP configuration file that specifies that FOP should look for fonts in the installed fonts of the operating
system.

<fop version="1.0">
 <renderers>
 <renderer mime="application/pdf">
 <fonts>
 <auto-detect/>

Transforming Documents | 207

http://xml.apache.org/fop/index.html
http://java.sun.com/products/jimi/
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/java-media/jai/
http://www.jeremias-maerki.ch/download/fop/pdf-images/
http://www.apple.com/downloads/macosx/apple/java3dandjavaadvancedimagingupdate.html

 </fonts>
 </renderer>
 </renderers>
</fop>

b) Set the FOP configuration file in Preferences.

Go to menu Options > Preferences > XML > XSLT/FO/XQuery > FO Processors and enter the path of the
FOP configuration file in the Configuration file for the built-in FOP text field.

2. Set the font on the document content.

This is done usually with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.

• For DocBook documents you can start with the predefined scenario called DocBook PDF, edit the XSLT parameters
and set the font name (in our example the font family name is Arial Unicode MS) to the parameters
body.font.family and title.font.family.

• For TEI documents you can start with the predefined scenario called TEI PDF, edit the XSLT parameters and
set the font name (in our example Arial Unicode MS) to the parameters bodyFont and sansFont.

• For DITA transformations using DITA-OT you should use an IDIOM FOP transformation and modify the
following two files:

• ${frameworks}/dita/DITA-OT/demo/fo/cfg/fo/font-mappings.xml - the font-face
element included in each element physical-font having the attribute char-set="default"
must contain the name of the font (Arial Unicode MS in our example)

• ${frameworks}/dita/DITA-OT/demo/fo/fop/conf/fop.xconf - an element auto-detect
must be inserted in the element fonts which is inside the element renderer having the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .
 <fonts>
 <auto-detect/>
 </fonts>
 . . .
</renderer>

Add a Font to the Built-in FOP

If an XML document is transformed to PDF using the built-in Apache FOP processor but it contains some Unicode
characters that cannot be rendered by the default PDF fonts then a special font that is capable to render these characters
must be configured and embedded in the PDF result.

Important: If the special font that must be set to Apache FOP is installed in the operating system there is a
simple way of telling FOP to look for the font. See the simplified procedure for adding a font to FOP.

1. Locate the font.

First, you have to find out the name of a font that has the glyphs for the special characters you used. One font that
covers the majority of characters, including Japanese, Cyrillic and Greek, is Arial Unicode MS.

On Windows the fonts are located into the C:\Windows\Fonts directory. On Mac they are placed in
/Library/Fonts. To install a new font on your system is enough to copy it in the Fonts directory.

2. Generate a font metrics file from the font file.

a) Open a terminal.
b) Change the working directory to the Oxygen XML Developer plugin install directory.
c) Create the following script file in the Oxygen XML Developer plugin installation directory.

Transforming Documents | 208

For Mac OS X and Linux create a file ttfConvert.sh:

#!/bin/sh
export LIB=lib
export CMD=java -cp
"$LIB/fop.jar:$LIB/avalon-framework-4.2.0.jar:$LIB/xercesImpl.jar"
export CMD=$CMD org.apache.fop.fonts.apps.TTFReader
export FONT_DIR='/Library/Fonts'
$CMD $FONT_DIR/Arialuni.ttf Arialuni.xml

For Windows create a file ttfConvert.bat:

set LIB=lib
set CMD=java -cp
"%LIB%\fop.jar;%LIB%\avalon-framework-4.2.0.jar;%LIB%\xercesImpl.jar"
set CMD=%CMD% org.apache.fop.fonts.apps.TTFReader
set FONT_DIR=C:\Windows\Fonts
%CMD% %FONT_DIR%\Arialuni.ttf Arialuni.xml

The paths specified in the file are relative to the Oxygen XML Developer plugin installation directory so if you
decide to create it in other directory you have to change the file paths accordingly.

The FONT_DIR can be different on your system. Make sure it points to the correct font directory. If the Java
executable is not in the PATH you will have to specify the full path of the executable.

If the font has bold and italic variants, you will have to convert those too. For this you add two more lines to the
script file:

• for Mac OS X and Linux:

$CMD $FONT_DIR/Arialuni-Bold.ttf Arialuni-Bold.xml
$CMD $FONT_DIR/Arialuni-Italic.ttf Arialuni-Italic.xml

• for Windows:

%CMD% %FONT_DIR%\Arialuni-Bold.ttf Arialuni-Bold.xml
%CMD% %FONT_DIR%\Arialuni-Italic.ttf Arialuni-Italic.xml

d) Execute the script.

On Linux and Mac OS X you should execute the command sh ttfConvert.sh from the command line. On
Windows you should run the command ttfConvert.bat from the command line or double click on the file
ttfConvert.bat.

3. Register the font in FOP configuration. (not necessary in case of DITA PDF transformations, see next step)

a) Create a FOP configuration file that specifies the font metrics file for your font.

<fop version="1.0">
 <base>./</base>
 <font-base>file:/C:/path/to/FOP/font/metrics/files/</font-base>
 <source-resolution>72</source-resolution>
 <target-resolution>72</target-resolution>
 <default-page-settings height="11in" width="8.26in"/>
 <renderers>
 <renderer mime="application/pdf">
 <filterList>
 <value>flate</value>
 </filterList>
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">

Transforming Documents | 209

 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 </renderer>
 </renderers>
</fop>

The embed-url attribute points to the font file to be embedded. You have to specify it using the URL convention.
The metrics-url attribute points to the font metrics file with a path relative to the base element. The triplet
refers to the unique combination of name, weight, and style (italic) for each variation of the font. In our case is
just one triplet, but if the font had variants, you would have to specify one for each variant. Here is an example
for Arial Unicode if it had italic and bold variants:

<fop version="1.0">
 ...
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 <font metrics-url="Arialuni-Bold.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Bold.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="bold"/>

 <font metrics-url="Arialuni-Italic.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Italic.ttf">
 <font-triplet name="Arialuni" style="italic"
 weight="normal"/>

 </fonts>
 ...
</fop>

More details about the FOP configuration file are available on
http://xmlgraphics.apache.org/fop/0.93/configuration.htmlthe FOP website.

b) Set the FOP configuration file in Preferences.

Go to menu Options > Preferences > XML > XSLT/FO/XQuery > FO Processors and enter the path of the
FOP configuration file in the Configuration file for the built-in FOP text field.

4. Set the font on the document content.

This is done usually with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.

For DocBook documents you can start with the predefined scenario called DocBook PDF, edit the XSLT parameters
and set the font name (in our example Arialuni) to the parameters body.font.family and title.font.family.
For TEI documents you can start with the predefined scenario called TEI PDF, edit the XSLT parameters and set
the font name (in our example Arialuni) to the parameters bodyFont and sansFont.
For DITA transformations using DITA-OT you should use an IDIOM FOP transformation and modify the following
two files:

• ${frameworks}/dita/DITA-OT/demo/fo/cfg/fo/font-mappings.xml - the font-face
element included in each element physical-font having the attribute char-set="default" must
contain the name of the font (Arialuni in our example)

Transforming Documents | 210

http://xmlgraphics.apache.org/fop/0.93/configuration.html

• ${frameworks}/dita/DITA-OT/demo/fo/fop/conf/fop.xconf - an element font must be
inserted in the element fonts which is inside the element renderer having the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 . . .
</renderer>

XProc Transformations
This section explains how to configure and run XProc transformations in Oxygen XML Developer plugin .

XProc Transformation Scenario

A sequence of transformations described by an XProc script can be executed with an XProc transformation scenario.
The scenario specifies the following parameters of the transformation:

• the URL of the XProc script
• the XProc engine
• the input ports
• the output ports

On the XProc tab of the scenario edit dialog you can select the URL of the XProc script and the XProc engine. The
engine can be the built-in Calabash engine or a custom engine configured in the Preferences dialog.

On the Inputs tab of the dialog you can configure each port used in the XProc script for reading input data. Each input
port has an assigned name in the XProc script. The XProc engine reads data from the URLs specified in the URLs list.
The built-in editor variables and the custom editor variables can be used to specify these URLs.

On the Parameters tab you can specify the parameters available on each port.

Each port where the output of the XProc transformation is sent is associated with an URL on the Outputs tab of the
dialog. The built-in editor variables and the custom editor variables can be used for specifying this URL.

The result of the XProc transformation can be displayed as a sequence in an output view with two sections: a list with
the output ports on the left side and the content of the document(s) that correspond to the selected output port on the
right side. If the Open results in editor option is selected, the XProc transformation result will be opened automatically
in an editor panel. By selecting the Open in System Application option, you can specify a file that will be opened at
the end of the XProc transformation in the system application associated with that file type.

Transforming Documents | 211

Figure 133: XProc Transformation results view

Integration of an External XProc Engine

The Javadoc documentation of the XProc API is available for download from the application website as a zip file:
xprocAPI.zip. In order to create an XProc integration project you can follow the next steps:

1. Take the oxygen.jar from [Oxygen-install-folder]/lib and put it in the lib folder of your project.

2. Implement the ro.sync.xml.transformer.xproc.api.XProcTransformerInterface interface.

3. Create a new Java archive (jar) from the classes you created.

4. Create a new engine.xml file according with the engine.dtd file. The attributes of the engine element have
the following meanings:

1. name - The name of the XProc engine.
2. description - A short description of the XProc engine.
3. class - The complete name of the class that implements

ro.sync.xml.transformer.xproc.api.XProcTransformerInterface.
4. version - The version of this integration.
5. engineVersion - The version of the integrated engine.
6. vendor - The name of the vendor / implementor.
7. supportsValidation - true if the engine supports validation, false otherwise.

The engine element has only one child, runtime. The runtime element contains several library elements
who's name attribute contains the relative or absolute location of the libraries necessary to run this integration.

5. Create a new folder with the name of the integration in the [Oxygen-install-folder]/lib/xproc.

6. Put there the engine.xml, and all the libraries necessary to run the new integration.

Transforming Documents | 212

http://www.oxygenxml.com/InstData/Editor/SDK/xprocAPI.zip

Chapter

8

Querying Documents

This chapter shows how to query XML documents in Oxygen XML Developer
plugin with XPath expressions and the XQuery language.

Topics:

• Running XPath Expressions
• Working with XQuery

Running XPath Expressions
This section explains possible ways of running an XPath expression on an XML document.

What is XPath

XPath is a language for addressing specific parts of an XML document. XPath, like the Document Object Model (DOM),
models an XML document as a tree of nodes. An XPath expression is a mechanism for navigating through and selecting
nodes from the XML document. An XPath expression is in a way analogous to a Structured Query Language (SQL)
query used to select records from a database.

There are different types of nodes, including element nodes, attribute nodes and text nodes. XPath defines a way to
compute a string-value for each type of node.

XPath defines a library of standard functions for working with strings, numbers and boolean expressions.

Some examples:

• child::* - Selects all children of the root node.
• .//name - Selects all elements having the name "name", descendants of the current node.
• /catalog/cd[price>10.80] - Selects all the cd elements that have a price element with

a value larger than 10.80.

To find out more about XPath, the following URL is recommended: http://www.w3.org/TR/xpath.

Oxygen's XPath Console

To use XPath effectively requires an understanding of the XPath Core Function Library. The Oxygen XML XPath
expression field of the current editor toolbar can be used to aid you in XML document development.

In Oxygen XML an XPath 1.0 or XPath 2.0 expression is typed and executed on the current document from the menu
XML > XPath (Ctrl+Shift+X) ((Cmd+Shift+X on Mac OS)) or from the toolbar button . Both XPath 2.0 basic
and XPath 2.0 schema aware expressions can be executed in the XPath console. XPath 2.0 schema aware also takes into
account the Saxon EE XML Schema version option. The XPath console features a syntax highlight mechanism that
allows you to better identify the components of the XPath expression. You can customize the color scheme from the
Syntax Highlight options page.

The content completion assistant that helps entering XPath expressions in attributes of XSLT stylesheets elements is
also available in the XPath console. It offers context dependent proposals according with the cursor position in the edited
document. The set of XPath functions proposed by the assistant also depends on the XPath version selected from the
drop-down menu of the XPath button (1.0 or 2.0).

In the following figure the content completion assistant offers element names from the current document and all XPath
2.0 functions:

Querying Documents | 214

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath#corelib

Figure 134: Content Completion in the XPath console

The evaluation of the XPath expression tries to resolve the locations of documents referred in the expression through
the XML catalogs which are configured in Preferences and the current XInclude preferences. An example is evaluating
the collection(URIofCollection) function (XPath 2.0). If you need to resolve the references from the files
returned by the collection() function with an XML catalog set up in the Oxygen XML Developer plugin preferences
you have to specify the class name of the XML catalog enabled parser for parsing these collection files. The class name
is ro.sync.xml.parser.CatalogEnabledXMLReader and you specify it like this:

let $docs := collection(iri-to-uri(
 "file:///D:/temp/test/XQuery-catalog/mydocsdir?recurse=yes;select=*.xml;
 parser=ro.sync.xml.parser.CatalogEnabledXMLReader"))

The results of an XPath query are displayed in a view that allows grouping them as a tree. Clicking a record in the result
list highlights the matched nodes within the text editor panel with a character level precision. Results are returned in a
format that is a valid XPath expression:

- /node[value]/node[value]/node[value] -

Querying Documents | 215

Figure 135: XPath results highlighted in editor panel with character precision

When using the grid editor, clicking a result record will highlight the entire node.

Figure 136: XPath results highlighted in the Grid Editor

The popup menu of the history list of the XPath dialog contains Remove and Remove All actions for removing expressions
from the history list.

Querying Documents | 216

XPath Utilization with DocBook DTD

The following examples are taken from a DocBook book based on the DocBook XML DTD. The
book contains a number of chapters. To return all the chapter nodes of the book you should enter
//chapter into the XPath expression field then press (Enter). This will return all the chapter
nodes of the DocBook book, in the results view. Each record when clicked will locate and highlight
the corresponding chapter element and all its children nodes.

If you want to find all example nodes contained in the sect2 nodes of a DocBook XML document
you should use the following XPath expression: //chapter/sect1/sect2/example. For each
example node found in any sect2 node, a result will be added to the results view.

For example if one of the results of the previous XPath query is:

- /chapter[1]/sect1[3]/sect2[7]/example[1]

it means that in the edited file, first chapter, third section level 1, seventh section level 2, the found
example node is the first in the section.

Important: If the document defines a default namespace then Oxygen XML Developer plugin will bind this
namespace to the first free prefix from the list: default, default1, default2, etc. For example if the
document defines the default namespace xmlns="something" and the prefix default is not associated
with another namespace then you can match tags without prefix in an XPath expression typed in the XPath
console by using the prefix default. For example to find all the level elements when the root element
defines a default namespace you should execute in the XPath console the expression: //default:level.

To define default mappings between prefixes that can be used in the XPath console and namespace URIs go to the
XPath Options user preferences panel and enter the mappings in the Default prefix-namespace mappings table. The
same preferences panel allows the configuration of the default namespace used in XPath 2.0 expressions entered into
the XPath toolbar and if different results tabs should be created for each executed XPath query.

To apply an XPath expression relative to the element on which the caret is positioned use the following actions:

• XML editor contextual menu > XML Document > Copy XPath (Ctrl+Shift+.) (also available on the context
menu of the main editor panel) to copy the XPath expression of the current element or attribute to the clipboard

• Paste action of the contextual menu of the XPath console to paste this expression in the console
• add your relative expression in the console and execute the resulting complete expression

The popup menu available in the Expression panel of the XPath expressions dialog offers the usual edit actions: Cut,
Copy, Paste, Select All.

Working with XQuery
This section explains how to edit and run XQuery queries in Oxygen XML Developer plugin .

What is XQuery

XQuery is the query language for XML and is officially defined by a W3C Recommendation document. The many
benefits of XQuery include:

• XQuery allows you to work in one common model no matter what type of data you're working with: relational,
XML, or object data.

• XQuery is ideal for queries that must represent results as XML, to query XML stored inside or outside the database,
and to span relational and XML sources.

• XQuery allows you to create many different types of XML representations of the same data.
• XQuery allows you to query both relational sources and XML sources, and create one XML result.

Querying Documents | 217

http://www.w3.org/TR/xquery/

Syntax Highlight and Content Completion

To create a new XQuery document select File > New (Ctrl+N) and when the New dialog appears select XQuery entry.

Oxygen XML Developer plugin provides syntax highlight for keywords and all known XQuery functions and operators.
A content completion component is also available and can be activated with the (Ctrl-Space) shortcut. The functions
and operators are presented together with a description of the parameters and functionality. For some supported database
engines like eXist and Berkeley DB, the content completion list offers the specific XQuery functions implemented by
that engine. This feature is available when the XQuery file has an associated transformation scenario which uses one of
these database engines or the XQuery validation engine is set to one of them via a validation scenario or in the XQuery
Preferences page.

The extension functions built in the Saxon product are available on content completion if one of the following conditions
are true:

• the edited file has a transformation scenario associated that uses as transformation engine Saxon 9.3.0.5 PE or Saxon
9.3.0.5 EE

• the edited file has a validation scenario associated that use as validation engine Saxon 9.3.0.5 PE or Saxon 9.3.0.5
EE

• the validation engine specified in Preferences is Saxon 9.3.0.5 PE or Saxon 9.3.0.5 EE.

If the Saxon namespace (http://saxon.sf.net) is mapped to a prefix the functions are presented using this prefix, the
default prefix for the Saxon namespace (saxon) is used otherwise.

If you want to use a function from a namespace mapped to a prefix, just type that prefix and the content completion will
display all the XQuery functions from that namespace. When the default namespace is mapped to a prefix the XQuery
functions from this namespace offered by content completion are also prefixed, only the function name being used
otherwise.

The content completion popup window presents all the variables and functions from both the edited XQuery file and its
imports.

Figure 137: XQuery Content Completion

XQuery Outline View

The XQuery document structure is presented in the XQuery Outline view. The outline tree presents the list of all the
components (namespaces, imports, variables, and functions) from both the edited XQuery file and its imports. It allows
quick access to a component by knowing its name. It can be opened from the Window > Show View > Other > oXygen
> Outline menu action.

Querying Documents | 218

http://saxon.sf.net/

Figure 138: XQuery Outline View

The following actions are available in the View menu on the Outline view's action bar:

• Selection update on caret move - Controls the synchronization between Outline view and source document.
The selection in the Outline view can be synchronized with the caret moves or the changes performed in the XQuery
editor. Selecting one of the components from the Outline view also selects the corresponding item in the source
document.

• Sort - Allows you to alphabetically sort the XQuery components.
• Show all components - Displays all collected components starting from the current file. This option is set by default.
• Show local components - Displays components defined in the current file only.
• Group by location/namespace/type - Allows you to group the components by location, namespace, and type. When

grouping by namespace, the main XQuery module namespace is presented first in the Outline view.

If you know the component name, you can search it in the Outline view by typing its name in the filter text field from
the top of the view or directly on the tree structure. When you type the component name in the filter text field you can
switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch from tree
structure to the filter text field, you can use (Tab), (Shift-Tab).

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match (like *textToFind*).

The upper part of the view contains a filter box which allows you to focus on the relevant components. Type a text
fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard
characters (*, ?) and separate multiple patterns with commas.

The XQuery Input View

A node can be dragged and dropped in the editor area for quickly inserting XQuery expressions.

Querying Documents | 219

Figure 139: XQuery Input view

Create FLWOR by drag and drop

For the following XML documents:

 <movies>
 <movie id="1">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 <movie id="2">
 <title>Taxi Driver</title>
 <year>1976</year>
 </movie>
 </movies>

and

 <reviews>
 <review id="100" movie-id="1">
 <rating>5</rating>
 <comment>It is made after a great Stephen King
 book.
 </comment>
 <author>Paul</author>
 </review>
 <review id="101" movie-id="1">
 <rating>3</rating>
 <comment>Tom Hanks does a really nice
acting.</comment>
 <author>Beatrice</author>
 </review>
 <review id="104" movie-id="2">
 <rating>4</rating>
 <comment>Robert De Niro is my favorite
actor.</comment>
 <author>Maria</author>
 </review>
 </reviews>

Querying Documents | 220

and the following XQuery:

 let $review := doc("reviews.xml")
 for $movie in doc("movies.xml")/movies/movie
 let $movie-id := $movie/@id
 return
 <movie id="{$movie/@id}">
 {$movie/title}
 {$movie/year}
 <maxRating>
 {

 }
 </maxRating>
 </movie>

if you drag the review element and drop it between the braces a popup menu will be displayed.

Figure 140: XQuery Input drag and drop popup menu

Select FLWOR rating and the result document will be:

Figure 141: XQuery Input drag and drop result

XQuery Validation

With Oxygen XML Developer plugin you can validate your documents before using them in your transformation
scenarios. The validation uses the Saxon 9.3.0.5 PE processor or the 9.3.0.5 EE, IBM DB2, eXist, Software AG Tamino,
Berkeley DB XML or Documentum xDb (X-Hive/DB) 10 if you installed them. Any other XQuery processor that offers
an XQJ API implementation can also be used. This is in conformance with the XQuery Working Draft. The processor
is used in two cases: validation of the expression and execution. Although the execution implies a validation, it is faster
to syntactically check the expression without executing it. The errors that occurred in the document are presented in the
messages view at the bottom of editor window, with a full description message. As with all error messages, if you click
on one entry, the line where the error appeared is highlighted.

Querying Documents | 221

http://www.w3.org/TR/xquery/

Figure 142: XQuery Validation

Please note that if you choose a processor that doesn't support XQuery validation you will receive a warning when trying
to validate.

Other XQuery Editing Actions

The XQuery editor offers a reduced version of the popup menu available in the XML editor type:

• the folding actions
• the edit actions
• a part of the source actions:

• To lower case
• To upper case
• Capitalize lines

• open actions:

• Open file at Caret
• Open file at Caret in System Application

Transforming XML Documents Using XQuery

XQueries are very similar to the XSL stylesheets in the sense they are both capable of transforming an XML input into
another format. You specify the input URL when you define the transformation scenario. The result can be saved and
opened in the associated application. You can even run a FO processor on the output of an XQuery. The transformation
scenarios may be shared between many XQuery files, are exported togheter with the XSLT scenarios and can be managed
in the dialog Configure Transformation Scenario or in the Scenarios view. The transformation can be performed on
the XML document specified in the XML URL field, or, if this field is empty, the documents referred from the query
expression. The parameters of XQuery transforms must be set in the Parameters dialog. Parameters that are in a
namespace must be specified using the qualified name, for example a param parameter in the
http://www.oxygenxml.com/ns namespace must be set with the name {http://www.oxygenxml.com/ns}param.

The transformation uses one of the Saxon 9.3.0.5 HE, Saxon 9.3.0.5 PE, Saxon 9.3.0.5 EE processors, a database
connection (details can be found in the Working with Databases chapter - in the XQuery transformation section) or
any XQuery processor that provides an XQJ API implementation.

The Saxon 9.3.0.5 EE processor supports also XQuery 1.1 transformations. If the option Enable XQuery 1.1 support
is enabled Saxon EE runs the XQuery transformations as XQuery 1.1.

Querying Documents | 222

XQJ Transformers

This section describes the necessary procedures before running an XQJ transformation.

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming XML
documents.

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select XQuery API for Java(XQJ) in the Type combo box.

5. Press the Add button to add XQJ API specific files.

You can manage the driver files using the Add, Remove, Detect and Stop buttons.

Oxygen XML Developer plugin will detect any implementation of javax.xml.xquery.XQDataSource and
present it in Driver class field.

6. Select the most suited driver in the Driver class combo box.

7. Click the OK button to finish the data source configuration.

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for this connection.

4. Select one of the previously configured XQJ data sources in the Data Source combo box.

5. Fill-in the connection details.

The properties presented in the connection details table are automatically detected depending on the selected data
source.

6. Click the OK button.

Display Result in Sequence View

The result of an XQuery executed on a database can be very large and sometimes only a part of the full result is needed.
For avoiding the long time necessary for fetching the full result the Present as a sequence option should be selected in
the Output tab of the dialog for editing the transformation scenario. This option fetches only the first chunk of the result.
Clicking on the More results available label that is displayed at the bottom of the Sequence view fetches the next
chunk of results.

The size of a chunk can be set with the user option Size limit of Sequence view. The XQuery options button from
the More results available label provides a quick access to this option by opening the XQuery panel of the Preferences
dialog where the option can be modified.

Querying Documents | 223

Figure 143:The XQuery transformation result displayed in Sequence view

A chunk of the XQuery transformation result is displayed in the Sequence view.

Figure 144:The XQuery transformation result displayed in Sequence view

Advanced Saxon HE/PE/EE Transform Options

The XQuery transformation scenario allows configuring advanced options specific for the Saxon HE (Home Edition) /
PE (Professional Edition) / EE (Enterprise Edition) engine. They are the same options as the ones set in the user
preferences but they are configured as a specific set of transformation options for each transformation scenario. The
default values of the options in the transformation scenario are the values set in the user preferences. The advanced
options specific for Saxon HE / PE / EE are:

• Use a configuration file - If checked, the specified Saxon configuration file will be used to determine the Saxon
advanced options.

• Recoverable errors - Policy for handling recoverable errors in the stylesheet. Allows the user to choose how dynamic
errors will be handled. Either one of the following options can be selected:

Querying Documents | 224

recover silently•
• recover with warnings
• signal the error and do not attempt recovery

• Strip whitespaces - Can have one of the following values:

• All - Strips all whitespace text nodes from source documents before any further processing, regardless of any
xml:space attributes in the XML source document.

• Ignorable - Strips all ignorable whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the XML source document. Whitespace text nodes are ignorable if
they appear in elements defined in the DTD or schema as having element-only content.

• None - Strips no whitespace before further processing.

• Optimization level - Allows optimization to be suppressed in cases where reducing compile time is important, or
where optimization gets in the way of debugging, or causes extension functions with side-effects to behave
unpredictably.

• Allow calls on extension functions - If checked, calling external Java functions is allowed.
• Validation of the source file - Available only for Saxon EE. It can have three values:

• Schema validation - This mode requires an XML Schema and enables parsing the source documents with
schema-validation enabled.

• Lax schema validation - This mode enables parsing the source documents with schema-validation enabled if
an XML Schema is provided.

• Disable schema validation - This means parsing the source documents schema-validation disabled.

• Validation errors in the results tree treated as warnings - Available only for Saxon EE. If checked, all validation
errors are treated as warnings, otherwise they are treated as fatal.

• Enable XQuery 1.1 support - If checked, Saxon EE runs the XQuery transformation with the XQuery 1.1 support.
• Backup files updated by XQuery ("-backup:(on|off)") - If checked, backup versions for any XML files updated

with XQuery Update will be generated.

Updating XML Documents using XQuery

Using the bundled Saxon 9.3.0.5 EE XQuery processor Oxygen XML Developer plugin offers support for XQuery
Update 1.0. The XQuery Update Facility provides expressions that can be used to make persistent changes to instances
of the XQuery 1.0 and XPath 2.0 Data Model. Thus, besides querying XML documents, you can modify them using the
various insert/delete/modify/create methods available in the XQuery Update 1.0 standard.

Just choose Saxon 9.3.0.5 EE as a transformer in the scenario associated with the XQuery files containing update
statements and Oxygen XML Developer plugin will notify you if the update was successful.

Using XQuery Update to modify a tag name in an XML file

rename node doc("books.xml")//publisher[1]//book[1] as "firstBook"

Querying Documents | 225

http://www.w3.org/TR/xquery-update-10/#introduction

Chapter

9

Debugging XSLT Stylesheets and XQuery Documents

This chapter explains the user interface and how to use the debugger with XSLT
and XQuery transformations.

Topics:

• Overview
• Layout
• Working with the XSLT / XQuery

Debugger
• Debugging Java Extensions
• Supported Processors for XSLT

/ XQuery Debugging

Overview
The XSLT Debugger and XQuery Debugger perspectives enable you to test and debug XSLT 1.0 / 2.0 stylesheets and
XQuery 1.0 documents including complex XPath 2.0 expressions. The interface presents simultaneous views of the
source XML document, the XSLT/XQuery document and the result document. As you go step by step through the
XSLT/XQuery document the corresponding output is generated step by step, and the corresponding position in the XML
file is highlighted. At the same time, special views provide various types of debugging information and events useful
to understand the transformation process.

The user is offered a rich set of features for testing and solving XSLT/XQuery problems:

• Support for XSLT 1.0 stylesheets (using Saxon 6.5.5 and Xalan XSLT engines), XSLT 2.0 stylesheets and XPath
2.0 expressions that are included in the stylesheets (using Saxon 9.3.0.5 XSLT engine) and XQuery 1.0 (using Saxon
9.3.0.5 XQuery engine).

• Stepping capabilities: step in, step over, step out, run, run to cursor, run to end, pause, stop.
• Output to source mapping between every line of output and the instruction element / source context that generated

it.
• Breakpoints on both source and XSLT/XQuery documents.
• Call stack on both source and XSLT/XQuery documents.
• Trace history on both source and XSLT/XQuery documents.
• Support for XPath expression evaluation during debugging.
• Step into imported/included stylesheets as well as included source entities.
• Available templates and hits count.
• Variables view.
• Dynamic output generation.

Layout
The XML file and XSL file are displayed in Text mode. The Grid mode is available only in the Editor perspective.

The debugger perspective contains four sections:

• Source document view (XML) - Displays and allows the editing of XML files (documents).
• XSLT/XQuery document view (XSLT/XQuery) - Displays and allows the editing of XSL files(stylesheets) or

XQuery documents.
• Output document view - Displays the output that results from inputing a document (XML) and astylesheet (XSL)

or XQuery document in the transformer. The transformation result is written dynamically while the transformation
is processed.

• Control view - The control view is used to configure and control the debugging operations. It also provides a set of
Information views types. This pane has two sections:

• Control toolbar
• Information views

Debugging XSLT Stylesheets and XQuery Documents | 228

Figure 145: Debugger Mode Interface

XML documents and XSL stylesheets or XQuery documents that were opened in the Editor perspective are automatically
sorted into the first two panes. When multiple files of each type are opened, the individual documents and stylesheets
are separated using the familiar tab management system of the Editor perspective. Selecting a tab brings the document
or stylesheet into focus and enables editing without the need to go back to the Editor perspective.

During debugging, the current execution node is highlighted in both document (XML) and XSLT/XQuery views.

Control Toolbar

The toolbar contains all the actions needed to configure and control the debug process. Below items are described as
they appear in the toolbar from left to right.

Figure 146: Control Toolbar

• XML source selector - The current selection represents the source document used as input by the transformation
engine. A drop-down list contains all opened files (XML files being emphasized). This allows you to use other file
types also as source documents. In an XQuery debugging session this selection field can be set to the default value
NONE, because usually XQuery documents do not require an input source.

• XSL / XQuery selector - The current selection represents the stylesheet or XQuery document to be used by the
transformation engine. The selection list contains all opened files (XSLT / XQuery files being emphasized).

• Link with editor - When enabled, the XML and XSLT/XQuery selectors display the names of the files opened
in the central editor panels. Enabled by default.

• Output selector - The selection represents the output file specified in the associated transformation scenario.

Debugging XSLT Stylesheets and XQuery Documents | 229

• XSLT / XQuery parameters - XSLT / XQuery parameters to be used by the transformation.
• Libraries - Add and remove the Java classes and jars used as XSLT extensions.
• Turn on profiling - Enables / Disables current transformation profiling.
• Enable XHTML output - Enables the rendering of the output in the XHTML output view during the

transformation process. For performance issues, disable XHTML output when working with very large files. Please
note that only XHTML conformant documents can be rendered by this view.. In order to view the output result of
other formats, such as HTML, save the Text output area to a file and use an external browser for viewing.

When starting a debug session from the editor perspective using the Debug Scenario action, the state of this toolbar
button reflects the state of the Show as XHTML output option from the scenario.

• Turn on/off output to source mapping - Enables or disables the output to source mapping between every line
of output and the instruction element / source context that generated it.

• Debugger Preferences - Quick link to Debugger preferences page.

• XSLT / XQuery engine selector - Lists the processors available for debugging XSLT and XQuery transformations.
• XSLT / XQuery engine advanced options - Advanced options available for Saxon 9.3.0.5.
• Step into (F7) - Starts the debugging process and runs until the next stylesheet node or the next XPath 2.0

expression step (next transformation step).
• Step over (F8 (Alt+F7 on Mac OS)) - Executes the current stylesheet node (including its sub-elements) and

goes to the next node in document order (usually the next sibling of the current node) or to the next step of an XPath
2.0 expression.

• Step out (Shift + F7) - Steps out to the parent node (equivalent to the Step over on the parent).
• Run - Starts the debugging process. The execution of the process is paused when a breakpoint is encountered.

(see breakpoints).
• Run to cursor ((Ctrl + F5) - Starts the debugging process and runs until one of the following conditions occur:

the line of cursor is reached, a valid breakpoint is reached or the execution ends.
• Run to end ((Alt + F5) - Runs the transformation until the end, without taking into account enabled breakpoints

(if any).
• Pause (Shift + F6) - Interrupts the current transformation. This is useful for long transformations (DocBook

for instance) when you want to find out what point the transformation has reached. The transformation can be resumed
after.

• Stop (F6) - Ends the transformation process.
• Show current execution nodes - Positions the cursor at the current debug context. Possible displayed states:

• entering () or leaving () an XML execution node;
• entering () or leaving () an XSL execution node;
• entering () or leaving () an XPath execution node.

Information View

The information view is comprised of two panes that are used to display various types of information used to understand
the transformation process. For each information type there is a corresponding tab. While running a transformation,
relevant events are displayed in the various information views. This enables the developer to obtain a clear view of the
transformation progress. Using the debug controls developers can easily isolate parts of stylesheet therefore they may
be understood and modified. The information types include:

Left side information views

• Context Node view

Debugging XSLT Stylesheets and XQuery Documents | 230

• XWatch view
• Breakpoints view
• Messages view (XSLT only)
• Variables view

Right side information views

• Stack view
• Trace view
• Templates view (XSLT only)
• Nodeset view

Context Node View

The context node is valid only for XSLT debugging session and is a source node corresponding to the XSL expression
being evaluated. It is also called the context of execution. The context node implicitly changes as the processor hits
various steps (at the point where XPath expressions are evaluated). This node has the same value as evaluating '.' (dot)
XPath expression in XWatch view. The value of the context node is presented as a tree in the view.

Figure 147:The Context node view

The context node is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed
using the qualified name. If the namespace is not bound to a prefix, the namespace URI is presented before the node
name. The value of the selected attribute or node is shown in the right side panel.

XPath Watch (XWatch) View

This view shows XPath expressions to be evaluated during debugging. Expressions are evaluated dynamically as the
processor changes its source context.

When the XPath expression is typed in the Expression column the usual content completion assistant is activated and
supports the process of composing the expression just like in the XSLT editor.

Figure 148:The XPath watch view

Debugging XSLT Stylesheets and XQuery Documents | 231

Table 1: XWatch columns

DescriptionColumn

XPath expression to be evaluated (should be XPath 1.0 or
2.0 compliant).

Expression

Result of XPath expression evaluation. Value has a type
(see the possible values in the section Variables View on

Value

page 238). For Node Set results the number of nodes in the
set is shown in parenthesis.

Important: Remarks about working with the XWatch view:

• Expressions referring to variables names are not evaluated. In case of an XPath error, you get an Error line.
• The expression list is not deleted at the end of transformation (it is preserved between debugging sessions).
• To insert a new expression click the last line on the expression column and enter it. As alternative right click

and select the Add action. Press (Enter) on the cell to add and evaluate.
• To delete an expression click on its Expression column and delete its content. As alternative right click and

select the Remove action. Press (Enter) on the cell to commit changes.
• If the expression result type is a Node Set you can click on it (Value column) and you will see on the right

side its value. (see Nodeset view).
• The Copy, Add, Remove and Remove All actions are offered in every row's contextual menu.

Breakpoints View

This view lists all breakpoints set on opened documents. Once you set a breakpoint it is automatically added in this list.
Breakpoints can be set in XSLT/XQuery documents and in XML documents for XSLT debugging sessions. A breakpoint
can have an associated break conditions which represent XPath expressions evaluated in the current debugger context.
In order to be processed their evaluation result should be a boolean value. A breakpoint with an associated condition
stops the execution of the Debugger only if the breakpoint condition is evaluated to true.

Figure 149:The Breakpoints View

Table 2: Breakpoints columns

DescriptionColumn

If checked, the current condition is evaluated and taken
into account.

Enabled

Resource file and number of the line where the breakpoint
is set.

Resource

XSLT/XQuery expression to be evaluated during
debugging. The expression will be evaluated at every debug
step.

Condition

Debugging XSLT Stylesheets and XQuery Documents | 232

Important: Not all set breakpoints are valid. You should check that your breakpoint is valid:

• For example if the breakpoint is set on an empty line or commented line or the line is not reached by the
processor (no template to match it, line containing only an end tag), that breakpoint is invalid.

• Clicking a record highlights the breakpoint line into the document.
• The breakpoints list is not deleted at the end of transformation (it is preserved between debugging sessions).

The following actions are available on the table's contextual menu:

• Go to - Moves the cursor on the breakpoint's source.
• Enable - Enables the breakpoint.
• Disable - Disables the breakpoint. A disabled breakpoint will not be evaluated by the Debugger.
• Add - Allows you to add a new breakpoint and breakpoint condition.
• Edit - Allows you to edit an existing breakpoint.
• Remove - Deletes the selected breakpoint.
• Enable all - Enables all breakpoints.
• Disable all - Disables all breakpoints.
• Remove all - Removes all breakpoints.

Messages View

xsl:message instructions are one way to signal special situations encountered during transformation as well as a raw
way of doing the debugging. This view is available only for XSLT debugging sessions and shows all xsl:message
calls executed by the XSLT processor during transformation.

Figure 150:The Messages View

Table 3: Messages columns

DescriptionColumn

Message content.Message

Signals if processor terminates the transformation or not
once it encounters the message (yes/no respectively)

Terminate

Resource file where xsl:message instruction is defined
and the message line number.

Resource

The following actions are available in the contextual menu:

• Go to - Highlight the XSL fragment that generated the message.
• Copy Value - Copies to clipboard message details (system ID, severity info, description, start location, terminate

state).

Important: Remarks

• Clicking a record from the table highlights the xsl:message declaration line.
• Message table values can be sorted by clicking the corresponding column header. Clicking the column header

switches the sorting order between: ascending, descending, no sort.

Debugging XSLT Stylesheets and XQuery Documents | 233

Stack View

This view shows the current execution stack of both source and XSLT/XQuery nodes. During transformation two stacks
are managed: one of source nodes being processed and the other for XSLT/XQuery nodes being processed. Oxygen
XML Developer plugin shows both node types into one common stack. The source (XML) nodes are preceded by a
red color icon while XSLT/XQuery nodes are preceded by a green color icon. The advantage of this approach is that
you can always see the source scope on which a XSLT/XQuery instruction is executed (the last red color node on the
stack). The stack is oriented upside down.

Figure 151:The Stack View

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT element that is displayed on the selected line from the view.

Table 4: Stack columns

DescriptionColumn

Order number, represents the depth of the node (0 is the
stack base).

#

Node from source or stylesheet document currently being
processed. One particular stack node is the document root,
noted as #document.

XML/XSLT/XQuery Node

Attributes of the node (a list of id="value" pairs).Attributes

Resource file where the node is located.Resource

Important: Remarks:

• Clicking a record from the stack highlights that node's location inside resource.
• Using Saxon, the stylesheet elements are qualified with XSL proxy, while using Xalan you only see their

names. (example: xsl:template using Saxon and template using Xalan).
• Only the Saxon processor shows element attributes.
• The Xalan processor shows also the built-in rules.

Output Mapping Stack View

This view is useful at the end of the transformation and shows the whole stack of XSLT templates/XQuery elements
that generated a specific area of the output. It provides context data in addition to the highlight of the XML element and
the XSLT template/XQuery element available in the editor panel and in the Stack view and Trace view.

Debugging XSLT Stylesheets and XQuery Documents | 234

Figure 152:The Output Mapping Stack view

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT element that is displayed on the selected line from the view.

Table 5: Output Mapping Stack columns

DescriptionColumn

The order number in the stack of XSLT templates/XQuery
elements. Number 0 corresponds to the bottom of the stack

#

in the status of the XSLT/XQuery processor. The highest
number corresponds to the top of the stack.

The name of an XSLT template/XQuery element that
participated in the generation of the selected output area.

XSL/XQuery Node

The attributes of the XSLT template/XQuery node.Attributes

The name of the file containing the XSLT template/XQuery
element.

Resource

Important: Remarks:

• Clicking a record highlights that XSLT template definition/XQuery element inside the resource (XSLT
stylesheet file/XQuery file).

• Saxon only shows the applied XSLT templates having at least one hit from the processor. Xalan shows all
defined XSLT templates, with or without hits.

• The table can be sorted by clicking the corresponding column header. When clicking a column header the
sorting order switches between: ascending, descending, no sort.

• Xalan shows also the built-in XSLT rules.

Trace History View

Usually the XSLT/XQuery processors signal the following events during transformation:

• - Entering a source (XML) node.
• - Leaving a source (XML) node.
• - Entering a XSLT/XQuery node.
• - Leaving a XSLT/XQuery node.

The trace history catches all these events, so you can see how the process evolved. The red icon lines denote source
nodes while the green icon lines denote XSLT/XQuery nodes.

It is possible to save the element trace in a structured XML document. The action is available on the context menu of
the view. In this way you have the possibility to compare the trace results from different debug sessions.

Debugging XSLT Stylesheets and XQuery Documents | 235

Figure 153:The Trace History View

The contextual menu contains the following actions:

• Go to - moves the selection in the editor panel to the line containing the XSLT element or XML element that is
displayed on the selected line from the view;

• Export to XML - saves the entire trace list into XML format.

Table 6:Trace History columns

DescriptionColumn

Shows you how deep the node is nested in the XML or
stylesheet structure. The bigger the number, the more nested
the node is. A depth 0 node is the document root.

Depth

Represents the node from the processed source or stylesheet
document. One particular node is the document root, noted

XML/XSLT/XQuery Node

as #document. Every node is preceded by an arrow that
represents what action was performed on it (entering or
leaving the node).

Attributes of the node (a list of id="value" pairs).Attributes

Resource file where the node is located.Resource

Important: Remarks:

• Clicking a record highlights that node's location inside the
resource.

• Only the Saxon processor shows the element attributes.
• The Xalan processor shows also the built-in rules.

Templates View

The xsl:template is the basic element for stylesheets transformation. This view is only available during XSLT
debugging sessions and shows all xsl:template instructions used by the transformation. By seeing the number of
hits for each of the templates you get an idea of the stylesheet coverage by template rules with respect to the input source.

Figure 154:The Templates view

Debugging XSLT Stylesheets and XQuery Documents | 236

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing
the XSLT template that is displayed on the selected line from the view.

Table 7:Templates columns

DescriptionColumn

The match attribute of the xsl:template.Match

The number of hits for the xsl:template. Shows how
many times the XSLT processor used this particular
template.

Hits

The template priority as established by XSLT processor.Priority

The mode attribute of the xsl:template.Mode

The name attribute of the xsl:template.Name

The resource file where the template is located.Resource

Important: Remarks:

• Clicking a record highlights that template definition inside the resource.
• Saxon only shows the applied templates having at least one hit from the processor. Xalan shows all defined

templates, with or without hits.
• Template table values can be sorted by clicking the corresponding column header. When clicking a column

header the sorting order switches between: ascending, descending, no sort.
• Xalan shows also the built-in rules.

Node Set View

This view is always used in relation with The Variables view and the XWatch viewl. It shows an XSLT node set value
in a tree form. The node set view is updated as response to the following events:

• You click a variable having a node set value in one of the above 2 views.
• You click a tree fragment in one of the above 2 views.
• You click an XPath expression evaluated to a node set in one of the above 2 views.

Figure 155:The Node Set view

The nodes / values set is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed
using the qualified name. If the namespace is not bound to a prefix the namespace URI is presented before the node
name. The value of the selected attribute or node is shown in the right side panel.

Important: Remarks:

• In case of longer values in the right side panel the interface shows three suspension points (...) at the end. A
more detailed value is available as tooltip.

• Clicking a record highlights the location of that node into the source or stylesheet view.

Debugging XSLT Stylesheets and XQuery Documents | 237

Variables View

Variables and parameters play an important role during an XSLT/XQuery transformation. Oxygen XML Developer
plugin uses the following icons to differentiate variables and parameters:

• - Global variable.
• - Local variable.
• - Global parameter.
• - Local parameter.

The following value types are available:

• Boolean
• String
• Date - XSLT 2.0 only.
• Number
• Set
• Object
• Fragment - Tree fragment.
• Any
• Undefined - The value was not yet set, or it is not accessible.

Note:

When Saxon 6.5 is used, if the value is unavailable, then the following message is displayed in the Value
field: "The variable value is unavailable".

When Saxon 9 is used:

• if the variable is not used, the Value field displays "The variable is declared but never used";
• if the variable value cannot be evaluated, the Value field displays "The variable value is unavailable".

• Document
• Element
• Attribute
• ProcessingInstruction
• Comment
• Text
• Namespace
• Evaluating - Value under evaluation.
• Not Known - Unknown types.

Figure 156:The Variables View

Debugging XSLT Stylesheets and XQuery Documents | 238

Table 8: Variables columns

DescriptionColumn

Name of variable / parameter.Name

Type of variable/parameter.Value type

Current value of variable / parameter.Value

The value of a variable (the Value column) can be copied to the clipboard for pasting it to other editor area with the
action Copy value from the contextual menu of the table from the view. This is useful in case of long and complex
values which are not easy to remember by looking at them once.

Important: Remarks:

• Local variables and parameters are the first entries presented in the table.
• Clicking a record highlights the variable definition line.
• Variable values could differ depending on the transformation engine used or stylesheet version set.
• If the value of the variable is a node set or a tree fragment, clicking on it causes the Node Set view to be

shown with the corresponding set of values.
• Variable table values can be sorted by clicking the corresponding column header. Clicking the column header

switches between the orders: ascending, descending, no sort.

Multiple Output Documents in XSLT 2.0

For XSLT 2.0 stylesheets that store the output in more than one file by using the xsl:result-document instruction
the content of the file created in this way is displayed dynamically while the transformation is running in an output view.
There is one view for each xsl:result-document instruction so that the output of different instructions is not
mixed but is presented in different views.

Working with the XSLT / XQuery Debugger
This section describes how to work with the debugger in the most common use cases.

Steps in a Typical Debug Process

To debug a stylesheet or XQuery document follow the procedure:

1. Open the source XML document and the XSLT/XQuery document.

2. If you are in the Oxygen XML Developer plugin XML perspective switch to the Oxygen XML Developer plugin
XSLT Debugger perspective or the Oxygen XML Developer plugin XQuery Debugger perspective with one of the
actions (here explained for XSLT):

• Menu Window > Open Perspective > Other ... > Oxygen XSLT Debugger
• The toolbar button Debug scenario - This action initializes the Debugger perspective with the parameters

of the transformation scenario. Any modification applied to the scenario parameters (the transformer engine, the
XSLT parameters, the transformer extensions, etc) will be saved back in the scenario when exiting from the
Debugger perspective.

3. Select the source XML document in the XML source selector of the Control toolbar. In case of XQuery debugging
if your XQuery document has no implicit source set the source selector value to NONE.

4. Select the XSLT/XQuery document in the XSLT/XQuery selector of the Control toolbar.

5. Set XSLT/XQuery parameters from the button available on the Control toolbar.

6. Set one or more breakpoints.

7. Step through the stylesheet using the buttons available on the Control toolbar:

Debugging XSLT Stylesheets and XQuery Documents | 239

• Step into
• Step over
• Step out
• Run
• Run to cursor
• Run to end
• Pause
• Stop

8. Examine the information in the Information views to find the bug in the transformation process.

You may find the procedure for determining the XSLT template/XQuery element that generated an output section
useful for fixing bugs in the transformation.

Using Breakpoints

The Oxygen XML Developer plugin XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to
gather information about variables and processor execution at particular points. To ensure breakpoints persistence
between work sessions, they are saved at project level. You can set maximum 100 breakpoints per project.

Inserting Breakpoints

To insert a breakpoint, follow these steps:

1. Place your cursor on the line where you want the breakpoint to be in the XML source document or the XSLT /
XQuery document.

You can set breakpoints on XML source only for XSLT debugging sessions.

2. Click the left side stripe of the editor panel.

Removing Breakpoints

Only one action must be executed for removing a breakpoint:

Click the breakpoint icon on the left side stripe of the editor panel. As alternative go to menu Edit > Breakpoints
> Remove All.

Determining What XSLT / XQuery Expression Generated Particular Output

In order to quickly spot the XSLT templates or XQuery expressions with problems it is important to know what XSLT
template in the XSLT stylesheet or XQuery expression in the XQuery document and what element in the source XML
document generated a specified area in the output.

Some of the debugging capabilities, for example Step in can be used for this purpose. Using Step in you can see how
output is generated and link it with the XSLT/XQuery element being executed in the current source context. However,
this can become difficult on complex XSLT stylesheets or XQuery documents that generate a large output.

Output to source mapping is a powerful feature that makes this output to source mapping persistent. You can click on
the text from the Text output view or XHTML output view and the editor will select the XML source context and the
XSLT template/XQuery element that generated the text. Also inspecting the whole stack of XSLT templates/XQuery
elements that determined the state of the XSLT/XQuery processor at the moment of generating the specified output area
speeds up the debugging process.

1. Switch to the Oxygen XML Developer plugin XSLT Debugger perspective or Oxygen XML Developer plugin
XQuery Debugger perspective with one of the actions (here explained for XSLT):

• Go to menu Window > Open Perspective > Other ... > Oxygen XSLT Debugger
• Go to menu . The toolbar button Debug scenario . This action initializes the Debugger perspective with

the parameters of the transformation scenario. Any modification applied to the scenario parameters (the transformer

Debugging XSLT Stylesheets and XQuery Documents | 240

engine, the XSLT parameters, the transformer extensions, etc) will be saved back in the scenario when exiting
from the Debugger perspective.

2. Select the source XML document in the XML source selector of the Control toolbar. In case of XQuery debugging
without an implicit source choose the NONE value.

3. Select the XSLT / XQuery document in the XSLT / XQuery selector of the Control toolbar.

4. Select the XSLT / XQuery engine in the XSLT / XQuery engine selector of the Control toolbar.

5. Set XSLT / XQuery parameters from the button available on the Control toolbar.

6. Apply the XSLT stylesheet or XQuery transformation using the button Run to end available on the Control
toolbar.

7. Inspect the mapping by clicking a section of the output from the Output view of the Oxygen XML Developer plugin
XSLT Debugger or Oxygen XML Developer plugin XQuery Debugger perspectives.

Figure 157:Text Output to Source Mapping

This action will highlight the XSLT / XQuery element and the XML source context. This XSLT template/XQuery
element that is highlighted in the XSLT/XQuery editor represents only the top of the stack of XSLT templates/XQuery
elements that determined the state of the XSLT/XQuery processor at the moment of generating the clicked output
section. In case of complex transformations inspecting the whole stack of XSLT templates/XQuery elements speeds
up the debugging process. This stack is available in the Output Mapping Stack view.

Debugging XSLT Stylesheets and XQuery Documents | 241

Debugging Java Extensions
The XSLT/XQuery debugger does not step into Java classes that are configured as XSLT/XQuery extensions of the
transformation. For stepping into Java classes, inspecting variable values and setting breakpoints in Java methods you
should set up a Java debug configuration in an IDE like the Eclipse SDK as described below.

1. Create a debug configuration.

a) Set at least 256 MB as heap memory for the Java virtual machine (recommended 512 MB) by setting the -Xmx
parameter in the debug configuration, for example “-Xmx512m”.

b) Make sure the [Oxygen-install-folder]/lib/oxygen.jar file and your Java extension classes are
on the Java classpath.

The Java extension classes should be the same classes that were set as an extension of the XSLT/XQuery
transformation in the Oxygen debugging perspective.

c) Set the class ro.sync.exml.Oxygen as the main Java class of the configuration.

The main Java class ro.sync.exml.Oxygen is located in the oxygen.jar file.

2. Start the debug configuration.

Now you can set breakpoints and inspect Java variables as in any Java debugging process executed in the selected
IDE (Eclipse SDK, etc.).

Supported Processors for XSLT / XQuery Debugging
The following built-in XSLT processors are integrated in the debugger and can be selected in the Control Toolbar:

• Saxon 9.3.0.5 HE (Home Edition) - a limited version of the Saxon 9 processor, capable of running XSLT 1.0, XSLT
2.0 basic and XQuery 1.0 transformations, available in both the XSLT debugger and the XQuery one,

• Saxon 9.3.0.5 PE (Professional Edition) - capable of running XSLT 1.0 transformations, XSLT 2.0 basic ones and
XQuery 1.0 ones, available in both the XSLT debugger and the XQuery one,

• Saxon 9.3.0.5 EE (Enterprise Edition) - a schema aware processor, capable of running XSLT 1.0 transformations,
XSLT 2.0 basic ones, XSLT 2.0 schema aware ones and XQuery 1.0 ones, available in both the XSLT debugger and
the XQuery debugger,

• Saxon 6.5.5 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger,
• Xalan 2.7.1 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger.

Debugging XSLT Stylesheets and XQuery Documents | 242

Chapter

10

Profiling XSLT Stylesheets and XQuery Documents

This chapter explains the user interface and how to use the profiler for finding
performance problems in XSLT transformations and XQuery ones.

Topics:

• Overview
• Viewing Profiling Information
• Working with XSLT/XQuery

Profiler

Overview
Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery transformation
to not meet customer expectations or you are trying to proactively identify issues prior to deploying your XSLT/XQuery
transformation, using the XSLT/XQuery profiler feature is essential to helping you save time and ultimately ensure a
better performing, more scalable XSLT/XQuery transformation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processors that could be used for debugging
and it is available from the debugging perspective.

Enabling and disabling the profiler is controlled by the Profiler button from the debugger control toolbar. The
XSLT/XQuery profiler is off by default. This option is not available during a debugger session so you should set it
before starting the transformation.

Viewing Profiling Information
This section explains the views that display the profiling data collected by the profiles during the transformation.

Invocation Tree View

This view shows a top-down call tree representing how XSLT instructions or XQuery expressions are processed.

Figure 158: Invocation tree view

The entries in the invocation tree have different meanings which are indicated by the displayed icons:

• - Points to a call whose inherent time is insignificant compared to its call tree time.
• - Points to a call whose inherent time is significant compared to its call tree time (greater than 1/3rd of its call

tree time).

Every entry in the invocation tree has textual information attached which depends on the XSLT/XQuery profiler settings
:

• A percentage number of total time which is calculated with respect to either the root of the tree or the calling
instruction.

• A total time measurement in milliseconds or microseconds. This is the total execution time that includes calls into
other instructions.

• A percentage number of inherent time which is calculated with respect to either the root of the tree or the calling
instruction.

• An inherent time measurement in milliseconds or microseconds. This is the inherent execution time of the instruction.
• An invocation count which shows how often the instruction has been invoked on this path.
• An instruction name which contains also the attributes description.

Hotspots View

This view shows a list of all instruction calls which lie above the threshold defined in the XSLT/XQuery profiler settings
.

Profiling XSLT Stylesheets and XQuery Documents | 244

Figure 159: Hotspots View

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calculated and shown.

Every hotspot is described by the values from the following columns:

• The instruction name.
• The inherent time in milliseconds or microseconds of how much time has been spent in the hotspot together with a

bar whose length is proportional to this value. All calls into this instruction are summed up regardless of the particular
call sequence.

• The invocation count of the hotspot.

If you click on the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it which depends on the XSLT/XQuery profiler
settings:

• A percentage number which is calculated with respect either to the total time or the called instruction.
• A time measured in milliseconds or microseconds of how much time has been contributed to the parent hotspot on

this path.
• An invocation count which shows how often the hotspot has been invoked on this path.

Note: This is not the number of invocations of this instruction.

• An instruction name which contains also its attributes.

Working with XSLT/XQuery Profiler
Profiling activity is linked with debugging activity, so the first step in order to profile is to switch to debugging perspective
and follow the corresponding procedure for debugging (see Working with XSLT Debugger).

Immediately after turning the profiler on two new information views are added to the current debugger information
views:

• Invocation tree view on left side
• Hotspots view on right side

Profiling data is available only after the transformation ends successfully.

Looking to the right side (Hotspots view), you can immediately spot the time the processor spent in each instruction.
As an instruction usually calls other instructions the used time of the called instruction is extracted from the duration
time of the caller (the hotspot only presents the inherent time of the instruction).

Looking to the left side (Invocation tree view), you can examine how style instructions are processed. This result view
is also named call-tree, as it represents the order of style processing. The profiling result shows the duration time for
each of the style-instruction including the time needed for its called children.

Profiling XSLT Stylesheets and XQuery Documents | 245

Figure 160: Source backmapping

In any of the above views you can use the backmapping feature in order to find the XSLT stylesheet or XQuery expression
definition. Clicking on the selected item cause Oxygen XML Developer plugin to highlight the XSLT stylesheet or
XQuery expression source line where the instruction is defined.

When navigating through the trees by opening instruction calls, Oxygen XML Developer plugin automatically expands
instructions which are only called by one other instruction themselves.

The profiling data can be saved into XML and HTML format. On any view you should right click , use the pop-up menu
and select the corresponding choice. Basically saving HTML means saving XML and applying an XSLT stylesheet to
render the report as XML. These stylesheets are included in the Oxygen XML Developer plugin distribution (see the
subfolder frameworks/profiler/ of the Oxygen XML Developer plugin installation folder) so you can make
your own report based on the profiling raw data.

If you like to change the XSLT/XQuery profiler settings you should right click on view, use the pop-up menu and choose
the corresponding View settings entry.

Caution: Profiling exhaustive transformation may run into an OutOfMemory error due to the large amount of
information being collected. If this is the case you can close unused projects when running the profiling or use
high values for Java VM options -Xms and -Xmx. If this does not help you can shorten your source xml file and
try again.

Profiling XSLT Stylesheets and XQuery Documents | 246

Chapter

11

Working with Archives

Oxygen XML Developer plugin offers the means to manipulate files directly
from ZIP type archives. By manipulation one should understand opening and

Topics:

• Browsing and Modifying Archive
Structure

saving files directly in archives, browsing and modifying archive structures.
The archive support is available for all ZIP-type archives, which includes:

• Working with EPUB • ZIP archives
• Editing Files From Archives • EPUB books

• JAR archives
• Office Open XML (OOXML) files
• Open Document Format (ODF) files
• IDML files

This means that you can modify, transform, validate files directly from OOXML
or ODF packages. The structure and content of an EPUB book, OOXML file
or ODF file can be opened, edited and saved as for any other ZIP archive.

You can transform, validate and perform many other operations on files directly
from an archive. When selecting an URL for a specific operation like
transformation or validation you can click the Browse for archived file
button to navigate and choose the file from a certain archive.

Browsing and Modifying Archive Structure
You can navigate archives in the Archives Browser either by opening them from the Navigator or by using the integration
with the Eclipse File System. For the EFS (Eclipse File System) integration you must right click the archive in the
Navigator and choose Expand Zip Archive. All the standard Eclipse Navigator actions are available on the mounted
archive. If you decide to close the archive you can use the Collapse ZIP Archive action located in the contextual menu
for the expanded archive. Any file opened from the archive expanded in the EFS will be closed when the archive in
unmounted.

Attention: The ZIP support needs the IBM437 character set to be properly installed in the Java Runtime
Environment in order to be able to navigate / open ZIP archives. If you encounter an error message when
expanding a ZIP archive about the JVM that is missing a charset then the JVM used to run Eclipse does not
have the character set library properly installed.

If you open an archive as an Eclipse editor, the archive will be unmounted when the editor is closed.

Important: If a file is not recognized by Oxygen XML Developer plugin as a supported archive type, you
can add it from the Archive preferences page.

The following operations are available on the Archive Browser toolbar:

• New folder... - Creates a folder as child of the selected folder in the browsed archive.
• New file... - Creates a file as child of the selected folder in the browsed archive.
• Add files... - Adds existing files as children of the selected folder in the browsed archive.

Note:

You can also add files in the archive by dragging them from the file browser or Project view and dropping
them in the Archive Browser view.

• Delete - Deletes the selected resource in the browsed archive.
• Archive Options... - Opens the Archive preferences page.

The following additional operations are available from the Archive Browser contextual menu:

• Open - Opens a resource from the archive in the editor.
• New folder... - Creates a folder as child of the selected folder in the browsed archive.
• New file... - Creates a file as child of the selected folder in the browsed archive.
• Add files... - Adds existing files as children of the selected folder in the browsed archive.

Note: On Mac OS X, there is also available the Add file... action, which allows you to add one file at a
time.

•
Find/Replace in Files - Allows you to search for and replace specific pieces of text inside the archive.

• Cut - Cut the selected archive resource
• Copy - Copy the selected archive resource
• Paste - Paste a file or folder into the archive

Note: You can add files in the archive by copying the files from the Project view and paste them into the
Archive view.

• Delete - Remove a file or folder from archive
• Copy location - Copies the URL location of the selected resource.
• Refresh - Refreshes the selected resource.
• Properties - Views properties for the selected resource.

Working with Archives | 248

Working with EPUB
EPUB is a free and open electronic book standard by the International Digital Publishing Forum (IDPF). It was designed
for reflowable content, meaning that the text display can be optimized for the particular display device used by the reader
of the EPUB-formatted book.

Oxygen XML Developer plugin opens EPUB files in the Archive Browser view, exposing all their internal bits and
pieces:

• document content (XHTML and image files);
• packaging files;
• container files.

Figure 161: EPUB file displayed in the Archive Browser view

Here you can edit, delete and add files that compose the EPUB structure. To check that the EPUB file you are currently
working is valid, invoke the Validate and Check for Completeness action. To perform the operation, Oxygen
XML Developer plugin uses the open-source EpubCheck validator which detects many types of errors, including OCF
container structure, OPF and OPS mark-up, as well as internal reference consistency. All errors found during validation
are displayed in a separate tab in the Errors view.

Note: Invoke the Open in System Application action to see how the EPUB is rendered in your system
default EPUB reader application.

Create an EPUB

To begin writing an EPUB file from scratch, do the following:

1.
Select File > New (Ctrl+N) or press the New toolbar button.

Working with Archives | 249

2. Choose EPUB Book template. Click Create. Choose the name and location of the file. Click Save.
A skeleton EPUB file is saved on disk and open in the Archive Browser view.

3. Use the Archive Browser view specific actions to edit, add and remove resources from the archive.

4. Use the Validate and Check for Completeness action to verify the integrity of the EPUB archive.

Publish to EPUB

Oxygen XML Developer plugin comes with built-in support for publishing Docbook and DITA XML documents directly
to EPUB.

1. Open the Configure Transformation Scenario dialog and choose a predefined transformation scenario.

2. Start the transformation scenario.

Editing Files From Archives
You can open and edit files directly from an archive using the Archive Browser view. When saving the file back to
archive, you are prompted to choose if you want the application to make a backup copy of the archive before saving the
new content. If you choose Never ask me again, you will not be asked again to make backup copies. You can re-enable
the dialog pop-up from the Archive preferences page.

Working with Archives | 250

Chapter

12

Working with Databases

XML is a storage and interchange format for structured data and it is supported
by all major database systems. Oxygen XML Developer plugin offers the

Topics:

• Relational Database Support means of managing the interaction with some of the widely used databases, both
• Native XML Database (NXD)

Support
relational ones and Native XML Databases. By interaction, one should
understand browsing, querying, SQL execution support, content editing,
importing from databases, generating XML Schema from database structure.• XQuery and Databases

• WebDAV Connection

Relational Database Support
Relational databases use a relational model and are based on tables linked by a common key. Oxygen XML Developer
plugin offers support for the following relational databases: IBM DB2, JDBC-ODBC Bridge, MySQL, Microsoft SQL
Server, Oracle 11g:

• browsing the tables of these types of database in the Data Source Explorer view
• executing SQL queries against them
• calling stored procedures with input and output parameters

Configuring Database Data Sources

This section describes the procedures for configuring the data sources for relational databases.

How to Configure an IBM DB2 Data Source

The steps for configuring a data source for connecting to an IBM DB2 server are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Figure 162: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select DB2 in the driver type combo box.

5. Add the driver files for IBM DB2 using the Add button.

The IBM DB2 driver files are:

• db2jcc.jar

Working with Databases | 252

• db2jcc_license_cisuz.jar
• db2jcc_license_cu.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing IBM DB2 databases in Oxygen XML Developer plugin .

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure a Microsoft SQL Server Data Source

The steps for configuring a data source for connecting to a Microsoft SQL server are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Figure 163: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select SQLServer in the driver type combo box.

5. Add the Microsoft SQL Server driver file using the Add button.

The SQL Server driver file is called sqljdbc.jar. In the Download links for database drivers section there are
listed the URLs from where to download the drivers necessary for accessing Microsoft SQL Server databases in
Oxygen XML Developer plugin .

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

Working with Databases | 253

How to Configure a Generic JDBC Data Source

Oxygen XML Developer plugin 's default configuration already contains a generic JDBC data source called JDBC-ODBC
Bridge. Oxygen XML Developer plugin can display and edit XML data stored in PostgreSQL and Microsoft SQL
Server databases accessible through a JDBC 4 driver. To do this, configure a Generic JDBC data source that uses a
JDBC 4 driver. The following procedure shows you how to configure a generic JDBC data source:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

The following dialog is displayed:

Figure 164: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select Generic JDBC in the driver type combo box.

5. Add the driver file(s) using the Add button.

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure a MySQL Data Source

Previous versions of Oxygen XML Developer plugin (up to version 11.2) included a built-in type of data sources called
MySQL and based on the JDBC driver for the MySQL 4 server. That type of data source is still available but is marked
outdated because it does not support more recent versions of the MySQL server (starting from version 5.0) and it will
be removed in a future version of Oxygen XML Developer plugin .For connecting to a MySQL server you should create
a new data source of type Generic JDBC based on the MySQL JDBC driver available from the MySQL website. The
steps for configuring such a data source are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

Working with Databases | 254

http://www.mysql.com/downloads/connector/j/

The dialog for configuring a data source will be opened.

Figure 165: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select Generic JDBC in the driver type combo box.

5. Add the MySQL 5 driver files using the Add button.

The driver file for the MySQL server is called mysql-com.jar. In the Download links for database drivers section
there are listed the URLs from where to download the drivers necessary for accessing MySQL databases in Oxygen
XML Developer plugin .

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure an Oracle 11g Data Source

The steps for configuring a data source for connecting to an Oracle 11g server are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Working with Databases | 255

Figure 166: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

4. Select Oracle in the driver type combo box.

5. Add the Oracle driver file using the Add button.

The Oracle driver file is called ojdbc5.jar. In the Download links for database drivers section there are listed
the URLs from where to download the drivers necessary for accessing Oracle databases in Oxygen XML Developer
plugin .

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

How to Configure a PostgreSQL 8.3 Data Source

The steps for configuring a data source for connecting to a PostgreSQL server are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

The dialog for configuring a data source will be opened.

Working with Databases | 256

Figure 167: Data Source Drivers Configuration Dialog

Figure 168: Data Source Drivers Configuration Dialog

3. Enter a unique name for the data source.

Working with Databases | 257

4. Select PostgreSQL in the driver type combo box.

5. Add the PostgreSQL driver file using the Add button.

The PostgreSQL driver file is called postgresql-8.3-603.jdbc3.jar. In the Download links for database
drivers section there are listed the URLs from where to download the drivers necessary for accessing PostgreSQL
databases in Oxygen XML Developer plugin .

6. Select the most suited Driver class.

7. Click the OK button to finish the data source configuration.

Configuring Database Connections

This section describes the procedures for configuring the connections for relational databases:

How to Configure an IBM DB2 Connection

Available in the Enterprise edition only.

The steps for configuring a connection to an IBM DB2 server are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Figure 169:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select an IBM DB2 data sources in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL to the installed IBM DB2 engine.
b) Fill-in the user name to access the IBM DB2 engine.
c) Fill-in the password to access the IBM DB2 engine.

6. Click the OK button to finish the configuration of the database connection.

Working with Databases | 258

How to Configure a JDBC-ODBC Connection

The steps for configuring a connection to an ODBC data source are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Figure 170:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select JDBC-ODBC bridge in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the ODBC source.
b) Fill-in the user name of the ODBC source.
c) Fill-in the password of the ODBC source.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a Microsoft SQL Server Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a Microsoft SQL Server server are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Working with Databases | 259

Figure 171:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select a SQL Server data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the SQL Server server.

If you want to connect to the server using Windows integrated authentication you must add
;integratedSecurity=true to the and of the URL, so the URL will look like:

jdbc:sqlserver://localhost:1433;databaseName=test;integratedSecurity=true

b) Fill-in the user name for the connection to the SQL Server.
c) Fill-in the password for the connection to the SQL Server.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a MySQL Connection

The steps for configuring a connection to a MySQL server are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Working with Databases | 260

Figure 172:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select a MySQL data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the MySQL server.
b) Fill-in the user name for the connection to the MySQL server.
c) Fill-in the password for the connection to the MySQL server.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a Generic JDBC Connection

The steps for configuring a connection to a generic JDBC database are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

3. Enter a unique name for the connection.

4. Select a generic JDBC data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the generic JDBC database, with the following
format:jdbc: <subprotocol>: <subname>.

b) Fill-in the user name for the connection to the generic JDBC database.
c) Fill-in the password for the connection to the generic JDBC database.

6. Click the OK button to finish the configuration of the database connection.

How to Configure an Oracle 11g Connection

Available in the Enterprise edition only.

The steps for configuring a connection to an Oracle 11g server are the following:

Working with Databases | 261

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Figure 173:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select an Oracle 11g data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the Oracle server.
b) Fill-in the user name for the connection to the Oracle server.
c) Fill-in the password for the connection to the Oracle server.

6. Click the OK button to finish the configuration of the database connection.

How to Configure a PostgreSQL 8.3 Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a PostgreSQL 8.3 server are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

The dialog for configuring a database connection will be displayed.

Working with Databases | 262

Figure 174:The Connection Configuration Dialog

3. Enter a unique name for the connection.

4. Select a PostgreSQL 8.3 data source in the Data Source combo box.

5. Fill-in the connection details.

a) Fill-in the URL of the PostgreSQL 8.3 server.
b) Fill-in the user name for the connection to the PostgreSQL 8.3 server.
c) Fill-in the password for the connection to the PostgreSQL 8.3 server.

6. Click the OK button to finish the configuration of the database connection.

Resource Management

This section explains the resource management actions for relational databases.

Data Source Explorer View

This view presents in a tree-like fashion the database connections configured from menu Options > Preferences > Data
Sources. You can connect to a database simply by expanding the connection node. The database structure can be
expanded up to column level. Oxygen XML Developer plugin supports multiple simultaneous database connections
and the connections tree provides an easy way to browse them.

Working with Databases | 263

Figure 175: Data Source Explorer View

The following objects are displayed by the Data Source Explorer view:

• Connection
• Catalog (Collection)
• XML Schema Repository
• XML Schema Component
• Schema
• Table
• System Table
• Table Column

A collection (called catalog in some databases) is a hierarchical container for resources and further
sub-collections. There are two types of resources:

• XML resource - an XML document or a document fragment, selected by a previously executed XPath query.
• non XML resource

Note: For some connections you can add or move resources into container by dragging them from Project
view, the default file system application (Windows Explorer on Windows or Finder on Mac OS X, for example)
or from another database container.

The following actions are available in the view's toolbar:

• The Filters button opens the Data Sources / Table Filters Preferences page, allowing you to decide which
table types will be displayed in the Data Source Explorer view.

• The Configure Database Sources button opens the Data Sources preferences page where you can configure
both data sources and connections.

Working with Databases | 264

Actions Available at Connection Level in Data Source Explorer View

The contextual menu of a Connection node of the tree from the Data Source Explorer view contains the following
actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection. If a table is already open, you are warned to close it before

proceeding.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.

Actions Available at Catalog Level in Data Source Explorer View

The contextual menu of a Catalog node of the tree from the Data Source Explorer view contains the following
actions:

• Refresh - Performs a refresh of the selected node's subtree.

Actions Available at Schema Level in Data Source Explorer View

The contextual menu of a Schema node of the tree from the Data Source Explorer view contains the following
actions:

• Refresh - Performs a refresh of the selected node's subtree.

Actions Available at Table Level in Data Source Explorer View

The contextual menu of a Table node of the tree from the Data Source Explorer view contains the following
actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Edit - Opens the selected table in the Table Explorer view.
• Export to XML - Opens the Export Criteria dialog (a thorough description of this dialog can be found in the

Import from Database chapter) .

XML Schema Repository Level

This section explains the actions available at XML Schema Repository level.

Oracle's XML Schema Repository Level

The Oracle database supports XML schema repository (XSR) in the database catalogs. The contextual menu of a
XML Schema Repository node of the tree from the Data Source Explorer view contains the following actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Register - Opens a dialog for adding a new schema file in the XML repository. To add an XML Schema, enter the

schema URI and location on your file system. Local scope means that the schema will be visible only to the user
who registers it. Global scope means that the schema is public.

Note: Registering a schema may involve dropping/creating types. Hence you need type-related privileges
such as DROP TYPE, CREATE TYPE, and ALTER TYPE. You need privileges to delete and register the
XML schemas involved in the registering process. You need all privileges on XMLType tables that conform
to the registered schemas. For XMLType columns, the ALTER TABLE privilege is needed on corresponding
tables. If there are schema-based XMLType tables or columns in other database schemas, you need privileges
such as the following:

• CREATE ANY TABLE
• CREATE ANY INDEX

• SELECT ANY TABLE

• UPDATE ANY TABLE

Working with Databases | 265

• INSERT ANY TABLE

• DELETE ANY TABLE

• DROP ANY TABLE

• ALTER ANY TABLE

• DROP ANY INDEX

To avoid having to grant all these privileges to the schema owner, Oracle recommends that the registration
be performed by a DBA if there are XML schema-based XMLType table or columns in other users' database
schemas.

IBM DB2's XML Schema Repository Level

The contextual menu of a XML Schema Repository node of the tree from the Data Source Explorer view
contains the following actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Register - Opens a dialog for adding a new schema file in the XML Schema repository. In this dialog the following

fields can be set:

• XML schema file - Location on your file system.
• XSR name - Schema name.
• Comment - Short comment (optional).
• Schema location - Primary schema name (optional).

Decomposition means that parts of the XML documents are stored into relational tables. Which parts map to which
tables and columns is specified into the schema annotations.

Schema dependencies management is done by using the Add and Remove buttons.

The actions available at Schema level are the following:

• Refresh - Performs a refresh of the selected node (and it's subtree).
• Unregister - Removes the selected schema from the XML Schema Repository.
• View - Opens the selected schema in Oxygen XML Developer plugin .

Microsoft SQL Server's XML Schema Repository Level

The contextual menu of a XML Schema Repository node of the tree from the Data Source Explorer view
contains the following actions:

• Refresh - Performs a refresh of the selected node's subtree.
• Register - Opens a dialog for adding a new schema file in the DB XML repository. In this dialog you enter a collection

name and the necessary schema files. XML Schema files management is done by using the Add and Remove buttons.

The actions available at Schema level are the following:

• Refresh - Performs a refresh of the selected node (and it's subtree).
• Add - Adds a new schema to the XML Schema files.
• Unregister - Removes the selected schema from the XML Schema Repository.
• View - Opens the selected schema in Oxygen XML Developer plugin .

Table Explorer View

Every table from the Data Source Explorer view can be displayed and edited in the Table Explorer view by pressing
the Edit button from the contextual menu or by double-clicking one of its fields. To modify a cell's content, double click

Working with Databases | 266

it and start typing. When editing is finished, Oxygen XML Developer plugin will try to update the database with the
new cell content.

Figure 176:The Table Explorer View

You can sort the content of a table by one of its columns by clicking on its column header.

Note the following:

• The first column is an index (does not belong to the table structure).
• Every column header contains the field name and its data type.
• The primary key columns are marked with this symbol: .
• Multiple tables are presented in a tabbed manner

For performance issues, you can set the maximum number of cells that will be displayed in the Table Explorer view (
the Limit the number of cells field from the Data Sources Preferences page). If a table having more cells than the value
set in Oxygen XML Developer plugin 's options is displayed in the Table Explorer view, a warning dialog will inform
you that the table is only partially shown.

You will be notified if the value you have entered in a cell is not valid (and thus it cannot be updated).

• If the content of the edited cell does not belong to the data type of the column, an Information dialog will appear,
notifying you that the value you have inserted cannot be converted to the SQL type of that field. For example, in the
above figure propID contains LONG values. If a character or string was inserted, you would get the error message
that a String value cannot be converted to the requested SQL type (NUMBER).

• If the constraints of the database are not met (like primary key constraints for example), an Information dialog will
appear, notifying you of the reason the database has not been updated. For example, if you'd try to set the primary
key propID for the second record in the table to 10 also, you would get the following message:

Working with Databases | 267

Figure 177: Duplicate entry for primary key

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the popup menu of the edited cell.

The contextual menu available on every cell has the following actions:

• Set NULL - Sets the content of the cell to (null). This action is disabled for columns that cannot be null.
• Insert row - Inserts an empty row in the table.
• Duplicate row - Makes a copy of the selected row and adds it in the Table Explorer view. You should note

that the new row will not be inserted in the database table until all conflicts are solved.
• Commit row - Commits the selected row.
• Delete row - Deletes the selected row.
• Copy - Copies the content of the cell.
• Paste - Performs paste in the selected cell.

Some of the above actions are also available on the Table Explorer toolbar:

• Export to XML - Opens the Export Criteria dialog (a thorough description of this dialog can be found in the
Import from database chapter) .

• Refresh - Performs a refresh of the selected node's subtree.
• Insert row - Inserts an empty row in the table.
• Duplicate row - Makes a copy of the selected row and adds it in the Table Explorer view. You should note

that the new row will not be inserted in the database table until all conflicts are solved.
• Commit row - Commits the selected row.
• Delete row - Deletes the selected row.

SQL Execution Support

Oxygen XML Developer plugin 's support for writing SQL statements includes syntax highlight, folding and drag&drop
(DND) from the Data Source Explorer view. It also includes transformation scenarios for executing the statements
and the results are displayed in the Table Explorer view.

Drag and Drop from Data Source Explorer View

Drag and drop(DND) from the Data Source Explorer view to the SQL editor allows creating SQL statements quickly
by inserting the names of tables and columns in the SQL statements.

1. Configure a database connection (see the procedure specific for your database server).

2. Browse to the table you will use in your statement.

Working with Databases | 268

3. Drag the table or a column of the table into the editor where a SQL file is open.

DND is available both on the table and on its fields. A popup menu is displayed in the SQL editor.

Figure 178: SQL statement editing with DND

4. Select the type of statement from the popup menu.

If you dragged a table depending on your choice, one of the following statements are inserted into the document:

• SELECT `field1`,`field2`, FROM `catalog`. `table` (for this example: SELECT
`DEPT`,`DEPTNAME`,`LOCATION` FROM `test`.`department`)

• UPDATE ̀ catalog`. ̀ table` SET ̀ field1`=, ̀ field2`=,.... (for this example: UPDATE `test`.`department`
SET `DEPT`=, `DEPTNAME`=, `LOCATION`=)

• INSERT INTO`catalog`. `table` (`field1`,`field2`,) VALUES (, ,) (for this example: INSERT INTO
`test`.`department` (`DEPT`,`DEPTNAME`,`LOCATION`) VALUES (, ,))

• DELETE FROM `catalog`. `table` (for this example: DELETE FROM `test`.`department`)

If you dragged a column depending on your choice, one of the following statements are inserted into the document:

• SELECT `field` FROM `catalog`. `table` (for this example: SELECT `DEPT` FROM
`test`.`department`)

• UPDATE `catalog`. `table` SET `field`= (for this example: UPDATE `test`.`department` SET
`DEPT`=)

• INSERT INTO`catalog`. `table` (`field1) VALUES () (for this example: INSERT INTO
`test`.`department` (`DEPT`) VALUES ())

• DELETE FROM `catalog`. `table` (for this example: DELETE FROM `test`.`department` WHERE
`DEPT`=)

Working with Databases | 269

SQL Validation

Currently, SQL validation support is offered for IBM DB2. Please note that if you choose a connection that doesn't
support SQL validation you will receive a warning when trying to validate. The SQL document will be validated using
the connection from the associated transformation scenario.

Executing SQL Statements

The steps for executing an SQL statement on a relational database are the following:

1. Configure a transformation scenario from the Configure Transformation Scenario button from the
Transformation toolbar.

A SQL transformation scenario needs a database connection. You can configure a connection from the
Preferences button from the scenario dialog.

The dialog that appears contains the list of existing scenarios that apply to SQL documents.

2. Set parameter values for SQL placeholders from the Parameters button from the scenario dialog.
For example in SELECT * FROM `test`.`department` where DEPT = ? or DEPTNAME = ? two
parameters can be configured for the place holders (?) in the transformation scenario.

When the SQL statement will be executed, the first placeholder will be replaced with the value set for the first
parameter in the scenario, the second placeholder will be replaced by the second parameter value and so on.

Restriction: When a stored procedure is called in an SQL statement executed on an SQL Server database
mixing in-line parameter values with values specified using the Parameters button of the scenario dialog
is not recommended. It is due to a limitation of the SQL Server driver for Java applications. An example of
stored procedure call that is not recommended is: call dbo.Test(22, ?).

3. Execute the SQL scenario from the Transform now button of the scenario dialog.

The result of a SQL transformation will be displayed in a view at the bottom of the Oxygen XML Developer plugin
window.

4. View more complex return values of the SQL transformation in a separate editor panel.

A more complex value returned by the SQL query (for example an XMLTYPE value or a CLOB one) cannot be
displayed entirely in the result table.

a) Right click on the cell containing the complex value.
b) Select the action Copy cell from the popup menu.

The action will copy the value in the clipboard.
c) Paste the value where you need it.

For example you can paste the value in an opened XQuery editor panel of Oxygen XML Developer plugin .

Native XML Database (NXD) Support
Native XML databases have an XML-based internal model and their fundamental unit of storage is XML. Oxygen
XML Developer plugin offers support for the following native XML databases:

• Berkeley DB XML
• eXist
• MarkLogic
• Software AG Tamino
• Raining Data TigerLogic
• Documentum xDb (X-Hive/DB) 10
• Oracle XML DB

Working with Databases | 270

Configuring Database Data Sources

This section describes the procedures for configuring the data sources for native databases.

How to Configure a Berkeley DB XML Data Source

The latest instructions on how to configure Berkeley DB XML support in Oxygen XML Developer plugin can be found
on our website.

Oxygen XML Developer plugin supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. The following
directory definitions shall apply:

• OXY_DIR - Oxygen XML Developer plugin installation root directory. (for example on Windows C:\Program
Files\Oxygen 13.2.0)

• DBXML_DIR - Berkeley DB XML database root directory. (for example on Windows C:\Program
Files\Oracle\Berkeley DB XML <version>)

• DBXML_LIBRARY_DIR (usually on Mac and Unix is DBXML_DIR / lib and on Windows is DBXML_DIR
/ bin)

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select Berkeley DBXML from the Driver type combo box.

5. Press the Add button to add the Berkeley DB driver files.

The driver files for the Berkeley DB database are the following:

• db.jar (check for it into DBXML_DIR / lib or DBXML_DIR / jar)
• dbxml.jar (check for it into DBXML_DIR / lib or DBXML_DIR / jar)

6. Click the OK button to finish the data source configuration.

How to Configure an eXist Data Source

The latest instructions on how to configure eXist support in Oxygen XML Developer plugin can be found on our
website.

Oxygen XML Developer plugin supports eXist database server versions 1.3, 1.4 and 1.5.

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select eXist from the Driver type combo box.

5. Press the Add button to add the eXist driver files.

The following driver files should be added in the dialog box for setting up the eXist datasource. They are found in
the installation directory of the eXist database server. Please make sure you copy the files from the installation of
the eXist server where you want to connect from Oxygen.

• exist.jar

• lib/core/xmldb.jar

• lib/core/xmlrpc-client-3.1.1.jar

• lib/core/xmlrpc-common-3.1.1.jar

• lib/core/ws-commons-util-1.0.2.jar

Note: For eXist database server version 1.5, the following driver files must also be added in the dialog box
for setting up the datasource:

• lib/core/slf4j-api-1.x.x.jar
• lib/core/slf4j-log4j12-1.x.x.jar

Working with Databases | 271

http://www.oxygenxml.com/doc/ug-oxygenEclipse/tasks/configure-berkeley-datasource.html
http://www.oxygenxml.com/doc/ug-oxygenEclipse/tasks/configure-exist-datasource.html

• lib/core/slf4j-simple-1.x.x.jar

The version number from the driver file names may be different for your eXist server installation.

6. Click the OK button to finish the data source configuration.

How to Configure a MarkLogic Data Source

The latest instructions on how to configure MarkLogic support in Oxygen XML Developer plugin can be found on
our website.

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select MarkLogic from the Driver type combo box.

5. Press the Add button to add the MarkLogic driver files.

The driver files for the MarkLogic database are:

• xcc.jar

• xdbc.jar

• xdmp.jar

In the Download links for database drivers section there are listed the URLs from where to download the drivers
necessary for accessing MarkLogic databases in Oxygen XML Developer plugin .

6. Click the OK button to finish the data source configuration.

How to Configure a Software AG Tamino Data Source

Note: Support for Tamino database will be discontinued starting with version 14.

The latest instructions on how to configure Software AG Tamino support in Oxygen XML Developer plugin can be
found on our website .

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select Tamino from the Driver type combo box.

5. Press the Add button to add the Tamino driver files.

The driver files for the Tamino database are the following:

• TaminoAPI4J.jar

• TaminoAPI4J-l10n.jar

• TaminoJCA.jar

Note: You must use the jar files from the version 4.4.1 of the Tamino database.

6. Click the OK button to finish the data source configuration.

How to Configure a Raining Data TigerLogic Data Source

Note: Support for TigerLogic database will be discontinued starting with version 14.

The latest instructions on how to configure TigerLogic support in Oxygen XML Developer plugin can be found on
our website .

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

Working with Databases | 272

http://www.oxygenxml.com/doc/ug-oxygenEclipse/tasks/configure-marklogic-datasource.html
http://www.oxygenxml.com/doc/ug-oxygenEclipse/tasks/configure-tamino-datasource.html
http://www.oxygenxml.com/doc/ug-oxygenEclipse/tasks/configure-tigerlogic-datasource.html

3. Enter a unique name for the data source.

4. Select TigerLogic from the Driver type combo box.

5. Press the Add button to add the TigerLogic driver files.

The driver files for the TigerLogic database are found in the TigerLogic JDK lib directory from the server side:

• connector.jar

• jca-connector.jar

• tlapi.jar

• tlerror.jar

• utility.jar

• xmlparser.jar

• xmltypes.jar

6. Click the OK button to finish the data source configuration.

How to Configure a Documentum xDb (X-Hive/DB) 10 Data Source

The latest instructions on how to configure support for Documentum xDb (X-Hive/DB) 10 versions 8 and 9 in Oxygen
XML Developer plugin can be found on our website.

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Data Sources panel.

3. Enter a unique name for the data source.

4. Select XHive from the Driver type combo box.

5. Press the Add button to add the XHive driver files.

The driver files for the Documentum xDb (X-Hive/DB) 10 database are found in the Documentum xDb (X-Hive/DB)
10 lib directory from the server installation folder:

• antlr-runtime.jar

• aspectjrt.jar

• icu4j.jar

• xhive.jar

• google-collect.jar

6. Click the OK button to finish the data source configuration.

Configuring Database Connections

This section describes the procedures for configuring the connections for native databases.

How to Configure a Berkeley DB XML Connection

Oxygen XML Developer plugin supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. The steps for
configuring a connection to a Berkeley DB XML database are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the path to the Berkeley DB XML home directory in the Environment home directory field.
b) Select the Verbosity level: DEBUG, INFO, WARNING or ERROR.
c) Optionally, you can select the checkbox Join existing environment.

Working with Databases | 273

http://www.oxygenxml.com/doc/ug-oxygenEclipse/tasks/configure-xhive-datasource.html

If checked, an attempt will be made to join an existing environment in the specified home directory and all the
original environment settings will be preserved. If that fails, you should consider reconfiguring the connection
with this option unchecked.

6. Click the OK button to finish the connection configuration.

How to Configure an eXist Connection

The steps for configuring a connection to an eXist database are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the URI to the installed eXist engine in the XML DB URI field.
b) Set the user name in the User field.
c) Set the password in the Password field.
d) Enter the start collection in the Collection field.

eXist organizes all documents in hierarchical collections. Collections are like directories. They are used to group
related documents together. This text field allows the user to set the default collection name.

6. Click the OK button to finish the connection configuration.

How to Configure a MarkLogic Connection

Available in the Enterprise edition only.

The steps for configuring a connection to a MarkLogic database are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) The host name or IP address of the installed MarkLogic engine in the XDBC Host field.

Oxygen XML Developer plugin uses XCC connector to interact with MarkLogic XDBC server and requires the
basic authentication schema to be set. Starting with version MarkLogic 4.0 the default authentication method
when you create a HTTP or WebDAV Server is digest, so make sure to change it to basic.

b) Set the port number of the MarkLogic engine the Port field.
c) Set the user name to access the MarkLogic engine in the User field.
d) Set the password to access the MarkLogic engine in the Password field.
e) Optionally set the URL used for browsing the MarkLogic database in the Data Source Explorer view in the

WebDAV URL field.

6. Click the OK button to finish the connection configuration.

How to Configure a Software AG Tamino Connection

Available in the Enterprise edition only.

Note: Support for Tamino database will be discontinued starting with version 14.

The steps for configuring a connection to a Tamino database are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Connections panel.

Working with Databases | 274

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the URI to the installed Tamino engine in the XML DB URI field.
b) Set the user name to access the Tamino engine in the User field.
c) Set the password to access the Tamino engine in the Password field.
d) Set the name of the database to access from the Tamino engine in the Database field.
e) Check the checkbox Show system collections if you want to see the Tamino system collections in the Data

Source Explorer view.

6. Click the OK button to finish the connection configuration.

How to Configure a Raining Data TigerLogic Connection

Available in the Enterprise edition only.

Note: Support for TigerLogic database will be discontinued starting with version 14.

The steps for configuring a connection to a TigerLogic database are the following:

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the host name or IP address of the TigerLogic engine in the Host field.
b) Set the port number of the TigerLogic engine in the Port field.
c) Set the user name to access the TigerLogic engine in the User field.
d) Set the password to access the TigerLogic engine in the Password field.
e) Set the name of the database to access from the TigerLogic database engine in the Database field.

6. Click the OK button to finish the connection configuration.

How to Configure an Documentum xDb (X-Hive/DB) 10 Connection

The steps for configuring a connection to a Documentum xDb (X-Hive/DB) 10 database are the following.

Note: The bootstrap type of X-Hive/DB connections is not supported in Oxygen XML Developer plugin . The
following procedure explains the xhive:// protocol connection type.

1. Go to menu Preferences > Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the previously configured data sources from the Data Source combo box.

5. Fill-in the connection details.

a) Set the URL property of the connection in the URL field.

If the property is a URL of the form xhive://host:port, the Documentum xDb (X-Hive/DB) 10 connection will
attempt to connect to a Documentum xDb (X-Hive/DB) 10 server running behind the specified TCP/IP port.

b) Set the user name to access the Documentum xDb (X-Hive/DB) 10 engine in the User field.
c) Set the password to access the Documentum xDb (X-Hive/DB) 10 engine in the Password field.
d) Set the name of the database to access from the Documentum xDb (X-Hive/DB) 10 engine in the Database field.
e) Check the checkbox Run XQuery in read / write session (with committing) if you want to end the session

with a commit, otherwise the session ends with a rollback.

6. Click the OK button to finish the connection configuration.

Working with Databases | 275

Data Source Explorer View

This view presents in a tree-like fashion the database connections configured from menu Options > Preferences > Data
Sources. You can connect to a database simply by expanding the connection node. The database structure can be
expanded up to column level. Oxygen XML Developer plugin supports multiple simultaneous database connections
and the connections tree provides an easy way to browse them.

Figure 179: Data Source Explorer View

The following objects are displayed by the Data Source Explorer view:

• Connection
• Catalog (Collection)
• XML Schema Repository
• XML Schema Component
• Schema
• Table
• System Table
• Table Column

A collection (called catalog in some databases) is a hierarchical container for resources and further
sub-collections. There are two types of resources:

• XML resource - an XML document or a document fragment, selected by a previously executed XPath query.
• non XML resource

Note: For some connections you can add or move resources into container by dragging them from Project
view, the default file system application (Windows Explorer on Windows or Finder on Mac OS X, for example)
or from another database container.

The following actions are available in the view's toolbar:

Working with Databases | 276

• The Filters button opens the Data Sources / Table Filters Preferences page, allowing you to decide which
table types will be displayed in the Data Source Explorer view.

• The Configure Database Sources button opens the Data Sources preferences page where you can configure
both data sources and connections.

Oracle XML DB Browser

Oracle XML DB is a feature of the Oracle database. It provides a high-performance, native XML storage and retrieval
technology. Oxygen XML Developer plugin allows the user to browse the native Oracle XML Repository and perform
various operations on the resources in the repository.

Figure 180: Browsing the Oracle XML DB Repository

The actions available at XML Repository level are the following:

• Refresh - Performs a refresh of the XML Repository.
• Add container - Adds a new child container to the XML Repository
• Add resource - Adds a new resource to the XML Repository.

The actions available at container level are the following:

• Refresh - Performs a refresh of the selected container.
• Add container - Adds a new child container to the current one
• Add resource - Adds a new resource to the folder.
• Delete - Deletes the current container.
• Properties - Shows various properties of the current container.

The actions available at resource level are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Renames the current resource.
• Move - Moves the current resource to a new container (also available through drag and drop).
• Delete - Deletes the current resource.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Properties - Shows various properties of the current resource.

For running XQuery transformation on collections from XML Repository please see a tutorial from Oracle.

PostgreSQL Connection

Oxygen XML Developer plugin allows the user to browse the structure of the PostgreSQL database in the Data Source
Explorer view and open the tables in the Table Explorer view.

Working with Databases | 277

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28369/xdb_xquery.htm#top

Figure 181: Browsing a PostgreSQL repository

The actions available at container level are the following:

• Refresh - Performs a refresh of the selected container.

The actions available at resource level are the following:

• Refresh - Performs a refresh of the selected database table.
• Edit - Opens the selected database table in the Table Explorer view.
• Export to XML ... - Exports the content of the selected database table as an XML file using the dialog from

importing data from a database.

Berkeley DB XML Connection

This section explains the actions that are available on a Berkeley DB XML connection.

Actions Available at Connection Level

In a Berkeley DB XML repository the actions available at connection level in the Data Source Explorer view are the
following:

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.
• Add container - Adds a new container in the repository with the following attributes.

• Name - The name of the new container.
• Container type - At creation time, every container must have a type defined for it. This container type identifies

how XML documents are stored in the container. As such, the container type can only be determined at container

Working with Databases | 278

creation time; you cannot change it on subsequent container opens. Containers can have one of the following
types specified for them:

• Node container - XML documents are stored as individual nodes in the container. That is, each record in the
underlying database contains a single leaf node, its attributes and attribute values if any, and its text nodes,
if any. Berkeley DB XML also keeps the information it needs to reassemble the document from the individual
nodes stored in the underlying databases. This is the default, and preferred, container type.

• Whole document container - The container contains entire documents. The documents are stored without
any manipulation of line breaks or whitespace.

• Allow validation - If checked it causes documents to be validated when they are loaded into the container. The
default behavior is to not validate documents.

• Index nodes - If checked it causes indices for the container to return nodes rather than documents. The default
is to index at the document level. This property has no meaning if the container type is whole document container.

• Properties - Shows a dialog containing a list of the Berkeley connection properties: version, home location, default
container type, compression algorithm, etc.

Actions Available at Container Level

In a Berkeley DB XML repository the actions available at container level in the Data Source Explorer view are the
following:

• Add Resource - Adds a new XML resource to the selected container.
• Rename - Allows you to specify a new name for the selected container.
• Delete - Removes the selected container from the database tree.
• Edit indices - Allows you to edit the indices for the selected container.

Figure 182: Container indices

The fields of the dialog are the following:

Working with Databases | 279

• Granularity:

• Document level granularity is good for retrieving large documents.
• Node level granularity is good for retrieving nodes from within documents.

• Add / Edit indices:

• Node - The node name.
• Namespace - The index namespace
• Index strategy:

• Index type:

• Uniqueness - Indicates whether the indexed value must be unique within the container
• Path type:

• node - Indicates that you want to index a single node in the path
• edge - Indicates that you want to index the portion of the path where two nodes meet

• Node type:

• element - An element node in the document content.
• attribute - An attribute node in the document content.
• metadata - A node found only in a document's metadata content.

• Key type:

• equality - Improves the performances of tests that look for nodes with a specific value
• presence - Improves the performances of tests that look for the existence of a node regardless of

its value
• substring - Improves the performance of tests that look for a node whose value contains a given

substring

• Syntax types - The syntax describes what sort of data the index will contain and is mostly used to determine
how indexed values are compared.

• Refresh - Performs a refresh of the selected node's subtree.
• Properties - Displays a dialog with a list of properties of the Berkeley container like: container type, auto indexing,

page size, validate on load, compression algorithm, number of documents, etc.

Actions Available at Resource Level

In a Berkeley DB XML repository the actions available at resource level in the Data Source Explorer view are the
following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.
• Move - Allows you to move the selected resource in a different container in the database tree (also available through

drag and drop).
• Delete - Removes the selected resource from the container.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.

eXist Connection

This section explains the actions that are available on an eXist connection.

Actions Available at Connection Level

For an eXist database the actions available at connection level in the Data Source Explorer view are the following:

Working with Databases | 280

• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data
sources and connections.

• Disconnect - Closes the current database connection.
• Refresh - Performs a refresh of the selected node's subtree.

Actions Available at Container Level

For an eXist database the actions available at container level in the Data Source Explorer view are the following:

• New File - Creates a file in the selected container
• New Collection - Creates a collection
• Import Folders - Adds recursively the content of specified folders from the local filesystem
• Import Files - Adds a set of XML resources from the local filesystem
• Cut - Cuts the selected containers
• Copy - Copies the selected containers

Note: You can add or move resources into container by dragging them from Project view, the default file
system application (Windows Explorer on Windows or Finder on Mac OS X, for example) or from another
database container.

• Paste - Paste resources into selected container
• Rename - Allows you to change the name of the selected collection
• Delete - Removes the selected collection
• Refresh - Performs a refresh of the selected container
• Properties - Allows the user to view various useful properties associated with the container, like: name, creation

date, owner, group, permissions.

Actions Available at Resource Level

For an eXist database the actions available at resource level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.
• Cut - Cuts the selected resources
• Copy - Copies the selected resources.

Note: You can add or move resources into container by dragging them from Project view, the default file
system application (Windows Explorer on Windows or Finder on Mac OS X, for example) or from another
database container.

• Delete - Removes the selected resource from the collection.
• Copy location - Allows you to copy to clipboard an application-specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Properties - Allows the user to view various useful properties associated with the resource.
• Save As - Allows you to save the name of the selected binary resource as a file on disk.

MarkLogic Connection

The resource management for a MarkLogic database ca be done through WebDAV. For this a WebDAV URL must be
configured in the MarkLogic connection. The actions that can be performed on MarkLogic resources through WebDAV
are the same used for a WebDAV connection (see more about this in WebDAV Connection section).

Software AG Tamino Connection

This section explains the actions that are available on a Tamino connection.

Working with Databases | 281

Actions Available at Connection Level

For a Tamino database the actions available at connection level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.
• Add container - Allows you to create a new collection in the database.

Actions Available at Collection Level

For every new Tamino collection created in the Data Source Explorer view, you can specify if a schema is required,
optional or prohibited. The following actions are available at collection level:

• Refresh - Performs a refresh of the selected node's subtree.
• Filter ... - An XQuery expression can be specified for filtering the nodes displayed in the selected Tamino container.

It is only possible to specify one predicate. In the XQuery syntax a predicate is enclosed in square brackets. The
square brackets, however, must not be specified in the dialog box displayed by this action. Only the predicate must
be specified and it will be applied on the selected document type. For example: name/surname between 'B',
'C'

• Insert XML instance - Allows you to load a new XML document.
• Insert non XML instance - Allows you to load a non XML document.
• Modify Collection Properties - Allows you to change the schema usage for the selected collection to optional. This

action is available on collections with required and prohibited schema usage.
• Define schema - Allows you to add a new schema in the Schema Repository. This action is available on collections

with optional and required schema usage.
• Delete - Removes the selected collection. If it is a Tamino doctype then the action removes all the XML instances

contained in the document type.
• Set default - Sets this collection as the default collection for running queries with the input() function.

Actions Available at Schema Level

For a Tamino database the actions available at schema level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected schema.
• Open - Opens the selected schema in the editor. There are supported schema changes that preserve the validity

relative to the existent instances.
• Delete - Removes the selected schema from the Schema Repository.

Actions Available at Resource Level

For a Tamino database the actions available at resource level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.
• Delete - Removes the selected resource.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Properties - Allows the user to view various useful properties associated with the resource.
• Save As - Allows you to save the name of the selected binary resource as a file on disk.

Validation of an XML resource stored in a Tamino database is done against the schema associated with the resource in
the database.

Working with Databases | 282

Documentum xDb (X-Hive/DB) Connection

This section explains the actions that are available on a Documentum xDb (X-Hive/DB) 10 connection.

Actions Available at Connection Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at connection level in the Data Source Explorer
view are the following:

• Refresh - Performs a refresh of the selected node's subtree.
• Disconnect - Closes the current database connection.
• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data

sources and connections.
• Add library - Allows you to add a new library.
• Insert XML Instance - Allows you to add a new XML resource directly into the database root. See Documentum

xDb (X-Hive/DB) 10 Parser Configuration for more details.
• Insert non XML Instance - Allows you to add a new non XML resource directly into the database root.
• Properties - Displays the connection properties.

Actions Available at Catalog Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at catalog level in the Data Source Explorer
view are the following:

• Refresh - Performs a refresh of the selected catalog.
• Add AS models - Allows you to add a new abstract schema model to the selected catalog.
• Set default schema - Allows you to set a default DTD to be used for parsing. It is not possible to set a default XML

Schema.
• Clear default schema - Allows you to clear the default DTD. The action is available only if there is a DTD set as

default.
• Properties - Displays the catalog properties.

Actions Available at Schema Resource Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at schema resource level in the Data Source
Explorer view are the following:

• Refresh - Performs a refresh of the selected schema resource.
• Open - Opens the selected schema resource in the editor.
• Rename - Allows you to change the name of the selected schema resource.
• Save As - Allows you to save the selected schema resource as a file on disk.
• Delete - Removes the selected schema resource from the catalog
• Copy location - Allows you to copy to clipboard the URL of the selected schema resource.
• Set default schema - Allows you to set the selected DTD to be used as default for parsing. The action is available

only for DTD.
• Clear default schema - Allows you to unset the selected DTD. The action is available only if the selected DTD is

the current default to be used for parsing.

Actions Available at Library Level

For a Documentum xDb (X-Hive/DB) 10 database the actions available at library level in the Data Source Explorer
view are the following:

• Refresh - Performs a refresh of the selected library.
• Add library - Adds a new library as child of the selected library.
• Add local catalog - Adds a catalog to the selected library. By default, only the root-library has a catalog, and all

models would be stored there.

Working with Databases | 283

• Insert XML Instance - Allows you to add a new XML resource to the selected library. See Documentum xDb
(X-Hive/DB) 10 Parser Configuration for more details.

• Insert non XML Instance - Allows you to add a new non XML resource to the selected library.
• Rename - Allows you to specify a new name for the selected library.
• Move - Allows you to move the selected library to a different one (also available through drag and drop).
• Delete - Removes the selected library.
• Properties - Displays the library properties.

Actions Available at Resource Level

When an XML instance document is added For a Documentum xDb (X-Hive/DB) 10 database the actions available at
resource level in the Data Source Explorer view are the following:

• Refresh - Performs a refresh of the selected resource.
• Open - Opens the selected resource in the editor.
• Rename - Allows you to change the name of the selected resource.
• Move - Allows you to move the selected resource in a different library in the database tree (also available through

drag and drop).

Note: You can copy or move resources by dragging them from another database catalog.

• Save As - Allows you to save the selected binary resource as a file on disk.
• Delete - Removes the selected resource from the library.
• Copy location - Allows you to copy to clipboard the URL of the selected resource.
• Add AS model - Allows you to add an XML schema to the selected XML resource.
• Set AS model - Allows you to set an active AS model for the selected XML resource.
• Clear AS model - Allows you to clear the active AS model of the selected XML resource.
• Properties - Displays the resource properties. Available only for XML resources.

Validation of an XML resource stored in an Documentum xDb (X-Hive/DB) 10 database is done against the schema
associated with the resource in the database.

Documentum xDb (X-Hive/DB) 10 Parser Configuration for Adding XML Instances

When an XML instance document is added to a Documentum xDb (X-Hive/DB) 10 connection or library it is parsed
with an internal XML parser of the database server. The following options are available for configuring this parser:

• DOM Level 3 parser configuration parameters. More about each parameter can be found here: DOM Level 3
Configuration.

• Documentum xDb (X-Hive/DB) 10 specific parser parameters (for more information please consult the Documentum
xDb (X-Hive/DB) 10 manual):

• xhive-store-schema - If checked, the corresponding DTD's or XML schemas are stored in the catalog during
validated parsing.

• xhive-store-schema-only-internal-subset - Stores only the internal subset of the document (not any external
subset). This options modifies the xhive-store-schema one (only has a function when that parameter is set to
true, and when DTD's are involved). Select this option this option if you only want to store the internal subset
of the document (not the external subset).

• xhive-ignore-catalog - Ignores the corresponding DTD's and XML schemas in the catalog during validated
parsing.

• xhive-psvi - Stores psvi information on elements and attributes. Documents parsed with this feature turned on,
give access to psvi information and enable support of data types by XQuery queries.

• xhive-sync-features - Convenience setting. With this setting turned on, parameter settings of XhiveDocumentIf
are synchronized with the parameter settings of LSParser. Note that parameter settings xhive-psvi and
schema-location are always synchronized.

Working with Databases | 284

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration

Troubleshooting
Cannot save the file. DTD factory class org.apache.xerces.impl.dv.dtd.DTDDVFactoryImpl does
not extend from DTDDVFactory

I am able to access my XML Database in the Data Source Explorer and open files for reading but when I try to save
changes to a file, back into the database, I receive the following error:"Cannot save the file. DTD factory class
org.apache.xerces.impl.dv.dtd.DTDDVFactoryImpl does not extend from DTDDVFactory." How
can I fix this?

Answer:

xhive.jar contains a MANIFEST.MF with a classpath:

Class-Path: core/antlr-runtime.jar core/aspectjrt.jar core/fastutil-shrinked.jar

 core/google-collect.jar core/icu4j.jar core/lucene-regex.jar
core/lucene.jar
 core/serializer.jar core/xalan.jar core/xercesImpl.jar

Because the driver was configured to use xhive.jar directly from the xDB installation(where many other jars are
located), core/xercesImpl.jar from the xDB installation directory is loaded even though it is not specified in
the list of jars from the data source driver configuration(it is in the classpath from xhive.jar's MANIFEST.MF).A
simple workaround for this issue is to copy ONLY the jar files used in the driver configuration to a separate folder and
configure the data source driver to use them from there.

XQuery and Databases
XQuery is a native XML query language which is useful for querying XML views of relational data to create XML
results. It provides the mechanism to efficiently and easily extract information from Native XML Databases (NXD) and
relational data as well. The following database systems supported in Oxygen XML Developer plugin offer XQuery
support:

• Native XML Databases:

• Berkeley DB XML
• eXist
• MarkLogic (validation support not available)
• Software AG Tamino
• Raining Data TigerLogic (validation support not available)
• Documentum xDb (X-Hive/DB) 10

• Relational Databases:

• IBM DB2
• Microsoft SQL Server (validation support not available)
• Oracle (validation support not available)

Build Queries With Drag and Drop From Data Source Explorer View

When a query is edited in the XQuery editor the XPath expressions can be composed quickly with drag and drop actions
from the Data Source Explorer view to the editor panel.

1. Configure the data source to the relational database.

2. Configure the connection to the relational database.

3. Browse the connection in the Data Source Explorer view up to the table or column that you want to insert in the
query.

4. Drag the table name or the column name to the XQuery editor panel.

Working with Databases | 285

5. Drop the table name / column name where the XPath expression is needed.

An XPath expression that selects the dragged name will be inserted in the XQuery document at caret position.

XQuery Transformation

XQuery is designed to retrieve and interpret XML data from any source, whether it is a database or a document. Data
is stored in relational databases but often it is required that data is extracted and transformed as XML when interfacing
to other components and services. Also, it is an XPath-based querying language supported by most NXD vendors. To
perform a query you need an XQuery transformation scenario.

1. Configure a data source for the database.

The data source can be relational or XML native.

2. Configure an XQuery transformation scenario.

a) Click the Configure Transformation Scenario toolbar button or go to menu Document > Transformation
> Configure Transformation Scenario.

The dialog for configuring a scenario will be opened.

b) Click the New button of the dialog.

The dialog for editing an XQuery scenario will be opened.

Working with Databases | 286

Figure 183: Edit Scenario Dialog

c) Insert the scenario name in the dialog for editing the scenario.
d) Choose the database connection in the Transformer combo box.
e) Configure any other parameters if necessary.

For an XQuery transformation the output tab has an option called Sequence which allows you to execute an
XQuery in lazy mode. The amount of data extracted from the database is controlled from option Size limit on
Sequence view. If you choose Perform FO Processing in the FO Processor tab, the Sequence option is ignored.

f) Click the OK button to finish editing the scenario.

Once the scenario is associated with the XQuery file, the query can include calls to specific XQuery functions
implemented by that engine. The available functions depend on the target database engine selected in the scenario.
For example for eXist and Berkeley DB XML the content completion assistant lists the functions supported by that
database engine. This is useful for inserting in the query only calls to the supported functions (standard XQuery
functions or extension ones).

Note: An XQuery transformation is executed against a Berkeley DB XML server as a transaction using the
query transaction support of the server.

3. Run the scenario.

To view a more complex value returned by the query that cannot be displayed entirely in the XQuery query result
table at the bottom of the Oxygen XML Developer plugin window, for example an XMLTYPE value or a CLOB
value, do the following actions:

• right click on that table cell
• select the action Copy cell from the popup menu for copying the value in the clipboard
• paste the value where you need it, for example an opened XQuery editor panel of Oxygen XML Developer

plugin .

Working with Databases | 287

XQuery Database Debugging

This section describes the procedures for debugging XQuery transformations that are executed against MarkLogic
databases and Berkeley DB XML ones.

Debugging with MarkLogic

To start a debug session against the MarkLogic engine you will first need to configure a MarkLogic data source and a
MarkLogic connection. Also you have to make sure that the debugging support is enabled in the MarkLogic server that
will be accessed from Oxygen XML Developer plugin . On the server side debugging must be activated both in the
XDBC server and in the section Task Server of the server control console (the switch debug allow) otherwise the error
DBG-TASKDEBUGALLOW is reported by the MarkLogic server.

The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective. If you already have a
MarkLogic scenario configured for the XQuery file you can choose directly to debug the scenario. If not, you just have
to switch to the XQuery Debugger perspective, open the XQuery file in the editor and select the MarkLogic connection
in the XQuery engine selector from the debug control toolbar. For general information about how a debugging session
is started and controlled see the Working with the Debugger section.

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is available only for MarkLogic server versions 4.0 or newer.
• For MarkLogic server versions 4.0 or newer there are three XQuery syntaxes which are supported: '0.9-ml' (inherited

from MarkLogic 3.2), '1.0-ml' and '1.0'
• All the debugging steps are executed by the MarkLogic server and the results or possible errors of each step are

presented by the local debugger user interface.
• All declared variables are presented as strings. The Value column of the Variables view contains the expression

from the variable declaration. It can be evaluated by copying the expression with the Copy value action from the
contextual menu of the Variables view and pasting it in the XWatch view.

• No support for Output to Source Mapping.
• No support for showing the trace.
• Breakpoints can be set in the imported modules but they are only active if the modules are opened in the editor at

the time of debugging.
• The modules can only be opened in the editor during the debugging session by stepping in repeatedly until reaching

the module.
• There should not be any breakpoints set in modules from the same server which are not involved in the current

debugging session.
• No support for profiling when an XQuery transformation is executed in the debugger.

Debugging Queries Which Import Modules

When debugging queries on a MarkLogic database which import modules stored in the database the recommended steps
for placing a breakpoint in a module are the following:

1. Start the debugging session with the action Debug Scenario from the Transformation toolbar or the
XQuery Debugger toolbar button.

2. Step into repeatedly until reaching the desired module.

3. Add the module to the current project for easy access.

4. Set breakpoints in the module as needed.

5. Continue debugging the query.

When starting a new debugging session make sure that the modules which you will debug are already opened in the
editor. This is necessary so that the breakpoints in modules will be considered. Also make sure there are no other opened
modules which are not involved in the current debugging session.

Working with Databases | 288

Debugging with Berkeley DB XML

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is 2.5.13
and it is supported in Oxygen XML Developer plugin 's XQuery Debugger. The same restrictions and peculiarities
apply for the Berkeley debugger as for the MarkLogic one.

WebDAV Connection
This section explains how to work with a WebDAV connection in the Data Source Explorer view.

How to Configure a WebDAV Connection

Oxygen XML Developer plugin 's default configuration already contains a WebDAV data source called WebDAV
(S)FTP. Based on this data source you can create a WebDAV connection for browsing and editing data from a database
that provides a WebDAV interface. The connection will be available in the Data Source Explorer view. The steps for
configuring a WebDAV connection are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

3. Enter a unique name for the connection.

4. Select one of the WebDAV data sources in the Data Source combo box.

5. Fill-in the connection details:

a) Set the URL to the WebDAV repository in the field WebDAV URL.
b) Set the user name to access the WebDAV repository in the field User.
c) Set the password to access the WebDAV repository in the field Password.

6. Click the OK button.

WebDAV Connection Actions

This section explains the actions that are available on a WebDAV connection in the Data Source Explorer view.

Actions Available at Connection Level

The contextual menu of a WebDAV connection in the Data Source Explorer view contains the following actions:

• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data
sources and connections.

• Add Resource ... - Allows you to add a new file on the server.
• Add Container ... - Allows you to create a new folder on the server.
• Refresh - Performs a refresh of the connection.

Actions Available at Folder Level

The contextual menu of a folder node in a WebDAV connection in the Data Source Explorer view contains the following
actions:

• Add Container - Allows you to create a new folder on the server.
• Add Resource - Allows you to add a new file on the server in the current folder.
• Rename - Allows you to change the name of the selected folder.
• Move - Allows you to move the selected folder in a different location in the tree (also available through drag and

drop).
• Delete - Removes the selected folder.
• Refresh - Performs a refresh of the selected node's subtree.

Working with Databases | 289

Actions Available at File Level

The contextual menu of a file node in a WebDAV connection in the Data Source Explorer view contains the following
actions:

• Open - Allows you to open the selected file in the editor.
• Unlock - Removes the lock from the current file in the database.
• Rename - Allows you to change the name of the selected file.
• Move - Allows you to move the selected file in a different location in the tree (also available through drag and drop).
• Delete - Removes the selected file.
• Copy Location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Refresh - Performs a refresh of the selected node.
• Properties - Displays the properties of the current file in a dialog.

Working with Databases | 290

Chapter

13

Importing Data

This chapter shows you how to import data stored in text format, Excel sheet
or relational database tables into XML documents.

Topics:

• Introduction
• Import from Database
• Import from MS Excel Files
• Import from HTML Files
• Import from Text Files

Introduction
Computer systems and databases contain data in incompatible formats and one of the most time-consuming activities
has been to exchange data between these systems. Converting the data to XML can greatly reduce complexity and create
data that can be read by many different types of applications.

This is why Oxygen XML Developer plugin offers support for importing text files, MS Excel files, Database Data and
HTML files into XML documents. The XML documents can be further converted into other formats using the Transform
features.

Figure 184:The Import Wizards of the Oxygen XML Developer plugin Plugin

Import from Database
This section explains how to import data from a database into Oxygen XML Developer plugin .

Import Table Content as XML Document

The steps for importing the data from a relational database table are the following:

1. Go to menu File > Import > oXygen / Database Data.

Clicking this action will open a dialog with all the defined database connections:

Importing Data | 292

Figure 185: Import From Database Data Wizard

2. Select the connection to the database that contains the data.

Only connections configured on relational data sources can be used to import data.

3. If you want to edit, delete or add a data source or connection click on the Configure Database Sources button.
The Preferences/Data Sources option page will be opened.

4. Click Connect.

5. From the catalogs list click on a schema and choose the required table.

6. Click the OK button.

The Import Criteria dialog will open next, with a default query string in the SQL Query pane:

Importing Data | 293

Figure 186: Import from Database Criteria Dialog

The dialog contains the following items:

• SQL Preview - If the SQL Preview button is pressed, it shows the labels that will be used in the XML document
and the first 5 lines from the database into the Import settings panel. All data items in the input will be converted
by default to element content, but this can be overridden by clicking on the individual column headers. Clicking
once on a column header (ex Heading0) will cause the data from this column to be used as attribute values of
the row elements. Click a second time and the column's data will be ignored when generating the XML file. You
can cycle through these three options by continuing to click on the column header. If the data column will be
converted to element content, the header will contain the <> symbols. If the data column will be converted to
attribute content, the header will contain the = symbol, and if it will be skipped, the header will contain an x.

• Change labels - This button opens a new dialog, allowing you to edit the names of the root and row elements,
change the XML name and the conversion criterion. The XML names can be edited by double-clicking on the
desired item and entering the required label. The conversion criterion can also be modified by selecting from the
drop-down list ELEMENT, ATTRIBUTE or SKIPPED.

• Save in file - If checked, the new XML document will be saved at the specified path.

Note: If only Open in editor is checked, the newly created document will be opened in the editor, but
as an unsaved file.

Importing Data | 294

• Generate XML Schema - Allows you to specify the path of the generated XML Schema file.

7. Click the SQL Preview button.

The SQL Query string is editable. You can specify which fields should be taken into consideration.

If the query string represents a join operation of two or more tables and columns selected from different tables have
the same name you should use aliases for them, like the following example. This will avoid the confusion of two
columns being mapped to the same name in the result document of the importing operation.

 select s.subcat_id,
 s.nr as s_nr,
 s.name,
 q.q_id,
 q.nr as q_nr,
 q.q_text
 from faq.subcategory s,
 faq.question q
 where ...

The input data will be displayed in a tabular form in the Import Settings panel. The XML Import Preview panel
will contain an example of what the generated XML will look like.

Convert Table Structure to XML Schema

The structure of a table from a relational database can be imported in Oxygen XML Developer plugin as an XML
Schema. This feature is activated by the Generate XML Schema checkbox from the Import criteria dialog used in
the procedure for importing table data as an XML instance document.

Import from MS Excel Files
Oxygen XML Developer plugin can also import MS (Microsoft) Excel files into XML format documents. The required
steps are:

1. Go to menu File > Import > MS Excel File... .
The Select Excel Sheet dialog will be opened.

2. Enter the URL of the Excel document in the opened dialog.

3. Choose one of the available sheets of the Excel document.
The input data is displayed in the Import Criteria dialog in a tabular form and the XML Import Preview contains
an example of what the generated XML will look like. The Import Criteria dialog has a similar behaviour with the
one shown in case of Import from text files.

4. Click the OK button.

Import from HTML Files
HTML is one of the formats that can be imported as an XML document. The steps needed are:

1. Go to menu File > Import > oXygen > HTML File
The Import HTML wizard is displayed.

2. Enter the URL of the HTML document.

3. Select the type of the result XHTML document:

• XHTML 1.0 Transitional
• XHTML 1.0 Strict

4. Click the OK button.

Importing Data | 295

The resulted document will be an XHTML file containing a DOCTYPE declaration referring to the XHTML DTD
definition on the Web. The parsed content of the imported file will be transformed to XHTML Transitional or XHTML
Strict depending on what radio button the user chose when performing the import operation.

Import from Text Files
The steps for importing a text file into an XML file are the following:

1. Go to menu File > Import > oXygen > Text File...
The Select text file dialog will be displayed.

2. Select the URL of the text file.

3. Select the encoding of the text file.

4. Click the OK button.

The Import Criteria dialog will be displayed:

Figure 187: Import from text file

Importing Data | 296

The input data is displayed in a tabular form. The XML Import Preview panel contains an example of what the
generated XML document will look like. The names of the XML elements and the transformation of the first 5 lines
from the text file are displayed in the Import settings section. All data items in the input will be converted by default
to element content, but this can be over-ridden by clicking on the individual column headers. Clicking once on a
column header will cause the data from this column to be used as attribute values of the row elements. Click the
second time and the column's data will be ignored when generating the XML file. You can cycle through these three
options by continuing to click on the column header. If the data column will be converted to element content, the
header will contain the <> symbols. If the data column will be converted to attribute content, the header will contain
the = symbol. If it will be skipped, the header will contain an x.

5. Select the field delimiter for the import settings:

• comma
• semicolon
• tab
• space

6. Set other optional settings of the conversion.

The dialog offers the following settings:

• First row contains field names - If the option is checked, you'll notice that the table has moved up. The default
column headers are replaced (where suchinformation is available) by the content of the first row. In other words,
the first row is interpreted as containing the field names. The changes are also visible in the preview of the XML
document. To return to default settings (where the first row is interpreted as containing data and not fields names),
simply uncheck the option.

• Change labels -This button opens a new dialog, allowing you to edit the names of the root and row elements,
change the XML name and the conversion criterion.

The XML names can be edited by double-clicking on the desired item and entering the required label. The
conversion criterion can also be modified by selecting one of the drop-down list options: ELEMENT,
ATTRIBUTE or SKIPPED.

• Output file - Allows you to select the output XML file.

Importing Data | 297

Chapter

14

Content Management System (CMS) Integration

This chapter explains how Oxygen XML Developer plugin can be integrated
with a content management system (CMS) so that the data stored in the CMS

Topics:

• Integration with Documentum
(CMS)

can be edited directly in the Oxygen XML Developer plugin editor. Only the
integration with the Documentum (CMS) is explained .

Integration with Documentum (CMS)
Oxygen XML Developer plugin provides support for browsing and managing Documentum repositories in the Data
Source Explorer. You can easily create new resources on the repository, copy and move them using contextual actions
or the drag and drop support, edit and transform the documents in the editor. The operations that can be performed on
repository resources are described in the Documentum (CMS) actions section.

Oxygen XML Developer plugin supports Documentum (CMS) version 6.5 or later with Documentum Foundation
Services 6.5 or later installed.

Attention:

It is recommended to use the latest 1.6.x Java version. It is possible that the Documentum (CMS) support will
not work properly if you use other Java versions.

Configure Connection to Documentum Server

This section explains how to configure a connection to a Documentum server.

How to Configure a Documentum (CMS) Data Source

To configure a Documentum (CMS) data source you need the Documentum Foundation Services Software Development
Kit (DFS SDK) corresponding to your server version. The DFS SDK can be found in the Documentum (CMS) server
installation kit or it can be downloaded from EMC Community Network.

Note: The DFS SDK can be found in the form of an archive named, for example, emc-dfs-sdk-6.5.zip for
Documentum (CMS) 6.5.

1. Go to menu Preferences > Data Sources.
The Preferences dialog is opened at the Data Sources panel.

2. In the Data Sources panel click the New button.

3. Enter a unique name for the data source.

4. Select Documentum (CMS) from the driver type combo box.

5. Press the Choose DFS SDK Folder button.

6. Select the folder where you have unpacked the DFS SDK archive file.

If you have indicated the correct folder the following Java libraries (jar files) will be added to the list (some variation
of the library names is possible in future versions of the DFS SDK):

• lib/java/emc-bpm-services-remote.jar

• lib/java/emc-ci-services-remote.jar

• lib/java/emc-collaboration-services-remote.jar

• lib/java/emc-dfs-rt-remote.jar

• lib/java/emc-dfs-services-remote.jar

• lib/java/emc-dfs-tools.jar

• lib/java/emc-search-services-remote.jar

• lib/java/ucf/client/ucf-installer.jar

• lib/java/commons/*.jar (multiple jar files)
• lib/java/jaxws/*.jar (multiple jar files)
• lib/java/utils/*.jar (multiple jar files)

Note: If for some reason the jar files are not found, you can add them manually by using the Add Files and
Add Recursively buttons and navigating to the lib/java folder from the DFS SDK.

7. Click the OK button to finish the data source configuration.

Content Management System (CMS) Integration | 300

https://community.emc.com/index.jspa

How to Configure a Documentum (CMS) Connection

The steps for configuring a connection to a Documentum (CMS) server are the following:

1. Go to menu Preferences > Data Sources.

2. In the Connections panel click the New button.

3. Enter a unique name for the connection.

4. Select one of the previously configured Documentum (CMS) data sources in the Data Source combo box.

5. Fill-in the connection details:

• URL - The URL to the Documentum (CMS) server: http://<hostname>:<port>

• User - The user name to access the Documentum (CMS) repository.
• Password - The password to access the Documentum (CMS) repository.
• Repository - The name of the repository to log into.

6. Click the OK button to finish the configuration of the connection.

Known Issues

The following are known issues with the Documentum (CMS):

1. Please note that at the time of this implementation there is a problem in the UCF Client implementation for MAC
OS X which prevents you from viewing or editing XML documents from the repository. The UCF Client is the
component responsible for file transfer between the repository and the local machine. This component is deployed
automatically from the server.

2. In order for the Documentum driver to work faster, you need to specify to the JVM to use a weaker random generator,
instead of the very slow native implementation. This can be done by modifying in the Oxygen XML Developer
plugin startup scripts (or in the *.vmoptions file) the system property:

-Djava.security.egd=file:/dev/./urandom

Documentum (CMS) Actions in the Data Source Explorer View

Oxygen XML Developer plugin allows you to browse the structure of a Documentum repository in the Data Source
Explorer view and perform various operations on the repository resources.

You can drag and drop folders and resources to other folders to perform move or copy operations with ease. If the drag
and drop is between resources (drag the child item to the parent item) you can create a relationship between the respective
resources.

Content Management System (CMS) Integration | 301

Figure 188: Browsing a Documentum repository

Actions Available on Connection

The actions available on a Documentum (CMS) connection in the Data Source Explorer view are the following:

• Configure Database Sources - Opens the Data Sources preferences page where you can configure both data
sources and connections.

• New Cabinet - Creates a new cabinet in the repository. The cabinet properties are:

• Type - The type of the new cabinet (default is dm_cabinet).
• Name - The name of the new cabinet.
• Title - The title property of the cabinet.
• Subject - The subject property of the cabinet.

• Refresh - Refreshes the connection.

Actions Available on Cabinets / Folders

The actions available on a Documentum (CMS) cabinet in the Data Source Explorer view are the following:

• New Folder - Creates a new folder in the current cabinet / folder. The folder properties are the following:

• Path - Shows the path where the new folder will be created.
• Type - The type of the new folder (default is dm_folder).
• Name - The name of the new folder.
• Title - The title property of the folder.
• Subject - The subject property of the folder.

• New Document - Creates a new document in the current cabinet / folder. The document properties are the
following:

• Path - Shows the path where the new document will be created.
• Name - The name of the new document.
• Type - The type of the new document (default is dm_document).

Content Management System (CMS) Integration | 302

• Format - The document content type format.

• Import - Imports local files / folders in the selected cabinet / folder of the repository. Actions available in the import
dialog:

• Add Files - Shows a file browse dialog and allows you to select files to add to the list.
• Add Folders - Shows a folder browse dialog that allows you to select folders to add to the list. The subfolders

will be added recursively.
• Edit - Shows a dialog where you can change the properties of the selected file / folder from the list.
• Remove - Removes the selected files / folders from the list.

• Rename - Changes the name of the selected cabinet / folder.
• Copy - Copies the selected folder to a different location in the tree (available only upon folders). This action can

also be performed with drag and drop while holding the (Ctrl) key pressed.
• Move - Moves the selected folder to a different location in the tree (available only upon folders). This action can

also be performed with drag and drop.
• Delete - Deletes the selected cabinet / folder from the repository. The following options are available:

• Folder(s) - Allows you to delete only the selected folder or to delete recursively the folder and all subfolders and
objects.

• Version(s) - Allows you to specify what versions of the resources will be deleted.
• Virtual document(s) - Here you can specify what happens when virtual documents are encountered. They can

be either deleted either by themselves or together with their descendants.

• Refresh - Performs a refresh of the selected node's subtree.
• Properties - Displays the list of properties of the selected cabinet / folder.

Actions Available on Resources

The actions available on a Documentum (CMS) resource in the Data Source Explorer view are the following:

• Edit - Checks out (if not already checked out) and opens the selected resource in the editor.
• Edit with - Checks out (if not already checked out) and opens the selected resource in the specified editor / tool.
• Open (Read-only) - Opens the selected resource in the editor for viewing.
• Open with - Opens the selected resource in the specified editor / tool for viewing.
• Check Out - Checks out the selected resource from the repository. The action is not available if the resource is

already checked out.
• Check In - Checks in the selected resource (commits changes) into the repository. The action is only available if

the resource is checked out.

Content Management System (CMS) Integration | 303

Figure 189: Check In Dialog

The properties of a resource are the following:

• Name - The name which the resource will have on the repository.
• Version - Allows you to choose what version the resource will have after being checked in.
• Version label - The label of the updated version.
• Description - An optional description of the resource.
• Keep Locks - If checked the updated resource is checked into the repository but it is also kept checked out in

your name.
• Make this the current version - Makes the updated resource the current version (will have the CURRENT

version label).

• Cancel Checkout - Cancels the check out and loses all modifications since the check out. Action is only available
if the resource is checked out.

• Export - Allows you to export the resource and save it locally.
• Rename - Changes the name of the selected resource.
• Copy - Copies the selected resource to a different location in the tree. Action is not available on virtual document

descendants. This action can also be performed with drag and drop while holding the (Ctrl) key pressed.
• Move - Moves the selected resource to a different location in the tree. Action is not available on virtual document

descendants and on checked out resources. This action can also be performed with drag and drop.
• Delete - Deletes the selected resource from the repository. Action is not available on virtual document descendants

and on checked out resources.
• Add Relationship - Adds a new relationship for the selected resource. This action can also be performed with drag

and drop between resources.
• Convert to Virtual Document - Allows you to convert a simple document to a virtual document. Action is available

only if the resource is a simple document.
• Convert to Simple Document - Allows you to convert a virtual document to a simple document. Action is available

only if the resource is a virtual document with no descendants.
• Copy location - Allows you to copy to clipboard an application specific URL for the resource which can then be

used for various actions like opening or transforming the resources.
• Refresh - Performs a refresh of the selected resource.
• Properties - Displays the list of properties of the selected resource.

Content Management System (CMS) Integration | 304

Transformations on DITA Content from Documentum (CMS)

Oxygen XML Developer plugin comes with the DITA Open Toolkit which is able to transform a DITA map to various
output formats. However DITA Open Toolkit requires local DITA files so first you need to check out a local version of
your DITA content.

Content Management System (CMS) Integration | 305

Chapter

15

Composing Web Service Calls

This chapter covers the following topics:Topics:

• compose a SOAP request based on a WSDL file;• Overview
• send the request to a server;• Composing a SOAP Request
• generate HTML documentation for WSDL files.• Testing Remote WSDL Files

• The UDDI Registry Browser
• Generate WSDL Documentation

Overview
Web Services Description Language (WSDL) is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented information.

The WSDL files contain information about the published services, like the name, the message types, and the bindings.
Oxygen XML Developer plugin is offering a way to edit the WSDL files that is similar to editing XML, with content
completion assistant and validation driven by a mix of WSDL and SOAP schemas. Oxygen XML Developer plugin
supports WSDL version 1.1 and 2.0 and SOAP versions 1.1 and 1.2. That means that in the location where a SOAP
extension can be inserted the content completion assistant offers elements from both SOAP 1.1 and SOAP 1.2. Validation
of SOAP requests is executed first against a SOAP 1.1 schema and then against a SOAP 1.2 schema. In addition to
validation against the XSD schemas, Oxygen XML Developer plugin also checks if the WSDL file conforms with the
WSDL specification (available only for WSDL 1.1 and SOAP 1.1).

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP, it is
easy to check if the defined SOAP messages are accepted by the remote Web Services server using Oxygen XML
Developer plugin 's WSDL SOAP Analyser integrated tool.

Composing a SOAP Request
To design, compose, and test Web service calls in Oxygen XML Developer plugin follow the procedure:

1. Create a new document or open an existing document of type WSDL.

2. Design the Web Service descriptor in the WSDL editor.

The content completion is driven by a mix of the WSDL and SOAP schemas. You do not need to specify the schema
location for the WSDL standard namespaces because Oxygen XML Developer plugin comes with these schemas
and uses them by default to assist the user in editing Web Service descriptors.

Figure 190: Content completion for WSDL documents

3. While editing the Web-Services descriptors check their conformance to the WSDL and SOAP schemas.

In the following example you can see how the errors are reported.

Composing Web Service Calls | 308

Figure 191: Validating a WSDL file

4. Check if the defined messages are accepted by the Web Services server.

Oxygen XML Developer plugin is providing two ways of testing, one for the currently edited WSDL file and other
for the remote WSDL files that are published on a web server. For the currently edited WSDL file the WSDL SOAP
Analyser tool can be opened by:

• pressing the toolbar button WSDL SOAP Analyser
• going to the menu item WSDL > WSDL SOAP Analyser
• going to submenu of the Project view contextual menu

Figure 192: WSDL SOAP Analyser

This dialog contains a SOAP analyser and sender for Web Services Description Language file types. The analyser
fields are:

• Services - The list of services defined by the WSDL file.
• Ports - The ports for the selected service.
• Operations - The list of available operations for the selected service.
• Action URL - Shows the script that serves the operation.
• SOAP Action - Identifies the action performed by the script.
• Version - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected

port.
• Request Editor - It allows you to compose the web service request. When an action is selected, Oxygen XML

Developer plugin tries to generate as much content as possible for the SOAP request. The envelope of the SOAP
request has the correct namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/envelope/
for SOAP 1.1 or http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to change few

Composing Web Service Calls | 309

values in order for the request to be valid. The content completion assistant is available for this editor and is
driven by the schema that defines the type of the current message. While selecting different operations, Oxygen
XML Developer plugin remembers the modified request for each one. You can press the Regenerate button in
order to overwrite your modifications for the current request with the initial generated content.

• Attachments List - You can define a list of file URLs to be attached to the request.
• Response Area - Initially it displays an auto generated server sample response so you can have an idea about

how the response looks like. After pressing the Send button, it presents the message received from the server in
response to the Web Service request. It may show also error messages. In case the response message contains
attachments, Oxygen XML Developer plugin prompts you to save them, then tries to open them with the
associated system application.

• Errors List - There may be situations in which the WSDL file is respecting the WSDL XML Schema, but it fails
to be valid for example in the case of a message that is defined by means of an element that is not found in the
types section of the WSDL. In such a case, the errors are listed here. This list is presented only when there are
errors.

• Send Button - Executes the request. A status dialog is shown when Oxygen XML Developer plugin is connecting
to the server.

The testing of a WSDL file is straight-forward: click the WSDL analysis button, then select the service, the port,
and the operation. The editor generates the skeleton for the SOAP request. You can edit the request, eventually attach
files to it and send it to the server. Watch the server response in the response area. You can find more details in the
Testing Remote WSDL Files section.

5. Save the request derived from the Web Service descriptor.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web Service
SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs and parameters.

6. Open the result of a Web Service call in an editor panel.

In this way, you can save the SOAP request or process it further.

Testing Remote WSDL Files
To open and test a remote WSDL file the steps are the following:

1. Go to menu Window > Show View > Other > oXygen > WSDL SOAP Analyser

2. Press the Choose WSDL button and enter the URL of the remote WSDL file.

You enter the URL:

• by typing
• by browsing the local file system
• by browsing a remote file system
• by browsing a UDDI Registry

3. Press the OK button.
This will open the WSDL SOAP Analyser tool. In the Saved SOAP Request tab you can open directly a previously
saved Web Service SOAP Call (WSSC) file thus skipping the analysis phase.

The UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog (menu Tools > WSDL SOAP Analyzer) opens the UDDI
Registry Browser dialog.

Composing Web Service Calls | 310

Figure 193: UDDI Registry Browser dialog

The fields of the dialog are the following:

• URL - Type the URL of an UDDI registry or choose one from the default list.
• Keywords - Enter the string you want to be used when searching the selected UDDI registry for available Web

services.
• Rows to fetch - The maximum number of rows to be displayed in the result list.
• Search by - You can choose to search either by company or by provided service.
• Case sensitive - When checked, the search takes into account the keyword case.
• Search - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the OK button, the UDDI Registry Browser dialog is closed and you
are returned to the WSDL File Opener dialog.

Generate WSDL Documentation
To generate documentation for a WSDL document use the action from menu XML Tools > Generate Documentation
> WSDL Documentation.

The WSDL documentation dialog can be also opened from the Navigator contextual menu: Generate WSDL
Documentation.

The fields of the dialog are the following:

• Input URL - Type the URL of the file or click on the browse button and select it from the file system.

Composing Web Service Calls | 311

• Output file (HTML) - In this field you will have to enter the path and the filename where the documentation will
be generated.

• Open in Browser/System Application - Select this option if you want the result to be opened in the system application
associated with that file type.

Note: If you already set the Default Internet browser option in the Global preferences page, it will take
precedence over the default system application settings.

• Generate - Press this button for generating the documentation of the WSDL file.

Composing Web Service Calls | 312

Chapter

16

Digital Signatures

This chapter explains how to apply and verify digital signatures on XML
documents.

Topics:

• Overview
• Canonicalizing Files
• Certificates
• Signing Files
• Verifying the Signature

Overview
Digital signatures are widely used as security tokens, not just in XML. A digital signature provides a mechanism for
assuring integrity of data, the authentication of its signer, and the non-repudiation of the entire signature to an external
party:

• A digital signature must provide a way to verify that the data has not been modified or replaced to ensure integrity.
• The signature must provide a way to establish the identity of the data's signer for authentication.
• The signature must provide the ability for the data's integrity and authentication to be provable to a third party for

non-repudiation.

A public key system is used to create the digital signature and it's also used for verification. The signature binds the
signer to the document because digitally signing a document requires the originator to create a hash of the message and
then encrypt that hash value with his own private key. Only the originator has that private key and he is the only one
that can encrypt the hash so that it can be unencrypted using his public key. The recipient, upon receiving both the
message and the encrypted hash value, can decrypt the hash value, knowing the originator's public key. The recipient
must also try to generate the hash value of the message and compare the newly generated hash value with the unencrypted
hash value received from the originator. If the hash values are identical, it proves that the originator created the message,
because only the actual originator could encrypt the hash value correctly.

XML Signatures can be applied to any digital content (data object), including XML (see W3C Recommendation,
XML-Signature Syntax and Processing). An XML Signature may be applied to the content of one or more resources:

• enveloped or enveloping signatures are applied over data within the same XML document as the signature
• detached signatures are applied over data external to the signature element; the signature is "detached" from the

content it signs. This definition typically applies to separate data objects, but it also includes the instance where the
signature and data object reside within the same XML document but are sibling elements.

The XML Signature is a method of associating a key with referenced data. It does not normatively specify how keys
are associated with persons or institutions, nor the meaning of the data being referenced and signed.

The original data is not actually signed. Instead, the signature is applied to the output of a chain of canonicalization and
transformation algorithms, which are applied to the data in a designated sequence. This system provides the flexibility
to accommodate whatever "normalization" or desired preprocessing of the data that might be required or desired before
subjecting it to being signed.

To canonicalize something means to put it in a standard format that everyone generally uses. Because the signature is
dependent on the content it is signing, a signature produced from a not canonicalized document could possibly be different
from one produced from a canonicalized document. The canonical form of an XML document is physical representation
of the document produced by the method described in this specification. The term canonical XML refers to XML that
is in canonical form. The XML canonicalization method is the algorithm defined by this specification that generates the
canonical form of a given XML document or document subset. The term XML canonicalization refers to the process of
applying the XML canonicalization method to an XML document or document subset. XML canonicalization is designed
to be useful to applications that require the ability to test whether the information content of a document or document
subset has been changed. This is done by comparing the canonical form of the original document before application
processing with the canonical form of the document result of the application processing.

A digital signature over the canonical form of an XML document or document subset would allows the signature digest
calculations to be oblivious to changes in the original document's physical representation. During signature generation,
the digest is computed over the canonical form of the document. The document is then transferred to the relying party,
which validates the signature by reading the document and computing a digest of the canonical form of the received
document. The equivalence of the digests computed by the signing and relying parties (and hence the equivalence of
the canonical forms over which they were computed) ensures that the information content of the document has not been
altered since it was signed.

The following canonicalization algorithms are used in Oxygen XML Developer plugin : Canonical XML (or Inclusive
XML Canonicalization)(XMLC14N) and Exclusive XML Canonicalization(EXCC14N). The first is used for XML where
the context doesn't change while the second was designed for canonicalization where the context might change.

Digital Signatures | 314

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of the signature. In
this way all the declarations you might use will be unambiguously specified. A problem appears when the signed XML
is moved into another XML document which has other declarations because the Inclusive Canonicalization will copy
then and the signature will be invalid.

Exclusive Canonicalization finds out what namespaces you are actually using (the ones that are a part of the XML
syntax) and just copies those. It does not look into attribute values or element content, so the namespace declarations
required to process these are not copied.

This type of canonicalization is useful when you have a signed XML document that you wish to insert into other XML
documents and it will insure the signature verifies correctly every time, so it is required when you need self-signed
structures that support placement within different XML contexts.

Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it's the safer method from the security perspective because it requires no knowledge of the data that are to be secured
in order to safely sign them.

The canonicalization method can specify whether or not comments should be included in the canonical form output by
the XML canonicalization method. If a canonical form contains comments corresponding to the comment nodes in the
input node-set, the result is called canonical XML with comments. In an uncommented canonical form comments are
removed, including delimiter for comments outside document element.

These three operations: Digital Signing, Canonicalization and Verification of the signature are available from the Tools
menu or from the Editor's contextual menu > Source.

Canonicalizing Files
The user can select the canonicalization algorithm to be used for his document from the following dialog displayed by
the action Canonicalize available from the editor panel's contextual menu > Source .

Figure 194: Canonicalization settings dialog

The fields of the dialog are the following:

• URL - Specifies the location of the input URL.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.
• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Digital Signatures | 315

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• Output - Specifies the output file path where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in the editor.

Certificates
A certificate is a digitally signed statement from the issuer (an individual, an organization, a website or a firm), saying
that the public key (and some other information) of some other entity has a particular value. When data is digitally
signed, the signature can be verified to check the data integrity and authenticity. Integrity means that the data has not
been modified. Authenticity means the data comes indeed from the entity that claims to have created and signed it.
Certificates are kept in special repositories called keystores.

A keystore is an encrypted file that contains private keys and certificates. All keystore entries (key and trusted certificate
entries) are accessed via unique aliases. An alias must be assigned for every new entry of either a key or certificate as
a reference for that entity. No keystore can store an entity if it's alias already exists in that keystore and no keystore can
store trusted certificates generated with keys in it's keystore.

In Oxygen XML Developer plugin there are provided two types of keystores: Java Key Store (JKS) and Public-Key
Cryptography Standards version 12 (PKCS-12). A keystore file is protected by a password. In a PKCS 12 keystore you
should not store a certificate without alias together with other certificates, with or without alias, as in such a case the
certificate without alias cannot be extracted from the keystore.

To set the options for a certificate or to validate it, go to menu Options > Preferences > Certificates .

Signing Files
The user can select the type of signature to be used for his document from the following dialog displayed by the action
Sign available from the editor panel's contextual menu > Source

Digital Signatures | 316

Figure 195: Signature settings dialog

The following options are available:

• Input - Specifies the location of the input URL.
• None - If selected, no canonicalization algorithm is used.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.
• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.
• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• ID - Provides ID of the XML element to be signed.
• Envelope - If selected, the enveloping signature is used.
• Detached - If selected, the detached signature is used.
• Append KeyInfo - The element ds:KeyInfo will be added in the signed document only if this option is checked.
• Signature algorithm - Algorithm used for signing the document. The following options are available: RSA with

SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
• Output - Specifies the output file path where the signed XML document will be saved.
• Open in editor - If checked, the output file will be opened in the editor.

Verifying the Signature
The user can select a file to verify its signature in the dialog opened by the action Verify Signature available from the
editor panel's contextual menu > Source . The dialog has a field URL that specifies the location of the document for
which to verify the signature.

If the signature is valid, a dialog displaying the name of the signer will be opened. If not, an error message will show
details about the problem.

Digital Signatures | 317

Chapter

17

Text Editor Specific Actions

The Text mode of the editor panel provides the usual actions specific for a plain
text editor: undo / redo, copy / paste, find / replace, etc. These actions are

Topics:

• Finding and Replacing Text in the
Current File

executed from the menu bar or toolbar and also by invoking their usual keyboard
shortcuts.

• Spell Checking

Finding and Replacing Text in the Current File
This section explains how to use the find and replace features of the application.

The Find All Elements / Attributes Dialog

This dialog is opened from menu Edit > Find All Elements... . It assists you in defining XML elements / attributes
search operations on the current document.

Figure 196: Find All Elements / Attributes dialog

The dialog can perform the following actions:

• Find all the elements with a specified name.
• Find all the elements which contain or not a specified string in their text content.
• Find all the elements which have a specified attribute.
• Find all the elements which have an attribute with or without a specified value.

All these search criteria can be combined to fine filter your results.

The results of all the operations in the Find All Elements / Attributes dialog will be presented as a list in the message
panel.

The dialog fields are described as follows:

• Element name - The target element name to search for. Only the elements with this exact name are returned. For
any element name just leave the field empty.

• Element text - The target element text to search for. The combo box beside this field allows you to specify that you
are looking for an exact or partial match of the element text. For any element text, select contains in the combo box
and leave the field empty.

If you leave the field empty but select equals in the combo box, only elements with no text will be found. Select not
contains to find all elements which do not have the specified text inside.

• Attribute name - The name of the attribute which needs to be present in the elements. Only the elements which
have an attribute with this name will be returned. For any / no attribute name just leave the field empty.

• Attribute value - The combo box beside this field allows you to specify that you are looking for an exact or partial
match of the attribute value. For any / no attribute value select contains in the combo box and leave the field empty.

If you leave the field empty but select equals in the combo box, only elements that have at least an attribute with an
empty value will be found.

Select not contains to find all elements which have attributes without a specified value.

• Case sensitive - When this option is checked, operations are case sensitive.

Text Editor Specific Actions | 320

Spell Checking
The Spelling dialog enables you to check the spelling of the current document. It is opened from menu XML > Check

Spelling (Ctrl+Shift+Q) or the toolbar button Check Spelling.

Figure 197:The Check Spelling Dialog

The dialog contains the following fields:

• Unrecognized word - Contains the word that cannot be found in the selected dictionary. The word is also highlighted
in the XML document.

• Replace with - The character string which is suggested to replace the unrecognized word.
• Guess - Displays a list of words suggested to replace the unknown word. Double click a word to automatically insert

it in the document and resume the spell checking process.
• Default language - Allows you to select the default dictionary used by the spelling engine.
• Paragraph language - In an XML document you can mix content written in different languages. To tell the spell

checker engine what language was used to write a specific section, you need to set the language code in the lang
or xml:lang attribute to that section. Oxygen XML Developer plugin automatically detects such sections and
instructs the spell checker engine to apply the appropriate dictionary.

• Replace - Replaces the currently highlighted word in the XML document, with the selected word in the Replace
with field.

• Replace All - Replaces all occurrences of the currently highlighted word in the XML document, with the selected
word in the Replace with field.

• Ignore - Ignores the first occurrence of the unrecognized word and allows you to continue checking the document.
Oxygen XML Developer plugin skips the content of the XML elements marked as ignorable.

• Ignore All - Ignores all instances of the unknown word in the current document.
• Learn - Includes the unrecognized word in the list of valid words.
• Options - Sets the configuration options of the spell checker.
• Begin at caret position - Instructs the spell checker to begin checking the document starting from the current cursor

position.

Text Editor Specific Actions | 321

• Close - Closes the dialog.

Spell Checking Dictionaries

There are two spell checking engines available in Oxygen XML Developer plugin : Hunspell checker (default setting)
and Java checker. You can set the spell check engine in the Spell checking engine preferences page. The dictionaries
used by the two engines differ in format, so you need to follow specific procedures in order to add another dictionary
to your installation of Oxygen XML Developer plugin .

Dictionaries for the Hunspell Checker

The Hunspell spell checker is open source and has LGPL license. The format of the Hunspell spell dictionary is supported
by Mozilla, OpenOffice and the Chrome browser. Oxygen XML Developer plugin comes with the following built-in
dictionaries for the Hunspell checker:

• English (US)
• English (UK)
• French
• German (old orthography)
• German (new orthography)
• Spanish

There is one dictionary for each language-country variant combination. If you cannot find a Hunspell dictionary that is
already built for your language you can build such a dictionary. First you need a list of correct words which you want
to check in your documents. You build a dictionary from this list following these instructions.

Adding a Dictionary for the Hunspell Checker

To add a new spelling dictionary to Oxygen XML Developer plugin or to replace an existing one you should follow
these steps:

1. Download the archive with the files of your language dictionary.

A dictionary has two files with the same name and different extensions: a file with .dic extension and a file with
.aff extension.

2. Copy the .aff and .dic files to the spell subfolder of the Oxygen XML Developer plugin preferences folder
only if it is a new dictionary (it is not available as built-in dictionary in Oxygen XML Developer plugin).

The Oxygen XML Developer plugin preferences folder is >, where [APPLICATION-DATA-FOLDER] is:

• C:\Documents and Settings\[LOGIN-USER-NAME]\Application Data on Windows XP
• C:\Users\[LOGIN-USER-NAME]\AppData\Roaming on Windows Vista
• [USER-HOME-FOLDER]/Library/Preferences on Mac OS X
• [USER-HOME-FOLDER] on Linux

3. Copy the .aff and .dic files into the folder [Oxygen-install-folder]/dicts only if it is an existing
dictionary.

4. Restart the application after copying the dictionary files.

Dictionaries for the Java Checker

A Java checker dictionary has the form of a .dar file located in the directory [Oxygen-install-folder]/dicts.
Oxygen XML Developer plugin comes with the following built-in dictionaries for the Java checker:

• English (US)
• English (UK)
• English (Canada)
• French (France)
• French (Belgium)
• French (Canada)

Text Editor Specific Actions | 322

http://www.suares.an/index.php?page_id=25&news_id=233
http://www.oxygenxml.com/spell_checking.html

• French (Switzerland)
• German (old orthography)
• German (new orthography)
• Spanish

A pre-built dictionary can be added by copying the corresponding .dar file to the folder
[Oxygen-install-folder]/dicts and restarting Oxygen XML Developer plugin . There is one dictionary for
each language-country variant combination. If you cannot find a dictionary that is already built for your language you
can build such a dictionary with the tool available at http://www.xmlmind.com/spellchecker/dictbuilder.shtml.

Learned Words

Spell checker engines rely on dictionary to decide that a word is correctly spelled. To tell the spell checker engine that
an unknown word is actually correctly spelled, you need to add that word to its dictionary. There are two ways to do so:

• press the Learn button from the Spelling dialog;
• invoke the contextual menu on an unknown word, then press Learn word.

Learned words are stored into a persistent dictionary file. Its name is composed of the currently checked language code
and the .tdi extension, for example en_US.tdi. It is located in the folder:

• folder on Windows XP
• folder on Windows Vista
• folder on Mac OS X
• folder on Linux

To delete items from the list of learned words, press Delete learned words from Spell Check preferences page.

Ignored Words

The content of some XML elements like programlisting, codeblock or screen should always be skipped by
the spell checking process. The skipping can be done manually word by word by the user using the Ignore button of
the Spelling dialog or, more conveniently, automatically by maintaining a set of known element names that should never
be checked. You maintain this set of element names in the user preferences as a list of XPath expressions that match
the elements.

Only a small subset of XPath expressions is supported, that is only the '/' and '//' separators and the '*' wildcard. Two
examples of supported expressions are /a/*/b and //c/d/*.

Automatic Spell Check

To allow Oxygen XML Developer plugin to automatically check the spelling as you write, you need to enable the
Automatic spell check option from the Spell Check preferences page. Unknown words are highlighted and feature a
contextual menu which offers the following:

• Delete Repeated Word action - allows you to delete repeated words;
• a list of words suggested by the spell checking engine as possible replacements of the unknown word;
• Learn Word action - allows you to add the current unknown word to the persistent dictionary.

Spell Checking in Multiple Files

The Check Spelling in Files action allows you to check the spelling on multiple local or remote documents. This action
is available from:

•
• contextual menu of the Project view;
• contextual menu of the DITA Maps Manager view.

The results are displayed in a view that allows grouping the reported errors as a tree with two levels.

Text Editor Specific Actions | 323

http://www.xmlmind.com/spellchecker/dictbuilder.shtml

Figure 198: Check Spelling in Files Dialog

The following scopes are available:

• All opened files - Spell check in all opened files.
• Directory of the current file - All the files from the folder of the current edited file.
• Project files - All files from the current project.
• Selected project files - The selected files from the current project.
• Specified path - A custom path.

You can also choose a file filter, decide whether to recurse subdirectories or process hidden files.

The spell checker processor uses the options available in the Spell Check preferences panel .

Text Editor Specific Actions | 324

Chapter

18

Configuring the Application

This chapter presents all the user preferences that allow you to configure the
application and the editor variables that are available for customizing the user
defined commands.

Topics:

• Configuring Options
• Importing / Exporting Global

Options
• Preferences
• Reset Global Options
• Scenarios Management
• Editor Variables

Configuring Options
The application is controlled by a set of options. There is an option for pretty much any of the Oxygen XML Developer
plugin features. To offer you the highest degree of flexibility in customizing the application to fit the end-user's role in
your organization, Oxygen XML Developer plugin comes with several distinct layers of option values, arranged here
according to their priority, from low to high:

• Default Options - should be regarded as factory defaults or built-in values.

This predefined set of values are tuned to allow the application to behave optimally in most working environments.

• Customized Default Options - designed to customize the application initial option values for a group of users.

This layer allows an administrator to deploy oXygen preconfigured with a standardized set of option values.

Note: Once this layer is set, it represents the initial application state when an end-user presses the Restore
defaults or Reset Global Options buttons.

• Global Options - allow individual users to personalize oXygen according to their specific needs.

Note: If you set a specific option in one of the layers, but it is not applied in the application, make sure that one
of the higher priority layers is not overwriting it.

Customized Default Options

You can overwrite the Default Options values by imposing the loading of a set of options from a specific XML structure
stored in one of the following file types:

• options file - containing all application options.

To create such a file, follow this procedure:

• set the values you want to impose as defaults in the Preferences pages;
• run the action Window > Preferences > Oxygen > Export Global Options.

• project file (.xpr file extension) - containing only the options different from the Default Options.

To create such a file, follow this procedure:

• set the values of the default options in the Preferences dialog so that they are saved in the project file.

There are two ways of telling the application to use such an options configuration file to extract the customized default
options:

• set the file path of the options configuration file as value of com.oxygenxml.default.options Java virtual
machine parameter.

The file must be specified with an URL or a file path relative to the application installation folder. For example, add
the following line in the [Eclipse-platform-install-folder]/configuration/config.ini file:

com.oxygenxml.default.options=@config.dir/../default-options.xml

• copy the options configuration file in the
[Eclipse-platform-install-folder]/plugins/com.oxygenxml.editor/preferences
folder.

Importing / Exporting Global Options
The following actions are available in the Options application menu:

Configuring the Application | 326

• Reset Global Options - Restores the preferences set to Customized Default Options layer, or if this level is not
defined, to Default Options layer.

• Import Global Options - Allows you to import a set of Global Options from an options file.
• Export Global Options - Allows you to export the entire set of Global Options in an options file.

In the Oxygen XML Developer plugin preferences page opened from menu Window > Preferences > oXygen you
can find the import / export preferences buttons which allow you to move your global preferences in XML format from
one computer to another.

Preferences
Once the application is installed you can use the Preferences dialog accessed from menu Options > Preferences to
customize the application.

You can always revert modifications to their default values by pressing the Restore Defaults button, available in each
options page.

If you don't know how to use a specific preference that is available in any Preferences panel or what effect it will have
you can open a help page about the current panel at any time pressing the help button located in the left bottom
corner of the dialog or pressing the F1 key.

A restricted version of the Preferences dialog is available at any time in the editors of the Oxygen XML Developer
plugin plugin by right-clicking in the editor panel and selecting Preferences:

Figure 199: Eclipse Preferences dialog - restricted version

Configuring the Application | 327

Oxygen XML Developer plugin License

The license information panel is opened from menu Window > Preferences > oXygen. This panel presents the data of
the license key which enables the Oxygen XML Developer plugin plugin: registration name, category and number of
purchased licenses, encrypted signature of the license key. Clicking on the Register button opens the Oxygen XML
Developer plugin License dialog that allows you to insert a new license key.

Global

The Global options panel is opened from menu Window > Preferences > oXygen > Global.

The following user options are available:

• Show hidden files and directories - Shows system hidden files and folders in the file browser dialog and the folder
browser dialog. This setting is not available on Mac OS X.

Fonts

The Fonts preferences panel is opened from menu Window > Preferences > oXygen > Fonts.

The following options are available:

• Text - The family and size of the font used in text-based editors. There are two options available:

• Map to text font - Uses the same font as the one set in General / Appearance / Colors and Fonts for the basic
text editor.

• Customize - Allows you to choose a specific font.

• - Allows you to specify a font to be used in Author mode.

Document Type Association

The Document Type Association preferences panel is opened from menu Window > Preferences > oXygen > Document
Type Association.

Oxygen XML is highly customizable. Practically you can associate an entire class of documents (grouped logically by
some common features like namespace, root element name or filename) to a bundle consisting of CSS stylesheets,
validation schemas, catalog files, new files templates, transformation scenarios and even custom actions. The bundle is
called document type and the association is called Document Type Association.

The following actions are available in this preferences panel:

• Change framework directory location - Specifies a from where Oxygen XML loads the document types.
• Document types table - Presents the currently defined document type associations, ordered by priority and

alphabetically. Each row of the table represents a document type association, each holding the following information:

• Document type - Name of the document type.
• Enabled - When checked, the corresponding document type association is enabled and analyzed when the

application is trying to determine the type of an opened document.
• Storage - Displays the type of location where the framework configuration file is stored. Can be one of External

(framework configuration is saved in a file) or Internal (framework configuration is stored in the application's
internal options).

Note: Please note that if you set the Storage to Internal and the document type association settings are
already stored in a framework file, the file content is saved in application's internal options and the file
is removed.

• Priority - Displays the framework priority. Can be one of: Lowest , Low, Normal, High, Highest. You can set
a higher priority to Document Type Associations you want to be evaluated first.

When expanding a Document Type Association its defined rules are presented. A rule is described by:

Configuring the Application | 328

• Namespace - Specifies the namespace of the root element from the association rules set (* (any) by default). If
you want to apply the rule only when the root element is in no namespace, leave this field empty (remove the
ANY_VALUE string).

• Root local name - Specifies the local name of the root element (* (any) by default).
• File name - Specifies the name of the file (* (any) by default).
• Public ID - Represents the Public ID of the matched document.
• Java class - Presents the name of the Java class which is used to determine if a document matches the rule.

• New - Opens a dialog box that allows you to add a new association.
• Edit - Opens a new dialog allowing you to edit an existing association.

Note: If you try to edit an existing association type when you have no write permissions to its store location,
a dialog box will be shown, asking if you want to duplicate the document type.

• Delete - Deletes the selected associations.
• Enable DTD/XML Schema processing in document type detection - When this option is enabled, the matching

process also examines the DTD/XML Schema associated with the document. For example, the fixed attributes
declared in the DTD for the root element are also analyzed, if this is specified in the association rules.

This is especially useful if you are writing DITA customizations. DITA topics and maps are also matched by looking
for the DITAArchVersion attribute of the root element. This attribute is specified as default in the DTD and
it is detected in the root element, helping Oxygen XML to correctly match the DITA customization.

This option is enabled by default.

• Only for local DTD's / XML Schemas - When the previous feature is enabled, you can choose with this option to
process only the local DTD's / XML Schemas.

This option is enabled by default.

Editor

The Editor preferences panel is opened from menu Window > Preferences > oXygen > Editor.

Use these options to configure the visual aspect of the text editor. The same options panel is available in the restricted
version of the Preferences dialog.

The following options are available:

• Editor background - Background color for both text editor and Diff Files editors.
• Completion proposal background - Background color of the content completion assistant window.
• Completion proposal foreground - Foreground color of the content completion assistant window.
• Documentation window background - Background color of the window containing documentation for the elements

suggested by the content completion assistant.
• Documentation window foreground - Foreground color for the window containing documentation for the elements

suggested by the content completion assistant.
• Line wrap - Enables soft wrap of long lines, that is automatically wrap lines in edited documents. The document

content is unaltered as the application does not use newline characters to break long lines.
• Highlight matching tag - If you place the cursor on a start or end tag, Oxygen XML highlights the corresponding

member of the pair. You can also customize the highlight color.
• Display quick assist notification icon - Displays the Quick Assist yellow bulb icon in the editor line number stripe.
• Enable folding when opening a new editor - Enables folding support when you open a new editor pane.
• Minimum fold range (only for XML) - If Enable folding when opening a new editor option is checked, you can

specify the minimum number of lines in a block for which the folding support becomes active. If you modify this
value, the change takes effect next time you open / reopen the editor.

Configuring the Application | 329

Print

The Print preferences panel is opened from menu Window > Preferences > oXygen > Editor > Edit modes and allows
you to customize the information printed on the header and footer of a page. These settings do not apply to the Grid
and Schema Diagram modes.

You can customize the information printed in the one-row header and footer of a page. The following options are
available:

• Left, Middle and Right area of the header and footer. Here you can write a pattern of the text printed in the header
and footer of the page. You can use the following editor variables to write the text pattern:

• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document represented
as URL.

• ${cfne} - Current file name with extension.
• ${cp} - Current page number.
• ${tp} - Total number of pages in the document.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable.
• ${system(var.name)} - Value of the var.name system variable.
• ${date(pattern)} - Current date. Follows the given pattern. Example: yyyy-MM-dd.

Note: As an example, to show the current page number against the total number of pages in the top right
corner of the page, write the following pattern in the Right text area of the Header section: ${cp} from
${tp}.

• Color - Text color.
• Font - Font type. Default is SansSerif.
• Underline/Overline - When selected, a separator line is drawn between the header/footer and the page content.

Edit modes

The Edit modes preferences panel is opened from menu Window > Preferences > oXygen > Editor > Edit modes
and allows you to select the initial edit mode for an editor. The mode in which a file was edited in the previous session
is saved and is used when the application is restarted and the file reopened.

If the checkbox Allow Document Type specific edit mode setting to override the general mode setting is checked,
the initial edit mode setting from overrides the general edit mode setting from the table below.

The initial edit mode of each editor type has one of the following values:

• Text
• Grid
• Design (available only for the W3C XML Schema editor)

The Oxygen XML Developer plugin Edit modes Preferences Panel

Configuring the Application | 330

The Oxygen XML Developer plugin Edit modes Preferences Panel

Text Diagram

The Diagram preferences panel is opened from menu Window > Preferences > oXygen > Editor > Edit modes >
Text / Diagram.

• Show Full Model XML Schema diagram - If this option is enabled the old synchronized version of the schema
diagram is available in the Text mode for XML Schemas. For editing in the schema diagram, you can use the new
schema diagram editor mode.

Note: When handling very large schemas, the Schema Diagram might affect the performance of your system.
In such cases, disabling the schema diagram view improves the speed of navigation through the edited
schema.

Note: This option is unchecked by default.

• Enable Relax NG diagram and related views - This option enables the Relax NG schema diagram and
synchronization with the related views (Attributes, Model, Elements, Outline).

• Show Relax NG diagram - Displays the Relax NG schema diagram in Full Model View and Logical Model View.
• Enable NVDL diagram and related views - This option enables the NVDL schema diagram and synchronization

with the related views (Attributes, Model, Elements, Outline).
• Show NVDL diagram - Displays the NVDL schema diagram in Full Model View and Logical Model View.

Configuring the Application | 331

• Location relative to editor - Sets the location of the schema diagram panel in the editing relative to the diagram
Text editor.

Grid

The Grid preferences panel is opened from menu Window > Preferences > oXygen > Editor > Edit modes > Grid.

The following preferences are available:

• Compact representation - If checked, a more compact representation of the grid is used: a child element is displayed
at the same height level with the parent element.

Note: In the non-compact representation, a child element is presented nested with one level in the parent
container, one row lower than the parent.

• Format and indent when passing from grid to text or on save - The content of the document is formatted by
applying the Format and Indent action on every switch from the Grid editor to the Text editor of the same document.

• Default column width (characters) - The default width in characters of a table column of the grid. A column can
hold:

• element names;
• element text content;
• attribute names;
• attribute values.

If the total width of the grid structure is too large you can resize any column by dragging the column margins with
the mouse pointer, but the change is not persistent. To make it persistent, set the new column width with this option.

• Active cell color - Background color for the active cell of the grid. There is only one active cell at a time. The
keyboard input always goes to the active cell and the selection always contains it.

• Selection color - Background color for the selected cells of the grid except the active cell.
• Border color - The color used for the lines that separate the grid cells.
• Background color - The background color of grid cells that are not selected.
• Foreground color - The text color of the information displayed in the grid cells.
• Row header colors - Background color - The background color of row headers that are not selected.
• Row header colors - Active cell color - The background color of the row header cell that is currently active.
• Row header colors - Selection color - The background color of the header cells corresponding to the currently

selected rows.
• Column header colors - Background color - The background color of column headers that are not selected.
• Column header colors - Active cell color - The background color of the column header cell that is currently active.
• Column header colors - Selection color - The background color of the header cells corresponding to the currently

selected columns.

The column headers are painted with two color gradients, one for the upper 1/3 part of the header and the other for the
lower 2/3 part. The start and end colors of the first gradient are set with the first two color buttons. The start and end
colors of the second gradient are set with the last two color buttons.

Schema Design

The Schema Design preferences panel is opened from menu Window > Preferences > oXygen > Editor > Edit modes
> Schema Design

The following options are available:

• Show annotation in the diagram - Displays the content of xs:documentation elements in the XML Schema
Design view.

• When trying to edit components from another schema - Specifies the default behavior when you try to edit a
component from an imported schema. You can choose between:

• Always go to its definition - Edits the component definition in the imported file.
• Never go to its definition - Edits the component definition in the current file.

Configuring the Application | 332

• Always ask - You are always prompted to choose where you want to edit the component definition.

Properties

You can decide to show additional properties for XML Schema components in the XML Schema Design view and
customize the properties displayed for each schema component. For each component properties, you can decide if you
want to display them only when having a specified value or all the time.

Text Diagram

The following options are available:

• Show Full Model XML Schema diagram - If this option is enabled the old synchronized version of the schema
diagram is available in the Text mode for XML Schemas. For editing in the schema diagram, you can use the new
schema diagram editor mode.

Note: When handling very large schemas, the Schema Diagram might affect the performance of your system.
In such cases, disabling the schema diagram view improves the speed of navigation through the edited
schema.

Note: This option is unchecked by default.

• Enable Relax NG diagram and related views - This option enables the Relax NG schema diagram and
synchronization with the related views (Attributes, Model, Elements, Outline).

• Show Relax NG diagram - Displays the Relax NG schema diagram in Full Model View and Logical Model View.
• Enable NVDL diagram and related views - This option enables the NVDL schema diagram and synchronization

with the related views (Attributes, Model, Elements, Outline).
• Show NVDL diagram - Displays the NVDL schema diagram in Full Model View and Logical Model View.
• Location relative to editor - Sets the location of the schema diagram panel in the editing relative to the diagram

Text editor.

Format

The Format preferences panel is opened from menu Window > Preferences > oXygen > Editor > Format.

The following options are available:

• Detect indent on open - The editor detects the indent settings of the open XML document. This way you can correctly
format (pretty-print) files that were created with different settings, without changing your options every time you
edit such a file. Besides, you can activate the option for detecting the maximum line width used by the formatting
and hard wrap mechanism. These features were designed to minimize the differences created by the Format and
Indent operation when working with a versioning system, like CVS for example.

Note: If the document contains different-size indents, the application computes a weighted average value.

• Indent with tabs - When checked, sets the indent size to a tab unit. When unchecked, the application uses space
characters to form an indent. The number of space characters that form a tab is defined by the Indent size option.

• Indent size - Sets the number of space characters or the tab size that equals a single indent. An indent can be a
number of spaces or a tab, selectable using the Indent With Tabs option. For example, if set to 4, one tab equals:

• either 4 space characters, if the Indent With Tabs option is unchecked;
• or one tab that spans 4 characters, if the Indent With Tabs option is checked.

• Hard line wrap - When enabled, Oxygen XML breaks the edited line automatically when its length exceeds the
maximum set line width. This feature allows you to neatly edit a document.

• Indent on Enter - If enabled, Oxygen XML indents the new line introduced when pressing the Enter key.
• Enable Smart Enter - If you press the Enter key between a start and an end tag, Oxygen XML places the cursor in

an indented position on the empty line formed between the start and end tag.
• Detect line width on open - Detects the line width automatically when the document is opened.

Configuring the Application | 333

• Format and indent the document on open - When enabled, an XML document is formatted and indented before
opening it in the editor panel. This option applies only to documents associated with the XML editor.

• Line width - Format and Indent - Defines the point at which the Format and Indent (pretty-print) function
performs hard line wrapping. For example, if set to 100, after a Format and Indent action, the longest line will have
at most 100 characters.

• Clear undo buffer before Format and Indent - If checked, you cannot undo anymore editing actions that preceded
the Format and Indent operation. Only modifications performed after you have performed the operation can be
undone. Check this option if you encounter out of memory problems (OutOfMemoryError) when performing the
Format and Indent operation.

XML

The XML Format preferences panel is opened from menu Window > Preferences > oXygen > Editor > Format >
XML.

The following options are available:

• Preserve empty lines - The Format and Indent operation preserves all empty lines found in the document. Enabled
by default.

• Preserve text as it is - The Format and Indent operation preserves text content as it is, without removing or adding
any whitespace.

• Preserve line breaks in attributes - Line breaks found in attribute values are preserved. Enabled by default.

Note: When this option is enabled, Break long lines option is automatically disabled.

• Break long attributes - The Format and Indent operation breaks long attribute values.
• Indent inline elements - The inline elements are indented on separate lines if they are preceded by whitespaces and

they follow another element start or end tag. Enabled by default. Example:

Original XML:

<root>
 text <parent> <child></child> </parent>
</root>

Indent inline elements enabled:

<root> text <parent>
 <child/>
 </parent>
</root>

Indent inline elements disabled:

<root> text <parent> <child/> </parent> </root>

• Expand empty elements - The Format and Indent operation outputs empty elements with a separate closing tag,
ex. <a atr1="v1">. When not checked, the same operation represents an empty element in a more compact
form: <a atr1="v1"/>.

• Sort attributes - The Format and Indent operation alphabetically sorts the attributes of an element.
• Add space before slash in empty elements - Inserts a space character before the trailing / and > of empty elements.
• Break line before attribute's name - Format and Indent operation breaks the line before the attribute name.
• Element spacing Here you can control how the application handles whitespaces found in XML content.

• Preserve space - List of elements for which the Format and Indent operation preserves the whitespaces (like
blanks, tabs, and newlines). The elements can be specified by name or by XPath expressions:

• elementName

• //elementName

Configuring the Application | 334

• /elementName1/elementName2/elementName3

• //xs:localName

The namespace prefixes like xs are treated as part of the element name without taking into account its binding
to a namespace.

• Default space - This list contains the names of the elements for which contiguous whitespaces are merged by
the Format and Indent operation into one blank character.

• Mixed content - The elements from this list are treated as mixed when applying the Format and Indent operation.
The lines are split only when whitespaces are encountered.

• Schema aware format and indent - The Format and Indent operation takes into account the schema information
regarding the space preserve, mixed, or element only properties of an element. Enabled by default.

• Indent (when typing) in preserve space elements - Preserve space elements (identified by the xml:space
attribute set to preserve or by their presence in the Preserve space elements list) are normally ignored by the
Format and Indent operation. When this option is enabled and you are editing one of these elements, its content is
formatted.

• Indent on paste - sections with number of lines less than 300 - When you paste a chunk of text that has less than
300 lines, the inserted content is indented. If you want to keep the indent style of the document you are copying
content from, disable this option.

Whitespaces

This panel displays the special whitespace characters of Unicode. Any character that is checked in this panel is considered
whitespace that can be normalized in an XML document. The whitespaces are normalized when the Format and Indent
action is applied on an XML document

The characters with the codes 9 (TAB), 10 (LF), 13 (CR) and 32 (SPACE) are always in the group of whitespace
characters that must be normalized so they are always enabled in this panel.

CSS

The CSS Format preferences panel is opened from menu Window > Preferences > oXygen > Editor > Format > CSS.

The following options control the behavior of the Format and Indent operation:

• Indent class content - The class content is indented. Enabled by default.
• Class body on new line - The class body (including the curly brackets) is placed on a new line.
• Add new line between classes - An empty line is added between two classes.
• Preserve empty lines - The empty lines from the CSS content are preserved. Enabled by default.
• Allow formatting embedded CSS - The CSS content embedded in XML is formatted when the XML content is

formatted. Enabled by default.

Content Completion

The content completion feature enables inline syntax lookup and auto completion of mark-up elements and attributes
to streamline mark-up and reduce errors while editing. These settings define the operating mode of the content assistant.

The Content Completion preferences panel is opened from menu Window > Preferences > oXygen > Editor > Content
Completion.

The following options are available:

• Auto close the last opened tag - Oxygen XML Developer plugin closes the last open tag when you type </.
• Automatically rename/delete matching tag - Oxygen XML Developer plugin automatically mirrors the matching

end tag when you modify or delete the name of the start tag.
• Use content completion - Activates the content completion assistant. Enabled by default.
• Close the inserted element - When you choose an entry from the content completion assistant list of proposals,

Oxygen XML inserts both start and end tags.

• If it has no matching tag - The end tag of the inserted element is automatically added only if it is not already
present in the document.

Configuring the Application | 335

• Add element content - Oxygen XML inserts the required elements specified in the DTD, XML Schema, or
RELAX NG schema that is associated with the edited XML document.

• Add optional content - Oxygen XML inserts the optional elements specified in the DTD, XML Schema, or
RELAX NG schema.

• Add first Choice particle - Oxygen XML inserts the first choice particle specified in the DTD, XML Schema,
or RELAX NG schema.

• Case sensitive search - The search in the content completion assistant window when you type a character is
case-sensitive ('a' and 'A' are different characters).

• Cursor position between tags - When enabled, Oxygen XML sets the cursor automatically between start and end
tag for:

• elements with only optional attributes or no attributes at all;
• elements with required attributes, but only when the Insert the required attributes option is disabled.

• Show all entities - Oxygen XML displays a list with all the internal and external entities declared in the current
document when the user types the start character of an entity reference (i.e. &).

• Insert the required attributes - Oxygen XML inserts automatically the required attributes taken from the DTD or
XML Schema.

• Insert the fixed attributes - Oxygen XML automatically inserts any FIXED attributes from the DTD or XML
Schema for an element inserted with the help of the content completion assistant.

• Show recently used items - When checked, Oxygen XML remembers the last inserted items from the content
completion assistant window. The number of items to be remembered is limited by the Maximum number of recent
items shown list box. These most frequently used items are displayed on the top of the content completion window
their icon is decorated with a small red square..

• Maximum number of recent items shown - Limits the number of recently used items presented at the top of the
content completion assistant window.

• Learn attributes values - Oxygen XML learns the attribute values used in a document.
• Learn on open document - Oxygen XML automatically learns the document structure when the document is opened.
• Learn words (Dynamic Abbreviations, available on CTRL+SPACE) - When checked, Oxygen XML learns the

typed words and makes them available in a content completion fashion by pressing (CTRL+SPACE).

Note: In order to be learned, the words need to be separated by space characters.

Annotations

The Annotations preferences panel is opened from menu Window > Preferences > oXygen > Editor > Content
Completion > Annotations.

The following preferences can be configured for the annotations of the elements and attributes displayed by the content
completion assistant:

• Show annotations - Oxygen XML displays the schema annotations of an element, attribute, or attribute value
currently selected in the content completion assistant proposals list.

• Show annotations as tooltip - Oxygen XML shows the annotation of elements and attributes as a tooltip when the
mouse pointer hovers over that element or attribute in the XML editor panel or in the Elements view (both the Text
editing mode one and one).

• Use DTD comments as annotation - When enabled, Oxygen XML uses all DTD comments as annotations. If this
option is disabled, Oxygen XML displays only special Oxygen XML doc: comments, or if they are missing, it
displays any other comment found in the DTD.

• Use all Relax NG annotations as documentation - When enabled, any element outside the Relax NG namespace,
that is http://relaxng.org/ns/structure/1.0, is considered annotation and is displayed in the annotation
window next to the content completion assistant window and in the Model view. When disabled, only elements from
the Relax NG annotations namespace, that is
http://relaxng.org/ns/compatibility/annotations/1.0 are considered annotations.

Configuring the Application | 336

XSL

The XSL preferences panel defines what elements are suggested by the content completion assistant of the XSL editor
in addition to the XSL elements. It is opened from menu Window > Preferences > oXygen > Editor > Content
Completion > XSL.

The following options are available:

• Automatically detect XHTML transitional or Formatting objects - Detects if the XSL uses the XHTML or FO
schemas for content completion based on the namespaces declared on the root element.

If the detection fails, choose one of the following alternatives:

• None - The content completion assistant offers only the XSL elements.
• XHTML transitional - The content completion assistant includes XHTML Transitional elements as substitutes

for xsl:element.
• Formating objects - The content completion assistant includes Formating Objects elements as substitutes for

xsl:element.
• Custom schema - The content completion assistant includes elements from a DTD, XML Schema, RNG schema,

or NVDL schema for inserting elements from the target language of the stylesheet.

You can choose an additional schema which will be used for documenting XSL stylesheets. Either select the built-in
schema or choose a custom one. Supported schemas types are: XSD, RNG, RNC, DTD, and NDVL.

XPath

The XPath preferences panel is opened from menu Window > Preferences > oXygen > Editor > Content Completion
> XPath.

Figure 200:The Content Completion XPath Preferences Panel

The following options are available:

• Enable content completion for XPath expressions - Enables the content completion assistant in XPath expressions
entered in the XSL attributes match, select, and test and also in the XPath toolbar. Options are available to
control if the XPath functions, XSLT functions and XSLT axes are presented in the content completion proposals
list when editing XPath expressions.

• Show signatures of XSLT / XPath functions - If checked, the editor indicates in a tooltip helper the signature of
the XPath function located at the caret position. See the XPath Tooltip Helper section for more information.

XSD

These options define what elements are suggested by the content completion assistant, in addition to the ones from the
XML Schema (defined by the xs:annotation/xs:appinfo elements).

The XSD preferences panel is opened from menu Window > Preferences > oXygen > Editor > Content Completion
> XSD.

The following options are available:

• None - The content completion assistant offers only the XML Schema schema information.
• ISO Schematron - The content completion assistant includes ISO Schematron elements in xs:appinfo.
• Schematron 1.5 - The content completion assistant includes Schematron 1.5 elements in xs:appinfo.

Configuring the Application | 337

• Other - The content completion assistant includes in xs:appinfo elements from an XML Schema identified by
an URL.

Syntax Highlight

Oxygen XML supports syntax highlight for XML, DTD, Relax NG (XML and Compact Syntax), Java, JavaScript /
JSON, PHP,CSS, XQuery, C++, C, Perl, Properties, SQL, Shell and Batch documents. While Oxygen XML provides
a default color configuration for highlighting the tokens, you can choose to customize it, using the Syntax Highlight
options panel.

The Syntax Highlight options panel is opened from menu Window > Preferences > oXygen > Editor > Syntax
Highlight.

Each document type has an associated set of tokens. When a document type node is expanded, the associated tokens are
listed. For each token, you can customize the color and the font style. These properties are used in Text mode of the
editor panel. The tokens for XML documents are used also in XSD, XSL, RNG documents.

Note: The Preview area contains 4 tabs that allow you to preview XML, XSD, XSL, RNG sample files as they
are rendered in Oxygen XML.

When you do not know the name of the token that you want to configure, select a token by clicking directly on that type
of token in the Preview area.

You can edit the following color properties of the selected token:

• Foreground color - The Foreground button opens a color dialog that allows setting the color properties for the
selected token with one of the following color models: Swatches, HSB, or RGB.

Note: You can also open the dialog for changing the foreground color of a token by double-clicking (or
pressing Enter) on the tree node that corresponds to that token.

• Background color - The Background button opens the same color dialog as the Foreground button.
• Bold style - This checkbox enables the bold variant of the font for the selected token. This property is not applied

to a bidirectional document.
• Italic style - This checkbox enables the italic variant of the font for the selected token. This property is not applied

to a bidirectional document.

The Enable nested syntax highlight option controls if different content types mixed in the same file (like PHP, JS and
CSS scripts inside an HTML file) are highlighted according with the color schemes defined for each content type.

Elements / Attributes by Prefix

The Elements / Attributes by Prefix preferences panel is opened from menu Window > Preferences > oXygen >
Editor > Syntax Highlight > Elements / Attributes by Prefix.

One row of the table contains the association between a namespace prefix and the properties to mark start tags and end
tags, or attribute names in that prefix. Note that the marking mechanism does not look at the namespace bound to that
prefix. If the prefix is bound to different namespaces in different XML elements of the same file, all the tags and attribute
names with that prefix are marked with the same color.

You can edit the following color properties of the selected token:

• Foreground color - The Foreground button opens a color dialog that allows setting the color properties for the
selected token with one of the following color models: Swatches, HSB, or RGB.

Note: You can also open the dialog for changing the foreground color of a token by double-clicking (or
pressing Enter) on the tree node that corresponds to that token.

• Background color - The Background button opens the same color dialog as the Foreground button.

You can choose that only the prefix is displayed with the selected color by enabling the Draw only the prefix with a
separate color option.

Configuring the Application | 338

Open / Save

The Open / Save preferences panel is opened from menu Window > Preferences > oXygen > Editor > Open / Save.

The following options are available:

• When text from BIDI Unicode range is detected - Allows you to choose the application behavior when you try
to open a file that contains BIDI Unicode characters. You can choose between Enable bidirectional editing mode,
Disable bidirectional editing mode and Prompt for each document.

• Safe save (only for local files) - Option that provides an increased degree of protection in the unlikely event of a
failure of the Save action. This mechanism creates a temporary file that holds the edited content until it is safely
saved in the original file. If the Save action fails, the temporary file is kept in the system temporary folder,
OxygenXMLTemp subfolder.

• Save all files before transformation or validation - Saves all open files before validating or transforming an XML
document. This way the dependencies are resolved, for example when modifying both the XML document and its
XML Schema.

• Clear undo buffer on save - If enabled, Oxygen XML erases its undo stack when you save a document. Only
modifications made after you have saved the document can be undone. Check this option if you encounter frequent
out of memory problems (OutOfMemoryError) when editing very large documents.

Templates

This panel groups the preferences that are related with code templates and document templates:

• Code Templates
• Document Templates

Code Templates

Code templates are small document fragments that can be inserted quickly at the editing position and can be reused in
other editing sessions. Oxygen XML comes with a large set of ready-to use templates for XSL, XQuery, and XML
Schema. You can even share your code templates with your colleagues using the template export and import functions.

To obtain the template list, use:

• The shortcut key that activates content completion assistant on request: (Ctrl+Space) on Windows and Linux,
(Cmd+Space) on Mac OS X. It displays the code templates names in together with proposed element names.

• The shortcut key that activates code templates assistant on request: (Ctrl+Shift+Space) on Windows and Linux,
(Cmd+Shift+Space) on Mac OS X. It displays only the code templates in the proposals list.

The Code Templates preferences panel is opened from menu Window > Preferences > oXygen > Editor > Templates
> Code Templates. It contains a list with all available code templates (both built-in and custom created ones) and a
code preview area. You can disable any code template by unchecking its corresponding option box.

• New - Defines a new code template. You can choose to set the newly defined code template for a specific type of
editor or for all editor types.

• Edit - Edits the selected code template.
• Duplicate - Creates a duplicate of the currently selected code template.
• Delete - Deletes the currently selected code template. This action is disabled for the built-in code templates.
• Import - Imports a file with code templates that was created by the Export action.
• Export - Exports a file with code templates.

Document Templates

The list of document templates that are displayed in the New dialog can be extended with custom templates that are
specified in the Document Templates preferences panel. Add the template files in a folder that is specified in this panel
or in the templates folder of the Oxygen XML Developer plugin install directory.

The Document Templates preferences panel is opened from menu Window > Preferences > oXygen > Editor >
Templates > Document Templates.

Configuring the Application | 339

You can add new document template location folders and manage existing ones. You can also alter the order in which
Oxygen XML looks into these location folders by using the Up and Down buttons on a selected table row.

Spell Check

The Spell Check preferences panel is opened from menu Window > Preferences > oXygen > Editor > Spell Check.

The following options are available:

• Automatic Spell Check - When enabled, the spell checker highlights the errors as you modify the document.
• Select editors - Allows you to select the file types for which the automatic spell check takes effect. File types in

which automatic spell check is generally not useful, like CSS and DTD, are excluded by default.
• Spell checking engine - The application ships with two spell check engines, Hunspell and Java spell checker. Each

engine has a specific format of spelling dictionaries. The languages of the built-in dictionaries of the selected engine
are listed in the Default language options list.

• Default language - The default language list allows you to choose the language used by the spell check engine.

Note: You can add more spelling dictionaries to the spell check engines.

• Delete learned words - Press this button to open the list of learned words. Here you can select the items you want
to remove.

• Use "lang" and "xml:lang" attributes - If enabled, the contents of any element with one of the lang or xml:lang
attributes is checked using a dictionary suitable for the language specified in the attribute value, if this dictionary is
available. When these attributes are missing, the language used is controlled by the two radio buttons: Use the default
language or Do not check.

• XML spell checking in - These options allow you to specify if the spell checker will be enabled inside XML
comments, attribute values, text, and CDATA sections.

• Case sensitive - When enabled, spell checking reports capitalization errors, for example a word that starts with
lowercase after etc. or i.e..

• Ignore mixed case words - When enabled, operations do not check words containing mixed case characters (e.g.
SpellChecker).

• Ignore words with digits - When enabled, the spell checker does not check words containing digits (e.g. b2b).
• Ignore Duplicates - When enabled, the spell checker does not signal two successive identical words as an error.
• Ignore URL - When enabled, ignores words looking like URL or file names (e.g. www.oxygenxml.com or c:\boot.ini)

.
• Check punctuation - When enabled, punctuation checking is enabled: misplaced white space and wrong sequences,

like a dot following a comma, are highlighted as errors.
• Allow compounds words - When enabled, all words formed by concatenating two legal words with a hyphen

(hyphenated compounds) are accepted. If the language allows it, two words concatenated without hyphen (closed
compounds) are also accepted.

• Allow general prefixes - When enabled, a word formed by concatenating a registered prefix and a legal word is
accepted. For example if mini- is a registered prefix, the spell check engine accepts the word mini-computer.

• Allow file extensions - When enabled, accepts any word ending with registered file extensions (e.g. myfile.txt,
index.html, etc.).

• Ignore acronyms - When enabled, the acronyms are not reported as errors.
• Ignore elements - A list of XPath expressions for the elements that will be ignored by the spell check engine. The

following restricted set of XPath expressions are supported:

• '/' and '//' separators;
• '*' wildcard.

An example of allowed XPath expression: /a/*/b.

Document Checking

The Document Checking preferences panel is opened from menu Window > Preferences > oXygen > Editor >
Document Checking. It contains preferences for configuring how a document is checked for both well-formedness
errors and validation errors.

Configuring the Application | 340

Figure 201: Document Checking Preferences Panel

The error checking preferences are the following:

• Maximum number of validation highlights - If validation generates more errors than the number from this option
only the first errors up to this number are highlighted in editor panel and on stripe that is displayed at right side of
editor panel. This option is applied both for automatic validation and manual validation.

• Clear validation markers on close - If this option is selected all the error markers added in the Problems view for
that document are removed when a document edited with the Oxygen XML Developer plugin plugin is closed.

• Enable automatic validation - Validation of edited document is executed in background as the document is modified
by editing in Oxygen XML Developer plugin .

• Delay after the last key event (s) - The period of keyboard inactivity which starts a new validation (in seconds).

Mark Occurrences

The Mark Occurrences preferences panel is opened from menu Window > Preferences > oXygen > Editor > Mark
Occurrences:

The following preferences can be set:

• XSLT files - activates the Highlight Component Occurrences in XSLT files;
• XML Schema files - activates the Highlight Component Occurrences in XSD files;
• Declaration highlight color - color used to highlight the component declaration;
• Reference highlight color - color used to highlight component references.

Custom Validation Engines

The Custom Validation Engines preferences panel is opened from menu Window > Preferences > oXygen > Editor
> Custom Validations.

If you want to add a new custom validation tool or edit the properties of an exiting one you can use the Custom Validator
dialog displayed by pressing the New button or the Edit button.

Configuring the Application | 341

Figure 202: Edit a Custom Validator

The configurable parameters of a custom validator are the following:

• Name - Name of the custom validation tool displayed in the Custom Validation Engines toolbar.
• Executable path - Path to the executable file of the custom validation tool. You can insert here editor variables like

${home}, ${pd}, ${oxygenInstallDir}, etc.
• Working directory - The working directory of the custom validation tool.
• Associated editors - The editors which can perform validation with the external tool: the XML editor, the XSL

editor, the XSD editor, etc.
• Command line arguments for detected schemas - Command line arguments used in the commands that validate

the current edited file against different types of schema: W3C XML Schema, Relax NG full syntax, Relax NG
compact syntax, NVDL, Schematron, DTD, etc.. The arguments can include any custom switch (like -rng) and the
following editor variables:

• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${cfu} - The path of the current file as a URL.
• ${ds} - The path of the detected schema as a local file path.
• ${dsu} - The path of the detected schema as a URL.

CSS Validator

The CSS Validator preferences panel is opened from menu Window > Preferences > oXygen > CSS Validator.

The following options can be configured for Oxygen XML Developer plugin 's built-in CSS validator:

• Profile - Selects one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3, CSS 3 with Oxygen
extensions, SVG, SVG Basic, SVG Tiny, Mobile, TV Profile, ATSC TV Profile. The profile CSS 3 with Oxygen
extensions includes all the CSS 3 standard properties and the CSS extensions specific for Oxygen that can be used
in Author mode. That means all Oxygen specific extensions are accepted in a CSS stylesheet by the built-in CSS
validator when this profile is selected.

Configuring the Application | 342

• Media type - Selects one of the available mediums: all, aural, braille, embossed, handheld, print, projection,
screen, tty, tv, presentation, oxygen.

• Warning level - Sets the minimum severity level for reported validation warnings. Can be one of: All, Normal,
Most Important, No Warnings.

• Ignore properties - Here you can type comma separated patterns that match the names of CSS properties that will
be ignored at validation. As wildcards you can use:

• * to match any string;
• ? to match any character.

• Recognize browser CSS extensions (applies also to content completion) - If checked, Oxygen XML Developer
plugin recognizes (no validation is performed) browser-specific CSS properties. The content completion assistant
lists these properties at the end of its list, prefixed with the following particles:

• -moz- for Mozilla;
• -ms- for Internet Explorer;
• -o- for Opera;
• -webkit- for Safari/Webkit.

XML

This section describes the panels that contain the user preferences related with XML.

XML Catalog

The XML Catalog preferences panel is opened from menu Window > Preferences > oXygen > XML > XML Catalog.

The Prefer option is used to specify if Oxygen XML Developer plugin will try to resolve first the PUBLIC or SYSTEM
reference from the DOCTYPE declaration of the XML document. If PUBLIC is preferred and a PUBLIC reference is
not mapped in any of the XML catalogs then a SYSTEM reference is looked up.

When using catalogs it is sometimes useful to see what catalog files are parsed, if they are valid or not, and what identifiers
are resolved by the catalogs. The Verbosity option selects the detail level of such logging messages of the XML catalog
resolver that will be displayed in the Catalogs view at the bottom of the window:

• None - No message is displayed by the catalog resolver when it tries to resolve a URI reference, a SYSTEM one or
a PUBLIC one with the XML catalogs specified in this panel.

• Unresolved entities - Only the logging messages that track the failed attempts to resolve references are displayed.
• All messages - The messages of both failed attempts and successful ones are displayed.

If the Process namespaces through URI mappings for XML Schema option is not selected only the schema location
of an XML Schema that is declared in an XML document is searched in XML catalogs. If the option is selected the
schema location of an XML Schema is searched and if it is not resolved the namespace of the schema is also searched.

If the Use default catalog option is checked the first XML catalog which Oxygen XML Developer plugin will use to
resolve references at document validation and transformation will be a default built-in catalog. This catalog maps such
references to the built-in local copies of the schemas of the Oxygen XML Developer plugin frameworks: DocBook,
DITA, TEI, XHTML, SVG, etc.

You can also add or configure catalogs at framework level in the Document Type Association preferences page.

When you add, delete or edit an XML catalog to / from the list you must reopen the current edited files which use the
modified catalog or run the action Reset Cache and Validate so that the XML catalog changes take full effect.

XML Parser

The XML Parser preferences panel is opened from menu Window > Preferences > oXygen > XML > XML Parser.

The configurable options of the built-in XML parser are the following:

Configuring the Application | 343

• http://apache.org/xml/features/validation/schema-full-checking - Sets the schema-full-checking feature to true,
that is a validation of the parsed XML document is performed against a schema (W3C XML Schema or DTD) while
the document is parsed.

• http://apache.org/xml/features/honour-all-schema-location - Sets the honour-all-schema-location feature to true.
This means all the files that declare W3C XML Schema components from the same namespace are used to compose
the validation model. If this option is not selected only the first W3C XML Schema file that is encountered in the
XML Schema import tree is taken into account.

• Ignore the DTD for validation if a schema is specified - Forces validation against a referred schema (W3C XML
Schema, Relax NG schema, Schematron schema) even if the document includes also a DTD DOCTYPE declaration.
This option is useful when the DTD declaration is used only to declare DTD entities and the schema reference is
used for validation against a W3C XML Schema, a Relax NG schema or a Schematron schema.

• Enable XInclude processing - Enables XInclude processing. If checked, the XInclude support in Oxygen XML
Developer plugin is turned on for validation and transformation of XML documents.

• Base URI fix-up - According to the specification for XInclude, processors must add an xml:base attribute to
elements included from locations with a different base URI. Without these attributes, the resulting infoset information
would be incorrect.

Unfortunately, these attributes make XInclude processing not transparent to Schema validation. One solution to this
is to modify your schema to allow xml:base attributes to appear on elements that might be included from different
base URIs.

If the addition of xml:base and / or xml:lang is undesired by your application, you can disable base URI fix-up.

• Language fix-up - The processor will preserve language information on a top-level included element by adding an
xml:lang attribute if its include parent has a different [language] property. If the addition of xml:lang is undesired
by your application, you can disable the language fix-up.

• Check ID/IDREF - Checks the ID/IDREF matches when the Relax NG document is validated.
• Check feasibly valid - Checks the Relax NG to be feasibly valid when this document is validated.
• Schematron XPath Version - Selects the version of XPath for the expressions that are allowed in Schematron

assertion tests: 1.0 or 2.0. This option is applied both in standalone Schematron schemas and in embedded Schematron
rules, both in Schematron 1.5 and in ISO Schematron.

• Optimize (visit-no-attributes) - If your ISO Schematron assertion tests do not contain the attributes axis you should
check this option for faster ISO Schematron validation.

• Allow foreign elements (allow-foreign) - Enables support for allow-foreign on ISO Schematron. This option
is used to pass non-Schematron elements to the generated stylesheet.

• Use Saxon EE (schema aware) for xslt2 query binding - If checked, Saxon EE will be used for xslt2 query
binding. If not checked, Saxon PE will be used instead.

Saxon EE Validation

The Saxon EE Validation preferences panel is opened from menu Window > Preferences > oXygen > XML > XML
Parser > Saxon EE Validation.

The following options are available:

• XML Schema version - allows you to select the version of W3C XML Schema for validation against XML Schema
performed by the Saxon EE engine: XML Schema 1.0 or XML Schema 2.0.

• XML Schema validation - Use Saxon EE as default XML Schema validation engine - you can set Oxygen XML
Developer plugin to use Saxon EE as default XML Schema validator. If enabled it is used to validate XML Schema
and XML documents against an XML Schema. By default this option is turned off.

XML Instances Generator

The XML Instances Generator preferences panel is opened from menu Window > Preferences > oXygen > XML >
XML Instances Generator. It sets the default parameters of the Generate Sample XML Files tool that is available on
the Tools menu.

The options of the tool that generates XML instance documents based on a W3C XML Schema are the following:

Configuring the Application | 344

• Generate optional elements - If checked, the elements declared optional in the schema will be generated in the
XML instance.

• Generate optional attributes - If checked, the attributes declared optional in the schema will be generated in the
XML instance.

• Values of elements and attributes - Specifies what values are generated in elements and attributes of the XML
instance. It can have one of the values:

• None - no values for the generated elements and attributes
• Default - the value is the element name or attribute name
• Random - a random value

• Preferred number of repetitions - The number of repetitions for an element that has a big value of the maxOccurs
attribute.

• Maximum recursivity level - For recursive type definitions this parameter specifies the number of levels of recursive
elements inserted in the parent element with the same name.

• Choice strategy - For choice element models specifies what choice will be generated in the XML instance:

• First - the first choice is selected from the choice definition and an instance of that choice is generated in the
XML instance document.

• Random - a random choice is selected from the choice definition and an instance of that will be generated.

• Generate the other options as comments - If checked, the other options of the choice element model (the options
which are not selected) will be generated inside an XML comment in the XML instance.

• Use incremental attribute / element names as default - If checked, the value of an element or attribute starts with
the name of that element or attribute. For example, for an a element the generated values are: a1, a2, a3, etc. If not
checked, the value is the name of the type of that element / attribute, for example: string, decimal, etc.

• Maximum length - The maximum length of string values generated for elements and attributes.
• Discard optional elements after nested level - The optional elements that exceed the specified nested level are

discarded. This option is useful for limiting deeply nested element definitions that can quickly result in very large
XML documents.

XProc Engines

Oxygen XML Developer plugin comes with a built-in XProc engine called Calabash. An external XProc engine can
be configured in this panel.

When Show XProc messages is selected all messages emitted by the XProc processor during a transformation will be
presented in the results view.

For an external engine the value of the Name field will be displayed in the XProc transformation scenario and in the
command line that will start it.

Configuring the Application | 345

Figure 203: Creating an XProc external engine

Other parameters that can be set for an XProc external engine are the following: , and the error stream of the engine,
the working directory of the command that will start the engine. The encodings will be used for reading and displaying
the output of the engine. The working directory and

• a textual description that will appear as tooltip where the XProc engine will be used
• the encoding for the output stream of the XProc engine, used for reading and displaying the output messages
• the encoding for the error stream of the XProc engine, used for reading and displaying the messages from the error

stream
• the working directory for resolving relative paths
• the command line that will run the XProc engine as an external process; the command line can use built-in editor

variables and custom editor variables for parameterizing a file path.

XSLT/FO/XQuery

The XSLT/FO/XQuery preferences panel is opened from menu Window > Preferences > oXygen > XML >
XSLT/FO/XQuery. This panel contains only the most generic options for working with XSLT / XSL-FO / XQuery
processors. The more specific options are grouped in other panels linked as child nodes of this panel in the tree of the
Preferences dialog.

There is only one generic option available:

Create transformation temporary files in system temporary directory - It should be selected only when the temporary
files necessary for performing transformations are created in the same folder as the source of the transformation (the
default behavior, when this option is not selected) and this breaks the transformation. An example of breaking the
transformation is when the transformation processes all the files located in the same folder as the source of the
transformation, which will include the temporary files, and the result is incorrect or the transformation fails due to this
fact.

Configuring the Application | 346

XSLT

The XSLT preferences panel is opened from menu Window > Preferences > oXygen > XML > XSLT/FO/XQuery
> XSLT.

If you want to use an XSLT transformer implemented in Java different than the ones that ship with Oxygen XML
Developer plugin namely Apache Xalan and Saxon all you have to do is to specify the name of the transformer's factory
class which Oxygen XML Developer plugin will set as the value of the Java property
javax.xml.transform.TransformerFactory. For instance, to perform an XSLT transformation with Saxon
9.3.0.5 you have to place the Saxon 9.3.0.5 jar file in the Oxygen XML Developer plugin libraries folder (the lib
subfolder of the Oxygen XML Developer plugin installation folder), set
net.sf.saxon.TransformerFactoryImpl as the property value and select JAXP as the XSLT processor in
the transformation scenario associated to the transformed XML document.

The XSLT preferences are the following:

• Value - Allows the user to enter the name of the transformer factory Java class.
• XSLT 1.0 Validate with - Allows the user to set the XSLT engine used for validation of XSLT 1.0 documents.
• XSLT 2.0 Validate with - Allows the user to set the XSLT Engine used for validation of XSLT 2.0 documents.

Saxon6

The Saxon 6 preferences panel is opened from menu Window > Preferences > oXygen > XML > XSLT/FO/XQuery
> XSLT > Saxon > Saxon 6.

Figure 204:The Saxon 6 XSLT Preferences Panel

The built-in Saxon 6 XSLT processor can be configured with the following options:

• Line numbering - If checked, line numbers are maintained and reported in error messages for the XML source
document.

• Disable calls on extension functions - If checked, external functions called is disallowed. Checking this is
recommended in an environment where untrusted stylesheets may be executed. Also disables user-defined extension
elements, together with the writing of multiple output files, all of which carry similar security risks.

• Handling of recoverable stylesheet errors - Allows the user to choose how dynamic errors will be handled. Either
one of the following options can be selected:

• recover silently - continue processing without reporting the error,
• recover with warnings - issue a warning but continue processing,
• signal the error and do not attempt recovery - issue an error and stop processing.

Saxon HE/PE/EE

The Saxon HE/PE/EE preferences panel is opened from menu Window > Preferences > oXygen > XML >
XSLT/FO/XQuery > XSLT > Saxon > Saxon HE/PE/EE.

Configuring the Application | 347

Figure 205:The Saxon HE/PE/EE XSLT preferences panel

The XSLT options which can be configured for the Saxon 9.3.0.5 transformer (all three editions: Home Edition,
Professional Edition, Enterprise Edition) are the following:

• Use a configuration file ("-config") - Sets a Saxon 9 configuration file that will be used for XSLT transformation
and validation.

• Version warnings ("-versmsg") - Warns you when the transformation is applied to an XSLT 1.0 stylesheet.
• Line numbering ("-l") - Error line number is included in the output messages.
• Debugger trace into XPath expressions (applies to debugging sessions) - Instructs the XSLT Debugger to step

into XPath expressions.
• DTD validation of the source ("-dtd") - The following options are available:

• On, requests DTD-based validation of the source file and of any files read using the document() function;
• Off (default setting) suppresses DTD validation.
• Recover, performs DTD validation but treats the errors as non-fatal.

Note that any external DTD is likely to be read even if not used for validation, because DTDs can contain definitions
of entities.

• Recoverable errors ("-warnings") - Policy for handling recoverable errors in the stylesheet: Allows you to choose
how dynamic errors are handled. One of the following options can be selected:

• Recover silently ("silent") ;
• Recover with warnings ("recover") - default setting;
• Signal the error and do not attempt recovery ("fatal").

• Strip whitespaces ("-strip") - Strip whitespaces feature can be one of the following three options:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless
of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes in the source document.

• Ignorable ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xsl:strip-space declarations in the stylesheet, or any xml:space attributes

Configuring the Application | 348

in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or
schema as having element-only content.

• None ("none") - default setting. No whitespaces are stripped before further processing. However, whitespace
will still be stripped if this is specified in the stylesheet using xsl:strip-space.

• Optimization level ("-opt") - Set optimization level. The value is an integer in the range 0 (no optimization) to 10
(full optimization); currently all values other than 0 result in full optimization but this is likely to change in the future.
The default is full optimization; this feature allows optimization to be suppressed in cases where reducing compile
time is important, or where optimization gets in the way of debugging, or causes extension functions with side-effects
to behave unpredictably. (Note however, that even with no optimization, the lazy evaluation may still cause the
evaluation order to be not as expected.)

• Allow calls on extension functions ("-ext") - If checked, the stylesheet is allowed to call external Java functions.
This does not affect calls on integrated extension functions, including Saxon and EXSLT extension functions. This
option is useful when loading an untrusted stylesheet, perhaps from a remote site using an http:// URL; it ensures
that the stylesheet cannot call arbitrary Java methods and thereby gain privileged access to resources on your machine.

• Validation of the source file ("-val") - Requests schema-based validation of the source file and of any files read
using the document() or similar functions. Validation is available only with Saxon-EE, and this flag automatically
switches on the -sa option. Available options:

• Schema validation ("strict") - This mode requires an XML Schema and specifies that the source documents
should be parsed with schema-validation enabled.

• Lax schema validation ("lax") - This mode specifies if the source documents should be parsed with
schema-validation enabled if an XML Schema is provided.

• Disable schema validation - This specifies that the source documents should be parsed with schema-validation
disabled.

• Validation errors in the results tree treated as warnings ("-outval") - Normally, if validation of result documents
is requested, a validation error is fatal. Enabling this option causes such validation failures to be treated as warnings.

• Write comments for non-fatal validation errors of the result document - The validation messages are written
(where possible) as a comment in the result document itself.

Saxon HE/PE/EE Advanced

The Saxon HE/PE/EE Advanced preferences panel is opened from menu Window > Preferences > oXygen > XML
> XSLT/FO/XQuery > XSLT > Saxon > Saxon HE/PE/EE > Advanced.

Figure 206:The Saxon HE/PE/EE XSLT Advanced Preferences Panel

There are some advanced XSLT options which can be configured for the Saxon 9.3.0.5 transformer (all three editions:
Home Edition, Professional Edition, Enterprise Edition):

• URI Resolver class name ("-r") - Allows the user to specify a custom implementation for the URI resolver used
by the XSLT Saxon 9.3.0.5 transformer (the -r option when run from the command line). The class name must be
fully specified and the corresponding jar or class extension must be configured from the dialog for configuring the
XSLT extension for the particular transformation scenario.

• Collection URI Resolver class name ("-cr") - Allows the user to specify a custom implementation for the Collection
URI resolver used by the XSLT Saxon 9.3.0.5 transformer (the -cr option when run from the command line). The
class name must be fully specified and the corresponding jar or class extension must be configured from the dialog
for configuring the XSLT extension for the particular transformation scenario.

Configuring the Application | 349

XSLTProc

The XSLTProc preferences panel is opened from menu Window > Preferences > oXygen > XML > XSLT/FO/XQuery
> XSLT > XSLTProc.

The options of the XSLTProc processor are the same as the ones available in the command line:

• Enable XInclude processing - If checked, XInclude references will be resolved when XSLTProc is used as transformer
in XSLT transformation scenarios.

• Skip loading the document's DTD - If checked, the DTD specified in the DOCTYPE declaration will not be loaded.
• Do not apply default attributes from document's DTD - If checked, the default attributes declared in the DTD

and not specified in the document are not included in the transformed document.
• Do not use Internet to fetch DTD's, entities or docs - If checked, the remote references to DTD's and entities are

not followed.
• Maximum depth in templates stack - If this limit of maximum templates depth is reached the transformation ends

with an error.
• Verbosity - If checked, the transformation will output detailed status messages about the transformation process in

the Warnings view.
• Show version of libxml and libxslt used - If checked, Oxygen XML Developer plugin will display in the Warnings

view the version of the libxml and libxslt libraries invoked by XSLTProc.
• Show time information - If checked, the Warnings view will display the time necessary for running the

transformation.
• Show debug information - If checked, the Warnings view will display debug information about what templates

are matched, parameter values, etc.
• Show all documents loaded during processing - If checked, Oxygen XML Developer plugin will display in the

Warnings view the URL of all the files loaded during transformation.
• Show profile information - If checked, Oxygen XML Developer plugin will display in the Warnings view a table

with all the matched templates, and for each template will display: the match XPath expression, the template name,
the number of template modes, the number of calls, the execution time.

• Show the list of registered extensions - If checked, Oxygen XML Developer plugin will display in the Warnings
view a list with all the registered extension functions, extension elements and extension modules.

• Refuses to write to any file or resource - If checked, the XSLTProc processor will not write any part of the
transformation result to an external file on disk. If such an operation is requested by the processed XSLT stylesheet
the transformation ends with a runtime error.

• Refuses to create directories - If checked, the XSLTProc processor will not create any directory during the
transformation process. If such an operation is requested by the processed XSLT stylesheet the transformation ends
with a runtime error.

MSXML

The MSXML preferences panel is opened from menu Window > Preferences > oXygen > XML > XSLT/FO/XQuery
> XSLT > MSXML.

The options of the MSXML 3.0 and 4.0 processors are the same as the ones available in the command line for the
MSXML processors:

• Validate documents during parse phase - If checked and either the source or stylesheet document has a DTD or
schema against which its content can be checked, validation is performed.

• Do not resolve external definitions during parse phase - By default, MSXSL instructs the parser to resolve external
definitions such as document type definition (DTD), external subsets or external entity references when parsing the
source and style sheet documents. If this option is checked the resolution is disabled.

• Strip non-significant whitespaces - If checked, strips non-significant white space from the input XML document
during the load phase. Enabling this option can lower memory usage and improve transformation performance while,
in most cases, creating equivalent output.

• Show time information - If checked, the relative speed of various transformation steps can be measured:

• the time to load, parse, and build the input document
• the time to load, parse, and build the stylesheet document

Configuring the Application | 350

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=21714
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=21714

• the time to compile the stylesheet in preparation for the transformation
• the time to execute the stylesheet

• Start transformation in this mode - Although stylesheet execution usually begins in the empty mode, this default
may be changed by specifying another mode. Changing the start mode allows execution to jump directly to an
alternate group of templates.

MSXML.NET

The MSXML.NET preferences panel is opened from menu Window > Preferences > oXygen > XML >
XSLT/FO/XQuery > XSLT > MSXML.NET.

The options of the MSXML.NET processor are the same as the ones available in the command line for the MSXML.NET
processor:

• Enable XInclude processing - If checked, XInclude references will be resolved when MSXML.NET is used as
transformer in the XSLT transformation scenario.

• Validate documents during parse phase - If checked and either the source or stylesheet document has a DTD or
schema against which its content can be checked, validation is performed.

• Do not resolve external definitions during parse phase - By default MSXML.NET resolves external definitions
such as DTD external subsets or external entity references when parsing source XML document and stylesheet
document. Using this option you can disable this behaviour. Note, that it may affect also the validation process for
the XML document.

• Strip non-significant whitespaces - If checked, strips non-significant white space from the input XML document
during the load phase. Enabling this option can lower memory usage and improve transformation performance while,
in most cases, creating equivalent output.

• Show time information - If checked, the relative speed of various transformation steps can be measured:

• the time to load, parse, and build the input document
• the time to load, parse, and build the stylesheet document
• the time to compile the stylesheet in preparation for the transformation
• the time to execute the stylesheet

• Forces ASCII output encoding - There is a known problem with .NET 1.X XSLT processor
(System.Xml.Xsl.XslTransform class): it doesn't support escaping of characters as XML character references
when they cannot be represented in the output encoding. That means that when you output a character that cannot
be represented in output encoding, it will be outputted as '?'. Usually this happens when output encoding is set to
ASCII. With this option checked the output is forced to be ASCII encoded and all non-ASCII characters get escaped
as XML character references (&#nnnn; form).

• Allow multiple output documents - This option allows to create multiple result documents using the
exsl:document extension element.

• Use named URI resolver class - This option allows to specify a custom URI resolver class to resolve URI references
in xsl:import and xsl:include instructions (during XSLT stylesheet loading phase) and in document()
function (during XSL transformation phase).

• Assembly file name for URI resolver class - The previous option specifies partially or fully qualified URI resolver
class name, e.g. Acme.Resolvers.CacheResolver. Such name requires additional assembly specification
using this option or the next option, but fully qualified class name (which always includes an assembly specifier) is
all-sufficient. See MSDN for more info about fully qualified class names. This option specifies a file name of the
assembly, where the specified resolver class can be found.

• Assembly GAC name for URI resolver class - This option specifies partially or fully qualified name of the assembly
in the global assembly cache (GAC), where the specified resolver class can be found. See MSDN for more info
about partial assembly names. Also see the previous option.

• List of extension object class names - This option allows to specify extension object classes, whose public methods
then can be used as extension functions in an XSLT stylesheet. It is a comma-separated list of namespace-qualified
extension object class names. Each class name must be bound to a namespace URI using prefixes as when providing
XSLT parameters.

• Use specified EXSLT assembly - MSXML.NET supports a rich library of the EXSLT and EXSLT.NET extension
functions embedded or in a plugged in EXSLT.NET library. EXSLT support is enabled by default and cannot be

Configuring the Application | 351

http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx
http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconspecifyingfullyqualifiedtypenames.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconglobalassemblycache.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconpartialassemblyreferences.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/ cpconxsltargumentlistforstylesheetparametersextensionobjects.asp
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.xmllab.net/Products/nxslt/tabid/62/Default.aspx#parameters
http://www.exslt.org/
http://www.xmllab.net/exslt

disabled in this version. If you want to use an external EXSLT.NET implementation instead of a built-in one use
this option.

• Credential loading source xml - This option allows to specify user credentials to be used when loading XML source
documents. The credentials should be provided in the username:password@domain format (all parts are optional).

• Credential loading stylesheet - This option allows to specify user credentials to be used when loading XSLT
stylesheet documents. The credentials should be provided in the username:password@domain format (all parts are
optional).

XQuery

The XQuery preferences panel is opened from menu Window > Preferences > oXygen > XML > XSLT/FO/XQuery
> XQuery.

The generic XQuery preferences are the following:

• XQuery validate with - Allows you to select the processor to validate the XQuery. In case you are validating an
XQuery file that has an associated validation scenario, Oxygen XML Developer plugin uses the processor specified
in the scenario. If no validation scenario is associated, but the file has an associated transformation scenario, the
processor specified in the scenario will be used. If the processor does not support validation or if no scenario is
associated, then the value from this combo box will be used as validation processor

• Size limit of Sequence view (MB) - When the result of an XQuery transformation is set in the transformation
scenario as sequence the size of one chunk of the result that is fetched from the database in lazy mode in one step
is set in this option. If this limit is exceed you can extract more data from the database by a click on the More result
available node from the Sequence view.

• Format transformer output - When checked the transformer's output is formatted and indented (pretty printed).
The option is ignored if in the transformation scenario you choose Sequence (lazy extract data from a database).

• Create structure indicating the type nodes - If checked, Oxygen XML Developer plugin takes the results of a
query and creates an XML document containing copies of all items in the sequence, suitably wrapped. The option
is ignored if in the transformation scenario you choose Sequence (lazy extract data from a database).

Saxon HE/PE/EE

The Saxon HE/PE/EE preferences panel is opened from menu Window > Preferences > oXygen > XML >
XSLT/FO/XQuery > XQuery > Saxon HE/PE/EE.

Configuring the Application | 352

Figure 207:The Saxon XQuery Preferences panel

The XQuery preferences for the Saxon 9.3.0.5 are the following:

• Use a configuration file ("-config") - Sets a Saxon 9 configuration file that will be used for XQuery transformation
and validation.

• Handling of recoverable stylesheet errors - Allows the user to choose how dynamic errors will be handled. Either
one of the following options can be selected:

• recover silently - continue processing without reporting the error,
• recover with warnings - issue a warning but continue processing,
• signal the error and do not attempt recovery - issue an error and stop processing.

• Strip whitespaces - Can have one of the following three values:

• All - Strips all whitespace text nodes from source documents before any further processing, regardless of any
xml:space attributes in the source document.

• Ignore - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless
of any xml:space attributes in the source document. Whitespace text nodes are ignorable if they appear in
elements defined in the DTD or schema as having element-only content.

• None - Strips no whitespace before further processing.

• Optimization level - This option allows optimization to be suppressed in cases where reducing compile time is
important, or where optimization gets in the way of debugging, or causes extension functions with side-effects to
behave unpredictably.

The Saxon 9.3.0.5 Professional Edition options are the following:

• Disable calls on extension functions - If unchecked, external functions calls is allowed. Checking this is recommended
in an environment where untrusted stylesheets may be executed. Also disables user-defined extension elements,
together with the writing of multiple output files, all of which carry similar security risks.

The Saxon 9.3.0.5 Enterprise Edition specific options are the following:

• Validation of the source - This determines whether XML source documents should be parsed with schema-validation
enabled.

Configuring the Application | 353

• Validation errors in the results tree treated as warnings - Available only for Saxon EE. If checked, all validation
errors are treated as warnings, otherwise they are treated as fatal.

• Enable XQuery 1.1 support - If checked, Saxon EE runs the XQuery transformation with the XQuery 1.1 support.
• Backup files updated by XQuery ("-backup:(on|off)") - If checked, backup versions for any XML files updated

with XQuery Update will be generated.

Saxon HE/PE/EE Advanced

The Saxon HE/PE/EE Advanced preferences panel is opened from menu Window > Preferences > oXygen > XML
> XSLT/FO/XQuery > XQuery > Saxon HE/PE/EE > Advanced.

Figure 208:The Saxon HE/PE/EE XQuery Advanced Preferences Panel

The advanced XQuery options which can be configured for the Saxon 9.3.0.5 XQuery transformer (all editions: Home
Edition, Professional Edition, Enterprise Edition) are the following:

• URI Resolver class name - Allows the user to specify a custom implementation for the URI resolver used by the
XQuery Saxon 9.3.0.5 transformer (the -r option when run from the command line). The class name must be fully
specified and the corresponding jar or class extension must be configured from the dialog for configuring the XQuery
extension for the particular transformation scenario.

• Collection URI Resolver class name - Allows the user to specify a custom implementation for the Collection URI
resolver used by the XQuery Saxon 9.3.0.5 transformer (the -cr option when run from the command line). The class
name must be fully specified and the corresponding jar or class extension must be configured from the dialog for
configuring the XQuery extension for the particular transformation scenario.

Debugger

This section explains the settings available for the Debugger perspective. The settings are available from menu Window
> Preferences > oXygen > XML > XSLT/FO/XQuery > Debugger.

The debugger preferences are the following:

• Show xsl:result-document output - If checked, the debugger presents the output of xsl:result-document
instructions into the debugger output view.

• Infinite loop detection - Set this option to receive notifications when an infinite loop occurs during transformation.
• Maximum depth in templates stack - Sets how many xsl:template instructions can appear on the current

stack. This setting is used by the infinite loop detection.
• Debugger layout - A horizontal layout means that the stack of XML editors takes the left half of the editing area

and the stack of XSL editors takes the right one. A vertical layout means that the stack of XML editors takes the
upper half of the editing area and the stack of XSL editors takes the lower one.

Annotations

The Annotations preferences panel is opened from menu Window > Preferences > General > Editors > Text Editors
> Annotations.

The following Oxygen XML Developer plugin preferences are available:

• XSLT/XQuery Debug Current Instruction Pointer - Controls the background color of the current execution node,
both in the document (XML) and XSL/XQuery views.

Profiler

This section explains the settings available for the XSLT Profiler. To access and modify them please go to menu Window
> Preferences > oXygen > XML > XSLT/FO/XQuery > Profiler (see Debugger on page 354).

Configuring the Application | 354

The following profiles settings are available:

• Show time - Shows the total time that was spent in the node.
• Show inherent time - Shows the inherent time that was spent in the node. The inherent time is defined as the total

time of a node minus the time of its child nodes.
• Show invocation count - Shows how many times the node was called in this particular call sequence.
• Time scale - The time scale options determine the unit of time measurement, which may be milliseconds or

microseconds.
• Hotspot threshold - The threshold below which hot spots are ignored (milliseconds).
• Ignore invocation less than - The threshold below which invocations are ignored (microseconds).
• Percentage calculation - The percentage base determines against what time span percentages are calculated:

• Absolute - Percentage values show the contribution to the total time.
• Relative - Percentage values show the contribution to the calling node.

FO Processors

Besides the built-in formatting objects processor (Apache FOP) other external processors can be configured and set in
transformation scenarios for processing XSL-FO documents.

Oxygen XML Developer plugin has implemented an easy way to add two of the most used commercial FO processors:
RenderX XEP and Antenna House XSL Formatter. You can easily add RenderX XEP as external FO processor if the
user has the XEP installed. Also, if you have the Antenna House XSL Formatter v4 or v5, Oxygen XML Developer
plugin uses the environmental variables set by the XSL Formatter installation to detect and use it for XSL-FO
transformations. If the environmental variables are not set for the XSL Formatter installation, you can browse and choose
the executable just as you would for XEP.

The FO Processors preferences panel is opened from menu Window > Preferences > oXygen > XML >
XSLT/FO/XQuery > FO Processors.

Figure 209:The FO Processors Preferences Panel

Configuring the Application | 355

Apache FOP

The options for FO processors are the following:

• Use built-in Apache FOP - Instructs Oxygen XML Developer plugin to use its built-in Apache FO processor.
• Use other Apache FOP - Instructs Oxygen XML Developer plugin to use another Apache FO processor installed

on your computer.
• Enable the output of the built-in FOP - All Apache FOP output is displayed in a results pane at the bottom of the

Oxygen XML Developer plugin window including warning messages about FO instructions not supported by Apache
FOP.

• Memory available to the built-in FOP - If your Apache FOP transformations fail with an Out of Memory error
(OutOfMemoryError) select from this combo box a larger value for the amount of memory reserved for FOP
transformations.

• Configuration file for the built-in FOP - You should specify here the path to an Apache FOP configuration file,
necessary for example to render to PDF a document containing Unicode content using a special true type font.

• Generates PDF/A-1b output - When selected PDF/A-1b output is generated.

Note: All fonts have to be embedded, even the implicit ones. More information about configuring metrics
files for the embedded fonts can be found in Add a font to the built-in FOP.

Note: You cannot use the <filterList> key in the configuration file because FOP would generate the
following error: The Filter key is prohibited when PDF/A-1 is active.

External FO processors

In this section you can manage the external FO processors you want to use in transformation scenarios. Press the New
button to add a new external FO processor. The following dialog is displayed:

Figure 210:The External FO Processor Configuration Dialog

• Name - The name displayed in the list of available FOP processors on the FOP tab of the transformation scenario
dialog.

• Description - A textual description of the FO processor displayed in the FO processors table and in tooltips of UI
components where the processor is selected.

• Output Encoding - The encoding of the FO processor output stream displayed in a results panel at the bottom of
the Oxygen XML Developer plugin window.

• Error Encoding - The encoding of the FO processor error stream displayed in a results panel at the bottom of the
Oxygen XML Developer plugin window.

Configuring the Application | 356

• Working directory - The directory where the intermediate and final results of the processing is stored. Here you
can use one of the following editor variables:

• ${homeDir} - The path to user home directory.
• ${cfd} - The path of current file directory. If the current file is not a local file, the target is the user's desktop

directory.
• ${pd} - The project directory.
• ${oxygenInstallDir} - The Oxygen XML Developer plugin installation directory.

• Command line - The command line that starts the FO processor, specific to each processor. Here you can use one
of the following editor variables:

• ${method} - The FOP transformation method: pdf, ps or txt.
• ${fo} - The input FO file.
• ${out} - The output file.
• ${pd} - The project directory.
• ${frameworksDir} - The path of the frameworks subdirectory of the Oxygen XML Developer plugin install

directory.
• ${oxygenInstallDir} - The Oxygen XML Developer plugin installation directory.
• ${ps} - The platform-specific path separator. It is used between the library files specified in the class path of the

command line.

XPath

The XPath preferences panel is opened from menu Window > Preferences > oXygen > XML > XSLT/FO/XQuery
> XPath.

The XPath options are the following:

• Unescape XPath expression - When checked, the entities are unescaped in the XPath expressions entered in the
XPath toolbar. For example the expression

//varlistentry[starts-with(@os,'s')]

is equivalent with:

//varlistentry[starts-with(@os,'s')]

• No namespace - If checked, Oxygen XML Developer plugin will consider unprefixed element names in XPath 2.0
expressions evaluated in the XPath console as belonging to no namespace.

• Use the default namespace from the root element - If checked, Oxygen XML Developer plugin will consider
unprefixed element names in XPath expressions evaluated in the XPath console as belonging to the default namespace
declared on the root element of the queried XML document.

• Use the namespace of the root - If checked, Oxygen XML Developer plugin will consider unprefixed element
names in XPath expressions evaluated in the XPath console as belonging to the same namespace as the root element
of the document.

• This namespace - The user has the possibility to enter here the namespace of the unprefixed elements used in the
XPath console.

• Default prefix-namespace mappings - Associates prefixes to namespaces. These mappings are useful when applying
an XPath in the XPath console and you don't want to define these mappings in each document separately.

Custom Engines

You can configure and run XSLT and XQuery transformations with processors other than the ones which come with the
Oxygen XML Developer plugin distribution. Such an external engine can be used in the Editor perspective and is
available in the list of engines in the dialog for editing a transformation scenario.

The Custom Engines preferences panel is opened from menu Window > Preferences > oXygen > XML >
XSLT/FO/XQuery > Custom Engines.

Configuring the Application | 357

The following parameters can be configured for a custom engine:

Figure 211: Parameters of a Custom Engine

• Engine type - Combo box allowing you to choose the transformer type. There are two options: XSLT engines and
XQuery engines.

• Name - The name of the transformer displayed in the dialog for editing transformation scenarios
• Description - A textual description of the transformer.
• Output Encoding - The encoding of the transformer output stream.
• Error Encoding - The encoding of the transformer error stream.
• Working directory - The start directory of the transformer executable program. The following editor variables are

available for making the path to the working directory independent of the location of the input files:

• ${homeDir} - The user home directory in the operating system.
• ${cfd} - The path to the directory of the current file.
• ${pd} - The path to the directory of the current project.
• ${oxygenInstallDir} - The Oxygen XML Developer plugin install directory.

• Command line - The command line that must be executed by Oxygen XML Developer plugin to perform a
transformation with the engine. The following editor variables are available for making the parameters in the command
line (the transformer executable, the input files) independent of the location of the input files:

• ${xml} - The XML input document as a file path.
• ${xmlu} - The XML input document as a URL.
• ${xsl} - The XSL / XQuery input document as a file path.
• ${xslu} - The XSL / XQuery input document as a URL.
• ${out} - The output document as a file path.
• ${outu} - The output document as a URL.
• ${ps} - The platform separator which is used between library file names specified in the class path.

Import

The Import preferences panel is opened from menu Window > Preferences > oXygen > XML > Import. Here you
can configure how empty values and null values are handled when they are encountered in imported database tables
or Excel sheets. Also you can configure the format of date / time values recognized in the imported database tables or
Excel sheets.

Configuring the Application | 358

The following options are available:

• Create empty elements for empty values - If checked, an empty value from a database column or from a text file
is imported as an empty element.

• Create empty elements for null values - If checked, null values from a database column are imported as empty
elements.

• Escape XML content - Enabled by default, this option instructs Oxygen XML Developer plugin to escape the
imported content to an XML-safe form.

• Add annotations for generated XML Schema - If checked, the generated XML Schema contains an annotation
for each of the imported table columns. The documentation inside the annotation tag contains the remarks of the
database columns (if available) and also information about the conversion between the column type and the generated
XML Schema type.

The section Date / Time Format specifies the format used for importing date and time values from Excel spreadsheets
or database tables and in the generated XML schemas. The following format types are available:

• Unformatted - If checked, the date and time formats specific to the database are used for import. When importing
data from Excel a string representation of date or time values are used. The type used in the generated XML Schema
is xs:string.

• XML Schema date format - If checked, the XML Schema-specific format ISO8601 is used for imported date / time
data (yyyy-MM-dd'T'HH:mm:ss for datetime, yyyy-MM-dd for date and HH:mm:ss for time). The
types used in the generated XML Schema are xs:datetime, xs:date and xs:time.

• Custom format - If checked, the user can define a custom format for timestamp, date, and time values or choose
one of the predefined formats. A preview of the values is presented when a format is used. The type used in the
generated XML Schema is xs:string.

Date / Time Patterns

Table 9: Pattern letters

ExamplesPresentationDate or Time ComponentLetter

ADTextEra designatorG

1996; 96YearYeary

July; Jul; 07MonthMonth in yearM

27NumberWeek in yearw

2NumberWeek in monthW

189NumberDay in yearD

10NumberDay in monthd

2NumberDay of week in monthF

Tuesday; TueTextDay in weekE

PMTextAm / pm markera

0NumberHour in day (0-23)H

24NumberHour in day (1-24)k

0NumberHour in am / pm (0-11)K

12NumberHour in am / pm (1-12)h

30NumberMinute in hourm

55NumberSecond in minutes

978NumberMillisecondS

Configuring the Application | 359

ExamplesPresentationDate or Time ComponentLetter

Pacific Standard Time; PST;
GMT-08:00

General time zoneTime zonez

-0800RFC 822 time zoneTime zoneZ

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text - If the number of pattern letters is 4 or more, the full form is used; otherwise a short or abbreviated form is
used if available.

• Number - The number of pattern letters is the minimum number of digits, and shorter numbers are zero-padded to
this amount.

• Year - If the number of pattern letters is 2, the year is truncated to 2 digits; otherwise it is interpreted as a number.
• Month - If the number of pattern letters is 3 or more, the month is interpreted as text; otherwise, it is interpreted as

a number.
• General time zone - Time zones are interpreted as text if they have names. For time zones representing a GMT offset

value, the following syntax is used:

• GMTOffsetTimeZone - GMT Sign Hours : Minutes
• Sign - one of + or -
• Hours - one or two digits
• Minutes - two digits
• Digit - one of 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale independent and
digits must be taken from the Basic Latin block of the Unicode standard.

• RFC 822 time zone: The RFC 822 4-digit time zone format is used:

• RFC822TimeZone - Sign TwoDigitHours Minutes
• TwoDigitHours - a number of two digits

TwoDigitHours must be between 00 and 23.

Data Sources

The Data Sources preferences panel is opened from menu Window > Preferences > oXygen > Data Sources.

Configuration of Data Sources

Here you can configure data sources and connections to relational databases as well as native XML databases. You can
check the list of drivers (http://www.oxygenxml.com/database_drivers.html) available for the major database servers.

Figure 212:The Data Sources Preferences Panel

• New - Opens the Data Sources Drivers dialog that allows you to configure a new database driver.

Configuring the Application | 360

http://www.oxygenxml.com/database_drivers.html

Figure 213:The Data Sources Drivers Dialog

The fields of the dialog are the following:

• Name - The name of the new data source driver that will be used for creating connections to the database
• Type - Selects the data source type from the supported driver types.
• Help - Opens the User Manual at the list of the sections where the configuration of supported data sources is

explained and the URLs for downloading the database drivers are specified.
• Driver Class - Specifies the driver class for the data source driver.
• Add - Adds the driver class library.
• Remove - Removes the selected driver class library from the list.
• Detect - Detects driver class candidates.
• Stop - Stops the detection of the driver candidates.

• Edit - Opens the Data Sources Drivers dialog for editing the selected driver. See above the specifications for the
Data Sources Drivers dialog. In order to edit a data source, there must be no connections using that data source
driver.

• Delete - Deletes the selected driver. In order to delete a data source, there must be no connections using that data
source driver.

Configuring the Application | 361

Figure 214:The Connections Preferences Panel

For performance issues, you can set the maximum number of cells that will be displayed in the Table Explorer view
for a database table. Leave the field Limit the number of cells empty if you want the entire content of the table to be
displayed. By default this field is set to 2,000. If a table having more cells than the value set here is displayed in the
Table Explorer view, a warning dialog will inform you that the table is only partially shown.

In Oracle XML and Tamino databases a container can hold millions of resources. If the node corresponding to such a
container in the Data Source Explorer view would display all the contained resources at the same time the performance
of the view would be very slow. To prevent such a situation only a limited number of the contained resources is displayed
as child nodes of the container node. Navigation to other contained resources from the same container is enabled by the
Up and Down buttons in the Data Source Explorer view. This limited number is set in the option Maximum number
of children for container nodes. The default value is 200 nodes.

The Show warning when expanding other database schema option controls if a warning message will be displayed
when expanding another database schema and there are tables selected in the current expanded one. This applies for the
dialog Select database table when invoking the Convert DB Structure to XML Schema action.

The actions of the buttons from the Connections panel are the following:

• New - Opens the Connection dialog which has the following fields:

Configuring the Application | 362

Figure 215:The Connection Dialog

• Name - The name of the new connection that will be used in transformation scenarios and validation scenarios.
• Data Source - Allows selecting a data source defined in the Data Source Drivers dialog.

Depending upon the selected data source, you can set some of the following parameters in the Connection details
area:

• URL - The URL for connecting to the database server.
• User - The user name for connecting to the database server.
• Password - The password of the specified user name.
• Host - The host address of the server.
• Port - The port where the server accepts the connection.
• XML DB URI - The database URI.
• Database - The initial database name.
• Collection - One of the available collections for the specified data source.
• Environment home directory - Specifies the home directory (only for a Berkeley database).
• Verbosity - Sets the verbosity level for output messages (only for a Berkeley database).

• Edit - Opens the Connection dialog, allowing you to edit the selected connection. See above the specifications for
the Connection dialog.

• Duplicate - Creates a duplicate of the currently selected connection.
• Delete - Deletes the selected connection.

Download Links for Database Drivers

You can find below the locations where you have to go to get the drivers necessary for accessing databases in Oxygen
XML Developer plugin .

• Berkeley DB XML database - Copy the jar files from the Berkeley database install directory to the Oxygen XML
Developer plugin install directory as described in the procedure for configuring a Berkeley DB data source.

• IBM DB2 Pure XML database - Go to the IBM website and in the DB2 Clients and Development Tools category
select the DB2 Driver for JDBC and SQLJ download link. Fill the download form and download the zip file. Unzip
the zip file and use the db2jcc.jar and db2jcc_license_cu.jar files in Oxygen XML Developer plugin
for configuring a DB2 data source.

Configuring the Application | 363

http://www-306.ibm.com/software/data/db2/express/download.html

• eXist database - Copy the jar files from the eXist database install directory to the Oxygen XML Developer plugin
install directory as described in the procedure for configuring an eXist data source.

• MarkLogic database - Download the Java and .NET XCC distributions (XCC Connectivity Packages) from
MarkLogic. You find the details about configuring a MarkLogic data source in the procedure for creating a MarkLogic
data source.

• Microsoft SQL Server 2005 / 2008 database - Both SQL Server 2005 and SQL Server 2008 are supported. For
connecting to SQL Server 2005 you have to download the SQL Server 2005 JDBC driver file sqljdbc.jar from
the Microsoft website and use it for configuring an SQL Server data source. For connecting to SQL Server 2008 you
have to download the SQL Server 2008 JDBC 1.2 driver file sqljdbc_1.2\enu\sqljdbc.jar from the
Microsoft website and use it for configuring an SQL Server data source. Please note that the SQL Server driver is
compiled with a Java 1.6 compiler so you need to run Oxygen XML Developer plugin with a Java 1.6 virtual
machine in order to use this driver.

• Oracle 11g database - Download the Oracle 11g JDBC driver called ojdbc5.jar from the Oracle website and
use it for configuring an Oracle data source.

• PostgreSQL 8.3 database - Download the PostgreSQL 8.3 JDBC driver called
postgresql-8.3-603.jdbc3.jar from the PostgreSQL website and use it for configuring a PostgreSQL
data source.

• RainingData TigerLogic XDMS database - Copy the jar files from the TigerLogic JDK lib directory from the
server side to the Oxygen XML Developer plugin install directory as described in the procedure for configuring a
TigerLogic data source.

• SoftwareAG Tamino database - Copy the jar files from the SDK\TaminoAPI4J\lib subdirectory of the Tamino
database install directory to the Oxygen XML Developer plugin install directory as described in the procedure for
configuring a Tamino data source.

• Documentum xDb (X-Hive/DB) 10 XML database - Copy the jar files from the Documentum xDb (X-Hive/DB)
10 database install directory to the Oxygen XML Developer plugin install directory as described in the procedure
for configuring a Documentum xDb (X-Hive/DB) 10 data source.

Table Filters

The Table Filters preferences panel is opened from menu Window > Preferences > oXygen > Data Sources > Table
Filters.

Here you can choose which of the database table types will be displayed in the Data Source Explorer view.

Figure 216:Table Filters Preferences Panel

Archive

The Archive preferences panel is opened from menu Window > Preferences > oXygen > Archive.

The following options are available in the Archive preferences panel:

• Archive backup options - Controls if the application makes backup copies of the modified archives. The following
options are available:

• Always create backup copies of modified archives - When you modify an archive, its content is backed up.
• Never create backup copies of modified archives - No backup copy is created.

Configuring the Application | 364

http://xqzone.marklogic.com/download/#XCC
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=21599
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=21599
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=21599
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://jdbc.postgresql.org/download.html

• Ask for each archive once per session - Once per application session for each modified archive, user confirmation
is required to create the backup. This is the default setting.

Note: Backup files have the name originalArchiveFileName.bak and are located in the same
folder as the original archive.

• Show archive backup dialog - Select this option if you want to be notified for backup when modifying in archives.
The last backup option you chose will always be used as the default one.

• Archive types - This table contains all known archive extensions mapped to known archive formats. Each row maps
a list of extensions to an archive type supported in Oxygen XML Developer plugin . You can edit an existing mapping
or create a new one by associating your own list of extensions to an archive format.

Important: You have to restart Oxygen XML Developer plugin after removing an extension from the
table in order for that extension to not be recognised anymore as an archive extension.

• Store Unicode file names in Zip archives - Use this option when you archive files that contain international (that
is, non-English) characters in file names or file comments. If an archive is modified in any way with this option
turned on, UTF-8 characters are used in the names of all files in the archive.

Custom Editor Variables

An editor variable is useful for making a transformation scenario, a validation scenario or an external tool independent
of the file path on which the scenario / command line is applied. An editor variable is specified as a parameter in a
transformation scenario, validation scenario or command line of an external tool. Such a variable is defined by a name,
a string value and a text description. A custom editor variable is defined by the user and can be used in the same
expressions as the built-in ones.

Figure 217: Custom Editor Variables

Network Connections

Some networks use proxy servers to provide Internet services to LAN clients. Clients behind the proxy may therefore,
only connect to the Internet via the proxy service. If you are not sure whether your computer is required to use a proxy
server to connect to the Internet or you don't know the proxy parameters, please consult your network administrator.

You can open the Network Connections panel from menu Window > Preferences > oXygen / Network Connections.

The Network Connections Preferences Panel

Configuring the Application | 365

Complete the dialog as follows:

• Enable the HTTP/WEBDAV protocols - If checked, the HTTP(S) connections go through the proxy with the host,
port, user name and password that are set in Eclipse's built-in general Network Connections preferences panel.

Important: This may affect other plugins functionality.

• Lock WebDAV files on open - If checked, the files opened through WebDAV are locked on the server so that they
cannot be edited by other users while the lock placed by the current user still exists on the server.

• Encoding for FTP control connection - The encoding used to communicate with FTP servers: either ISO-8859-1
or UTF-8. If the server supports the UTF-8 encoding Oxygen XML Developer plugin will use it for communication.
Otherwise it will use ISO-8859-1.

• Private key file - The path to the file containing the private key used for the private key method of authentication
of the secure FTP (SFTP) protocol. The user / password method of authentication has precedence if it is used in the
Open URL dialog.

• Passphrase - The passphrase used for the private key method of authentication of the secure FTP (SFTP) protocol.
The user / password method of authentication has precedence if it is used in the Open URL dialog.

• Show SFTP certificate warning dialog - If checked, a warning dialog will be shown each time when the authenticity
of the host cannot be established.

Certificates

In Oxygen XML Developer plugin there are provided two types of keystores for certificates used for digital signatures
of XL documents: Java KeyStore (JKS) and Public-Key Cryptography Standards version 12 (PKCS-12). A keystore
file is protected by a password. A certificate keystore is configured in Oxygen XML Developer plugin in the Certificates
preferences panel which is opened from menu Window > Preferences > oXygen > Certificates. The parameters of a
keystore are the following:

Configuring the Application | 366

Figure 218:The Certificates Preferences Panel

• Keystore type - Represents the type of keystore to be used.
• Keystore file - Represents the location of the file to be imported.
• Keystore password - The password which is used to protect the privacy of the stored keys.
• Certificate alias - The alias to be used to store the key entry (the certificate and / or the private key) inside the

keystore.
• Private key password - It is only necessary in case of JKS keystore. It represents the certificate's private key

password.
• Validate - Pressing this button verifies the keystore configured with the above parameters and assures that the

certificate is valid.

XML Structure Outline

The XML Structure Outline preferences panel is opened from menu Window > Preferences > oXygen > XML
Structure Outline and contains the following preferences:

Figure 219:The XML Structure Outline Preferences Panel

• Preferred attribute names for display - The attribute names which should be preferred when displaying the element's
attributes in the Outline view. If there is no preferred attribute name specified the first attribute of an element is
displayed.

• Enable outline drag and drop - Drag and drop should be disabled for the tree displayed in the Outline view only
of there is a possibility to accidentally change the structure of the document by such drag and drop operations.

Configuring the Application | 367

Scenarios Management

The Scenarios Management preferences panel is opened from menu Window > Preferences > oXygen > Scenarios
Management and allows sharing the global transformation scenarios with other users by exporting them to an external
file that can be also imported in this preferences panel.

Figure 220:The Scenarios Management Preferences Panel

The actions available in this panel are the following:

• Import Global Transformation Scenarios - Allows you to import at global level all transformation scenarios from
a properties file created with the export scenario action. The names of the imported scenarios will appear in the
Configure Transformation Scenario dialog followed by (import). This way there are no scenario name conflicts.

If you want to work with project level scenarios you have to first switch to project level in the Configure
Transformation Scenario dialog.

• Export Global Transformation Scenarios - Allows you to export all global transformation scenarios available in
the Configure Transformation Scenario dialog.

• Import Global Validation Scenarios - Allows you to import at global level all scenarios from a properties file
created with the export scenario action. The names of the imported scenarios will appear in the Configure Validation
Scenario dialog followed by (import). This way there are no scenario name conflicts.

If you want to work with project level scenarios you have to first switch to project level in the Configure Validation
Scenario dialog.

• Export Global Validation Scenarios - Allows you to export all global validation scenarios available in the Configure
Validation Scenario dialog.

View

The View preferences panel is opened from menu Window > Preferences > oXygen > View and contains the following
preferences:

Figure 221:The View Preferences Panel

• Fixed width console - If checked, a line in the Console view will be hard wrapped after the maximum numbers of
characters allowed on a line.

• Limit console output - If checked, the content of the Console view will be limited to a configurable number of
characters.

Configuring the Application | 368

• Console buffer - Specifies the maximum number of characters that can be written in the Console view.
• Tab width - Specifies the number of spaces used for depicting a tab character.

Reset Global Options
To reset all global preferences to their default values you have to go to menu Window > Preferences > oXygen > Reset
Global Options. . The list of transformation scenarios will be reset to the default scenarios.

Scenarios Management
You can import, export and reset the global scenarios for transformation and validation with the following actions:

• The action Window > Preferences > oXygen / Scenarios Management > Import Global Transformation
Scenarios loads a set of transformation scenarios from a properties file that was created with the action Export
Global Transformation Scenarios.

• The action Window > Preferences > oXygen / Scenarios Management > Export Global Transformation
Scenarios stores all the global (not project-level) transformation scenarios in a properties file that can be used later
by the action Import Global Transformation Scenarios.

• The action Window > Preferences > oXygen / Scenarios Management > Import Global Validation Scenarios
loads a set of validation scenarios from a properties file that was created with the action Export Global Validation
Scenarios.

• The action Window > Preferences > oXygen / Scenarios Management > Export Global Validation scenarios
stores all the global (not project-level) validation scenarios in a separate properties file.

The options of Export Global Transformation Scenarios and Export Global Validation Scenarios is used to store
all the scenarios in a separate file which is a properties file. In this file will also be saved the associations between
document URLs and scenarios. You can load the saved scenarios using the actions Import Global Transformation
Scenarios and Import Global Validation Scenarios. All the imported scenarios will have added to the name the word
import to distinguish the existing scenarios and the imported ones.

Editor Variables
An editor variable is a shorthand notation for context-dependent information, like a file or folder path, a timestamp or
a date. It is used in the definition of a command (for example the input URL of a transformation, the output file path of
a transformation, the command line of an external tool) to make a command or a parameter generic and reusable with
other input files. When the same command is applied to different files, the notation is expanded at the execution of the
command so that the same command has different effects depending on the actual file.

The following editor variables can be used in Oxygen XML Developer plugin commands of external engines or other
external tools, in transformation scenarios, validation scenarios:

• ${oxygenHome} - Oxygen XML Developer plugin installation folder as URL.
• ${oxygenInstallDir} - Oxygen XML Developer plugin installation folder as file path.
• ${frameworks} - The path (as URL) of the frameworks subfolder of the Oxygen XML Developer plugin install

folder.
• ${frameworksDir} - The path (as file path) of the frameworks subfolder of the Oxygen XML Developer plugin

installation folder.
• ${home} - The path (as URL) of the user home folder.
• ${homeDir} - The path (as file path) of the user home folder.
• ${pdu} - Current project folder as URL.
• ${pd} - Current project folder as file path.
• ${pn} - Current project name.

Configuring the Application | 369

• ${cfdu} - Current file folder as URL, that is the path of the current edited document up to the name of the parent
folder, represented as a URL.

• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent
folder.

• ${cfn} - Current file name without extension and without parent folder.
• ${cfne} - Current file name with extension.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${cfu} - The path of the current file as a URL.
• ${af} - The file path of the zip archive that includes the current transformed file (this variable is available only in a

transformation scenario).
• ${afu} - The URL of the zip archive that includes the current transformed file (this variable is available only in a

transformation scenario).
• ${afd} - The directory of the zip archive that includes the current transformed file (this variable is available only in

a transformation scenario).
• ${afdu} - The URL of the directory of the zip archive that includes the current transformed file (this variable is

available only in a transformation scenario).
• ${afn} - The file name (without parent directory and without file extension) of the zip archive that includes the

current transformed file (this variable is available only in a transformation scenario).
• ${afne} - The file name (with file extension, for example .zip or .epub, but without parent directory) of the zip

archive that includes the current transformed file (this variable is available only in a transformation scenario).
• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document represented

as URL.
• ${ps} - Path separator, that is the separator which can be used on the current platform (Windows, Mac OS X, Linux)

between library files specified in the class path.
• ${timeStamp} - Time stamp, that is the current time in Unix format. It can be used for example to save transformation

results in different output files on each transform.
• ${caret} - The position where the caret is inserted. This variable can be used in a or in a
• ${selection} - The XML content of the current selection in the editor panel. This variable can be used in a
• ${id} - Application-level unique identifier.
• ${uuid} - Universally unique identifier.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable.
• ${ask('user-message', param-type, 'default-value' ?)} - To prompt for values at runtime, use the ask('user-message',

param-type, 'default-value' ?) editor variable. The following parameters can be set:

• 'user-message' - the actual message to be displayed. Note the quotes that enclose the message.
• param-type - optional parameter. Can have one of the following values:

• url - input is considered to be an URL. Oxygen XML Developer plugin checks that the URL is valid before
passing it to the transformation.

• password - input characters are hidden.
• generic - the input is treated as generic text that requires no special handling.

• 'default-value' - optional parameter. Provides a default value in the input text box.

Examples:

• ${ask('message')} - Only the message displayed for the user is specified.
• ${ask('message', generic, 'default')} - 'message' will be displayed for the user, the

type is not specified (the default is string), the default value will be 'default'.
• ${ask('message', password)} - 'message' will be displayed for the user, the characters typed

will be replaced with a circle character.
• ${ask('message', password, 'default')} - Same as above, default value will be 'default'.
• ${ask('message', url)} - 'message' will be displayed for the user, the type of parameter will be

URL.
• ${ask('message', url, 'default')} - Same as above, default value will be 'default'.

Configuring the Application | 370

• ${system(var.name)} - Value of the var.name system variable.
• ${date(pattern)} - Current date. Follows the given pattern. Example: yyyy-MM-dd.
• ${dbgXML} - The path to the current Debugger source selection (for tools started from the XSLT/XQuery Debugger).
• ${dbgXSL} - The path to the current Debugger stylesheet selection (for tools started from the XSLT/XQuery

Debugger).
• ${tsf} - The transformation result file.
• ${ps} - The path separator which can be used on different operating systems between libraries specified in the class

path.
• ${dsu} - The path of the detected schema as a URL.
• ${ds} - The path of the detected schema as a local file path.
• ${cp} - Current page number.
• ${tp} - Total number of pages in the document.

Custom Editor Variables

An editor variable can be created by the user and included in any user defined expression where a built-in editor variable
is also allowed. For example a custom editor variable may be necessary for configuring the command line of an external
tool, the working directory of a custom validator, the command line of a custom XSLT engine, a custom FO processor,
etc. All the custom editor variables are listed together with the built-in editor variables, for example when editing the
working folder or the command line of a , the working directory, etc.

Creating a custom editor variable is very simple: just specify the name that will be used in user defined expressions, the
value that will replace the variable name at runtime and a textual description for the user of that variable.

The custom editor variables are

Configuring the Application | 371

Chapter

19

Common Problems

This chapter presents common problems that may appear when running the
application and the solutions for these problems.

Topics:

• XSLT Debugger Is Very Slow
• Syntax Highlight Not Available in

Eclipse Plugin
• Problem Report Submitted on the

Technical Support Form
• Signature verification failed error

on open or edit a resource from
Documentum

XSLT Debugger Is Very Slow
When I run a transformation in the XSLT Debugger perspective it is very slow. Can I increase the speed?

If the transformation produces HTML or XHTML output you should disable rendering of output in the XHTML output
view during the transformation process. To view the XHTML output result do one of the following:

• run the transformation in the Editor perspective with the option Open in browser enabled
• run the transformation in the XSLT Debugger perspective, save the text output area to a file, and use a browser

application for viewing it (for example Firefox or Internet Explorer).

Syntax Highlight Not Available in Eclipse Plugin
I associated the .ext extension with Oxygen XML Developer plugin in Eclipse. Why does an .ext file opened with
the Oxygen XML Developer plugin plugin not have syntax highlight?

Associating an extension with Oxygen XML Developer plugin in Eclipse 3.7+ requires three steps:

1. Associate the .ext extension with the Oxygen XML Developer plugin plugin.

a) Go to menu Windows > Preferences > General > Editors > File Associations.
b) Add *.ext to the list of file types.
c) Select *.ext in the list by clicking on it.
d) Add Oxygen XML Developer plugin to the list of Associated editors and make it the default editor.

2. Associate the .ext extension with the Oxygen XML content type.

a) Go to menu Windows > Preferences > General > Content Types.
b) Add *.ext to the File associations list for the Text > XML > oXygen XML content type.

3. Press the OK button in the Eclipse preferences dialog.

Now when an *.ext file is opened the icon of the editor and the syntax highlight should be the same as for XML files
opened with the Oxygen XML Developer plugin plugin.

Problem Report Submitted on the Technical Support Form
What details should I add to my problem report that I enter on the Technical Support online form of the product website?

For problems like server connection error, unexpected delay while editing a document, a crash of the application, etc
for which the usual details requested on the Technical Support online form are not enough you should generate a log
file and attach it to the problem report. In case of a crash you should also attach the crash report file generated by your
operating system. For generating a logging file you need to create a text file called log4j.properties in the install
folder with the following content:

log4j.rootCategory= debug, R2

log4j.appender.R2=org.apache.log4j.RollingFileAppender
log4j.appender.R2.File=logging.log
log4j.appender.R2.MaxFileSize=12000KB
log4j.appender.R2.MaxBackupIndex=20
log4j.appender.R2.layout=org.apache.log4j.PatternLayout
log4j.appender.R2.layout.ConversionPattern=%r %p [%t] %c - %m%n

Restart the application, reproduce the error and close the application. The log file is called logging.log and is located
in the install folder.

Common Problems | 374

Signature verification failed error on open or edit a resource from
Documentum

When I try to open/edit a resource from Documentum, I receive the following error:

signature verification failed: certificate for All-MB.jar.checksum not signed
by a certification authority.

The problem is that the certificates from the Java Runtime Environment 1.6.0_22 or later no longer validate the signatures
of the UCF jars.

Edit the eclipse.ini file from the Eclipse directory and add the following parameter to the -vmargs:
-Drequire.signed.ucf.jars=false, for example:

-vmargs
-Xms40m
-Xmx256m
-Drequire.signed.ucf.jars=false

Common Problems | 375

Chapter

20

Terms

The selected cell in which data is entered when you begin
typing. Only one cell is active at a time. The active cell is
bounded by a heavy border.

Active cell

A block is an element that takes up the entire available
width. A block is delimited by line breaks before and after
it.

Block

An inline element takes up as much width as necessary, and
does not force line breaks.

Inline

Inline elements are elements which appear in a
mixed-content context (parents with both non-whitespace
text and elements).

Inline XML
element

Index

A

Archives 247, 248, 250
browse 248
edit 250
file browser 248
modify 248

C

Common problems 373
Composing Web Service calls 307, 308, 310, 311

generate WSDL documentation 311
SOAP request 308, 310

testing remote WSDL files 310
UDDI Registry browser 310

Configure the application 326, 327, 328, 329, 330, 331, 332, 333,
334, 335, 338, 339, 340, 341, 342, 343, 344, 345, 346,
347, 349, 350, 351, 352, 354, 355, 357, 358, 359, 360,
363, 364, 365, 366, 367, 368, 369

(S)FTP configuration 365
Archive 364
certificates 366
CSS validator 342
custom validation 341
Data Sources 360, 363, 364

download links for database drivers 363
table filters 364

document type association 328
Editor preferences 329, 330, 331, 332, 333, 334, 335, 338,

339, 340
code templates 339
colors 338
content completion 335
document checking 340
document templates 339
elements and attributes by prefix 338
format 333
format - CSS 335
format - XML 334
grid 332
open/save 339
pages 330
print 330
schema design 332
spell check 340
syntax highlight 338
text/diagram 331, 333

editor variables 369
fonts 328
global 328
HTTP configuration 365
HTTP proxy configuration 365
import 358, 359

date/time patterns 359
import/export global options 326
license 328
Network Connections 365

Configure the application (continued)
outline 367
reset global options 369
scenarios management 368, 369
view 368
XML 343
XML catalog 343
XML Instances Generator 344
XML parser 343, 344

Saxon EE Validation 344
XProc 345
XSLT 347
XSLT/FO/XQuery 346
XSLT/FO/XQuery preferences 347, 349, 350, 351, 352, 354,

355, 357
custom engines 357
debugger 354
FO Processors 355
MSXML 350
MSXML.NET 351
profiler 354
Saxon6 347
Saxon HE/PE/EE 347, 352
Saxon HE/PE/EE advanced options 349, 354
XPath 357
XQuery 352
XSLTProc 350

Content Management System 299
copy/paste 188

grid editor 188

D

Databases 221, 251, 252, 271, 273, 285, 286, 288, 289
Native XML databases (NXD) 271, 273
Relational databases 252
WebDAV Connection 289
XQuery 221, 285, 286, 288

debugging 288
drag and drop from Data Source Explorer 285
transformation 286
validation 221

Debugging XSLT/XQuery documents 228, 230, 239, 242
Java extensions 242
layout 228, 230, 239

information views 230
multiple output documents in XSLT 2.0 239

XSLT/XQuery debugger 239
Debugging XSLT / XQuery documents 229

layout 229
Control toolbar 229

Digital signature 313, 315, 316, 317
canonicalizing files 315
certificates 316
signing files 316
verifying the signature 317

DITA MAP document type 180, 181
association rules 180

 Index | 379

DITA MAP document type (continued)
Author extension 180, 181

catalogs 180
templates 181
transformation scenarios 180

schema 180
DITA Topics document type 179

association rules 179
Author extensions 179

catalogs 179
templates 179
transformation scenarios 179

schema 179
DocBook Targetset document type 179

association rules 179
Author extensions 179

templates 179
schema 179

DocBook V4 document type 172
association rules 172
Author extensions 172

catalogs 172
templates 172
transformation scenarios 172

schema 172
DocBook V5 document type 175, 176

association rules 175
Author extensions 175, 176

catalogs 175
templates 176
transformation scenarios 175

schema 175
Documentum (CMS) Support 300, 301, 302, 303

actions 301, 302, 303
cabinets/folders 302
connection 302
resources 303

configuration 300, 301
connection 301
data source 300

E

edit 35, 36, 40, 44, 169, 250
archives 250
close documents 44
create new documents 36
file properties 44
open and close documents 36
open current document in System Application 44
open read-only files 169
open remote documents (FTP/SFTP/WebDAV) 40
save documents 40
Unicode documents 36
Unicode support 36

Editing CSS stylesheets 161, 162, 163
content completion 162
folding 163
format and indent (pretty print) 163
other editing actions 163
Outline view 163
validation 161

Editing JSON Documents 163, 164, 165, 166
Convert XML to JSON 166
folding 164
Grid Mode 165
syntax highlight 164
Text Mode 164
Validating JSON Documents 165

Editing NVDL schemas 135
Component Dependencies View 135

Editing NVDL Schemas 133, 134, 135
editor specific actions 135
schema diagram 133, 134, 135

actions in the diagram view 134
full model view 134
Outline view 135

searching and refactoring actions 135
Editing RelaxNG Schemas 131

Component Dependencies View 131
Editing Relax NG schemas 125, 126, 127, 128, 129, 130

editor specific actions 129
schema diagram 125, 126, 127, 128

actions 128
full model view 126
logical model view 127
Outline view 128
symbols 126

searching and refactoring actions 130
Editing Relax NG Schemas 130

Resource Hierarchy/Dependencies View 130
Editing XML documents 44, 46, 47, 49, 53, 54, 55, 56, 65, 66, 68,

69, 71, 72, 74, 75, 76, 77, 78
associate a schema to a document 46, 47, 49

add schema association in XML instance 47
learning a document structure 49
setting a default schema 46

converting between schema languages 72
document navigation 65, 66

folding 65
outline view 66

editor specific actions 75, 76, 77, 78
document actions 76
edit actions 75
refactoring actions 76
select actions 75
smart editing 77
source actions 75
syntax highlight depending on namespace prefix 78

formatting and indenting documents (pretty print) 74
grouping documents in XML projects 44, 68

large documents 68
new project 44
project view 44

including document parts with XInclude 69
status information 74
streamline with content completion 49, 53, 54, 55, 56

code templates 56
the Attributes view 54
the Elements view 55
the Entities view 55
the Model panel 53

working with XML Catalogs 71

 Index | 380

Editing XML Schemas 78, 107, 111, 112, 114, 117, 119, 122, 123
Component Dependencies View 123
generate documentation for XML Schema 112, 114, 117

as HTML 114
as PDF, DocBook or custom format 117
from command line 117

relational database table to XML schema 107
Resource Hierarchy/Dependencies View 122
schema instance generator 107
schema regular expressions builder 111
Searching and refactoring actions 119

Editing XQuery documents 158, 159, 160
folding 159
generate HTML documentation 160

Editing XSL Stylesheets 157
Component Dependencies View 157

Editing XSLT stylesheets 136, 137, 138, 142, 144, 154, 155
content completion 137, 138, 142

code templates 142
in XPath expressions 138

find XSLT references and declarations 154
Outline View 144
refactoring actions 154
Resource Hierarchy/Dependencies View 155
validate 136, 137

custom validation 136
validation scenario 137

XSLT Input View 142
Editing XSLT Stylesheets 146, 149, 151, 152

generate documentation for XSLT stylesheet 146
generate documentation for XSLT Stylesheets 149, 151, 152

as HTML 149
from command line 152
in custom format 151

XSLT stylesheet documentation 146

F

find/replace 320
Find All Elements dialog 320

G

Getting started 23, 24, 25, 29, 30, 31
help 24
perspectives 24, 25, 29, 30, 31

database 31
editor 25
XQuery debugger 30
XSLT debugger 29

supported types of documents 24
grid editor 185, 186, 187, 188, 190

add nodes 187
bidirectional text 190
clear column content 187
copy/paste 188
drag and drop 188
duplicate nodes 187
inserting table column 187
insert table row 187
layouts (grid vs. tree) 186

grid editor (continued)
navigation 186, 187

collapse all 187
collapse children 187
collapse others 187
expand all 187
expand children 187

refresh layout 188
sort table column 187
start editing a cell value 188
stop editing a cell value 188

I

Importing data 292, 295, 296
from database 292, 295

convert table structure to XML Schema 295
table content as XML document 292

from HTML files 295
from MS Excel 295
from text files 296

Installation 14
environment 14
requirements 14

L

License 14, 16, 17, 18, 20, 21
floating (concurrent) license 16
floating license server 17
floating license servlet 16
license server installed as Windows service 18
register a license key 14
registration code 21
release floating license 20

N

Native XML databases (NXD) 263, 270, 271, 272, 273, 274, 275,
276

database connections configuration 273, 274, 275
Berkeley DB XML 273
Documentum xDb (X-Hive/DB) 275
eXist 274
Tamino 274
TigerLogic 275

data sources configuration 270, 271, 272, 273
Berkeley DB XML 271
Documentum xDb (X-Hive/DB) 273
eXist 271
MarkLogic 272
Tamino 272

resource management 263, 276
Data Source Explorer view 263, 276

O

OutOfMemory 21, 201, 333, 339, 355
Out Of Memory 21, 201, 333, 339, 355
OutOfMemoryError 21, 201, 333, 339, 355

 Index | 381

P

Performance problems 21
external processes 21

Profiling 244
XSLT stylesheets and XQuery documents 244

Profiling XSLT stylesheets and XQuery documents 244, 245
profiling information 244

Hotspots view 244
Invocation tree view 244

XSLT/XQuery profiler 245

Q

Querying documents 158, 214, 217, 218, 219, 221, 222
running XPath expressions 214

XPath console 214
XQuery 158, 217, 218, 219, 221, 222

Input view 219
other editing actions 222
Outline view 158, 218
syntax highlight and content completion 218
transforming XML documents; advanced Saxon B/SA
options 222
validation 221

R

Relational databases 252, 253, 254, 255, 256, 258, 259, 260, 261,
262, 263, 266, 268, 270, 276, 292, 295

connections configuration 258, 259, 260, 261, 262
Generic JDBC 261
JDBC-ODBC connection 259
Microsoft SQL Server 259
MySQL 260
Oracle 11g 261
PostgreSQL 8.3 262

creating XML Schema from databases 295
data sources configuration 252, 253, 254, 255, 256

generic JDBC data source 254
IBM DB2 252
Microsoft SQL Server 253
MySQL 254
Oracle 11g 255
PostgreSQL 8.3 256

importing from databases 292
resource management 263, 266, 276

Data Source Explorer view 263, 276
Table Explorer view 266

SQL execution support 268, 270
drag and drop from Data Source Explorer 268
executing SQL statements 270
SQL validation 270

T

TEI ODD document type 181, 182
association rules 181
Author extensions 182

catalogs 182
transformation scenarios 182

schema 182

TEI P4 document type 182, 183
association rules 182
Author extensions 182, 183

catalogs 182
templates 182, 183
transformation scenarios 182

schema 182
TEI P5 document type 183

association rules 183
Author extensions 183

templates 183
transformation scenarios 183

schema 183
Text editor specific actions 319, 321, 323

check spelling 321
check spelling in files 323

Transformation scenario 193, 194, 199, 201
batch transformation 193
built-in transformation scenarios 193
new transformation scenario 194, 199, 201

additional XSLT stylesheets 201
configure transformation scenario 194
create a transformation scenario 201
XSLT/XQuery extensions 201
XSLT parameters 199

Transforming documents 191, 192, 193, 204, 205, 206, 207
custom XSLT processors 206
output formats 192
supported XSLT processors 205
Transformation scenario 193
Transformation Scenarios view 204
XSL-FO processors 207
XSLT processors extensions paths 206

U

Uninstalling the plugin 21

V

Validating XML documents 57, 58, 59, 60, 62, 64, 65
against a schema 58, 59, 60, 62, 64, 65

automatic validation 60
caching the schema used for validation 60
custom validation 60
marking validation errors 59
resolving references to remote schemas with an XML
Catalog 65
validation actions 64
validation example 59
validation scenario 62

checking XML well-formedness 57

W

WebDAV Connection 289, 290
actions 289, 290

at connection level 289
at file level 290
at folder level 289

configuration 289

 Index | 382

X

XHTML document type 181
association rules 181
Author extensions 181

catalogs 181
templates 181
transformation scenarios 181

schema 181
XML Outline view 66, 67, 68

document structure change 68
popup menu 68

document tag selection 68
modification follow-up 68
outliner filters 67
XML document overview 67

XML Schema Diagram Editor 79, 81, 84, 85, 86, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 102, 104, 105, 106

Attributes view 104
editing actions 97
edit schema namespaces 106
Facets view 105, 106

editing patterns 106
group schema components 94, 95

attributes 94
constraints 94
substitutions 95

navigation 95
Outline view 102
schema components 81, 84, 85, 86, 88, 89, 90, 91, 92, 93

xs:any 91
xs:anyAttribute 91
xs:attribute 84
xs:attributeGroup 88
xs:complexType 85
xs:element 81
xs:field 93
xs:group 88
xs:import 89
xs:include 89

XML Schema Diagram Editor (continued)
schema components (continued)

xs:key 92
xs:keyRef 93
xs:notation 90
xs:redefine 89
xs:schema 81
xs:selector 93
xs:sequence, xs:choice, xs:all 90
xs:simpleType 86
xs:unique 92

validation 96
XML Schema Text Editor 78, 79

content completion 78
flatten an XML Schema 79
XML Schema actions 79

XQJ connection 223
XQJ configuration 223

XQJ support 223
XQJ processor configuration 223

XSLT/XQuery debugger 231, 232, 233, 234, 235, 236, 237, 238,
239, 240

debug steps 239
determining what XSLT/XQuery expression generated particular
output 240
using breakpoints 240

inserting breakpoints 240
removing breakpoints 240

viewing processing information 231, 232, 233, 234, 235, 236,
237, 238

breakpoints view 232
context node view 231
messages view 233
node set view 237
output mapping stack view 234
stack view 234
templates view 236
trace history view 235
variables view 238
XPath watch view 231

 Index | 383

 Index | 384

	Contents
	Introduction
	Installation
	Installation Requirements
	Platform Requirements
	Operating System
	Environment Requirements
	Tools
	Java Virtual Machine Prerequisites

	Installation Instructions
	Obtaining and Registering a License Key
	Named User License Registration
	Named User License Registration with Text File
	Named User License Registration with XML File
	How Floating (Concurrent) Licenses Work
	Setting up a Floating License Server Running as a Java Servlet
	Report Page

	Setting up a Floating License Server Running as a Standalone Process
	Install the License Server as a Windows Service
	Common Problems
	Windows service reports Incorrect Function when started
	When started, the Windows service reports Error 1067: The process terminated unexpectedly.

	Request a Floating License from a License Server Running as a Standalone Process
	Request a Floating License from a License Server Running as a Java Servlet
	Release a Floating License

	License Registration with an Activation Code

	Uninstalling the Application
	Uninstalling the Eclipse plugin

	Performance Problems
	External Processes

	Getting Started
	Getting Help
	Supported Types of Documents
	Perspectives
	Oxygen XML Developer plugin XML Perspective
	The Oxygen XML Developer plugin Custom Menu
	The Oxygen XML Developer plugin Toolbar Buttons
	The Editor Pane
	The Outline View
	The Oxygen XML Developer plugin Text View
	The Oxygen XML Developer plugin Browser View
	The Results View
	The Oxygen XML Developer plugin XPath Results View
	Supported Editor Types

	XSLT Debugger Perspective
	XQuery Debugger Perspective
	Oxygen XML Developer plugin Database Perspective

	Editing Documents
	Working with Unicode
	Opening and Saving Unicode Documents

	Opening and Closing Documents
	Creating New Documents
	Oxygen XML Developer plugin Plugin Wizard for New Document
	Creating Documents Based on Templates
	Document Templates

	Saving Documents
	Opening and Saving Remote Documents via FTP/SFTP
	The Dialog
	Changing File Permissions on a Remote FTP Server
	WebDAV over HTTPS
	How to Add a HTTPS Server Certificate to Oxygen XML Developer plugin

	Opening the Current Document in System Application
	Closing Documents
	Viewing File Properties

	Grouping Documents in XML Projects
	Creating a New Project
	Create an Oxygen XML Developer plugin XML Project

	Editing XML Documents
	Associate a Schema to a Document
	Setting a Schema for Content Completion
	Supported Schema Types for XML Documents
	Setting a Default Schema
	Making the Schema Association Explicit in the XML Instance Document
	Associating a Schema With the Namespace of the Root Element
	The xml-model Processing Instruction

	Learning Document Structure
	Create a DTD from Learned Document Structure

	Streamline with Content Completion
	Set Schema for Content Completion
	Content Completion in Documents with Relax NG Schemas
	Schema Annotations
	Content Completion Helper Views
	The Model View
	The Element Structure Panel
	The Annotation Panel

	The Attributes View
	The Elements View
	The Entities View

	Code Templates

	Validating XML Documents
	Checking XML Well-Formedness
	Validating XML Documents Against a Schema
	Marking Validation Errors and Warnings
	Validation Example - A DocBook Validation Error
	Caching the Schema Used for Validation
	Automatic Validation
	Custom Validators
	Linked Output Messages of an External Engine

	Validation Scenario
	How to Create a Validation Scenario

	Validation Actions in the User Interface
	Resolving References to Remote Schemas with an XML Catalog

	Document Navigation
	Folding of the XML Elements
	Outline View
	XML Document Overview
	Outline Specific Actions
	Modification Follow-up
	Document Structure Change
	The Popup Menu of the Outline Tree

	Document Tag Selection

	Large Documents
	Including Document Parts with DTD Entities
	Including Document Parts with XInclude

	Working with XML Catalogs
	XML Catalog

	Converting Between Schema Languages
	Formatting and Indenting Documents (Pretty Print)
	Viewing Status Information
	XML Editor Specific Actions
	Edit Actions
	Select Actions
	Source Actions
	XML Document Actions
	XML Refactoring Actions
	Smart Editing
	Syntax Highlight Depending on Namespace Prefix

	Editing XHTML Documents

	Editing XML Schemas
	XML Schema Text Editor
	Special Content Completion Features
	XML Schema Actions
	Flatten an XML Schema

	XML Schema Diagram Editor
	Introduction
	XML Schema Components
	xs:schema
	xs:element
	xs:attribute
	xs:complexType
	xs:simpleType
	xs:group
	xs:attributeGroup
	xs:include
	xs:import
	xs:redefine
	xs:notation
	xs:sequence, xs:choice, xs:all
	xs:any
	xs:anyAttribute
	xs:unique
	xs:key
	xs:keyRef
	xs:selector
	xs:field
	Constructs Used to Group Schema Components
	Attributes
	Constraints
	Substitutions

	Navigation in the Schema Diagram
	Schema Validation
	Schema Editing Actions
	Schema Outline View
	The Attributes View
	The Facets View
	Editing Patterns

	The Palette View
	Edit Schema Namespaces

	Contextual Editing
	Create an XML Schema From a Relational Database Table
	Generate Sample XML Files
	The Schema Tab
	The Options Tab
	The Advanced Tab

	XML Schema Regular Expressions Builder
	Generating Documentation for an XML Schema
	Generate Documentation in HTML Format
	Generate Documentation in PDF, DocBook or a Custom Format
	Generating Documentation From the Command-Line Interface

	Searching and Refactoring Actions
	Search and Refactor Operations Scope
	Resource Hierarchy / Dependencies View
	Component Dependencies View
	Highlight Component Occurrences
	XML Schema Quick Assist Support

	Editing Relax NG Schemas
	Relax NG Schema Diagram
	Introduction
	Full Model View
	Symbols Used in the Schema Diagram
	Logical Model View
	Actions Available in the Diagram View
	Relax NG Outline View

	Relax NG Editor Specific Actions
	Searching and Refactoring Actions
	Resource Hierarchy/Dependencies View
	Component Dependencies View
	RNG Quick Assist Support
	Configuring a Custom Datatype Library for a RELAX NG Schema

	Editing NVDL Schemas
	NVDL Schema Diagram
	Introduction
	Full Model View
	Actions Available in the Diagram View
	NVDL Outline View

	NVDL Editor Specific Actions
	Searching and Refactoring Actions
	Component Dependencies View

	Editing XSLT Stylesheets
	Validating XSLT Stylesheets
	Custom Validation of XSLT Stylesheets
	Associate a Validation Scenario

	Contextual Editing
	Syntax Highlight
	Content Completion in XSLT Stylesheets
	Content Completion in XPath Expressions
	Tooltip Helper for the XPath Functions Arguments

	Code Templates

	The XSLT/XQuery Input View
	The XSLT Input View

	The XSLT Outline View
	XSLT Stylesheet Documentation Support
	Generating Documentation for an XSLT Stylesheet
	Generate Documentation in HTML Format
	Generate Documentation in a Custom Format
	Generating Documentation From the Command Line Interface

	Finding XSLT References and Declarations
	Highlight Component Occurrences
	XSLT Refactoring Actions
	Resource Hierarchy/Dependencies View
	Component Dependencies View
	XSLT Quick Assist Support

	Editing XQuery Documents
	XQuery Outline View
	Folding in XQuery Documents
	Generating HTML Documentation for an XQuery Document

	Editing CSS Stylesheets
	Validating CSS Stylesheets
	Content Completion in CSS Stylesheets
	CSS Outline View
	Folding in CSS Stylesheets
	Formatting and Indenting CSS Stylesheets (Pretty Print)
	Other CSS Editing Actions

	Editing JSON Documents
	JSON Editor Text Mode
	Syntax highlight in JSON Documents
	Folding in JSON

	JSON Editor Grid Mode
	Validating JSON Documents
	Convert XML to JSON

	Editing XProc Scripts
	Editing Schematron Schemas
	Combined RELAX NG / W3C XML Schemas and Schematron Schema
	Validate an XML Document

	Handling Read-Only Files

	Predefined Document Types
	Document Type
	The DocBook 4 Document Type
	Transformation Scenarios
	Templates
	Inserting olink Links in Docbook Documents

	The DocBook 5 Document Type
	Transformation Scenarios
	DocBook to EPUB Transformation

	Templates
	Inserting olink Links in Docbook Documents

	The DocBook Targetset Document Type
	Templates

	The DITA Topics Document Type
	Transformation Scenarios
	Templates

	The DITA Map Document Type
	Transformation Scenarios
	Templates

	The XHTML Document Type
	Transformation Scenarios
	Templates

	The TEI ODD Document Type
	Transformation Scenarios
	Templates

	The TEI P4 Document Type
	Transformation Scenarios
	Templates

	The TEI P5 Document Type
	Transformation Scenarios
	Templates

	The EPUB Document Type

	Grid Editor
	Layouts: Grid and Tree
	Navigating the Grid
	Specific Grid Actions
	Sorting a Table Column
	Inserting a Row in a Table
	Inserting a Column in a Table
	Clearing the Content of a Column
	Adding Nodes
	Duplicating Nodes
	Refresh Layout
	Start Editing a Cell Value
	Stop Editing a Cell Value

	Drag and Drop in the Grid Editor
	Copy and Paste in the Grid Editor
	Bidirectional Text Support in the Grid Editor

	Transforming Documents
	Output Formats
	Transformation Scenario
	Batch Transformation
	Built-in Transformation Scenarios
	Defining a New Transformation Scenario
	XSLT Stylesheet Parameters
	Additional XSLT Stylesheets
	XSLT/XQuery Extensions
	Duplicate a Transformation Scenario
	Ant Transformations

	Transformation Scenarios View

	XSLT Processors
	Supported XSLT Processors
	Configuring Custom XSLT Processors
	Configuring the XSLT Processor Extensions Paths

	XSL-FO Processors
	The Built-in XSL-FO Processor
	Add a Font to the Built-in FOP - The Simple Version
	Add a Font to the Built-in FOP

	XProc Transformations
	XProc Transformation Scenario
	Integration of an External XProc Engine

	Querying Documents
	Running XPath Expressions
	What is XPath
	Oxygen's XPath Console

	Working with XQuery
	What is XQuery
	Syntax Highlight and Content Completion
	XQuery Outline View
	The XQuery Input View
	XQuery Validation
	Other XQuery Editing Actions
	Transforming XML Documents Using XQuery
	XQJ Transformers
	How to Configure an XQJ Data Source
	How to Configure an XQJ Connection

	Display Result in Sequence View
	Advanced Saxon HE/PE/EE Transform Options
	Updating XML Documents using XQuery

	Debugging XSLT Stylesheets and XQuery Documents
	Overview
	Layout
	Control Toolbar
	Information View
	Context Node View
	XPath Watch (XWatch) View
	Breakpoints View
	Messages View
	Stack View
	Output Mapping Stack View
	Trace History View
	Templates View
	Node Set View
	Variables View

	Multiple Output Documents in XSLT 2.0

	Working with the XSLT / XQuery Debugger
	Steps in a Typical Debug Process
	Using Breakpoints
	Inserting Breakpoints
	Removing Breakpoints

	Determining What XSLT / XQuery Expression Generated Particular Output

	Debugging Java Extensions
	Supported Processors for XSLT / XQuery Debugging

	Profiling XSLT Stylesheets and XQuery Documents
	Overview
	Viewing Profiling Information
	Invocation Tree View
	Hotspots View

	Working with XSLT/XQuery Profiler

	Working with Archives
	Browsing and Modifying Archive Structure
	Working with EPUB
	Create an EPUB
	Publish to EPUB

	Editing Files From Archives

	Working with Databases
	Relational Database Support
	Configuring Database Data Sources
	How to Configure an IBM DB2 Data Source
	How to Configure a Microsoft SQL Server Data Source
	How to Configure a Generic JDBC Data Source
	How to Configure a MySQL Data Source
	How to Configure an Oracle 11g Data Source
	How to Configure a PostgreSQL 8.3 Data Source

	Configuring Database Connections
	How to Configure an IBM DB2 Connection
	How to Configure a JDBC-ODBC Connection
	How to Configure a Microsoft SQL Server Connection
	How to Configure a MySQL Connection
	How to Configure a Generic JDBC Connection
	How to Configure an Oracle 11g Connection
	How to Configure a PostgreSQL 8.3 Connection

	Resource Management
	Data Source Explorer View
	Actions Available at Connection Level in Data Source Explorer View
	Actions Available at Catalog Level in Data Source Explorer View
	Actions Available at Schema Level in Data Source Explorer View
	Actions Available at Table Level in Data Source Explorer View
	XML Schema Repository Level
	Oracle's XML Schema Repository Level
	IBM DB2's XML Schema Repository Level
	Microsoft SQL Server's XML Schema Repository Level

	Table Explorer View

	SQL Execution Support
	Drag and Drop from Data Source Explorer View
	SQL Validation
	Executing SQL Statements

	Native XML Database (NXD) Support
	Configuring Database Data Sources
	How to Configure a Berkeley DB XML Data Source
	How to Configure an eXist Data Source
	How to Configure a MarkLogic Data Source
	How to Configure a Software AG Tamino Data Source
	How to Configure a Raining Data TigerLogic Data Source
	How to Configure a Documentum xDb (X-Hive/DB) 10 Data Source

	Configuring Database Connections
	How to Configure a Berkeley DB XML Connection
	How to Configure an eXist Connection
	How to Configure a MarkLogic Connection
	How to Configure a Software AG Tamino Connection
	How to Configure a Raining Data TigerLogic Connection
	How to Configure an Documentum xDb (X-Hive/DB) 10 Connection

	Data Source Explorer View
	Oracle XML DB Browser
	PostgreSQL Connection
	Berkeley DB XML Connection
	Actions Available at Connection Level
	Actions Available at Container Level
	Actions Available at Resource Level

	eXist Connection
	Actions Available at Connection Level
	Actions Available at Container Level
	Actions Available at Resource Level

	MarkLogic Connection
	Software AG Tamino Connection
	Actions Available at Connection Level
	Actions Available at Collection Level
	Actions Available at Schema Level
	Actions Available at Resource Level

	Documentum xDb (X-Hive/DB) Connection
	Actions Available at Connection Level
	Actions Available at Catalog Level
	Actions Available at Schema Resource Level
	Actions Available at Library Level
	Actions Available at Resource Level
	Documentum xDb (X-Hive/DB) 10 Parser Configuration for Adding XML Instances
	Troubleshooting
	Cannot save the file. DTD factory class org.apache.xerces.impl.dv.dtd.DTDDVFactoryImpl does not extend from DTDDVFactory

	XQuery and Databases
	Build Queries With Drag and Drop From Data Source Explorer View
	XQuery Transformation
	XQuery Database Debugging
	Debugging with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger
	Debugging Queries Which Import Modules

	Debugging with Berkeley DB XML

	WebDAV Connection
	How to Configure a WebDAV Connection
	WebDAV Connection Actions
	Actions Available at Connection Level
	Actions Available at Folder Level
	Actions Available at File Level

	Importing Data
	Introduction
	Import from Database
	Import Table Content as XML Document
	Convert Table Structure to XML Schema

	Import from MS Excel Files
	Import from HTML Files
	Import from Text Files

	Content Management System (CMS) Integration
	Integration with Documentum (CMS)
	Configure Connection to Documentum Server
	How to Configure a Documentum (CMS) Data Source
	How to Configure a Documentum (CMS) Connection
	Known Issues

	Documentum (CMS) Actions in the Data Source Explorer View
	Actions Available on Connection
	Actions Available on Cabinets / Folders
	Actions Available on Resources

	Transformations on DITA Content from Documentum (CMS)

	Composing Web Service Calls
	Overview
	Composing a SOAP Request
	Testing Remote WSDL Files
	The UDDI Registry Browser
	Generate WSDL Documentation

	Digital Signatures
	Overview
	Canonicalizing Files
	Certificates
	Signing Files
	Verifying the Signature

	Text Editor Specific Actions
	Finding and Replacing Text in the Current File
	The Find All Elements / Attributes Dialog

	Spell Checking
	Spell Checking Dictionaries
	Dictionaries for the Hunspell Checker
	Adding a Dictionary for the Hunspell Checker

	Dictionaries for the Java Checker

	Learned Words
	Ignored Words
	Automatic Spell Check
	Spell Checking in Multiple Files

	Configuring the Application
	Configuring Options
	Customized Default Options

	Importing / Exporting Global Options
	Preferences
	Oxygen XML Developer plugin License
	Global
	Fonts
	Document Type Association
	Editor
	Print
	Edit modes
	Text Diagram
	Grid
	Schema Design
	Properties

	Text Diagram

	Format
	XML
	Whitespaces

	CSS

	Content Completion
	Annotations
	XSL
	XPath
	XSD

	Syntax Highlight
	Elements / Attributes by Prefix

	Open / Save
	Templates
	Code Templates
	Document Templates

	Spell Check
	Document Checking
	Mark Occurrences
	Custom Validation Engines

	CSS Validator
	XML
	XML Catalog
	XML Parser
	Saxon EE Validation

	XML Instances Generator
	XProc Engines
	XSLT/FO/XQuery
	XSLT
	Saxon6
	Saxon HE/PE/EE
	Saxon HE/PE/EE Advanced
	XSLTProc
	MSXML
	MSXML.NET

	XQuery
	Saxon HE/PE/EE
	Saxon HE/PE/EE Advanced

	Debugger
	Annotations
	Profiler
	FO Processors
	XPath
	Custom Engines

	Import
	Date / Time Patterns

	Data Sources
	Configuration of Data Sources
	Download Links for Database Drivers
	Table Filters

	Archive
	Custom Editor Variables
	Network Connections
	Certificates
	XML Structure Outline
	Scenarios Management
	View

	Reset Global Options
	Scenarios Management
	Editor Variables
	Custom Editor Variables

	Common Problems
	XSLT Debugger Is Very Slow
	Syntax Highlight Not Available in Eclipse Plugin
	Problem Report Submitted on the Technical Support Form
	Signature verification failed error on open or edit a resource from Documentum

	Terms
	Index

